UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las...

146
UNIVERSIDAD COMPLUTENSE DE MADRID Facultad de Ciencias Químicas Dpto. de Bioquímica y Biología Molecular I Marcadores de activación alternativa de macrófagos: DC-SIGN y FRβ Tesis Doctoral Elena Sierra Filardi Madrid, 2010

Transcript of UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las...

Page 1: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

UNIVERSIDAD COMPLUTENSE DE MADRID Facultad de Ciencias Químicas

Dpto. de Bioquímica y Biología Molecular I

Marcadores de activación alternativa de macrófagos:

DC-SIGN y FRβ

Tesis Doctoral Elena Sierra Filardi

Madrid, 2010

Page 2: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

UNIVERSIDAD COMPLUTENSE DE MADRID Facultad de Ciencias Químicas

Dpto. de Bioquímica y Biología Molecular I

Marcadores de activación alternativa de macrófagos:

DC-SIGN y FRβ

Este trabajo ha sido realizado por Elena Sierra Filardi para optar al grado de Doctor,

en el Centro de Investigaciones Biológicas de Madrid (CSIC), bajo la dirección del

Dr. Ángel Luis Corbí López.

Fdo. Dr. Ángel Luis Corbí López

Page 3: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

A mis padres,

Rafael y María

Page 4: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

“La felicidad humana generalmente no se logra con grandes golpes de suerte, que pueden ocurrir pocas veces, sino con pequeñas cosas que ocurren todos los días”

Benjamin Franklin

Page 5: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Agradecimientos

Pues sí, aunque parece mentira, por fin ha llegado el momento... Y lo primero que quiero es dar las

gracias a todas las personas que de una forma u otra me han ayudado a llegar hasta aquí.

Ante todo quiero dar las gracias a Ángel, por darme la oportunidad de formar parte de su equipo, de

realizar este trabajo y por toda su ayuda. A Vicente y a Luis, que me ayudaron en mis primeros contactos con el

mundo de la biología. Y a María, porque gracias a ella pude empezar este trabajo.

Y siguiendo el orden cronológico, tengo que dar las gracias a las personas que me ayudaron en mis

comienzos en el laboratorio. Esther, gracias por recibirme cada mañana con una sonrisa, así todo era más fácil.

Diego, gran experto en DC-SIGN, gracias por tu ayuda y tu compañía en tantos y tantos experimentos. Amaya,

gracias por tu ayuda y colaboración durante todos estos años.

Ahora toca el turno de mis compañeras actuales, por las que creo que he sido capaz de llegar hasta el

final. Ángeles, con la que llevo desde el principio y a la que he visto doctorarse, casarse y ahora ser mamá,...

cómo pasa el tiempo! Gracias por tu ayuda. Laura, gracias por tu apoyo y por tus ánimos, y por esas risas, que

al final es con lo que hay que quedarse. Ya pronto te toca a tí! Noemí, gracias por todo, por aguantarme en los

buenos y malos momentos, has sido un gran apoyo para mí. Sonia, gracias por tu ayuda en esta última etapa,

por tu paciencia y tus valiosos consejos.

También quiero dar las gracias a las personas con las que he compartido menos tiempo, a los llegados

recientemente, Mateo, Concha y María, y a los que han ido pasando durante estos años por el laboratorio, Idoia

y Rocío. Carmen, gracias por tus consejos y por tu dulzura. Tilman, gracias por poner siempre una sonrisa a la

vida aún en los momentos más duros, por escucharme y confiar en mí, y por todos los buenos momentos de las

comidas. Aún se te echa de menos!

A los vecinos, las Cristinas, Ángela y Miguel, por sus consejos y críticas en los seminarios. José Luis,

muchas gracias por estar siempre dispuesto a escuchar, por tus ánimos y por hacerme ver la parte positiva de

las cosas. Pilar, gracias por todo tu apoyo, tus ánimos y tus gestos de cariño cuando más se necesitan.

Y ahora a los de siempre, a los viejos amigos del CIB. Luque, qué decir de tí. Muchas gracias por todo,

por escucharme, por intentar hacerme ver que las cosas no son tan malas y, sobre todo, gracias por hacerme

reír tanto. José, poco tiempo pero valioso. Gracias también por esos momentos tan divertidos. A mis grandes

compañeras de gymkana, Marta y Leo, gracias por estar ahí todos estos años. No sé si os prefiero de pitufos,

de pulpo, de pez amarillo, o mejor tal y como sois. Y gracias a todas las personas que en estos años han

compartido alguna hora de comida conmigo (sois tantos que se me olvidaría algún nombre). Gracias a todos.

Y ahora a los últimos y no menos importantes. A mis padres, Rafael y María, gracias a vosotros he llegado

hasta aquí, no sólo en lo profesional, sino también y más importante, en lo personal. Esto es una pequeña

forma de agradeceros todo lo que habéis y seguís haciendo por mí. A mi hermana Mª Luisa y a mis sobrinos

Alejandro y Aitana, por todas las sonrisas que me habéis regalado. Y a Luis, el gran sufridor de mis gruñidos.

Gracias por escucharme y por intentar aconsejarme siempre, y sobre todo, gracias por tu paciencia!

Y a todos lo que están o estarían orgullosos de que haya llegado hasta aquí.

Gracias

Page 6: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Índice

ABREVIATURAS ......................................................................................................................... 1 INTRODUCCIÓN ......................................................................................................................... 5

1. El sistema inmunitario y sus componentes celulares .............................................................. 7

2. Monocitos ................................................................................................................................. 8

3. Células dendríticas.................................................................................................................... 9

4. Macrófagos ............................................................................................................................. 11

4.1 Diferenciación de macrófagos ................................................................................... 12

4.1.1 Citoquinas implicadas ................................................................................... 12

4.1.1.1 Macrófagos generados en presencia de GM-CSF y M-CSF .......... 13

4.1.1.2 Fenotipo y función de macrófagos M1 y M2 ................................... 14

4.1.2 Tejido-especificidad ...................................................................................... 16

4.1.2.1 Macrófagos intestinales ................................................................... 16

4.1.2.2 Macrófagos peritoneales ................................................................. 16

4.2 Activación de macrófagos .......................................................................................... 17

4.2.1 Activación clásica vs. activación alternativa ................................................. 17

4.2.2 Características fenotípicas de macrófagos activados .................................. 19

4.2.3 Macrófagos asociados a tumores ................................................................. 21

4.3 Estudios de expresión génica en diferenciación y activación de macrófagos ........... 23

5. El receptor de patógenos DC-SIGN ....................................................................................... 24

5.1 Expresión y localización tisular .................................................................................. 25

5.2 Estructura y dominios funcionales ............................................................................. 25

5.3 Estructura génica, isoformas y polimorfismos ........................................................... 26

5.4 Función y señalización ............................................................................................... 28

OBJETIVOS ............................................................................................................................... 31 RESULTADOS ........................................................................................................................... 35

1. El receptor de folato β se expresa en macrófagos asociados a tumores y constituye un

marcador de macrófagos anti-inflamatorios/reguladores M2 ..................................................... 39

2. Activina A previene la adquisición de marcadores anti-inflamatorios/M2 y sesga la

secreción de citoquinas por los macrófagos .............................................................................. 53

3. Requerimientos estructurales para la multimerización del receptor de patógenos DC-

SIGN (CD209) en la superficie celular ....................................................................................... 79

4. Identificación de epítopos en la molécula de DC-SIGN ......................................................... 99

Page 7: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Índice

DISCUSIÓN .............................................................................................................................. 111

El receptor de folato β es un marcador de macrófagos anti-inflamatorios M2 y TAM, cuya

expresión es regulada por activina A ....................................................................................... 113

Requerimientos estructurales de DC-SIGN para su multimerización. Influencia de la

presencia de variantes con menor tamaño en la región del cuello .......................................... 125

Identificación epítopos en la molécula de DC-SIGN ................................................................. 130

CONCLUSIONES ..................................................................................................................... 133 BIBLIOGRAFÍA ........................................................................................................................ 137 ANEXO ..................................................................................................................................... 157

Page 8: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Abreviaturas

Page 9: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Abreviaturas

Gran parte de las abreviaturas y acrónimos empleados en esta Tesis Doctoral proceden del inglés y como tal se han mantenido: AAMØ Alternative activated macrophage

APC Antigen presenting cell

CAMØ Classical activated macrophage CD Cluster of differentiation

CEA Carcinoembryonic antigen

CEACAM Carcinoembryonic antigen-related cell adhesion molecule

CLEC C-type lectin-like receptor

CLP Common lymphoid progenitor

CLR C-type lectin receptor

CMP Common myeloid progenitor

CRD Carbohydrate recognition domain

DAMP Danger-associated molecular patterns

DC Dendritic cell

DC-SIGN Dendritic cell-specific ICAM-3 grabbing nonintegrin

DC-SIGNR DC-SIGN related

DNA Deoxyribonucleic acid

ECD Extracellular domain

FR Folate receptor

FSH Follicle-stimulating hormone

G-CSF Granulocyte colony-stimulating factor

GM-CSF Granulocyte-macrophage colony-stimulating factor

HIV Human immunodeficiency virus HSC Hematopoietic stem cells

HTLV-1 Human T-cell lymphotropic virus type 1

ICAM Intracellular adhesion molecule

IFN Interferon

IL Interleukin

iNOS Inducible nitric oxide synthase

ITIM Tyrosine-based inhibitory motif

Lea, Leb, Lex, Ley LewisA, LewisB, LewisX, LewisY

LPS Lipopolysaccharide

M-CSF Macrophage colony-stimulating factor MDDC Monocyte-derived dendritic cell

MDM Monocyte-derived macrophage

MHC Major histocompatibility complex

MPS Mononuclear phagocyte system

3

Page 10: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Abreviaturas

4

MyD88 Myeloid differentiation primary response gene (88)

NFκB Nuclear factor-kappaB

NK Natural killer

NO Nitric oxide

NOD Nucleotide-binding oligomerization domain

PAMP Pathogen-associated molecular patterns

PBMC Peripheal blood-mononuclear cells

PPARγ Peroxisome proliferator-activated receptor gamma

PRR Pattern recognition receptor

RA Rheumatoid arthritis RNA Ribonucleic acid

RNS Reactive nitrogen species

ROS Reactive oxygen species SARS Severe acute respiratory syndrome

SCF Stem cell factor

TAM Tumor-associated macrophages

TCR T cell receptor

TGFβ Transforming growth factor-beta

Th T helper

TLR Toll-like receptor

TNFα Tumor necrosis factor-alpha

Page 11: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

Page 12: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

1. El sistema inmunitario y sus componentes celulares

La función esencial del sistema inmunitario es proteger al organismo de agentes infecciosos y

microorganismos presentes en el ambiente. Para ser eficaz, el sistema inmunitario debe detectar

una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En

vertebrados, en este sistema de defensa colaboran el sistema inmunitario innato y el sistema

inmunitario adaptativo [1].

El sistema inmunitario innato constituye la primera línea de defensa que limita la infección tras

la exposición a microorganismos, y proporciona una respuesta inmediata e inespecífica, pues

reconoce y responde a los patógenos de forma genérica y sin conferir inmunidad duradera contra

ellos [2]. Este sistema de defensa incluye componentes celulares (células epiteliales, células

dendríticas, macrófagos, neutrófilos y células NK), moléculas del sistema del complemento y

citoquinas. Sus células están equipadas con receptores de reconocimiento de patrones (PRR), que

reconocen patrones moleculares asociados a patógenos (PAMP) y señales endógenas asociadas a

daño tisular (DAMP). El sistema inmunitario innato es capaz de “activarse” únicamente frente a estas

“señales de peligro” detectadas por los PRR de forma específica [3]. Por contra, el sistema

inmunitario adaptativo genera respuestas antígeno-específicas y confiere memoria inmunológica tras

el primer contacto con el antígeno. La respuesta inmunitaria adaptativa está mediada por

componentes celulares (linfocitos T y B) y humorales (anticuerpos). Las células presentadoras de

antígeno (APC), y en especial células dendríticas y macrófagos, juegan un papel fundamental en la

conexión entre la inmunidad innata y la inmunidad adaptativa, ya que son las responsables de

procesar y presentar antígenos a los linfocitos T en el contexto de las moléculas del complejo de

histocompatibilidad (MHC) presentes en su superficie [1]. En consecuencia, el sistema de defensa

innato tiene como segunda función estimular y polarizar la respuesta inmunitaria adaptativa con

objeto de optimizar la eliminación del patógeno y minimizar los daños tisulares colaterales [4].

El sistema inmunitario de los vertebrados superiores está compuesto por gran variedad de

células funcionalmente diferentes que derivan de células madre hematopoyéticas (HSC) [5]. Las

HSC se renuevan a sí mismas y dan lugar a células progenitoras mieloides (CMP) y linfoides (CLP),

con potencial más limitado y que dan origen a granulocitos, monocitos, macrófagos, células

dendríticas y mastocitos [6], o linfocitos B y T, y células NK [7], respectivamente.

7

Page 13: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

2. Monocitos

Los monocitos se originan en la médula ósea a partir de un precursor mieloide y se liberan

posteriormente al torrente sanguíneo, donde constituyen un 10% de los leucocitos circulantes en

humanos [8]. Los monocitos de sangre periférica tienen una vida media relativamente corta (24-72

horas) [9], y contribuyen a la renovación de los macrófagos y células dendríticas tisulares [10]. Los

monocitos son heterogéneos en términos de morfología, marcadores de superficie y capacidad

fagocítica [11], y exhiben una elevada plasticidad en su proceso de diferenciación, que es tejido y/o

estímulo dependiente [12]. Como consecuencia, el fenotipo y las funciones efectoras de los

macrófagos residentes en los diferentes tejidos (macrófagos alveolares, células de Kupffer,

microglía, osteoclastos) varían considerablemente. La plasticidad del sistema de diferenciación

mieloide se refleja en la capacidad de “transdiferenciación” que exhiben los distintos tipos celulares

derivados de monocitos. Así, por ejemplo, los macrófagos pueden ser inducidos a adquirir

propiedades fenotípicas y funcionales de células dendríticas, mientras que las células dendríticas

derivadas de monocitos (MDDC) in vitro pierden sus funciones efectoras al retirar las citoquinas que

promueven su generación [13] (Figura 1). Dicha plasticidad también se refleja en procesos

fisiológicos como la resolución de la inflamación, donde la presencia de células apoptóticas facilita la

transformación de macrófagos citotóxicos/pro-inflamatorios en macrófagos promotores de

crecimiento/anti-inflamatorios encargados de reparar y limitar el daño tisular asociado al proceso

inflamatorio [14].

GM-CSF M-CSF

GM-CSF + IL-4/IL-13/IFNα IL-3 + IL-4

Célula dendrítica Macrófago

Monocito

IL-6 / IL-10 / IFNγ

IL-4

GM-CSF + IL-4

“cytokine remove” + M-CSF

Figura 1.- Diferenciación in vitro de monocitos. Esquema ilustrativo de la plasticidad y la estímulo-dependencia de la diferenciación de monocitos de sangre periférica.

Las citoquinas son el estímulo crítico para que los monocitos progresen hacia cada una de sus

alternativas de diferenciación. De hecho, la primera citoquina con la que los monocitos entran en

8

Page 14: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

contacto determina su programa de diferenciación y su perfil de respuesta a otras citoquinas [15]. La

diferenciación in vitro de monocitos a macrófagos o células dendríticas es un ejemplo de dicha

dependencia (Figura 1). Las citoquinas comúnmente empleadas para generar MDDC in vitro son

GM-CSF e IL-4 [16-18], mientras que los macrófagos se diferencian en presencia de GM-CSF o M-

CSF [19]. En humanos, IL-4 favorece la diferenciación a células dendríticas e impide la generación

de macrófagos [16, 20], mientras que la presencia de IL-6 limita la generación de estas células y

promueve la diferenciación a macrófagos de manera dependiente de M-CSF [21]. Por otra parte, el

entorno celular y la presencia de estímulos externos también condiciona la diferenciación del

monocito inducida por citoquinas [10].

Por lo que se refiere a factores de transcripción, el factor PU.1 junto con C/EBPα, RUNX1 y AP-

1, es crítico en la diferenciación monocítica, ya que ratones deficientes en PU.1 carecen de linaje

mielomonocítico, lo que es debido fundamentalmente a su papel esencial en la regulación de los

genes que codifican los receptores de GM-CSF, M-CSF y G-CSF [22].

3. Células dendríticas

En 1973 Ralph M. Steinman y Zanvil A. Cohn describieron un tipo celular presente en los

órganos linfoides periféricos de ratón y al que denominaron “célula dendrítica” (DC) [23].

Posteriormente las DC fueron identificadas como un componente minoritario de las células

mononucleares de sangre periférica (PBMC) en humanos [24], y se caracterizaron por ser las

células estimuladoras más potentes en cultivos leucocitarios mixtos y en la activación de linfocitos

citotóxicos [25, 26]. En la actualidad, las DC se consideran centinelas del sistema inmunitario y APC

“profesionales”, ya que son las únicas APC eficaces en la activación de linfocitos T naive, debido a

su elevada expresión de moléculas de MHC, coestimuladoras y de adhesión en su superficie. Las

DC son capaces de presentar antígenos exógenos en el contexto de MHC-II y MHC-I (“cross-

priming”), lo que justifica su capacidad de inducción de respuestas inmunitarias primarias [27].

En función de su linaje o de su estado de activación, las DC tienen la capacidad de iniciar una

respuesta inmunitaria o promover tolerancia [28]. Aún más, las DC determinan el tipo de respuesta

inmunitaria que se genera frente a un antígeno, pues son ellas quienes determinan la polarización

de los linfocitos Th naive hacia Th1 (productores de IFNγ y eficaces en la eliminación de patógenos

intracelulales), Th2 (productores de IL-4 y efectivos en la eliminación de patógenos extracelulares),

Th17 (productores de IL-17 e implicados en respuestas autoinmunes) o Treg (células T reguladoras

implicadas en procesos inmunosupresores) [29].

9

Page 15: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

Las DC humanas son una población heterogénea en cuanto a fenotipo, localización anatómica

y función, y se clasifican en dos grupos según su grado de parentesco con linajes celulares bien

establecidos: DC mieloides y DC plasmacitoides [30]. Las DC mieloides (CD11c+ CD123-) se

distribuyen prácticamente en todos los tejidos y se denominan de formas diversas dependiendo de

su localización tisular: células de Langerhans (en epidermis y mucosas), DC dérmicas, DC tímicas,

DC intersticiales (en casi la totalidad de órganos), etc. [29]. Las DC mieloides circulantes

representan sólamente un 0.5% de las PBMC totales [31]. Por el contrario, las DC plasmacitoides o

linfoides (CD11c- CD123+) proceden de progenitores distribuidos en el timo y en áreas T de los

órganos linfoides secundarios [32], y residen en nódulos linfáticos, bazo, timo, médula ósea y sangre

periférica [33]. Las DC plasmacitoides son importantes mediadores de la inmunidad anti-viral,

produciendo grandes cantidades de IFNα al ser estimuladas [34].

SSiisstteemmaa cciirrccuullaattoorriioo

Figura 2.- “Ciclo vital” de las células dendríticas. Las células dendríticas se diferencian a partir de progenitores de médula ósea que llegan a los tejidos a través del sistema circulatorio, y donde residen como DC inmaduras hasta que reciben señales que promueven su migración y maduración. Las DC maduras migran a los ganglios linfáticos, donde activan y polarizan a los linfocitos T naive hacia los diferentes tipos de células Th.

DIFERENCIACIÓN

Progenitores de médula ósea

DC de sangre periférica DC inmaduras

TTe

MMéédduullaa óósseeaa

ejjiiddoo

VVííaa lliinnffááttiiccaa

NNóódduulloo lliinnffááttiiccoo

MADURACIÓNMIGRACIÓN

DC maduras

Señales de peligro

Antígeno soluble

Célula T efectora

Célula T naive

10

Page 16: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

Las DC mieloides se originan a partir de progenitores de médula ósea, que generan

precursores circulantes cuya extravasación a los tejidos da lugar a las DC inmaduras residentes

(Figura 2). La elevada capacidad fagocítica de estas células les permite captar y procesar

contínuamente antígenos que son cargados en moléculas de MHC [30]. La detección de “señales de

peligro” a través de los receptores tipo Toll (TLR) y proteínas NOD hace que las DC “maduren” y

migren hacia los órganos linfoides secundarios. Durante ese trayecto, estas células disminuyen su

capacidad de captura y procesamiento de antígenos, y aumentan los niveles de expresión de

moléculas coestimulatorias y MHC en membrana. En las áreas T de los nódulos linfáticos, las DC

acaban interaccionando con linfocitos T que portan TCR específicos para los antígenos que las DC

capturaron en los tejidos de origen, iniciando así la respuesta inmunitaria adaptativa [35]. Las DC

maduras presentan antígenos a los linfocitos T CD8+ y CD4+, y estos últimos a su vez regulan a

otras células del sistema inmunitario, como células T citotóxicas CD8 y células B específicas de

antígeno, o células no específicas de antígeno como macrófagos, eosinófilos y células NK [36].

Como se ha comentado anteriormente, las DC están especializadas en la presentación de

antígeno a células T naive, y se diferencian de los macrófagos por su eficiente capacidad de

presentación de antígeno. Recientemente se ha planteado que las DC no constituyen una población

celular diferente de los macrófagos, ya que prodecen de un mismo precursor común, son sensibles

a los mismos factores de crecimiento, y no existen marcadores específicos ni funciones efectoras

únicas de las DC que justifiquen su distinción de los macrófagos [37].

4. Macrófagos

Metchnikoff, Premio Nobel de Fisiología y Medicina en el año 1908 por sus trabajos sobre el

sistema inmunitario, identificó células capaces de digerir partículas exógenas en el tubo digestivo de

las larvas de peces. A estas células las llamó “fagocitos”, y más tarde las definió como glóbulos

blancos integrantes de la primera línea de defensa contra las infecciones en los seres vivos [38]. El

término “macrófago” (MØ; del griego makros "grande" y phago "comer") fue asignado en 1924 por

Aschoff a un conjunto de células del sistema retículo-endotelial, que incluía monocitos, macrófagos,

histiocitos, fibroblastos, células endoteliales y células reticulares [39]. Posteriormente se reemplazó

este término por el de sistema fagocítico mononuclear (MPS), que comprende monoblastos y

promonocitos de médula ósea, monocitos de sangre periférica y macrófagos tisulares.

Los macrófagos juegan un papel crítico en el desarrollo de la respuesta inmunitaria, debido a

que actúan como primera barrera de defensa, al detectar y eliminar partículas “extrañas”

(microorganismos, macromoléculas tóxicas, células propias dañadas o muertas) mediante

11

Page 17: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

fagocitosis o secreción de enzimas, citoquinas o producción de especies reactivas de oxígeno

(ROS) y nitrógeno (RNS) [40]. Durante la respuesta inmunitaria adaptativa los macrófagos presentan

antígenos a los linfocitos T en el contexto de MHC-II y/o MHC-I, y colaboran con la respuesta

humoral en la eliminación de agentes extraños [41]. Además, los macrófagos tienen un papel

importante en procesos de reparación de heridas y resolución de la inflamación, promoviendo el

reclutamiento de otras células inflamatorias hacia los focos de inflamación, así como a remodelación

de matriz extracelular y angiogénesis. En consecuencia, el término “macrófago” agrupa una

multiplicidad de células cuya finalidad es el mantenimiento de la homeostasis y la integridad tisular

[12].

4.1 Diferenciación de macrófagos

Los macrófagos se originan a partir de HSC, y derivan en su mayoría de monocitos circulantes

que se extravasan a los tejidos por el influjo de citoquinas y quimioquinas [19]. A pesar de ello, un

pequeño porcentaje de macrófagos (aprox. 5%) derivan de la división local de fagocitos

mononucleares en los tejidos [42]. Como se comentó anteriormente, el fenotipo de los macrófagos

residentes en tejidos está determinado por el microambiente tisular, la matriz extracelular y los

productos de secreción y moléculas de superficie de las células próximas [8].

4.1.1 Citoquinas implicadas

Las principales citoquinas que determinan la supervivencia, diferenciación y quimiotaxis de los

macrófagos son GM-CSF, M-CSF e IL-3 [12] [43]. El M-CSF es sintetizado constitutivamente por

numerosos tipos celulares (macrófagos, células endoteliales, fibroblastos, osteoblastos, células del

estroma, etc.), y su concentración en suero oscila entre de 3-8 ng/ml [44]. Además, su producción es

inducida por la activación de células hematopoyéticas y fibroblastos con GM-CSF, TNFα [45], IL-1 e

IFNγ [46]. La síntesis de M-CSF es regulada de manera tejido-específica [43] y sus niveles son

elevados en estados de inmunosupresión (embarazo, tumores), siendo su papel importante en el

establecimiento de la tolerancia materna hacia el embrión [47]. A diferencia del GM-CSF, esta

citoquina juega un papel fundamental en el desarrollo mieloide, ya que ratones M-CSF-/- exhiben una

generación deficiente de macrófagos [48], mientras que los ratones GM-CSF-/- sólo muestran

alterada la maduración de macrófagos alveolares [49]. El receptor de M-CSF de alta afinidad (CSF-

1R, M-CSFR, c-fms, CD115) se expresa principalmente en células del linaje monocítico, como

monocitos, DC, macrófagos y sus precursores [43, 50].

12

Page 18: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

Por otro lado, el GM-CSF es producido por diferentes tipos celulares, incluyendo linfocitos T y

B, macrófagos, mastocitos, eosinófilos, neutrófilos y células endoteliales [43]. En condiciones

fisiológicas el GM-CSF se encuentra en suero a una concentración de 20-100 pg/ml y, aunque

puede ser producida constitutivamente por células tumorales, en la mayoría de los casos se requiere

activación de las células productoras [18]. El GM-CSF promueve viabilidad, proliferación y

maduración de precursores de neutrófilos, eosinófilos y macrófagos, y sus funciones dependen de

su concentración, ya que efectos en viabilidad celular requieren menores concentraciones que las

precisas para afectar a la proliferación celular [18]. Los efectos biológicos del GM-CSF están

mediados por el receptor de GM-CSF que, a diferencia del receptor homodimérico del M-CSF (M-

CSFR), está compuesto por una cadena α de unión a GM-CSF, y una cadena β necesaria para la

transducción de señales [51].

4.1.1.1 Macrófagos generados en presencia de GM-CSF y M-CSF

GM-CSF y M-CSF presentan una modulación cruzada de sus respectivas actividades

funcionales: mientras que el M-CSF aumenta la generación de macrófagos en presencia de bajos

niveles de GM-CSF [52], altas concentraciones de esta última impiden el desarrollo de macrófagos

mediado por M-CSF, debido a la acción inhibitoria de GM-CSF sobre la expresión de M-CSFR [53,

54]. Aunque los macrófagos humanos derivados de monocitos (MDM) diferenciados en presencia de

GM-CSF o M-CSF in vitro se consideran equivalentes a los macrófagos residentes en los tejidos en

condiciones homeostáticas [19], ambas citoquinas se usan indistíntamente en la generación in vitro

de MDM, dando lugar a poblaciones fenotípica y funcionalmente diferentes [19] (Figura 3). Así, en

presencia de GM-CSF se generan macrófagos, denominados M1, que producen citoquinas pro-

inflamatorias (IL-23, IL-12, IL-1β, IL-6, TNFα) en respuesta a Mycobacterium y promueven

inmunidad de tipo Th1 (pro-Th1) [55, 56]. Por contra, los macrófagos inducidos por M-CSF o M2

secretan IL-10 en respuesta a estímulos externos, inhiben respuestas Th1, y se han implicado en la

inducción de tolerancia [55-57]. Los macrófagos M2 actúan como moduladores de autoinmunidad,

ya que inducen células Treg e inhiben la diferenciación de linfocitos Th1 y Th17 [58]. Por todo ello,

los macrófagos M1 y M2 juegan papeles opuestos durante la respuesta inmunitaria, y son

considerados como macrófagos pro- y anti-inflamatorios, respectivamente (Figura 3). Del mismo

modo, GM-CSF y M-CSF se emplean para la generación in vitro de macrófagos a partir de

precursores de médula ósea de ratón, y sus propiedades pro- y anti-inflamatorias se ajustan a las de

los macrófagos M1 y M2 derivados de monocitos humanos [59, 60].

13

Page 19: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

Macrófago pro-inflamatorio (M1)

Macrófago anti-inflamatorio (M2)

IL-23, IL-12, IL-1β, IL-6, TNFα

GM-CSF

M-CSF

IL-10 Th1

Figura 3.- Macrófagos diferenciados en presencia GM-CSF y M-CSF. Esquema ilustrativo de los macrófagos generados en presencia de GM-CSF (M1 o pro-inflamatorios) o M-CSF (M2 o anti-inflamatorios) y sus diferencias en la respuesta inmunitaria.

4.1.1.2 Fenotipo y función de macrófagos M1 y M2

Además de diferencias en la producción de citoquinas en respuesta a LPS o Mycobacterium,

los macrófagos generados en presencia de GM-CSF (M1) y M-CSF (M2) tienen características

fenotípicas diferentes (Tabla 1). Los macrófagos M2 presentan una morfología elongada en forma

de huso, mientras los macrófagos M1 son más redondeados [19]. Por otro lado, los macrófagos M2

presentan mayor expresión de CD14, M-CSFR y del receptor “scavenger” CD163, mientras los

macrófagos M1 expresan mayores niveles de HLA-DQ y HLA-DR [19, 56]. Respecto a la expresión

de PRR, ambos tipos de macrófagos expresan niveles similares de TLR2 y TLR4, y la expresión de

DC-SIGN es baja pero significativa en macrófagos M1 y mayor en macrófagos M2 [56].

Desde el punto de vista funcional, ambas poblaciones de macrófagos también se comportan de

forma diferente (Tabla 1). Los macrófagos M2 presentan mayor capacidad de fagocitosis mediada

por receptores de Fcγ [61], mayor actividad fungicida debida a la producción de ROS [62], y mayor

producción de H2O2 en respuesta a estímulos fagocíticos [63]. Por su parte, los macrófagos

generados en presencia de GM-CSF tienen mayor capacidad de presentación de antígeno que los

macrófagos M2 [56]. Aunque ambos tipos de macrófagos son diana para la infección inicial por HIV-

1, convirtiéndose en reservorios virales, los macrófagos M2 tienen mayor capacidad de producción

de partículas virales, mientras que los macrófagos M1 inhiben la replicación viral a nivel post-

transcripcional [64].

14

Page 20: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

Características M1 M2

Antígenos de superficie CD11b ++ ++ CD11c ++ ++ CD14 - ++ CD71 + - CD163 - + CD209 - + HLA-DR ++ + HLA-DQ + - 710F + -

Receptores FcγR I (CD64) + + FcγR II (CD32) + + FcγR III (CD16) - + Receptor “scavenger” tipo A + + M-CSFR (c-fms) + +++ Integrinas αvβ3 αvβ5 Funciones Fagocitosis mediada por FcγR Débil Fuerte Producción de H2O2 Débil Fuerte Sensibilidad a H2O2 Resistente Sensible Actividad catalasa Alta Baja Susceptibilidad a HIV-1 Resistente Susceptible Susceptibilidad a M. tuberculosis Susceptible Resistente Producción de IL-10 Débil Fuerte

Tabla 1.- Características fenotípicas y funcionales de los macrófagos generados in vitro en presencia de GM-CSF (M1) o M-CSF (M2). [19, 56].

Otra de las diferencias existentes entre los macrófagos generados en presencia de GM-CSF y

M-CSF es la secreción de quimioquinas. Los macrófagos M2 sólo son capaces de producir CCL18

(PARC) tras estimulación, mientras que los macrófagos M1 secretan niveles constitutivos de CCL22

(MDC), CCL17 (TARC) y CCL18, que mantienen al ser estimulados [56]. A pesar de que los

macrófagos M2 producen niveles bajos de citoquinas pro-inflamatorias y altos niveles de IL-10 tras

estimulación, son capaces de secretar quimioquinas atrayentes de otros tipos celulares (neutrófilos,

monocitos y linfocitos T), lo contribuye a su fenotipo anti-inflamatorio/regulador. En ese sentido,

CXCL8 (IL-8) es producida tanto por macrófagos M1 como M2, mientras que sólo los macrófagos

M2 secretan constitutivamente CCL2 (MCP-1). A su vez, ambos tipos de macrófagos son capaces

de secretar CXCL10, CCL3 (MIP-1α), CCL4 (MIP-1β) y CCL5 (RANTES) tras estimulación con LPS

[56].

15

Page 21: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

4.1.2 Tejido-especificidad

La heterogeneidad y plasticidad funcional de los macrófagos se refleja en su especialización en

las diferentes localizaciones anatómicas [65]. Los macrófagos localizados en tejidos en contacto con

el entorno exterior (pulmón, placenta, mucosas intestinales) se encuentran continuamente expuestos

a patógenos y desafíos ambientales. Por ello existen mecanismos de inhibición “temporal” de las

funciones de estos macrófagos, lo que evita daños colaterales en el tejido y permite que sólo se

generen reacciones pro-inflamatorias cuando son absolutamente requeridas. Los macrófagos

peritoneales y los situados en el intestino son ejemplos de macrófagos que han desarrollado

estrategias para regular a la baja sus funciones efectoras [66].

4.1.2.1 Macrófagos intestinales

Los macrófagos del tracto digestivo se encuentran estratégicamente localizados en la lámina

propia [67], y en tejidos linfoides secundarios asociados al sistema digestivo, como amígdalas y

placas de Peyer [68]. Funcionalmente, los macrófagos intestinales carecen de actividad

presentadora de antígeno y actividad “respiratory burst”, pero poseen gran capacidad fagocítica y

bactericida [69]. Estas células tienen reducida la producción de citoquinas pro-inflamatorias debido a

la inhibición de NFκB por el TGFβ liberado por las células del estroma [70]. Este estado de falta

parcial de respuesta a estímulos externos ha sido definido como “anergia inflamatoria”, y explica la

incapacidad de los macrófagos intestinales de mediar en la inflamación de la mucosa [71]. De

hecho, en pacientes con enfermedad inflamatoria intestinal se han descrito alteraciones en la vía de

señalización de TGFβ, lo que hace que un gran porcentaje de macrófagos sean capaces de liberar

citoquinas pro-inflamatorias [72, 73]. En consecuencia, los macrófagos intestinales son un claro

ejemplo de macrófagos anti-inflamatorios in vivo [70].

4.1.2.2 Macrófagos peritoneales

En humanos, la concentración de M-CSF en el fluido peritoneal es muy elevada y se

correlaciona con el número de macrófagos peritoneales [74]. Estudios realizados con macrófagos

aislados de muestras de diálisis peritoneal han mostrado que dichas células son fenotípica y

funcionalmente similares a los macrófagos anti-inflamatorios generados in vitro, por cuanto exhiben

alta capacidad de fagocitosis, endocitosis y macropinocitosis, producción de elevadas cantidades de

IL-10 tras estimulación, y una disminuida capacidad de estimulación de células T [75].

16

Page 22: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

4.2 Activación de macrófagos

4.2.1 Activación clásica vs. activación alternativa

La variedad de estímulos de activación/desactivación de macrófagos [43], combinado con la

heterogeneidad y plasticidad de los macrófagos residentes en tejidos en condiciones homeostáticas,

permite la existencia de numerosos estados de activación de macrófagos [8]. Así, el IFNγ producido

por células Th1, T citotóxicas CD8+ y células NK, convierte a los macrófagos en células con elevada

capacidad citotóxica, microbicida (especialmente de patógenos intracelulares) y anti-proliferativa. La

adquisición de estas propiedades es debida a la producción de mediadores tóxicos (ROS, RNS) y

citoquinas pro-inflamatorias [75]. Este tipo de activación, denominada clásica (CAMØ, M1) [76], da

lugar a macrófagos que secretan altos niveles de IL-12 e IL-23 y muy bajos niveles de IL-10 en

respuesta a Mycobacterium [77], y promueven fuertes respuestas inmunitarias Th1 (Figura 4).

Activación clásica (CAMØ)

IL-12

IFNγ

NK

IL-4

Th2 Th1

IL-13

IL-10

Activación alternativa (AAMØ) Basófilo

Eosinófilo NK

Figura 4.- Tipos de activación de macrófagos. Representación esquemática de la activación de macrófagos mediante estimulación con IFNγ (activación clásica) o citoquinas Th2 como IL-4 e IL-13 (activación alternativa).

Las funciones inflamatorias y citotóxicas de los macrófagos activados contribuyeron a la

percepción de que sólo citoquinas Th1 promovían activación de macrófagos, mientras que

citoquinas de tipo Th2 las bloqueaban o desactivaban [78]. Sin embargo, además de inhibir

respuestas Th1, las citoquinas Th2 provocan un aumento de las funciones de los macrófagos como

presentación de antígeno, reparación tisular y capacidad endocítica [77]. Por ello, los factores que

inhiben la generación y actividad de los CAMØ (citoquinas Th2 como IL-4 e IL-13, citoquinas

desactivadoras como IL-10 y TGFβ, hormonas como glucocorticoides y la vitamina D3), e incluso las

células apoptóticas, han sido agrupados como inductores de una forma “alternativa” de activación de

macrófagos (AAMØ, M2) [77] (Figura 4). Los AAMØ producen grandes cantidades de IL-10 y TGFβ

y niveles muy bajos de IL-12 bajo estimulación [79], y pueden presentar funciones

inmunosupresoras e inhibir la proliferación de células T [80].

17

Page 23: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

Las diferencias en las funciones de CAMØ y AAMØ han sido demostradas en numerosos

ensayos in vitro, donde los AAMØ inducen mayor proliferación celular y deposición de colágeno de

células fibroblásticas [81], e inhiben la proliferación de linfocitos inducida por mitógenos [82]. Al

mismo tiempo, los AAMØ contribuyen a la vascularización in vivo y exhiben actividad angiogénica in

vitro [83], similar a la de MDDC maduras en presencia de citoquinas como IL-10, TGFβ, o

glucocorticoides [84]. Por otro lado, existen numerosos estudios que ponen de manifiesto que los

AAMØ activados con IL-4 son esenciales en la eliminación y control de la infección por patógenos

extracelulares [77].

Aunque el término AAMØ fue inicialmente propuesto para identificar exclusivamente a

macrófagos activados por IL-4/IL-13 [85], la variedad de estímulos anti-inflamatorios que provocan

una activación “no clásica” de macrófagos ha hecho necesario establecer una nomenclatura más

precisa. Mantovani y colaboradores han clasificado estas formas de activación alternativa de

acuerdo con el estímulo inductor: los macrófagos estimulados por las citoquinas Th2 IL-4/IL-13 son

denominados M2a, los activados por complejos inmunes y ligandos de TLR son denominados M2b,

y los macrófagos activados en presencia de IL-10 son denominados M2c [86] (Figura 5, izquierda).

Recientemente se ha propuesto otra clasificación de macrófagos activados de acuerdo con sus

funciones en el mantenimiento de la homeostasis: macrófagos involucrados en la defensa del

organismo, en reparación de heridas y en regulación inmunitaria. Sin embargo, es preciso enfatizar

que además de estos tres grupos es posible definir numerosos estados funcionales intermedios, lo

que avala la existencia de un amplio rango de estados de activación de macrófagos [87] (Figura 5, derecha).

M1

M2b

M2a

M2c

INFγ IL-4

IL-13

LPS

Inmuno-complejos

IL-10

TGFβ

Defensa

Reparación de heridas Reguladores

Figura 5.- Propuestas de clasificación de macrófagos activados. Los macrófagos polarizados se pueden clasificar en función del estímulo de activación (izquierda) [86] o de su función efectora primordial (derecha) [87]. Los tres colores primarios (rojo, amarillo, azul) representan las tres poblaciones de macrófagos definidas, mientras que los colores secundarios representan macrófagos con funciones intermedias.

18

Page 24: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

4.2.2 Características fenotípicas de macrófagos activados

Los macrófagos activados presentan diferentes propiedades fenotípicas y funcionales en

función del estímulo de activación (Figura 6). Aunque los macrófagos M2a y M2b exhiben niveles de

expresión de moléculas de adhesión (CD11a, CD54, CD58) y coestimuladoras (CD40, CD80, CD86)

similares a los CAMØ, la activación alternativa de macrófagos en respuesta a IL-4 e IL-13 va unida a

la adquisición de un repertorio de receptores fagocitarios característicos. Estos receptores dotan a

los macrófagos M2a de potentes actividades endocitotóxicas y fagocíticas, y entre ellos son

destacables: 1) el receptor de manosa (MR1, CD206), cuya señalización intracelular está asociada a

la producción de IL-10, la expresión de IL-1Rα, y a la inhibición de la producción IL-12 en respuesta

a endotoxina [79, 88]; 2) el receptor “scavenger” 1 de macrófagos (MSR1, CD204), con un claro

papel en el reconocimiento y eliminación de lipoproteínas [89]; 3) el receptor de β-glucanos Dectin-1,

con especificidad por glucanos β-1,3 y β-1,6, típicos de hongos y algunas bacterias, y que colabora

funcionalmente con TLR2 en la respuesta inflamatoria anti-fúngica [88, 90]; y 4) DC-SIGN, con un

amplio espectro de reconocimiento de patógenos [88, 91, 92] (Figura 6). Otros marcadores de

activación alternativa de macrófagos humanos son DCIR y DCL-1 [93-95], CD23 [77] y el receptor

“scavenger” CD163 [85].

M1

M2b

M2a

M2c

MHCII

CD16CD32CD64

TLR2TLR4

CD163

CD163

Dectin-1DC-SIGN

Crecimiento tumoralInmunoregulaciónDeposición de matrizRemodelación de tejido

Respuesta Th2Inmunoregulación

Crecimiento tumoralRespuesta Th2AlergiaEliminación de parásitosEncapsulación de parásitos

Resistencia al tumorRespuesta Th1Eliminación de patógenos intracelulares

CD80CD86 CD23CCL2-5

CCL11CCL17CCL22CXCL1-5CXCL8-11CXCL16

IL-1IL-6IL-12IL-23TNFα

IL-1IL-6IL-10TNFα

CCL1CCL11CCL17CCL22CCL24

CCL11CCL17CCL18CCL22CCL24

CCL16CCL18CXCL13

IL-10

IL-10TGFβ

CD206MSR1

Figura 6.- Características fenotípicas y funcionales de macrófagos polarizados en función del estímulo de activación. En el dibujo se representan las principales características fenotípicas (secreción de quimioquinas (cuadro gris) y citoquinas (cuadro amarillo), y expresión de receptores de membrana), así como las características funcionales que diferencian los diversos estados de polarización de macrófagos.

