corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura...

102
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE CIENCIAS MÉDICAS, CUM UNIDAD DIDACTICA QUIMICA, PRIMER AÑO QUÍMICA 2018 SEMANAS 14 A 31 Nombre: _____________________________________________________ Código Académico _____________________________________________ MANUAL DE PRÁCTICAS DE LABORATORIO

Transcript of corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura...

Page 1: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

UNIVERSIDAD DE SAN CARLOS DE GUATEMALAFACULTAD DE CIENCIAS MÉDICAS, CUMUNIDAD DIDACTICA QUIMICA, PRIMER AÑO

QUÍMICA 2018

SEMANAS 14 A 31

Nombre: _____________________________________________________

Código Académico _____________________________________________

Docente: ___________________________ Día y hora de Clase:__________

MANUAL DE PRÁCTICAS DE LABORATORIO

Page 2: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

UNIVERSIDAD DE SAN CARLOS DE GUATEMALAFACULTAD DE CIENCIAS MÉDICAS, CUMUNIDAD DIDACTICA QUIMICA, PRIMER AÑO

SEMANA No. 14PROYECTO MEDIO AMBIENTE 2018

MANEJO ADECUADO DE DESECHOS SÓLIDOS

Elaborado por: Licda. Lilian Guzmán, Lic. Raúl Hernández, Licda. Corina Marroquín, Licda. Vivian Sánchez, Licda. Sofía Tobías, Licda. Isabel Fratti de Del Cid, Licda. Evelyn Rodas de Soto, Licda. Lucrecia Casasola de Leiva, Licda. Bárbara Toledo, Lic. Fernando Andrade y Lic. Pedro Jayes.

FECHA DE ENTREGA: SEMANA DEL 23 AL 27 DE JULIO DE 2018

I. INTRODUCCIÓN

Los desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente el volumen de desechos del vertedero municipal de la zona 3 de la capital, lo que representa una grave amenaza a la salud de la población y a la contaminación del medio ambiente. Se requiere de la implementación de medidas urgentes con el fin de educar e instruir a la comunidad acerca de su manejo y disposición adecuados. Esto contribuirá a mejorar el proceso de recolección, separación y clasificación desde el origen, optimizando el aprovechamiento de materiales reciclables y reduciendo las cantidades de desechos previo a su disposición final. Un aspecto fundamental para mejorar el proceso de disposición es la adecuada separación de los diferentes tipos de desechos y utilización correcta de los contenedores o basureros que los clasifican según el código de colores o simbología. Este proyecto pretende concientizar, incentivar y fomentar el hábito del manejo adecuado de los desechos sólidos en los estudiantes de primer año del curso de Química de la Facultad de Ciencias Médicas de la Universidad de San Carlos de Guatemala así como difusión de esta información en la comunidad para motivar su involucramiento en este proceso.

I.II. PROBLEMA A RESOLVER

Descripción

2

Page 3: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

Sabiendo que el ser humano contamina el medio ambiente, el futuro Médico y Cirujano debe desarrollar diferentes actividades para comprender y concientizar a la comunidad acerca de los efectos de los contaminantes en la salud.

PlanteamientoEs necesario explicar los efectos en la salud de los contaminantes ambientales.

III. COMPETENCIA Explica los efectos de los contaminantes ambientales en la salud y el medio ambiente para concientizar a diferentes sectores de la comunidad.

Competencia específicaConcientizar sobre la necesidad de identificar los residuos sólidos para clasificarlos y desecharlos adecuadamente.

I.II.

III.IV. CRITERIOS DE DESEMPEÑO

SABER HACER1. Identifica los diferentes tipos de desechos sólidos.2. Clasifica los desechos sólidos de acuerdo a su tipo para descartarlos en los

contenedores de basura correspondientes.3. Presentar una propuesta sugiriendo la mejor forma de descartar los desechos sólidos.4. Socializa con distintos grupos de la comunidad la información recopilada sobre la

contaminación ambiental y riesgos a la salud y al ambiente.5. Elabora un informe final del proyecto educativo con todos los elementos requeridos.SABER PENSAR1. Busca información sobre los polímeros sintéticos utilizados en la fabricación de

artículos desechables.2. Relaciona los efectos tóxicos en el ambiente y la salud causados por los polímeros

sintéticos utilizados en la fabricación de artículos desechables.3. Conoce los procesos y las instituciones que se encargan del manejo de los desechos

sólidos. 4. Analiza la información obtenida a través de la revisión bibliográfica y encuestas.

SABER SER1. Reconoce el problema de la contaminación ambiental y riesgos a la salud causada por

los desechos sólidos.2. Concientiza a diferentes grupos de la población acerca de la importancia de la

clasificación de los desechos sólidos.1.2.

3. Valora la importancia de cuidar el medio ambiente.4. Asume la responsabilidad del cuidado ambiental.

3

Page 4: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

*La Guía para elaborar éste proyecto se obtendrá por separado.

UNIVERSIDAD DE SAN CARLOS DE GUATEMALAFACULTAD DE CIENCIAS MÉDICAS, CUMUNIDAD DIDÁCTICA DE QUÍMICA, PRIMER AÑO

PRACTICA DE LABORATORIO 2018

SEMANA 15

EVALUACION PRÁCTICA DE LABORATORIO SEMANA 1 a 13

Elaborado por Lic. Fernando Andrade B., Licda. Corina Marroquín O.

I. INTRODUCCION

Esta actividad está diseñada para evaluar habilidades, destrezas y conocimientos adquiridos durante la realización de las prácticas de laboratorio de las semanas 1 a la 13 del curso.

La prueba se ha diseñado de tal forma que las observaciones, medidas y procedimientos, a evaluarse, se hagan lo más cercano a las condiciones en las que se llevaron a cabo las actividades de laboratorio.

II. OBJETIVOS

1. Evaluar las habilidades y destrezas desarrolladas durante las prácticas efectuadas.

2. Identificar el material, equipo y pictogramas usados en los ensayos de laboratorio.

3. Reconocer cambios o manifestaciones que indiquen un cambio químico o reacción.4. Identificar una mezcla homogénea de una heterogénea.5. Comprobar el proceso de diálisis realizando pruebas químicas a un dializado.6. Identificar una solución ácida de una básica utilizando indicadores químicos y papel pH.7. Identificar un electrolito fuerte, débil y no electrolito.8. Identificar una solución buffer a través de su capacidad de amortiguar el pH después de

agregar pequeñas cantidades de ácidos o bases. 9. Poner en práctica las normas de seguridad para llevar a cabo los procedimientos de

laboratorio.

4

Page 5: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

III. MATERIALES APORTADOS POR LOS ESTUDIANTES

1. Lapicero2. 1 o 2 hojas de papel mayordomo3. 3 o 4 tubos de ensayo limpios y secos (puede usar los de su KIT)4. Equipo de protección personal

IV. PROCEDIMIENTO

1. Al ingresar al laboratorio, el catedrático le asignará unaestación a la cuál usted debe dirigirse. En ella encontrará el temario correspondiente. NO inicie hasta que se le indique.

2. NO puede cambiar el temario NIel lugar asignado con otro estudiante, pues de lo contrario, les será anulada la prueba a los estudiantes involucrados.

3. Debe cerciorarse de colocar en el temario los datos que lo identifican (nombre, código académico, jornada en la que asiste a recibir su clase regularmente, número de salón.)

4. Cada estación está identificada con un color específico.5. En la estación encontrará el material y equipo para que realice las observaciones,

procedimientos y/o ensayos solicitados. 6. Cada vez que abra un frasco de reactivo debe colocarle el tapón respectivo, NO

intercambie los tapones de un reactivo a otro.7. Cerciórese de que los reactivos a utilizarse NO presenten turbidez o precipitados.8. Si por accidente derrama algún reactivo, avísele a su profesor, continúe con el resto del

examen y espere a que el reactivo sea repuesto.9. Debe dejar el material y equipo en el orden en que lo encontró.10. Las respuestas deben ser escritas con lapicero y con letra clara y legible en los

espacios asignados. No debe usar hojas adicionales.11. El material utilizado como papel pH, hisopos, papel mayordomo debe ser desechadoen

el lugar indicado y debe dejar limpia su área de trabajo.12. Al finalizar debe entregar la hoja del temario con las respuestas a su profesor. 13. Al llevar a cabo los pasos anteriores, debe abandonar el salón. El momento de lavar sus

tubos y guardarlos, se le indicará. Por lo tanto NO debe quedarse en la puerta del salón, corredores o en los lavaderos dentro del laboratorio.

V. RECOMENDACIONES PARA ESTA PRUEBA

1. Estudiar y revisar los instructivos de las prácticas de laboratorio de la semana 1 a la 13, así como los datos, observaciones y resultados de las actividades y ensayos realizados que haya anotado.

2. NO ESTA PERMITIDO INGRESAR LAS PRACTICAS DE LABORATORIO A LA EVALUACIÓN.

5

Page 6: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

3. Presentarse en el día y horario asignado con su bata de laboratorioy equipo de protección personal. La ropa y accesorios de vestir al presentarse a ésta prueba, deben estar de acuerdo con lo establecido en las normas dadas en la semana No.1.

4. Durante la prueba NO puede comunicarse con nadie, ni preguntar a su profesor, así como tampoco puede utilizar ningún aparato electrónico o de comunicación.

UNIVERSIDAD DE SAN CARLOS DE GUATEMALAFACULTAD DE CIENCIAS MÉDICAS, CUMUNIDAD DIDÁCTICA DE QUIMICA, PRIMER AÑO

PRÁCTICAS DE LABORATORIO 2018

SEMANA 16 PROPIEDADES GENERALES DE LOS COMPUESTOS ORGANICOS

Elaborada por: Licda. Bárbara Jannine Toledo Chaves

I. INTRODUCCIÓN La Química Orgánica es la rama de la química que estudia la composición, propiedades, usos, fuentes e incluso la función que tienen los compuestos orgánicos en las diferentes estructuras biológicas. Se consideran compuestos orgánicos aquellos que poseen al elemento carbono generalmente formando cadenas carbonadas, a las que se halla unido principalmente Hidrógeno, Oxígeno, Nitrógeno. La obtención de éstos compuestos puede ser de origen natural o artificial; dichos compuestos contienen como base enlaces covalentes carbono-carbono. Además puedenforman estructuras lineales, ramificadas y cíclicas.Las propiedades generales de los compuestos orgánicos dependen del tipo de enlace y de los átomos presentes. Las siguientes son características generales de dichos compuestos: a. Son solubles en solventes apolares e insolubles en agua, b. tienen densidad menor que la del agua (<1g/mL), c. tienen bajos puntos de fusión y ebullición, d. son Inflamables, e. no conducen la electricidad, f. a temperatura ambiente: existen en los tres estados físicos

En la práctica se realizaran ensayos, para observar de forma cualitativa y comparativa algunas de las características generales de los compuestos orgánicos e inorgánicos: solubilidad, densidad, punto de fusión, inflamabilidad, combustión y conductividad eléctrica.

II. OBJETIVOS 1. Comparar la solubilidad de compuestos orgánicos e inorgánicos, frente a un solvente

polar y uno no polar.2. Comparar la densidad de algunos compuestos orgánicos e inorgánicos.3. Determinar la densidad del aceite vegetal como compuesto orgánico4. Comparar el punto de fusión de compuestos orgánicos e inorgánicos.5. Realizar ensayos de inflamabilidad y combustión en compuestos orgánicos.6. Comparar la conductividad eléctrica en un compuesto orgánico y otro inorgánico.

6

Page 7: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

Insoluble Soluble

III. MATERIALES , EQUIPO Y REACTIVOS

a. Balanza, Mecheros de alcohol, b. cápsulas de porcelana .Pisetas con aguac. Aparatos para medir conductividad eléctricad. Parafina solida ralladae. Gasolina f. Eter dietílico ( solvente no polar) g. NaNO3 (sólido)h. NaCl (solido)i. NaCl 20% p/v, j. KMnO4 al 0.3% p/v.k. Solución alcohólica de I2( Tintura de yodo)

IV. PROCEDIMIENTO 1. SOLUBILIDAD:Los compuestos orgánicos cumplen con la regla general, “lo similar se disuelve en lo similar”, por lo tanto los compuestos polares se disuelven en solventes polares y los compuestos no polares se disuelven en solventes no polares.

1.1 Solubilidad según polaridad:

a. En una gradilla coloque 4 tubos de ensayo limpios y secos.b. Identifíquelos con los números 1, 2, 3 y 4.c. Proceda según el siguiente cuadro.

Coloque1 ml de

Solvente

AGREGUE

Agite, deje reposar

1 min

Soluble / insoluble

Tipo de solvente POLAR /

NO POLAR

Tipo de solvente

ORGÁNICO/ INORGÁNICO

Tipo de solutoPOLAR

NO POLAR IÓNICO

Tipo de soluto:

ORGÁNICO/ INORGÁNICO

1

H2O

1 pizca de NaCl

AGITE

2

H2O

10 GOTAS de gasolina

AGITE

3

Eterdietílico

1 pizca de NaCl

AGITE

4Eterdietílico

10 GOTAS de gasolina

7

Material aportado por los estudiantes:

Kit de laboratorio Equipo de protección personal. Etanol al 70% (frasco pequeño)* Botella pequeña con aceite de girasol,

Maíz o canola * Fósforos 2 espatulitas plásticas (se usaran como espátulas

para pesar los sólidos)

*Debe entregarlo al profesor, solo se necesita 1 por todo el grupo de laboratorio.

Page 8: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

AGITE

No llenar (debido a que no forman soluciones no se refiere a soluto y solvente)

1.2 Distribución de sustancias de diferente polaridad en una mezcla

a. Coloque dos tubos de ensayo en una gradilla y márquelos # 1 y # 2 b. Proceda de acuerdo al siguiente cuadro:

TUB

O

Coloque, agite, deje

reposar

1 min.

El agua ocupa la

parte superior o inferior?

Es la fase polar o apolar?

El éter ocupa la

parte superior o inferior?

Es la fase polar o apolar?

Añada , agite

Deje reposar1 minuto

Se distribuyó en la fase

Polar ono polar

Añada,agite

Deje reposar 1minuto

Se distribuyó en la fase

Polar ono polar

1 4mL de H2O

+2mL de

éter

2 gotas solución tintura de I2

2gotas KMnO4

0.3 % p/v

2 5 gotas aceite

¼ cdta de sal

Nota: En las células, se delimitan dos fases: La bicapa lipídica (no polar) de la membrana y el citoplasma acuoso (polar). El desplazamiento hacia dentro o afuera (medicamentos, biomoléculas) depende de la polaridad de las sustancias, respecto a las capas y barreras biológicas.Esto también se aplica a la barrera hemato-encefálica.

2. DENSIDAD:Los  compuestos orgánicos presentan densidades generalmente menores que los compuestos inorgánicos. Por eso, cuando uno de los componentes es el agua flotan u ocupan la parte superior en una mezcla. Si se observa esto, se consideran menos densos que el agua (densidad < de 1g/ml), pero si se van al fondo u ocupan la parte inferior se consideran más densos que el agua (densidad > 1g/mL).

2.1 Comparación de la densidad de algunos compuestos orgánicos e inorgánicos

a. Coloque en la gradillados tubos de ensayo y márquelos # 1 y # 2b. Proceda de acuerdo al siguiente cuadro

8

Page 9: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

TUB

OTu

bo

COLOQUE COMPUESTO ORGÁNICO

AGREGUE COMPUESTO INORGÁNICO

2 mL(medidos con

probeta)

¿QUIEN PRESENTA MENOR DENSIDAD?