19

Page 25: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

La expresión de genes que controlan el metabolismo celular también se utiliza para discernir

entre los diferentes tipos de macrófagos activados. Así, la expresión de genes que participan en el

metabolismo de la arginina, permite diferenciar CAMØ y AAMØ en ratón, pero no en macrófagos

humanos [96, 97]. La arginasa 1 (Arg1) es un marcador prototípico de activación alternativa, ya que

su expresión es dependiente de IL-4/IL-13, mientras que la óxido nítrico sintasa (iNOS) es inducida

por IFNγ. Los CAMØ metabolizan arginina vía iNOS, generando óxido nítrico, que posee elevada

actividad microbicida. Por el contrario, la expresión de Arg1 permite a los AAMØ producir poliaminas

y prolina, que son esenciales para la proliferación celular y la producción de colágeno,

respectivamente [98]. Otros marcadores de AAMØ en ratón, y que carecen de homólogos en

humanos, son los miembros de la familia quitinasa Ym1 y Ym2 (Chi3l3 y Chi3l4), y Fizz1,

involucrado en el metabolismo de lípidos [99].

Por otro lado, la polarización del macrófago hacia un fenotipo alternativo lleva asociada un

aumento en la expresión de genes relacionados con el metabolismo de lípidos, especialmente de

aquellos implicados en la captación y oxidación de ácidos grasos [100]. Así, además de Fizz1, Stab-

1 y la lipoxigenasa ALOX15 presentan mayor expresión en AAMØ [77, 93]. A diferencia de AAMØ,

los CAMØ sobre-expresan genes involucrados en el metabolismo del colesterol como ABCA1 y

apolipoproteínas L (APOL1-3,6), involucrados en su transporte y en el desarrollo de aterosclerosis

[93, 101]. A su vez, genes que codifican para las enzimas implicadas en el metabolismo de

mediadores lipídicos (eicosanoides, leucotrienos, esfingosina y ceramida) también se expresan

diferencialmente entre CAMØ y AAMØ. Más concretamente, la expresión de COX-2 está asociada

con el metabolismo de ácido araquidónico en CAMØ, mientras que las enzimas esfingosina y

ceramida quinasas, que catalizan el equilibrio ceramida-esfingosina, están más expresadas en

CAMØ y AAMØ, respectivamente [93].

El receptor PPARγ, y alguno de sus genes diana (FABP4), también se incluyen dentro de los

genes con mayor expresión en AAMØ, ya que IL-4 es un inductor de este receptor y de sus

activadores metabólicos [102]. Los ratones deficientes en PPARγ tienen disminuidos los niveles de

mRNA y la actividad de Arg1, no presentan macrófagos con fenotipo alternativo y, dado su papel en

el metabolismo de ácidos grasos, tienen mayor tendencia a la obesidad [103]. Además, se ha

descrito a PPARγ como regulador negativo de la activación clásica del macrófago [104]. Por tanto,

PPARγ regula las respuestas dependientes de IL-4, y es requerido para la adquisición y

mantenimiento del fenotipo alternativo en macrófagos activados [103].

Mientras que PPARγ es un factor crítico para la activación alternativa inducida por IL-4, la

activación de los factores de transcripción NFκB, STAT-1 y AP-1 son esenciales para la polarización

clásica del macrófago [105]. Estímulos inflamatorios como LPS, activan rutas de señalización

dependientes de MyD88, que llevan a la activación de NFκB y AP-1, y rutas independientes de este

adaptador intracelular, con la activación de IRF3 y STAT-1 [106]. Por el contrario, la IL-10 liberada

20

Page 26: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

por algunos AAMØ inhibe la activación de NFκB y mantiene su fenotipo inmunosupresor [107-109].

De hecho, la pérdida de expresión de IRF3, STAT-1 y NFκB en macrófagos derivados de médula

ósea de ratón está asociada a la supresión de la polarización pro-inflamatoria [110].

4.2.3 Macrófagos asociados a tumores

Los macrófagos asociados a tumores (TAM) constituyen un ejemplo paradigmático de la

plasticidad del proceso de activación de macrófagos y de su repercusión fisiológica y patológica. En

los tumores existe una gran infiltración de leucocitos inflamatorios [111], cuyo estado de maduración

y localización espacial determina su influencia sobre el tumor. Los macrófagos son el componente

mayoritario de dicho infiltrado tumoral [112], y constituyen un claro ejemplo de activación alternativa

patológica de macrófagos.

Los TAM se originan a partir de monocitos de sangre periférica reclutados hacia el tumor, en su

fase inicial de formación, por factores como M-CSF, MCP-1, VEGF y Angiopoietina-2 [113-117]

(Figura 7). La diferenciación intratumoral da lugar a macrófagos con niveles reducidos de receptores

de quimioquinas, lo que evita su migración desde los tejidos tumorales. Los TAM regulan varios

pasos clave en el desarrollo del tumor, y su abundancia se correlaciona con la progresión tumoral,

remodelación de matriz extracelular, estimulación de la proliferación, migración e invasión de las

células cancerosas, e inhibición de la inmunidad adaptativa (inmunosupresión) [117]. La elevada

densidad de macrófagos en zonas metastáticas, como los nódulos linfoides regionales, favorece el

crecimiento del tumor [113].

Anergia, supresión, respuesta Th2

TAM Célula tumoral

IL-10, TGFβ

Factores de crecimiento

Reclutamiento/ supervivencia

M-CSF, VEGF, MCP-1

VEGF, FGF, TGFβ Quimioquinas

IL-10, TGFβ

Angiogénesis y remodelación de matriz

MMP-9, uPA

Figura 7.- Interacción entre macrófagos y células tumorales. Las células tumorales secretan factores que atraen y determinan la polarización de los macrófagos en los tumores. A su vez, los TAM producen factores de crecimiento que promueven angiogénesis y remodelación del tejido, y contribuyen a la progresión y diseminación del tumor [118].

21

Page 27: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

El fenotipo y función de los TAM está determinado por los factores microambientales presentes

en el tumor [118, 119] (Figura 7). Citoquinas y factores de crecimiento derivadas del tumor (IL-10,

TGFβ, M-CSF, VEGF, MCP-1) aumentan la generación de macrófagos y reducen la diferenciación

de DC y, en consecuencia, determinan los niveles relativos de APC en el tumor y en los tejidos

cercanos [21]. Junto con TGFβ, M-CSF es el mayor responsable del ambiente inmunosupresor

intratumoral [111]. De hecho, en un modelo de carcinoma mamario espontáneo, los ratones M-CSF-/-

presentan una progresión tumoral más lenta que los ratones normales [120]. La IL-10 presente en el

tumor induce en los TAM la adquisición de funciones asociadas a macrófagos M2 [121]. Por ello, los

TAM tienen reducida la capacidad de producir moléculas anti-tumorales (TNFα, IL-1, ROS, NO) y

citoquinas inflamatorias (IL-12, IL-1β, TNFα, IL-6) [122], y no presentan activación de NFκB [111].

La producción de mediadores inmunosupresores (prostaglandinas, IL-10 y TGFβ) permite a los

TAM inducir la diferenciación de células Treg, que suprimen la actividad de los linfocitos T efectores

y de otras células inflamatorias [111], favoreciendo por tanto el crecimiento tumoral [123, 124]. La

actividad angiogénica del tumor está asimismo favorecida por la acumulación de TAM en regiones

de hipoxia poco vascularizadas, a las que se adaptan por la activación de factores como HIF-1 y

HIF-2 [125]. Los TAM también promueven angiogénesis a través de la liberación de factores de

crecimiento (VEGF, FGF y HGF), metalo-proteasas (MMP-9) y el activador de plasminógeno (uPA),

todos los cuales contribuyen a degradar la matriz extracelular, facilitando por tanto la migración e

invasión de células tumorales [126] (Figura 7).

La expresión de marcadores típicos de macrófagos M2 de ratón como Arg1, Ym1, Fizz1 y Mgl2

se observa en TAM procedentes de fibrosarcoma y de linfoma T BW-Sp3, lo que corrobora el

fenotipo alternativo de estos macrófagos [127, 128]. Sin embargo, en ese mismo modelo se

observan también altos niveles de quimioquinas Th1 como CCL5, CXCL9 y CXCL10, lo que sugiere

la desviación de las características típicas de macrófagos M2 [127]. Aunque los TAM son

considerados macrófagos con fenotipo anti-inflamatorio por su secreción de citoquinas y la deficiente

activación de NFκB, también contribuyen a la angiogénesis y crecimiento tumoral mediante la

secreción de mediadores típicos de macrófagos M1 y reguladores de NFκB, como TNFα, IL-1β y

MMP-9. Por otro lado, en un estado tumoral avanzado, los TAM de ratón expresan constitutivamente

NOS2 y Arg1 que, implicados en el metabolismo de la arginina, producen liberación de NO y

aumento en la producción de ROS (O2- y H2O2) y RNS (ONOO-), deteniendo la proliferación y,

eventualmente, provocando la muerte de células T [116]. En consecuencia, los TAM son capaces de

expresar características pro-inflamatorias y supresoras, existiendo un equilibrio en su polarización

entre un fenotipo M1 y M2. Esta versatilidad en el fenotipo de los TAM es posiblemente debida al

cambio dinámico existente en el microambiente tumoral desde eventos tempranos hasta los estados

avanzados del tumor, y está regulada por mecanismos moleculares, como la modulación de la

actividad de NFκB o las vías de señalización activadas por hipoxia [129]. En los casos que la

22

Page 28: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

presencia de TAM se correlaciona con un buen pronóstico del tumor, el GM-CSF podría ser

responsable de la adquisición de un fenotipo citotóxico por los macrófagos intratumorales [130].

4.3 Estudios de expresión génica en diferenciación y activación de macrófagos

La identificación de genes diferencialmente expresados en distintas poblaciones de macrófagos

activados permite determinar su papel en la adquisición de un fenotipo de polarización concreto, y

su posible participación en determinados procesos celulares o fisiológicos [131-133]. En este

sentido, estudios realizados en macrófagos peritoneales tratados con IL-4 han permitido identificar

marcadores de activación alternativa de macrófagos en ratón, como Ym1 y Arg1 [134]. La expresión

diferencial de estos genes dependientes de IL-4 se ha corroborado en un modelo de infección con el

nematodo Brugia malayi [135]. La identificación de genes asociados a los diferentes estados de

polarización de macrófagos puede proporcionar nuevas dianas terapéuticas en patologías

inflamatorias y/o autoinmunes.

Respecto a los estudios realizados en macrófagos humanos polarizados en presencia de

citoquinas, Mantovani y colaboradores han determinado los cambios génicos inducidos en la

diferenciación de monocitos CD14+ en presencia de M-CSF, y las diferencias existentes entre

macrófagos polarizados por LPS e IFNγ o IL-4 [93]. Posteriormente, se han identificado genes cuya

expresión se modifica en monocitos expuestos a GM-CSF o GM-CSF e IL-4 [136], o a estímulos

“alternativos” como IL-13 [101] o IL-10 [137]. Por otro lado, Hamilton y colaboradores han analizado

macrófagos de ratón generados en presencia de GM-CSF (M1) o M-CSF (M2), y han evidenciado la

contribución de IFN de tipo I en las diferencias fenotípicas de ambas poblaciones [138]. Según estos

autores, la expresión diferencial de citoquinas y quimioquinas en respuesta a LPS se justifica porque

la señalización desde TLR4 se lleva a cabo de forma distinta en ambos tipos de macrófagos, por la

ruta MyD88-independiente (caso de los M2) o MyD88-dependiente (en los M1) [138].

Estos estudios de expresión génica han permitido identificar marcadores moleculares asociados

a respuestas inmunitarias frente a infecciones bacterianas [139, 140], patologías como la

enfermedad pulmonar obstructiva crónica (EPOC), y el desarrollo de tumores [141, 142]. Por otro

lado, estudios realizados sobre la interacción macrófago-patógeno han identificado estrategias de

defensa del hospedador y de evasión por parte del patógeno [143]. En consecuencia, todas estas

aproximaciones han hecho posible diseccionar la polarización de macrófagos frente a estímulos

patogénicos concretos, lo que ha permitido establecer que los procesos de activación/polarización

de macrófagos y de maduración de MDDC son específicos del estímulo que los provoca [140, 141,

144].

23

Page 29: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

5. El receptor de patógenos DC-SIGN

Las lectinas son proteínas que reconocen de manera específica carbohidratos presentes en

antígenos propios y patógenos [145]. En vertebrados, las lectinas se clasifican en diferentes

subgrupos, siendo los receptores lectina de tipo C (CLR) uno de los mejor estudiados. Los CLR se

caracterizan por tener al menos un dominio de reconocimiento de carbohidratos (CRD) a través del

cual unen carbohidratos de forma dependiente de Ca2+ [146]. Los CLR pueden ser proteínas

solubles o proteínas transmembrana, y se han definido siete sub-grupos en función de su homología

de secuencia, estructura y disposición del CRD respecto al resto de la molécula [147] (Tabla 2). Los

grupos I, III y VII engloban lectinas solubles, mientras que el resto de grupos corresponden a

lectinas de membrana, que a su vez pueden ser proteínas de tipo I, como el receptor de manosa

(MR), o de tipo II, como DC-SIGN [148].

Grupo Moléculas representativas Características

I Agrecano, versicano, neurocano Proteoglicanos, glicoproteínas de matriz extracelular

II Receptor de asialoglicoproteína, CD23, DC-SIGN, LSECtin Receptores de membrana tipo II

III Proteína de unión a manosa, SP-A, SP-D Colectinas. Oligómeros asociados por un dominio tipo colágeno. Extracelulares y solubles

IV Selectinas L, P y E Glicoproteínas de membrana de tipo I, implicadas en adhesión leucocitaria

V NKG2, LY49, CD69 Antígenos linfocitarios de tipo II

VI Receptor de manosa, DEC-205 Receptores de membrana de tipo I con varios CRD extracelulares

VII Proteína asociada a pancreatitis/hepatoma Extracelulares y solubles

Tabla 2.- Clasificación de las lectinas de tipo C.

DC-SIGN (“Dendritic cell-specific ICAM-3 grabbing nonintegrin”, CD209, CLEC4L) fue descrito

en 1992 por Curtis y colaboradores como una lectina de tipo C que reconoce la proteína gp120 de la

envuelta del HIV-1 [149]. Posteriormente se caracterizó como un receptor presente en MDDC que

participa en la interacción DC-célula T mediante el reconocimiento de la molécula de adhesión

intracelular ICAM-3 [150]. En la actualidad y, como se ha mencionado anteriormente, DC-SIGN

constituye un marcador de macrófagos anti-inflamatorios M2 y AAMØ [56, 151].

24

Page 30: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

5.1 Expresión y localización tisular

Aunque descrita como específica de células dendríticas, DC-SIGN no sólo se expresa in vivo en

DC de tejidos periféricos y linfoides [152], sino que también se expresa en poblaciones CD14+ de

sangre periférica [153] y en determinadas subpoblaciones de macrófagos presentes en sinusoides

medulares de nódulos linfáticos [151], intestino [154], pulmón [152], placenta [152, 155, 156] y

macrófagos sinoviales [157]. La expresión de DC-SIGN se induce in vitro por IL-4 en monocitos [92,

150], en macrófagos [91, 158] y en la línea celular mieloide THP-1 [91], y sus niveles de expresión

son controlados por el factor de transcripción PU.1 [159]. Estudios de localización subcelular han

situado a DC-SIGN en “lipid rafts”, microdominios de membrana ricos en colesterol y esfingolípidos,

lo que puede favorecer a su capacidad de unión e internalización de partículas víricas, así como a

su capacidad señalizadora tras el reconocimiento de ligandos [160, 161].

5.2 Estructura y dominios funcionales

Estructuralmente, DC-SIGN es una proteína transmembrana tipo II de 404 aminoácidos, cuya

región extracelular incluye un CRD, un cuello o “stalk” que le separa de la zona transmembrana, y

con una corta región citoplásmica de 42 aminoácidos [162] (Figura 8).

DOMINIO FUNCIÓN ESTRUCTURAL

Figura 8.- Estructura y función de los dominios de DC-SIGN. Ct, extremo carboxilo-terminal; Nt, extremo amino-terminal; NLT, motivo de glicosilación; EEE, dominio triacídico; LL, motivo dileucina; Y, tirosina del motivo YKSL.

YLL

EEE

Y

LL EEE

Y

LL EEE

Nt

NLTNLT

NLT

Ct

Dominio Interacción lectina con ligandos

Cuello Multimerización(dominios

repetidos)

Internalización,Dominio tráfico y citoplásmico señalización

25

Page 31: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

El CRD de DC-SIGN es una estructura globular que consta de 12 cadenas β, 2 hélices α y 3

puentes disulfuro, además de 2 sitios de unión a Ca2+ [162] . Uno de esos sitios es esencial para la

conformación del CRD, mientras que el otro participa en la interacción con los ligandos

carbohidratados y determina su especificidad. La secuencia de aminoácidos de este segundo sitio

contiene un motivo EPN que confiere a DC-SIGN especificidad por manosa. El cuello de DC-SIGN

está compuesto por 8 dominios repetidos de 23 aminoácidos ricos en leucinas, el primero de los

cuales contiene un motivo de glicosilación (NLT) (Figura 8) [163]. Esta región es fundamental para

la formación de estructuras multiméricas, más concretamente tetrámeros, lo que incrementa

considerablemente la avidez de interacción de DC-SIGN por sus ligandos [164-166]. La región

transmembrana comprende desde Leu43 a Ser61 [163]. La zona amino-terminal constituye la cola

citoplásmica, que posee un motivo dileucina (LL) que promueve la rápida internalización de DC-

SIGN tras interaccionar con ligandos solubles, un motivo triacídico (EEE), que determina que los

complejos DC-SIGN-ligando sean dirigidos a compartimentos lisosomales [163, 167], y un motivo

basado en tirosina (ITIM-like), que capacita a esta lectina para transmitir señales intracelulares [161]

(Figura 8).

5.3 Estructura génica, isoformas y polimorfismos

El gen de DC-SIGN mapea en la región p13 del cromosoma 19, y consta de 7 exones [168]

(Figura 9). Los exones 1a y 1c codifican la cola citoplásmica, el exón 3 codifica la región del cuello,

y los exones 4, 5 y 6 codifican el CRD [163]. En ratón no existe un gen ortólogo de DC-SIGN

humano, aunque existen moléculas homólogas dentro de la familia SIGN: mDC-SIGN (murine DC-

SIGN) o SIGNR5, SIGNR1 (SIGN related), SIGNR2, SIGNR3, SIGNR4, el pseudogen SIGNR6,

SIGNR7 y SIGNR8 [169, 170].

El gen de DC-SIGN está sometido a un complejo sistema de “splicing” alternativo, que origina

un gran número de transcritos con estructuras diferentes de la prototípica [168]. Entre estas

variantes se incluyen isoformas con una cola citoplásmica alternativa, isoformas sin región

transmembrana e isoformas con CRD incompletos, así como una gran variedad de transcritos con

un número variable de repeticiones en la región del cuello. El patrón de isoformas y los niveles de

expresión de cada una de ellas es variable, tanto en individuos de una población como en los

distintos estadios de diferenciación de un mismo tipo celular [168].

26

Page 32: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

Figura 9.- Estructura génica de DC-SIGN. En el esquema se representan los exones que codifican para cada una de las regiones que forman DC-SIGN (números romanos) y su tamaño (números arábigos), así como la localización y tamaño de los intrones (números romanos y arábigos en gris).

La variabilidad estructural del gen de DC-SIGN a nivel poblacional puede tener importantes

repercusiones patológicas, ya que se han descrito polimorfismos en la región codificante y

reguladora que se asocian con susceptibilidad alterada a infecciones como tuberculosis o HIV-1

[171, 172]. Existen discrepancias entre el posible papel protector de las variantes génicas de DC-

SIGN, que pueden ser debidas a las diferentes poblaciones estudiadas, e incluso a la existencia de

otros polimorfismos. La mayoría de estos estudios se han centrado en un cambio en el nucleótido

-336 (variante G o A) en la región promotora de esta lectina, que afecta al sitio de unión del factor de

transcripción Sp1 [173]. Martin y colaboradores asocian la presencia de la variante DC-SIGN-336G

con una mayor susceptibilidad a la infección por HIV-1 por vía parenteral pero no por vía mucosa

[174], mientras que otros autores encuentra asociación únicamente entre la variante DC-SIGN-139C

y una progresión acelerada del SIDA en individuos hemofílicos japoneses infectados por HIV-1

[175].

Respecto a la infección por M. tuberculosis, las variantes DC-SIGN-336A y -871G se asocian a

una protección frente a la infección en una población en el sur de África [176], mientras que en la

población sub-Sahariana el alelo -336G está asociado a una mayor protección [177]. Sin embargo,

otros trabajos posteriores en pacientes colombianos [178], tunecinos [179] y africanos [180], no han

observado asociación entre los polimorfismos en la posición DC-SIGN-336 y la susceptibilidad a

tuberculosis. Recientemente se ha analizado la frecuencia de la variante DC-SIGN-336G en

individuos de India infectados con HIV-1 y/o tuberculosis. Al ser menos frecuente en individuos

infectados por HIV-1, se especula que la presencia de esta variante protege frente a la infección por

HIV-1 y, sin embargo, aumenta la susceptibilidad a tuberculosis [181].

La presencia de polimorfismos en la región promotora de DC-SIGN también se ha asociado con

susceptibilidad alterada frente a otras infecciones y patologías. De hecho, la variante DC-SIGN-

336G está asociada con mayor protección frente a la fiebre del Dengue, pero no frente a la fiebre

hemorrágica del Dengue en individuos de Tailandia [182]. Por otro lado, no se ha encontrado

+ 46 206 981 1052 1994 2420 2571 3293 3405 4272 1425 4470 (425) (774) (100) (372) (721) (866)

Ia Ic II III IV V VIIb I II III IV V

1 2 3 4 5 6 7 8

27

Page 33: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

asociación entre la variante DC-SIGN-336A/G y la susceptibilidad a la enfermedad celiaca, aunque

la variante DC-SIGN-336G sí está asociada a dicha enfermedad dentro del grupo de pacientes HLA-

DQ2(-) [183]. La enorme variabilidad en el gen de DC-SIGN se puso de manifiesto en un estudio que

analizó la presencia de variantes en las posiciones -336, -332, -201 y -139 en cuatro grupos étnicos

de Brasil, y su posible correlación con la infección por HTLV-1 [184]. Según este estudio, las

variantes -336A y -139A son más comunes en individuos asiáticos, y la variante -201T no se

observa en caucásicos, asiáticos ni amerindios. Por otro lado, la variante -336A es más frecuente en

pacientes infectados por HTLV-1 y el alelo -139A está asociado con la protección frente a la

infección por este virus.

De todos estos estudios se concluye que DC-SIGN puede contribuir a la

susceptibilidad/transmisibilidad de las infecciones provocadas por numerosos patógenos. Además

de estas variantes en la región reguladora, existen polimorfismos en la región codificante que se

localizan principalmente en el exón 3 que codifica el cuello de DC-SIGN. De ellos y de las

discrepancias sobre su posible asociación con susceptibilidad a infecciones en diferentes grupos

étnicos, se profundizará en el apartado de “Discusión”.

5.4 Función y señalización

DC-SIGN es, probablemente, la lectina con el mayor rango de ligandos descrito, siendo capaz

de actuar como receptor de adhesión celular y de reconocer estructuras de carbohidratos presentes

en antígenos propios y en patógenos (Tabla 3). DC-SIGN presenta una alta afinidad por

carbohidratos con dimanosas terminales y estructuras internas de manosas ramificadas

(manotriosas α1→3, α1→6) [185, 186], y por carbohidratos que contienen fucosa, en concreto por

los trisacáridos que constituyen los antígenos de los grupos sanguíneos de Lewis (Lex, Ley, Lea, Leb)

[187-189].

Como receptor de patógenos, DC-SIGN interacciona con sus PAMP y el complejo DC-SIGN-

patógeno se internaliza, promoviendo el procesamiento y la posterior presentación de antígenos a

los linfocitos T, para acabar induciendo respuestas inmunitarias frente a dichos microorganismos

[167, 190]. Dentro del amplio rango de patógenos reconocidos por DC-SIGN [191], se encuentran

bacterias [192-194], hongos [195, 196], parásitos [197] y virus [149, 198, 199]. Recientemente

incluso se ha descrito la interacción de DC-SIGN con alérgenos comunes [200] (Tabla 3).

28

Page 34: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

Patógeno Ligando de DC-SIGN

Virus HIV-1 gp120 CMV gB

Ébola GP de la envuelta

Margburg GP de la envuelta

Dengue gE

HCV gE1/gE2

SARS proteína S

Herpesvirus humano ?

H5N1 (cepa del virus de la gripe aviar) ?

Bacterias cepas patogénicas de Mycobacterium ManLAM Helicobacter pilori LPS

Klebsiella pneumonia LPS

Neisseria meningitidis LPS

Neisseria gonorrhoeae LPS

Lactobacillus acidophilus NCFM SlpA

Parásitos Leishmania LPG? Schistosoma mansoni SEA

Hongos Candida albicans ? Aspergillus fumigatus Galactomanano

Tabla 3.- Patógenos y ligandos que se unen a DC-SIGN. HIV: virus de la inmunodeficiencia humana; CMV: citomegalovirus; HCV: virus de la hepatitis C; SARS: síndrome respiratorio agudo severo; gB, gE, gE1, gE2: glicoproteínas B, E, E1, E2; GP: glicoproteína; LPG: lipofosfoglicano; LPS: lipopolisacárido; ManLAM: lipoarabinomanano recubierto de manosas; SEA: antígeno soluble de los huevos; SlpA: proteína A de la capa superficial; Lex: Lewisx; Ley: Lewisy.

Por su capacidad de reconocer ligandos endógenos, DC-SIGN también puede mediar procesos

de adhesión intercelular (Figura 10). Así, DC-SIGN podría intervenir en la migración transendotelial

de DC gracias a la interacción con ICAM-2 presente en células endoteliales [153]. La unión de DC a

neutrófilos tiene lugar a través del reconocimiento por DC-SIGN de los carbohidratos ricos en Lex de

la integrina Mac-1 (CD11b/CD18) [201, 202] y de CEACAM-1 [202-204]. DC-SIGN también reconoce

el antígeno carcinoembrionario (CEA) de células de cáncer colorrectal, caracterizado por una mayor

presencia de Lex y Ley [191]. Otro de los ligandos endógenos propuestos para DC-SIGN es ICAM-3.

Aunque en un principio se propuso que la adhesión inicial entre DC y linfocitos T vírgenes estaba

mediada por la interacción DC-SIGN/ICAM-3 [150], esta hipótesis no ha podido ser corroborada por

otros autores [151, 205, 206].

29

Page 35: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Introducción

30

Célula endotelial

ICAM-2

ICAM-3

CE

Figura 10.- Ligandos endógenos de DC-SIGN. Representación esquemática de las interacciones de DC-SIGN con sus ligandos endógenos: ICAM-2 de células endoteliales, ICAM-3 de células T, CEA de células tumorales, y las moléculas CEACAM-1 y Mac-1 en neutrófilos.

Como se ha comentado anteriormente, DC-SIGN es capaz de transmitir señales intracelulares

específicas tras su interacción con carbohidratos presentes en patógenos, señales que a su vez se

interrelacionan con las señales procedentes de TLR [160]. En función de la naturaleza del

carbohidrato reconocido por DC-SIGN, las MDDC secretan un patrón diferente de citoquinas [207].

Así, la unión de patógenos que expresan manosas en su superficie, como M. tuberculosis o HIV-1,

conduce a un aumento en la producción de IL-10, IL12 e IL-6 de forma dependiente de Raf-1 [207].

Sin embargo, la unión de ligandos que contienen fucosa, como Ley de H. pilori, disminuye la

secreción de IL-12 e IL-6 de manera dependiente de Raf-1 mientras que se incrementa la

producción de IL-10 de forma independiente de Raf-1. El mecanismo molecular responsable del

aumento en la producción de IL-10 de forma Raf-1-dependiente implica la posterior acetilación de

p65 de NFκB, que conlleva a un incremento en la actividad transcripcional de IL-10 [208]. Por otro

lado, la activación de ERK en la ruta de señalización de DC-SIGN parece ser dependiente del

ligando involucrado. Así, la activación de DC-SIGN con anticuerpos específicos frente al CRD, la

unión de gp120 de HIV-1, o la unión del alergeno Ara h1, induce fosforilación de ERK1/2 [160, 209,

210]. Sin embargo, otros estudios han demostrado que la unión de ligandos patogénicos a DC-

SIGN, como ManLAM de M. tuberculosis o la proteína Salp15 de Ixodes scapularis, no provoca

activación de ERK [208, 211]. En consecuencia, DC-SIGN es considerado un modulador de la

respuesta inmune al ser capaz de alterar el balance Th1/Th2 y de modificar las señales procedentes

de otros PRR como TLR4 [212].

A

Célula tumoral

Célula T

Mac-1

CEACAM-1

Neutrófilo

Page 36: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Objetivos

Page 37: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Objetivos

El objetivo general de esta Tesis Doctoral consistió en la identificación y caracterización de marcadores de macrófagos activados con un fenotipo anti-inflamatorio/alternativo, y en

concreto el estudio de dos esos marcadores, el receptor de folato β (FRβ) y DC-SIGN:

1. Análisis de la expresión del FRβ en macrófagos anti-inflamatorios M2 y macrófagos

asociados a tumores.

2. Búsqueda de factores que regulan la expresión y función del FRβ en macrófagos M2.

3. Caracterización estructural y funcional de isoformas y polimorfismos de DC-SIGN en células

dendríticas derivadas de monocitos.

4. Identificación de epítopos estructurales y funcionales en la molécula de DC-SIGN mediante el

empleo de anticuerpos monoclonales.

33

Page 38: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Resultados

Page 39: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Resultados

Esta Tesis Doctoral se presenta en formato de artículos publicados. La sección de resultados incluye los artículos que dan respuesta a los objetivos planteados:

1. Los resultados del análisis de la expresión del FRβ en macrófagos anti-inflamatorios y

macrófagos asociados a tumores se presentan en el siguiente artículo:

Sierra-Filardi E, et al. Folate receptor beta is expressed by tumor-associated macrophages and constitutes a marker for M2 anti-inflammatory/regulatory macrophages. Cancer Res,

2009 Dec 15;69(24):9395-403.

2. Los resultados obtenidos de la búsqueda de factores que regulan la expresión y función del

FRβ en macrófagos M2 se recogen en el siguiente artículo:

Sierra-Filardi E, et al. Activin prevents the acquisition of M2/anti-inflammatory markers and skews the macrophage cytokine profile. Manuscrito en preparación.

3. Los resultados generados tras la caracterización de isoformas y polimorfismos de DC-SIGN

se publicaron en el artículo:

Sierra-Filardi E, et al. Structural requirements for multimerization of the pathogen receptor DC-SIGN (CD209) on the cell surface. J Biol Chem, 2008 Feb 15;283(7):3889-903.

4. Los resultados obtenidos tras el análisis estructural de la molécula de DC-SIGN se recogen

en el siguiente artículo:

Sierra-Filardi E, et al. Epitope mapping on the dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN) pathogen-attachment factor. Mol Immunol, 2010 Jan;47(4):840-848.

37

Page 40: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Resultados

1. El receptor de folato β se expresa en macrófagos asociados a tumores y

constituye un marcador de macrófagos anti-inflamatorios/reguladores M2

La activación de macrófagos comprende un amplio espectro de estados funcionales

dependientes del microambiente de citoquinas. Los macrófagos activados se han agrupado

funcionalmente según su respuesta a estímulos pro-Th1/pro-inflamatorios (LPS, IFNγ, GM-CSF) (M1)

o pro-Th2/anti-inflamatorios (IL-4, IL-10, M-CSF) (M2). En el presente manuscrito demostramos que

el receptor de folato β (FRβ), codificado por el gene FOLR2, es un marcador de macrófagos

generados en presencia de M-CSF (M2), pero no de GM-CSF (M1), y que su expresión se

correlaciona con un aumento de la captación de folato. La capacidad de captar folato por los

macrófagos es promovida por M-CSF, mantenida por IL-4, prevenida por GM-CSF y reducida por

IFNγ, lo que indica una relación entre la expresión del FRβ y la polarización M2. De acuerdo con los

datos in vitro, la expresión del FRβ se detecta en macrófagos asociados a tumores (TAM), que

exhiben un perfil funcional de tipo M2 y ejercen potentes funciones inmunosupresoras dentro del

ambiente tumoral. El FRβ se expresa y media la captación de folato por TAM CD163+ CD14+ IL-10+,

y su expresión es inducida de una manera dependiente de M-CSF por líquido ascítico tumoral y por

el medio condicionado de fibroblastos y líneas tumorales. Estos resultados definen al FRβ como un

marcador de la polarización M2 de macrófagos, e indican que los conjugados de folato con drogas

terapéuticas son una potente herramienta en inmunoterapia frente a los TAM.

39

Page 41: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Immunology

Folate Receptor β Is Expressed by Tumor-Associated Macrophagesand Constitutes a Marker for M2 Anti-inflammatory/Regulatory Macrophages

Amaya Puig-Kröger,1,2 Elena Sierra-Filardi,1 Angeles Domínguez-Soto,1 Rafael Samaniego,3

María Teresa Corcuera,4 Fernando Gómez-Aguado,4 Manohar Ratnam,5

Paloma Sánchez-Mateos,2 and Angel L. Corbí1

d,

1Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas; 2Unidad de Inmuno-Oncología and 3Unidad deMicroscopía Confocal, Hospital General Universitario Gregorio Marañón; 4Servicio de Anatomía Patológica, Hospital Carlos III, MadriSpain; and 5University of Toledo College of Medicine, Toledo, Ohio

alt.dyei-].2ennF,yr-ish-is+

r-tse-fo

ne--tn,s

ss-

s--

-y

-

,-t-a

r-

-s--+

s

s-e-

AbstractMacrophage activation comprises a continuum of functionstates critically determined by cytokine microenvironmenActivated macrophages have been functionally groupeaccording to their response to pro-Th1/proinflammatorstimuli [lipopolysaccharide, IFNγ, granulocyte macrophagcolony-stimulating factor (GM-CSF); M1] or pro-Th2/antinflammatory stimuli [interleukin (IL)-4, IL-10, M-CSF; M2We report that folate receptor β (FRβ), encoded by the FOLRgene, is a marker for macrophages generated in the presencof M-CSF (M2), but not GM-CSF (M1), and whose expressiocorrelates with increased folate uptake ability. The acquisitioof folate uptake ability by macrophages is promoted by M-CSmaintained by IL-4, prevented by GM-CSF, and reduced bIFNγ, indicating a link between FRβ expression and M2 polaization. In agreement with in vitro data, FRβ expressiondetected in tumor-associated macrophages (TAM), whicexhibit an M2-like functional profile and exert potent immunosuppressive functions within the tumor environment. FRβexpressed, and mediates folate uptake, by CD163+ CD68+ CD14IL-10–producing TAM, and its expression is induced by tumoderived ascitic fluid and conditioned medium from fibroblasand tumor cell lines in an M-CSF–dependent manner. Thesresults establish FRβ as a marker for M2 regulatory macrophage polarization and indicate that folate conjugates otherapeutic drugs are a potential immunotherapy tool ttarget TAM. [Cancer Res 2009;69(24):9395–403]

IntroductionMacrophages exhibit a continuum of functional activatio

states under homeostatic and pathologic conditions (1, 2). Dpending on the stimulus, activated macrophages acquire microbicidal, pro-inflammatory, and antitumor activities, but mighalso contribute to tissue repair, resolution of inflammatioand tumor cell growth and metastasis (1). These two extreme

-s

s.

Note: Supplementary data for this article are available at Cancer Research Online(http://cancerres.aacrjournals.org/).

A. Puig-Kröger and E. Sierra-Filardi are co-first authors. P. Sánchez-Mateos andA.L. Corbí contributed equally to this work. The order of authors should be consideredarbitrary.

Requests for reprints: Amaya Puig-Kröger, Laboratorio de Inmuno-Oncología,Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007Madrid, Spain. Phone: 34-91-5868750; Fax: 34-91-5868052; E-mail: [email protected].

©2009 American Association for Cancer Research.doi:10.1158/0008-5472.CAN-09-2050

93www.aacrjournals.org

of the spectrum of macrophage activation have been coined a“classic”/M1 and “alternative”/M2 (3) and play opposing roleduring immune and inflammatory responses. Although granulocyte macrophage colony-stimulating factor (GM-CSF) and M-CSFcontribute to macrophage differentiation, each cytokine promotethe acquisition of distinct pathogen susceptibility (4) and inflammatory functions (5–8). GM-CSF–derived macrophages (M1) are proinflammatory and potentiate Th1 responses, whereas M-CSF–drivenmacrophages (M2) secrete IL-10 in response to pathogens and donot activate Th1 responses (8).Tumor-associated macrophages (TAM) are abundant immuno

suppressive cells recruited into the tumor microenvironment bcytokines such as M-CSF and CCL2 (9). The relevance of M-CSFand TAM in tumor progression and metastasis is now well established (10, 11). TAM represent a unique type of M2-polarizedmacrophages, as they promote angiogenesis, tissue remodelingand repair (2, 12). In fact, clinical studies have revealed a correlation between high tumor macrophage content and poor patienprognosis. Because TAM are potential targets for anticancer therapy (13, 14), identification of TAM-specific markers constitutesvery active area of research.The folate receptor gene family includes four members (FRα o

FOLR1, FRβ or FOLR2, FRγ or FOLR3, and FRδ or FOLR4), whose encoded products bind folic acid with high affinity (15). FOLR1 andFOLR2 encode glycosyl phosphatidylinositol–anchored endocytic receptors expressed in certain epithelial tissues and various tumor(FOLR1; refs. 16, 17) or in normal myeloid cells and acute myelogenous leukemias (FOLR2; refs. 18–20). Within the myeloid lineage, folate receptor β (FRβ) is expressed in a nonfunctional state in CD34bone marrow cells (21, 22) and neutrophils (18), whereas it mediatefolate binding in activated synovial macrophages from rheumatoidarthritis (23) and in ovarian cancer–associated murine macrophage(24). The high affinity of FRα and FRβ for folate binding, their endocytic capacity, and their restricted expression have prompted thevaluation of the potential therapeutic value of folate-drug conjugates in cancer and inflammatory pathologies (25, 26).In the present article, we describe that functional FRβ is specif

ically expressed by M-CSF–polarized (M2) macrophages as well aby ex vivo isolated TAM, and that tumors induce its expression in anM-CSF–dependent manner, thus supporting folate-drug conjugateas valuable tools to target TAM in tumor immunotherapy protocols

-).

Materials and MethodsCell culture and treatments. Human monocytes were purified by mag

netic cell sorting using CD14microbeads (Miltenyi Biotech) as described (27

95 Cancer Res 2009; 69: (24). December 15, 2009

41

Page 42: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

MGMreor(AteliptuDMes

micaMTAneouandoTAtibmagrambo

ntred aWeudeantntroed (PCNAedurd GATG1); MGG

ACCR1sAC

EA3-GGCGr Mfor

tiveLRcheg th

Fiinbyof(filuptypmadocoar

Cancer Research

Ca

1 or M2 monocyte-derived macrophages were generated in the presence of-CSF (1,000 units/mL, ImmunoTools GmbH) or M-CSF (10 ng/mL),

spectively. When indicated, macrophages were treated for 72 h with IL-6IL-10 (50 ng/mL), and anti-M-CSF blocking monoclonal antibodybingdon) was used at 0.5 μg/mL. For activation, macrophages were trea-d with IL-4 (1,000 units/mL), IL-10 (50 ng/mL), IFNγ (500 units/mL), oropolysaccharide (LPS; 50 ng/mL; E. coli 055:B5, Sigma) for 48 h. Humanmor cell lines (JAR, JEG-3, NIH-OVCAR-3, and Colo320) were cultured inEM containing 10% FCS. Cultures of tumor-associated fibroblasts were

tablished from primary melanoma according to standard procedures.Human TAM were obtained from melanoma and breast adenocarcino-a patients after obtaining written informed consent and following Med-l Ethics committee procedures (Hospital General Universitario Gregorioarañón). Histopathologic diagnosis was confirmed for each specimen.M were isolated by Ficoll gradient cell separation and subsequent mag-tic cell sorting using CD14 microbeads. Phenotypic analysis was carriedt by indirect immunofluorescence (28) using rabbit polyclonal antiserati-human FRβ (18). Folate-FITC binding and endocytosis assays werene as reported (26). Flow cytometry on permeabilized ex vivo isolatedM was done using phycoerythrin (PE)-labeled anti-CD68 monoclonal an-ody (clone Y1/82A, Biolegend), Alexa Fluor 647–labeled anti-CD163onoclonal antibody (clone RM3/1, Biolegend), and a polyclonal antiserumainst human FRβ followed by incubation with FITC-labeled goat anti-bbit affinity-purified antibody. The presence of Tie2-positive FRβ-positiveacrophages was evaluated using a PE-labeled anti-Tie2 monoclonal anti-dy (clone 33.1, Biolegend). Isotype-matched monoclonal antibodies (PE-

Cous

cralcous

(RceanG(2GAGESCAG5′CAfobptaFORoin

9396ncer Res 2009; 69: (24). December 15, 2009

42

ol, Alexa 647-Control) and a preimmune rabbit antiserum (29) weres negative controls.stern blot. Western blot was carried out with 10 μg of lysates fromplasma membranes (30). Protein detection was done with a polyclon-isera against FRβ (18) or a monoclonal antibody against CD29. Forl purposes, a previously described rabbit pre-immune antiserum was29).R. Total RNA from solid tumor tissue and TAM was extractedasy kit, Qiagen), retrotranscribed, and amplified using standard pro-es. Oligonucleotides specific for FOLR2, MAFB, IL10, ESR1, MAGEA3,APDH were as follows: FRBs, 5′-AGAAAGACATGGTCTGGAAATG--3′, and FRBas, 5′-GACTGAACTCAGCCAAGGAGCCAGAGTT-3′af-Bs, 5′-CCCGGCTGGCCCGCGAGAGAC-3′, and Maf-Bas, 5′-CTAG-CGGCGCTGGCGT-3′ (31); IL10s, 5′-ATGCCCCAAGCTGAGAACCAA-CA-3, and IL10as, 5-TCTCAAGGGGCTGGGTCAGCTATCCCA-3;, 5′-TCAGATAATCGACGCCAGG-3′, and ESR1as, 5′-GGCTCAGCATC-AAGG-3′; MAGEA3s, 5′-GAAGCCGGCCCAGGCTCG-3′, and MA-as, 5 ′-GGAGTCCTCATAGGATTGGCTCC-3 ′ ; and GAPDHs,CTGAGAACGGGAAGCTTGTCA-3′, and GAPDHas, 5′-CGGCCAT-CCACAGTTTC-3′. Amplified fragments (783 bp for FOLR2, 347 bpAFB, 352 bp for IL10, 511 bp for ESR1, 457 bp for GAPDH, and 423MAGEA3) were resolved by agarose gel electrophoresis. For quanti-reverse transcription-PCR (RT-PCR), oligonucleotides for FOLR1,

2, FOLR3, JDP2, NRAMP1, and IL10 were designed according to thesoftware for quantitative real-time PCR, and RNA was amplified us-e Universal Human Probe Roche library (Roche Diagnostics). Assays

gure 1. FOLR2 mRNA and FRβ protein expression and function in M1 and M2 macrophages. A, FOLR2, JDP2, SLC11A1, and IL10 are differentially expressedM1 and M2 macrophages, as determined by microarray DNA analysis and quantitative RT-PCR. B, right, FRβ expression in cell membrane extracts, as determinedWestern blot using an antihuman FRβ polyclonal antiserum (18). As a control, CD29 expression levels were determined in parallel. Left, cell surface expressionFRβ on M1 and M2 macrophages, determined by flow cytometry using a polyclonal antiserum against human FRβ (ref. 18; empty histogram). As a controlled histogram), a previously described rabbit preimmune antiserum (29) was used. C, FRβ function in M1 and M2 macrophages, as shown by binding (4°C) andtake (37°C) of folate-FITC (empty histogram, black line). Transferrin-FITC internalization (empty histogram, gray line) was determined in parallel on both macrophagees. Each experiment was done three times, and a representative experiment is shown. D, binding (4°C) and internalization (37°C) of folate-FITC by M2crophages, in the absence (empty histograms, black line) or the presence (empty histograms, gray line) of a 100 mol/L excess of folic acid. The experiment wasne four times, and one of the experiments is shown. Representative confocal sections of M2 macrophages incubated with folate FITC for 1 h at 37°C, and theirrresponding differential interference contrast images, are shown. The percentage of marker-positive cells and the mean fluorescence intensity (in parentheses)e indicated in flow cytometry experiments (B–D), and filled histograms indicate cell autofluorescence (C and D).

www.aacrjournals.org

Page 43: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

s-T

o-regenβdl-dalaa-reo-

einn-ldhesro-1x-).v-–nestd

were made in triplicates and results normalized according to the expresion levels of 18S RNA and GAPDH. Results were obtained using the ΔΔCmethod for quantitation and expressed as normalized fold expression.

Confocal microscopy and immunohistochemistry. Human melanma tissues (subcutaneous tissue, lymph node, and lung metastasis) weobtained from patients with primary and metastatic lesions undergoinsurgical treatment. Thick sections (4 μm in depth) of cryopreserved tissuwere first blocked for 10 min with 1% human immunoglobulins and theincubated for 1 h with a rabbit polyclonal antiserum against human FR(18), anti-CD163 or HMB-45 monoclonal antibodies, or isotype-matchecontrol antibodies. All primary antibodies were used at 1 to 5 μg/mL, folowed by incubation with FITC-labeled antimouse and Texas red–labeleantirabbit secondary antibodies. Samples were imaged using a confocscanning inverted AOBS/SP2 microscope (Leica Microsystems) with63× PL-APO NA 1.3 immersion objective. Image processing and colocaliztion analyses (scatter plots) were assessed with the Leica Confocal SoftwaLCS-15.37. Tissue microarrays (TMAH-MTC-01, RayBiotech) were prcessed according to the manufacturer's recommendations.

ResultsFRβ is expressed in macrophages generated in the presenc

of M-CSF. Gene expression profiling on macrophages generatedthe presence of GM-CSF (M1) or M-CSF (M2) resulted in the idetification of more than 250 differentially expressed genes (>2-fodifferences, P < 0.05; data not shown). Among them, FOLR2, whiccodes for FRβ, was preferentially expressed in M2 macrophag(P = 1.3 × 10−7; Fig. 1A). The JDP2 gene, which encodes an activatoprotein-1 repressor, also showed higher expression in M2 macrphages (P = 0.02), whereas SLC11A1, which encodes the NRAMPprotein associated with classic macrophage activation, was epressed at higher levels in M1 macrophages (P = 0.029; Fig. 1AInterestingly, and in agreement with their anti-inflammatory actiity, the expression of IL10 was considerably higher in M-CSFprimed macrophages (P = 1.2 × 10−4). The differential expressioof FOLR2, JDP2, SLC11A1, and IL10 in both types of macrophagwas confirmed by real-time RT-PCR on mRNA from independendonors (Fig. 1A). Besides, FRβ expression was exclusively detecte

n

8Sns;

ted

.

nlow

.

93www.aacrjournals.org

in membrane lysates and on the cell surface of M2 macrophages(Fig. 1B), thus validating the transcriptome data.Because FRβ binds folic acid and folate conjugates (32), the abil-

ity of FRβ to mediate folate-FITC uptake by M2 macrophages wasassessed. Whereas both macrophage types endocytosed transferrin-FITC, M-CSF–polarized macrophages displayed folate binding andinternalization ability, and GM-CSF–induced macrophages showedno folate uptake capacity, in agreement with their lack of FRβ ex-pression (Fig. 1C). Folate binding and uptake by M-CSF macro-phages were specific, as both were inhibited by a 100 mol/Lexcess of folic acid (Fig. 1D). Moreover, folate conjugates enteredcells by endocytosis because most of the folate-FITC fluorescencecould not be stripped from the cell surface by an acid wash step(Supplementary Fig. S1). Considering that neither FOLR1 norFOLR3 was expressed by M-CSF macrophages (SupplementaryFig. S2), FOLR2-encoded FRβ protein must be responsible forthe folate binding ability of M2 macrophages. Kinetic studies re-vealed that FOLR2 mRNA and FRβ protein are initially detected 48to 72 hours after M-CSF addition, and that their levels dramatical-ly increase at later incubation times (Fig. 2A and B). Acquisition offolate uptake ability correlated with protein expression at all timepoints and showed its highest level at the end of the culture period(Fig. 2C). Therefore, M-CSF promotes the expression of a func-tional FRβ protein, which constitutes a marker of M-CSF–polarizedM2 macrophages.Expression of FRβ in TAM. TAM are an M2-skewed macro-

phage population that exhibits immunosuppressive activity withinthe tumor microenvironment, and whose recruitment and differ-entiation is influenced by M-CSF (9). Given the preferential expres-sion of FRβ in M-CSF–polarized M2 macrophages, its presencewas evaluated in TAM. Immunohistochemistry revealed that FRβis frequently coexpressed with CD163 in TAM from primary andmetastatic melanoma (Figs. 3A and 4A) but is absent from mela-noma HMB-45+ cells (Figs. 3A and 4A). In fact, FOLR2 mRNA couldbe detected in three melanoma samples (Fig. 3B). Ex vivo isolatedCD14+ TAM from the pleural fluid of a metastatic melanoma

Folate Receptor β Is an M2 Macrophage Marker

Figure 2. Acquisition of FRβ expressioon monocyte treatment with M-CSF.A, FOLR2 mRNA expression levelsalong M-CSF–induced polarization ofmacrophages, as determined byquantitative RT-PCR. Columns, meannormalized fold expression (relative to 1rRNA levels) from triplicate determinatiobars, SD. B, FRβ expression along M1and M2 macrophage polarization, asdetermined by Western blot at the indicatime points. As a control, CD29expression levels were also determinedC, internalization of folate-FITC duringM-CSF–induced macrophage polarizatio(empty histograms), as determined by fcytometry at the indicated time points.Filled histograms, cell autofluorescenceThe percentage of marker-positive cellsand the mean fluorescence intensity(in parentheses) are indicated in eachcase.

97 Cancer Res 2009; 69: (24). December 15, 2009

43

Page 44: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

exMspvTaFCthhn(3fuC

thaenstCFb

ndreaRNlatponRNAMRβarkPahagtebrogacrhisf mM-ytokRNtedytoxpr

Ftismmco4′tisnedeneisin

Cancer Research

C

pressed mRNA for FOLR2, IL10, and the macrophage-specificAFB (31), whereas they lacked expression of the melanoma-ecific marker MAGEA3 mRNA (Fig. 3B, lanes 4) and were de-oid of FOLR1 and FOLR3 mRNA (Supplementary Fig. S3).hree-color analysis on isolated melanoma TAM indicated thatll FRβ+ macrophages are CD68+, and that the percentage ofRβ+ CD163+ macrophages (87%) is similar to that of CD163+

D68+ cells (88%; Fig. 3C). Thus, most melanoma TAM frome analyzed sample coexpress CD163, CD68, and FRβ and ex-ibit folate-FITC internalization ability (Fig. 3D). It is also worthoting that a percentage of FRβ+ macrophages coexpress Tie26%; Fig. 3C). Altogether, these results indicate that FRβ isnctionally expressed on IL10 mRNA–expressing CD14+ CD68+

D163+ melanoma TAM.Evaluation of FRβ expression on other tumor tissues indicatedat FRβ is detected in the stroma of lung, ovary, colon, gastric,nd breast cancers, where numerous CD68+ TAM were also pres-t (Fig. 4B). Analysis of ex vivo isolated CD14+ TAM from a meta-atic breast adenocarcinoma also revealed the coexpression ofD68 and FRβ, and that 80% of the cells exhibited a CD163+

Rβ+ phenotype (Fig. 5A). Importantly, primary and metastaticreast adenocarcinoma tissues were found to contain both FOLR2

abmfosmTFm

plaamToGcmlace

9398ancer Res 2009; 69: (24). December 15, 2009

44

MAFB mRNA (Fig. 5B), and ex vivo isolated CD14+ metastaticst adenocarcinoma TAM expressed FOLR2, IL10, and MAFBA (Fig. 5B, lane 5). CD14+ CD163+ TAM also exhibited specifice-FITC binding and uptake (Fig. 5C) and produced IL-10 in re-se to LPS stimulation (Fig. 5D). Because FOLR2 and IL10A are coexpressed in M2 macrophages in vitro (Fig. 1), andfrom metastatic breast adenocarcinoma express functionaland produce IL-10, these results indicate that FRβ activitys anti-inflammatory M2-like TAM.rameters affecting FRβ expression on human macro-es. GM-CSF and M-CSF are tumor-derived factors that modu-myeloid cell differentiation (33). Unlike M-CSF, GM-CSFated the aquisition of FOLR2 mRNA during in vitromonocyte-to-ophage differentiation, even in the presence of M-CSF (Fig. 6A).result explains the differential expression of FRβ on both typesacrophages, and suggests that the relative levels of tissueCSF and M-CSF determine macrophage FRβ expression. Otherines commonly released by tumors (33) also affected FOLR2A; IL-6 alone and IL-10 in combination with M-CSF upregu-FOLR2 mRNA expression (Fig. 6B). Therefore, tumor-derivedkines (M-CSF, GM-CSF, IL-6, and IL-10) modulate FRβession in human macrophages.

igure 3. Expression and function of FRβ in TAM isolated from melanoma. A, confocal sections of infiltrating macrophages on a subcutaneous primary melanomasue sample, as determined by double immunofluorescence analysis of FRβ (green) and the macrophage marker CD163 (red; top), or FRβ and the melanomaarker HMB-45 (red; bottom). The corresponding scatter plots are shown, and colocalizing pixels (blue rectangles) are displayed on the merge images as whiteasks. Magnification of a FRβ/CD163 colocalizing area appears enlarged in the top image, and the enlarged area is depicted in white. In the top image, note theexpression of FRβ by tumor-infiltrating macrophages (CD163+), whereas nonstained areas correspond to tumor cells (CD163−). Nuclei were counterstained with,6-diamidino-2-phenylindole (DAPI). B, detection of FOLR2, MAFB, IL10, MAGEA3, and GAPDH mRNA by RT-PCR on RNA from two different primary melanomasues (lanes 2 and 3) and from CD14+ cells isolated from the pleural fluid of a metastatic melanoma (lane 4). Control RT-PCR reactions were loaded in lane 1,xt to the lane containing the molecular size markers. C, expression of CD68, CD163, Tie2, and FRβ in CD14+ TAM isolated from a melanoma pleural fluid, astermined by three-color flow cytometry analysis on permeabilized cells. Isotype-matched monoclonal antibodies and a preimmune rabbit antiserum were used asgative controls. The percentages of single- and double-positive cells are indicated. D, binding (4°C) and internalization (37°C) of folate-FITC by CD14+ TAMolated from a metastatic melanoma (empty histograms). Filled histograms, cell autofluorescence. The percentage of marker-positive cells and the mean fluorescencetensity (in parentheses) are indicated.

www.aacrjournals.org

Page 45: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

en-tsdgd).d),ni–no-daess,

Expression of FRβ on TAM led us to analyze the nature of thstimuli that might control its presence in the tumor microenviroment. FOLR2 mRNA was variably upregulated by supernatanfrom tumor cell lines, with placenta choriocarcinoma JAR anJEG-3 cells and ovary carcinoma NIH-OVCAR-3 cells promotinthe highest level of upregulation (Fig. 6C). In contrast, conditionemedia from colon carcinoma Colo320 cells had no effect (Fig. 6CMore importantly, ascitic fluid from the breast carcinoma analyzein Fig. 5 promoted a strong upregulation of FOLR2 mRNA (Fig. 6Cconfirming that tumor cells release factors that upregulate humamacrophage FRβ expression. The addition of a blocking antM-CSF monoclonal antibody greatly reduced the upregulatioof FOLR2 mRNA promoted by ascitic fluid from breast carcinma (Fig. 6D) or by conditioned medium from tumor-associatefibroblasts or JEG-3 tumor cells (Fig. 6D). Therefore, M-CSF ismajor determinant for FRβ expression on human macrophagand contributes, alone or in combination with other cytokine

to FRβ cell surface expression on TAM.

93www.aacrjournals.org

DiscussionGM-CSF and M-CSF contribute to the generation of different

macrophage subsets and enhance myeloid cell survival and prolif-eration (9). However, GM-CSF promotes the generation of myeloidcells with potent antigen presentation activity, whereas M-CSFleads to the generation of macrophage cells with regulatory prop-erties (9). Gene expression profiling allowed us to identify FRβ aspreferentially expressed by macrophages generated under the in-fluence of M-CSF, which display FRβ-dependent folate bindingability. FRβ expression on in vitro differentiating macrophageswas enhanced by M-CSF and by tumor cell-conditioned mediumin an M-CSF–dependent manner. Conversely, GM-CSF preventedthe acquisition of FRβ expression. Importantly, FRβ was detectedin TAM, where FRβ-mediated folate binding activity correlates withthe presence of IL10mRNA. Therefore, FRβ constitutes a marker forM-CSF–primed IL-10–expressing M2-polarized macrophages, pro-viding a molecular basis for the value of folate-conjugated drugs

Folate Receptor β Is an M2 Macrophage Marker

in cancer therapy approaches.

Figure 4. Expression of FRβ in TAM from primary and metastatic melanoma. A, expression of FRβ in melanoma-infiltrating macrophages on a primary melanoma(#130, bottom) or two metastatic melanomas (#98 and #146, top and middle), as determined by double immunofluorescence analysis of FRβ and the macrophagemarker CD163 (top rows) or FRβ and the melanoma tumor marker HMB-45 (bottom rows). B, expression of FRβ in tumors of distinct tissue origins. Light microscopyimages of the macrophage marker CD68 (middle) and FRβ (right) staining of tumor tissue from lung squamous cancer (1; magnification, ×20), ovariancystadenoma-mucous (2; magnification, ×20), rectal colon adenocarcinoma (3; magnification, ×20), gastric adenocarcinoma (4; magnification, ×40), and breastinvasive ductal cancer (5; magnification, ×40). Left, staining yielded by normal rabbit serum, used as a control.

99 Cancer Res 2009; 69: (24). December 15, 2009

45

Page 46: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

teamMexidreinmptopCcaseptiHpte

mw

D16nt culate lhagrisot rAMaag

ondomats itarkrnaf FRenellardRβf TAle,ork

Ffroan(2Radinprthseadde

C

C

Because macrophage polarization is stimulus dependent (1), al-rnatively activated M2 macrophages have been further classifieds M2a, M2b, or M2c in an effort to link genetic markers to specificacrophage-activating stimuli (34). The expression of FRβ in-CSF–generated macrophages indicates that it is preferentiallypressed by IL-10–producing M2 macrophages and, therefore,entifies a population of macrophages with anti-inflammatory/gulatory properties. The presence of FRβ in M-CSF–primedvitro macrophages is in agreement with its upregulation in hu-an decidual macrophages, which exhibit an immunosuppressivehenotype and whose gene expression profile closely correspondsthat of M2-polarized macrophages (35). Further supporting its

resence on M2 macrophages, FRβ has been detected on F4/80+

D68+ murine peritoneal macrophages (36), where its mRNA levelsn be further upregulated by IL-4 (37). Therefore, FRβ expressionems not to be restricted to anti-inflammatory/regulatory IL-10–roducing M2 macrophages and marks a wider range of alterna-vely activated macrophages in the human and murine systems.owever, the functional state of FRβ on murine peritoneal macro-hages is still not clear because folate binding ability is only de-cted after stimulation with inflammatory stimuli (26).The expression of FRβ on TAM from primary and metastaticelanoma and breast carcinoma (Figs. 3–5) is also in agreementith a previous report describing the presence of FRβ in CD68+

CegthptenTinincfrthamteomcgFopw

ancer Research

9400ancer Res 2009; 69: (24). December 15, 2009

46

3+ cells within human and rat glioblastoma (36). In an appar-ontradiction, gene expression profiling has revealed downre-ed FRβ mRNA levels in murine fibrosarcoma TAM relative toevels detected in thioglycollate-elicited peritoneal macro-es (12). However, because the latter exhibit functional charac-tics of M-CSF–driven M2 macrophages (38), these results doule out the presence of detectable levels of FRβ in murine. Besides, it is also possible that FRβ is expressed by TAMtumor-dependent manner, a phenomenon which would bereement with its differential upregulation by distinct tumor-itioned media (Fig. 6) and the variable levels of FRβ in TAMa variety of human tumors (Fig. 4). Finally, it is also possibledifferences might exist between murine and human TAM,is already evident that paradigmatic M2 murine macrophageers (Arginase and Ym1) are not useful to identify human al-tively activated macrophages (39). Whether the acquisitionβ expression by tumor-infiltrating macrophages is detri-

tal for the tumor (e.g., by removing folate) or favors tumorgrowth is a matter that deserves further investigation. Re-less of the precise role of FRβ on TAM, the presence ofon their cell surface provides an opportunity for depletionM through the use of folate-conjugated drugs. As an exam-and while this article was being completed, Nagai and co-ers have shown the feasibility of reducing tumor growth by

igure 5. Expression and function of FRβ in TAM isolated from breast adenocarcinoma. A, expression of FRβ, CD68, and CD163 in permeabilized CD14+ TAMm a metastatic breast adenocarcinoma, as determined by flow cytometry using PE-labeled anti-CD68, Alexa Fluor 647–labeled anti-CD163, and a polyclonaltiserum against human FRβ (18), followed by FITC-labeled goat anti-rabbit antibodies. Isotype-matched monoclonal antibodies and a preimmune rabbit antiserum9) were used as negative controls (top). The percentages of single-positive and double-positive cells are indicated. B, detection of the indicated mRNA byT-PCR on RNA from three different primary breast adenocarcinoma tissues (lanes 2–4) and from CD14+ cells isolated from ascitic fluid from a metastatic breastenocarcinoma (lane 5). Control RT-PCR reactions were loaded in lane 1, next to the lane containing the molecular size markers. C, binding (4°C; top) andternalization (37°C; bottom) of folate-FITC by CD14+ TAM isolated from a metastatic breast adenocarcinoma, in the absence (empty histograms, black line) or theesence (empty histograms, gray line) of a 100 mol/L excess of folic acid. Filled histograms, cell autofluorescence. The percentage of marker-positive cells ande mean fluorescence intensity (in parentheses) are indicated. The experiment was done two times, and one of the experiments is shown. Representative confocalctions and differential interference contrast microscopy images of macrophages incubated with folate-FITC. D, CD14+ TAM isolated from a metastatic breastenocarcinoma were either untreated or stimulated with LPS (50 ng/mL) for 24 h, and IL-10 release was determined by ELISA. Columns, mean of triplicateterminations; bars, SD.

www.aacrjournals.org

Page 47: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

β

βesdd),r,inn-n-s,nedo-eA

Folate Receptor β Is an M2 Macrophage Marker

targeting an immunotoxin to TAM using an antimouse FRmonoclonal antibody (36).Given the tumor influence on macrophage functions (40), FR

might specifically mark tumor-infiltrating human macrophagwhose effector functions have been already skewed by tumor-derivefactors. In this regard, our data also suggest that tumor-deriveM-CSF, which recruits and shapes macrophage functions (33would be the primary determinant for FRβ expression. HoweveFRβ expression is also detected in resident macrophages withnontumor tissue (data not shown). This fact, together with the icrease in FRβ expression during the in vitro macrophage differetiation that takes place in the absence of exogenous cytokinemight indicate that FRβ could be a macrophage differentiatiomarker under homeostatic conditions, and whose levels could bmaintained or upregulated by anti-inflammatory cytokines andownregulated by pro-inflammatory stimuli. In this regard, cytkines such as IL-4, IL-13, and IL-10, which promote macrophagalternative activation, trigger a transient increase of FOLR2 mRN

94www.aacrjournals.org

levels in M2 macrophages (Supplementary Fig. S4A and B). By con-trast, LPS greatly downregulates FOLR2 mRNA levels (Supplemen-tary Fig. S4A and B) although it does not lead to a great decrease incell surface FRβ (Supplementary Fig. S4C). This divergence mightbe explained by the fact that FOLR2 is an endocytic receptor whoseprotein levels are higher than those present on the cell surface. Infact, flow cytometry on permeabilized cells showed that a largeproportion of FRβ is located intracellularly in both in vitro M2macrophages and TAM (Supplementary Fig. S5).The presence of functional FRβ on M-CSF–primed macrophages

and the detection of FRβ mRNA in other types of M2-polarizedmacrophages (12, 35, 37) are difficult to reconcile with its expres-sion (25) and function (26) in synovial macrophages from rheuma-toid arthritis patients, which are embedded in a inflammatorypro-M1 environment. It could be speculated that synovial macro-phages might exhibit a mixed M1/M2 phenotype, similar to whatoccurs with myeloid populations within tumors (41), an expla-nation that would be compatible with the high levels of M-CSF

Figure 6. Parameters affecting FRβ expression on human macrophages. A and B, FOLR2 mRNA expression in macrophages exposed for 72 h to the indicatedcytokines, as determined by quantitative RT-PCR. Results are expressed as normalized fold expression relative to 18S rRNA levels and the FOLR2 RNA levels inperipheral blood monocytes (Mon.). Columns,mean of triplicate determinations; bars, SD. C, FOLR2mRNA expression in macrophages exposed for 72 h to conditionedmedia from the ascitic fluid of a breast carcinoma (ABC) or tumor cell lines, as determined by quantitative RT-PCR. Results are expressed as normalized foldexpression (relative to 18S rRNA levels). Columns, mean of triplicate determinations from three independent macrophage preparations; bars, SD. D, inhibitory effect ofanti–M-CSF on FOLR2 mRNA levels induced by ascitic fluid from metastatic breast carcinoma (ABC) or conditioned-medium from JEG-3 placenta choriocarcinoma(JEG-3) or tumor-associated fibroblasts (Fibroblast). The results are depicted as the FOLR2 mRNA levels detected in the presence of the anti–M-CSF antibody relativeto the levels seen in untreated cells (set to 100 in the three cases).

01 Cancer Res 2009; 69: (24). December 15, 2009

47

Page 48: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

psyacMpthsitieaditdathManmTtolu

Alnd ficatguonsxprwaate

iscNo

ckeceivGriniste RegaciF20IV Cdenida

R1.e

2.Mpp

3.R

4.KtsM4

5.sm

6.stt

7.LhtaB

8.I1t4

9.m5

10nC

11t2

C

C

resent in rheumatoid arthritis synovia (42). M-CSF is produced bynovial fibroblasts, and administration of M-CSF is known to ex-erbate arthritis in some settings (9, 43). Therefore, the levels of-CSF within the synovia of rheumatoid arthritis might suffice toromote FRβ expression on surrounding macrophages, althoughe concomitant presence of extremely high levels of tumor necro-s factor αmight override its immunosuppressive actions. Alterna-vely, because M-CSF contributes to macrophage recruitment, FRβxpression might mark macrophages newly recruited into therthritic synovia, whose later levels of FRβ expression would beetermined by the pro-inflammatory environment. In this regard,is worth noting that (a) FRβ+ macrophages are more prominentlyetected at early stages during development of animal models ofherosclerosis and muscle injury and in rheumatoid arthritis inumans;6 (b) in vitro acute (48 hours) exposure of FRβ-expressing2 macrophages to M1-polarizing stimuli (e.g., LPS, GM-CSF,d IFNγ) does not result in loss of FRβ expression, which is onlyoderately downregulated by IFNγ (Supplementary Fig. S4C).herefore, folate-targeted killing of FRβ+ macrophages in inflamma-ry disease murine models might contribute to inflammation reso-tion by preferentially eliminating newly recruited macrophages.

adretietog

D

AR

MthtiSA(XtoSa

ancer Research

Thchargewith 1

Weand Isproces

isn1Ss0Mle5

cdWnn9Rtiny3Rpt:3

eooc0

cieNtleoe

6 P. Low, personal communication.

9402ancer Res 2009; 69: (24). December 15, 2009

48

though further studies are needed to correlate FRβ expressionunction in macrophages within inflamed tissues, our results in-e that cytokines favoring the generation of anti-inflammatory/latory macrophages, and known to shape TAM effector func-(M-CSF and IL-10), promote and are permissive for FRβ

ession, whereas factors skewing macrophage polarizationrd the proinflammatory branch either inhibit (IFNγ) or abro-FRβ expression.

losure of Potential Conflicts of Interestpotential conflicts of interest were disclosed.

nowledgmentsed 6/4/09; revised 10/9/09; accepted 10/15/09; published OnlineFirst 12/8/09.ant support: Ministerio de Educación y Ciencia (grant BFU2008-01493-BMC),erio de Sanidad y Consumo, Instituto de Salud Carlos III (Spanish Network forsearch in Infectious Diseases, REIPI RD06/0008), and Fundación para la Inves-ón y Prevención del SIDA en España (FIPSE 36663/07; A.L. Corbí); grant06-08615 from Ministerio de Educación y Ciencia and Fundación Ramón Arecesoncurso Nacional, 2007; P. Sánchez-Mateos); and grant PI08/1208 from Institu-Salud Carlos III (A. Puig-Kröger). A. Puig-Kröger is supported by Ministerio ded y Consumo, Instituto de Salud Carlos III (CP06/00199).e costs of publication of this article were defrayed in part by the payment of pages. This article must therefore be hereby marked advertisement in accordance8 U.S.C. Section 1734 solely to indicate this fact.thank Dr. Philip S. Low for reagent supply and valuable advice and discussions,abel Treviño and Julia Villarejo for help with immunohistochemistry samplesing.

dLo

u

tsd

oneee–agdr3o

aoillla

5rt

Jar

kPa

eferencesGordon S, Taylor PR. Monocyte and macrophage het-rogeneity. Nat Rev Immunol 2005;5:953–64.Mantovani A, Sozzani S, Locati M, Allavena P, Sica A.acrophage polarization: tumor-associated macro-hages as a paradigm for polarized M2 mononuclearhagocytes. Trends Immunol 2002;23:549–55.Gordon S. Alternative activation of macrophages. Natev Immunol 2003;3:23–35.Komuro I, Yokota Y, Yasuda S, Iwamoto A, KagawaS. CSF-induced and HIV-1-mediated distinct regula-ion of Hck and C/EBPβ represent a heterogeneoususceptibility of monocyte-derived macrophages to-tropic HIV-1 infection. J Exp Med 2003;198:43–53.Akagawa KS. Functional heterogeneity of colony-timulating factor-induced human monocyte-derivedacrophages. Int J Hematol 2002;76:27–34.Li G, Kim YJ, Broxmeyer HE. Macrophage colony-timulating factor drives cord blood monocyte differen-iation into IL-10(high)IL-12absent dendritic cells witholerogenic potential. J Immunol 2005;174:4706–17.Verreck FA, de Boer T, Langenberg DM, van der Zanden, Ottenhoff TH. Phenotypic and functional profiling ofuman proinflammatory type-1 and anti-inflammatoryype-2 macrophages in response to microbial antigensnd IFN-γ- and CD40L-mediated costimulation. J Leukociol 2006;79:285–93.Verreck FA, de Boer T, Langenberg DM, et al. HumanL-23-producing type 1 macrophages promote but IL-0-producing type 2 macrophages subvert immunityo (myco)bacteria. Proc Natl Acad Sci U S A 2004;101:560–5.Hamilton JA. Colony-stimulating factors in inflam-ation and autoimmunity. Nat Rev immunol 2008;8:33–44.. Condeelis J, Pollard JW. Macrophages: obligate part-ers for tumor cell migration, invasion, and metastasis.ell 2006;124:263–6.

. Pollard JW. Tumour-educated macrophages promoteumour progression and metastasis. Nat Rev Cancer004;4:71–8.

12.unasha21

13.as20

14.Rogr31

15.rery

16.tiolig33

17.lanaPh24

18.tyen85

19.Leenlipdu10

20.reacsit

21.lecrofrRh

Biswas SK, Gangi L, Paul S, et al. A distinct andque transcriptional program expressed by tumor-ociated macrophages (defective NF-κB and en-ced IRF-3/STAT1 activation). Blood 2006;107:2–22.ica A, Rubino L, Mancino A, et al. Targeting tumour-ociated macrophages. Expert Opin Ther Targets7;11:1219–29.antovani A, Schioppa T, Porta C, Allavena P, Sica A.

e of tumor-associated macrophages in tumor pro-ssion and invasion. Cancer Metastasis Rev 2006;25:–22.Leamon CP, Jackman AL. Exploitation of the folateeptor in the management of cancer and inflammato-isease. Vitam Horm 2008;79:203–33.eitman SD, Lark RH, Coney LR, et al. Distribu-of the folate receptor GP38 in normal and ma-

ant cell lines and tissues. Cancer Res 1992;52:6–401.oss JF, Chaudhuri PK, Ratnam M. Differential regu-on of folate receptor isoforms in normal and malig-t tissues in vivo and in established cell lines.siologic and clinical implications. Cancer 1994;73:2–43.oss JF, Wang H, Behm FG, et al. Folate receptore β is a neutrophilic lineage marker and is differ-ially expressed in myeloid leukemia. Cancer 1999;48–57.Pan XQ, Zheng X, Shi G, Wang H, Ratnam M,RJ. Strategy for the treatment of acute myelog-us leukemia based on folate receptor β-targetedsomal doxorubicin combined with receptor in-tion using all-trans retinoic acid. Blood 2002;:594–602.Hao H, Qi H, Ratnam M. Modulation of the folateeptor type β gene by coordinate actions of retinoicd receptors at activator Sp1/ets and repressor AP-1s. Blood 2003;101:4551–60.akashima-Matsushita N, Homma T, Yu S, et al. Se-ive expression of folate receptor β and its possiblein methotrexate transport in synovial macrophages

m patients with rheumatoid arthritis. Arthritisum 1999;42:1609–16.

22. ReDW,tioncells.

23. Pator-magentis. A

24. Tusomewith

25. vaFolatfolatof rh60:12

26. XiChenduceto ta113:4

27. DGayoiatesmyel

28. PuReguic ce3)-grcells,279:2

29. SeRT, eof thICAMface.

30. WDiffeceptoBioch

31. Baandcell f

dy JA, Haneline LS, Srour EF, Antony AC, Clappow PS. Expression and functional characteriza-f the β-isoform of the folate receptor on CD34+

Blood 1999;93:3940–8.los CM, Turk MJ, Breur GJ, Low PS. Folate recep-ediated targeting of therapeutic and imagingto activated macrophages in rheumatoid arthri-v Drug Deliv Rev 2004;56:1205–17.rk MJ, Waters DJ, Low PS. Folate-conjugated lipo-s preferentially target macrophages associatedvarian carcinoma. Cancer Lett 2004;213:165–72.der Heijden JW, Oerlemans R, Dijkmans BA, et al.receptor β as a potential delivery route for novelantagonists to macrophages in the synovial tissueumatoid arthritis patients. Arthritis Rheum 2009;21.W, Hilgenbrink AR, Matteson EL, Lockwood MB,JX, Low PS. A functional folate receptor is in-during macrophage activation and can be usedget drugs to activated macrophages. Blood 2009;8–46.minguez-Soto A, Aragoneses-Fenoll L, Martin-E, et al. The DC-SIGN-related lectin LSECtin med-ntigen capture and pathogen binding by humanid cells. Blood 2007;109:5337–45.g-Kroger A, Serrano-Gomez D, Caparros E, et al.ated expression of the pathogen receptor dendrit--specific intercellular adhesion molecule 3 (ICAM-bbing nonintegrin in THP-1 human leukemicmonocytes, and macrophages. J Biol Chem 2004;680–8.rano-Gomez D, Sierra-Filardi E, Martinez-Nunezal. Structural requirements for multimerization

e pathogen receptor dendritic cell-specific3-grabbing non-integrin (CD209) on the cell sur-Biol Chem 2008;283:3889–903.ng X, Shen F, Freisheim JH, Gentry LE, Ratnam M.ential stereospecificities and affinities of folate re-r isoforms for folate compounds and antifolates.em Pharmacol 1992;44:1898–901.ri Y, Sarrazin S, Mayer UP, et al. Balance of MafBU.1 specifies alternative macrophage or dendriticte. Blood 2005;105:2707–16.

www.aacrjournals.org

Page 49: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

lip0

i

i

eeN

r-a-

i-IIf-

asi-l

l.

o

32. Elnakat H, Ratnam M. Distribution, functionaand gene regulation of folate receptor isoforms: imcations in targeted therapy. Adv Drug Deliv Rev 2056:1067–84.

33. Gabrilovich D. Mechanisms and functional signcance of tumour-induced dendritic-cell defects. NRev Immunol 2004;4:941–52.

34. Mantovani A, Sica A, Sozzani S, Allavena P, VecchLocati M. The chemokine system in diverse formsmacrophage activation and polarization. Trends Immnol 2004;25:677–86.

35. Gustafsson C, Mjosberg J, Matussek A, et al. Genepression profiling of human decidual macrophages:idence for immunosuppressive phenotype. PLoS O

www.aacrjournals.org

tyli-4;

fi-at

A,ofu-

x-v-E

36. Nagai T, TanakaM,Tsuneyoshi Y, et al. Targeting tumoassociated macrophages in an experimental gliommodel with a recombinant immunotoxin to folate receptor β. Cancer Immunol Immunother 2009;58:1577–86.

37. Ghassabeh GH, De Baetselier P, Brys L, et al. Identfication of a common gene signature for typecytokine-associated myeloid cells elicited in vivo in diferent pathologic conditions. Blood 2006;108:575–83.

38. Xu W, Schlagwein N, Roos A, van den Berg TK, DahMR, van Kooten C. Human peritoneal macrophageshow functional characteristics of M-CSF-driven antinflammatory type 2 macrophages. Eur J Immuno2007;37:1594–9.

39. Raes G, Van den Bergh R, De Baetselier P, et a

F

are markers for murine, but not

9403 C

human, alternatively activated myeloid cells. J Immunol2005;174:6561; author reply-2.

40. Sica A, Larghi P, Mancino A, et al. Macrophage polar-ization in tumour progression. Semin Cancer Biol 2008;18:349–55.

41. Biswas SK, Sica A, Lewis CE. Plasticity of macrophagefunction during tumor progression: regulation by distinctmolecular mechanisms. J Immunol 2008;180:2011–7.

42. Pollard JW. Trophic macrophages in developmentand disease. Nat Rev Immunol 2009;9:259–70.

43. Campbell IK, Rich MJ, Bischof RJ, Hamilton JA. Thecolony-stimulating factors and collagen-induced arthri-tis: exacerbation of disease by M-CSF and G-CSF andrequirement for endogenous M-CSF. J Leukoc Biol2000;68:144–50.

late Receptor β Is an M2 Macrophage Marker

2008;3:e2078. Arginase-1 and Ym1

ancer Res 2009; 69: (24). December 15, 2009

49

Page 50: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Supplementary Figures

Folate-FITCFolate-FITC + Acidic wash

1.0 (4.7)94 (35)

74 (13.5)

Folate-FITCFolate-FITC + Acidic washFolate-FITCFolate-FITC + Acidic wash

1.0 (4.7)94 (35)

74 (13.5)

Supplementary Figure 1.- Folate-FITC internalization ability of M-CSF-primed M2 macrophages. Internalization was done for 1 hour at 37ºC and cells were subsequently either untreated (empty histogram, black line) or subjected to an acidic cold wash with PBS 50 mM Glycine pH 3.2 (empty histograms, grey line) to eliminate cell surface-bound fluorecence. Autofluorescence of cells is indicated (grey histogram). In all cases, the percentage of fluorescence-positive cells and the mean fluorescence intensity (between parenthesis) are indicated.

FOLR1

M2 (MCSF)HeLa

Monocytes

20

15

10

5

Nor

mal

ized

Fold

Exp

ress

ion

FOLR2 FOLR3 Donor# 1

Donor# 2

Donor# 3

2.0

1.5

1.0

0.5Nor

mal

ized

Fold

Exp

ress

ion

FOLR2FOLR1

FOLR3

BA

FOLR1

M2 (MCSF)HeLa

Monocytes

20

15

10

5

Nor

mal

ized

Fold

Exp

ress

ion

FOLR2 FOLR3 Donor# 1

Donor# 2

Donor# 3

2.0

1.5

1.0

0.5Nor

mal

ized

Fold

Exp

ress

ion

FOLR2FOLR1

FOLR3

BA

Supplementary Figure 2.- A. FOLR1, FOLR2 and FOLR3 mRNA expression levels determined by qRT-PCR in HeLa cells, M2 (MCSF) macrophages and peripheral blood monocytes, and expressed as Normalized Fold Expression (relative to 18S rRNA levels). Shown is the mean and standard deviation of triplicate determinations for each gene. B. FOLR1, FOLR2 and FOLR3 mRNA expression levels determined by qRT-PCR in three different M2 macrophage preparations, and expressed as Normalized Fold Expression (relative to 18S rRNA levels). Shown is the mean and standard deviation of triplicate determinations for each gene.

51

Page 51: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

2

4

6

8

10

12

14

16

MCSF LPS IL-4 IL-13 IL-10

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

MCSF LPS IL-4 IL-13 IL-10

Nor

mal

ized

Fold

Exp

ress

ion BA

Nor

mal

ized

Fold

Exp

ress

ionFOLR2 FOLR2

M2 + IFN-γ M2 + IL-4M2 M2 + GM-CSF M2 + LPS

1.0 (3.4)82 (13.5)FRβ

expression

1.0 (3.7)34 (8.7)

1.0 (3.3)44 (9.2)

1.0 (4.3)71 (15)

1.0 (3.6)62 (12)

Folatecapture

Folate-FITCFolate-FITC + 100X Folic Acid

C2.0 (3)96 (33)

6.0 (5.6)

5.0 (4)87 (34)23 (7)

1.0 (3)74 (14)

3.0 (4.3)

3.0 (4.3)95 (33)24 (7)

1.0 (3.5)78 (15)5 (5.5)

2

4

6

8

10

12

14

16

MCSF LPS IL-4 IL-13 IL-10

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

MCSF LPS IL-4 IL-13 IL-10

Nor

mal

ized

Fold

Exp

ress

ion BA

Nor

mal

ized

Fold

Exp

ress

ionFOLR2 FOLR2

M2 + IFN-γ M2 + IL-4M2 M2 + GM-CSF M2 + LPS

1.0 (3.4)82 (13.5)FRβ

expression

1.0 (3.7)34 (8.7)

1.0 (3.3)44 (9.2)

1.0 (4.3)71 (15)

1.0 (3.6)62 (12)

Folatecapture

Folate-FITCFolate-FITC + 100X Folic Acid

C2.0 (3)96 (33)

6.0 (5.6)

5.0 (4)87 (34)23 (7)

1.0 (3)74 (14)

3.0 (4.3)

3.0 (4.3)95 (33)24 (7)

1.0 (3.5)78 (15)5 (5.5)

Supplementary Figure 3.- A-B. FOLR2 mRNA expression in day-7 M2 macrophages exposed for 24 (A) or 48 (B) hours to LPS, IL-4, IL-13 or IL-10, as determined by qRT-PCR. Results are expressed as Normalized Fold Expression (relative to GAPDH mRNA levels and the FOLR2 mRNA levels in macrophages exposed to M-CSF). Shown is the mean and standard deviation of triplicate determinations. C. Folate-FITC capture ability (upper panels) and FRβ cell surface expression (lower panels) in M-CSF-primed M2 macrophages exposed to the indicated cytokines for the last 48 hours of the 7-day differentiation process. Internalization was done either in the absence (empty histograms, black line) or the presence (empty histograms, grey line) of a 100-molar excess of folic acid. Filled histograms (thin line) indicate cell autofluorescence in each case. Cell surface expression was determined by flow cytometry using a polyclonal antiserum against human FRβ (empty histograms with thick lines) and a previously reported pre-immune rabbit antiserum as negative control (filled histograms with thin lines). The percentage of marker-positive cells and the mean fluorescence intensity (between parenthesis) are indicated. Each experiment was performed twice, and a representative one is shown.

2 (3,5)93 (14)

2 (4)100 (84)

11 (4)99 (76)

2 (4,4)67 (24)

CD14+ TAMs(Breast Adenocarcinoma)

Non-permeabilized

M2

ControlFRβ

Permeabilized

2 (3,5)93 (14)

2 (4)100 (84)

11 (4)99 (76)

2 (4,4)67 (24)

CD14+ TAMs(Breast Adenocarcinoma)

Non-permeabilized

M2

ControlFRβ

Permeabilized

Supplementary Figure 4.- FRβ expression in M-CSF-primed M2 macrophages (left panels) and isolated CD14+ TAM from a breast adenocarcinoma (right panels) as determined by flow cytometry using a polyclonal antiserum against human FRβ (empty histograms with thick lines) and a previously reported pre-immune rabbit antiserum as negative control (filled histograms with thin lines). In both cases cells were analyzed before (upper panels) or after permeabilization (lower panels), to detect only cell surface or total content of FRβ. The percentage of marker-positive cells and the mean fluorescence intensity (between parenthesis) are indicated in each case.

52

Page 52: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Resultados

2. Activina A previene la adquisición de marcadores anti-inflamatorios/M2 y sesga la secreción de citoquinas por los macrófagos.