Compuesto Orgánicoò Inorgánico

DENSIDAD TEÓRICA(Investíguela)

1 1 mL de Aceite de girasol

NaCl al 20 % p/v Aceite de girasol:

NaCl 20%p/v:

2 0.1 g de Parafina sólida

NaClal 20% p/v Parafina sólida:

NaCl 20% p/v:

2.2 Determinación de la densidad del aceite vegetal

a. Pese una probeta de 10mL limpia, seca y vacía. (A)____________gb. Quite la probeta de la balanza y agréguele exactamente 5mL de aceite.c. Pese nuevamente la probeta (B) _____________gd. Reste el peso B-A ____________ge. Calcule la densidad (d=m/v)f. Complete el cuadro

Densidad determinada del aceite utilizado

Densidad teórica según el aceite utilizado (maíz, girasol, canola)

Densidad teórica del agua

Densidad del aceite en

comparación a la del agua.MAYOR O MENOR

3. PUNTO DE FUSIONMuchos compuestos orgánicos son moléculas no polares con atracciones débiles entre moléculas por lo que generalmente presentan puntos de fusión más bajos que el de los compuestos inorgánicos.

3.1 Comparación entre el Punto de Fusión de un Compuesto Orgánico y uno Inorgánico

a. Utilice dos tubos de ensayo resistentes al calor y márquelos #1 y# 2.b. Continúe el procedimiento según el siguiente cuadro y anote lasobservaciones.

Tubo Colóquele: A-Caliente con el mechero los dos tubos al mismo

9

Page 10: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

No. tiempo.

B- ¿Qué sustancia se funde primero?_________

C-Deje de calentar el tubo que contiene la sustancia que se fundió primero.

D-Caliente por un minuto más el otro tubo y si el compuesto no se funde asuma que tiene un punto de fusión mayor. Llene el cuadro siguiente.

1 0.1 g de parafina sólida

2 0.1 g de NaNO3

SustanciaEstado físico

inmediatamentedespués del

calentamiento

Punto de fusión comparativo

mayor / menor

Punto de fusión teórico( ° C )

(Investíguelo)

Clasifique la sustancia como

inorgánica / orgánica

Parafina sólida

NaNO3

4.INFLAMABILIDAD Y COMBUSTIÓNUn material inflamable en presencia de oxígeno puede experimentar combustión. Esta es una reacción química de oxidación, en la que se desprende energía, en forma de calor y luz, manifestándose visualmente como fuego o llamas. Los compuestos orgánicos generalmente experimentan combustión y los inorgánicos generalmente no.

a. Utilice 3 cápsulas de porcelanas limpias y secas.b. Identifíquelas como 1, 2, 3 c. Continúe el procedimiento de acuerdo al siguiente cuadro:

Cáp

sula Agregue

15 gotas de

Enc

iend

a un

fosf

oro

yace

rque

la

llam

a a

la c

ápsu

la.

¡PR

ECA

UC

IÓN

!

Experimenta

combustiónSi / No

Color de lallama

Desprende humo

Si / No

Deja residuo

carbonoso

Si / No

Clasifíquela como

Combustión completa /

incompleta.

1 Gasolina(orgánico)

2 Alcohol(orgánico)

3 ½ cdta de sal (NaCl)

*Combustión completa: llama azul y no deja residuo carbonoso ni desprende humo.Combustión incompleta: llama amarilla-naranja, desprende humo, deja residuo carbonoso.

5. CONDUCTIVIDAD ELECTRICA:La mayoría de los compuestos orgánicos no son conductores de la electricidad debido a que no se disocian, en tanto los inorgánicos sí.

a. Identifique dos beacker limpios. Marque 1 y 2. b. Al beacker No.1 colóquele 50-60 mL de alcohol al 70% v/v.

10

Page 11: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

c. Al No.2 colóquele 50-60 mL de agua y agréguele 1/2 cucharadita de nitrato de sodio (NaNO3), agite hasta disolver.

d. Conecte e introduzca las terminales del aparato de conductividad eléctrica dentro del beacker No.1, observe y anote.

e. Desconecte el aparato de conductividad, luego lave y seque las terminales. ¡Cuidado no las toque mientras están conectadas a la electricidad!

f. Repita el procedimiento de los incisos d y e en el beacker No. 2.

Beacker SustanciaCONDUCE

ELECTRICIDADSI / NO

Electrolito / No electrolito Orgánico /

inorgánico

1 Alcohol2 NaNO3

Escriba la ecuación de Ionización del compuesto que se comportó como electrolito. Encierre con color rojo, el catión y en azul el anión generado.

V-ANALISIS DE RESULTADOS

VI- CONCLUSIONES

VII-CUESTIONARIO1- Enbase a los documentos usados en la práctica de la primera semana: “Lista

desustancias químicas” y “Accidentes en el laboratorio químico su prevención y atención”: Complete el siguiente cuadro.

Sustancia Letra de referencia

Significado Primeros Auxilios (escriba 3)

Prevención

( escriba 3)

Eterdietílico

Nitrato de sodioNaNO3

2- Explique por qué razón el punto de fusión y ebullición de los compuestos inorgánicos es más alto que el de los orgánicos

3- La densidad de los compuestos tiene que ver con su solubilidad? SI / NO, EXPLIQUE

4- Entre uno de los componentes de la gasolina está el n-octano. Escriba la ecuación de la combustión completa de éste componente.

11

Page 12: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

5- Un niño de 2 años tomo accidentalmente Queroseno que su papa tenía en el garaje. Se ingresa al hospital por problemas respiratorios. Por el examen físico y rayos X de tórax, se le diagnostica. “Neumonía bilateral por aspiración de Hidrocarburos” Investigue y enumere:

Componentes del Queroseno Dos síntomas principales de ésta intoxicación.

VIII-BIBLIOGRAFÍA1. Manual de prácticas de Laboratorio 2017 “Semana 16 Propiedades Generales de los

Compuestos Orgánicos”. Unidad didáctica Química, Facultad de Ciencias Médicas USAC.2. Timberlake, Karen C. Química general, Orgánica y biológica. Estructuras de la vida. 4ta edición.

Pearson Educación de México, S.A de C.V., México, 2013

UNIVERSIDAD DE SAN CARLOS DE GUATEMALAFACULTAD DE CIENCIAS MÉDICAS, CUMUNIDAD DIDACTICA DE QUIMICA, PRIMER AÑO

PRACTICA DE LABORATORIO 2018

SEMANA 17PROPIEDADES QUÍMICAS DE HIDROCARBUROS

Elaborado por: Licda. Corina Marroquín Orellana

I. INTRODUCCIÓNLos hidrocarburos insaturados constituyen la familia de alquenos y alquinos, reciben su nombre por su capacidad de adicionar hidrógenos, por medio de reacciones de adición. Los alcanos y aromáticos, son menos reactivos y experimentan reacciones de sustitución, a veces con necesidad de aplicar calor ó LUV y usar catalíticos especiales.

En el laboratorio se realizarán las reacciones químicas de Halogenación, Test de Baeyer (oxidación), pruebas con H2SO4 en alcanos, alquenos y aromáticos, alquilación y nitración de un hidrocarburo aromático, se observarán las manifestaciones de cada reacción, el diferente grado de reactividad, lo cual ayudará a diferenciarlos entre ellos.

II. OBJETIVOS

12

Page 13: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

Alqueno con doble

enlace

Alquenosin doble

enlace

enlace

1. Identificar a alcanos, alquenos e hidrocarburos aromáticos a través de la observación de las manifestaciones que presentan en las reacciones químicas realizadas en ésta práctica.

2. Llevar a cabo reacciones que identifican a los hidrocarburos por su grado de reactividad.

3. Representar las reacciones realizadas en la práctica a través de las ecuaciones químicas respectivas.

III. MATERIAL Y REACTIVOS

1. Alcano (hexano)2. Alqueno (2-hexeno)3. Aromático (benceno)4. Solución de I2

5. KMnO4 al 2% m/v.6. H2SO4 concentrado

7.AlCl38.Cloroformo (CHCl3)9.HNO3 concentradoGradillas, estufa, olla para baño de María

IV. PROCEDIMIENTO

A. HALOGENACIÓNConsiste en la sustitución de uno o más hidrógenos de un alcano o aromático por halógenos, o bien la adición de halógenos a un doble o triple enlace.En ésta práctica se usará I2, (yodo diatómico). El alqueno reaccionará en tanto que el alcano y el Aromático, no reaccionaran debido a que no proporcionaremos las condiciones necesarias para ésta reacción.

Ecuación general: el halógeno está representado por X = Cl2, Br2, I2, F2

Numere tres tubos, deben estar limpios y secos. Proceda según el cuadro.

13

MATERIALES APORTADOS POR LOS ESTUDIANTES

- Kit de laboratorio- 1 Paletita para agitar

café de McDonald´s- Equipo de protección

personal.

Page 14: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

MnO2+ KOH + H2OPrecipitado café

TUBO

COLOQUE1 ml

AGREGUE UNA A UNA3-4 GOTAS

DE SOLUCIÓN DE IODO,

AGITANDO DESPUÉS DE CADA

GOTA. OBSERVE

Manifestación (Decoloración)

SI / NOResultado( + ) / ( - )

Elabore la ecuación de la reacción positiva

1 ALCANO(Hexano)

2 ALQUENO(2-Hexeno)

3 AROMÁTICO(Benceno)

NOTA: Una decoloración (café a incoloro) indica que el yodo se adicionó a los carbonos dando un resultado positivo. La permanencia del color del reactivo I2 (café) indica resultado negativo.

B. TEST DE BAEYER (OXIDACIÓN CON KMnO4 en frio)El doble enlace, presente en el alqueno,se oxida, formando un glicol y obteniéndose entre otros productos MnO2, se manifiesta a través de un precipitado café. Los alcanos y aromáticos, dan la reacción negativa (permanece el color violeta del reactivo).

Ecuación general (no balanceada)

Siga el procedimiento indicado en el cuadro:

TUB

O

COLOQUE 1 ml

AG

REG

UE

2G

OTA

S, D

E

MANIFESTACIÓN: (Precipitado

café) SI / NO

RESULTADO

( + ) / ( - )

Tipo de reacción

en caso de ser

positiva: adición /

sustitución

Elabore la ecuación de la reacción positiva

14

Page 15: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

KM

nO4

al 2

% m

/v A

GIT

E Y

OB

SER

VE

1Alcano(hexano)

2Alqueno

( 2-hexeno)

3 Aromático(benceno)

NOTA: La manifestación del resultado positivo es un precipitado café. La permanencia del color púrpura, indica que el resultado es negativo. La formación de dos fases no significa reacción positiva. Las dos fases se deben a que el hidrocarburo es no polar y la solución de KMnO4 es polar.

C. ADICION DE H2SO4 CONCENTRADO1. Con el alqueno: El H2SO4se adiciona al doble enlace dando los sulfatos

ácidos de alquilo, la reacción se manifiesta con una coloración naranja-café (+).

2. Con el aromático (Benceno): se sustituye un hidrógeno por el grupo sulfónico. (–HSO3). Obteniéndose ácido bencensulfónico y como subproducto agua la reacción se manifiesta con una turbidez (+).

Con el alcano, NO reacciona.

Ecuaciones generales:

a) Alqueno:

Sulfato ácido de alquilo (coloración naranja-café)

b) Benceno:

Siga el procedimiento indicado en el cuadro:

TUB

O COLOQUE 1 ml

AG

REG

UE

5

MANIFESTACIÓN: (Color

anaranjado-café = alqueno. Turbidez = aromático)

RESULTADO

( + ) / ( - )

Tipo de reacción en caso de ser

positiva: adición /

sustitución

Escriba la ecuación de la reacción positiva

15

Page 16: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

+ RX + + HXH

AlCl3 anhidroR

+ HNO3 + H2OH H2SO4

50°- 60°c

NO2

GO

TAS

DE

H2S

O4

conc

entr

ado,

PREC

AU

CIÓ

N ,

el

ácid

o pu

ede

caus

ar q

uem

adur

as.

AG

ITE

Y O

BSE

RVE

1 Alcano(hexano)

2Alqueno

( 2-hexeno)

3Aromátic

o(benceno

)

Recuerde que la formación de dos fases no indica reacción positiva.

D. ALQUILACIÓN (REACCIÓN DE FRIEDEL CRAFTS): En la alquilación un grupo alquilo (R) sustituye a un hidrógeno del anillo bencénico usando como catalizador, cloruro de aluminio anhidro (AlCl3).

Ecuación general.

Siga el procedimiento indicado en el cuadro. Los tubos deben estar secos.

TUBOCOLOQUE 5 GOTAS DE:

Agr

egar

15

gota

s de

CH

Cl 3

a c/

uno.

MEZ

CLE

BIE

N.

Incl

ine

c/tu

bo p

ara

hum

edec

er

sus

pare

des

con

el

clor

ofor

mo

Agr

egar

una

peq

ueña

ca

ntid

ad d

e A

lCl 3a

nhid

roco

n la

pal

elita

de

McD

onal

s a

c/tu

bo p

or

la p

ared

hum

edec

ida

TAPE

EL

tubo

.

MANIFESTACIÓN*REACCIÓN

(+/ -)

1 Alcano

2 Aromático

*La manifestación de la reacción positiva es que las partículas del AlCl3impregnadas en la pared del tubo de ensayo, adquieran coloración rojiza.

E. NITRACIONEn la nitración un grupo nitro (-NO2) sustituye a un hidrógeno del anillo bencénico, requiriendo como catalítico al H2SO4. La reacción debe llevarse a cabo a una temperatura de 50°-60° C.

16

Page 17: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

Siga el procedimiento indicado en el cuadro:

TUBO COLOQUE1mlAGREGAR

Resbalado por la pared del

tubo 10 gotas de HNO3 y

5 gotas H2SO4

conc.

PRECAUCION AMBOS ACIDOS

PUEDEN CAUSAR QUEMADURAS

(Agitar suavemente)

Coloque en Baño de María a 50-60°C por 5 min.

Perciba el olor. NO DIRECTAMENTE.

Lleve los vapores hacia su nariz abanicándolos con la mano.

MANIFESTACIÓN* REACCIÓN(+ / -)

1 ALCANO

2 AROMÁTICO

*Color amarillo y olor característico

V. ANALISIS DE RESULTADOS

VI. CONCLUSIONES

VII. CUESTIONARIO

1- Complete el siguiente cuadro

Reacción entre: Escriba la ecuación Cuál sería la manifestación

3-etil-2-hepteno + Cl2

3-hexeno + KMnO4

2-buteno + H2SO4

17

Page 18: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

2. ¿Qué tipo de reacción lleva a cabo el procedimiento de Halogenación de alquenos ________________________________________________________

3 ¿Qué tipo de reacción es el test de Baeyer___________________________

4. La reacción de alquilación también se llama:________________________

UNIVERSIDAD DE SAN CARLOS DE GUATEMALAFACULTAD DE CIENCIAS MÉDICAS, CUMUNIDAD DIDACTICA QUIMICA, PRIMER AÑO

PRACTICA DE LABORATORIO 2018

SEMANA 18IDENTIFICACIÓN DE LA MUESTRA DESCONOCIDA No.1

Elaborado por: Licda. Lucrecia Casasola de Leiva

I. INTRODUCCIONLa resolución de problemas, es el quehacer diario del profesional de las ciencias médicas, para ello debe seguir pasos lógicos, ordenados y coherentes, basados en principios científicos con apoyo tecnológico.  Siguiendo esos pasos el Médico podrá diagnosticar y dar el tratamiento adecuado a las patologías que presenten sus pacientes.

En esta práctica, Muestra Desconocida No.1, siguiendo los pasos lógicos y ordenados de la marcha analítica, deberá identificar el Hidrocarburo (alcano, alqueno, aromático) presente en su muestra. Para esto tiene como referencia las observaciones y anotaciones

18

Page 19: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

de las reacciones y ensayos realizados en las prácticas anteriores por lo que al utilizar los fundamentos teóricos y la interpretación adecuada de los resultados obtenidos logrará identificar exitosamente la muestra desconocida que se le ha asignado. El reporte o informe que presentará a su profesor será la evidencia del trabajo realizado.