La progresión tumoral está favorecida por el cambio en la polarización de los macrófagos

asociados a tumores hacia la adquisición de funciones efectoras inmunoreguladoras y anti-

inflamatorias. A diferencia del GM-CSF que polariza los macrófagos hacia un fenotipo inflamatorio

M1, el M-CSF genera macrófagos inmunosupresores M2 que expresan el receptor de folato β (FRβ)

y producen IL-10. Debido a que la depleción de macrófagos FRβ+ ha sido utilizado en terapia frente

a tumores, hemos buscado factores que controlan la expresión del FRβ en macrófagos. En este

sentido, hemos identificado a la activina A como una citoquina producida por los macrófagos M1

(GM-CSF), y cuya presencia limita la adquisición de la expresión del FRβ y otros marcadores M2 (M-

CSF). De hecho, el GM-CSF promueve la expresión de activina A, mientras que es inhibida por M-

CSF incluso en macrófagos M1 (GM-CSF). La activina A secretada por los macrófagos M1 (GM-

CSF) realza la actividad de los promotores génicos dependientes de Smad, explicando así la

activación diferencial de Smad2 en los macrófagos M1 (GM-CSF) y M2 (M-CSF), lo que contribuye a

la inhibición del crecimiento de células tumorales por el medio condicionado de macrófagos M1 (GM-

CSF). Además, la activina A modula la producción de citoquinas por los macrófagos M2, ya que

reduce la producción de IL-10, aunque no modifica la secreción de TNFα, en respuesta a LPS. Por

lo tanto, la activina A sesga la polarización del macrófago contribuyendo a la generación de

macrófagos inflamatorios en respuesta a GM-CSF y limitando la generación de macrófagos anti-

inflamatorios.

53

Page 53: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Activin prevents the acquisition of M2/anti-inflammatory markers and skews the

macrophage cytokine profile

Running head: Activin shapes macrophage polarization

Elena Sierra-Filardi ∗,‡, Amaya Puig-Kröger ∗,‡, Francisco J. Blanco*, Carmelo Bernabéu*,

Miguel A. Vega ∗ and Angel L. Corbí ∗

∗ Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.

‡ Both authors contributed equally and the order of authors should be considered arbitrary.

Corresponding author: Dr. Angel L. Corbí, Centro de Investigaciones Biológicas, CSIC. Ramiro de

Maeztu, 9. Madrid 28040; Phone: 34-91-8373112, ext. 4376; FAX: 34-91-5627518.

E-mail: [email protected]

1 This work was supported by the Ministerio de Ciencia e Innovación (Grant BFU2008-01493-BMC), Instituto de Salud Carlos III (Spanish Network for the Research in Infectious Diseases REIPI RD06/0008, and Red de Investigación en SIDA RIS RD06/0006/1016), Fundación para la Investigación y Prevención del SIDA en España (FIPSE 36663/07), and Fundación Mutua Madrileña, to ALC, and grant PI08/1208 from Instituto de Salud Carlos III to APK. APK is supported by Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III (CP06/00199). 2 Address correspondence and reprint requests to: Dr. Angel L. Corbí, Centro de Investigaciones Biológicas, CSIC. Ramiro de Maeztu, 9, 28040 Madrid. Tel. +34-91-8373112 + 4376; FAX: 34-91-5627518; E-mail addresses: [email protected]

55

Page 54: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

ABSTRACT

Tumor progression is favored by the shift in the polarization state of tumor-associated macrophages

towards the acquisition of immunoregulatory and anti-inflanmatory effector functions. Unlike GM-

CSF, which polarizes macrophages towards a pro-inflammatory M1 phenotype, M-CSF generates IL-

10-producing Folate Receptor β (FRβ)-expressing immunosuppressive M2 macrophages. Since

depletion of FRβ-expressing macrophages has proven successful in cancer therapy strategies, we

sought to identify the factors controlling macrophage FRβ expression. The search identified Activin

A as a cytokine produced by M1 (GM-CSF) macrophages, and whose presence limits the acquisition

of FRβ and other M2 (M-CSF)-specifc markers. In fact, GM-CSF promotes Activin A expression,

whereas M-CSF downregulates its expression even in fully polarized M1 (GM-CSF) macrophages.

M1 (GM-CSF) macrophage-derived Activin A enhances the activity of Smad-dependent gene

promoters, thus explaining the differential Smad2 activation of M1 (GM-CSF) and M2 (M-CSF)

macrophages, and contributes to the tumor cell growth inhibitory activity of M1 (GM-CSF)

Macrophage-conditioned medium. Besides, Activin A modulates cytokine production by M2

macrophages, as it reduces their LPS-induced IL-10 production and it had no effect on the TNFα

release in response to LPS. Therefore, Activin A skews macrophage polarization by contributing to

the generation of pro-inflammatory macrophages in response to GM-CSF and limiting the generation

of anti-inflammatory macrophages.

56

Page 55: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

INTRODUCTION

Tissue resident macrophages are phenotypically and functionally heterogeneous under homeostatic

conditions because of their extreme sensitivity to the extracellular cytokine millieu 1-3. Although GM-

CSF and M-CSF contribute to cell survival, proliferation and macrophage development, they exert

distinct actions during macrophage differentiation in vivo and in vitro. Deficiency of M-CSF alters

the development of various macrophage populations 4, whereas GM-CSF-deficient mice only exhibit

altered maturation of alveolar macrophages 5. Along the same line, both cytokines promote the in

vitro differentiation of macrophages with distinct morphology, pathogen susceptibility 6 and

inflammatory function 7-10. GM-CSF gives rise to monocyte-derived macrophages with high antigen-

presenting properties and which produce pro-inflammatory cytokines in response to LPS, whereas

M-CSF leads to the generation of macrophages with high phagocytic activity and IL-10-producing

ability in response to pathogens 10,11. Based on their respective cytokine profiles, human macrophages

generated in the presence of GM-CSF or M-CSF are considered as representative of the classically

(M1) or alternatively activated (M2) macrophage polarization states, respectively 10,12,13. Moreover,

since they might play opposite roles during immune and inflammatory responses, M1 (GM-CSF) and

M2 (M-CSF) macrophages are now considered as pro- and anti-inflammatory macrophages 10,12,

respectively.

Activins are pluripotent and ubiquitous growth and differentiation factors, which are structurally

composed of two β subunits (activin-A, βAβA; activin-AB, βAβB; activin-B, βBβB) linked by a

single covalent disulfide bond 14,15. Activin biological activities are mediated by signal transduction

molecules shared by TGFβ (Smad2,3) 16. Like TGFβ, activins exert both immunostimulatory and

immunosuppressive functions at the T cell level 16, and their effects on myeloid cells include

promotion of macrophage alternative activation 17 and inhibition of CD40L-induced cytokine

production by monocyte-derived dendritic cells 18. Activin A expression has been detected in many

immune cell types 16, and is upregulated upon activation and in response to inflammatory mediators

both in vitro 18 and in vivo 19, what has led to the suggestion that it functions as a modulator of

inflammatory responses by limiting cytokine and chemokine release.

We have recently dissected the differences in gene expression between M1 (GM-CSF) and M2 (M-

CSF) macrophages, and described the preferential expression of Folate Receptor β (FRβ) on in vitro

derived M2 (M-CSF) macrophages and ex vivo Tumor-Associated Macrophages (TAM) 20. To

identify factors mediating the acquisition of their respective profiles, we analyzed whether M1-

derived factors influenced the acquisition of M2-specific markers. M1 macrophages were found to

secrete large amounts of functional Activin A, whose presence conditions the activation state of the

57

Page 56: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

TGFβ signaling system, impairs the acquisition of M2 (M-CSF) markers, and modulates the

production of IL-10. These results place Activin A as a factor that contributes to macrophage

polarization and shapes the inflammatory behaviour of macrophages. Moreover, given the

macrophage ability for re-polarization under appropriate cytokine conditions 21, Activin A might

function, in an autocrine or paracrine manner, by halting macrophage switch between polarization

states.

58

Page 57: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

MATERIALS AND METHODS

Cell culture and flow cytometry.- Human peripheral blood mononuclear cells (PBMC) were isolated

from buffy coats from normal donors over a Lymphoprep (Nycomed Pharma, Oslo, Norway)

gradient according to standard procedures. Monocytes were purified from PBMC by magnetic cell

sorting using CD14 microbeads (Miltenyi Biotech, Bergisch Gladbach, Germany). Monocytes (>95%

CD14+ cells) were cultured at 0.5 x 106 cells/ml for 7 days in RPMI supplemented with 10% fetal

calf serum (FCS) (completed medium), at 37ºC in a humidified atmosphere with 5% CO2, and

containing 1000U/ml GM-CSF or M-CSF (10 ng/ml, ImmunoTools GmbH, Friesoythe, Germany) to

generate M1 and M2 monocyte-derived macrophages, respectively. Cytokines were added every two

days. When indicated, recombinant human Activin A (2.5-25 ng/ml, Miltenyi Biotech, Bergisch

Gladbach, Germany) was added together with the indicated cytokine. To generate monocyte-derived

dendritic cells (MDDC), monocytes were cultured at 0.7 x 106 cells/ml in complete medium

containing GM-CSF (1000 U/ml) and IL-4 (1000U/ml, ImmunoTools GmbH, Friesoythe, Germany)

for 5-7 days, with cytokine addition every second days. When indicated, M1 macrophages were

treated with IL-4 (1000U/ml) or IFNγ (500U/ml) for 48 hours. The mink lung epithelial cell line

Mv1Lu 22 was maintained in DMEM supplemented with 10% fetal calf serum. Phenotypic analysis

was carried out by flow cytometry as previously reported 20, and using rabbit polyclonal antisera anti-

human FRβ 23 or a previously described preimmune serum 24, and FITC-labelled Fab goat anti-rabbit

IgG. All incubations were done in the presence of 50 µg/ml of human IgG to prevent binding through

the Fc portion of the antibodies.

Western blot.- Cell lysates were obtained in 10mM Tris-HCl pH 8, 150mM NaCl, 1%NP-40 (NP-40

lysis buffer) containing 2 mM Pefabloc and 2 µg/ml of aprotinin, antipain, leupeptin and pepstatin.

Ten µg of cell or membrane lysates was subjected to SDS-PAGE and transferred onto an Immobilon

polyvinylidene difluoride membrane (Millipore, Bedford, MA). After blocking of the unoccupied

sites with 5% non-fat dry milk in 50 mM Tris-HCl pH 7.6, 150 mM NaCl, 0.1% Tween-20, protein

detection was performed using the Supersignal West Pico Chemiluminescent system (Pierce,

Rockford, IL). Protein detection was carried out using polyclonal antisera against phosphorylated

Smad2 (pSmad2 (Ser465/467), clone A5S, Millipore), Smad2 (anti-Smad2/3, Millipore), GAPDH

(sc-32233, Santa Cruz Biotechnology, Santa Cruz, CA) or β-actin (Sigma-Aldrich, UK ).

ELISA.- Supernatants from M1 and M2 macrophages were tested for the presence of cytokines and

growth factors using commercially available ELISA for TNF-α (ImmunoTools), IL-6

(Immunotools), IL-12p40 (OptEIATM IL-12p40 set, BD Pharmingen, San Diego, CA), IL-10

59

Page 58: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

(ImmunoTools), and Activin A (R&D Systems, Inc, Minneapolis, USA) following the protocols

supplied by the manufacturers.

Reporter Gene Assays.- The effect of macrophage culture supernatants on the Activin signaling

pathway was analyzed by transfecting 0.5 μg of the p3TP-Lux reporter construct 25 in Mv1Lu cells, a

well stablished cellular model to study the signaling of the TGF-β superfamily 22, using Superfect

(Qiagen). After transfections, cells were washed, cultured in DMEM plus 0.2% FCS, and treated with

undiluted condition media from M1 (GM-CSF) or M2 (M-CSF) macrophages, 25 ng/ml rhActivin A

(Miltenyi Biotec) or 10 ng/ml TGF-β1 (R&D Systems) for 24 hours. When indicated, cells were

preincubated for 30 minutes with 10 μM SB431542 (Sigma), an ALK4, 5 and 7 inhibitor, before

treatment. Activin A activity in M1 supernatants was neutralized using 0.1 μg/ml of a blocking

antibody (R&D Systems). In some experiments, cells were cotransfected with 0.4 μg of expression

vectors for a dominant negative mutant of either Smad2 26 or Smad3 27. To normalize transfection

efficiency, cells were co-transfected with an SV40 promoter-based β-galactosidase expression

plasmid (RSV-βgal). Measurement of relative luciferase units and β-galactosidase activity were

performed using the Dual-Glo Luciferase Assay System (Promega) and the Galacto-Ligth kit

(Tropix), respectively, in a Varioskan Flash spectral scanning multimode reader (Thermo Scientific).

Quantitative real-time RT-PCR.- Oligonucleotides for selected genes were designed according to

the Roche software for quantitative real time PCR. Total RNA from M1 and M2 macrophages was

extracted using the RNAeasy kit (Qiagen), retrotranscribed and amplified using the Universal Human

Probe Roche library (Roche Diagnostics). Assays were made in triplicates and results normalized

according to the expression levels of 18S RNA and GAPDH. Results were expressed using

the ΔΔCT method for quantitation.

60

Page 59: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

RESULTS

M1 (GM-CSF)-conditioned medium prevents acquisition of Folate Receptor β (FRβ) expression.-

Expression of cell surface FRβ, encoded by the FOLR2 gene, identifies IL-10-producing ex vivo

isolated Tumor-Associated Macrophages (TAM) 20, as well as M2 (M-CSF), but not M1 (GM-CSF),

in vitro polarized macrophages (Figure 1A). FRβ mediates the capture of Folate-FITC by M2 (M-

CSF) polarized macrophages, but not GM-CSF-polarized (M1) macrophages (Figure 1B). That the

differential expression FRβ in M1 and M2 macrophages is due to the opposite effect of GM-CSF and

M-CSF on FOLR2 gene expression was indicated by the dramatic downregulation of FOLR2 RNA

levels in FRβ-positive M2 (M-CSF) macrophages after exposure to GM-CSF (Figure 1C), and by the

inhibitory effect of M1 (GM-CSF) macrophage-conditiones medium on the FOLR2 RNA induction

that takes place in cytokine-free medium 20 (Figure 1D). In fact, this inhibitory activity was evident

even after a 1/10 dilution of the M1 (GM-CSF)-conditioned medium, which reduced FOLR2 RNA

induction by more than 90% (Figure 1D). Therefore, M1 (GM-CSF) macrophages secrete factor(s)

that prevent the acquisition of the M2 (M-CSF)-specific marker FRβ.

R

elat

ive

mR

NA

leve

ls

4

810

6

2

0 10Mo. 50 100% SN M1

FOLR2D

1% (3)82% (13)

1% (3)1% (4)

M1 M2

A

M1 M2

B

0.2

0.40.6

0.8

1.01.2

FOLR2

Rel

ativ

e m

RN

A le

vels

CGM-CSFM-CSF

FRβControl

Transferrin-Texas Red

Folate-FITC

Rel

ativ

e m

RN

A le

vels

4

810

6

2

0 10Mo. 50 100% SN M1

FOLR2D

1% (3)82% (13)

1% (3)1% (4)

M1 M2

A

M1 M2

B

0.2

0.40.6

0.8

1.01.2

FOLR2

Rel

ativ

e m

RN

A le

vels

CGM-CSFM-CSF

FRβControl

Transferrin-Texas Red

Folate-FITC

Figure 1.- M1 (GM-CSF)-conditioned medium inhibits the M-CSF-induced Folate Receptor β (FRβ) expression.- A. Cell surface expression of FRβ on M1 and M2 macrophages, as determined by flow cytometry using a polyclonal antiserum against human FRβ 23 (empty histogram). As a control, a previously described rabbit pre-immune antiserum 24 was used (filled histogram). The percentage of marker-positive cells and the mean fluorescence intensity (in parenthesis) are indicated. B. FRβ function in M1 and M2 macrophages, as demonstrated by confocal microscopy on cells incubated at 37ºC with Folate-FITC (green fluoresence) and Transferrin-Texas red (red fluorescence). C. FOLR2 mRNA expression levels, as determined by qRT-PCR on M2 (M-CSF) macrophages after replacement of the culture supernatant by either M-CSF- (grey histograms) or GM-CSF-containing complete medium (empty histograms) for 24 hours. Results are expressed as Relative mRNA levels (relative to 18S rRNA levels and referred to the RNA levels in cells maintained in M-CSF-containing medium). Mean and standard deviation of triplicate determinations are shown. D. FOLR2 mRNA expression levels determined by qRT-PCR on monocytes (Mo.) and macrophages exposed to M-CSF for 7 days and either in the absence (0)

61

Page 60: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

or in the presence of different concentrations of M1 (GM-CSF) macrophage-conditioned media (% SN M1). Results are expressed as Relative mRNA levels (relative to 18S rRNA levels and referred to levels detected in peripheral blood monocytes). Mean and standard deviation of triplicate determinations are shown.

M1 (GM-CSF) Macrophages secrete Activin A, which downregulates FOLR2 gene expression.- To

identify M1 (GM-CSF)-derived factors that prevent FRβ induction, we searched for soluble factors

preferentially produced by M1 macrophages. Gene expression profiling 20 revealed that expression of

the INHBA gene, which codes for the Inhibin βA subunit 14,15, is >30-times higher in M1 than in M2

macrophages (log2 M1/M2 = 6.1; p = 5.3 x 10-8, Figure 2A), a difference further verified by qRT-

PCR on independent samples (Figure 2A). In fact, and unlike FOLR2, INHBA RNA expression was

induced in M2 macrophages after exposure to GM-CSF (Figure 2B), and abrogated in fully polarized

M1 (GM-CSF) macrophages upon replacement of their conditioned medium by M-CSF (Figure 2C).

In agreement with RNA data and its inducibility by GM-CSF 28, Activin A protein levels were

considerably higher in M1 (GM-CSF)-conditioned media (Figure 2D), where Activin A levels

continuously increased from the initial stages of the M1 differentiation/polarization process (Figure

2E). Moreover, and although LPS increases circulating Activin A levels in vivo 19, the differential

production of Activin A by both types of macrophages was maintained after LPS stimulation (Figure

2F). Altogether, these results indicate that Activin A expression is differentially regulated by GM-

CSF and M-CSF, and that Activin A expression inversely correlates with FOLR2 gene expression.

1.0

2.0

3.0

4.0

Act

ivin

A (n

g/m

l) M1

M2

#1 #2 #3 #4 #5 #6

Donor

D

1

2

6

Act

ivin

A (n

g/m

l)

Donor # 1 Donor # 2

0 1 3 7 0 1 3 7 days

EM1

M2

log 2

M1

/ M2

INHBA

10

2468

A

qPCRMicroarray

4

812

16

M1 M1+LPS

M2 M2+LPS

Act

ivin

A (n

g/m

l)

FM1

M2

10203040506070 INHBA

Rel

ativ

e m

RN

A le

velsB

0.2

0.40.6

0.8

1.0

INHBA

Rel

ativ

e m

RN

A le

velsC

GM-CSFM-CSF

Addition ReplaceGM-CSF

M-CSF

1.0

2.0

3.0

4.0

Act

ivin

A (n

g/m

l) M1

M2

#1 #2 #3 #4 #5 #6

Donor

D

1

2

6

Act

ivin

A (n

g/m

l)

Donor # 1 Donor # 2

0 1 3 7 0 1 3 7 days

EM1

M2

log 2

M1

/ M2

INHBA

10

2468

A

qPCRMicroarrayqPCRMicroarray

4

812

16

M1 M1+LPS

M2 M2+LPS

Act

ivin

A (n

g/m

l)

FM1

M2

10203040506070 INHBA

Rel

ativ

e m

RN

A le

velsB

0.2

0.40.6

0.8

1.0

INHBA

Rel

ativ

e m

RN

A le

velsC

GM-CSFM-CSF GM-CSFM-CSF

Addition ReplaceGM-CSF

M-CSF

Figure 2.- Activin A is differentially produced by M1 (GM-CSF) and M2 (M-CSF) polarized macrophages.- A. Relative INHBA gene expression in M1 and M2 macrophages, as determined by microarray DNA analysis (empty histograms) and quantitative RT-PCR (grey histograms). B. INHBA mRNA expression levels as determined by qRT-PCR on M2 (M-CSF) macrophages after replacement of the culture supernatant by either M-CSF- (grey histograms) or GM-CSF-containing complete medium (empty histograms) for 24 hours. Results are expressed as Relative mRNA levels (relative to 18S rRNA

62

Page 61: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

levels and referred to the RNA levels in cells maintained in M-CSF-containing medium). Mean and standard deviation of triplicate determinations are shown. C. INHBA mRNA expression levels as determined by qRT-PCR on M1 (GM-CSF) macrophages treated with M-CSF (grey histograms) or GM-CSF (empty histograms) for 24 hours and either in their own conditioned medium (Addition) or after replacement of the culture supernatant (Replace). Results are expressed as Relative mRNA levels (relative to 18S rRNA levels and referred to the RNA levels determined in cells cultured with GM-CSF). D. Determination of Activin A levels released by M1 (GM-CSF) and M2 (M-CSF) macrophages generated from peripheral blood monocytes of six independent donors, as determined by ELISA. Each determination was performed in triplicate, and mean and standard deviations are shown. E. Determination of Activin A release during the differentiation of M1 (GM-CSF) and M2 (M-CSF) macrophages from two independent donors, as determined by ELISA on culture supernatants removed at the indicated time points. Each determination was performed in triplicate, and mean and standard deviations are shown. F. Determination of Activin A levels released by M1 (GM-CSF) and M2 (M-CSF) macrophages either untreated or stimulated with 10 ng/ml LPS for 24 hours. Each determination was performed in triplicate, and mean and standard deviations are shown.

To determine whether INHBA-encoded Activin A affects FOLR2 gene expression, M2 polarization

was accomplished in the presence of recombinant human Activin A. The M-CSF-dependent

acquisition of FOLR2 RNA expression was dose-dependently reduced in the presence of Activin A,

an effect that could be observed both during (3 days) and at the end (7 days) of the

macrophage/polarization process (Figure 3A,B). Moreover, Activin A also reduced the FOLR2 RNA

upregulation that takes place in the absence of exogenous M-CSF (Figure 3B). Therefore, Activin A

inhibits the acquisition of FOLR2 RNA expression in differentiating macrophages. Consequently, it

can be concluded that the differential expression of FRβ on M1 and M2 macrophages is a

consequence of the opposite actions of GM-CSF and M-CSF on INHBA gene expression.

M-CSFGM-CSFAct. A 2.5 ng/mlAct. A 25 ng/ml

100

200

150

50

FOLR2

Mo.Rel

ativ

e m

RN

A le

velsBA

Rel

ativ

e m

RN

A le

vels FOLR2

0.4

0.8

1.21.0

0.6

0.2

0.4

0.8

1.0

0.6

0.2

FOLR2

M-CSF GM-CSF M-CSF+Act. A

3 days 7 days M-CSFGM-CSFAct. A 2.5 ng/mlAct. A 25 ng/ml

100

200

150

50

FOLR2

Mo.Rel

ativ

e m

RN

A le

velsBA

Rel

ativ

e m

RN

A le

vels FOLR2

0.4

0.8

1.21.0

0.6

0.2

0.4

0.8

1.0

0.6

0.2

FOLR2

M-CSF GM-CSF M-CSF+Act. A

3 days 7 days

Figure 3.- Activin A inhibits Folate Receptor β (FRβ) expression.- A. FOLR2 mRNA expression levels as determined by qRT-PCR on macrophages differentiated for 3 days (left panel) or 7 days (right panel) in the presence of M-CSF, GM-CSF or M-CSF plus Activin A (Act. A). Results are expressed as Relative mRNA levels (relative to 18S rRNA levels and referred to the expression level observed in the presence of M-CSF), and shown is the mean and standard deviation of triplicate determinations. B. FOLR2 mRNA expression levels determined by qRT-PCR on monocytes (Mo.) or macrophages differentiated in the presence of the indicated cytokine combinations. Results are expressed as Relative mRNA levels (relative to 18S rRNA levels and referred to the expression level in monocytes), and shown is the mean and standard deviation of triplicate determinations.

63

Page 62: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Activin A contributes to M1 (GM-CSF) Macrophage polarization.- Considering the above results,

we assessed the influence of Activin A on genes whose expression, like FOLR2, is significantly

higher in M2 (MCSF) than in M1 (GM-CSF) macrophages 20 (Figure 4A). After a 7-day M-CSF-

driven polarization, Activin A was capable of inhibiting the M-CSF-dependent induction of MAF,

HTR2B, SEPP1, IGF1 and F13A1, and abrogating that of SERPINB2, whereas it had no inhibitory

effect on HS3ST1 gene expression (Figure 4B). Therefore, Activin A inhibits the expression of genes

preferentially upregulated during M-CSF-dependent polarization. On the other hand, and since the

upregulation of other M2 (M-CSF)-specific genes like MAFB or HMOX1 is not affected by Activin

A but prevented by GM-CSF (Supplementary Figure 1), it is tempting to conclude that the combined

action of both GM-CSF and Activin A limits the acquisition of M2 (M-CSF) macrophage markers

during the M-CSF-dependent polarization.

B

Rel

ativ

e m

RN

A le

vels

0.4

0.8

1.0

0.6

0.2

0.4

0.81.0

0.6

0.2

HTR2B

0.4

0.8

1.0

0.6

0.2

MAF SEPP1

0.4

0.8

1.0

0.6

0.2

IGF1

0.4

0.81.0

0.6

0.2

SERPINB2

1.0

2.0

1.5

0.5

HS3ST1

0.4

0.8

1.0

0.6

0.2

F13A1

Rel

ativ

e m

RN

A le

vels

M-CSF GM-CSF M-CSF+Act. A

F13A1 SERPINE1SERPINB2

log 2

M1

/ M2

10

-4-2

2468

-8-6

MAFHTR2BSEPP1IGF1

A

qPCRMicroarray

4.4 x 10-7 3.9 x 10-12 2.0 x 10-2 4.2 x 10-4 3.6 x 10-7 5.4 x 10-3

1.2 x 10-2

B

Rel

ativ

e m

RN

A le

vels

0.4

0.8

1.0

0.6

0.2

0.4

0.81.0

0.6

0.2

HTR2B

0.4

0.8

1.0

0.6

0.2

MAF SEPP1

0.4

0.8

1.0

0.6

0.2

IGF1

0.4

0.81.0

0.6

0.2

SERPINB2

1.0

2.0

1.5

0.5

HS3ST1

0.4

0.8

1.0

0.6

0.2

F13A1

Rel

ativ

e m

RN

A le

vels

M-CSF GM-CSF M-CSF+Act. AM-CSF GM-CSF M-CSF+Act. A

F13A1 SERPINE1SERPINB2

log 2

M1

/ M2

10

-4-2

2468

-8-6

MAFHTR2BSEPP1IGF1

A

qPCRMicroarray

4.4 x 10-7 3.9 x 10-12 2.0 x 10-2 4.2 x 10-4 3.6 x 10-7 5.4 x 10-3

1.2 x 10-2

Figure 4.- Effect of Activin A on the acquisition of M2 (M-CSF)-specific markers.- A. Relative expression of the indicated genes in M1 (GM-CSF)- and M2 (M-CSF)-polarized macrophages, as determined by microarray DNA analysis (empty histograms) and quantitative RT-PCR (grey histograms). B. MAF, HTR2B, SEPP1, IGF1, SERPINB2, F13A1 and HS3ST1 mRNA expression levels as determined by qRT-PCR on macrophages differentiated for 7 days in the presence of M-CSF, GM-CSF or M-CSF plus Activin A (Act. A). Results are expressed as Relative mRNA levels (relative to 18S rRNA levels and referred to the expression level observed in the presence of M-CSF), and shown is the mean and standard deviation of triplicate determinations.

64

Page 63: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Because of its continuous presence during GM-CSF-mediated polarization, we hypothesized that

Activin A could shape the phenotypic and functional polarization state of macrophages in an

autocrine/paracrine manner. It has been proposed that Activin A is a Th2-polarizing cytokine 17 and,

therefore, its effects on the expression of genes preferentially found in both M1 (GM-CSF) and IL-4-

activated macrophages 29 was evaluated. Activin A did not modify the expression of TM4SF1,

MMP12 and CCL17, which are preferentially expressed by M1 (GM-CSF) macrophages

(Supplementary Figure 2A), or ILR1N, a known Actinin A target gene 30 (Supplementary Figure 2B).

By contrast, the presence of Activin A enhanced SERPINE1 RNA levels, which are significantly

higher in M1 (GM-CSF) macrophages (Figure 5A). Therefore Activin A contributes to shaping the

phenotypic polarization of M1 (GM-CSF) macrophages.

Next, conditioned medium from M1 (GM-CSF) macrophages was analyzed for Activin A-dependent

functions. Activin A has tumour suppressive properties and contributes to cancer cell growth arrest 31,32, and results indicated that M1 (GM-CSF) macrophage-conditioned medium inhibits the growth

of K562 leukemic cells (Figure 5B) and promotes their differentiation into Hemoglobin-expressing

cells (Figure 5C). Moreover, both activities were reduced in the presence of a blocking anti-Activin

A monoclonal antibody (Figure 5B,C). Therefore, M1 (GM-CSF) macrophages release functional

Activin A, what might endow them with the tumor-resistance capability that characterizes M1-

polarized macrophages 33.

20406080

100

M1 M1+

antiActAActA- M2

Rel

ativ

e ce

ll Pr

olife

ratio

n (9

6h)

51

7381 80

106

M1 ActA- M2 M1 M2

Donor # 1 Donor # 2

10

20

30

Ben

zidi

ne+

cells

ActA+

antiActAM1+

antiActAActA

+antiActA

B C

Donor # 1 Donor # 2

0.20.40.60.81.0

SERPINE1

M-CSF

GM-CSF

Activin A

Rel

ativ

e m

RN

A le

vels

A

20406080

100

M1 M1+

antiActAActA- M2

Rel

ativ

e ce

ll Pr

olife

ratio

n (9

6h)

51

7381 80

106

M1 ActA- M2 M1 M2

Donor # 1 Donor # 2

10

20

30

Ben

zidi

ne+

cells

ActA+

antiActAM1+

antiActAActA

+antiActA

B C

Donor # 1 Donor # 2

0.20.40.60.81.0

SERPINE1

M-CSF

GM-CSF

Activin A

Rel

ativ

e m

RN

A le

vels

A

Figure 5.- Effect of Activin A on the acquisition of M1 (M-CSF)-specific markers and effector functions.- A. SERPINE1 mRNA expression levels as determined by qRT-PCR on macrophages from two independent donors, and treated for 7 days with M-CSF, GM-CSF or Activin A. Results are expressed as Relative mRNA levels (relative to 18S rRNA levels and referred to the expression level observed in the presence of GM-CSF), and shown is the mean and standard deviation of triplicate determinations. B. Proliferation of K562 cells exposed for 96 hours to the indicated conditioned media (M1 or M2) or Activin A, and either in the absence or presence or a blocking anti-Activin A monoclonal antibody. Results are expressed relative to the proliferation observed in untreated cells (Relative cell proliferation). C. Differentiation of K562 cells into Hemoglobin-containing cells (Benzidine+ cells) after exposure for 96 hours to Activin A or the indicated conditioned media (M1 or M2) from two independent donors, and either in the absence or presence or a blocking anti-Activin A monoclonal antibody.

65

Page 64: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Activin A modulates the cytokine-producing profile of M2 (M-CSF) macrophages.- The above

results imply that Activin A actively participates in shaping macrophage polarization. Therefore, the

influence of Activin A on the paradigmatic effector functions of M1 (GM-CSF) and M2 (M-CSF)

macrophages was studied. As reported 10,12, M1 and M2 macrophages differ in terms of T cell

stimulayory activity and cytokine/chemokine release in response to pathogenic stimulation 9,10.

Although M1 (GM-CSF) induced considerable higher T cell proliferation than M2 (M-CSF) in

allogeneic MLR, exposure of the latter to Activin A did not modify their T cell stimulatory ability

(Supplementary Figure 3), indicating that M1 (GM-CSF)-derived Activin A is not responsible for the

high T cell stimulary activity of M1 (GM-CSF) macrophages. Regarding cytokine release, and in

agreement with previous reports 10, LPS stimulation led to production of significant levels of pro-

inflammatory cytokines (TNFα, IL-12p40, IL-6) and acquisition of dendritic cell maturation ability

(Supplementary Figure 4) by M1 (GM-CSF) macrophages, whereas M2 (M-CSF) produced high

levels of IL-10 and low (TNFα) or undetectable (IL-6, IL12p40) levels of pro-inflammatory

cytokines (Figure 6A). However, the presence of Activin A significantly reduced the release of IL-10

from LPS-stimulated M2 (M-CSF) macrophages, although it had no effect on the production of

TNFα (Figure 6B). This result indicates that Activin A negatively regulates IL-10 production from

M2 (M-CSF) macrophages, and suggests that Activin A contributes to the potent pro-inflammatory

nature of M1 (GM-CSF) macrophages by inhibiting IL-10 production. Moreover, macrophages

exposed to Activin A during the M-CSF-driven polarization process exhibited a highly diminished

production of IL-10 in response to LPS (Figure 6B). Therefore, Activin A also interferes with the

acquisition of the IL-10-producing ability by M2 (M-CSF) macrophages. This result further supports

the involvement of Activin A in shaping macrophage polarization by impairing the acquisition of an

anti-inflammatory phenotype and cytokine profile.

66

Page 65: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

A

50100150200250300

IL-1

0 (p

g/m

l)

50010001500200025003000

IL-1

2p40

(pg/

ml)

100200300400500600700

TN

Fα(p

g/m

l)

M1

IL-6

(pg/

ml)

1000200030004000500060007000

M1/LPS M2 M2/LPS

B

LPS LPSActA

M2

LPS LPSActA

M2 ActA

20406080

100

Rel

ativ

e le

vels

of

LPS

-indu

ced

IL-1

0

4080

120160200

Rel

ativ

e le

vels

of

LPS

-indu

ced

TN

p=0.003

p=0.01

A

50100150200250300

IL-1

0 (p

g/m

l)

50010001500200025003000

IL-1

2p40

(pg/

ml)

100200300400500600700

TN

Fα(p

g/m

l)

M1

IL-6

(pg/

ml)

1000200030004000500060007000

M1/LPS M2 M2/LPS

B

LPS LPSActA

M2

LPS LPSActA

M2 ActA

20406080

100

Rel

ativ

e le

vels

of

LPS

-indu

ced

IL-1

0

4080

120160200

Rel

ativ

e le

vels

of

LPS

-indu

ced

TN

p=0.003

p=0.01

Figure 6.- Effect of Activin A on the LPS-induced cytokine profile of polarized macrophages.- A. Determination of IL-12p40, IL-6, IL-10 and TNFα release by ELISA in culture supernatants of M1 and M2 macrophages either untreated or stimulated with LPS (10 ng/ml) for 24 hours. Each determination was performed in triplicate, and mean and standard deviations are shown. B. Determination of IL-10 and TNFα release by ELISA in culture supernatant of M2 macrophages differentiated in the absence (M2) or presence of Activin A (M2 ActA), and either unstimulated or stimulated with LPS (10 ng/ml) for 24 hours in the presence or absence of Activin A. Each determination was performed in triplicate, and mean and standard deviations are shown.

Activin A-initiated signaling during macrophage polarization.- Since Activin A activates Smad2 16,

Smad2 phosphorylation was determined in unstimulated and LPS-stimulated macrophages. Smad2

was constitutively phosphorylated in M1 (GM-CSF) macrophages, and LPS treatment did not modify

its phosphorylation state (Figure 7A). By contrast, no Smad2 phosphorylation was detected in either

untreated or after LPS-stimulated M2 (M-CSF) macrophages (Figure 7A). The absence of Smad2

activation in M2 macrophages was not due to a defective Activin/Smad signaling pathway, as

Activin A treatment of M2 macrophages readily led to overt Smad2 phosphorylation (Figure 7B). A

definitive support for an Activin A role in shaping M1 (GM-CSF) macrophage polarization was

obtained through evaluation of the transcriptional effects of M1 (GM-CSF)-derived Activin A. Like

TGFβ and recombinant Activin A, M1 (GM-CSF)-conditioned medium transactivated the Smad2-

dependent p3TP-Lux reporter construct (p = 0.0008), whereas supernatants from M2 (M-CSF)

macrophages had no effect (Figure 7C). Importantly, the transactivation ability of the M1 (GM-

CSF)-conditioned medium was abolished (p = 0.015) by SB431542, an inhibitor of ALK4, ALK5

67

Page 66: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

and ALK7 receptors which prevents Smad2 phosphorylation 34 (Figure 7C), by cotransfection of a

dominant negative form of Smad2 (Figure 7C) and by a blocking antibody against human Activin A

(p = 0.0001) (Figure 7C). Altogether, this set of results demonstrate that M1 (GM-CSF) macrophage-

derived Activin A activates Smad2, and modulates gene expression in macrophages and other cell

types, thus providing a molecular basis for its macrophage polarization shaping ability.

β-actin

M2/LPSM1/LPShours0 0.5 2 0 0.5 2pSmad2

Smad2

A

n.s.

C

RL

U (L

uc/β

-Gal

)x10

0

Act. AM1 SNM2 SN

---

SB431542 anti.-Act.A

Smad2(d.n.)

Smad3(d.n.)

TGF-β1

2468

10121416

p=0.0008

p=0.0001

p=0.015

pSmad2

GAPDH

M2- +Act.A

B

β-actin

M2/LPSM1/LPShours0 0.5 2 0 0.5 2pSmad2

Smad2

A

n.s.

C

RL

U (L

uc/β

-Gal

)x10

0

Act. AM1 SNM2 SN

---

SB431542 anti.-Act.A

Smad2(d.n.)

Smad3(d.n.)

TGF-β1

2468

10121416

p=0.0008

p=0.0001

p=0.015

pSmad2

GAPDH

M2- +Act.A

B

Figure 7.- Smad2 is constitutively phosphorylated in M1 (GM-CSF) macrophages, whose Activin A release activates Smad-dependent reporter genes.- A. Detection of activated and total Smad2 on lysates of untreated or LPS-treated M1 and M2 macrophages, as determined by Western blot. β-actin expression levels were determined in parallel as a loading control. B. Detection of activated Smad2 on lysates of untreated or Activin A-treated M2 macrophages, as determined by Western blot. GAPDH expression levels were determined in parallel as a loading control. C. Transcriptional activity of the p3TP-Lux reporter construct in Mv1Lu cells either unstimulated or exposed to 10 ng/ml TGFβ1, 25 μg/ml Activin A, or conditioned medium from M1 (M1 SN) or M2 (M2 SN) macrophages. When indicated, cells were either preincubated for 30 minutes with 10 μM SB431542 before treatment, maintained in culture medium with 0.1 μg/ml of an anti-Activin A (anti-Act.A) or cotransfected with expression vectors coding for dominant negative mutants of either Smad2 (Smad2 d.n.) or Smad3 (Smad3 d.n.). For normalization purposes, cells were co-transfected with the RSV-β-gal expression plasmid, and results are presented as RLU (Relative Light Units), which indicate the units of luciferase activity per unit of β-galactosidase activity for each assay condition. Experiments were performed in triplicate, and shown are the mean and standard deviation.

Tumor-conditioned media modulates Activin A expression.- Since INHBA mRNA levels pro-

inflammatory macrophages and tumors-derived factors polarize macrophages towards an

alternative/anti-inflammatory state 35, we hypothesized that the expression of INHBA and FOLR2

mRNA could be also oppositely modulated in the presence of tumor-conditioned media. To test this

hypothesis, Activin A-expressing M1 (GM-CSF) macrophages were exposed to ascitic fluid from

three independent metastatic gastric carcinomas or a metastatic colon carcinoma. As shown in Figure

8, the presence of the tumor-derived media caused a great reduction in the levels of INHBA mRNA

expression, that is compatible with tumor-derived factors promoting a shift in macrophage

polarization. In fact, and in agreement with its preferential expression in anti-inflammatory

macrophages 20, FOLR2 mRNA levels exhibited a concomitant increase in those M1 (GM-CSF)

macrophages that had been exposed to the ascitic fluid with a more potent inhibitory action on

68

Page 67: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

INHBA mRNA expression (Figure 8). Altogether these results confirm the modulatory action that

tumor-derived factors have on macrophage polarization, and indicate that both INHBA and FOLR2

mRNA levels are adequate markers for pro-inflammatory M1 and anti-inflammatory M2

macrophages.

0,16

0,47

0,07 0,1

0,56

INHBA1.0

1

Nor

mal

ized

rel

ativ

e m

RN

A le

vels

11,02

7,46

1.01

5

10

0,03

Colon# 2# 1

Gastric carcinoma

# 3

FOLR2

0,160,16

0,470,47

0,07 0,1

0,560,56

INHBA1.0

1

Nor

mal

ized

rel

ativ

e m

RN

A le

vels

11,02

7,46

1.01

5

10

0,030,03

Colon# 2# 1

Gastric carcinoma

# 3

FOLR2

Figure 8.- Tumor-conditioned media oppositely modulates INHBA and FOLR2 mRNA in pro-inflammatory M1 (GM-CSF) macrophages.- INHBA and FOLR2 mRNA levels were determined in M1 (GM-CSF) macrophages exposed for 24 hours to a 1:1 dilution of ascitic fluid from the indicated metastatic tumors. Results are expressed as Normalized Relative mRNA levels according to GAPDH mRNA levels and relative to the respective mRNA levels present in M1 (GM-CSF) macrophages maintained under normal culture conditions. Shown is the mean and standard deviation of triplicate determinations.

69

Page 68: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

DISCUSSION

Macrophage differentiation and polarization are critically determined by the cellular environment,

which also dictates cytokine responsiveness 36. The search for the mechanisms underlying GM-CSF-

and M-CSF-driven macrophage differentiation and the acquisition of anti-inflammatory M2 (M-CSF)

macrophage markers has led to the identification of Activin A as a factor that shapes macrophage

polarization in response to GM-CSF, and whose presence limits the production of IL-10 and prevents

the expression of genes associated to M2 macrophage polarization. The relevance of the Activin A

expression by macrophages is underscored by its downregulation in the presence of tumor-

conditioned media. Since tumors skew macrophage polarization towards the acquisition of

alternative/M2 phenotypic and functional characteristics 37, the downmodulation of Activin A by

tumor-derived ascitic fluids strongly suggests that Activin A constitutes a useful marker for the

identification of TAM whose polarization state has not yet been fully modulated by the tumor

microenvironment. Whereas the identity of the tumor-derived factors that downmodulate Activin A

is currently unknown, it is tempting to speculate that M-CSF might be a contributing factor, specially

considering its negative regulatory effect on INHBA mRNA expression in vitro (Figure 2) and its the

positive regulatory action on FOLR2 mRNA levels.

The ability of Activin A to trigger Arginase-1 expression and inhibit IFNγ-induced NO synthase

expression has led to the suggestion that it functions as a Th2 cytokine that promotes alternative

murine macrophage activation 17. However, although M1 macrophages release high levels of Activin

A, they do not display any of the phenotypic makers that characterize alternatively activated human

macrophages 29 (Puig-Kröger, Sierra-Filardi, Vega and Corbí, unpublished). Activin exhibits both

pro- or anti-inflammatory activities 19, and is synthesized by monocytes/macrophages in response to

inflammatory stimuli. Although it does not elicit TNF-α release by itself, Activin A stimulates the

production of IL-1, IL-6 and TNF-α by human monocytes and macrophages, inhibits IL-10 effects

on prostatic epithelial cells 38, and its inhibition by follistatin leads to reduced levels of LPS-induced

IL-1 and TNF-α 19. Activin A production by activated monocytes/macrophages is PKC-dependent 39,

and is promoted by LPS 19 and pro-inflammatory agents like TNFα 40 or IL1β 41. The link between

pro-inflammatory macrophage polarization and Activin A is further illustrated by the fact that

Activin A expression is inhibited by anti-inflammatory agents like glucorticoids and retinoic acid 28.

Since factors promoting M1/classical macrophage polarization enhance Activin A production, its

expression might be a common parameter of M1-polarized macrophages, as well as a critical

contributor to their phenotype and effector functions. In this regard, since M1 (GM-CSF)

macrophages express type I (ALK4, ACR1B) and type II (ACVR2A, ACVR2B) Activin A receptors

mRNA (data not shown), it can be predicted that Activin A influences the gene expression profile of

70

Page 69: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

M1 polarized macrophages in a paracrine/autocrine manner. This appears to be true, at least

considering the state of phosphorylation od Smad2 in M1 (GM-CSF) macrophages. Smad2

phosphorylation is induced upon Activin A binding to its cell surface receptors 14, and Smad2 was

found to be phosphorylated in unstimulated M1 macrophages, whereas no Smad2 activation was

observed in M2 macrophages (Figure 6C). The constitutive activation of Smad2 in M1 (GM-CSF)

macrophages undoubtfully suggests that a prominent role for Activin A (and/or TGFβ family factors)

in shaping the inflammatory response of M1 macrophages to exogenous stimuli.

The identity of the genes specifically upregulated by Activin A in M1 (GM-CSF) macrophages

remains to be determined, although we have alredy shown that SERPINE1 expression is clearly

enhanced when macrophage polarization takes place in the presence of Activin A. Conversely,

various M2 (M-CSF)-specific markers have already been identified whose expression is either

prevented or downmodulated by Activin A (Figure 4), thus leading to the conclusion that Activin A

negatively affects the acquisition of genes preferentially expressed by anti-inflammatory

macrophages. This effect is particularly relevtant in the case of IL-10, whose release constitutes a

hallmark of stimulated M2 (M-CSF) macrophages 10. In the specific case of IL-10, it is worth noting

that its transcription in macrophages is dependent on the cMaf transcription factor42, that also

suppresses IL-12p70 production 43. The expression of the cMaf transcription factor is significantly

higher in M2 (M-CSF) than in M1 (GM-CSF) macrophages, both the RNA (Figure 4) and protein

level (data not shown), and, like in the case of Th2 lymphocyte polarization 44, its expression seems

to mark the acquisition of the anti-inflammatory phenotype by M2 macrophages. Importantly,

Activin A inhibits the M-CSF-dependent acquisition of MAF RNA expression, what might constitute

the molecular basis for its negative effect on the production of IL-10 by LPS-stimulated M2 (M-CSF)

macrophages.

In summary, the present manuscript identifies Activin A as a relevant contributor to the differential

gene expression profile exhibited by pro-inflammatory and anti-inflammatory macrophages. The

importance of Activin A in macrophage polarization is supported by its ability to reduce IL-10

production by anti-inflammatory macrophages, and to inhibit the acquisition of the IL-10-producing

ability during M-CSF-driven polarization. The identification of a set of M2 (M-CSF) macrophage-

specific genes whose expression is found in Tumor-Associated Macrophages 20 (and data not shown)

and negatively affected by Activin provides potential therapeutic targets for the modulation of the

macrophage inflammatory response under pathological conditions.

71

Page 70: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

ACKNOWLEDGMENTS

The autors gratefully acknowledge Dr. Carmen Sánchez-Torres for valuable discussions and

suggestions.

72

Page 71: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

REFERENCES

1. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953-964.

2. Blumenthal RL, Campbell DE, Hwang P, DeKruyff RH, Frankel LR, Umetsu DT. Human alveolar macrophages induce functional inactivation in antigen-specific CD4 T cells. J Allergy Clin Immunol. 2001;107:258-264.

3. Mues B, Langer D, Zwadlo G, Sorg C. Phenotypic characterization of macrophages in human term placenta. Immunology. 1989;67:303-307.

4. Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW, Jr., et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci U S A. 1990;87:4828-4832.

5. Stanley E, Lieschke GJ, Grail D, et al. Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci U S A. 1994;91:5592-5596.

6. Komuro I, Yokota Y, Yasuda S, Iwamoto A, Kagawa KS. CSF-induced and HIV-1-mediated distinct regulation of Hck and C/EBPbeta represent a heterogeneous susceptibility of monocyte-derived macrophages to M-tropic HIV-1 infection. J Exp Med. 2003;198:443-453.

7. Akagawa KS. Functional heterogeneity of colony-stimulating factor-induced human monocyte-derived macrophages. Int J Hematol. 2002;76:27-34.

8. Li G, Kim YJ, Broxmeyer HE. Macrophage colony-stimulating factor drives cord blood monocyte differentiation into IL-10(high)IL-12absent dendritic cells with tolerogenic potential. J Immunol. 2005;174:4706-4717.

9. Verreck FA, de Boer T, Langenberg DM, van der Zanden L, Ottenhoff TH. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J Leukoc Biol. 2006;79:285-293.

10. Verreck FA, de Boer T, Langenberg DM, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci U S A. 2004;101:4560-4565.

11. Hamilton JA. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol. 2008;8:533-544.

12. Fleetwood AJ, Lawrence T, Hamilton JA, Cook AD. Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J Immunol. 2007;178:5245-5252.

13. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23-35.

14. Chen YG, Wang Q, Lin SL, Chang CD, Chuang J, Ying SY. Activin signaling and its role in regulation of cell proliferation, apoptosis, and carcinogenesis. Exp Biol Med (Maywood). 2006;231:534-544.

15. Phillips DJ. Regulation of activin's access to the cell: why is mother nature such a control freak? Bioessays. 2000;22:689-696.

16. Xia Y, Schneyer AL. The biology of activin: recent advances in structure, regulation and function. J Endocrinol. 2009;202:1-12.

17. Ogawa K, Funaba M, Chen Y, Tsujimoto M. Activin a functions as a th2 cytokine in the promotion of the alternative activation of macrophages. J Immunol. 2006;177:6787-6794.

18. Robson NC, Phillips DJ, McAlpine T, et al. Activin-A: a novel dendritic cell-derived cytokine that potently attenuates CD40 ligand-specific cytokine and chemokine production. Blood. 2008;111:2733-2743.

73

Page 72: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

19. Jones KL, Mansell A, Patella S, et al. Activin A is a critical component of the inflammatory response, and its binding protein, follistatin, reduces mortality in endotoxemia. Proc Natl Acad Sci U S A. 2007;104:16239-16244.

20. Puig-Kroger A, Sierra-Filardi E, Dominguez-Soto A, et al. Folate Receptor {beta} Is Expressed by Tumor-Associated Macrophages and Constitutes a Marker for M2 Anti-inflammatory/Regulatory Macrophages. Cancer Res. 2009.

21. Gratchev A, Kzhyshkowska J, Kothe K, et al. Mphi1 and Mphi2 can be re-polarized by Th2 or Th1 cytokines, respectively, and respond to exogenous danger signals. Immunobiology. 2006;211:473-486.

22. Vivien D, Attisano L, Wrana JL, Massague J. Signaling activity of homologous and heterologous transforming growth factor-beta receptor kinase complexes. J Biol Chem. 1995;270:7134-7141.

23. Ross JF, Wang H, Behm FG, et al. Folate receptor type beta is a neutrophilic lineage marker and is differentially expressed in myeloid leukemia. Cancer. 1999;85:348-357.

24. Serrano-Gomez D, Sierra-Filardi E, Martinez-Nunez RT, et al. Structural Requirements for Multimerization of the Pathogen Receptor Dendritic Cell-specific ICAM3-grabbing Non-integrin (CD209) on the Cell Surface. J Biol Chem. 2008;283:3889-3903.

25. Wrana JL, Attisano L, Carcamo J, et al. TGF beta signals through a heteromeric protein kinase receptor complex. Cell. 1992;71:1003-1014.

26. Petritsch C, Beug H, Balmain A, Oft M. TGF-beta inhibits p70 S6 kinase via protein phosphatase 2A to induce G(1) arrest. Genes Dev. 2000;14:3093-3101.

27. Shi Y, Wang YF, Jayaraman L, Yang H, Massague J, Pavletich NP. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling. Cell. 1998;94:585-594.

28. Yu J, Shao LE, Frigon NL, Jr., Lofgren J, Schwall R. Induced expression of the new cytokine, activin A, in human monocytes: inhibition by glucocorticoids and retinoic acid. Immunology. 1996;88:368-374.

29. Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol. 2006;177:7303-7311.

30. Ohguchi M, Yamato K, Ishihara Y, et al. Activin A regulates the production of mature interleukin-1beta and interleukin-1 receptor antagonist in human monocytic cells. J Interferon Cytokine Res. 1998;18:491-498.

31. Razanajaona D, Joguet S, Ay AS, et al. Silencing of FLRG, an antagonist of activin, inhibits human breast tumor cell growth. Cancer Res. 2007;67:7223-7229.

32. Ramachandran A, Marshall ES, Love DR, Baguley BC, Shelling AN. Activin is a potent growth suppressor of epithelial ovarian cancer cells. Cancer Lett. 2009;285:157-165.

33. Sica A, Larghi P, Mancino A, et al. Macrophage polarization in tumour progression. Semin Cancer Biol. 2008;18:349-355.

34. Inman GJ, Nicolas FJ, Callahan JF, et al. SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 2002;62:65-74.

35. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell;141:39-51.

36. Erwig LP, Kluth DC, Walsh GM, Rees AJ. Initial cytokine exposure determines function of macrophages and renders them unresponsive to other cytokines. J Immunol. 1998;161:1983-1988.

37. Allavena P, Sica A, Garlanda C, Mantovani A. The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev. 2008;222:155-161.

38. Jones KL, de Kretser DM, Patella S, Phillips DJ. Activin A and follistatin in systemic inflammation. Mol Cell Endocrinol. 2004;225:119-125.

74

Page 73: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

75

39. Eramaa M, Hurme M, Stenman UH, Ritvos O. Activin A/erythroid differentiation factor is induced during human monocyte activation. J Exp Med. 1992;176:1449-1452.

40. Mohan A, Asselin J, Sargent IL, Groome NP, Muttukrishna S. Effect of cytokines and growth factors on the secretion of inhibin A, activin A and follistatin by term placental villous trophoblasts in culture. Eur J Endocrinol. 2001;145:505-511.

41. Abe M, Shintani Y, Eto Y, et al. Interleukin-1 beta enhances and interferon-gamma suppresses activin A actions by reciprocally regulating activin A and follistatin secretion from bone marrow stromal fibroblasts. Clin Exp Immunol. 2001;126:64-68.

42. Cao S, Liu J, Song L, Ma X. The protooncogene c-Maf is an essential transcription factor for IL-10 gene expression in macrophages. J Immunol. 2005;174:3484-3492.

43. Homma Y, Cao S, Shi X, Ma X. The Th2 transcription factor c-Maf inhibits IL-12p35 gene expression in activated macrophages by targeting NF-kappaB nuclear translocation. J Interferon Cytokine Res. 2007;27:799-808.

44. Rengarajan J, Szabo SJ, Glimcher LH. Transcriptional regulation of Th1/Th2 polarization. Immunol Today. 2000;21:479-483.

Page 74: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Supplementary Figures

M-CSFM-CSF+GM-CSFM-CSF+Act. A

Rel

ativ

e m

RN

A le

vels MAFB

0.4

0.8

1.21.0

0.6

0.2

MAF

0.4

0.8

1.21.0

0.6

0.2

HMOX1

0.4

0.8

1.21.0

0.6

0.2

M-CSFM-CSF+GM-CSFM-CSF+Act. A

M-CSFM-CSF+GM-CSFM-CSF+Act. A

Rel

ativ

e m

RN

A le

vels MAFB

0.4

0.8

1.21.0

0.6

0.2

MAFB

0.4

0.8

1.21.0

0.6

0.2

MAF

0.4

0.8

1.21.0

0.6

0.2

HMOX1

0.4

0.8

1.21.0

0.6

0.2

Supplementary Figure 1.- MAF, MAFB and HMOX1 mRNA expression levels as determined by qRT-PCR on macrophages exposed for 3 days to M-CSF, M-CSF plus GM-CSF or M-CSF plus Activin A (Act. A). Results are expressed as Relative mRNA levels (relative to 18S rRNA levels and referred to the expression level observed in the presence of M-CSF). Shown is the mean and standard deviation of triplicate determinations.

2000

4000

6000

8000

CCL17 IL1RN TM4SF1MMP12

10

20

30

100

200

300

20

40

60

B

RPMIGM-CSFActivin A

Rel

ativ

e m

RN

A le

vels

log 2

M1

/ M2

TM4SF1 MMP12

10

2

468

12CCL17A

qPCRMicroarray

2000

4000

6000

8000

CCL17 IL1RN TM4SF1MMP12

10

20

30

100

200

300

20

40

60

B

RPMIGM-CSFActivin A

Rel

ativ

e m

RN

A le

vels

log 2

M1

/ M2

TM4SF1 MMP12

10

2

468

12CCL17A

qPCRMicroarray

Supplementary Figure 2.- A. Relative expression of the indicated genes in M1 and M2 macrophages, as determined by microarray analysis (empty histograms) and quantitative RT-PCR (grey histograms). B. CCL17, IL1RN, MMP12 and TM4SF1 mRNA expression levels determined by qRT-PCR on macrophages differentiated for 3 days in the absence or in the presence of GM-CSF or Activin A. Results are expressed as Relative mRNA levels (relative to 18S rRNA levels and referred to the expression level observed in the absence of cytokines), and shown is the mean and standard deviation of triplicate determinations.

77

Page 75: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

2468

101214161820

M1 M2 M2+Act.A

Prol

ifera

tion

(cpm

x 1

0-3)B

10

20

30

40

M1 M2

Prol

ifera

tion

(cpm

x 1

0-3)

1:2001:401:8

A1:401:8

2468

101214161820

M1 M2 M2+Act.A

Prol

ifera

tion

(cpm

x 1

0-3)B

10

20

30

40

M1 M2

Prol

ifera

tion

(cpm

x 1

0-3)

1:2001:401:8

A1:401:8

Supplementary Figure 3.- M1 or M2 macrophages (A,B), or M2 macrophages differentiated with M-CSF in the presence of Activin A (Act. A) (B) were irradiated and used to stimulate 2 x 105 allogeneic peripheral blood T lymphocytes at the indicated Macrophage/T cell ratios. After a 5 day co-culture, 3H-thymidine was added to the culture for 16 hours and T cell proliferation determined by measuring the incorporated thymidine. Each experiment was performed in triplicate, and mean and standard deviations are shown.

3.6 (0.4)

8.9 (0.4)

5.3 (0.4)

11.7 (0.5)

11.2 (0.5)

53.3 (1.2)

33.4 (0.8)

28.5 (0.7)

64.7 (1.9)

8.0 (0.4)

5.1 (0.4)

13.4 (0.5)

16.4 (0.5)

26.0 (0.6)

36.3 (0.9)

-

M1

M1/LPS

M2

M2/LPS

P3X63 CD83 CD863.6

(0.4)

8.9 (0.4)

5.3 (0.4)

11.7 (0.5)

11.2 (0.5)

53.3 (1.2)

33.4 (0.8)

28.5 (0.7)

64.7 (1.9)

8.0 (0.4)

5.1 (0.4)

13.4 (0.5)

16.4 (0.5)

26.0 (0.6)

36.3 (0.9)

3.6 (0.4)

8.9 (0.4)

5.3 (0.4)

11.7 (0.5)

11.2 (0.5)

53.3 (1.2)

33.4 (0.8)

28.5 (0.7)

64.7 (1.9)

8.0 (0.4)

5.1 (0.4)

13.4 (0.5)

16.4 (0.5)

26.0 (0.6)

36.3 (0.9)

-

M1

M1/LPS

M2

M2/LPS

P3X63 CD83 CD86

Supplementary Figure 4.- Immature monocyte-derived dendritic cells (MDDC) were exposed to conditioned media from either untreated or LPS (10 ng/ml)-treated M1 and M2 macrophages. After 48 hours, MDDC cell surface expression of CD83 and CD86 was determined by flow cytometry (P3X63, isotype-matched control). The percentage of marker-positive cells (upper number) and the mean fluorescence intensity (lower number) are indicated in each case.

78

Page 76: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Resultados

3. Requerimientos estructurales para la multimerización del receptor de patógenos DC-SIGN (CD209) en la superficie celular

DC-SIGN (Dendritic cell-specific ICAM3- grabbing non-integrin, CD209) es una lectina tipo C

que reconoce oligosacáridos presentes en patógenos con gran relevancia clínica (HIV,

Mycobacterium, Aspergillus). Mediante “splicing” alternativo y polimorfismos genéticos se generan

variantes de DC-SIGN que se detectan a nivel de mRNA en los sitios de entrada y transmisión de

patógenos. En este estudio se demuestra que las células mieloides expresan variantes de DC-SIGN

con diferentes tamaños de cuello, y que la multimerización de DC-SIGN en el contexto celular

depende del dominio lectina y del número y disposición de las repeticiones de la región del cuello,

cuya glicosilación afecta negativamente a la formación de oligómeros. Variantes de la región del

cuello de DC-SIGN que ocurren de forma natural difieren en su capacidad de mediar multimerización

en la membrana celular, exhiben una habilidad alterada de unión de azúcares, y conservan su

capacidad de interacción con patógenos. En consecuencia, se puede concluir que la formación de

agregados de moléculas de DC-SIGN inducida por patógenos predomina sobre la capacidad de

multimerización basal. El análisis de polimorfismos en el cuello de DC-SIGN indica que el número de

variantes alélicas en la población es mayor de lo esperado, y que la multimerización de la molécula

prototípica es modulada por la presencia de variantes alélicas con una estructura de cuello diferente.

Estos resultados demuestran que la presencia de variantes alélicas o la expresión de isoformas de

“splicing” del dominio del cuello pueden influir en la presencia y estabilidad de multímeros de DC-

SIGN en la superficie celular, lo que proporciona una explicación molecular para la asociación entre

polimorfismos de DC-SIGN y la susceptibilidad alterada a HIV y otros patógenos.

79

Page 77: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Structural Requirements for Multimerization of the PathogenReceptor Dendritic Cell-specific ICAM3-grabbingNon-integrin (CD209) on the Cell Surface*□S

Received for publication, July 23, 2007, and in revised form, November 26, 2007 Published, JBC Papers in Press, December 11, 2007, DOI 10.1074/jbc.M706004200

Diego Serrano-Gomez‡1,2, Elena Sierra-Filardi‡1, Rocıo T. Martınez-Nunez‡, Esther Caparros‡, Rafael Delgado§,Mari Angeles Munoz-Fernandez¶, Marıa Antonia Abad�, Jesus Jimenez-Barbero‡, Manuel Leal�, and Angel L. Corbı‡3

From the ‡Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientıficas, Ramiro de Maeztu 9, Madrid 28040,§Laboratorio de Microbiologıa Molecular, Hospital Doce de Octubre, Madrid 28041, the ¶Servicio de Inmunologıa, HospitalGeneral Universitario Gregorio Maranon, Madrid 28007, and the �Servicio de Enfermedades Infecciosas,Hospital Universitario Virgen del Rocıo, Sevilla 41013, Spain

The myeloid C-type lectin dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN, CD209) recognizes oligosac-charide ligands on clinically relevant pathogens (HIV,Mycobac-terium, and Aspergillus). Alternative splicing and genomicpolymorphism generate DC-SIGN mRNA variants, which havebeen detected at sites of pathogen entrance and transmission.We present evidence that DC-SIGN neck variants are expressedon dendritic and myeloid cells at the RNA and protein levels.Structural analysis revealed that multimerization of DC-SIGNwithin a cellular context depends on the lectin domain and thenumber and arrangement of the repeats within the neck region,whose glycosylation negatively affects oligomer formation. Nat-urally occurring DC-SIGN neck variants differ in multimeriza-tion competence in the cell membrane, exhibit altered sugarbinding ability, and retain pathogen-interacting capacity,implying that pathogen-induced cluster formation predomi-nates over the basal multimerization capability. Analysis of DC-SIGN neck polymorphisms indicated that the number of allelicvariants is higher thanpreviously thought and thatmultimeriza-tion of the prototypic molecule is modulated in the presence ofallelic variants with a different neck structure. Our results dem-onstrate that the presence of allelic variants or a high level ofexpression of neck domain splicing isoforms might influencethe presence and stability of DC-SIGN multimers on the cellsurface, thus providing a molecular explanation for the correla-tion betweenDC-SIGN polymorphisms and altered susceptibil-ity to HIV-1 and other pathogens.

Dendritic cells (DCs)4 link the innate and adaptive branchesof the immune response by virtue of their capacity to recognizepathogen-specific structures (1) via pathogen-associatedmolecular pattern receptors (2). Immature DCs express a num-ber of lectins and lectin-likemolecules, which endow themwitha broad capacity for pathogen recognition, as they mediate thespecific recognition of parasitic, bacterial, yeast, and viralpathogens (3, 4). Dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN, CD209) is a type II membrane C-type lec-tin (5, 6) abundantly expressed in vivo onmyeloid DC andmac-rophage subpopulations (5–12), as well as on in vitro generatedmonocyte-derived dendritic cells (MDDCs) and alternativelyactivated macrophages (12–14). DC-SIGN binds a large arrayof pathogens, including HIV (15), Ebola (16), hepatitis C (17–19), and Dengue virus (20) and Leishmania amastigotes andpromastigotes (21, 22), Mycobacterium tuberculosis (23, 24),Aspergillus fumigatus (25), andCandida albicans (26) via man-nan- and Lewis oligosaccharides-dependent interactions (27,28). In addition, DC-SIGN appears to mediate DC contactswith naıve T lymphocytes through its recognition of ICAM-3(6), DC trafficking through interactions with endothelialICAM-2 (8), and DC-neutrophil interactions by interactingwith the CD11b/CD18 integrin (29).Structurally, DC-SIGN contains a carbohydrate-recognition

domain, a neck region composed of eight 23-residue repeats,and a transmembrane region followed by a cytoplasmic tailcontaining recycling and internalization motifs (5, 30–32).Analysis of recombinantmolecules has revealed that themono-meric lectin domain has low affinity for carbohydrates, whereasfull-length DC-SIGN molecules form tetramers through theirneck domain, thus allowing high affinity recognition of specificligands (33–35). In addition to this prototypical structure, alter-native splicing events generate DC-SIGN isoform transcriptswhose presence exhibits inter-individual variations (36). Thenumerous DC-SIGN isoform transcripts reported to dateinclude an alternative cytoplasmic tail, an absent transmem-brane region, truncated lectin domains, and a variable number

* This work was supported in part by the Ministerio de Educacion y Ciencia(Grants SAF2005-0021, AGL2004-02148-ALI, and GEN2003-20649-C06-01/NAC), Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III (Span-ish Network for the Research in Infectious Diseases, Grant REIPIRD06/0008), and Fundacion para la Investigacion y Prevencion del SIDA enEspana (Grant FIPSE 36422/03) (to A. L. C.). The costs of publication of thisarticle were defrayed in part by the payment of page charges. This articlemust therefore be hereby marked “advertisement” in accordance with 18U.S.C. Section 1734 solely to indicate this fact.

□S The on-line version of this article (available at http://www.jbc.org) containssupplemental Figs. S1 and S2.

1 Both authors contributed equally to this work.2 Supported by a Formacion de Profesorado Universitario predoctoral grant

(AP2002-2151) from Ministerio de Educacion y Ciencia (Spain).3 To whom correspondence should be addressed. Tel.: 34-91-837-3112 (ext.

4376); Fax: 34-91-562-7518; E-mail: [email protected].

4 The abbreviations used are: DC, dendritic cell; MDDC, monocyte-deriveddendritic cell; DC-SIGN, dendritic cell-specific ICAM-3-grabbing non-inte-grin; DC-SIGNR, DC-SIGN-related; HIV, human immunodeficiency virus;FITC, fluorescein isothiocyanate; PBS, phosphate-buffered saline; DTSSP,dithiobis(succinimidylpropionate); MFI, mean fluorescence intensity.

THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 283, NO. 7, pp. 3889 –3903, February 15, 2008© 2008 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A.

FEBRUARY 15, 2008 • VOLUME 283 • NUMBER 7 JOURNAL OF BIOLOGICAL CHEMISTRY 3889

at CS

IC - C

entro de Investigaciones Biológicas, on June 10, 2010

ww

w.jbc.org

Dow

nloaded from

http://www.jbc.org/content/suppl/2007/12/12/M706004200.DC1.htmlSupplemental Material can be found at:

81

Page 78: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

of repeats within the neck domain (36). Moreover, the 23-resi-due repeat region of DC-SIGN is polymorphic at the genomiclevel (37, 38). Five different alleles for the DC-SIGN neckdomain have been identified to date, whose presence correlateswith altered susceptibility to HIV-1 transmission (38). Thefunctional relevance of the DC-SIGN neck variants has beenfurther suggested by their detection at mucosal HIV transmis-sion sites (39). Given the involvement of the neck domain inrecombinant DC-SIGNmultimerization, we hypothesized thatthe existence of this large array of polymorphic variants mighthave an impact on the repertoire of pathogen recognition bydendritic cells, as well as on the establishment of interactionsbetween dendritic cells and other cell types. We have charac-terized naturally occurring alternative splicing isoforms, allelicvariants and mutant isoforms of DC-SIGN in terms of surfacereceptor multimerization and adhesive and pathogen-recogni-tion capabilities, and found that the lectin domain contributesto DC-SIGN multimerization on the cell surface, that glycosy-lation of the neck domain negatively regulates formation ofmultimers, and that a neck domain with a single 23-residuerepeat is sufficient to mediate DC-SIGN multimerization onthe cell surface. Functional comparison of the distinct con-structs revealed that the basal multimerization of DC-SIGNdoes not correlate with enhanced binding to endogenous orpathogenic ligands, indicating that pathogen-induced clusterformation predominates over the basal multimerization capa-bility of the DC-SIGNmolecule and is the driving force for theDC-SIGN-dependent pathogen capture and internalization.

EXPERIMENTAL PROCEDURES

Generation of MDDCs

Human peripheral blood mononuclear cells were isolatedfrom buffy coats from healthy donors over a Lymphoprep(Nycomed, Norway) gradient according to standard proce-dures. Monocytes were purified from peripheral blood mono-nuclear cells by magnetic cell sorting using CD14 microbeads(Miltenyi Biotech, Bergisch Gladbach, Germany), and immedi-ately subjected to the dendritic cell differentiation protocol(40). Monocytes were cultured for 5–7 days in completemedium with 1000 units/ml granulocyte macrophage-colonystimulating factor (Schering-Plough, Kenilworth, NJ) and 1000units/ml interleukin-4 (PreProtech, Rocky Hill, NJ) cytokineaddition every second day, to obtain a population of immatureMDDCs.

Cells

The acute monocytic leukemia cell line THP-1, and theerythroleukemic K562 were cultured in RPMI 1640 mediumsupplemented with 10% fetal calf serum (complete medium).COS-7 and HEK293T cells were grown in Dulbecco’s modi-fied Eagle’s medium 10% fetal calf serum. THP-1 differenti-ation was induced by treatment with phorbol 12-myristate13-acetate (10 ng/ml), Bryostatin (10 nM), either alone or incombination with interleukin-4 (1000 units/ml), asdescribed before (14).

Isolation and Structural Characterization of AlternativelySpliced DC-SIGN Isoforms

DC-SIGN isoforms were isolated by reverse transcription-PCR on RNA from MDDCs of a healthy donor. Reverse tran-scription-PCR was performed essentially as described previ-ously (41). DC-SIGN mRNA was optimally amplified after 35cycles of denaturation (95 °C, for 45 s), annealing (62 °C, for45 s), and extension (72 °C, for 1 min), followed by a 10-minextension step at 72 °C.Oligonucleotides used for amplificationof the coding region of the prototypical DC-SIGN isoform 1A(DC-SIGN 1A) mRNA were CD209s (5�-GGGAATTCAGAG-TGGGGTGACATGAGTGAC-3�) and CD209as (5�-CCCCA-AGCTTGTGAAGTTCTGCTACGCAGGAG-3�) (6, 36).Amplification of DC-SIGN isoforms was accomplishedusing the primer pairs CD209s/CD209as, CD209soluble/CD209as, and CD209Ib/CD209as. The oligonucleotideCD209soluble (5�-GATACAAGAGCTTAGCAGTGTCCA-3�) spans through the exon Ic/exon III junction previouslydescribed for potentially soluble transmembrane-lacking DC-SIGN isoforms. The oligonucleotide CD209Ib (5�-GGGAATT-CTGGCCAGCCATGGCCTCAGC-3�) includes the alterna-tive translation initiation site found in exon Ib, which originatesthe DC-SIGN 1B isoforms (Fig. 1A). PCR-generated fragmentswere resolved in agarose gels, purified, sequenced, and clonedinto pCDNA3.1(�) vector.

Identification of DC-SIGN Polymorphic Isoforms andGeneration of His- and FLAG-containing DC-SIGNExpression Vectors

Three DC-SIGN allelic variants (-D3, -D5, and -D7) wereidentified by PCR on genomic DNA from 300 independentdonors. Amplification of the DC-SIGN neck domain-encodingexon was carried out on 300 ng of genomic DNA using oligo-nucleotides CD209-4F, (5�-GGGATTAACCAAGACCTTGG-CTC-3�) and CD209-4R, (5�-CCCAACTTCTCCTAGTCTG-GAGG-3�). After 35 cycles of denaturation (95 °C, for 45 s),annealing (61 °C, for 30 s), and extension (72 °C, for 90 s), fol-lowed by a 10-min extension step at 72 °C, PCR-generated frag-ments were resolved in agarose gels, purified, cloned intopCR4-TOPO vector (Invitrogen), and sequenced.Swapping of the neck domains between the allelic variants

and the prototypic form of DC-SIGN was done after introduc-tion of silentmutations creating restriction sites at Val63 (KpnI)and Ala247/Ala248 (SacII) in pCDNA3.1-DC-SIGN 1A and theallelic variants in pCR4-TOPO. Oligonucleotides used formutagenesis included: DC-SIGN-Val63s (5�-TGTCCAAGTG-TCCAAGGTACCCAGCTCCATAAGTCAG-3�), DC-SIGN-Val63as (5�-CTGACTTATGGAGCTGGGTACCTTGGACA-CTTGGACA-3�), DC-SIGN-247/248s (5�-GCTGACCCA-GCTGAAGGCCGCGGTGGAACGCCTGTGCCAC-3�), andDC-SIGN-247/248as (5�-GTGGCACAGGCGTTCCACCGC-GGCCTTCAGCTGGGTCAGC-3�). The resulting plasmids(pcDNA3.1-DC-SIGN-D3, pcDNA3.1-DC-SIGN-D5, andpcDNA3.1-DC-SIGN-D7) were verified by sequencing.An expression vector for N-terminal-His epitope-containing

DC-SIGN 1A (pCDNA3.1-DC-SIGN 1A-His) was created byPCR on pCDNA3.1-DC-SIGN 1A using oligonucleotides

Expression and Function of DC-SIGN Variants

3890 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 283 • NUMBER 7 • FEBRUARY 15, 2008

at CS

IC - C

entro de Investigaciones Biológicas, on June 10, 2010

ww

w.jbc.org

Dow

nloaded from

http://www.jbc.org/content/suppl/2007/12/12/M706004200.DC1.htmlSupplemental Material can be found at:

82

Page 79: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

CD209His (5�-GGGAATTCGCCACCATGCATCATCAT-CATCATCATAGTGACTCCAAGGAACCAAGAC-3�) andCD209as. Generation of expression vectors for DC-SIGN-D3,-D5, and -D7 with FLAG epitope at the N terminus(pCDNA3.1-DC-SIGN-D3-FLAG, pCDNA3.1-DC-SIGN-D5-FLAG, and pCDNA3.1-DC-SIGN-D7-FLAG) was done by PCRusing oligonucleotides CD209FLAG (5�-GGGAATTCGCCA-CCATGGACTACAAGGACGACGATGACAAGAGTGAC-TCCAAGGAACCAAGAC-3�) and CD209as.

Stable and Transient Transfection of DC-SIGN Mutants andIsoforms

For transient transfections, COS-7 or HEK293T cells weretransfected with SuperFect (Qiagen) using pCDNA3.1-basedexpression plasmids containing the distinct isoforms ormutants of the DC-SIGN cDNA. To generate stable transfec-tants, K562 cells were transfected with pCDNA3.1-based con-structs using SuperFect and cultured in complete medium sup-plemented with 300�g/ml G418 (Invitrogen). Stable DC-SIGNexpression of the selected population was verified using theanti-DC-SIGN MR1 monoclonal antibody (13). Isolation ofK562-DC-SIGN1Aexpressing different levels ofDC-SIGNwasaccomplished by cell sorting after stainingwith theMR1mono-clonal antibody (13).

Site-directed Mutagenesis and Generation of DC-SIGNChimeric Molecules

Site-directed mutagenesis was carried out using theQuikChange site-directedmutagenesis kit (Stratagene, La Jolla,CA) on the pCDNA3-DC-SIGN 1A expression plasmid (13)according to themanufacturer’s instructions. Oligonucleotidesused for mutagenesis included: DC-SIGN-C/Ss (5�-GAGCTT-AGCAGGGTCTCTTGGCCATGGTC-3�) and DC-SIGN-C/Sas (5�-GACCATGGCCAAGAGACCCTGCTAAGCTC-3�),for mutation of Cys37 to Ser, with the resulting plasmid termedpCDNA3.1-(DC-SIGN C/S); and DC-SIGN-N/Qs (5�-GAC-GCGATCTACCAGCAGCTGACCCAGCTTAAAG-3�) andDC-SIGN-N/Qas (5�-CTTTAAGCTGGGTCAGCTGCTGG-TAGATCGCGTC-3�), for mutation of Asn80 to Gln, with theresulting plasmid termed pCDNA3.1-(DC-SIGN N/Q). Eachmutant construct was verified by DNA sequencing.To generate DC-SIGN expression vectors lacking the lectin

domain, PCR was performed on the pCDNA3.1-DC-SIGN 1Ausing oligonucleotides CD209s and CD209�Lectin (5�-CCCC-AAGCTTGTCACAGGCGTTCCACTGCAGC-3�). PCR-gen-erated fragments were resolved in agarose gels, purified, andsequenced. Fragments containing either the full-length (8d�L)and a 7- and 6-repeat neck regions (repeats 1 through 7, 7d�L;repeats 1 through 6, 6d�L) were cloned into pCDNA3.1(�) toyield pCDNA3.1-DC-SIGN 8d�L, pCDNA3.1-DC-SIGN7d�L, and pCDNA3.1-DC-SIGN 6d�L plasmids.

Flow Cytometry and Antibodies

Cellular phenotypic analysis was carried out by indirectimmunofluorescence, using FITC-labeled goat anti-mouseantibody (Serotec, Oxford, UK). Monoclonal antibodies usedfor cell surface staining includedMR1 (directed against the lec-tin domain of DC-SIGN), and the supernatant from the mouse

myeloma P3-X63Ag8 (X63) was used as the control. All incu-bations were done in the presence of 50 �g/ml human IgG toprevent binding through the Fc portion of the antibodies. Flowcytometry analysis was performed with an EPICS-CS (CoulterCientıfica, Madrid, Spain) using log amplifiers.

Immunofluorescence

Cells were resuspended in PBS and allowed to adhere ontopoly-L-lysine-coated coverslips for 60min at 37 °C. After a briefwashing step with PBS, cells were fixed and permeabilized in a1:1 solution of acetone:methanol for 10min at�20 °C, washed,and stained with the MR1 monoclonal antibody (13) followedby an incubation with an FITC-labeled goat anti-mouse anti-body. Coverslips were mounted in fluorescent mountingmedium (DakoCytomation, Carpinteria, CA), and representa-tive fields were photographed through an oil immersion lens ona Nikon Eclipse E800microscope equipped for epifluorescenceor by confocal microscopy.

Cell Surface Protein Labeling and Precipitation

For labeling, immatureMDDCswere washed with PBS 1mMEDTA, resuspended in PBS, pH 8.0, and incubated in 0.5mg/mlbiotinamidohexanoic acid 3-sulfo-N-hydroxysuccinimide estersodium salt (Pierce) for 30 min at 4 °C. Cells were extensivelywashed in PBS and lysed using 10mMTris-HCl, pH 8.0, 150mMNaCl, 0.025% sodium azide, 1% Brij 58 (Sigma-Aldrich), 1 mMiodoacetamide, 2 mM Pefabloc (Alexis Biochemicals, Lausen,Switzerland), and 2 �g/ml aprotinin, antipain, leupeptin, andpepstatin. For precipitation of biotin-labeled proteins, Strepta-vidin-agarose (Sigma-Aldrich) was added to the lysates, and themixture incubated for 1 h at 4 °C. After centrifugation, beadswere extensively washed in 10 mM Tris-HCl, pH 8.0, 150 mMNaCl, 0.025% sodium azide, 0.1% Brij 58, resuspended in 3�Laemmli sample buffer (2% SDS, 6.25 mM Tris base, 10% glyc-erol), and boiled. Eluted material was resolved by SDS-PAGEunder reducing or non-reducing conditions and subsequentWestern blot with polyclonal antibodies specific for DC-SIGN.Coprecipitation of DC-SIGN 1A/DC-SIGN 8d�L or DC-SIGN1A-His/DC-SIGN-D3/-D5-FLAG hetero-oligomers was per-formed on lysates from transiently transfected COS-7 withMR1 antibody as previously described (42), and precipitatedmaterial was detected with specific polyclonal antibodies, orusing anti-His antibody for precipitation and anti-FLAG-HRPantibody for detection of precipitated material, respectively.

Cross-linking Experiments

Cross-linking experiments were performed using the water-soluble cross-linking agent dithiobis(succinimidylpropionate)(DTSSP) according to themanufacturer’s instructions (Pierce).Briefly, immature MDDC was washed with PBS 1 mM EDTA,resuspended in 1 ml of PBS, and incubated in the presence of100 �l of 10 mM DTSSP in sodium citrate 5 mM, pH 5.0, for 30min at room temperature. Stop solution (20 mM Tris-HCl, pH7.5) was added (15 min at room temperature), and cells werewashed twice with PBS. Total cell lysates were obtained in 10mMTris-HCl, pH 8.0, 150mMNaCl, 0.025% sodium azide, 0.5%Nonidet P-40, 1mM iodoacetamide, 2mM Pefabloc (Alexis Bio-chemicals), and 2 �g/ml aprotinin, antipain, leupeptin, and

Expression and Function of DC-SIGN Variants

FEBRUARY 15, 2008 • VOLUME 283 • NUMBER 7 JOURNAL OF BIOLOGICAL CHEMISTRY 3891

at CS

IC - C

entro de Investigaciones Biológicas, on June 10, 2010

ww

w.jbc.org

Dow

nloaded from

http://www.jbc.org/content/suppl/2007/12/12/M706004200.DC1.htmlSupplemental Material can be found at:

83

Page 80: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

pepstatin (Nonidet P-40 lysis buffer). 10 �g of each lysate wassubjected to SDS-PAGE as described for Western blot experi-ments. For cleaving the cross-linker agent, lysates were incu-bated with 5% �-mercaptoethanol in Laemmli sample buffer.

Generation of Polyclonal Antisera against DC-SIGN StructuralDomains

Peptides based on the sequence of the sixth repeated domainof the DC-SIGN neck region (GELPEKSKQQEIYQELTRL-KAAV), and the region between residues 6 and 33 of the cyto-plasmic tail (EPRLQQLGLLEEEQLRGLGFRQTRGYKS), weresynthesized by the multiple antigen peptide system (13). NewZealandWhite rabbits were immunized by subcutaneous injec-tion of each peptide (for DSG-1 and DSG-2 antisera) or therecombinant DC-SIGN lectin domain (for DSG-4 antiserum)expressed in bacteria (0.5 ml of a 1 mg/ml solution in PBS) incomplete Freund’s adjuvant (1:1) on day 0 and in incompleteFreund’s adjuvant (1:1) on days 21 and 42. Rabbits were bled onday 49, and serum was assayed for DC-SIGN recognition inWestern blot experiments.

Functional Characterization of DC-SIGN Isoforms and Mutants

C. albicans and A. fumigatus Binding Assays—Conidia werelabeled with 0.1 mg/ml FITC for 1 h at room temperature andextensively washed. For conidia-binding assays (25), cells werewashed, resuspended in complete medium, and pretreated for20 min at room temperature with anti-DC-SIGN (MR1) or anisotype-matched irrelevant antibody (X63). Then cells wereincubated with FITC-labeled A. fumigatus or C. albicansconidia at the indicated ratios for 30 min at room temperature.After extensive washing, cells were fixed with 2% paraformal-dehyde in PBS for 1 h at 4 °C, washed, and analyzed by flowcytometry.DC-SIGN-dependent Adhesion Assays—DC-SIGN-dependent

adhesionwas evaluatedusing Saccharomyces cerevisiaemannanas specific ligand. 96-well microtiter EIA II-Linbro plates werecoated overnight with mannan at 50 �g/ml in PBS at 4 °C, andthe remaining sites were blocked with 0.5% bovine serum albu-min for 2 h at 37 °C. Cells were labeled in RPMI 0.5% bovineserum albumin with the fluorescent dye 2�,7�-bis-(2-carboxy-ethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester(Molecular Probes, The Netherlands) at 37 °C and then prein-cubated for 20 min with either the isotype-matched controlX63 or the function-blocking MR1 antibodies. Cells were thenallowed to adhere to each well for 15 min at 37 °C. Unboundcells were removed by three washes with RPMI 0.5% bovineserum albumin, and adherent cells were quantified using a flu-orescence analyzer. Where specified, results are presented as“DC-SIGN-dependent binding,” defined as: DC-SIGN-dependent binding � (% bound cells in the presence ofP3X63 � % bound cells in the presence of MR1).Leishmania Amastigote Binding Assays—Cells were washed

in PBS 1 mM EDTA, resuspended in complete medium and5,6-carboxyfluorescein succinimidyl ester-labeled parasiteswere added onto the cells at a 10:1 (amastigotes:cell) ratio, andincubated at room temperature for 30 min. Afterward, cellswere fixed and analyzed by flow cytometry. For inhibitionassays, cells were preincubated for 10min at room temperature

with either MR1 antibody or an irrelevant antibody (X63) incomplete medium before parasite addition.DC-SIGN Internalization—Cells were washed, resuspended

in complete medium, and incubated with MR1 antibody (13)for 1 h at 4 °C to prevent DC-SIGN internalization. After exten-sive washing, cells were placed at 37 °C to allow internalizationto occur. At the indicated time points, internalization wasstopped by adding of cold PBS, and cells were immediatelyplaced at 4 °C. To detect the remainingmembrane-boundMR1antibody, an FITC-labeled goat anti-mouse antibody wasadded, incubated for 30 min at 4 °C, and analyzed by flowcytometry. All incubations were done in the presence of 50�g/ml human IgG to prevent binding through the Fc portion ofthe antibodies.EbolaGP1-Fc Binding Assays—Cells werewashed in PBS and

1mM EDTA, resuspended in complete medium, and incubatedwith GP1-Fc either in the presence of a monoclonal antibodyagainst DC-SIGN (MR1) or an irrelevant antibody (X63) for 20min at 4 °C. Then, cells were incubated with a phycoerythrin-labeled polyclonal antiserum against human IgG Fc (BeckmanCoulter), and analyzed by flow cytometry.Sugar-coated Fluorescent Bead Binding to DC-SIGN—Syn-

thetic fluorescein-labeled fucose- or Lewisx-containing polyac-rylamide beads (FITC-PAA-NAc-Gal, FITC-PAA-Fuc, andFITC-PAA-Lex) were obtained from Lectinity (Moscow, Rus-sia). After washingwith PBS and 1mMEDTA, transiently trans-fected HEK293T cells were resuspended in complete medium,and sugar-PAA-FLU beads were added to a final concentrationof 20 �g/ml and incubated at 37 °C for 30 min. After extensivewashing, cells were fixed for 1 h at room temperature, and ana-lyzed by flow cytometry. For inhibition assays, cells were prein-cubated for 10 min at room temperature with either MR1 anti-body or an irrelevant antibody (X63) in complete mediumbefore beads addition. Results from binding assays wereexpressed as “Binding Index,” which represents the DC-SIGN-dependent binding relative to DC-SIGN expression levelsaccording to the formula: Binding index � (mean fluorescentintensity (MFI) of cells plus beads � MFI of cells plus beads inthe presence ofMR1)/(MFI afterMR1 staining/MFI after stain-ing with X63).