II. OBJETIVOS 1. Seguir una marcha analítica para la identificación de una muestra desconocida.2. Retroalimentar los conocimientos adquiridos en prácticas anteriores.3. Establecer la importancia de las propiedades químicas en la identificación de una

muestra.4. Identificar en una muestra desconocida, por medio de reacciones químicas, uno de los

siguientes Hidrocarburos: Saturado (alcano), Insaturado (alqueno) o aromático.

REACTIVOS Y MATERIALES1. KMnO4 al 2% p/v2. H2SO4 conc.3. Gradilla para tubos de ensayo

PROCEDIMIENTO1. El catedrático le proporcionará en un tubo de ensayo una muestra desconocida que

deberá identificar correctamente, este puede contener cualquier Hidrocarburo estudiado previamente: hidrocarburo saturado, hidrocarburo insaturado, hidrocarburo aromático.

2. Anote todos sus datos y los de la muestra que se le solicitan en la parte superior de la hoja del reporte.

3. Separe la muestra en tres tubos de ensayo. Dos tubos serán para hacer las diferentes reacciones y el tercero por si tiene que repetir.

4. Siga la dirección que le indica la marcha analítica. El primer resultado le indicará las reacciones que debe realizar hasta llegar a identificar el hidrocarburo de su muestra.

5. Anote en la hoja de reporte que se le entregará sus resultados a lapicero, indicando las reacciones realizadas y el hidrocarburo identificado. No tache ni utilice corrector.

6. Entregue el reporte a su profesor en el tiempo que él establezca.

RECOMENDACIONES PARA ESTA PRUEBA1. La cristalería y material a utilizarse debe estar limpio y seco. Identifique sus tubos con

marcador permanente de punta fina para evitar que se confundan.

19

Material aportado por los estudiantes

1. 3 tubos de ensayo2. Pipeta de transferencia de 3ml 3. Marcador permanente de punta fina 4. Unas hojas de papel mayordomo

5. EQUIPO DE PROTECCIÓN PERSONAL

Page 20: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

MARCHA ANALITICA

MUESTRA1 mL

KMnO4 al 2%(2 gotas)

+ -

Reacción con

2. Cada reacción debe realizarla en diferente tubo y con muestra pura. NUNCA DEBE REALIZAR DOS O MAS REACCIONES EN UN MISMO TUBO.

3. Su profesor le dará MUESTRA, UNA SOLA VEZ.4. DEBE ESTUDIAR LAS PRÁCTICAS DE LABORATORIO anteriores para poder realizar

las reacciones químicas que le indique la marcha analítica.5. Realice solo las reacciones químicas necesarias que le indica su marcha para identificar

la muestra.6. RESPONDIENDA ÚNICAMENTElos incisos que correspondan a las pruebas que efectuó

para lograr identificar su muestra.7. Una vez usted recibe su muestra NO puede abandonar el salón hasta que entregue su

reporte.8. Esta marcha analítica es un EXAMEN PRACTICO,NO DEBE CONSULTAR CON NADIE.

9. Su área de trabajo debe quedar limpio y el material utilizado en su lugar después de realizar la prueba.

20

NOTA:SEPARE SU MUESTRA EN TRES TUBOS DE ENSAYO.CADA REACCIÓN SE REALIZA EN TUBO DIFERENTE.

Page 21: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

UNIVERSIDAD DE SAN CARLOS DE GUATEMALAFACULTAD DE CIENCIAS MEDICAS-CUMUNIDAD DIDACTICA QUIMICA, PRIMER AÑO

PRACTICAS DE LABORATORIO 2018

SEMANA 19 y 20PROPIEDADES FÍSICAS Y QUÍMICAS DE ALCOHOLES Y FENOLES

Elaborado por: Licda. Sofía Tobías de Rodríguez

I. INTRODUCCIÓNLos alcoholes son compuestos orgánicos que contienen el grupo hidroxilo (-OH) unido a una cadena carbonada, este grupo influye en las propiedades físicas y químicas, le proporciona polaridad a la molécula, así como la capacidad de formar puentes de Hidrógeno. Los alcoholes se pueden clasificar como primarios, secundarios y terciarios dependiendo a que carbono se encuentre unido el grupo hidroxilo (-OH). Las propiedades químicas de los alcoholes y algunas de las propiedades físicas dependerán si es primario, secundario o terciario.Los alcoholes son subproductos normales de la digestión y se encuentran como parte de estructuras más complejas en membranas y organelos celulares.Cuando el -OH se encuentra unido directamente a un anillo aromático, los compuestos se llaman fenoles y sus propiedades químicas son diferentes.

21

Page 22: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

Los éteres son compuestos que contienen el grupo funcional C-O-C y sufren pocas reacciones químicas, no poseen átomos de hidrógeno unidos al oxígeno siendo menos polares y menos solubles que los alcoholes isoméricos.En ésta práctica se observará el pH de alcoholes y solubilidad de alcoholes, fenoles y éteres. Así como las propiedades químicas de alcoholes y fenoles. Los procedimientos que se realizarán permitirán observar las manifestaciones que presentan los alcoholes primarios, secundarios y terciarios, cuando reaccionan con los diferentes reactivos lo que contribuirá a establecer las diferencias entre estos.

II. OBJETIVOSa) Observar las propiedades físicas de alcoholes, éteres y fenoles.b) Clasificar los alcoholes según la posición del grupo funcional.c) Identificar las propiedades químicas de alcoholes y fenoles.d) Analizar las propiedades químicas de alcoholes con las pruebas de Lucas, oxidación

con KMnO4 yde los fenoles con FeCl3.

e) Identificar los alcoholes primarios, secundarios y terciarios por medio de sus manifestaciones con la prueba de Lucas y KMnO4.

III. MATERIALES Y REACTIVOS-Gradilla-Hornilla elèctrica-Baño María-Papel pH-Tubos de ensayo con tapón para observar la solubilidadde :Etanol,1-Propanol,1-Butanol, 2-Butanol, 2-Metil-2-propanol, Fenol, Benceno y Éter di etílico

-Frascos goteros con:Etanol, 2-metil-2-propanol,Fenol, 1-butanol, 2-butanol.-KMnO4 al 3%,-Reactivo de Lucas-Solución de FeCl3

IV. PROCEDIMIENTO

1 PROPIEDADES FÍSICAS DE ALCOHOLES, FENOLES y ÉTERES.

A. MEDICIÓN DE pHa) Fundamento:

Los alcoholes son ácidos muy débiles por lo que al medirles su pH estos tienden a marcar casi neutro.

b) Procedimiento:Siga el procedimiento con el siguiente cuadro y anote sus resultados.

Papel pH

Humedecerlacon 1 gota de Color del papel pH*

Valor delpH

según la escala

1 1-Butanol

2 2-Butanol

3 2-Metil-2-propanol

* El color del papel será entre anaranjado y amarillo

B. SOLUBILIDAD 22

MATERIALES APORTADOS POR LOS ESTUDIANTES

-Kit de laboratorio-1 tableta de acetaminofén (no aspirina)-Equipo de protección personal

Page 23: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

Se considera soluble en agua al compuesto cuando forma una sola fase.

a) Fundamento: Los alcoholes con estructuras de bajo peso molecular, son solubles en agua

debido a la polaridad de la molécula y su capacidad para formar puentes de hidrógeno.

La solubilidad disminuye al aumentar la longitud de la cadena carbonada. La solubilidad también depende de la posición en la cadena del radical –OH ó de

la presencia de ramificaciones Para alcoholes de igual peso molecular, la solubilidad varía de acuerdo al grado

de ramificación de la cadena (lo observará con los alcoholes de 4 átomos de carbono).

La presencia del radical OH- en un anillo aromático (fenol), lo hace más soluble que el hidrocarburo del cuál deriva (benceno).

La densidad aumenta a medida que aumenta la cadena carbonada (peso molecular), pero en general es menor que la del agua.

Los éteres, debido a la ausencia de un hidrógeno unido al oxígeno, no pueden formar puentes de Hidrógeno de forma significativa entre ellos ni con el agua (como lo hacen los alcoholes), por lo que actúan como moléculas individuales y no “asociadas” como los alcoholes respectivos. Por esta razón, los éteres son más volátiles que los alcoholes, y son menos solubles en agua que éstos. Además, los éteres son menos densos que el agua, por lo que “flotan” en ella.

b) Procedimiento:Observe cada uno de los siguientes tubos (NO LOS DESTAPE)y complete el siguiente cuadro:

23

Tubo #

CONTIENE Forma 1 fase SI /NO

Soluble/InsolubleMAS O MENOS

DENSO QUE EL AGUA

2 ml de

H2Oen

cada tubo

20 gotas de

1 Etanol

2 1-Propanol

3 1-Butanol

4 2-Metil-2-propanol

5 2-Butanol

6 Fenol

7 Benceno

8 Éter dietílico

Page 24: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

2 PROPIEDADES QUÍMICAS DE ALCOHOLES Y FENOLES.

A. IDENTIFICACIÓN DEL FENOL a través de su reacción con el FeCl3.a) Fundamento

En esta reacción el Fe se une a grupos fenóxidos. Los iones fenóxido son aún más reactivos que los fenoles ya que tienen una carga negativa y reaccionan con el Fe+3para formar complejos coloreados.La presencia de una coloración VIOLETA, se interpreta como reacción positiva.

b) Procedimiento: Siga el procedimiento con el siguiente cuadro y anote sus resultados

TUBOAGREGAR10 GOTAS

AGREGAR1 GOTA DE

FeCl3

COLORACIONRESULTADO

+/-1 Etanol2 2-Metil-2-propanol3 Fenol

B. IDENTIFICACIÓN DE LA PRESENCIA DE FENOL EN ACETAMINOFÉNProcedimiento:

COLOCAR EN UN VIDRIO DE RELOJ AGREGAR

Presencia de Fenol en acetaminofén

SI /NO

1 Tableta de acetaminofen

1 gota de FeCl3

- Espere 1 minuto a que se humedezca.

- Observe la coloración que se produce.

C. OXIDACIÓN DE ALCOHOLES con KMnO4,

a) FundamentoLa reacción se interpreta positiva, si aparece un color ó precipitado café debido a la formación de MnO2.

24

Page 25: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

TURBIDEZ INMEDIATA

TURBIDEZ 1-3’ LUEGO DE COLOCAR EN BAÑO

MARÍA

Ecuación no balanceada

b) Procedimiento

Tubo #

Agregar20 gotas Agregue

4 gotas KMnO4

3% y AGITE

Resultado+ / -

Tiempo para que reaccione

Clasificación del alcohol 1º. 2º. 3º.

1 1-Butanol

2 2-Butanol

3 2-metil-2-propanol

D. REACCIÓN DE SUSTITUCIÓN PARA ALCOHOLES (HALOGENACIÓN)

Prueba de Lucas:a) Fundamento:

Se utiliza el Reactivo de Lucas (HClconc. y ZnCl2).Se sustituye el radical –OH del alcohol por el ion Cl- en presencia de ZnCl2 como catalítico, obteniéndose los cloruros de alquilo que son menos solubles que los alcoholes respectivos (estos producen la turbidez).Se interpreta positiva si se obtiene una turbidez en el fondo del tubo ya sea inmediatamente o después de calentar en baño María el tiempo indicado. El alcohol terciario da reacción inmediata, el secundario requiere calor adicional y más tiempo. El alcohol primario su reacción es muy lenta no se observa la turbidez.Para poder observar la turbidez, NOSE DEBE AGITAR LOS TUBOS pues desaparece al menor movimiento.

ECUACIONES GENERALES DE LA REACCIONALCOHOLES TERCIARIOS

ALCOHOLES SECUNDARIOS

25

Page 26: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

ALCOHOLES PRIMARIOS

b) Procedimiento

Tubo #

Agregar1 ml

Agregar 15 gotas de

REACTIVO DE LUCAS resbaladas

por las paredes del

tuboNO AGITE (y cuide de no mover

los tubos en lo siguiente)

Resultado+ / -

(presencia de

turbidez)

Coloque en baño María.

60-70º C(el agua NO

debe estar en ebullición) Espere 3 minutos y

observe los tubos

Resultado+ / -

(presencia de

turbidez)

Clasifica ción del alcohol

1º. 2º. 3º.

1 1-Butanol

2 2-Butanol

32-metil-

2-propanol

V. ANALISIS DE RESULTADOS

VI. CONCLUSIONES

VII. CUESTIONARIO

26

Page 27: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

1 ¿Qué prueba de las realizadas en el laboratorio utilizaría para diferenciar entre las siguientes parejas de compuestos?

Compuestos Prueba ¿Quién da la prueba positiva?

Manifestación

a. Fenol y Metanol

b. Etanol y 2-metil-2-butanol

d. Alcohol n-butílico yAlcohol sec-butìlico

2 ¿Cuál de los siguientes alcoholes es soluble en agua?

a. CH3CH2CH2CH2CH2CH2OH ¿Por Qué?

b.

c.

3 ¿Cuál de los siguientes alcoholes se puede oxidar con KMnO4? ¿Qué compuesto formaría?

a. 2-metil-2-butanolb. Alcohol isopropìlicoc. 2-metil-2-hexanol

4 La tableta de acetaminofén fue positiva para presencia de Fenol? SI___ NO___¿Por qué?

5 En relación al acetaminofén:a. Escriba su estructura y encierre el fenol en un círculo rojo.

b. ¿Qué uso tiene como medicamento?

27

Page 28: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

c. ¿Cómo funciona en el organismo?

VIII. BIBLIOGRAFÍA

Jayes Reyes, Pedro.Práctica de laboratorio, Propiedades físicas y químicas de alcoholes y fenoles, Unidad Didáctica de Química, Facultad de Ciencias Médicas, Universidad de San Carlos de Guatemala, 2017.

Timberlake, Karen. Química general, orgánica y biológica. Estructuras de la vida. 4a. ed. México: Pearson Educación; 2013. 936 p.

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE CIENCIAS MÉDICAS, CUM UNIDAD DIDÁCTICA DE QUÍMICA, PRIMER AÑO

PRACTICAS DE LABORATORIO 2018

SEMANA 21

IDENTIFICACIÓN DE LA FUNCIÓN CARBONILO Y DIFERENCIACIÓN DE ALDEHÍDOS Y CETONAS

Elaborada por: Lic. Fernando Andrade Barrios

I. INTRODUCCIÓNLa función carboniloes un átomo de carbono unido por doble enlace al oxígeno. Ésta función se encuentra en dos familias de compuestos: Los aldehídos y cetonas, los cuales se representan de la siguiente manera:

28

Page 29: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

Los aldehídos poseen la función carbonilo terminal, mientras que las cetonas la tienen dentro de la cadena, esto les confiere propiedades físicas y químicas similares.

PROPIEDADES FISICAS:

Ambos son compuestos polares con puntos de ebullición más altos que los no polares (ejemplo hidrocarburos), de peso molecular comparables, pero menores que los alcoholes correspondientes. Los aldehídos y cetonas de bajo peso molecular son solubles en agua, esta solubilidad se pierde a medida que aumenta el peso molecular (aumento del número de carbonos en la cadena) y por lo tanto solo se disuelven en solventes no polares.Los aldehídos en su mayoría poseen olores desagradables e irritantes.

Una gran variedad de aldehídos y cetonas se han aislado a partir de plantas y animales; de los cuáles los de peso molecular elevado, tienen olores fragantes o penetrantes.

Generalmente se les conoce por sus nombres comunes, que indican su fuente de origen

o cierta propiedad característica. Algunos aldehídos aromáticos sirven como agentes saborizantes y otros aromatizantes. Ejemplos:benzaldehído

La mayoría de los aldehídos y cetonas reaccionan con la  2.4 –dinitrofenilhidracina para formar 2,4-dinitrofenilhidrazonas, que son sólidos coloreados insolubles. El color de la 2,4-dinitrofenilhidrazona puede dar un índice del carácter del grupo carbonilo presente en el aldehído o la cetona. Las 2,4-dinitrofenilhidrazonas de grupos carbonilos no conjugados son AMARILLAS. Mientras que las del grupo carbonilo conjugado con un doble enlace carbono-carbono o con un anillo bencénico son ROJAS O ANARANJADAS.