NMR Experiments

Binding of soluble glucomannan from Candida utilis (IF) toDC-SIGN transfectants was done by basic Saturation TransferDifference, as previously described (43).

Western Blot

Total cell lysates were obtained in Nonidet P-40 lysis buffer,and 10 �g of each lysate was subjected to SDS-PAGE underreducing or non-reducing conditions and transferred onto anImmobilon polyvinylidene difluoride membrane (Millipore,Bedford, MA). After blocking of the unoccupied sites with 5%nonfat dry milk in 50 mMTris-HCl, pH 7.6, 150 mMNaCl, 0.1%Tween 20, protein detection was performed using the Super-SignalWest Pico chemiluminescent system (Pierce). DetectionofDC-SIGNwas carried out using polyclonal antiserumagainstthe C-terminal 20-residue peptide of DC-SIGN (C-20,sc-11038, Santa Cruz Biotechnology, Santa Cruz, CA), amino

Expression and Function of DC-SIGN Variants

3892 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 283 • NUMBER 7 • FEBRUARY 15, 2008

at CS

IC - C

entro de Investigaciones Biológicas, on June 10, 2010

ww

w.jbc.org

Dow

nloaded from

http://www.jbc.org/content/suppl/2007/12/12/M706004200.DC1.htmlSupplemental Material can be found at:

84

Page 81: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

acids 61–200 (H-200, sc-20081, Santa Cruz Biotechnology), orpolyclonal antisera raised against peptides based on the sixth23-residue repeats within the DC-SIGN neck region (DSG-1),against a 28-residue peptide from the DC-SIGN cytoplasmictail (DSG-2), or against the whole lectin domain (DSG-4).

Carbohydrate Affinity Precipitations

For precipitation of mannan- and N-acetylgalactosamine-binding proteins, transiently transfected HEK293T or COS-7cells (3� 106)were lysed inNonidet P-40 lysis buffer. Then, 200�l of each lysatewas taken to 1mlwithNonidet P-40 lysis bufferand incubated with 50 �l of mannan- or N-acetylgalac-tosamine-agarose (Sigma-Aldrich) for 12 h at 4 °C. After exten-sive washing in 10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.025%sodium azide, 0.05%Nonidet P-40, bound proteins were elutedby boiling the agarose beads in 3� Laemmli sample buffer.

SDS-eluted and non-bound materials were resolved by SDS-PAGE and DC-SIGN detection accomplished with specificpolyclonal antibodies.

RESULTS

Range of DC-SIGN Alternatively Spliced Isoforms—MDDCsexpress a high number of alternatively spliced DC-SIGNmRNAspecies (36), which are also found atmucosalHIV trans-mission sites (39). To determine the range of DC-SIGNmRNAspecies found inMDDC from a single donor, three different setof primers were designed to specifically amplify the prototypi-cal DC-SIGN mRNA (DC-SIGN 1A), or species encodingeither an alternative cytoplasmic domain (DC-SIGN 1B) orlacking the transmembrane domain (DC-SIGN�TM) (Fig. 1A).Sequencing of the amplified fragments resulted in the identifi-cation of DC-SIGN mRNA species encoding for variants with

FIGURE 1. Detection of DC-SIGN isoforms on monocyte-derived dendritic cells. A, schematic representation of the DC-SIGN mRNA and the position ofoligonucleotides used to amplify DC-SIGN 1A isoforms (sense plus antisense), DC-SIGN 1B isoforms (Ib plus antisense), or DC-SIGN �TM isoforms without thetransmembrane region (soluble plus antisense). (Exons I–VI, genomic organization; ATG, translational start sites; CYT, cytoplasmic domain; TM, transmembraneregion). B, schematic structure of the major PCR fragments obtained from RNA of immature MDDCs from a single donor. C–F, lysates from COS-7 cellstransiently transfected with expression vectors for DC-SIGN 1A, a chimeric construct lacking the lectin domain (8d�L) or an empty vector (Mock) (C), precipi-tated material from surface (biotin-labeled) immature MDDCs (D), lysates from THP-1 cells differentiated with Bryostatin (Bryo) in the presence or absence ofinterleukin-4 (E), or lysates from immature MDDCs either untreated or incubated with the cross-linking agent DTSSP (F) were resolved by SDS-PAGE undernon-reducing or reducing conditions (in the presence of �-mercaptoethanol, �-MSH). The gels were then subjected to Western blot using polyclonal antiseraagainst the neck domain (DSG-1 in C and F; H-200 in E), against the cytoplasmic tail of DC-SIGN (DSG-2) (C, D, and F) or against the C-terminal 20-amino acidpeptide of DC-SIGN (C-20) (C). The specificity of the distinct antisera is indicated in each panel. Thin lines indicate the position of bands with higher mobility thanthe full-length DC-SIGN isoform. In D, the biotin-labeled proteins precipitated with streptavidin-agarose (SP) were analyzed in parallel with whole cell extracts(WE) and proteins in the supernatant or non-precipitated (SN).

Expression and Function of DC-SIGN Variants

FEBRUARY 15, 2008 • VOLUME 283 • NUMBER 7 JOURNAL OF BIOLOGICAL CHEMISTRY 3893

at CS

IC - C

entro de Investigaciones Biológicas, on June 10, 2010

ww

w.jbc.org

Dow

nloaded from

http://www.jbc.org/content/suppl/2007/12/12/M706004200.DC1.htmlSupplemental Material can be found at:

85

Page 82: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

alternative cytoplasmic tails and potentially soluble isoforms,with each group including transcripts differing in the neckdomain or the carbohydrate-binding region (Fig. 1B). There-fore, and in agreement with previous reports (14, 36, 39), theDC-SIGN gene gives rise to a large number of alternativelyspliced mRNA species, most of which differ in the number of23-residue repeats within the neck domain, previously demon-strated to mediate multimerization of recombinant DC-SIGN(34).Next we generated polyclonal antisera specific for either the

neck domain (DSG-1) or the prototypic cytoplasmic tail of DC-SIGN 1A (DSG-2). Both DSG-1 and DSG-2 specificallydetected the 44-kDa band of the prototypic full-length isoformDC-SIGN 1A, as well as a deletion mutant lacking the lectindomain (8d�L), whereas a polyclonal antiserum against the 20C-terminal residues of the lectin domain (C-20) only detectedthe full-length molecule (Fig. 1C).To determine the degree of DC-SIGN multimerization on

MDDC, cell surface proteins were biotin-labeled, and strepta-vidin pulled-down material was analyzed for the presence ofDC-SIGN. Under non-reducing conditions, the DSG-2 anti-serum detected distinct several bands corresponding to DC-SIGN monomers, dimers, trimers, tetramers, and high ordermultimers either in the whole extracts and the pull-down (Fig.1D, left panel, lanes WE and SP, respectively), which suggeststhat DC-SIGN multimers are found on the cell surface ofMDDCs. Analysis of cell surface DC-SIGN molecules fromMDDCunder reducing conditions also revealed the presence ofadditional higher mobility bands that were also recognized bythe DSG-2 antiserum (Fig. 1D, right panel, lane SP). The samepattern was detected in total lysates of dendritic-like THP-1cells (14) using a polyclonal antiserum against the whole neckregion of the molecule (Fig. 1E), and similar bands could bedetected in MDDC lysates with both DSG-1 and DSG-2 anti-sera (Fig. 1F). Therefore, DC-SIGN isoforms can be detected onthe cell surface ofmonocyte-derived dendritic cells, although toa lower extent than the full-length DC-SIGN 1A.Contribution of the LectinDomain toDC-SIGNMultimeriza-

tion on the Cell Membrane—DC-SIGN multimer formation inMDDC could be readily identified by SDS-PAGE (Fig. 1D) (33,44). In fact, although treatment with the membrane-imperme-able cross-linker DTSSP enhanced the formation of high ordermultimers, DC-SIGN monomers, dimers, and multimers werereadily detected by C-20, DSG-1, and DSG-2 antisera undernon-reducing conditions (Fig. 1F). The detection of DC-SIGNmultimers was almost completely prevented in the presence ofreducing agents (Fig. 1, D and F), indicating that disulfidebridges contribute tomultimerization. Because all Cys residueswithin the lectin domain are engaged in intramolecular disul-fide bridges (27), we determined the effect of mutating Cys37,the onlyDC-SIGNcysteine residue outside of the lectin domainand located within the cytoplasmic tail. Mutation of Cys37 hadno effect on the degree of formation of DC-SIGN multimers(Fig. 2B, left panel), suggesting that multimerization could bedependent on cysteine residues within the lectin domain. Thelectin domainwas then removed fromeither theDC-SIGNpro-totypic isoform (8d�L) or from an isoformwith only six repeats(6d�L) (Fig. 2A). Both 8d�L and 6d�L constructs displayed

greatly reduced multimerization ability (Fig. 2B, right panel),which indicates that, although DC-SIGN multimerizationmight bemediated by the neck region (34, 35, 45), it requires oris stabilized by the lectin domain of the molecule.Along this line, the presence of lectin domain-lacking con-

structs (8d�L, 7d�L, and 6d�L) had a negative impact on thedegree of multimerization of DC-SIGN 1A, as we observed alower level of DC-SIGN 1A multimers in the presence of thesedeletion constructs (Fig. 2C). This could be explained by anincreased formation of heteromultimers (formed by DC-SIGN1A and constructs lacking the lectin domain), which mightexhibit lower stability in the presence of denaturing detergent,thus precluding its detection. If so, the existence of heteromul-timers could be demonstrated by coprecipitation experimentson lysates from cells cotransfected with DC-SIGN 1A and8d�L. The fact that the 8d�L isoform was pulled down afterimmunoprecipitation of lectin domain-containing moleculeswith theMR1monoclonal antibody (Fig. 2D) confirms that lec-tin domain-lacking constructs associate with the prototypicDC-SIGN 1A isoform, suggests that heteromultimers of DC-SIGN 1A and 8d�L are more sensitive to the presence of dena-turing agents than DC-SIGN 1A homomultimers and confirmsa role for the lectin domain of DC-SIGN in the formation ofstable oligomers.Structural Requirements of the Neck Domain for DC-SIGN

Multimerization—Although the neck domain is absolutelyrequired for the formation of multimers of recombinant non-glycosylated DC-SIGN and DC-SIGNR (34, 35, 45), its role inDC-SIGN multimerization on the cell membrane remainsunclear. To address this issue, we analyzed the pattern of mul-timerization of the prototypic full-length molecule (1A), natu-rally occurring (4d, 4d�, 2d, and 1d) or in vitro generated (3d)isoforms differing in the number and order of the neck regionrepeats, and constructs mutated at the N-linked glycosylationsite (1AN/Q and 1dN/Q) (Fig. 3A). Transient transfectionrevealed that the distinct DC-SIGN isoforms differed in theirability to form oligomers. A high proportion of full-length DC-SIGN 1A appeared as multimers, whereas deletion of half theneck region (4d) resulted in a considerable reduction of highorder multimers (Fig. 3A). By contrast, isoforms 3d and 2d,whose neck regions are composed of three and two repeats,exhibited an oligomerization ability roughly similar to that ofthe full-lengthmolecule, whereas isoform 1d showed the weak-est oligomerization (Fig. 3A). These results indicate that thepresence of at least two repeats within the neck region is suffi-cient for DC-SIGN multimerization. On the other hand, thelower multimerization of 4d suggests that there is no directcorrelation between the length of the neck region and oli-gomerization, and that the distinct repeats within the neckregion might not be functionally equivalent. This hypothesiswas confirmed when comparing the lowmultimerization capa-bility of 4d (composed of neck repeats 1, 6, 7, and 8) with thenormal (similar to 1A) oligomerization pattern of 4d� isoform,whose neck region is composed of repeats 1, 2, 3, and 8 (Fig. 3A),thus confirming that multimerization capability of DC-SIGNon the cell membrane is dependent not only on the number ofneck repeats but also on their arrangement, and that the repeats

Expression and Function of DC-SIGN Variants

3894 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 283 • NUMBER 7 • FEBRUARY 15, 2008

at CS

IC - C

entro de Investigaciones Biológicas, on June 10, 2010

ww

w.jbc.org

Dow

nloaded from

http://www.jbc.org/content/suppl/2007/12/12/M706004200.DC1.htmlSupplemental Material can be found at:

86

Page 83: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

within the neck region of DC-SIGN are not functionallyinterchangeable.In agreement with the results obtained after transient trans-

fection, the 4d isoform also exhibited a greatly reduced propor-tion of DC-SIGN multimers when stably expressed in K562cells, whereasmultimerization of 2d isoformwas similar to thatof DC-SIGN 1A (Fig. 3B), a finding also observed after transfec-tion in T lymphoblastoid Jurkat cell (data not shown). Func-tional analysis of the three isoforms in K562 transfectantsrevealed that 1A, 4d, and 2d bound soluble C. utilis glucoman-nan (IF), as determined by one-dimensional saturation transferdifference (43, 46) (Fig. 3C), and were internalized after MR1-mediated engagement (Fig. 3D). Therefore, it can be concludedthat the degree of multimerization of functional DC-SIGN iso-forms on the cell surface is cell-type independent and does notinfluence the ligand-induced internalization of the molecule.

The inability of the first repeat to mediate multimerization(1d in Fig. 3A), and the fact that it contains the only potentialN-glycosylation site of DC-SIGN, prompted us to determinethe contribution of glycosylation to DC-SIGN oligomerization.Replacement of Asn80 for Gln in the context of the full-lengthmolecule (1AN/Q) greatly increased the proportion ofDC-SIGN multimers (compare 1A and 1AN/Q in Fig. 3A) andsuggests that glycosylation of the first neck repeat negativelyaffects DC-SIGN multimerization. The negative influence ofglycosylation on multimerization was even more evident uponanalysis of the 1dN/Q mutant, whose neck domain is formedonly by the first repeat with the Asn80/Gln replacement. Unlikethe 1d isoform, oligomers (and even high order multimers) ofthe 1dN/Q mutant could be easily detected (Fig. 3A). In fact,and like in the case of 1AN/Q, no 1dN/Q monomers wereobserved under non-reducing conditions (Fig. 3A). Therefore,

FIGURE 2. Determination of structural requirements for DC-SIGN multimerization. A, schematic representation of the DC-SIGN alternatively splicedisoforms (1A, 4d, 4d�, 3d, 2d, and 1d), mutants (1AC/S, 1AN/Q, and 1dN/Q) and chimeric molecules (8d�L, 7d�L, and 6d�L) used throughout the study. TheCys37 residue is indicated by a cross (†) on the transmembrane region, and the presence of potential N-glycosylation sequence is indicated by a black dot on thefirst repeat of the neck domain. B and C, COS-7 cells transiently transfected with the indicated DC-SIGN constructs were lysed, resolved by SDS-PAGE, andsubjected to Western blot using DSG-2 (B), or DSG-1 and DSG-4 (C) polyclonal antisera. D, lysates from COS-7 cells transiently transfected with the indicatedDC-SIGN constructs were immunoprecipitated with a monoclonal antibody against the DC-SIGN lectin domain (MR1) or a control antibody (CNT), andimmunoprecipitated proteins were resolved by SDS-PAGE and subjected to Western blot using DSG-1 polyclonal antiserum. Immunoprecipitated proteinswere analyzed in parallel with whole cell lysates (WE).

Expression and Function of DC-SIGN Variants

FEBRUARY 15, 2008 • VOLUME 283 • NUMBER 7 JOURNAL OF BIOLOGICAL CHEMISTRY 3895

at CS

IC - C

entro de Investigaciones Biológicas, on June 10, 2010

ww

w.jbc.org

Dow

nloaded from

http://www.jbc.org/content/suppl/2007/12/12/M706004200.DC1.htmlSupplemental Material can be found at:

87

Page 84: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

glycosylation of the first repeat in the neck region impairs mul-timerization of DC-SIGN molecules.Influence of Multimerization on DC-SIGN Pathogen

Recognition—Despite the differences in their ability to multim-erize, transient transfection of the whole range of constructspreviously assayed revealed that all of them are capable ofbinding Candida yeasts and Leishmania amastigotes to asimilar extent (supplemental Fig. S1A). To rule out the subtledifferences in pathogen binding among the distinct constructswe evaluateCandida andL. pifanoi amastigotes binding by cellsexpressing decreasing levels of three naturally occurring iso-forms (1A, 4d, and 2d), and no significant difference wasobserved when comparing binding by cells expressing similarlevels of the three constructs (supplemental Fig. S1B and notshown). However, the results showed that the binding ability ofthe distinct DC-SIGN isoforms correlate with their expression

level (supplemental Fig. S1B). Therefore, because the multim-erization ability of the 4d isoform is considerably lower thanthat of 1A and 2d (see Fig. 3A), these results indicate that therecognition of C. albicans yeasts or L. infantum amastigotes bydistinct DC-SIGN isoform/mutants does not correlate withtheir multimerization degree. Consequently, the multimeriza-tion degree of an isoform does not predict its pathogen-bindingability.Influence of Multimerization on Sugar Recognition by

DC-SIGN—The lack of correlation betweenmultimerizationdegree and pathogen-binding ability of DC-SIGN isoformscould be explained by the large amount of DC-SIGN ligandsimmobilized on the pathogen surface, which would drive theformation of DC-SIGN-containing clusters (47, 48) andmight obscure the contribution of the affinity/avidity ofindividual molecules/oligomers to the whole interaction. To

FIGURE 3. Multimerization capacity of DC-SIGN isoforms and constructs. A and B, lysates from transiently transfected HEK293T cells (A) or K562 cellsstably transfected (B) with the indicated DC-SIGN constructs (see upper drawing) or a mock construct were analyzed by SDS-PAGE and subjected toWestern blot with the DSG-2 polyclonal antiserum. In B, two different clones of K562-DC-SIGN 1A were analyzed, whose relative level of DC-SIGNexpression is indicated by a dark triangle. C, binding of C. utilis glucomannan (IF) to K562 cells stably transfected with the indicated DC-SIGN isoforms bymeans of one-dimensional saturation transfer difference NMR. The lower profile represents the 1H NMR spectrum of IF in PBS at 298 K. For comparativepurposes, two subpopulations of K562-DC-SIGN 1A, which differ in their DC-SIGN cell surface expression level, were assayed. The graph illustrates thesignal intensity yielded by each transfectant (y-axis) and the chemical shift (�) in parts per million (ppm). D, monoclonal antibody-induced internaliza-tion of DC-SIGN isoforms in K562 cells stably transfected with the 1A, 4d, or 2d isoforms. DC-SIGN expression at different time points is shown relativeto the initial cell surface expression (100%, upper panel), and was determined by flow cytometry. For the three stable transfectants, the MFI (lowernumber) and the percentage of positive cells (upper number) at time zero are shown.

Expression and Function of DC-SIGN Variants

3896 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 283 • NUMBER 7 • FEBRUARY 15, 2008

at CS

IC - C

entro de Investigaciones Biológicas, on June 10, 2010

ww

w.jbc.org

Dow

nloaded from

http://www.jbc.org/content/suppl/2007/12/12/M706004200.DC1.htmlSupplemental Material can be found at:

88

Page 85: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

avoid pathogen-induced clustering effects on the mem-brane, we assess the ability of the distinct DC-SIGN con-structs to be retained by sugars after membrane solubiliza-tion. As shown in Fig. 4A (upper panels), except 1d, allDC-SIGN constructs were specifically retained by mannan(a polysaccharide that blocks most DC-SIGN interaction).However, analysis of molecules not retained by mannan(supernatant) revealed that constructs 1A, 1AN/Q, 4d, and1dN/Q are retained with higher efficiency than the 4d�, 3d,and 2d constructs (Fig. 4A, lower panels). Monomers werepreferentially retained by mannan within the strong man-nan-binding and N-glycosylation-containing constructs (1Aand 4d) (lanes 1A and 4d in the left panels of Fig. 4A). Bycontrast, those exhibiting lower binding to mannan (4d�, 3d,and 2d) were preferentially retained as multimers, as mono-mers were almost exclusively detected in the supernatant(lanes 4d�, 3d, and 2d in left panels of Fig. 4A). Furthermore,and in agreement with the negative effect of N-glycosylationon DC-SIGN multimerization, the 1AN/Q and 1dN/Q con-structs were preferentially retained as multimers. Therefore,functional analysis of detergent-solubilized cellular DC-SIGN

demonstrates that multimer formation compensates for thelower mannan-binding affinity of certain DC-SIGN con-structs after membrane solubilization, an effect thatbecomes even more evident when less-than-optimal sugarligands (NAc-Gal) were used, which only retained lectinmultimers (Fig. 4B). Therefore, this set of data indicates thatthe number and arrangement of the repeats within the neckdomain directly influences the specificity and the sugar-binding ability of the DC-SIGN lectin domain.To further evaluate the relevance of DC-SIGN cell surface

multimerization on ligand binding, cell surface expressed 1dand 1dN/Q constructs were compared in their ability to bindFITC-PAA-Fucose and Lewisx beads. 1dN/Q, which appearsalmost exclusively as multimers, displayed a stronger bead-binding activity than 1d, whose multimers can barely bedetected, and the same finding was observed at three distinctcell surface expression levels (Fig. 4C). These results furthersupport the involvement of cell surface DC-SIGNmultimeriza-tion in ligand binding, and establishN-linked-glycosylation as acritical parameter for the DC-SIGN ligand-binding activity onthe cell surface.

FIGURE 4. Sugar recognition by DC-SIGN isoforms. A and B, lysates of HEK293T cells transiently transfected with the indicated DC-SIGN variants wereprecipitated with mannan- (A) or N-acetylgalactosamine (NAc-Gal)-agarose (B). Eluted proteins (upper panels) and non-bound proteins (supernatant, lowerpanels) were resolved by SDS-PAGE under reducing (right panels in A) or non-reducing (left panels in A, both panels in B) conditions, and subjected to Westernblot with DSG-2 antiserum. C, HEK293T cells transiently transfected with the indicated DC-SIGN variants (1A, 1d, and 1dN/Q) were incubated with eitherFITC-PAA-fucose or FITC-PAA-Lewisx beads (20 �g/ml) in the presence of MR1 blocking antibody or an irrelevant antibody, and the percentage of cells withbound beads was determined by flow cytometry. The percentage (upper number) and MFI (lower number) of cells stained with either a MR1 (black text) or anisotype-matched antibody (gray text) are indicated in each case. The results from three independent experiments on cells with different DC-SIGN cell surfacelevels (high, left panel; middle, middle panel; and low, right panel) are shown.

Expression and Function of DC-SIGN Variants

FEBRUARY 15, 2008 • VOLUME 283 • NUMBER 7 JOURNAL OF BIOLOGICAL CHEMISTRY 3897

at CS

IC - C

entro de Investigaciones Biológicas, on June 10, 2010

ww

w.jbc.org

Dow

nloaded from

http://www.jbc.org/content/suppl/2007/12/12/M706004200.DC1.htmlSupplemental Material can be found at:

89

Page 86: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Structural and Functional Characterization of PolymorphicVariants of DC-SIGN—The above results demonstrate that theneck region is an important determinant in the ligand-bindingactivity of DC-SIGN on the cell surface. It has been reportedthat, among the polymorphisms in the DC-SIGN gene (38,49–52), those affecting the length of the neck domain correlatewith altered susceptibility to HIV-1 infection (38). In fact, sim-ilar findings have been reported in the case of the related DC-SIGNR and susceptibility toHIV-1 and severe acute respiratorysyndrome infection (53–55). To evaluate the functional signif-icance of polymorphic DC-SIGN neck domains, three distinctallelic variants, whose neck domains contain only seven repeats,were identified at the genomic DNA and RNA level (Fig. 5, AandB) and functionally characterized. These polymorphic vari-ants lack repeats 3, 5, or 7, but theirmultimerization ability (Fig.5B), cell surface expression (Fig. 5C), and ligand-induced inter-nalization capability (Fig. 5D) were found to be indistinguish-able from that of the prototypic molecule. Moreover, the threevariants displayed unaltered capacity for recognition of Leish-

mania and Aspergillus (supplemental Fig. S2A) and mediatedcellular binding to Ebola GP1-Fc and Mannan (supplementalFig. S2B) and were retained by agarose-bound mannan aftermembrane solubilization (supplemental Fig. S2C), and medi-ated binding of C. utilis glucomannan to cells as determined byone-dimensional saturation transfer difference NMR (supple-mental Fig. S2D). Therefore, DC-SIGN polymorphic variantslacking a single neck domain repeat (3, 5, or 7) exhibit func-tional activities that are similar to those exhibited by the proto-typic DC-SIGN molecule.Because altered susceptibility to infections has been mostly

observed in individuals with heterozygosity at theDC-SIGN (orDC-SIGNR) gene (38, 53–55), we next evaluated the influenceof DC-SIGN polymorphic variants (-D3, -D5, and -D7, Fig. 5B)on the expression,multimerization, and functional capability ofthe prototypic molecule when expressed on the same cell.Transient transfection experiments demonstrated that theexpression of any of the polymorphic variants had no influenceon the DC-SIGN 1A total or cell surface expression (Fig. 6, A

FIGURE 5. Structural and functional characterization of DC-SIGN polymorphic variants. A, schematic representation of the DC-SIGN gene and the positionof oligonucleotides used to amplify the DC-SIGN neck domain-polymorphic variants (upper panel). Examples of the amplification of genomic DNA (left lowerpanel) and RNA (right lower panel) are shown, indicating the genotype of each donor (1A/1A, homozygote for DC-SIGN, with two 8-neck repeat alleles; 1A/-D3,1A/-D7, heterozygotes, with a full-length neck domain in one allele and a second allele coding for a neck with 7 repeats, missing either repeat 3 (-D3) or repeat7 (-D7), respectively). B, upper panel: schematic structure of the prototypic DC-SIGN variant (1A) and the three polymorphic alleles identified (-D3, -D5, and -D7).Lower panel: lysates from K562 cells stably transfected with the indicated constructs were lysed, subjected to SDS-PAGE under reducing and non-reducingconditions, and analyzed by Western blot with the DSG-2 polyclonal antiserum. C, cell surface expression of DC-SIGN polymorphic variants on stable transfec-tants on K562 cells, as determined by flow cytometry (upper panels) and immunocytofluorescence (lower panels). The middle panels show the correspondingphase contrast images. The percentage (upper number) and MFI (lower number) of cells stained with the anti-DC-SIGN MR1 antibody (black text and profile) orthe X63 control antibody (gray text and profile) are indicated. D, monoclonal antibody-induced internalization of DC-SIGN in K562 cells stably transfected withthe indicated polymorphic variants. Flow cytometry expression is expressed relative to the level of DC-SIGN in each transfectant maintained at 4 °C (arbitrarilyconsidered as 100).

Expression and Function of DC-SIGN Variants

3898 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 283 • NUMBER 7 • FEBRUARY 15, 2008

at CS

IC - C

entro de Investigaciones Biológicas, on June 10, 2010

ww

w.jbc.org

Dow

nloaded from

http://www.jbc.org/content/suppl/2007/12/12/M706004200.DC1.htmlSupplemental Material can be found at:

90

Page 87: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

andB). Like in the case of the 1A/8d�L cotransfectants, hetero-oligomers might have an increased sensitivity to denaturingagents. However, coimmunoprecipitation experiments withepitope-tagged molecules demonstrated that the DC-SIGN 1Amolecules preferentially formed homo-oligomers, and associ-ate weakly to seven repeat-containing polymorphic variants(�1% of the prototypic DC-SIGN molecules are engaged inhetero-oligomer formation) (Fig. 6C). Therefore, the shorterpolymorphic variants can be expressed on the cell surface buttend to form homo-oligomers and associate very weakly withthe prototypic DC-SIGN 1A full-length isoform. This resultwould imply that cells heterozygous at the DC-SIGN genemight almost exclusively express homo-oligomers on the cellsurface. We tested this hypothesis by analyzing the DC-SIGNisoform expression andmultimerization state inMDDC from adonor previously identified as a CD209 heterozygote (see Fig.5A). The prototypic and shorter variant of DC-SIGN wereexpressed to a similar extent in heterozygous dendritic cells,but no evidence was found of hetero-oligomer formation (Fig.

6D), confirming that DC-SIGN multimerization takes placepreferentially among variants whose neck region has identicalstructure.The low percentage (or impaired stability) of lectin hetero-

oligomers might explain the reduced pathogen-binding capac-ity exhibited by cells coexpressing allelic variants of DC-SIGNR(53) and the correlation between DC-SIGN/DC-SIGNR neckregion heterozygosity and susceptibility to viral infection (38,53–55). Consequently, DC-SIGN-dependent activities of cellscoexpressing different DC-SIGN allelic variants were evaluatedon transiently transfected cells. As shown in Fig. 6B, coexpres-sion of theDC-SIGN-D7 isoform (which lacks the seventh neckdomain repeat) did not significantly affect the ability of theprototypic DC-SIGN 1A isoform to bind immobilizedmannan.Along the same line, capture of fucose- or Lewisx-coated poly-acrylamide beads byDC-SIGN1Awas not affected by the coex-pression of the DC-SIGN-D3 isoform (which lacks the thirdneck domain repeat) (Fig. 7A and not shown). These resultsindicated that expression of polymorphic variants with shorter

FIGURE 6. Influence of DC-SIGN polymorphic variants on the expression, multimerization, and functional capability of the prototypic molecule.A, lysates from COS-7 cells transiently transfected with the indicated DC-SIGN constructs were subjected to Western blot with the DSG-2 polyclonal antiserum.The mobility of monomers and trimers is indicated. The right panel shows the same experiment after a longer electrophoretic separation for increasedresolution of the DC-SIGN trimers. B, adhesion to immobilized mannan of HEK293T cells transiently transfected with the indicated DC-SIGN variants in thepresence of either a blocking antibody (MR1) or an irrelevant antibody (X63) (lower panel). The DC-SIGN expression levels of the distinct transfectants wasdetermined by flow cytometry and is indicated in the upper panel. The percentage (upper number) and MFI (lower number) of cells stained with the anti-DC-SIGNMR1 antibody (black text and profile) or the X63 control antibody (gray text and profile) are indicated. C, lysates from COS-7 cells transiently transfected with theindicated constructs were immunoprecipitated with an anti-5xHis monoclonal antibody, and immunoprecipitates were subjected to Western blot using eitheran anti-FLAG monoclonal antibody (upper panel) or the DSG-2 polyclonal antiserum (lower panel). Whole cell lysates were also analyzed as a transfectioncontrol. D, lysates from MDDCs generated from donors characterized as homozygote for DC-SIGN with 8 neck repeats (1A/1A) or heterozygote, with alleles withneck domain of 8 and 7 repeats (1A/-D7), were separated by SDS-PAGE under reducing and non-reducing conditions, and then subjected to Western blot withthe DSG-2 polyclonal antiserum. For control purposes, lysates from K562 cells stably transfected and COS-7 cells transiently transfected with the indicatedconstructs were included in the experiment.

Expression and Function of DC-SIGN Variants

FEBRUARY 15, 2008 • VOLUME 283 • NUMBER 7 JOURNAL OF BIOLOGICAL CHEMISTRY 3899

at CS

IC - C

entro de Investigaciones Biológicas, on June 10, 2010

ww

w.jbc.org

Dow

nloaded from

http://www.jbc.org/content/suppl/2007/12/12/M706004200.DC1.htmlSupplemental Material can be found at:

91

Page 88: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

neck domains does not significantly alter the pathogen recog-nition ability of cells expressing the prototypic DC-SIGN 1Aisoform.Finally, because sugar precipitation had previously allowed

the identification of functional differences among alternativelyspliced isoforms (Fig. 4), lysates from MDDCs coexpressingDC-SIGN 1A and DC-SIGN-D7 were subjected to precipita-tion with mannan-agarose. Whereas a single band (corre-sponding to DC-SIGN 1A) was specifically retained from the1A/1A dendritic cells, both DC-SIGN 1A and DC-SIGN-D7isoforms were equally retained by mannan-agarose when thedendritic cell lysate from the 1A/-D7 donor was used (Fig. 7B).Therefore, DC-SIGN 1A and DC-SIGN-D7 are retained bymannan to a similar extent, confirming that shorter neck poly-morphic variants of DC-SIGN retain their sugar-recognitionability, showing no differences from that of the prototypic full-length DC-SIGN 1A molecule.

DISCUSSION

DC-SIGN-dependent binding and uptake of clinically rel-evant pathogens by dendritic cells relies on the lectin abilityto bind mannose- and fucose-containing glycans (56). Stud-ies on recombinant molecules have demonstrated that theavidity of such interactions is mediated through multimer-ization of the lectin, which is accomplished through inter-molecular associations mediated by the neck domain of themolecule (27, 34). The neck region of DC-SIGN is composedof eight 23-amino acid repeats, which are encoded in a singleexon whose polymorphism has been already demonstrated(38, 51). In fact, DC-SIGN alleles with 4–9 repeats within theneck region-coding exon have been described (51), and het-erozygosity at this specific exon correlates with altered sus-ceptibility to HIV-1 infection (38). Besides, numerous DC-SIGN alternatively spliced isoforms have been described at

the mRNA level (14, 36). The combination of alternativesplicing and genomic polymorphism predicts that a largerepertoire of DC-SIGN protein isoforms might exist, most ofwhich would differ in the size of the neck domain (14, 36, 38,51). However, to date, the functional characterization of DC-SIGN isoforms and allelic variants on the cell membrane hadnot been addressed. In the present manuscript we presentevidences that 1) DC-SIGN alternatively spliced mRNA spe-cies give rise to proteins that are expressed at the cell mem-brane on monocyte-derived dendritic cells, cell lines, andtransfectants; 2) DC-SIGN alternatively spliced isoforms dif-fer in their multimerization capability and sugar-bindingability; 3) the presence of two repeats within the neckdomain is sufficient for DC-SIGN multimerization; 4) theneck domain repeats are not functionally interchangeably,because the number and arrangement of repeats within theneck domain critically determines the multimerization andligand-binding ability; 5) the lectin domain of DC-SIGN sta-bilizes or contributes to the neck region-dependent multim-erization of DC-SIGN, which is negatively influenced by theN-linked glycosylation of the first neck domain repeat; 6)basal multimerization of the molecule does not predict thepathogen-binding ability and does not correlate with ligand-induced internalization; and 7) polymorphic variants differ-ing in neck domain composition can self-associate, but mul-timerize very poorly with the prototypic full-lengthmolecule, suggesting that the DC-SIGN molecules on thecell surface predominantly appear as homo-multimers. Thedata here presented constitutes the first demonstration thatalternative splicing and polymorphic variants of DC-SIGNare expressed on monocyte-derived dendritic cells, wherethey exhibit altered multimerization and carbohydrate-binding abilities (splicing variants) and tend to segregate

FIGURE 7. Influence of DC-SIGN polymorphic variants on the functional capability of the prototypic molecule. A, binding of either FITC-PAA-NAc-Gal or FITC-PAA-fucose beads to HEK293T cells transiently transfected with the indicated DC-SIGN constructs. Expression levels were determined byflow cytometry (upper panels). The percentage (upper number) and MFI (lower number) of cells stained with the anti-DC-SIGN MR1 antibody (black textand profile) or the X63 control antibody (gray text and profile) are indicated. B, lysates from MDDCs from a homozygote (1A/1A) and a heterozygote(1A/-D7) donors were incubated with mannan-agarose. Bound proteins (eluted, right panels) or whole cell lysates (whole lysate, left panels) wereresolved by SDS-PAGE under reducing conditions, and subjected to Western blot with the DSG-2 polyclonal antiserum or a monoclonal antibody againstCD45 as control (upper panels).

Expression and Function of DC-SIGN Variants

3900 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 283 • NUMBER 7 • FEBRUARY 15, 2008

at CS

IC - C

entro de Investigaciones Biológicas, on June 10, 2010

ww

w.jbc.org

Dow

nloaded from

http://www.jbc.org/content/suppl/2007/12/12/M706004200.DC1.htmlSupplemental Material can be found at:

92

Page 89: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

from the prototypic molecule forming homo-multimers(polymorphic variants with a shorter neck domain).Whether DC-SIGN and related lectins are bona fide patho-

gen-recognition receptors or antigen-binding receptors whosefunction is subverted by pathogens is still unclear (4, 57). Ourresults indicate that the various alternatively spliced isoformsdiffer in their ability to be retained by immobilized mannan,whereas all of them are equally efficient in terms of pathogenbinding. We hypothesize that the large amount of DC-SIGNligands on the surface of interacting pathogens compensate forthe distinct affinity andmultimerization ability of the isoforms.If this is the case, pathogen-induced formation of DC-SIGN-containing clusters on the cell surface would counterbalancefor the diminished multimerization ability of certain isoformsandwould justify the large range of pathogens bound and inter-nalized via DC-SIGN. Therefore, according to this hypothesis,isoforms would have a physiological role (increasing the rangeof soluble antigens bound and internalized by DC-SIGN), butwould not have a major impact on the range of pathogensbound by DC-SIGN. Further studies are needed to clarify theseissues, because it is currently unknown whether the basal mul-timerization of DC-SIGN on the cell surface (33, 44) is exclu-sively mediated by intermolecular interactions or is a solubleligand-induced event. In this regard, all the experiments per-formed in the present study were done after extensive washingof the cells with EDTA, to prevent any carbohydrate-DC-SIGNinteraction that might affect multimerization of the moleculeon the cell surface.Sequence analysis has allowed the definition of 23-residue

repeats within the neck region of DC-SIGN, which is some-times divided into 7.5 repeats to account for the presence of anunrelated and unique sequence at the N-terminal half of thefirst repeat (34). Ultracentrifugation and cross-linking ofrecombinant truncated DC-SIGN molecules have establishedthat removal of the two N-terminal repeats only partiallyaffected the tetramerization ability, whereas recombinant pro-teins containing only repeats 7–8 formed partially dissociatingdimers. This has led to the proposal that repeats close to thelectin domain mediate dimer formation while the membraneproximal repeats are required for tetramer formation (34). Ourresults with transient and stable transfectants of the naturallyoccurring DC-SIGN 4d and 2d isoforms, which include repeats1, 6, 7, and 8 and 1 and 2 (Fig. 3A), indicate that the two moreN-terminal domains are sufficient for multimerization in a cel-lular context, a fact further confirmed by the very differentmul-timerization capability of the 4d (1, 6, 7, and 8) and 4d� (1, 2, 3,and 8) isoforms. The importance of repeats 1 and 2 for theability of DC-SIGN tomultimerize in the cellmembrane is evenmore evident when considering that the DC-SIGN 1d isoform(containing only repeat 1) does not multimerize, and thatremoval of the N-glycosylation site (1dN/Q mutant) allowsmultimerization within a cellular context. In addition, the 3dconstruct, which includes the first repeat followed by theN-ter-minal half of repeat 2, the C-terminal half of repeat 7 and theentire repeat 8, also exhibits an efficient multimerization capa-bility within a cellular context. Therefore, essential residues formultimerization can be mapped to the sequence GELSE at thebeginning of the second repeat, which includes a serine residue

unique among the repeats and contributes to the multimeriza-tion ability of recombinantDC-SIGNR (58). These results dem-onstrate the critical role of repeats 1 and 2 for DC-SIGN mul-timerization, because repeat 1 is capable ofmediatingmultimerformation, and themere presence of repeat 2 appears sufficientto overcome the inhibitory effect of the N-glycosylation atrepeat 1. These results are compatible and extend previous dataon the multimerization capability of recombinant DC-SIGN/DC-SIGNR molecules, and establish neck glycosylation as animportant parameter to limit the degree of DC-SIGN multim-erization in the cell.The combination of genomic polymorphism and alternative

splicing at theDC-SIGNgene results in the generation of a largenumber of isoforms/allelic variants of the molecule. Consider-ing their variable multimerization capability, and the higheravidity displayed by multimers, it is tempting to speculate thatthe existence of all these variants might endow macrophagesand dendritic cells with a broader repertoire of ligand-bindingaffinity and/or specificity. In fact, the ability ofmannan-agaroseto differentially retain the various DC-SIGN splicing isoforms(Fig. 4) would support this hypothesis. On the other hand, analternative function for the numerous DC-SIGN isoformscould be the modulation of full-length DC-SIGN-dependentfunctions. In this regard, and like the lectin domain-lackingchimeric constructs (Fig. 2), isoforms with truncated lectindomainsmight reduce the effective concentration of full-lengthDC-SIGN molecules on the cell membrane, thus impairing itsmultimerization on the cell surface and, consequently, thebinding and uptake of pathogens/ligands containing limitingamounts of sugar ligands.Regarding polymorphic variants, our results indicate that the

number of DC-SIGN allelic variants is greater than previouslythought. The study of Barreiro and Liu (38, 51) has definedpolymorphisms within the neck region of DC-SIGN and classi-fied them according to the number of repeats. However, and atleast within the Spanish population, the allelic variants contain-ing only 7 neck repeats are not structurally identical, and threedistinct alleles have been identified which differ in the missingrepeatwithin the neck domain (D3,D5, andD7). Therefore, it islikely that most of the previously defined CD209 alleles arereally heterogeneous in terms of the arrangement of the neckdomain repeats they contain. On the other hand, and despitethe association found between neck domain heterozygosity atthe CD209 and CD209L genes and altered susceptibility toHIV-1 (38, 55), hepatitis C (59, 60), or severe acute respiratorysyndrome infection (53), the polymorphic variants that we havecharacterized exhibit similar homo-multimerization capabilityand pathogen- and carbohydrate-binding specificity as the full-length molecule. However, the polymorphic variants contain-ing seven repeats (-D3, -D5, and -D7) exhibit a very weak abilityto assemble into hetero-multimers with the full-lengthDC-SIGN1Aprototypicmolecule, as hetero-multimers cannotbe observed by Western blot and an extremely low percentageof the -D3 variant can be coprecipitatedwithDC-SIGN1A (Fig.6). This result is in contrast to the reported ability of recombi-nant polymorphic forms of DC-SIGNR to engage in stablehomo- and hetero-tetramers (58). However, we feel that this isonly an apparent discrepancy, because the N-linked glycosyla-

Expression and Function of DC-SIGN Variants

FEBRUARY 15, 2008 • VOLUME 283 • NUMBER 7 JOURNAL OF BIOLOGICAL CHEMISTRY 3901

at CS

IC - C

entro de Investigaciones Biológicas, on June 10, 2010

ww

w.jbc.org

Dow

nloaded from

http://www.jbc.org/content/suppl/2007/12/12/M706004200.DC1.htmlSupplemental Material can be found at:

93

Page 90: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

tion of the N-terminal neck repeat limits the extent of multim-erization of the molecular within a cellular context (Fig. 2) and,therefore, recombinant molecules (which are devoid of glyco-sylation) might display an enhanced tendency to multimerize.Whether the reduced ability of DC-SIGNpolymorphic variantsto associate with the full-length molecule contributes to thealtered susceptibility of heterozygous individuals to variousinfections remains to be determined. However, the preferentialformation of homo-multimers in heterozygous individualsmust lead to a reduction (50%) in the number of multimerscontaining the full-length DC-SIGN 1A molecule, what mightaffect the recognition of pathogens with a limiting amount ofcarbohydrate ligands. The fact thatCD209 gene promoter poly-morphisms, thought to affect DC-SIGN cell surface levels, alsoassociate with altered susceptibility toHIV-1 (52), Dengue (37),and tuberculosis (49) is compatible with the above explanation.Consequently, although further studies are required, ourresults demonstrate that expression of neck domain splicingand allelic variants influence the presence and stability of DC-SIGNmultimers on the cell surface, and provide relevant cluesabout the underlyingmolecularmechanisms for the associationbetweenDC-SIGNpolymorphisms and altered susceptibility toclinically relevant pathogens.