Los aldehídos, reaccionan con agentes oxidantes como el KMnO4 y con el reactivo de Tollens (espejo de Plata) formando los ácidos carboxílicos correspondientes.En ésta práctica se efectuarán las reacciones:

a. Identificación de la función carbonilo con 2,4-DNFH.b. Oxidación con KMnO4.

c. Ensayo de Tollens.

Dichas reacciones se llevarán a cabo con acetaldehído, propanona, infusión de canela, esencia de almendras y alcanfor.

II. OBJETIVOS1. Identificar el grupo carbonilo por medio de la reacción con 2,4-DNFH

29

Grupo Carbonilo

R

O

H

Aldehídos

R

O

R

Cetonas

Page 30: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

2. Diferenciar entre los aldehídos y cetonas mediante reacciones de oxidación con KMnO4 y la prueba de Tollens.

3. Escribir las ecuaciones que representan las reacciones efectuadas.

III. MATERIALES Reactivos:2,4-Dinitrofenilhidrazina KMnO4 al 0.2% AgNO3 al 1% NaOH al 20% NH4OH al 20% Acetaldehído al 2 %Glucosa al 3% Propanona (acetona)Alcohol etílicoÁcido AcéticoAgua destiladaInfusión de canelaSolución de alcanfor al 50% p/vExtracto de almendraEquipo y Materiales:Estufa eléctrica y Baño de MaríaGradillasPipetas de transferencia

IV. PROCEDIMIENTO

1. IDENTIFICACIÓN DE LA FUNCIÓN CARBONILO:Los aldehídos y cetonas reaccionan con el reactivo de la 2,4-Dinitrofenilhidracina en una reacción de condensación, para producir 2,4-Dinitrofenilhidrazona formando un precipitado amarillo-naranja y como subproducto se obtiene agua.

Para identificar la función carbonilo proceda así:Tome 8 tubos de ensayo, numérelos y proceda de la manera siguiente

Tubo Colocar10 gotas de

Agregar3 gotas de

Manifestación Resultado+/-

30

*Material aportado por los estudiantes:

Kit de laboratorio. Equipo de proteccion personal Un frasco pequeño de acetona

(propanona), se compra en farmacias. No traer quitaesmalte (entregárselo al profesor). Traer uno por todos los grupos del mismo día

Page 31: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

PRECIPITADO COLOR CAFE

2,4-DNFH

1 Agua(control negativo)

2 Acetaldehido

3 Propanona

4 Infusión de canela

5 Extracto de almendra

6 Solución de Alcanfor

7 Alcohol etílico

8 Ácido Acético(CH3COOH)

2. IDENTIFICACIÓN DE ALDEHÍDOS POR MEDIO DE REACCIONES DE OXIDACIÓN:

Los aldehídos se oxidan con facilidad en condiciones suaves no así las cetonas, que son más resistentes a la oxidación (se necesita más concentración del agente oxidante), por lo que la concentración de KMnO4 usada en la práctica no provoca la oxidación en las cetonas. La manifestación es la formación de un precipitado color café que corresponde al Dióxido de manganeso (MnO2)

2.1. Oxidación por KMnO4:

Tome 5 tubos de ensayo, numérelos y proceda de la manera siguiente:

Tubo No.

Coloque10 gotas de

Agregue5 gotas de

Manifestación Resultado+/-

31

Page 32: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

Reactivo de Tollens Espejo de plata

KMnO4

al 0.2% y agite

1 Agua(control negativo)

2 Acetaldehído

3 Propanona

4 Infusión de canela

5 Extracto de almendra

2.2. Prueba de Tollens:

Es una prueba que se utiliza para diferenciar aldehído de cetonas, este reactivo contiene una solución de nitrato de plata en hidróxido de amonio (complejo de plata amoniacal) Ag(NH3)2OH. El ion Plata (Ag+) se reduce a plata metálica (Ag0) oxidando a los aldehídos hasta ácidos carboxílicos, las cetonas no reaccionan.

La plata metálica se deposita en el fondo y paredes del tubo formando el “Espejo de Plata”.

Para efectuar la prueba proceda así:

PREPARACIÓN DE REACTIVO TOLLENS:1. En un tubo de ensayo limpio coloque 2mL de solución de AgNO3 al 1% 2. Agregue NaOH al 20%, gota a gota hasta que se forme un precipitado.3. Luego agregue gota a gota y agitando la solución de NH4OH al 20%, hasta que

desaparezca el precipitado.4. Rotule el tubo así “REACTIVO DE TOLLENS” y proceda así:5. Rotule tres tubos de ensayo y agrégueles lo que se le indica a continuación:

PROCEDIMIENTO:

Tubo No.

Colocar encada tubo

Agregar0.5 mL

Colocar en

Manifestación Resultado +/-

32

Page 33: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

1 mL deReactivo de

Tollens

Baño de Mariaa 60°C

1 Acetaldehído

2 Propanona

3 Glucosa 3%

V. ANÁLISIS DE RESULTADOS:

VI. CONCLUSIONES:

VII. CUESTIONARIO

1. ¿Qué prueba de laboratorio de las realizadas en la práctica emplearía para diferenciar entre las siguientes parejas de compuestos?

Compuestos Nombre de la prueba¿Cuál de los

compuestos da la prueba (+)

Manifestación

Valeraldehído / butanona

Etanol/ dimetilcetona

3-pentanol / butanal

Isovaleraldehido /Ácido acético

Propanal / Propanona

2. Escriba las ecuaciones de las reacciones que se llevaron a cabo en los tubos 2 y 3 del procedimiento 1 “Identificación del grupo carbonilo”

33

Page 34: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

Tubo ECUACIÓN

2

3

3. Escriba las ecuaciones de las reacciones del acetaldehído con KMnO4 y Tollens

REACCIÓN ECUACIÓN

KMnO4

Tollens

4. Llene el siguiente cuadro según el ejemplo:

REACCIÓN MANIFESTACIONCOMPUESTO, GRUPO Ó ÁTOMO IDENTIFICADO

Reacción de 2,4-DNFH Precipitado amarillo naranja

Grupo carbonilo

Oxidación KMnO4

Prueba de Tollens

VIII. BIBLIOGRAFÍA3. Prácticas de Laboratorio 2017 “Semana 21 Identificación del grupo carbonilo”.

Unidad didáctica Química, Facultad de Ciencias Médicas USAC

34

Page 35: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

4. Timberlake, Karen C. Química general, Orgánica y biológica. Estructuras de la vida. 4ta edición. Pearson Educación de México, S.A de C.V., México, 2013

UNIVERSIDAD DE SAN CARLOS DE GUATEMALAFACULTAD DE CIENCIAS MÉDICAS, CUMUNIDAD DIDACTICA QUIMICA, PRIMER AÑO

PRACTICAS DE LABORATORIO 2018SEMANA 22

ACIDOS CARBOXILICOS Y ESTERESElaborado por: Isabel Fratti de del Cid

I. INTRODUCCIÓN:Los ácidos carboxílicos son compuestos caracterizados por la presencia del grupo carboxilo (-COOH), unido a una cadena alifática o a un radical aromático.

Su comportamiento de ácido débil se debe a que se ioniza en forma reversible liberando H+, pudiéndose calcular su Ka( constante de ionización de un ácido) de la forma que aprendió a hacerlo en la semana 12. Como todo ácido reacciona con sustancias básicas, experimentando reacciones de neutralización donde además de agua, se obtiene la sal orgánica del ácido respectivo.

Otra reacción muy común de los ácidos carboxílicos (incluso en los seres vivos), es la esterificación. Para catalizar esta reacción, los seres vivos usan enzimas específicas. En el laboratorio usaremos como catalítico H2SO4 concentrado.

35

Page 36: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

II. OBJETIVOS:a-Determinar el pH y la [H+] de sustancias que contienen ácidos carboxílicos.b-Realizar ensayos de formación de sales y esterificación de los ácidos carboxílicos.c-Observar las manifestaciones de las reacciones de ácidos carboxílicos en la formación de sales y esterificación.d-Escribir las ecuaciones con las que se representan las reacciones de formación de sales y esterificación.

III. MATERIALES (EQUIPO Y REACTIVOS)

Baño de MaríaEstufa eléctricaPapel pHÁcido acético concentrado NaHCO3 al 10 % p/v.H2SO4 concentradoÁcido salicílico en polvoAlcohol metílicoVinagrePiseta con aguaBalanzaMortero y pistilo

IV. PROCEDIMIENTO

ENSAYO 1: DETERMINACION DE pH. Proceda de acuerdo al siguiente cuadro.

SUSTANCIA

AGREGUE UNA GOTA SOBRE UN TROZO DE PAPEL pH

(utilice un trozo de papel pH

diferente para cada

sustancia)respecto a la aspirina vea nota al pie

del cuadro

COLOR DEL PAPEL

pH / valor

numérico

Clasifíquelo como

Acido, Básico, Neutro

Calcule valor de [ H+]*

JUGO DE LIMÓN

VINAGRE

ACIDO ACÉTICO

ALCOHOL METILICO

½ tableta aspirina**

*use el dato obtenido con el papel pH. Para cálculos use fórmulas vistas en semana12

36

MATERIALES APORTADOS POR LOS ESTUDIANTES

Kit de laboratorioEquipo de protección personal1 limón1 tableta de aspirina

Page 37: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

Ácido Salicílico Salicilato de metilo

calor

**Pulverice la aspirina usando el mortero y pistilo añada 5 gotas de agua. Presione la tira de papel pH sobre ésta mezcla. Tome la lectura y anótelo.

ENSAYO 2: FORMACION DE SALESCON NaHCO3

TUBONo

Coloque las siguientes cantidades

AG

REG

UE

10 G

OTA

S D

E

NaH

CO

3 al 1

0 %

p/v

Resultado + / -

Manifestación

11mL de ácido acético

21mL de agua + 10 gotas de jugo de limón

31mL de agua + ½ pastilla de aspirina *

*Pulverizarla antes con un mortero y pistilo, colocar polvo dentro del tubo y agitar. Obtendrá una suspensión.

Observe y responda si en el tubo 3, quedó más o menos sedimento (sólido), después de añadir el NaHCO3. __________________________________________.

ENSAYO 3: ESTERIFICACIÓN: Es una reacción de condensación entre un ácido carboxílico y un alcohol, usando un catalítico ácido y calor, formándose el éster + agua.

3.1 FORMACION DE SALICILATO DE METILO

a) Coloque 0.5 gramos de ácido salicílico en un tubo de ensayo limpio y seco.b) Agregue 3 ml de alcohol metílico (Metanol). Agite para disolver el contenido.c) Agregue lentamente 5 gotas de H2SO4 (ácido sulfúrico) concentrado y agitar con cuidado, después cada gota.

37

Alcohol metílico

Page 38: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

d) Colocar el tubo de ensayo en baño de María (entre 60 - 70°C) durante 5 minutos. e) Colocar en un beacker 20ml de agua tibia (30 - 40°C) Verter el contenido del tubo de ensayo. Con cuidado y siguiendo las indicaciones de su profesor perciba el olor.Se considera un resultado positivo, si se percibe un olor a “Cofal”, “Vicks”Llene el siguiente cuadro con la información obtenida del ensayo y de la ecuación.

Resultado: positivo / negativo

Manifestación con laque se comprobóLa formación de producto

Fórmula delcatalíticousado

Estructura química del producto principal. Encierre en líneas el grupo funcional que se formó.

V. ANÁLISIS DE RESULTADOS

VI. CONCLUSIONES

VII. CUESTIONARIO1- Para el ensayo 2, complete el cuadro.

tubo

Fórmula del ácido carboxílico presente

Ecuación de la reacción de formación de sales con NaHCO3

1

3

2-El benzoato de bencilo es un éster que se usa como medicamento para el tratamiento de la sarcoptiosis (sarna) y pediculosis (piojos). Escriba la ecuación que muestre la formación del benzoato de bencilo. De el nombre de los reactivos que deben usarse.

3- Llene la siguiente tabla: investigando lo que se le solicita

MEDICAMENTO Nombre del éster o ácido

carboxílico presente

Fórmula Mencione un uso que se le da al

medicamento

Cardioaspirina

38

Page 39: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

Ungüento LEON

Benzan

4- Calcule cuántos gramos de salicilato de metilo se obtuvieron al poner a reaccionar 0.5 g de ácido salicílico en el ensayo 3. (Suponer que hay suficiente cantidad de alcohol metílico para reaccionar). Deje constancia de cálculos.

5- Explique por qué se observa menor cantidad de sedimento (solido) en el tubo 3, luego de la reacción con NaHCO3, en el ensayo 2. Razone en base a la solubilidad del ácido acetil salicílico y del acetilsalicilato de sodio (la sal formada en la reacción).

VIII. BIBLIOGRAFIA

Guzmán, Lilian. Manual de Practicas de laboratorio. Unidad Didáctica de Química, Facultad de Ciencias Médicas, Universidad de San Carlos de Guatemala, 2017 Timberlake, Karen C. Química general, Orgánica y biológica. Estructuras de la vida. 4ta edición. Pearson Educación de México, S.A de C.V., México, 2013

UNIVERSIDAD DE SAN CARLOS DE GUATEMALAFACULTAD DE CIENCIAS MÉDICAS, CUMUNIDAD DIDACTICA DE QUIMICA, PRIMER AÑO

PRACTICAS DE LABORATORIO 2018

SEMANA 23

IDENTIFICACION DE UNA MUESTRA DESCONOCIDA No. 2

Elaborado por: Licda. Lilian Judith Guzmán Melgar

I. INTRODUCCIÓN

La marcha analítica es un proceso químico que identifica los componentes presentes de una muestra química, mediante operaciones de separación combinadas con ensayos de identificación. La muestra desconocida será proporcionada por su profesor, dicha muestra pertenece a una de las siguientes familias de compuestosvistos en clase:

39

Page 40: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

alcoholes, fenoles, aldehído, cetona o ácido carboxílico, guíese por las pruebas y observaciones realizadas en las prácticas anteriores.

Durante la realización de la marcha analítica se analizarán las propiedades químicas de los grupos funcionales posibles que presentan propiedades particulares, como se ha visto en clase teórica y se ha experimentado en los ensayos de laboratorio previamente realizados, que los conducirá a diferenciar el compuesto orgánico de la muestra desconocida.

II. OBJETIVOS1. Retroalimentar los conocimientos adquiridos tanto teóricos como prácticos

proporcionados en clases anteriores.2. Identificar una muestra desconocida, por medio de una marcha analítica, diferenciando

entre: alcohol (primario, secundario o terciario), fenol, aldehído, cetona y ácido carboxílico.

3. Establecer la importancia de las propiedades químicas en la identificación de una muestra.

III. MATERIALES Y REACTIVOS Solución de NaHCO3 10% p/v 2,4-Dinitrofenilhidrazina (2,4-DNFH) Solución de KMnO4 al 0.2% p/v Reactivo de Lucas (HCl/ZnCl2) Solución FeCl3 Gradilla para tubos de ensayo Baño de María Estufa eléctrica Papel pH

IV. PROCEDIMIENTO

7. El catedrático le proporcionará en un tubo de ensayo una muestra desconocida que deberá identificar correctamente, este puede pertenecer a cualquier familia de compuestos orgánicos estudiados previamente: alcohol primario, alcohol secundario, alcohol terciario, acido carboxílico, aldehído o cetona.

8. Anote todos sus datos y los de la muestra que se le solicitan en la parte superior de la hoja del reporte.

9. Divida la muestra que se le entregó en las alícuotas de tubos de acuerdo al máximo de reacciones químicas de la ruta más larga de la marcha analítica. Guarde una de ellas que servirá para confirmar alguna prueba al final de este examen práctico.

10. Realice la primera reacción química que le indica la MARCHA ANALÍTICA (ver siguientes páginas), utilizando las cantidades de reactivo proporcionales según indica la práctica de laboratorio correspondiente.

11. Al obtener el primer resultado usted debe seguir la ruta según el resultado obtenido. Cada resultado de las reacciones químicas de esta marcha analítica lo ayudarán a diferenciar a su compuesto orgánico de otros diferentes, de manera que lo conducirá por una sola ruta hasta identificar el compuesto de su muestra desconocida.

40

Material aportado por los estudiantes*

4-5 Tubos de ensayo* Pipeta de transferencia de 3ml*

NUEVA Pinza para tubo de ensayo* Marcador de punta fina

permanente*para rotular sus tubos de trabajo

Equipo de protección personal

Page 41: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

REACCIÓN CON:

(+) POSITIVO (-)NEGATIVOITIVO

TOMAR ALÍCUOTAS DE LA MUESTRA EN LAS CANTIDADES INDICADAS PARA

2,4DNFH(3 gotas de muestra + 10 gotas de reactivo)

Acido carboxílico, Fenol óAlcohol 1º.,2º, ó 3º

FeCl3(10 gotas de muestra +3 gotas de reactivo) KMnO4

(10 gotas de muestra 5 gotas de reactivo)

Aldehído o Cetona

(+) POSITIVO (-)NEGATIVOITIVO

(+)POSITIVO(-)NEGATIVOITIVO

12. Anote sus resultados a lapiceroen la hoja de reporte, indicando únicamente las reacciones establecidas en la marcha analítica, no debe realizar reacciones innecesarias. No tache ni utilice corrector.

13. Entregue el reporte a su profesor en el tiempo que el establezca.

V. RECOMENDACIONES PARA ESTA PRUEBA

10. Utilice cristalería y material limpio.11. Identifique sus tubos de ensayo con el marcador permanente.12. Utilice alícuotas de su muestra para cada reacción química.13. NUNCA DEBE REALIZAR DOS O MAS REACCIONES EN UN MISMO TUBO.14. El catedrático dará UNA MUESTRA y no dará más.15. Realice solo las reacciones químicas necesarias para identificar la muestra.16. Reporte solo las pruebas que efectuó para lograr identificar su muestra desconocida.17. Esta marcha analítica es un EXAMEN PRACTICO, por lo tanto:

NO DEBE CONSULTAR CON NADIE. NO DEBE PREGUNTAR A SU PROFESOR. NO PUEDE ABANDONAR EL SALÓN hasta que entregue su reporte. NO SE REPONDRA MUESTRA POR ERROR DE PROCEDIMIENTO

18. Su área de trabajo debe quedar limpia y el material utilizado en su lugar después de realizar la prueba.

VI. BIBLIOGRAFÍA: 1. Manual de prácticas de laboratorio 2017.. Unidad Didáctica de Química, Facultad de Ciencias

Médicas, Universidad de San Carlos de Guatemala, 20172. Timberlake, Karen C. Química general, Orgánica y biológica. Estructuras de la vida. 4ta

edición. Pearson Educación de México, S.A de C.V., México, 2013

UNIVERSIDAD DE SAN CARLOS DE GUATEMALAFACULTAD DE CIENCIAS MÉDICAS, CUMUNIDAD DIDACTICA DE QUIMICA, PRIMER AÑO 2018

41

Page 42: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE CIENCIAS MÉDICAS-CUMUNIDAD DIDÁCTICA QUÍMICA- PRIMER AÑO

PRÁCTICAS DE LABORATORIO 2018SEMANA 25

PROPIEDADES QUÍMICAS Y FÍSICAS DE CARBOHIDRATOSElaborado por: Lic. Raúl Hernández Mazariegos

I. INTRODUCCION:Los carbohidratos son las biomoléculas más abundantes en la naturaleza y los más utilizados por los seres humanos como fuente de energía. Químicamente son aldehídos o cetonas polihidroxilados, entre los cuales se encuentran monosacáridos, disacárido, y polisacárido (almidón, celulosa y glucógeno).

En cuanto a las características de los carbohidratos se puede observar que los de peso molecular bajo (mono y disacáridos) son sólidos cristalinos, solubles en agua y tienen poder edulcorante (endulzante) alto.Loscarbohidratos de peso molecular alto, polisacáridos, son sólidos amorfos, la solubilidad se reduce notablemente y no presentan

42

Page 43: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

sabor dulce, mantienen el aspecto de sólidos de color blanco y carecen de poder reductor.

La principal función de los carbohidratos es suministrarle energía al cuerpo, especialmente a los músculos, al cerebro y al sistema nervioso, luego de haber obtenido la glucosa por medio de la hidrólisis. La enzima llamada amilasa, presente en la saliva, ayuda a hidrolizar los carbohidratos como el almidón en glucosa. También se logra por medio ácido y alcalino.

En éste laboratorio sedeterminarán algunas propiedades físicas como la solubilidad y propiedades químicas como la reacción de Molisch y de Benedict.

II. OBJETIVOS1. Observar la solubilidad de algunos carbohidratos.2. Identificar los carbohidratos a través de sus propiedades químicas3. Diferenciar los azúcares reductores de los no reductores.

.

III. MATERIALES Y REACTIVOS1. Gradilla con tubos de ensayo conteniendo

soluciones al 2% p/v de:a) Glucosab) Fructosac) Lactosad) Sacarosae) Almidón

2. Frascos gotero con soluciones de:a) Glucosab) Lactosac) Sacarosad) Suspensión de harina

Equipo y materiales3. Baño de María4. Estufa eléctrica5. Gradillas6. Papel pH7. Piseta8. Pipeta de transferencia (micropipeta)

Reactivos9. Benedict10. H2SO4 Concentrado11. Solución de -Naftol

* MATERIAL APORTADO POR LOS ESTUDIANTES Kit de laboratorio del grupo de trabajo. 10 ml de jugo de naranja natural Una cucharadita de harina de trigo Un trozo de algodón Un trozo de papel bond blanco (puede ser bond o

servilleta) Equipo de protección personal

IV. PROCEDIMIENTO

A. OBSERVACIÓN DE ALGUNAS PROPIEDADES FÍSICAS.

1. Observe los tubos de ensayoque contienen las soluciones al 2% p/v de varios carbohidratos. NO DESTAPE LOS TUBOS SOLAMENTE OBSERVELOS, agite los tubos, e indique si son solubles o insolubles.

2. Complete el siguiente cuadro.

43

Page 44: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

B. REACCIÓN DE MOLISCH: Fundamento Teórico: La reacción de Molisch es una reacción general para identificación de carbohidratos a partir de 4 átomos de carbono.

Al reaccionar los carbohidratos con H2SO4 concentrado,presentan una deshidratación que conduce a la formación de un anillo de furfural, el cualse condensa con el α-Naftol y se forma una substancia de color púrpura o violeta (ésta se observará en un anillo colocado en la interfase de los reactivos) que se conoce como derivado del furfural.

Reacción General:

Procedimiento:

1. Numere 5 tubos de ensayo.2. Utilice el frasco gotero de la solución de Glucosa al 2%, mida 1mL para el tubo 1.3. Utilice el frasco gotero de la solución de Lactosa al 2%, mida 1mL para el tubo 2.4. Mida 2 mL de jugo de naranja para el tubo 3.5. Preparare una Suspensión de Harina: Añada a 4mL de agua, ¼ de espátula de harina,

agite, deje reposar por 5 minutos. Obtenga 2mL de sobrenadante con la pipeta de transferencia (micropipeta) para el tubo 5.

6. Mida 2 mL de suspensión de harina para el tubo 4.

44

CARBOHIDRATO

Tubos con el carbohidrato

SOLUBLE / INSOLUBLE

Glucosa

Fructosa

Lactosa

Sacarosa

Almidón

Page 45: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

7. Coloque 2 mL de agua para el tubo 58. Proceda de acuerdo al siguiente cuadro:

Tubo No. Coloque 1mL

Añada 15

gotas de

-naftol y agite

Resbalado por las

paredes del tubo

agregue 15 gotas de

H2SO4conc,

con cuidado

NO AGITE

MANIFESTACIÓN

Vea nota*

RESULTADO

+ / -

Indique: CARBOHIDRATOO

NO CARBOHIDRATO

1 Glucosa 2% p/v

2 Lactosa 2% p/v

3 Jugo de naranja

4 Suspensión de Harina

5 Agua como control negativo

*Manifestación: la aparición de un anillo púrpura en la interfase es un resultado positivo.

C. IDENTIFICACIÓN DE LA PRESENCIA DE UN CARBOHIDRATOFundamento Teórico: Identificaremos con la reacción de Molisch la presencia de un carbohidrato en algunos elementos de uso común, como una hoja de papel bond, una servilleta o un algodón.

Procedimiento:1. Coloque un trozo de papel blanco (bond o servilleta) en el vidrio de reloj y

humedézcalo con unas gotas de agua de la piseta.2. Colóquele 3 gotas de–naftol.3. Deje caer en el centro 2 gotas de H2SO4 concentrado. Espere. La aparición de un color

violeta o marrón detecta la presencia de carbohidrato.4. Repita el procedimiento anterior utilizando algodón.

Material Coloque un pedazo en el vidrio de reloj

MANIFESTACIÓN

Vea nota*

RESULTADO

+ / -

Papel blanco Humedézcalo, añada 3 gotas de –naftol y deje caer en el centro

2 gotas de H2SO4conc.Algodón

*Manifestación: la aparición de un color púrpura es un resultado positivo.

45

Page 46: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

D. REACCIÓN DE BENEDICTFundamento Teórico: La reacción de Benedict es utilizada para diferenciar azúcares reductores de no reductores. Los azúcares reductores tendrán un grupo aldehído que puede oxidarse mediante un agente oxidante como el reactivo de Benedict.

El reactivo de Benedict, es una solución alcalina de ion cúprico (Cu+2), de color azulque al reaccionar con el azúcar reductor, éste se oxida y el ión Cu+2 se reduce a Cu+, formando un precipitado rojo ladrillo de óxido de cobre (I).

Reacción general

Procedimiento

1. Numere 3 tubos y proceda de acuerdo al siguiente cuadro.

Tubo No. Coloque 2mL de

Añada 1 mL de reactivo de Benedict

y agite

Caliente en baño de

María por 5 minutos.

Observe

MANIFESTACION

Vea nota*

RESULTADO

+ / -

Indique: AZUCAR

REDUCTOR

O AZUCAR NO

REDUCTOR

1 Glucosa 2% p/v

2 Lactosa 2% p/v

3 Sacarosa 2% p/v

*Manifestación: la formación de un precipitado rojo ladrillo es un resultado positivo.

46

Page 47: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

V. ANALISIS DE RESULTADOS

VI. CONCLUSIONES

VII. CUESTIONARIO1. Escriba la fórmula estructural del -naftol.

2. Explique por qué los mono y disacáridos son solubles en agua.

3. Sobre el almidón:a) ¿Cuál es su solubilidad en agua fría?

b) ¿Cuál es la solubilidad de la amilosa en agua caliente?

c) ¿Cuál es la solubilidad de la amilopectina en agua caliente?

4. Investigue, ¿Qué carbohidratos contiene?a) Jugo de naranja:

b) Harina:

c) Papel blanco:

d) Algodón:

47

Page 48: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

VIII. BIBLIOGRAFÍA:1. Timberlake, Karen C. Química general, Orgánica y biológica. Estructuras de la vida. 4ta

edición. Pearson Educación de México, S.A de C.V., México, 2013

UNIVERSIDAD DE SAN CARLOS DE GUATEMALAFACULTAD DE CIENCIAS MÉDICAS, CUMUNIDAD DIDÁCTICA QUÍMICA, PRIMER AÑO

PRACTICA DE LABORATORIO 2018

SEMANA 26DETERMINACIÓN E HIDRÓLISIS QUÍMICA DE LA SACAROSA Y EL ALMIDÓN

Elaborado por: Lic. Raúl Hernández Mazariegos

I. INTRODUCCIÓN

El almidón es la molécula de reserva energética en las plantas por excelencia. Está constituido por dos polímeros: La amilosa y la amilopectina, los cuales pueden separarse por medios físicos o químicos. Debido a que muchos organismos superiores poseen las enzimas necesarias para su degradación, este polímero puede ser convertido durante el proceso de digestión en diferentes intermediarios metabólicos que generan energía. La energía de estas moléculas se obtiene mediante la rotura de éstas a través del proceso

48

Page 49: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

de hidrólisis, el cual se realiza con la presencia de enzimas específicas como la α-amilasa, maltasa y α-1,6-glucosidasa o utilizando un medio ácido y calor.

Un polímero intermedio del almidón es la dextrina que se presenta como un sólido amorfo color crema hasta marrón, soluble en agua fría e insoluble en alcohol. Se conocen tres tipos de Dextrina en función de su reacción con el yodo: Amilodextrina, Eritrodextrina y Acrodextrina.

En este laboratorio se realizará la hidrólisis del almidón y de la sacarosa por un medio químico. Se identificará el almidón en algunos alimentos de uso cotidiano. Así como, se formará el complejo yodo-almidón y se comprobará su reversibilidad.

II. OBJETIVOS

1. Realizar la hidrólisis de la sacarosa por medios químicos2. Detectar a través de la reacción con Lugol, la presencia de almidón en diferentes

alimentos que se consumen diariamente.3. Observar la pérdida de la estructura helicoidal de la amilosa por calentamiento y su

recuperación por enfriamiento.4. Realizar la hidrólisis del almidón y detectar los productos intermedios de la misma a

través de ensayos usando las reacciones de Benedict y Lugol.

III. MATERIALES (REACTIVO Y EQUIPO):

Reactivos3. Lugol4. Benedict5. HClconc.6. NaOH al 20% p/v7. Sacarosa al 2% p/v8. Suspensión de almidón al 2%

Equipo y materiales9. Baño de María10. Erlenmeyer11. Estufa eléctrica12. Gradillas13. Mechero de alcohol14. Papel pH

15. Pipetas de 5 ml16. Piseta17. Succionador para

pipeta

* MATERIAL APORTADO POR LOS ESTUDIANTES Kit de laboratorio del grupo de trabajo Equipo de protección personal Guante de cocina Un trozo de pan francés

Una papa pequeña Pan francés Pechuga de pollo cocida Salchicha Tortilla ½ onza de pechuga de pollo cocida (sin sal ni

consomé) 1 cucharadita de maicena (almidón)

IV. PROCEDIMIENTOENSAYO A: HIDROLISIS DEL ALMIDON, USANDO UN CATALITICO ACIDO Y

CALOR

49

Page 50: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

Fundamento Teórico: El almidón es un azúcar no reductor que dará positivo para la prueba de Lugol. Al hidrolizar el almidón en un medio ácido como HCl concentrado y calentamiento, se descompondrá en polisacáridos intermedios, dextrinas, y finalmente en el monosacárido, glucosa. Por lo que llegará a un azúcar reductor, que dará negativo para la prueba de Lugol.

Etapas de la hidrólisis del almidón

Componente: AlmidónAmilodextrinaEritrodextrinaAcrodextrinaMaltosaGlucosa

Tiempo: 0’ 5’ 10’ 15’ 20’ 25’

Color con la

Prueba de

Lugol: Azul Morado Vino tinto Ámbar Amarillo Amarillo

Color con la

Prueba de

Benedict Celeste CelesteCelesteCeleste Rojo Ladrillo Rojo Ladrillo

En la presente práctica se realizarán dos series de seis tubos cada una para poder observar las etapas de la hidrólisis del almidón, como se muestra a continuación.