REFERENCES1. Banchereau, J., and Steinman, R. M. (1998) Nature 392, 245–2522. Takeda, K., Kaisho, T., and Akira, S. (2003) Annu. Rev. Immunol. 21,

335–3763. Cambi, A., and Figdor, C. G. (2003) Curr. Opin. Cell Biol. 15, 539–5464. van Kooyk, Y., and Geijtenbeek, T. B. (2003) Nat. Rev. Immunol. 3,

697–7095. Curtis, B. M., Scharnowske, S., and Watson, A. J. (1992) Proc. Natl. Acad.

Sci. U. S. A. 89, 8356–83606. Geijtenbeek, T. B., Torensma, R., van Vliet, S. J., van Duijnhoven, G. C.,

Adema, G. J., van Kooyk, Y., and Figdor, C. G. (2000) Cell 100, 575–5857. Bleijs, D. A., Geijtenbeek, T. B., Figdor, C. G., and van Kooyk, Y. (2001)

Trends Immunol. 22, 457–4638. Geijtenbeek, T. B., Krooshoop, D. J., Bleijs, D. A., van Vliet, S. J., van

Duijnhoven, G. C., Grabovsky, V., Alon, R., Figdor, C. G., and van Kooyk,Y. (2000) Nat. Immunol. 1, 353–357

9. Soilleux, E. J., Morris, L. S., Lee, B., Pohlmann, S., Trowsdale, J., Doms,R. W., and Coleman, N. (2001) J. Pathol. 195, 586–592

10. Geijtenbeek, T. B., vanVliet, S. J., vanDuijnhoven, G. C., Figdor, C. G., andvan Kooyk, Y. (2001) Placenta 22, Suppl. A, S19–S23

11. Lee, B., Leslie, G., Soilleux, E., O’Doherty, U., Baik, S., Levroney, E., Flum-merfelt, K., Swiggard, W., Coleman, N., Malim, M., and Doms, R. W.(2001) J. Virol. 75, 12028–12038

12. Soilleux, E. J., Morris, L. S., Leslie, G., Chehimi, J., Luo, Q., Levroney, E.,Trowsdale, J., Montaner, L. J., Doms, R. W., Weissman, D., Coleman, N.,and Lee, B. (2002) J. Leukoc. Biol. 71, 445–457

13. Relloso,M., Puig-Kroger, A., Pello, O.M., Rodriguez-Fernandez, J. L., de laRosa, G., Longo, N., Navarro, J., Munoz-Fernandez, M. A., Sanchez-Ma-teos, P., and Corbi, A. L. (2002) J. Immunol. 168, 2634–2643

14. Puig-Kroger, A., Serrano-Gomez, D., Caparros, E., Dominguez-Soto, A.,Relloso, M., Colmenares, M., Martinez-Munoz, L., Longo, N., Sanchez-Sanchez, N., Rincon, M., Rivas, L., Sanchez-Mateos, P., Fernandez-Ruiz,E., and Corbi, A. L. (2004) J. Biol. Chem. 279, 25680–25688

15. Geijtenbeek, T. B., and van Kooyk, Y. (2003) Curr. Top. Microbiol. Immu-nol. 276, 31–54

16. Alvarez, C. P., Lasala, F., Carrillo, J., Muniz, O., Corbi, A. L., and Delgado,R. (2002) J. Virol. 76, 6841–6844

17. Pohlmann, S., Zhang, J., Baribaud, F., Chen, Z., Leslie, G. J., Lin, G.,Granelli-Piperno, A., Doms, R. W., Rice, C. M., and McKeating, J. A.(2003) J. Virol. 77, 4070–4080

18. Lozach, P. Y., Amara, A., Bartosch, B., Virelizier, J. L., Arenzana-Seisdedos,F., Cosset, F. L., and Altmeyer, R. (2004) J. Biol. Chem. 279, 32035–32045

19. Lozach, P. Y., Lortat-Jacob, H., de Lacroix de Lavalette, A., Staropoli, I.,Foung, S., Amara, A., Houles, C., Fieschi, F., Schwartz, O., Virelizier, J. L.,Arenzana-Seisdedos, F., and Altmeyer, R. (2003) J. Biol. Chem. 278,20358–20366

20. Tassaneetrithep, B., Burgess, T. H., Granelli-Piperno, A., Trumpfheller,C., Finke, J., Sun, W., Eller, M. A., Pattanapanyasat, K., Sarasombath, S.,Birx, D. L., Steinman, R. M., Schlesinger, S., andMarovich, M. A. (2003) J.Exp. Med. 197, 823–829

21. Colmenares, M., Puig-Kroger, A., Pello, O. M., Corbi, A. L., and Rivas, L.(2002) J. Biol. Chem. 277, 36766–36769

22. Colmenares, M., Corbi, A. L., Turco, S. J., and Rivas, L. (2004) J. Immunol.172, 1186–1190

23. Tailleux, L., Schwartz, O., Herrmann, J. L., Pivert, E., Jackson, M., Amara,A., Legres, L., Dreher, D., Nicod, L. P., Gluckman, J. C., Lagrange, P. H.,Gicquel, B., and Neyrolles, O. (2003) J. Exp. Med. 197, 121–127

24. Geijtenbeek, T. B., Van Vliet, S. J., Koppel, E. A., Sanchez-Hernandez, M.,Vandenbroucke-Grauls, C.M., Appelmelk, B., and Van Kooyk, Y. (2003) J.Exp. Med. 197, 7–17

25. Serrano-Gomez, D., Dominguez-Soto, A., Ancochea, J., Jimenez-Heffer-nan, J. A., Leal, J. A., and Corbi, A. L. (2004) J. Immunol. 173, 5635–5643

26. Cambi, A., Gijzen, K., de Vries, J. M., Torensma, R., Joosten, B., Adema,G. J., Netea,M. G., Kullberg, B. J., Romani, L., and Figdor, C. G. (2003) Eur.J. Immunol. 33, 532–538

27. Feinberg, H.,Mitchell, D. A., Drickamer, K., andWeis,W. I. (2001) Science294, 2163–2166

28. Frison, N., Taylor,M. E., Soilleux, E., Bousser,M. T.,Mayer, R., Monsigny,M., Drickamer, K., and Roche, A. C. (2003) J. Biol. Chem. 278,23922–23929

29. van Gisbergen, K. P., Sanchez-Hernandez, M., Geijtenbeek, T. B., and vanKooyk, Y. (2005) J. Exp. Med. 201, 1281–1292

30. Geijtenbeek, T. B., Kwon, D. S., Torensma, R., van Vliet, S. J., van Duijn-hoven, G. C., Middel, J., Cornelissen, I. L., Nottet, H. S., KewalRamani,V. N., Littman, D. R., Figdor, C. G., and van Kooyk, Y. (2000) Cell 100,587–597

31. Engering, A., Geijtenbeek, T. B., van Vliet, S. J., Wijers, M., van Liempt, E.,Demaurex, N., Lanzavecchia, A., Fransen, J., Figdor, C. G., Piguet, V., andvan Kooyk, Y. (2002) J. Immunol. 168, 2118–2126

32. Kwon, D. S., Gregorio, G., Bitton, N., Hendrickson, W. A., and Littman,D. R. (2002) Immunity 16, 135–144

33. Bernhard, O. K., Lai, J., Wilkinson, J., Sheil, M.M., and Cunningham, A. L.(2004) J. Biol. Chem. 279, 51828–51835

34. Feinberg, H., Guo, Y., Mitchell, D. A., Drickamer, K., and Weis, W. I.(2005) J. Biol. Chem. 280, 1327–1335

35. Mitchell, D. A., Fadden, A. J., and Drickamer, K. (2001) J. Biol. Chem. 276,28939–28945

36. Mummidi, S., Catano, G., Lam, L., Hoefle, A., Telles, V., Begum, K., Jime-nez, F., Ahuja, S. S., and Ahuja, S. K. (2001) J. Biol. Chem. 276,33196–33212

37. Sakuntabhai, A., Turbpaiboon, C., Casademont, I., Chuansumrit, A.,Lowhnoo, T., Kajaste-Rudnitski, A., Kalayanarooj, S.M., Tangnararatcha-kit, K., Tangthawornchaikul, N., Vasanawathana, S., Chaiyaratana, W.,Yenchitsomanus, P. T., Suriyaphol, P., Avirutnan, P., Chokephaibulkit, K.,Matsuda, F., Yoksan, S., Jacob, Y., Lathrop, G. M., Malasit, P., Despres, P.,and Julier, C. (2005) Nat. Genet. 37, 507–513

38. Liu, H., Hwangbo, Y., Holte, S., Lee, J., Wang, C., Kaupp, N., Zhu, H.,Celum, C., Corey, L., McElrath,M. J., and Zhu, T. (2004) J. Infect. Dis. 190,1055–1058

39. Liu, H., Hladik, F., Andrus, T., Sakchalathorn, P., Lentz, G. M., Fialkow,M. F., Corey, L.,McElrath,M. J., andZhu, T. (2005)Eur. J. Hum.Genet. 13,707–715

40. Sallusto, F., and Lanzavecchia, A. (1994) J. Exp. Med. 179, 1109–111841. Puig-Kroger, A., Sanz-Rodriguez, F., Longo, N., Sanchez-Mateos, P.,

Botella, L., Teixido, J., Bernabeu, C., and Corbi, A. L. (2000) J. Immunol.165, 4338–4345

42. Caparros, E., Munoz, P., Sierra-Filardi, E., Serrano-Gomez, D., Puig-Kroger, A., Rodriguez-Fernandez, J. L., Mellado, M., Sancho, J., Zubiaur,

Expression and Function of DC-SIGN Variants

3902 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 283 • NUMBER 7 • FEBRUARY 15, 2008

at CS

IC - C

entro de Investigaciones Biológicas, on June 10, 2010

ww

w.jbc.org

Dow

nloaded from

http://www.jbc.org/content/suppl/2007/12/12/M706004200.DC1.htmlSupplemental Material can be found at:

94

Page 91: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

M., and Corbi, A. L. (2006) Blood 107, 3950–395843. Mari, S., Serrano-Gomez, D., Canada, F. J., Corbi, A. L., and Jimenez-

Barbero, J. (2004) Angew Chem. Int. Ed. Engl. 44, 296–29844. Su, S. V., Hong, P., Baik, S., Negrete, O. A., Gurney, K. B., and Lee, B. (2004)

J. Biol. Chem. 279, 19122–1913245. Snyder, G. A., Ford, J., Torabi-Parizi, P., Arthos, J. A., Schuck, P., Colonna,

M., and Sun, P. D. (2005) J. Virol. 79, 4589–459846. Serrano-Gomez, D., Martinez-Nunez, R. T., Sierra-Filardi, E., Izquierdo,

N., Colmenares, M., Pla, J., Rivas, L., Martinez-Picado, J., Jimenez-Bar-bero, J., Alonso-Lebrero, J. L., Gonzalez, S., and Corbi, A. L. (2007) Anti-microb. Agents Chemother. 52, 2313–2323

47. Cambi, A., de Lange, F., van Maarseveen, N. M., Nijhuis, M., Joosten, B.,van Dijk, E. M., de Bakker, B. I., Fransen, J. A., Bovee-Geurts, P. H., vanLeeuwen, F. N., Van Hulst, N. F., and Figdor, C. G. (2004) J. Cell Biol. 164,145–155

48. de la Rosa, G., Yanez-Mo, M., Serrano-Gomez, D., Martinez-Munoz, L.,Fernandez-Ruiz, E., Longo, N., Sanchez-Madrid, F., Corbi, A. L., andSanchez-Mateos, P. (2005) J. Leukoc. Biol. 77, 699–709

49. Barreiro, L. B., Neyrolles, O., Babb, C. L., Tailleux, L., Quach, H., Mc-Elreavey, K., Helden, P. D., Hoal, E. G., Gicquel, B., and Quintana-Murci,L. (2006) PLoS Med. 3, e20

50. Barreiro, L. B., Quach, H., Krahenbuhl, J., Khaliq, S., Mohyuddin, A., Me-hdi, S. Q., Gicquel, B., Neyrolles, O., and Quintana-Murci, L. (2006)Hum.Immunol. 67, 102–107

51. Barreiro, L. B., Patin, E., Neyrolles, O., Cann, H.M., Gicquel, B., andQuin-tana-Murci, L. (2005) Am. J. Hum. Genet. 77, 869–886

52. Martin, M. P., Lederman, M. M., Hutcheson, H. B., Goedert, J. J., Nelson,G. W., van Kooyk, Y., Detels, R., Buchbinder, S., Hoots, K., Vlahov, D.,O’Brien, S. J., and Carrington, M. (2004) J. Virol. 78, 14053–14056

53. Chan, V. S., Chan, K. Y., Chen, Y., Poon, L. L., Cheung, A. N., Zheng, B.,Chan, K. H., Mak, W., Ngan, H. Y., Xu, X., Screaton, G., Tam, P. K.,Austyn, J. M., Chan, L. C., Yip, S. P., Peiris, M., Khoo, U. S., and Lin, C. L.(2006) Nat. Genet. 38, 38–46

54. Barreiro, L. B., and Quintana-Murci, L. (2006) J. Infect. Dis. 194,1184–1185; author reply 1185–1187

55. Liu, H., Carrington, M., Wang, C., Holte, S., Lee, J., Greene, B., Hladik, F.,Koelle, D.M.,Wald, A., Kurosawa, K., Rinaldo, C. R., Celum, C., Detels, R.,Corey, L., McElrath, M. J., and Zhu, T. (2006) J. Infect. Dis. 193, 698–702

56. Guo, Y., Feinberg, H., Conroy, E., Mitchell, D. A., Alvarez, R., Blixt, O.,Taylor, M. E.,Weis,W. I., and Drickamer, K. (2004)Nat. Struct. Mol. Biol.11, 591–598

57. Kang, Y. S., Do, Y., Lee, H. K., Park, S. H., Cheong, C., Lynch, R. M.,Loeffler, J. M., Steinman, R. M., and Park, C. G. (2006) Cell 125, 47–58

58. Guo, Y., Atkinson, C. E., Taylor, M. E., and Drickamer, K. (2006) J. Biol.Chem. 281, 16794–16798

59. Falkowska, E., Durso, R. J., Gardner, J. P., Cormier, E. G., Arrigale, R. A.,Ogawa, R. N., Donovan, G. P., Maddon, P. J., Olson, W. C., and Dragic, T.(2006) J. Gen. Virol. 87, 2571–2576

60. Nattermann, J., Ahlenstiel, G., Berg, T., Feldmann, G., Nischalke, H. D.,Muller, T., Rockstroh, J., Woitas, R., Sauerbruch, T., and Spengler, U.(2006) J. Viral. Hepat 13, 42–46

Expression and Function of DC-SIGN Variants

FEBRUARY 15, 2008 • VOLUME 283 • NUMBER 7 JOURNAL OF BIOLOGICAL CHEMISTRY 3903

at CS

IC - C

entro de Investigaciones Biológicas, on June 10, 2010

ww

w.jbc.org

Dow

nloaded from

http://www.jbc.org/content/suppl/2007/12/12/M706004200.DC1.htmlSupplemental Material can be found at:

95

Page 92: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Supplementary Figures

A79.9%6.8

84.3%11.4

90.0%14.5

88.0%17.9

90.4%18.0

84.1%9.0

7.1%0.4

80.2%9.0

75.5%4.4

51015202530354045

C. albicans yeasts L. infantum amastigotes Pathogen

% c

ells

with

boun

dpa

thog

ens

Mock1A1AN/Q4d4d'3d2d1d1d-N/Q

B

3 2 1 0.51A

µgDNA transfected

81,8 (9,9)79,2 (8.0)74,4 (5,7)39,4 (1,2)

77,7(5,8)66,8 (3,0)32,0 (0,9)

79,3 (7,0)52,7 (2,2)29,2 (0,8)

510152025303540

% c

ells

with

boun

dsp

ores

45

Mock 1A 4d 4d’ 3d 2d 1d 1dN/Q1AN/Q

3 1.5 0.754d

3 1.5 0.752d

A79.9%6.8

84.3%11.4

90.0%14.5

88.0%17.9

90.4%18.0

84.1%9.0

7.1%0.4

80.2%9.0

75.5%4.4

51015202530354045

C. albicans yeasts L. infantum amastigotes Pathogen

% c

ells

with

boun

dpa

thog

ens

Mock1A1AN/Q4d4d'3d2d1d1d-N/Q

B

3 2 1 0.51A

µgDNA transfected

81,8 (9,9)79,2 (8.0)74,4 (5,7)39,4 (1,2)

77,7(5,8)66,8 (3,0)32,0 (0,9)

79,3 (7,0)52,7 (2,2)29,2 (0,8)

510152025303540

% c

ells

with

boun

dsp

ores

45

Mock 1A 4d 4d’ 3d 2d 1d 1dN/Q1AN/Q

3 1.5 0.754d

3 1.5 0.752d

Supplementary Figure 1.- Pathogen-binding capacity of DC-SIGN isoforms and mutants.- A, B. HEK293T cells transiently expressing the indicated DC-SIGN isoforms/mutants (A) or decreasing levels of DC-SIGN 1A, 4d or 2d (B), were incubated with fluorescent C. albicans yeasts and L. infantum amastigotes and the percentage of cells with bound pathogens was determined by flow cytometry. Cell surface expression of each DC-SIGN construct is indicated (thick lines, DC-SIGN; thin lines, control antibody for (A) and one profile for each distinct amounts of transfected plasmids in (B) (3 µg, thick line; 2 or 1.5 µg, thin line; 1 µg, dashed line; 0.75 and 0.5 µg, dotted line). In each case, the Mean Fluorescence Intensity and the percentage of positive cells are shown. The experiment was done three times with similar results, and a representative experiment is shown.

97

Page 93: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Leishmania

Aspergillus

1.2 (0.3)9.9 (0.5)12.3 (0.6)

0.2 (0.3)72.8 (5.7)16.4 (0.6)

0.8 (0.3)60.2 (5.5)13.4 (0.9)

0.1 (0.3)73.8 (6.4)20.1 (0.8)

0.3 (0.3)57.5 (4.0)10.7 (0.6)

0.0 (0.3)3.9 (0.4)4.1 (0.5)

0.0 (0.3)29.6 (1.5)6.2 (0.6)

0.1 (0.3)38.9 (2.1)7.6 (0.9)

0.1 (0.3)44.5 (2.9)9.2 (1.0)

0.1 (0.3)44.4 (3.0)12.5 (1.0)

K562 mock 1A -D3 -D5 -D7

K562-DC-SIGN

MOI=0MOI=10 + X63MOI=10 + MR1

A

DSG-2

1A -D3 -D5 -D7Mock1A -D3 -D5 -D7MockC

Eluted Supernatant

B

X63 MR1

2

4

6

8

1012

GP1

-Fc

bind

ing

(MFI

)

K562 mock1A low1A-D3-D5-D7

K562DC-SIGN

% B

indi

ng to

Man

nan

1020304050607080

Mannan-agarose precipitation

25015010075

50

37

25

Non-reduced

kDa

DC-SIGN -D7

DC-SIGN -D5

DC-SIGN -D3DC-SIGN 1ADC-SIGN 1A (low)K562-Mock1H mock +IF

D

4 2 δ (ppm)Si

gnal

inte

nsity

Leishmania

Aspergillus

1.2 (0.3)9.9 (0.5)12.3 (0.6)

0.2 (0.3)72.8 (5.7)16.4 (0.6)

0.8 (0.3)60.2 (5.5)13.4 (0.9)

0.1 (0.3)73.8 (6.4)20.1 (0.8)

0.3 (0.3)57.5 (4.0)10.7 (0.6)

0.0 (0.3)3.9 (0.4)4.1 (0.5)

0.0 (0.3)29.6 (1.5)6.2 (0.6)

0.1 (0.3)38.9 (2.1)7.6 (0.9)

0.1 (0.3)44.5 (2.9)9.2 (1.0)

0.1 (0.3)44.4 (3.0)12.5 (1.0)

K562 mock 1A -D3 -D5 -D7

K562-DC-SIGN

MOI=0MOI=10 + X63MOI=10 + MR1

A

DSG-2

1A -D3 -D5 -D7Mock1A -D3 -D5 -D7MockC

Eluted Supernatant

B

X63 MR1

2

4

6

8

1012

GP1

-Fc

bind

ing

(MFI

)

K562 mock1A low1A-D3-D5-D7

K562DC-SIGN

% B

indi

ng to

Man

nan

1020304050607080

B

X63 MR1

2

4

6

8

1012

GP1

-Fc

bind

ing

(MFI

)

K562 mock1A low1A-D3-D5-D7

K562DC-SIGN

K562 mock1A low1A-D3-D5-D7

K562DC-SIGN

% B

indi

ng to

Man

nan

1020304050607080

Mannan-agarose precipitation

25015010075

50

37

25

Non-reduced

kDa

DC-SIGN -D7

DC-SIGN -D5

DC-SIGN -D3DC-SIGN 1ADC-SIGN 1A (low)K562-Mock1H mock +IF

D

4 2 δ (ppm)Si

gnal

inte

nsity

Supplementary Figure 2.- Pathogen and sugar-binding capacity of DC-SIGN polymorphic variants.- A. K562 cells stably transfected with the indicated DC-SIGN variants were incubated with fluorescent C. albicans yeasts and L. infantum amastigotes, in the presence of either X63 or MR1 antibodies as indicated, and the percentage of cells with bound pathogens was determined by flow cytometry. In each case, the first number indicates the percentage of cells with bound amastigotes or conidia, and the Mean Fluorescence Intensity of the whole cell population is indicated in parenthesis. B. Adhesion to immobilized mannan (upper panel) or binding of Ebola GP1-Fc (lower panel) of K562 cells stably expressing the indicated DC-SIGN variants in the presence of a blocking (MR1) or an irrelevant antibody (X63) antibody. For comparative purposes, two subpopulations of K562-DC-SIGN 1A with different DC-SIGN cell surface expression levels were assayed. C. Lysates from COS-7 cells transiently transfected with the indicated DC-SIGN polymorphic variants were incubated with mannan-agarose. After extensive washing, bound (Eluted, left panel) and non-bound proteins (Supernatant, right panel) were resolved by SDS-PAGE under non-reducing conditions and subjected to Western blot with DSG-2. D. Binding of Candida utilis glucomannan (IF) to K562 cells stably transfected with the indicated DC-SIGN polymorphic variants by means of 1D Saturation Transfer Difference NMR. The lower profile represents the 1H NMR spectrum of IF-S in PBS at 298 K. Graph illustrates the signal intensity yielded by each transfectant (y-axis) and the chemical shift (d) in parts per million (ppm).

98

Page 94: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Resultados

4. Identificación de epítopos en la molécula de unión a patógenos DC-SIGN

DC-SIGN (Dendritic cell-specific ICAM-3-grabbing non-integrin) es una lectina tipo C que

reconoce oligosacáridos que contienen fucosa y/o manosa, presentes en patógenos con relevancia

clínica. La señalización intracelular iniciada tras la unión de DC-SIGN con el ligando interfiere con

las señales iniciadas por los TLR, y modula la activación y polarización de células T inducida por las

células presentadoras de antígeno. El dominio de reconocimiento de carbohidratos C-terminal (CRD)

de DC-SIGN es precedido por un cuello integrado por ocho repeticiones de 23 residuos, que media

la multimerización de la molécula, y cuyos polimorfismos se correlacionan con una susceptibilidad

alterada a la infección por SARS y HIV. Con el fin de definir epítopos estructurales y funcionales de

DC-SIGN, hemos utilizado isoformas que ocurren de forma natural y moléculas recombinantes

quiméricas. De los tres epítopos identificados en el CRD, uno de ellos está expuesto solamente en

la forma monomérica de DC-SIGN, siendo dependiente de la multimerización de la molécula. Los

epítopos del dominio del cuello son independientes de la conformación e inalterados por la

multimerización de DC-SIGN, pero son diferencialmente afectados por la ausencia de repeticiones

de esta región. Aunque los anticuerpos específicos frente al cuello de DC-SIGN exhiben menor

capacidad de bloqueo funcional, son más eficientes en la inducción de internalización de la molécula.

Por otra parte, la unión de los diversos anticuerpos a sus epítopos correspondientes da lugar a

distintos grados de agrupación de moléculas de DC-SIGN en la superficie celular. La identificación

de epítopos independientes en DC-SIGN podría facilitar el diseño de reactivos que modulen la

capacidad de activación y polarización de células T por las células que expresan DC-SIGN, sin

alterar su capacidad de reconocimiento de antígenos y patógenos.

99

Page 95: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

a ,

fac-allyithingainor-ms

Molecular Immunology 47 (2010) 840–848

Contents lists available at ScienceDirect

Molecular Immunology

journa l homepage: www.e lsev ier .com/ locate /mol imm

Epitope mapping on the dendritic cell-specific ICAM-3-grabbing non-integrin(DC-SIGN) pathogen-attachment factor

Elena Sierra-Filardia , Ana Estechab , Rafael Samaniegob , Elena Fernández-Ruizc , María ColmenaresPaloma Sánchez-Mateosb, Ralph M. Steinmand, Angela Granelli-Pipernod, Angel L. Corbía,∗

a Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spainb Unidad de Inmuno-Oncología, Hospital General Universitario Gregorio Maranón, Madrid, Spainc Unidad de Biología Molecular, Hospital Universitario de la Princesa, Madrid, Spaind Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, NY, USA

a r t i c l e i n f o

Article history:Received 7 February 2009Received in revised form20 September 2009Accepted 30 September 2009Available online 30 October 2009

a b s t r a c t

DC-SIGN (dendritic cell-specific ICAM-3-grabbing non-integrin) is a myeloid pathogen-attachmenttor C-type lectin which recognizes mannose- and fucose-containing oligosaccharide ligands on clinicrelevant pathogens. Intracellular signaling initiated upon ligand engagement of DC-SIGN interferes wTLR-initiated signals, and modulates the T cell activating and polarizing ability of antigen-presentcells. The C-terminal carbohydrate-recognition domain (CRD) of DC-SIGN is preceded by a neck domcomposed of eight 23-residue repeats which mediate molecule multimerization, and whose polymphism correlates with altered susceptibility to SARS and HIV infection. Naturally occurring isofor

Keywords:HumanDendritic cellsAdhesion moleculesPathogen recognitionDC-SIGN

and chimaeric molecules, in combination with established recognition properties, were used to defineseven structural and functional epitopes on DC-SIGN. Three epitopes mapped to the CRD, one of which ismultimerization-dependent and only exposed on DC-SIGN monomers. Epitopes within the neck domainwere conformation-independent and unaltered upon molecule multimerization, but were differentiallyaffected by neck domain truncations. Although neck-specific antibodies exhibited lower function-blocking ability, they were more efficient at inducing molecule internalization. Moreover, crosslinking of

s resu ionpes o lateand p en-ition

ed.

tinsoadiralvan-3-ane

al.,al.,a-2),et

ndis

01;

the different epitopeof independent epitothe T cell activatingand pathogen-recogn

1. Introduction

Dendritic cells (DC) express a large array of cell surface lecand lectin-like molecules, which endow them with a brcapacity for recognition of parasitic, bacterial, yeast and vpathogens (Cambi and Figdor, 2003; Robinson et al., 2006;Kooyk and Geijtenbeek, 2003). Dendritic cell-specific ICAMgrabbing non-integrin (DC-SIGN, CD209) is a type II membr

C-type lectin (Curtis et al., 1992; Geijtenbeek et al., 2000c) abun-dantly expressed in vivo on myeloid DC, macrophages (Bleijs etal., 2001; Curtis et al., 1992; Geijtenbeek et al., 2000a,c, 2001;Lee et al., 2001; Soilleux et al., 2001, 2002), and in vitro gener-ated monocyte-derived dendritic cells (MDDC) and alternativelyactivated macrophages (Puig-Kroger et al., 2004; Relloso et al.,2002; Soilleux et al., 2002). DC-SIGN binds HIV (Geijtenbeek and

∗ Corresponding author. Tel.: +34 91 8373112x4376; fax: +34 91 5627518.E-mail address: [email protected] (A.L. Corbí).

he-0c;nd

0161-5890/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.doi:10.1016/j.molimm.2009.09.036

lted in distinct levels of microclustering on the cell surface. The identificatn the DC-SIGN molecule might facilitate the design of reagents that moduolarizing ability of DC-SIGN-expressing cells without preventing its antigcapacities.

© 2010 Elsevier Ltd. All rights reserv

van Kooyk, 2003), Ebola (Alvarez et al., 2002), SARS (Marzi et2004), Hepatitis C (Lozach et al., 2004, 2003; Pohlmann et2003) and Dengue virus (Tassaneetrithep et al., 2003), Leishmnia amastigotes and promastigotes (Colmenares et al., 2004, 200Mycobacterium tuberculosis (Geijtenbeek et al., 2003; Tailleuxal., 2003), Aspergillus fumigatus (Serrano-Gomez et al., 2004), aCandida albicans (Cambi et al., 2003), via mannan- and Lewoligosaccharides-dependent interactions (Feinberg et al., 20Frison et al., 2003). Besides, DC-SIGN mediates intercellular adsion through its recognition of ICAM-3 (Geijtenbeek et al., 200Gijzen et al., 2007), ICAM-2 (Geijtenbeek et al., 2000a), CEA a

CEACAM1 (van Gisbergen et al., 2005a), and the CD11b/CD18 inte-grin (van Gisbergen et al., 2005b). The extracellular part of DC-SIGNcontains a carbohydrate-recognition domain (CRD) and a neckregion composed of eight 23-residue repeats (Curtis et al., 1992;Engering et al., 2002; Geijtenbeek et al., 2000b; Kwon et al., 2002).Analysis of recombinant molecules indicates that the neck domainmediates the formation of DC-SIGN tetramers, possibly as a strat-egy to increase the avidity for ligand binding (Bernhard et al., 2004;

101

Page 96: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

unolo

Feinbeand getransctransmSakunto HIV

EngprevenPipernintern(Caparwith tSIGNboundgen prto humpromo2005)be usecells, bdescriRellosepitopto disttope mmonomechainterncell su

2. Ma

2.1. G

Hulated(NycoMonoCD14and imtocoland 10et al.,

2.2. Sisoform

StapreviofectionSuperof thethe diCOS-7plemeand pfromated uby seqeratioPCR wet al.,�lectigeneraand se

nd 7epeacoRI/CDNIGN 4

.3. Im

Forere c

BS p.025%loc (protifterl., 20f sepith

0% gr nonolyclC-SIGestectedansfillip50 m

etectines

arrieran

ntise

.4. F

Indescrit al.,s a pe P3

nti-mlonalsed ance oortioith

mpli

.5. Dggreg

96ith mereereye 2xym

reincotyp

E. Sierra-Filardi et al. / Molecular Imm

rg et al., 2005; Mitchell et al., 2001). Alternative splicingnetic polymorphisms generate numerous DC-SIGN isoformripts whose presence has been detected at mucosal HIVission sites (Liu et al., 2005, 2004; Mummidi et al., 2001;

tabhai et al., 2005) and correlates with altered susceptibility-1 transmission (Liu et al., 2004).agement of cell surface DC-SIGN by monoclonal antibodiests pathogen-attachment (Geijtenbeek et al., 2000c; Granelli-o et al., 2005; Relloso et al., 2002), and also leads to moleculealization (Engering et al., 2002) and intracellular signalingros et al., 2006; Gringhuis et al., 2007; Hodges et al., 2007),he latter being antibody-specific (Hodges et al., 2007). DC-functions as an antigen-capturing molecule which targetsmolecules to endosomal compartments for subsequent anti-esentation (Engering et al., 2002). In fact, targeting antigensan dendritic cells via a humanized anti-DC-SIGN antibody

tes effective naive and recall T cell responses (Tacken et al.,. Consequently, DC-SIGN-specific monoclonal antibodies canful not only preventing pathogen spreading into myeloidut also as therapeutic tools. Through the use of previously

bed monoclonal antibodies (Granelli-Piperno et al., 2005;o et al., 2002), we now describe the identification of sevenes within the DC-SIGN molecule, some of which can be usedinguish the multimerization state of the molecule. The epi-apping on the DC-SIGN molecule suggests that anti-DC-SIGN

clonal antibodies can block DC-SIGN functions by alternativenisms, including ligand-binding blockade, antibody-inducedalization and modulation of the multimerization state on therface.

terials and methods

eneration of monocyte-derived dendritic cells (MDDC)

man peripheral blood mononuclear cells (PBMC) were iso-from buffy coats from healthy donors over a Lymphoprepmed, Norway) gradient according to standard procedures.cytes were purified from PBMC by magnetic cell sorting usingmicrobeads (Miltenyi Biotech, Bergisch Gladbach, Germany),mediately subjected to the dendritic cell differentiation pro-

using 1000 U/ml GM-CSF (Schering-Plough, Kenilworth, NJ)00 U/ml IL-4 (PreProtech, Rocky Hill, NJ) (Dominguez-Soto

2007), with cytokine addition every second day.

table and transient transfection of DC-SIGN mutants ands

ble transfectants of DC-SIGN 1A in K562 cells have beenusly described (Relloso et al., 2002). For transient trans-s, 2 × 105 COS-7 or HEK293T cells were transfected with

fect (Qiagen, Hilden, Germany) in 6-well plates, using 2 �gdistinct pCDNA3.1(−)-based expression plasmids containingstinct isoforms, mutants and chimaeric forms of DC-SIGN.and HEK293T cells were routinely grown in DMEM sup-

nted with 10% Fetal Calf Serum (FCS). DC-SIGN isoformsolymorphic variants were isolated by RT-PCR on RNAMDDC or genomic DNA, and the constructs were gener-sing standard molecular biology techniques and verified

arEpS

2

wP0baAaow1opDWjetr(Mindmc(Ga

2

deathacuepwa

2a

wwwdtopis

uencing, as described (Serrano-Gomez et al., 2008). Gen-n of DC-SIGN expression vectors lacking the lectin domainas performed on the pCDNA3-DC-SIGN 1A construct (Relloso2002) using oligonucleotides CD209 sense and CD209-

n (5′-CCCCAAGCTTGTCACAGGCGTTCCACTGCAGC-3′). PCR-ted fragments were resolved in 1.5% agarose gels, purifiedquenced. Fragments containing either the full-length (8d)

bodiesto adhremovent ceweremanngation

102

gy 47 (2010) 840–848 841

-, 6-, and 4-repeat neck regions (repeats 1 through 7, 7d;ts 1 through 6, 6d; repeats 1 through 4, 4d) were cloned intoHindIII-digested pCDNA3.1- to yield pCDNA3.1-DC-SIGN 8d,A3.1-DC-SIGN 7d, pCDNA3.1-DC-SIGN 6d and pCDNA3.1-DC-d plasmids.

munoprecipitation and Western blot

immunoprecipitation, DC-SIGN-transfected HEK293T cellsollected, washed with PBS 1 mM EDTA, resuspended in 1 ml

H 8.0 and lysed in 10 mM Tris–HCl pH 8.0, 150 mM NaCl,sodium azide, 0.5% NP-40, 1 mM iodoacetamide, 2 mM Pefa-

Alexis Biochemicals, Lausen, Switzerland), and 2 �g/ml ofnin, antipain, leupeptin and pepstatin (NP-40 lysis buffer).preclearing, anti-DC-SIGN antibodies (Granelli-Piperno et05) were added onto the cell lysate, followed by additionharose-coupled protein G. Retained molecules were eluted3× Laemmli’s sample buffer (2% SDS, 6.25 mM Tris base,lycerol), and eluates resolved by SDS-PAGE under reducing-reducing conditions, and subjected to Western blot with

onal antiserum raised against a 28-residue peptide from theN cytoplasmic tail (DSG2) (Serrano-Gomez et al., 2008). For

rn blot, 10 �g of total cell lysate in NP-40 lysis buffer was sub-to SDS-PAGE under reducing or non-reducing conditions and

erred onto Immobilon polyvinylidene difluoride membraneore, Bedford, MA). After blocking with 5% non-fat dry milkM Tris–HCl pH 7.6, 150 mM NaCl, 0.1% Tween-20, protein

ion was performed using the Supersignal West Pico Chemilu-cent system (Pierce, Rockford, IL). Detection of DC-SIGN wasd out with the distinct anti-DC-SIGN monoclonal antibodieselli-Piperno et al., 2005), or the DSG2 anti-DC-SIGN polyclonalrum.

low cytometry and antibodies

irect immunofluorescence was done using the previouslybed anti-DC-SIGN monoclonal antibodies (Granelli-Piperno2005), MR1 (directed against the lectin domain of DC-SIGN)ositive control (Relloso et al., 2002), or the supernatant ofX63Ag8 myeloma as negative control, and FITC-labeled goatouse IgG as a secondary antibody. Where indicated, a poly-antiserum against a neck-derived peptide (DSG1) was alsos a positive control. All incubations were done in the pres-f 50 �g/ml of human IgG to prevent binding through the Fcn of the antibodies. Flow cytometry analysis was performedan EPICS-CS (Coulter Científica, Madrid, Spain) using logfiers.

C-SIGN-dependent adhesion to S. cerevisiae mannan andation

-well microtiter EIA II-Linbro plates were coated overnightannan at 50 �g/ml in PBS at 4 ◦C, and the remaining sites

blocked with 0.5% BSA for 2 h at 37 ◦C. Transfected cellslabeled in DMEM containing 0.5% BSA with the fluorescent′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein ace-ethyl ester (Molecular Probes, The Netherlands) at 37 ◦C andubated for 20 min in DMEM 0.5% BSA containing either thee-matched control P3X63 or the distinct anti-DC-SIGN anti-

(Granelli-Piperno et al., 2005). Cells were then allowedere to each well for 15 min at 37 ◦C. Unbound cells wereed by three washes with DMEM 0.5% BSA, and adher-lls were quantified using a fluorescence analyzer. Results

expressed as “% Binding”, which indicates the percentage ofan-bound cells relative to the total cellular input. For aggre-

assays, K562-DC-SIGN cells were washed with PBS 1 mM

Page 97: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

olecul

atese or

DC-of

andich

Thesed

R1

tedForur-ml)lde-ree

was

842 E. Sierra-Filardi et al. / M

EDTA, resuspended in RPMI 10% FCS, and placed in 24-well plat 105 cells/ml for 20 min at 37 ◦C and either in the presencabsence of anti-DC-SIGN antibodies.

2.6. Specificity of antibody recognition by ELISA

The cDNA region encoding the extracellular portion ofSIGN was generated by PCR, cloned in-frame downstreamthe hexahistidine sequence of pET100/D-TOPO (Invitrogen),transformed into BL21 bacteria to generate HIS-DC-SIGN, whwas purified on Ni2+-nitrilotriacetic acid-agarose (Qiagen).DSG1 peptide sequence (GELPEKSKQQEIYQELTRLKAAV) was ba

on the sequence of the sixth repeated domain of the DC-SIGNneck region. DSG1 peptide was coated onto 96-well MaxisorpImmunoplates (Nunc) and binding of anti-neck monoclonal anti-bodies assessed by a standard direct ELISA procedure usingHRP-conjugated anti-mouse IgG rabbit polyclonal antiserum. Forcompetition experiments, 96-well HIS-DC-SIGN protein-coatedplates were incubated with anti-CRD antibodies, followed by incu-

Fig. 1. Identification of CRD- and neck-specific DC-SIGN antibodies. (A) Schematic sstudy. (B) The indicated DC-SIGN constructs (DC-SIGN 1A, DC-SIGN 8d and DC-SIGreactivity of the distinct anti-DC-SIGN monoclonal antibodies, the anti-DC-SIGN podetermined by flow cytometry. MFI (lower number) and percentage of positive celwith the indicated expression vectors (DC-SIGN 1A and DC-SIGN 8d), lysed after 48 hWestern blot using the indicated anti-DC-SIGN monoclonal antibodies. (D) Lysates othe indicated anti-DC-SIGN antibodies. Immunoprecipitates were resolved by SDS-polyclonal antiserum DSG2. The position of high-order multimers is indicated by aDC-SIGN constructs (1A, 1AN/Q, 2d and 1d) or an empty vector (Mock), and the reactiantibody MR1 (positive control) or the negative control P3X63 (Control) was deternumber) are shown in each case. Each experiment was performed twice with simila

ar Immunology 47 (2010) 840–848

bation with a suboptimal concentration of biotin-labeled Mantibody and HRP-conjugated streptavidin.