Instrucciones para realizar en ensayo A:

50

Page 51: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

(SE SUGIERE REALIZAR 2 HIDRÓLISIS POR SALON)

1. Numere 12 tubos, formando dos series:Serie A: 1A, 2A, 3A, 4A, 5A, 6A; para realizar Prueba de Lugol

Serie B:1B, 2B, 3B, 4B, 5B, 6B; para realizar Prueba de Benedict

Procedimiento para hidrólisis:

2. En un erlenmeyer de 250 ml coloque 100 ml de agua (use agua del grifo) entre 60 a 70°C y agregue ½ cucharadita de maicena (almidón). Agite con la varilla de vidrio. Utilice el guante de cocina para manipular cuando el Erlenmeyer ya esté caliente. (Tome 4 mL de ésta mezcla y coloque 2 mL en cada uno de los tubos 1A y 1B serán los controles)

3. Con una pipeta con succionador, tome 2mL del almidón del erlenmeyer para el tubo 1A y 2 mL para el tubo 1B.a) Al tubo 1A agregue 3 a 4 gotas de Lugol. Debe observar un color azul con la

presencia de almidón. Este tubo será testigo positivo.b) Deje en la gradilla en espera el tubo 1B. Hasta que concluya la hidrólisis, le

realizará la prueba de Benedict los tubos 1B al 6B. “Espere”.

51

Page 52: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

4. Añada 3 ml de HCl concentrado al almidón del erlenmeyer y agite suavemente.Con precaución debido a que el HCl es una sustancia corrosiva.

5. Tape con el vidrio de reloj el erlenmeyer y colóquelo en la estufa a temperatura moderada.

6. Cuando empiece a hervir tome el tiempo y a los 5 minutos retire el vidrio de reloj con el guante de cocina para no quemarse con PRECAUCIÒN tome con la pipeta 2 ml de la solución del Erlenmeyer para cada tubo, empezando con la pareja 2A y 2B, con cuidado.

7. Continúe midiendo el tiempo y repita el procedimiento anterior a cada 5 minutospara las siguientes parejas de tubos. Mantenga la temperatura en bajo o medio y agite constantemente, hasta que concluya la hidrólisis.a) Enfríe por 1 min y realice inmediatamente la prueba de Lugol para los tubos de la

serie A. Compare los colores que obtenga con los de las “Etapas de la hidrólisis” del fundamento teórico y anote su resultado en el cuadro de abajo.

b) Los tubos de la serie B esperan.8. Al concluir la hidrólisis realice la Prueba de Benedict a la serie B:

a) Al tubo 1B coloque 1 ml de Benedict.b) Mida el pH, como estará ácido neutralice con NaOH al 20 % p/vlos tubos 2B a

6Bpara que reaccione Benedicty luego agregue 1 ml de Benedict.c) Lleve todos los tubos a baño de maría por 5 min.d) Observará un color celeste con la presencia de almidón, azúcar no reductor,

testigo negativo y la manifestación de precipitado rojo ladrillo con la presencia de azúcar reductor.

9. Coloque los resultados en el siguiente cuadro.

52

Page 53: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

HIDRÓLISIS DEL ALMIDON

PRUEBA DE LUGOL PRUEBA DE BENEDICT

TUBO MANIFESTACIONColor*

RESULTADO+ / -

Componente de la etapa de hidrólisis

detectadoTUBO MANIFESTACION

Color**RESULTADO

+ / -

1 A 1 B

2 A 2 B

3 A 3 B

4 A 4 B

5 A 5 B

6 A 6 B*Lugol (+) color azul, en presencia de almidón; Lugol (-) color amarillo, en ausencia de almidón; **Benedict (+) precipitado rojo ladrillo, azúcar reductor; Benedict (-) solución celeste, azúcar no reductor.

ENSAYO B: HIDROLISIS DE LA SACAROSA

Fundamento Teórico:La sacarosa es unazúcarno reductor, por lo que presentará una reacción de Benedict negativa. Pero, si la sacarosa se hidroliza en medio ácido (HCl) y calentamiento, se rompe el enlace glicosídico 1-2, y libera a sus dos monosacáridos constituyentes, glucosa y fructosa, los cuales son azúcares reductores.

Procedimiento

1. Numere dos tubos de ensayo.2. Tubo No. 1, contendrá la sacarosa SIN HIDROLIZAR, coloque 5 mL de Sacarosa al

2%p/v3. Tubo No.2, contendrá la sacarosa HIDROLIZADA. Prepárela como sigue: Coloque 5 mL

de Sacarosa al 2% p/v, agregue 5 gotas de HCl concentrado con precaución. Lleve a Baño de María con agua hirviendo por 5 min.

4. Realice la Prueba de Benedict como se indica en el cuadro y anote sus resultados.

53

Page 54: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

Tubo Coloque5 mL de PRUEBA DE BENEDICT MANIFESTACIÓNRESULTADO

+ / _

1Sacarosa

SIN HIDROLIZAR

Agregue 1 mL de Reactivo de Benedict. Baño de María por 5 min.

2Sacarosa

HIDROLIZADA

Neutralice con NaOH al 20%, compruebe con papel pH. Agregue 1 mL de Reactivo

de Benedict. Baño de María por 5 min.

ENSAYO C: DETERMINACION DE ALMIDON EN LOS ALIMENTOS SOLICITADOS

Fundamento Teórico:El almidón forma con el yodo un color azul oscuro. El color es debido a la absorción del yodo dentro de los espacios abiertos de las hélices de amilosa que constituye el 20 % del almidón. Las amilopectinas también presentes en el almidón, forman un color rojo a púrpura con el yodo.

Con esta prueba se puede identificar el almidón en el pan y en la papa.

Procedimiento:

1. Corte un trozo de 2cm x lado de cada alimento: pan francés, papa, pechuga de pollo cocida, salchicha y tortilla.

2. Colóquelos en el vidrio de reloj y deje caer en el centro una gota de Lugol.3. La observación de un color azul-violeta detecta la presencia de almidón.4. Con los resultados obtenidos, complete el siguiente cuadro:

ALIMENTO AÑADIR MANIFESTACIÓN RESULTADO +/-

Pan francés

2 a 3 gotasLUGOL

Papa

Pechuga de pollo

Salchicha

Tortilla

ENSAYO D: DETERMINACION DE LAESTRUCTURA HELICOIDAL DE LA AMILOSA POREFECTO DE LA TEMPERATURA.

Fundamento Teórico: Al realizar la prueba del yodo a la amilosa, el componente del almidón de cadena lineal, forma hélices donde se juntan las moléculas de yodo, formando

54

Page 55: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

un color azul oscuro a negro. Esta unión del yodo a la cadena es reversible, y por calentamiento desaparece el color, que al enfriarse reaparece. Estos cambios de color indicarán la modificación de la estructura de la amilosa de helicoidal a lineal o viceversa.

(a) Estructura esquemática del complejo de yodo almidón. La cadena de amilosa forma una hélice alrededor del yodo.

(b) Vista hacia abajo de la hélice de almidón que muestra el yodo dentro de la hélice.

Procedimiento:

1. Coloque 3 mL de la suspensión de almidón al 2 % p/v en un tubo de ensayo.2. Paso 1 : Añada dos a tres gotas de Lugol. Este debe adquirir un color azul-morado.3. Paso 2 :Caliente el tubo en un mechero de alcohol, usando una pinza para tubo de

ensayo,(dirija la boca del tubo a un lugar donde no haya nadie, mueva el tubo sobre la llama de izquierda a derecha), hasta que desaparezca la coloración adquirida.Trate de que no hierva la mezcla de almidón.

4. Paso 3 : Añada agua de chorro en un beacker y coloque el tubo de ensayo en el agua para que se enfríe. Al enfriarse debe volver a establecer la estructura helicoidal y por lo tanto aparecerá la coloración obtenida antes del calentamiento.

TEMPERATURAALMIDON

CON LUGOLColor

AMILOSAHelicoidal / Cadena Lineal

Tubo con 3 mL de suspensión de almidón al 2% p/v

Paso 1 FRIO (al inicio)

Paso 2 CALIENTE

Paso 3 FRIO (en agua)

55

Page 56: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

V. ANALISIS DE RESULTADOS

VI. CONCLUSIONES

VII. CUESTIONARIO

1. ¿Por qué la fructosa es un carbohidrato reductor?

2. ¿Cuál es el ion formado por el yodo cuando se combina el I2 con KI en el reactivo de lugol? Investigue en internet.

3. ¿Cuál es la función del ácido clorhídrico (HCl) en la hidrólisis del almidón?

4. ¿Cuál es el color que se obtiene cuando reacciona la amilopectina con Lugol?

VIII. BIBLIOGRAFÍA

1. Vivian Margarita Sánchez Garrido. Practica de laboratorio, Determinación e Hidrólisis química de la Sacarosa y el Almidón. Unidad Didáctica de Química, Facultad de Ciencias Médicas, Universidad de San Carlos de Guatemala, 2016

2. Timberlake, Karen C. Química general, Orgánica y biológica. Estructuras de la vida. 4ta edición. Pearson Educación de México, S.A de C.V., México, 2013

3. Prueba de yodo: https://es.wikipedia.org/wiki/Prueba_del_yodo [08/01/16] http://knowledgepayback.blogspot.com/2012/04/iodimetric-iodometric-titrations.html?view=classic [08/01/16]

DEBE PREGUNTARLE A SU PROFESOR QUÉ ALIMENTOS LE TOCARÁ TRAER PARA LA PRÁCTICA #27

56

Page 57: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

UNIVERSIDAD DE SAN CARLOS DE GUATEMALAFACULTAD DE CIENCIAS MÉDICAS, CUMUNIDAD DIDÁCTICA QUÍMICA, PRIMER AÑO

PRACTICA DE LABORATORIO 2018 SEMANA 27

PROPIEDADES DE LIPIDOSElaborado por: Licda. Evelyn Rodas Pernillo de Soto

I. INTRODUCCIÓNLos lípidos son biomoléculas que varían en su estructura pero tienen en común la característica de ser insolubles en agua y solubles en solventes apolares. Las grasas y aceites están constituidas principalmente por triacilgliceroles que son ésteres de ácidos grasos y glicerol.Las grasas son sólidas o semisólidas a temperatura ambiente y generalmente provienen de fuentes animales. Los aceites son líquidos a temperatura ambiente y se obtienen de fuentes vegetales. Los lípidos tienden a ser sólidos cuando contienen mayor porcentaje de ácidos grasossaturados y líquidos cuando contienen mayor porcentaje de ácidos grasos insaturados. En este laboratorio se observarán algunas propiedades de grasas y aceites y secomprobará la presencia de éstos en algunos alimentos.

II. OBJETIVOS1. Determinar la solubilidad de grasas y aceites en un solvente polar (agua) y en un

solvente apolar.2. Comparar la densidad de grasas y aceites con respecto al agua. 3. Determinar la presencia de insaturaciones en grasas y aceites con la prueba de

adiciónde yodo.4. Verificar la presencia de lípidos en algunos alimentos de consumo diario.

III. MATERIALES (REACTIVO Y EQUIPO)1 Gradilla con 2 series de tubos

de ensayo conteniendo:a) Aceite de maíz, aceite de oliva,

margarina y mantequilla en aguab) Aceite de maíz, aceite de oliva,

margarina y mantequilla en cloroformo.

2 Agua3 Solución de lípido saturado4 Solución de lípido insaturado5 Solución de yodo6 Estufa

MATERIAL APORTADO POR LOS ESTUDIANTES Cuchillo y tabla pequeña para picar Kit de laboratorio del grupo de trabajo Equipo de protección personal necesario Guante de cocina

MATERIALES POR SALÓN: lo asignado a cada grupo de trabajo en la práctica No. 26. Una torta de carne de por lo menos 20g de un

restaurante de comida rápida. (SIN QUESO) Una porción de pollo frito con piel Una porción de papas fritas Una porción de frutas Una salchicha

57

Page 58: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

IV. PROCEDIMIENTO

ENSAYO 1: Determinación de algunas propiedades físicas de grasas y aceites

1. Tome la gradilla con las DOS SERIES de tubos:2. PRIMERA SERIE: Tubos de ensayo con aceites y grasas en agua:

a) Sin destapar el tubo, observe la densidad aproximada. Si la grasa o aceite flota en el agua, la densidad será menor que la del agua (< de 1g/mL), si se va al fondo, la densidad será mayor (> de 1g/mL), repórtelo de ésta manera.

b) Sin destapar el tubo, observe la solubilidad en agua de los aceites y grasas.3. SEGUNDA SERIE: Tubos de ensayo con aceites y grasas en cloroformo:

c) Sin destapar el tubo, observe la solubilidad en solvente apolar de los aceites y grasas.

4. Anote sus observaciones en el siguiente cuadro.

GRASA / ACEITESOLUBILIDAD EN AGUA

SOLUBLE / INSOLUBLE

DENSIDAD RESPECTO AL AGUA

< de 1g/mL / > de 1g/mL

SOLUBILIDAD EN CLOROFORMO

SOLUBLE / INSOLUBLE

Aceite de maíz

Aceite de oliva

Margarina

Mantequilla

ENSAYO 2: Reacción de adición de yodo (I2)

Esta prueba se utiliza para determinar la presencia de dobles enlaces en los ácidos grasos de los triacilgliceroles de una grasa o aceite. La cantidad de yodo que se adicione es directamente proporcional al grado de insaturación de una grasa o aceite..

Cuando se adiciona yodo a un lípido insaturado la manifestación observada en la reacción positiva será decoloración (pérdida del color). Si al adicionar 1 o 2 gotas de yodo el color permanece por lo menos un minuto como el color del “control negativo”, la reacciónserá negativa e indica la presencia de lípidos saturados.

58

Page 59: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

Ejemplo de Adición de yodo a un triglicérido con ácidos grasos insaturado:

PROCEDA COMO INDICA EL SIGUIENTE CUADRO:

TUBO Colocar 1 ml de:

Añada 2 gotas de solución de yodo,

en c/tubo, agite y

observe.(Si observa

decoloración, continúe

agregando gota a gota

hasta un máximo de 10

gotas)

No. DE GOTAS

AGREGADAS

(un máximo de 10 gotas)

MANIFESTACIÓN

Decoloración (si no hay

manifestación colocar una línea)

DETECTÓ PRESENCI

A DE DOBLES

ENLACES

RESULTADO (+/-)

1

Control negativo

(se prepara con 1 mL de cloroformo más 2 gotas de solución de yodo)

2Solución de

Lípido Insaturado

3Solución de

Lípido Saturado

ENSAYO 3: Extracción y determinación cualitativa de lípidos presentes en alimentos

A.Extracción del lípido:

1. Tare un beaker y pese 20g del alimento asignado. 2. Proceda a cortarlo en pequeños trozos y colóquelo de nuevo en el beaker.3. Agregue 100 mL de agua4. Agitar con la varilla de vidrio, colocar el beaker sobre la estufa y llevarlo a ebullición

durante 5 minutos, agitando regularmente.5. Retire de la estufa, deje enfriar y reposar por lo menos 10 minutos. 6. Con una pipeta de transferencia extraiga la capa grasosa y colóquela en un tubo de

ensayo. Si el alimento no liberó una capa grasosa indíquelo en los resultados como no presenta.

59

Page 60: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

B. Determinación cualitativa del lípido:a. Observe los diferentes Beakers y compare la cantidad de grasa presente en cada

uno.b. Anote los resultados en el siguiente cuadro:

ALIMENTO¿Presenta lípidos según la

extracción?SI / NO

¿Qué cantidad de lípidos presenta el alimento?

Repórtelo según la escala*

Torta de Carne

Pollo frito con piel

Papas fritas

Fruta

Salchicha

*Escala:

- Nada+ Muy poco++ Poco+++ Regular++++ Abundante

V. ANALISIS DE RESULTADOS

VI. CONCLUSIONES

VII. CUESTIONARIO1. Nombre el ácido omega-6 que reacciona con más moles de yodo (los estudiados en

clase):

2. Complete la siguiente ecuación:

CH2-O-CO-(CH2)7CH=CHCH2CH=CH-(CH2)4CH3

|CH-O-CO-(CH2)7CH=CHCH2CH=CH-(CH2)4CH3

|CH2- O-CO-(CH2)7CH=CHCH2CH=CH-(CH2)4CH3

+ 3H2

60

Page 61: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

3. Lea las etiquetas de varios productos alimenticios que contengan grasas como mantequilla, margarina, chocolates, etc., y complete:

Alimento empacado

Gramos de Grasa Total

Por porción

Gramos de grasa

Saturada por porción

Valor Calórico de la grasa por

porción

( 9 kcal/ gramo de grasa)

% de Grasa de una porción

1. Mantequilla de maní

15 2.5 135 *46.87%

2.

3.

4.

5.

6.

*Ejemplo:

* % grasa de una porción = 15 g de grasax 100= 46.87% 32 g por porción

VIII. Bibliografía Lucrecia Casasola de Leiva. Practica de laboratorio, Propiedades físicas de los lípidos. Unidad

Didáctica de Química, Facultad de Ciencias Médicas, Universidad de San Carlos de Guatemala, 2017

Timberlake, Karen C. Química general, Orgánica y biológica. Estructuras de la vida. 4ta edición. Pearson Educación de México, S.A de C.V., México, 2013

61

Page 62: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

UNIVERSIDAD DE SAN CARLOS DE GUATEMALAFACULTAD DE CIENCIAS MÉDICAS, CUMUNIDAD DIDÁCTICA QUÍMICA, PRIMER AÑO.

PRACTICA DE LABORATORIO 2017 SEMANA 28

EMULSIFICACIÓN Y SAPONIFICACIÓN DE GRASAS Y ACEITES Elaborado por: Licda. Evelyn Rodas Pernillo de Soto

I. INTRODUCCIÓNAlgunos lípidos, tienen la característica de ser anfipáticos, es decir que tienen una región polar y una no polar en su estructura. Esto les da la capacidad de emulsificarse, es decir mezclarse con líquidos que normalmente no se mezclarían, como el agua. Además, por ser anfipáticos, pueden actuar como agentes emulsificantes, que son aquellas sustancias que disminuyen la tensión superficial entre dos fases inmiscibles para que de esa forma pueda dispersarse una en la otra. Este proceso de emulsificación es importante ya que es el utilizado en la digestión de las grasas de los alimentos. En el laboratorio podrá comprobar el proceso de emulsificación utilizando yema de huevo y un detergente.

Las grasas y aceites son lípidos saponificables, es decir que es posible hidrolizar el enlace éster con un medio alcalino como NaOH o KOH y producir glicerol y las sales de los ácidos grasos (jabones). En el laboratorio procederá a saponificar un aceite y luego podrá comprobar de una forma cualitativa y química la formación del jabón.

II. OBJETIVOS1. Realizar un proceso de emulsificación, usando como agentes emulsificantes

componentes de la yema de huevo y detergente.2. Efectuar un proceso de saponificación (hidrólisis alcalina) en una grasa o aceite.3. Identificar los productos de la saponificación: las sales de los ácidos grasos y los ácidos

grasos libres.

III. MATERIALES (REACTIVO Y EQUIPO):1 Aceite vegetal con pipeta de

transferencia2 NaOH al 20% p/v3 HCl 0.2 M4 Estufa eléctrica5 Baño de María6 Gradillas para tubos de ensayo7 Pisetas con agua

Recipientes para recolectar claras de huevo

* MATERIAL APORTADO POR LOS ESTUDIANTES

Kit de laboratorio del grupo de trabajo. Una cucharada de detergente líquido Una yema de huevo (por todo el grupo de

laboratorio) 2 pipetas de transferencia de 3 ml Equipo de protección personal necesario.

62

Page 63: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

IV. PROCEDIMIENTO

ENSAYO 1: Emulsificación de una grasa o aceite

La emulsificación es el proceso mediante el cual un líquido es dispersado en otro en forma de pequeñas gotas. Como estos líquidos son inmiscibles o insolubles entre sí, se requiere de un agente emulsificante que es una molécula anfipática que tiene un extremo afín al agua (hidrofílico) y otro afín al aceite (hidrofóbico). Esto permite que el agua y el aceite se dispersen casi completamente el uno en el otro, creando una emulsión estable, homogénea y fluida.

Las moléculas de jabón y detergentes tienen dos extremos que sirven de puente entre las moléculas de agua y las de grasa, estos dos extremos hacen que sea capaz el jabón y los detergentes de romper la tensión superficial del agua y que una parte de ellos se unan a la grasa y otra al agua por lo que se forma una sola fase homogénea.

1. Rotule tres tubos de ensayo como, 1, 2 y 3 2. Proceda como indica el siguiente cuadro y anote los resultados.

Tubo

Agregue a c / tubo:5 mL de agua y 10

gotas de aceite vegetal

¿Se separa la fase aceitosa de la

acuosa?SI/NO

Agregue 5 gotas de:

¿Se separa la fase aceitosa de la acuosa?

SI /NO

¿Hay emulsificación?*

SI/NO

1AGITE vigorosamente y deje reposar por 2

min.

Detergente,agite

vigorosamente y deje reposar 2 min

2AGITE vigorosamente y deje reposar por 2

min.

yema de huevo, agite

vigorosamente y deje reposar 2 min.

3

AGITE vigorosamente y deje reposar por 2

min.

*se considera que hay emulsificación si no hay separación de las fases.

ENSAYO 2: SAPONIFICACIÓN O HIDRÓLISIS ALCALINA

Los enlaces éster, que unen al glicerol y los ácidos grasos, experimentan hidrólisis, liberando glicerol y las sales de los ácidos grasos (de sodio o potasio), las cuales se conocen como “Jabones”. El proceso de saponificación se verifica, al detectar las sales de los ácidos grasos (jabónes), las cuales forman espuma con el agua. Además, se puede comprobar la presencia de estas sales, acidificando el medio, para obtener ácidos grasos libres, los cuales forman una capa aceitosa en la superficie de la mezcla.

63

Page 64: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

Ejemplo de saponificación de un triglicérido:

PROCEDIMIENTO:1. Rotule tres tubos de ensayo como, 1, 2 y 3. 2. En el tubo No.1 coloque 10mL de aceite vegetal y 4 ml de solución de NaOH al 20%3. Agite fuertemente y colóquelo en el baño de María a ebullición de 20 a 30 minutos.

Agite ocasionalmente4. Retire el tubo y observará que se formaron tres fases o capas.5. Con una pipeta de transferencia y con cuidado, succione la capa superior (aceite

inalterado) y descártela. 6. Con la misma pipeta de transferencia succione la capa intermedia semisólida (jabón) y

transfiera la mitad del contenido al tubo No.2 y la otra mitad al tubo No. 3. Guárdelas para las pruebas a) y b)

7. La capa inferior se descarta.a) PRUEBA PARA CONFIRMAR PRESENCIA DE JABON

TUBO Agregue 1 mL de agua y agite

vigorosamente

MANIFESTACION *(Espuma)

¿Se formó Jabón?SI / NO

No. 2(Jabón)

* La formación de espuma, confirma la presencia jabones o sales de los ácidos grasos.

b) PROCEDIMIENTO PARA OBTENER ACIDOS GRASOS LIBRES A PARTIR DE LAS SALES SÓDICAS DE LOS ÁCIDOS GRASOS:

Al jabón (sales sódicas de los ácidos grasos) obtenido en la saponificación, se les agrega HCl, para obtener los ácidos grasos libres.

Reacción general: RCOO- + H+ RCOOH

TUBO Agregue 2 mL de HCl 0.2M y agite.

MANIFESTACION*(Formación de capa

aceitosa)

¿Se formaron ácidos grasos?SI / NO

No. 3(Jabón)

* La formación de una capa aceitosa en la superficie, indica la presencia de ácidos grasos libres, estos son insolubles en agua.

64

Page 65: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

V. ANÁLISIS DE RESULTADOS

VI. CONCLUSIONES

VII. CUESTIONARIO

1. Haga un esquema o dibujo que represente la emulsificación de una grasa o aceite:

2. Escriba la fórmula del jabón que se produce por la saponificación de la triestearina con KOH:

3. Escriba la fórmula del triacilglicerol a partir del cual se forman jabones de oleato de sodio:

4. ¿Por qué la yema de huevo y el detergente pueden actuar como agentes emulsificantes? y en el ensayo No. 1 ¿En cuál de los dos tubos obtuvo mejor acción emulsificante?

5. Investigue y resuma. ¿Cómo se lleva a cabo la emulsificación de las grasas en nuestro organismo?

VIII. Bibliografía Lucrecia Casasola de Leiva. Practica de laboratorio, Propiedades físicas de los lípidos. Unidad

Didáctica de Química, Facultad de Ciencias Médicas, Universidad de San Carlos de Guatemala, 2017.

Timberlake, Karen C. Química general, Orgánica y biológica. Estructuras de la vida. 4ta edición. Pearson Educación de México, S.A de C.V., México, 2013

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

65

Page 66: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

FACULTAD DE CIENCIAS MÉDICASUNIDAD DIDÁCTICA DE QUÍMICA, PRIMER AÑO

PRACTICA DE LABORATORIO 2018SEMANA 29

PROPIEDADES FÍSICAS Y QUÍMICAS DE AMINOÁCIDOS Y PROTEÍNASElaborado por Licda. Edda Sofía Tobías de Rodríguez

I. INTRODUCCIÓNLas proteínas son macromoléculas biológicas, constituidas por α-aminoácidos unidos por enlaces peptídicos que intervienen en diversas funciones vitales esenciales, como el metabolismo, la contracción muscular o la respuesta inmunológica. Un aminoácido es una biomolécula que contiene un grupo amino (-NH2) y un grupo carboxilo (-COOH), unidos a un carbono conocido como carbono . Los aminoácidos son compuestos sólidos, incoloros, cristalizables y de elevado punto de fusión. Además son solubles en agua, con actividad óptica y con un comportamiento anfótero.Los aminoácidos en soluciones acuosas como los entornos biológicos, existen como iones dipolares o zwitterión a pH cercanos a su punto isoeléctrico (pI). A pH más ácidos existen en forma catiónica y a pH más básicos predomina la forma aniónica. Siendo todas las proteínas compuestos formados por aminoácidos y unidos por enlaces peptídicos, presentan grandes variaciones en sus propiedades químicas y biológicas. Reflejan las propiedades químicas de los aminoácidos que contienen en su estructura. Muchas de las reacciones de color de las proteínas dependen de la presencia de un aminoácido en su molécula.En la presente práctica, se realizaran observaciones y ensayos para determinar las propiedades de algunos aminoácidos y proteínas y se usaran estos criterios para su clasificación.

II. OBJETIVOS1. Observar algunas propiedades de los aminoácidos como solubilidad en agua, estado

físico, pH.2. Utilizar la reacción de Biuret para detectar enlaces péptidos en sustancias de origen

biológico.3. Utilizar la reacción de Ninhidrina para detectar aminoácidos libres y proteínas.4. Detectar aminoácidos con anillo bencénico en proteínas utilizando la reacción

Xantoproteica.5. Utilizar la reacción de Xantoproteica para clasificar a las proteínas como proteínas con

aminoácidos aromáticos o sin aminoácidos aromáticos. 6. Detectar la presencia de Azufre en algunos aminoácidos.

III. MATERIALES (REACTIVOS Y EQUIPO)1. Gradillas2. Mechero de alcohol3. Piseta con agua desmineralizada4. Hisopos5. Papel pH6. Solución de carbohidrato7. Aminoácidos: Alanina, Ácido aspártico, arginina

(en tubo, rotulados asi: 1A, 2A y 3A)8. Soluciones acuosas al 1% p/v de: alanina,

Ácido aspártico y Arginina (en tubo y rotulados asi: 1B, 2B y 3 B)

9. Sustancias que contienen Proteínas:Albúmina de huevo al 10% p/vColágeno al 3% p/v , leche descremada

10. Reactivos para reacciones de Biuret y Xantoproteica, Ninhidrina y Sulfuro:NaOH al 20% p/vCuSO4 al 0.2% p/vHNO3 concentradoAcetato de Plomo II al 0.2%

66

Page 67: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

IV. PROCEDIMIENTO1. PROPIEDADES FÍSICAS DE LOS AMINOÁCIDOS

a. Para obtener los datos de las columnas A y B, observe los tubos 1A, 2A y 3 A y proceda a colocar sus resultados.

b. Para la columna C, deberá observar los tubos 1B, 2B y 3B, proceda a llenar la columna.

c. Columna D: destape los tubos 1B, 2B y 3B. Determine el pH en cada uno de ellos y coloque el resultado en el cuadro. Cierre los tubos y no confunda lo tapones.

Nombre del aminoácido

AEstado Físico

BColor

CSoluble en agua SI/NO

pI(Valor teórico

del punto isoeléctrico)

DpH

Valor numérico /

ácido, básico, neutro

Alanina 6.01

Ácido Aspartico

2.77

Arginina 10.76

2. PROPIEDADES QUIMICAS

2.1Prueba de Biuret: Se utiliza para determinar la presencia de enlacespeptídicos presentes en péptidos y proteínas. El ión Cu+2 de color azul, forma un complejo violeta o morado en medio básico.

67

MATERIAL APORTADO POR EL ESTUDIANTE

Kit de laboratorio Fósforos o encendedorEquipo de Protección Personal

Page 68: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

Siga el procedimiento que se le indica en el siguiente cuadro.

Tubo Coloque 1 ml de: Agregue Agregue

Manifestación

( violeta o morado)

Resultado(+ / -)

Presencia de enlace péptido

Si / No

1 Albúmina al 10%

5 gotasNaOH al

20%Agite

2 gotas de

CuSO4

al0.2%Agite

2 Colágeno al 3%

3 Agua

4Lípido (solución

clorofórmica)

5 Carbohidrato

6 Leche (descremada)

2.2 Reacción Xantoproteíca: Las proteínas que en su secuencia presentan aminoácidos con cadenas laterales con anillos aromáticos (Fen, Tir,Trp), experimentan nitración del anillo aromático al ser tratadas con HNO3

concentrado, calor y medio básico. Se obtienen precipitados blancos, que al calentarse se tornan amarillos y al añadir una base se tornan a compuestos anaranjados.La reacción debe evaluarse de forma inmediata ya que con el tiempo el color tiende a palidecer.

Ecuación no completa de un aminoácido.

Proceda según el siguiente cuadro:Tubo

Coloque 1ml de

-Con precauciónAñada 5 gotas de HNO3conc.-Agite y caliente el tubo en un mechero de alcohol hasta ebullición.

Enfr

íe y

aña

da d

e 10

a 1

5 go

tas

de

NaO

H a

l 20%

Manifestación

Anaranjado si / no

Resultado + / -

Proteína con aa

aromáticosSi /No

1 Albúmina al 10%

2 Colágeno al 3%

68

Page 69: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

Ninhidrina Aminoácido Hidrindantina

Ninhidrina Hidrindantina Complejo color púrpura

2.3 Prueba de Ninhidrina:Esta prueba es positiva tanto para proteínas como para aminoácidos. La ninhidrina reacciona con todos los α-aminoácidos dando lugar a la formación de un complejo color purpura cuyo pH se encuentra entre 4 y 8. Solamente prolina e hidroxi-prolina dan lugar a complejos de color amarillo. En aquellos casos donde la prueba de Biuret es negativa y la de Ninhidrina es positiva, indica que no hay proteínas, pero si hay aminoácidos libres.Aplicación: Ésta prueba es comúnmente usada en química forense para detectar huellas dactilares, debida a que en dichas huellas quedan restos de aminoácidos de proteínas que pueden reaccionar dando el color característico. La reaccion ocurre en dos pasos.

a. Durante la primera reacción, se consumen dos equivalentes de Ninhidrina por cada aminoácido. El aminoácido se oxida, descarboxilándose y liberando amonìaco, mientras que uno de los equivalentes de Ninhidrina se reduce a Hidrindantina.  

b. En el segundo paso la Hidrindantina formada y otro equivalente de Ninhidrina, reaccionan con el amonìaco, formando un complejo de color púrpura (Púrpura de Ruheman)

Proceda según el siguiente cuadro:

Tubo Coloque 1 ml de:

Ajuste el pH(4-8)

Agregue

10 gotasde solución de

Ninhidrina al 0.2%

Agite

Coloque en

baño de marìa

en ebullición

durante 5

minutos

Resultado(+ / -)

1 Albúmina al 10%

2 Colágeno al 3%

3 Agua

4Carbohidrato

5

Leche

(descremada)

69

Page 70: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

2.4 Prueba de SulfuroEs una prueba positiva para aminoácidos y proteínas que contienen azúfre. Al calentar el aminoácido en medio fuertemente alcalino, el azufre presente reaccionapara formar sulfuros.  Este sulfuro puede detectarse por la formación de un precipitadonegro de sulfuro de plomo por adición de acetato de plomo.

R-SH + 2 NaOH → ROH + Na2S + H2O

Na2S + (CH3COO-)2 Pb → 2 CH3COONa + PbS

Tubo Coloque 1 ml de:

Agregue 5 mL de

NaOH 20%

Agregue

10 gotasde solución de Acetato de Plomo II al 0.2%

Agite

Llevea

ebullición

(use

mechero

de alcohol)

-Resultado(+ / -)

-Manifestación

1 Agua

2 Colágeno

3Albúmina de

huevo al 10%

4Leche

(descremada)

V. ANÁLISIS DE RESULTADOS

VI. CONCLUSIONES

VII. CUESTIONARIO 1. Elabore la estructura e indique el nombre de los aminoácidos que se pueden detectar

con la reacción Xantoproteíca. Encierre en un círculo el componente responsable de dar la reacción positiva.

2. Se tienen dos proteínas con las siguientes secuencias repetitivas:

70

“A” Val-tir-ser-fen-leu- tre-trp-ala-gli-fen-met

“B” Cis-val-ser-gli-leu-ile-asp-met-ser-pro-arg

Page 71: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

En base a las secuencias indique que reacciones darían + ó - y ¿por qué?Proteína Biuret

+ / -Xantoproteica

+ / - Sulfuro Ninhidrina ¿Por qué se obtienen los resultados

anteriores?

“A”

“B”

3. El compuesto responsable de la manifestación en la prueba de Sulfuro es:

4. Elabore las siguientes estructuras:

Alanina a pH 4 Alanina a pH 8

5. Elabore la estructura e indique el nombre de los aminoácidos que se pueden identificar con la prueba de Sulfuro:

VIII. BIBLIOGRAFIA: 1. Fratti de Del Cid, Isabel. Práctica de laboratorio, Propiedades físicas y químicas de

alcoholes y fenoles, Unidad Didáctica de Química, Facultad de Ciencias Médicas, Universidad de San Carlos de Guatemala, 2017.

2. Horton,H.et al. Principios de Bioquímica. 4ta. Ed. Pearson. México. 2008.3. Timberlake, Karen. Química general, orgánica y biológica. Estructuras de la vida. 4a. ed.

México: Pearson Educación; 2013. 936 p.

Nota: pregunte a su profesor la distribución de los materiales que los equipos de trabajo deben llevar para la semana 30.

71

Page 72: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

UNIVERSIDAD DE SAN CARLOS DE GUATEMALAFACULTAD DE CIENCIAS MÉDICASUNIDAD DIDÁCTICA DE QUÍMICA, PRIMER AÑO

PRACTICA DE LABORATORIO 2018

SEMANA 30DESNATURALIZACIÓN DE PROTEÍNAS Y ACTIVIDAD ENZIMÁTICA

Elaborado por Lucrecia Casasola de Leiva

I. INTRODUCCIÓN:

Las proteínas pueden desnaturalizarse cuando se alteran las interacciones entre los aminoácidos de losgrupos Rque estabilizan sus estructuras secundaria, terciaria o cuaternaria. Al desnaturalizarse se destruye su forma, precipitan como un coágulo, y pierden su actividad biológica.La desnaturalización puede ser causada por factores físicos como calor, agitación o bien factores químicos comosustancias ácidas o básicas, ciertos compuestos orgánicos, iones de metales pesados como mercurio y plomo. Las enzimas son estructuras proteicas con efectos catalizadores como por ejemplo las peptidasas que provocan la hidrólisis de los enlaces peptídicos de las proteínas, las oxidasas pueden provocar la oxidación de compuestos. Estas enzimas pueden estar presentes en algunos alimentos de consumo diario como la piña que contiene la enzima bromelina (peptidasa) y la zanahoria que contiene una enzima peroxidasa (oxidasa). En esta práctica de laboratorio se observarála pérdida del efecto catalizador (desactivación) de las enzimas bromelina y peroxidasa al ser desnaturalizadas por calentamiento, la pérdida de la capacidad de coagulación o endurecimiento de la gelatina (colágeno) por efecto de su hidrolisis provocada por una enzima y también observaremos la coagulación en forma de precipitado de la clara de huevo (albúmina) al ser desnaturalizada por efecto de calor y agentes químicos.

II. OBJETIVOS1- Observar la acción enzimática de una peptidasa (bromelina de la piña) sobre el sustrato

gelatina (colágeno) que no se endurece yla de una oxidasa (peroxidasa de la zanahoria) sobre el sustrato peróxido de hidrógeno (agua oxigenada H2O2) que se descompone en agua e hidrógeno.

2- Provocar la desnaturalización (desactivación) de la enzima bromelina de la piña (peptidasa) y de la peroxidasa de la zanahoria (oxidasa) por acción del calor.

3- Observar la pérdida de la acción enzimática (desactivación) de la bromelina sobre el sustrato gelatina (no se endurece) y de la peroxidasa sobre el H2O2 (no se descompone).

72

Page 73: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

4- Provocar la desnaturalización de la albúmina por acción del calor y de agentes químicos (precipitación).

III. MATERIALES (REACTIVOS Y EQUIPO)

1. Gradilla para tubos de ensayo2. Erlenmeyer de 150 ó 250 ml 3. Termómetro4. Mechero de alcohol5. HCl conc.6. Etanol absoluto7. Pb(NO3)2 al 2% p/v8. Hg(NO3)2 al 2% p/v

Nota: El jugo de piña debe ser natural (no envasado) recién exprimido, puede traerlo de su casa.

IV. PROCEDIMIENTOS

1. ACTIVIDAD DE LA BROMELINA SOBRE LA GELATINA.

a) Preparación de la gelatina: en un Erlenmeyer caliente 150mL de agua caliente, disuelvael contenido de un sobrecito de gelatina sin sabor (aprox. contiene 7.5 g), espere que se enfríe.

b) Jugo de la cáscara o pulpa de piña: en un beacker recolectarlo y pasarlo por el colador.

c) Divida el jugo obtenido en 2 tubos de ensayo: TUBO A: Preparación de la BROMELINA INACTIVA (jugo cocido). Caliénte el tubo directamente en el mechero hasta ebullición. TUBO B:BROMELINA ACTIVA(jugo crudo)Dejarlo sin calentar.

RESÉRVARLOS.. d) Preparación del sustrato (gelatina):numere 3 tubos de ensayo y agregue a cada uno 3

ml de la gelatina disuelta (debe estar aproximadamente a 3Oo C) y proceda de acuerdo al siguiente cuadro:

73

*APORTADO POR LOS ESTUDIANTES1. EL KIT DE LABORATORIO2. EQUIPO DE PROTECCIÓN PERSONAL3. Cáscara de piña o rodaja de piña cruda

(para obtener el jugo fresco)4. Un trozo de zanahoria crudo5. Un trozo de zanahoria cocido6. Colador fino, pequeño de plástico 7. 6-8 cubos de Hielo**8. 1 sobre de gelatina sin sabor **9. 1 frasco de agua oxigenada (peróxido de

hidrógeno H2O2)**10. 2 claras de huevo**

TODOS EN EL LABORATORIO** Ponerse de acuerdo, solo se necesita: 1 sobre de gelatina, 1 frasco de agua oxigenada, 2 claras de huevo y el hielo.

Page 74: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

Tubo 1 Tubo 2 Tubo 33 ml de gelatina

+5 gotas de jugo de piña crudo (enzima activa)

AGITAR

3 ml de gelatina+

5 gotas de jugo de piña cocido(enzima inactiva)

AGITAR

3 ml de gelatina

(control negativo)

DEJAR EN REPOSO POR 5 MINUTOS LUEGOCOLOCAR LOS TUBOS EN HIELO POR 15

MINUTOS Y OBSERVAR.

e) OBSERVE Y ANOTE UNA X EN LOS CUADROS CORRESPONDIENTES

Tubo 1 TUBO 2 TUBO 3

Formación de gel (endurecimiento)

Enzima activa

Enzima inactiva

Proteína del sustrato hidrolizada

Enzima desnaturalizada

2. ACTIVIDAD DE LA PEROXIDASA SOBRE EL PERÓXIDO DE HIDROGENO (agua oxigenada H2O2 )

Proceda conforme el siguiente cuadro:

Tubo

Coloque 3mL de

agua oxigenad

a

AgregueSe libera gas (O2)

Si/No

Hay actividad catalítica

Si/NOLa reacción esRápida o lenta

1 Control negativoNO tieneenzima

2Trozo de zanahoria

cruda.Enzima activa

3Trozo de zanahoria

cocida. Enzima inactiva

74

Page 75: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

3- DESNATURALIZACIÓN DEPROTEÍNASNumere cinco tubos de ensayo y proceda según se indica en el siguiente cuadro.

Tubo

No.

Añada 2 mL de Albúmina (clara de

huevo) PURA

AgregueManifestación

(coágulo blanco)

Desnaturalizacion(+ / -)

1 Calor con el mechero de alcohol

2 10 gotas de etanol absoluto

3 10 gotas de Pb(NO3)2

4 10 gotas de Hg(NO3)2

5 5 gotas de HClconc.

V. ANÁLISIS DE RESULTADOS:

VI. CONCLUSIONES:

VII. CUESTIONARIO

1. ¿Qué moléculas proteicas se desnaturalizaron durante la práctica y cuáles de sus interacciones o enlaces se afectaron?

2. La gelatina con jugo de piña no se endureció por la siguiente razón:

a) El jugo de piña se calentó y la bromelina estaba activab) El jugo de piña estaba crudo y la bromelina se desnaturalizóc) El colágeno de la gelatina se hidrolizó cuando se calentó d) El jugo de piña estaba crudo y la proteasa activa hidrolizó el colágenoe) Porque la gelatina se desnaturalizó

75

Page 76: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

3. ¿Qué proteínas se hidrolizaron durante la práctica, cuáles de sus interacciones o enlaces se alteraron y que niveles estructurales perdieron?

4. Escriba la ecuación de la descomposición del peróxido de hidrógeno con su catalítico

5. ¿Qué aminoácidos y que interacciones de la queratina se alteran en el alisado o rizado permanentedel cabello?

VIII. BIBLIOGRAFÍA

1. Manual de Prácticas de Laboratorio. Unidad Didáctica de Química, Facultad de Ciencias Médicas. USAC.2016.

2. Timberlake, K. Química. Cuarta edición. Pearson. 2013.

76

Page 77: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

UNIVERSIDAD DE SAN CARLOS DE GUATEMALAFACULTAD DE CIENCIAS MÉDICAS, CUMUNIDAD DIDÁCTICA QUÍMICA, PRIMER AÑO

PRACTICA DE LABORATORIO 2018

SEMANA 31IDENTIFICACIÓN DE UNA MUESTRA DESCONOCIDA No. 3

Elaborado por: Lic. Pedro Guillermo Jayes Reyes

INTRODUCCION

En ésta muestra desconocida cada estudiante deberá identificar a través de ensayos químicos, alguna de las siguientes biomoléculas:

a. Carbohidrato (almidón o azúcar reductor o no reductor).b. Lípido (saturado o insaturado).c. Proteína (con aminoácidos aromáticos o sin aminoácidos aromáticos)

Para realizar esta identificación utilizará una marcha analítica que lo guiará por UNA SOLA RUTA hasta identificar la muestra. Una marcha analítica consiste en una secuencia de procesos químicos que selectivamente van separando las distintas especies químicas, en este caso biomoléculas.

Es necesario que el estudiante reconozca las manifestaciones de las pruebas químicas o alguna característica física que lo conducirá a diferenciar la biomolécula, y de esta manera llegará a especificar la biomolécula de la muestra desconocida.

Al finalizar la marcha analítica, deberá entregar el informe de esta identificación, donde reportará únicamente las pruebas químicas que realizó según la ruta que siguió. Siendo éste un examen práctico individual, el estudiante debe seguir las reglas del mismo.

OBJETIVOS

1. Identificar una Biomolécula a través de pruebas químicas.2. Seguir una marcha analítica para la identificación de la muestra desconocida.3. Elaborar un informe con los resultados obtenidos.

REACTIVOS Y MATERIALES

a. CuSO4 al 0.2%,b. NaOH al 20%c. HNO3 Concentradod. Lugole. Solución de Yodof. Reactivo de Benedictg. Estufa eléctricah. Baño de María

77

* MATERIAL APORTADO POR LOS ESTUDIANTES

a. Tubos de ensayo limpios y secos (4 a 5)b. Pipeta de transferencia de 1mL o de 3mLc. Pinza para tubo de ensayod. Marcador permanente o cinta adhesiva (masking

tape)e. Fósforosf. Equipo de protección personal

Page 78: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

i. Mechero de alcoholj. Gradilla

PROCEDIMIENTO

Este es un examen NO DEBE consultar con nadie NI con su catedrático. Utilice tubos de ensayo, limpios y secos.

1. El catedrático le proporcionará en un tubo de ensayo su muestra desconocida identificada

con números o letras.

2. La Marcha Analítica le servirá de guía para sus procedimientos.

3. Debe utilizar pequeñas cantidades de su muestra para realizar cada prueba, teniendo el

cuidado de dejar una porción en caso tenga que repetir alguna de las pruebas.

4. Utilice un tubo diferente para cada una de las reacciones que realizará. No debe hacer 2 o

más reacciones en el mismo tubo de ensayo.

5. Realice la primera reacción química que le indica la MARCHA ANALÍTICA, utilizando las

cantidades de reactivo que se le indican.

6. Al obtener el primer resultado, debe seguir la ruta que le indica la marcha. Debe continuar

por UNA SOLA RUTA hasta identificar la biomolécula.

7. Anote sus resultados a lapicero en la hoja de informe, INDIQUE ÚNICAMENTE LAS

REACCIONES REALIZADAS EN LA RUTA QUE SIGUIÓ EN LA MARCHA ANALÍTICA. No

tache ni utilice corrector.

8. Indique la biomolécula identificada como PROTEINA CON AMINOACIDOS AROMATICOS,

PROTEINA SIN AMINOACIDOS AROMATICOS, ALMIDON, AZUCAR REDUCTOR,

AZUCAR NO REDUCTOR, LIPIDO SATURADO O LIPIDO INSATURADO.

9. Entregue el informe a su catedrático en el tiempo establecido. Además deberá enseñarle los

tubos de ensayo con las pruebas efectuadas.

10. El área de trabajo debe quedar limpia y los reactivos y equipo utilizado en su lugar.

78

Page 79: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

79

Page 80: corymarore.files.wordpress.com · Web viewLos desechos sólidos conocidos comúnmente como basura son generados diariamente en toda población. En nuestra ciudad se incrementa continuamente

MARCHA ANALITICA PARA LA MUESTRA DESCONOCIDA No.3

80