2.7. Immunofluorescence and confocal microscopy

105 immature MDDC were layered over fibronectin-coaglass coverslips (5 �g/ml) and incubated for 30 min at 37 ◦C.staining of early endosomes, cells were subsequently pulsed ding 10 min with A633 conjugated biferric-transferrin (10 �g/(Molecular Probes). Cells were then fixed (4% paraformahyde in PBS, 15 min at room temperature) and washed thtimes with 25 mM Tris buffer saline. When permeabilization

required, samples were incubated with 0.3% Triton X-100 (5 minat room temperature). After a blocking step in Blocking Reagent(Boheringer Manheim) containing 0.5% sodium azide and 1 �g/mlof human immunoglobulins (10 min at room temperature), cellswere labeled with the indicated antibody (30 min at 37 ◦C) fol-lowed by FITC-labeled anti-mouse IgG. Cells were finally washedin PBS and water, and mounted with fluorescence mounting

tructure of the naturally occuring and chimaeric DC-SIGN constructs used in the presentN 4d) or an empty vector (Mock) were transient transfected in HEK293T cells, and thelyclonal antiserum DSG1 (positive control) or the negative control P3X63 (Control) wasls (upper number) are shown in each case. (C) COS-7 cells were transiently transfected, and cell lysates resolved by SDS-PAGE under non-reducing conditions and subjected to

f HEK293T cells transiently transfected with DC-SIGN 1A were immunoprecipitated withPAGE under reducing conditions, and subjected to Western blot with the anti-DC-SIGNn arrow. (E) HEK293T cells were transfected with expression vectors for the indicatedvity of the indicated anti-DC-SIGN monoclonal antibodies, the anti-DC-SIGN monoclonalmined by flow cytometry. MFI (lower number) and percentage of positive cells (upperr results, and one of the experiments is shown.

103

Page 98: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

unolo

mediuwith37 ◦C)ondar100 scells.

Lasconfoctems,PL-APresolu∼150 nwith tintenstion awhichthe sc

resherge

. Re

.1. Idonoc

Ens re

Fig. 2. F1A, DC-repeat (antibodare showthe numthe DC-PE labeMab). Rmatchethe reco

E. Sierra-Filardi et al. / Molecular Imm

m (DAKO). For induction of patching, cells were incubatedthe indicated anti-DC-SIGN antibody (1 �g/ml, 10 min at, fixed and subsequently incubated with a FITC-labeled sec-y antibody. For microclustering quantification, more thanpots were measured from at least 10 randomly chosen

er scanning confocal microscopy was performed with aal scanning inverted AOBS/SP2-microscope (Leica Microsys-Heidelberg, Germany). All images were acquired with a 63XO NA 1.3 glycerol immersion objective. The theoretical x, y-tion of this lens at Airy-1 and 488 nm excitation length is

thm

3

3m

ie

m. Assessment of fluorophore colocalization was performedhe Leica software, using a global statistic method to performity correlation analysis. Plots display the intensity distribu-nd degree of colocalization corresponding to the entire cell,

is shown next to the scatter plot. Co-localizing events inatter plot were gated (double positive pixels above the dual

2000cizationet al.,functiies (Gto recAll an

ine specificity of the neck-specific anti-DC-SIGN monoclonal antibodies. (A and B) HEK2SIGN chimaeric constructs (1A, 2d and 1d) (A), three different DC-SIGN polymorphic varia-D3, -D5 and -D7) (B), or an empty vector (Mock) and the reactivity of the neck-specificy (positive control) or the negative control P3X63 (Control) was determined by flow cyto

n in each case. Each experiment was performed twice, and one of the experiments is shober of the neck region repeats (8d, 7d and 6d) were transient transfected in COS7 cells, an

SIGN cytoplasmic domain (DSG2) or the indicated neck-specific monoclonal antibodies. (led (PE-Mab), and their binding to K562-DC-SIGN 1A stable transfectants assayed by flowesults are expressed as the percentage of binding in the presence of each competing antibd antibody. (E) Recognition of the DSG1 peptide by the indicated neck-specific anti-DC-SIgnition of rHIS-DC-SIGN by the MR1 monoclonal antibody, as determined by inhibition E

104

gy 47 (2010) 840–848 843

old) and visualized as a white overlay on the green and redd image.

sults and discussion

entification of anti-CRD and anti-neck DC-SIGN-specificlonal antibodies

gagement of cell surface DC-SIGN by monoclonal antibod-sults in pathogen recognition blockade (Geijtenbeek et al.,

; Granelli-Piperno et al., 2005; Relloso et al., 2002), internal-

(Engering et al., 2002) and intracellular signaling (Caparros2006; Gringhuis et al., 2007; Hodges et al., 2007). To defineonal epitopes within the molecule, ten monoclonal antibod-ranelli-Piperno et al., 2005) were assayed for their abilityognize natural and chimaeric variants of DC-SIGN (Fig. 1A).tibodies recognized the prototypical DC-SIGN isoform (DC-

93T cells were transiently transfected with expression vectors for DC-SIGNnts which contain only seven repeats but differ in the identity of the absentmonoclonal antibodies (2, 4, 7, 10 and 11), the anti-CRD MR1 monoclonal

metry. MFI (lower number) and percentage of positive cells (upper number)wn. (C) DC-SIGN deletion mutants lacking the lectin domain but differing ind cell lysates subjected to Western blot with a polyclonal antiserum against

D) Cross-inhibition experiments. Antibodies 1, 7 and MR1 were purified andcytometry in the presence of the indicated competing antibodies (Comp.

ody relative to the binding observed in the presence of an irrelevant isotype-GN monoclonal antibodies by ELISA. (F) Effect of CRD-specific antibodies onLISA.

Page 99: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

olecul

dieso etandthevityrex-

11ericnot

vely1C).eeners

1D).eckeci-the

dis-romdies

and

ificcts

DC-atsthethe

ect-tion

IGNentby

eckblend-ely

844 E. Sierra-Filardi et al. / M

SIGN 1A) on HEK293T cells (Fig. 1B), but only five (antibo2, 4, 7, 10 and 11) (numbering according to (Granelli-Pipernal., 2005)) bound the CRD-lacking construct (DC-SIGN 8d)retained their reactivity against a construct which lacks halfneck domain (DC-SIGN 4d, Fig. 1B). The same pattern of reactiwas observed by Western blot on lysates from COS-7 cells ovepressing DC-SIGN 1A or DC-SIGN 8d: antibodies 2, 4, 7, 10 andrecognized DC-SIGN 8d, and bound to monomeric and multimforms of DC-SIGN (Fig. 1C), while antibodies 3, 6 and 13 didrecognize denatured DC-SIGN, and antibodies 1 and 9 exclusibound to the monomeric form of full-length DC-SIGN 1A (Fig.The differences between both sets of antibodies were also sin immunoprecipitation assays, as DC-SIGN high-order multimwere only brought down by antibodies 2, 4, 7, 10 and 11 (Fig.Therefore, five antibodies (2, 4, 7, 10 and 11) recognize the nregion of DC-SIGN (Neck-specific antibodies), whereas the spficity of the rest (1, 3, 6, 9 and 13) depends on the presence ofCRD region (CRD-dependent antibodies).

The above experiments also allowed the definition of threetinct specificity groups within the CRD-dependent antibodies. Fthe Western blot analysis in Fig. 1C, it is evident that antibo

1 and 9 bind only denatured DC-SIGN monomers, thus suggest-ing that, unlike 3, 6 and 13, they recognize linear CRD epitopesnot accessible in DC-SIGN multimers. On the other hand, antibod-ies 1, 3, 9 and 13 yielded flow cytometry profiles (almost bimodal)which differ from that of antibody 6 (Fig. 1B). Therefore, three typesof CRD-dependent DC-SIGN antibodies might be defined: Group 1(antibodies 1 and 9), which recognizes CRD sequential epitope(s)

Fig. 3. Function-blocking ability of anti-DC-SIGN monoclonal antibodies. (A) HEK29or an empty vector (Mock), and expression levels determinated by flow cytometrycells were labeled with BCECF and adhesion to S. cerevisiae mannan was performed ian irrelevant antibody (X63, Control) as negative control. (C) K562-DC-SIGN 1A stabat 37 ◦C either in the absence (Untreated) or presence of the indicated anti-DC-SIGNassayed anti-DC-SIGN monoclonal antibodies.

ar Immunology 47 (2010) 840–848

probably masked in DC-SIGN multimers, Group 2 (antibodies 313) and Group 3 (antibody 6).

3.2. Comparison of the specificity of neck-specific antibodies

To further define the specificity of the DC-SIGN neck-specantibodies, their reactivity was assayed on DC-SIGN construlacking the N-glycosylation site in the first neck domain repeat (SIGN 1A N/Q), or whose neck domain included only two repe(DC-SIGN 2d) or a single repeat (DC-SIGN 1d). Disruption ofN-glycosylation site led to a reduction in the reactivity ofneck-specific antibodies (Fig. 1E and not shown), possibly refling the higher degree of multimerization of DC-SIGN glycosylamutants (Serrano-Gomez et al., 2008).

Truncation of the neck domain to a single repeat (DC-S1d) did not have any influence on the binding of CRD-dependantibodies (Fig. 1E and not shown), indicating that recognitionCRD-specific antibodies is independent on the length of the ndomain. By contrast, neck-specific antibodies displayed a varialevel of reactivity against the DC-SIGN 2d construct, and their biing was completely abolished when the neck region was exclusiv

composed of the first repeat (DC-SIGN 1d) (Fig. 2A). Antibodies 4,10 and 11 bound DC-SIGN 2d to a similar extent as the prototypicDC-SIGN 1A molecule, implying that their epitope(s) is retainedwithin the two N-terminal repeats of the neck domain (Fig. 2A).Conversely, antibody 2 recognized DC-SIGN 2d to a lower extent,and antibody 7 displayed no binding to DC-SIGN 2d (Fig. 2A). There-fore, the two N-terminal repeats of the DC-SIGN neck retain the

3T cells were transiently transfected with the prototypic isoform DC-SIGN (DC-SIGN 1A)with the anti-DC-SIGN MR1 monoclonal antibody. (B) Transiently transfected HEK293Tn the presence of the distinct anti-DC-SIGN antibodies (MR1, DSG1, 1, 2, 4, 6, 7 and 9) orle transfectants were seeded in 24-well plates at 105 cells/ml and maintained for 20 min

antibodies (10 �g/ml). (D) Schematic representation of the epitopes recognized by the

105

Page 100: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

unolo

epitopbodiestheir mspecifivarianthe ideshownrepeatsis ofwhichbodiesneck-sor 7 (Frecogntial reallowineck d

Toevaluasequebodies(Fig. 2epitop7, in aantiboit was

oseis poe bireadhibi

tratinhich

.3. Fntibo

ThIV-1rantion

bilitye bima

locke

Fig. 4.cence) fishown iMDDC pat highwashedficationDC-SIGNShownantibod

E. Sierra-Filardi et al. / Molecular Imm

e(s) recognized by antibodies 4, 10 and 11, whereas anti-2 and 7 require the presence of additional repeats to exhibitaximal binding activity. On the other hand, all the neck-

c antibodies equally recognized three different polymorphicts of DC-SIGN which contain only seven repeats but differ inntity of the absent repeat (-D3, -D5, -D7) (Fig. 2B and data not), suggesting that they recognize epitopes shared by severals. A similar conclusion was drawn from Western blot analy-the DC-SIGN 8d, 7d and 6d neck region deletion constructs,were recognized to a similar extent by the neck-specific anti-(Fig. 2C), and from cross-competition experiments, as all thepecific antibodies could inhibit the binding of antibodies 4ig. 2D and not shown). Therefore, neck-specific antibodiesize epitopes shared by repeats 2-to-8, but exhibit differen-

cognition of the 2-repeat-containing DC-SIGN 2d construct,ng the definition of three distinct epitopes on the DC-SIGNomain.extend the above findings, neck-specific antibodies wereted for their ability to bind the DSG1 peptide, whose

thththainsw

3a

H(Glaathtob

nce is based on the DC-SIGN neck repeat 6. Only three anti-(4, 10 and 11) bound significantly to DSG1-coated plates

E), indicating that they recognize common or overlappinges which differ from those recognized by antibodies 2 andgreement with flow cytometry data. Regarding CRD-specificdies, and based on the cross-inhibition experiments (Fig. 2D),apparent that MR1 recognized an epitope different from

polycl(Fig. 3the ceSIGN–(50%)antibo2 had

Immunofluorescence staining and antibody-induced DC-SIGN microclustering of immatxed and permeabilized fibronectin-bound MDDC with the indicated anti-DC-SIGN anti

s the colocalization analysis. The scatter plot (most right panel) displays the intensity distranel) Non-permeabilized fibronectin-bound MDDC were fixed and stained with the indicamagnification. (Antibody-treated MDDC panel) Fibronectin-bound MDDC were incubatedto remove unbound antibodies, and fixed and stained with FITC-labeled anti-mouse Ig

. Microclustering was evaluated by measuring more than 100 spots per antibody in a-containing microcluster size in MDDC under basal conditions (Untreated) or exposed to

are the range, mean and SD of the measurement of 10 individual cells from each experiy-treated cells was only seen with antibodies 7, 10 and MR1.

106

gy 47 (2010) 840–848 845

defined by antibodies 1/9, 3/13 and 6. To further confirmssibility, inhibition ELISA experiments were performed using

nding of biotin-labeled MR1 to recombinant HIS-DC-SIGN as-out. As shown in Fig. 2F, none of the anti-CRD antibodiested MR1 binding to recombinant HIS-DC-SIGN, thus demon-g that MR1 defines a separate epitope on the DC-SIGN CRDis distinct from those defined by antibodies 1/9, 3/13 and 6.

unctional comparison of CRD- and neck-specific monoclonaldies

e analyzed antibodies have been demonstrated to inhibittransmission from Raji-DCSIGN transfectants to T cells

elli-Piperno et al., 2005). To determine whether a corre-exists between epitope recognition and function-blocking, the antibodies were evaluated for their ability to inhibitnding of DC-SIGN 1A-expressing HEK293T cells (Fig. 3A)nnan-coated surfaces. Whereas MR1 antibody completelyd cell binding to S. cerevisiae mannan, the neck-specific DSG1

onal antiserum had no effect (Serrano-Gomez et al., 2007)B). Regarding CRD-dependent antibodies, and in line withll-binding experiments, antibodies 1 and 9 abrogated DC-mannan interaction, whereas antibody 6 caused a moderateinhibition (Fig. 3B). In the case of neck-specific antibodies,dies 4 and 7 partially reduced the binding, and antibodyno effect on the DC-SIGN–mannan interaction (Fig. 3B).

ure MDDC. (A) Immunolocalization of transferin A633-loaded (red fluores-bodies (green fluorescence). In the case of antibody 10 (two right panels),ibution of each fluorochrome and the degree of colocalization. (B) (Untreatedted anti-DC-SIGN antibodies to determine the pattern of membrane stainingfor 10 min at 37 ◦C with the indicated anti-DC-SIGN antibodies (1 �g/ml),

G polyclonal antiserum. Marked areas are shown below at higher magni-minimum of 10 randomly chosen cells. (C) Quantitation of the size of thethe indicated anti-DC-SIGN antibodies for 10 min at 37 ◦C (Antibody-treated).mental condition. Significant difference (p < 0.001) between untreated and

Page 101: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

olecul

DC-torymo-itedtednti-ing

farandpestialo ofnc-ain

inctule,inct

og-heyalso

undinctfore. Asies,the

ain-diesthe

wersterntlyingvedthe

facecro-ent

ilityultsIGNDC-ing

ling

DC-

846 E. Sierra-Filardi et al. / M

Similar results were seen on the Leishmania-binding ability ofSIGN, with neck-specific antibodies exhibiting the lowest inhibieffect (data not shown). Likewise, the DC-SIGN-dependent hotypic aggregation of K562-DC-SIGN 1A cells was strongly inhibby CRD-dependent antibodies (1, 3, 6), but was almost unaffecby the 7 and 10 neck-specific antibodies (Fig. 3C). Therefore, aCRD antibodies consistently display a stronger function-blockcapacities than those directed against the neck domain.

The combination of structural and functional assays sodescribed allowed the identification of different structuralfunctional epitopes on DC-SIGN (Fig. 3D). At least four epitocould be defined within the CRD according to their linear/sequenarchitecture and their accessibility on the cell surface, with twthem differentially involved in DC-SIGN-dependent adhesive futions. The rest of the epitopes were mapped within the neck domof the molecule, and their existence is inferred from the distreactivity of the antibodies against truncated forms of the moleca peptide based on the sequence of a single repeat, and their distfunctional effects in adhesion assays.

3.4. Clustering- and internalization-inducing ability of DC-SIGNantibodies

Regardless of their specificity, all antibodies equally recnized DC-SIGN on MDDC after cell permeabilization, as tyielded a spotted staining enriched at the lamellipodium and

labeled discrete cytoplasmic structures near the plasma membrane(Fig. 4A and not shown). The identity of these structures as endo-cytic/sorting compartments was determined after a 10 min pulsewith A633-labeled transferrin, which labels both early and sort-ing endosomes, as most DC-SIGN cytoplasmic spots co-localizedwith transferrin-loaded endosomes (Fig. 4A, two rightmost pan-els). To determine the influence that each antibody might have

Fig. 5. Internalization-inducing ability of anti-DC-SIGN antibodies. MDDC cells wesubsequently fixed and incubated with a Cy3-labeled secondary antibody to detect Dan FITC-labeled secondary antibody to detect internalized molecules. Representativeare shown in the bottom panel.

ar Immunology 47 (2010) 840–848

on the cell surface distribution of DC-SIGN, fibronectin-bonon-permeabilized MDDC were either stained with the distantibodies, or incubated with antibodies at 37 ◦C for 10 min besubsequent fixation and staining with secondary antibodiesshown in Fig. 4B (upper panel, Untreated MDDCs), all antibodexcept for #6, yielded an equivalent spotted distribution onplasma membrane of intact MDDC, with a generally enriched sting at the lamellipodium. Preincubation with the distinct antiborevealed that the antibodies differed in their ability to modifysize of DC-SIGN-containing microclusters on MDDC (Fig. 4B, lopanels, Antibody-treated MDDC). Quantitation of the microclusize indicated that only antibodies 7, 10 and MR1 significa(p < 0.001) enhanced the size of the MDDC DC-SIGN-containmicroclusters when compared to the size of the clusters obserat 4 ◦C under basal conditions (Fig. 4C). This result suggests thatability to promote DC-SIGN redistribution on the MDDC cell suris independent on their recognition specificity, as enhanced miclustering was induced by anti-neck (7, 10) and CRD-depend(MR1) antibodies. Given the differential function-blocking abof the microclustering-enhancing antibodies (Fig. 3), these resalso suggest that the ability of the antibodies to inhibit DC-Srecognition functions is not related to their ability to induceSIGN cell surface redistribution. Whether the clustering-inducability might affect their ability to trigger intracellular signaremains to be determined.

The ability of anti-neck antibodies of partially inhibiting

SIGN adhesive functions could be explained by their ability to alterthe multimeric state of the lectin on the cell surface through dis-ruption of the neck–neck intercellular interactions which mediateDC-SIGN multimerization. Alternatively, neck-specific antibodiescould also alter DC-SIGN internalization, thus reducing the numberof available cell surface molecules. To determine whether this wasthe case, the ability of the different antibodies to promote DC-SIGN

re either kept at 4 ◦C or treated with the indicated antibodies for 10 min at 37 ◦C, andC-SIGN molecules on the cell surface. Then, cells were permeabilized and incubated withexamples of cells exposed to the different antibodies under both incubation procedures

107

Page 102: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

unolo

interning th4 ◦C orantiboizationrecognCRD-sinducithe fufrom tmolec

DCare su(Engerfactorcell sulocalizfrom trestric(Cambal., 20turingintera2007)al., 200surfactriggeof greinvolv

Anward tto triget al.,activathis rebe dif2007)upon rSIGN (intracsivelylectinstion ofmolecto (1)waysto mopresen

Thepreseninternpathothe DCof morate (DdetermSIGNlocatedomaiDC-SIGor toConveefficiecientlycells (not be

etermr motern

besponising

ckno

ThCienCone Re

eseaacióne gr

eishm

efere

lvarezlecttran

ernhaanabin

leijs, Da ba

ambi,SIGme

ambi,imm

ambi,M.G(CDEur

aparroRodDC-ulat

olmenDC-Imm

olmencelltegrLeis

urtis,mehumSci.

akappWilto tdeliImm

en Dunlect114

omingmeM.Lates533

ngerinrexThepre

inberreg

E. Sierra-Filardi et al. / Molecular Imm

alization in MDDC in suspension was evaluated by compar-e DC-SIGN cell surface expression on MDDC maintained at

subjected to a 30 min incubation at 37 ◦C with the distinctdies (Fig. 5, upper panel). Interestingly, maximal internal-

was promoted by antibodies 2, 4, 7 and 10, all of whichize neck-specific epitopes (Fig. 5, lower panel). Among the

pecific antibodies, MR1 exhibited the highest internalization-ng ability (Fig. 5). Therefore, it is tempting to speculate thatnction-blocking ability of neck-specific antibodies derivesheir capacity to diminish the amount of available DC-SIGNules on the cell surface.-SIGN is an antigen-capturing molecule whose ligandsbsequently taken into the antigen-presentation pathwaying et al., 2002), and functions as a pathogen-attachment(den Dunnen et al., 2009). DC-SIGN nanoscale clusters on therface are not distributed randomly, as they are preferentiallyed to the leading edge of MDDC lamellipod and excludedhe ventral plasma membrane (Neumann et al., 2008). Thisted localization and its clathrin-dependent internalizationi et al., 2009) appear to be tightly regulated (Neumann et08) as a possible strategy to maximize recognition and cap-functions. In fact, the DC-SIGN cytoplasmic tail is known to

ct with the F-actin binding phosphoprotein LSP1 (Smith et al.,, which also contributes to DC-SIGN signaling (Gringhuis et9). The identification of reagents that modulate DC-SIGN cell

e distribution, like the DC-SIGN neck-specific antibodies thatr maximal DC-SIGN internalization in MDDC, can therefore beat value to identify cytoskeletal or cytoplasmic componentsed in the regulated cell surface distribution of the molecule.ti-DC-SIGN antibodies have been valuable tools to put for-he pathogen-binding ability of the receptor and its capacityger intracellular signaling (Caparros et al., 2006; Gringhuis2007; Hodges et al., 2007), that interferes with the NF�B

tion route and results in increased production of IL-10. Ingard, the DC-SIGN-initiated signaling has been shown to

ferentially promoted by distinct antibodies (Hodges et al.,, and different intracellular signals appear to be triggeredecognition of mannose- or Lewis-containing ligands by DC-Gringhuis et al., 2009). However, most studies on DC-SIGN

ellular signaling make use of ligands which are not exclu-recognized by DC-SIGN and might be also sensed by otherand/or pathogen recognition receptors. Thus, the identifica-antibodies that detect independent epitopes on the DC-SIGN

ule might constitute a first step for the design of reagentsdissect the DC-SIGN-initiated intracellular signaling path-

and (2) target lectin-initiated intracellular signals as a waydulate the polarizing ability of DC-SIGN-expressing antigen-ting cells.

antibodies whose epitopes have been mapped in thet manuscript can be also helpful to potentiate the

alization ability of the molecule without preventing itsgen-recognition capacity. The search for reagents specific for-SIGN related molecule L-SIGN has led to the identification

noclonal antibodies that greatly enhance its internalizationakappagari et al., 2006). In the case of DC-SIGN, we haveined that the antibodies that promote the strongest DC-

internalization in MDDC are directed against an epitoped within the neck domain and out of the ligand-recognitionn (CRD), what suggests that their moderate inhibitory of

dointorem

A

yythRgWL

R

A

B

B

C

C

C

C

C

C

C

D

d

D

E

Fe

N recognition functions is due to either steric hindranceenhanced removal of the molecule from the cell surface.rsely, the anti-L-SIGN antibodies that display the mostnt ligand-blocking effect are also internalized most effi-

in K562 transfectants and liver sinusoidal endothelialDakappagari et al., 2006). Since the L-SIGN antibodies haveen structurally mapped, it is not possible at this time to

280Feinber

tive216

Frison,amrecointe278

108

gy 47 (2010) 840–848 847

ine whether this difference is due to either cell-specificlecule-specific effects. Regardless of the explanation, thealization-inducing DC-SIGN neck-specific antibodies appearideally suited to potentiate the generation of immuneses against DC-SIGN-interacting ligands without compro-the pathogen-attachment function of the molecule.

wledgements

is work was supported by the Ministerio de Educacióncia (Grants BFU2008-0149-BMC), Ministerio de Sanidad

sumo, Instituto de Salud Carlos III (Spanish Network forsearch in Infectious Diseases, REIPI RD06/0008, and AIDS

rch Network, RIS RD06/0006), and Fundación para la Investi-y Prevención del SIDA en Espana (FIPSE 36663/07) to ALC.

atefully acknowledge Dr. M.A. Abengózar for performing theania-DC-SIGN interaction experiment.

nces

, C.P., Lasala, F., Carrillo, J., Muniz, O., Corbi, A.L., Delgado, R., 2002. C-typeins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and ins. J. Virol. 76, 6841–6844.

rd, O.K., Lai, J., Wilkinson, J., Sheil, M.M., Cunningham, A.L., 2004. Proteomiclysis of DC-SIGN on dendritic cells detects tetramers required for ligandding but no association with CD4. J. Biol. Chem. 279, 51828–51835..A., Geijtenbeek, T.B., Figdor, C.G., van Kooyk, Y., 2001. DC-SIGN and LFA-1:ttle for ligand. Trends Immunol. 22, 457–463.

A., Beeren, I., Joosten, B., Fransen, J.A., Figdor, C.G., 2009. The C-type lectin DC-N internalizes soluble antigens and HIV-1 virions via a clathrin-dependentchanism. Eur. J. Immunol. 39, 1923–1928.A., Figdor, C.G., 2003. Dual function of C-type lectin-like receptors in theune system. Curr. Opin. Cell Biol. 15, 539–546.

A., Gijzen, K., de Vries, J.M., Torensma, R., Joosten, B., Adema, G.J., Netea,., Kullberg, B.J., Romani, L., Figdor, C.G., 2003. The C-type lectin DC-SIGN209) is an antigen-uptake receptor for Candida albicans on dendritic cells.. J. Immunol. 33, 532–538.s, E., Munoz, P., Sierra-Filardi, E., Serrano-Gomez, D., Puig-Kroger, A.,riguez-Fernandez, J.L., Mellado, M., Sancho, J., Zubiaur, M., Corbi, A.L., 2006.SIGN ligation on dendritic cells results in ERK and PI3K activation and mod-es cytokine production. Blood 107, 3950–3958.ares, M., Corbi, A.L., Turco, S.J., Rivas, L., 2004. The dendritic cell receptorSIGN discriminates among species and life cycle forms of Leishmania. J.unol. 172, 1186–1190.

ares, M., Puig-Kroger, A., Pello, O.M., Corbi, A.L., Rivas, L., 2002. Dendritic(DC)-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonin-in (DC-SIGN, CD209), a C-type surface lectin in human DCs, is a receptor forhmania amastigotes. J. Biol. Chem. 277, 36766–36769.B.M., Scharnowske, S., Watson, A.J., 1992. Sequence and expression of ambrane-associated C-type lectin that exhibits CD4-independent binding of

an immunodeficiency virus envelope glycoprotein gp120. Proc. Natl. Acad.U.S.A. 89, 8356–8360.agari, N., Maruyama, T., Renshaw, M., Tacken, P., Figdor, C., Torensma, R.,d, M.A., Wu, D., Bowdish, K., Kretz-Rommel, A., 2006. Internalizing antibodieshe C-type lectins, L-SIGN and DC-SIGN, inhibit viral glycoprotein binding andver antigen to human dendritic cells for the induction of T cell responses. J.unol. 176, 426–440.nen, J., Gringhuis, S.I., Geijtenbeek, T.B., 2009. Innate signaling by the C-type

in DC-SIGN dictates immune responses. Cancer Immunol. Immunother. 58,9–1157.uez-Soto, A., Aragoneses-Fenoll, L., Martin-Gayo, E., Martinez-Prats, L., Col-

nares, M., Naranjo-Gomez, M., Borras, F.E., Munoz, P., Zubiaur, M., Toribio,., Delgado, R., Corbi, A.L., 2007. The DC-SIGN-related lectin LSECtin medi-antigen capture and pathogen binding by human myeloid cells. Blood 109,

7–5345.g, A., Geijtenbeek, T.B., van Vliet, S.J., Wijers, M., van Liempt, E., Demau-, N., Lanzavecchia, A., Fransen, J., Figdor, C.G., Piguet, V., van Kooyk, Y., 2002.dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for

sentation to T cells. J. Immunol. 168, 2118–2126.g, H., Guo, Y., Mitchell, D.A., Drickamer, K., Weis, W.I., 2005. Extended neckions stabilize tetramers of the receptors DC-SIGN and DC-SIGNR. J. Biol. Chem.

, 1327–1335.g, H., Mitchell, D.A., Drickamer, K., Weis, W.I., 2001. Structural basis for selec-recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science 294,

3–2166.N., Taylor, M.E., Soilleux, E., Bousser, M.T., Mayer, R., Monsigny, M., Drick-er, K., Roche, A.C., 2003. Oligolysine-based oligosaccharide clusters: selectivegnition and endocytosis by the mannose receptor and dendritic cell-specificrcellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin. J. Biol. Chem., 23922–23929.

Page 103: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

olecul

G.C.,M-2

Mid-, C.G.,otein

., vancell-100,

that

M.,teria

k, Y.,that

C.G.,tion.

C.G.,dritic09 isuired. 175,

T.B.,ilors

. Nat.

beek,Raf-

ty 26,

rake-ationering577.. DC-

of T

lt, K.,f DC-iency

y, L.,rans-715.

orey,CR5,

nter-duals

Cos-and279,

IGN2Biol.

bilityke. J.

erno,teins

, M.,con,

lateddhe-cells,

a, G.,A.L.,

lated43.006.

noo,tha-P.T.,

acob,209513.Leal,culeillus173,

Col-o, J.,riticents

o, R.,A.L.,ptorface.

007.rt of

man,rtical

le, J.,nsti-hage

Punt,aive

via a

gres,olles,

848 E. Sierra-Filardi et al. / M

Geijtenbeek, T.B., Krooshoop, D.J., Bleijs, D.A., van Vliet, S.J., van Duijnhoven,Grabovsky, V., Alon, R., Figdor, C.G., van Kooyk, Y., 2000a. DC-SIGN-ICAinteraction mediates dendritic cell trafficking. Nat. Immunol. 1, 353–357.

Geijtenbeek, T.B., Kwon, D.S., Torensma, R., van Vliet, S.J., van Duijnhoven, G.C.,del, J., Cornelissen, I.L., Nottet, H.S., KewalRamani, V.N., Littman, D.R., Figdorvan Kooyk, Y., 2000b. DC-SIGN, a dendritic cell-specific HIV-1-binding prthat enhances trans-infection of T cells. Cell 100, 587–597.

Geijtenbeek, T.B., Torensma, R., van Vliet, S.J., van Duijnhoven, G.C., Adema, G.JKooyk, Y., Figdor, C.G., 2000c. Identification of DC-SIGN, a novel dendriticspecific ICAM-3 receptor that supports primary immune responses. Cell575–585.

Geijtenbeek, T.B., van Kooyk, Y., 2003. DC-SIGN: a novel HIV receptor on DCsmediates HIV-1 transmission. Curr. Top. Microbiol. Immunol. 276, 31–54.

Geijtenbeek, T.B., Van Vliet, S.J., Koppel, E.A., Sanchez-Hernandez,Vandenbroucke-Grauls, C.M., Appelmelk, B., Van Kooyk, Y., 2003. Mycobactarget DC-SIGN to suppress dendritic cell function. J. Exp. Med. 197, 7–17.

Geijtenbeek, T.B., van Vliet, S.J., van Duijnhoven, G.C., Figdor, C.G., van Kooy2001. DC-SIGN, a dentritic cell-specific HIV-1 receptor present in placentainfects T cells in trans-a review. Placenta 22 (Suppl. A), S19–S23.

Gijzen, K., Tacken, P.J., Zimmerman, A., Joosten, B., de Vries, I.J., Figdor,Torensma, R., 2007. Relevance of DC-SIGN in DC-induced T cell proliferaJ. Leukoc. Biol. 81, 729–740.

Granelli-Piperno, A., Pritsker, A., Pack, M., Shimeliovich, I., Arrighi, J.F., Park,Trumpfheller, C., Piguet, V., Moran, T.M., Steinman, R.M., 2005. Dencell-specific intercellular adhesion molecule 3-grabbing nonintegrin/CD2abundant on macrophages in the normal human lymph node and is not reqfor dendritic cell stimulation of the mixed leukocyte reaction. J. Immunol4265–4273.

Gringhuis, S.I., den Dunnen, J., Litjens, M., van der Vlist, M., Geijtenbeek,2009. Carbohydrate-specific signaling through the DC-SIGN signalosome taimmunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pyloriImmunol. 10, 1081–1088.

Gringhuis, S.I., den Dunnen, J., Litjens, M., van Het Hof, B., van Kooyk, Y., GeijtenT.B., 2007. C-Type lectin DC-SIGN modulates toll-like receptor signaling via1 kinase-dependent acetylation of transcription factor NF-kappaB. Immuni605–616.

Hodges, A., Sharrocks, K., Edelmann, M., Baban, D., Moris, A., Schwartz, O., Dsmith, H., Davies, K., Kessler, B., McMichael, A., Simmons, A., 2007. Activof the lectin DC-SIGN induces an immature dendritic cell phenotype triggRho-GTPase activity required for HIV-1 replication. Nat. Immunol. 8, 569–

Kwon, D.S., Gregorio, G., Bitton, N., Hendrickson, W.A., Littman, D.R., 2002SIGN-mediated internalization of HIV is required for trans-enhancementcell infection. Immunity 16, 135–144.

Lee, B., Leslie, G., Soilleux, E., O’Doherty, U., Baik, S., Levroney, E., FlummerfeSwiggard, W., Coleman, N., Malim, M., Doms, R.W., 2001. cis Expression oSIGN allows for more efficient entry of human and simian immunodeficviruses via CD4 and a coreceptor. J. Virol. 75, 12028–12038.

Liu, H., Hladik, F., Andrus, T., Sakchalathorn, P., Lentz, G.M., Fialkow, M.F., CoreMcElrath, M.J., Zhu, T., 2005. Most DC-SIGNR transcripts at mucosal HIV tmission sites are alternatively spliced isoforms. Eur. J. Hum. Genet. 13, 707–

Liu, H., Hwangbo, Y., Holte, S., Lee, J., Wang, C., Kaupp, N., Zhu, H., Celum, C., CL., McElrath, M.J., Zhu, T., 2004. Analysis of genetic polymorphisms in CCCR2, stromal cell-derived factor-1, RANTES, and dendritic cell-specific icellular adhesion molecule-3-grabbing nonintegrin in seronegative indivirepeatedly exposed to HIV-1. J. Infect. Dis. 190, 1055–1058.

Lozach, P.Y., Amara, A., Bartosch, B., Virelizier, J.L., Arenzana-Seisdedos, F.,set, F.L., Altmeyer, R., 2004. C-type lectins L-SIGN and DC-SIGN capturetransmit infectious hepatitis C virus pseudotype particles. J. Biol. Chem.

32035–32045.

Lozach, P.Y., Lortat-Jacob, H., de Lacroix de Lavalette, A., Staropoli, I., Foung, S., Amara,A., Houles, C., Fieschi, F., Schwartz, O., Virelizier, J.L., Arenzana-Seisdedos, F.,Altmeyer, R., 2003. DC-SIGN and L-SIGN are high affinity binding receptors forhepatitis C virus glycoprotein E2. J. Biol. Chem. 278, 20358–20366.

Marzi, A., Gramberg, T., Simmons, G., Moller, P., Rennekamp, A.J., Krumbiegel, M.,Geier, M., Eisemann, J., Turza, N., Saunier, B., Steinkasserer, A., Becker, S., Bates,P., Hofmann, H., Pohlmann, S., 2004. DC-SIGN and DC-SIGNR interact with theglycoprotein of Marburg virus and the S protein of severe acute respiratorysyndrome coronavirus. J. Virol. 78, 12090–12095.

Mitchell, D.A., Fadden, A.J., Drickamer, K., 2001. A novel mechanism of carbohydraterecognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organizationand binding to multivalent ligands. J. Biol. Chem. 276, 28939–28945.

Mummidi, S., Catano, G., Lam, L., Hoefle, A., Telles, V., Begum, K., Jimenez, F., Ahuja,S.S., Ahuja, S.K., 2001. Extensive repertoire of membrane-bound and soluble den-

ar Immunology 47 (2010) 840–848

dritic cell-specific ICAM-3-grabbing nonintegrin 1 (DC-SIGN1) and DC-Sisoforms. Inter-individual variation in expression of DC-SIGN transcripts. J.Chem. 276, 33196–33212.

Neumann, A.K., Thompson, N.L., Jacobson, K., 2008. Distribution and lateral moof DC-SIGN on immature dendritic cells—implications for pathogen uptaCell Sci. 121, 634–643.

Pohlmann, S., Zhang, J., Baribaud, F., Chen, Z., Leslie, G.J., Lin, G., Granelli-PipA., Doms, R.W., Rice, C.M., McKeating, J.A., 2003. Hepatitis C virus glycoprointeract with DC-SIGN and DC-SIGNR. J. Virol. 77, 4070–4080.

Puig-Kroger, A., Serrano-Gomez, D., Caparros, E., Dominguez-Soto, A., RellosoColmenares, M., Martinez-Munoz, L., Longo, N., Sanchez-Sanchez, N., RinM., Rivas, L., Sanchez-Mateos, P., Fernandez-Ruiz, E., Corbi, A.L., 2004. Reguexpression of the pathogen receptor dendritic cell-specific intercellular asion molecule 3 (ICAM-3)-grabbing nonintegrin in THP-1 human leukemicmonocytes, and macrophages. J. Biol. Chem. 279, 25680–25688.

Relloso, M., Puig-Kroger, A., Pello, O.M., Rodriguez-Fernandez, J.L., de la RosLongo, N., Navarro, J., Munoz-Fernandez, M.A., Sanchez-Mateos, P., Corbi,2002. DC-SIGN (CD209) expression is IL-4 dependent and is negatively reguby IFN, TGF-beta, and anti-inflammatory agents. J. Immunol. 168, 2634–26

Robinson, M.J., Sancho, D., Slack, E.C., Leibundgut-Landmann, S., Sousa, C.R., 2Myeloid C-type lectins in innate immunity. Nat. Immunol. 7, 1258–1265.

Sakuntabhai, A., Turbpaiboon, C., Casademont, I., Chuansumrit, A., LowhT., Kajaste-Rudnitski, A., Kalayanarooj, S.M., Tangnararatchakit, K., Tangwornchaikul, N., Vasanawathana, S., Chaiyaratana, W., Yenchitsomanus,Suriyaphol, P., Avirutnan, P., Chokephaibulkit, K., Matsuda, F., Yoksan, S., JY., Lathrop, G.M., Malasit, P., Despres, P., Julier, C., 2005. A variant in the CDpromoter is associated with severity of dengue disease. Nat. Genet. 37, 507–

Serrano-Gomez, D., Dominguez-Soto, A., Ancochea, J., Jimenez-Heffernan, J.A.,J.A., Corbi, A.L., 2004. Dendritic cell-specific intercellular adhesion mole3-grabbing nonintegrin mediates binding and internalization of Aspergfumigatus conidia by dendritic cells and macrophages. J. Immunol.5635–5643.

Serrano-Gomez, D., Martinez-Nunez, R.T., Sierra-Filardi, E., Izquierdo, N.,menares, M., Pla, J., Rivas, L., Martinez-Picado, J., Jimenez-BarberAlonso-Lebrero, J.L., Gonzalez, S., Corbi, A.L., 2007. AM3 modulates dendcell pathogen recognition capabilities by targeting DC-SIGN. Antimicrob. AgChemother. 51, 2313–2323.

Serrano-Gomez, D., Sierra-Filardi, E., Martinez-Nunez, R.T., Caparros, E., DelgadMunoz-Fernandez, M.A., Abad, M.A., Jimenez-Barbero, J., Leal, M., Corbi,2008. Structural requirements for multimerization of the pathogen recedendritic cell-specific ICAM3-grabbing non-integrin (CD209) on the cell surJ. Biol. Chem. 283, 3889–3903.

Smith, A.L., Ganesh, L., Leung, K., Jongstra-Bilen, J., Jongstra, J., Nabel, G.J., 2Leukocyte-specific protein 1 interacts with DC-SIGN and mediates transpoHIV to the proteasome in dendritic cells. J. Exp. Med. 204, 421–430.

Soilleux, E.J., Morris, L.S., Lee, B., Pohlmann, S., Trowsdale, J., Doms, R.W., ColeN., 2001. Placental expression of DC-SIGN may mediate intrauterine vetransmission of HIV. J. Pathol. 195, 586–592.

Soilleux, E.J., Morris, L.S., Leslie, G., Chehimi, J., Luo, Q., Levroney, E., TrowsdaMontaner, L.J., Doms, R.W., Weissman, D., Coleman, N., Lee, B., 2002. Cotutive and induced expression of DC-SIGN on dendritic cell and macropsubpopulations in situ and in vitro. J. Leukoc. Biol. 71, 445–457.

Tacken, P.J., de Vries, I.J., Gijzen, K., Joosten, B., Wu, D., Rother, R.P., Faas, S.J.,C.J., Torensma, R., Adema, G.J., Figdor, C.G., 2005. Effective induction of nand recall T-cell responses by targeting antigen to human dendritic cellshumanized anti-DC-SIGN antibody. Blood 106, 1278–1285.

Tailleux, L., Schwartz, O., Herrmann, J.L., Pivert, E., Jackson, M., Amara, A., LeL., Dreher, D., Nicod, L.P., Gluckman, J.C., Lagrange, P.H., Gicquel, B., Neyr

O., 2003. DC-SIGN is the major Mycobacterium tuberculosis receptor on humandendritic cells. J. Exp. Med. 197, 121–127.

Tassaneetrithep, B., Burgess, T.H., Granelli-Piperno, A., Trumpfheller, C., Finke, J., Sun,W., Eller, M.A., Pattanapanyasat, K., Sarasombath, S., Birx, D.L., Steinman, R.M.,Schlesinger, S., Marovich, M.A., 2003. DC-SIGN (CD209) mediates dengue virusinfection of human dendritic cells. J. Exp. Med. 197, 823–829.

van Gisbergen, K.P., Ludwig, I.S., Geijtenbeek, T.B., van Kooyk, Y., 2005a. Interactionsof DC-SIGN with Mac-1 and CEACAM1 regulate contact between dendritic cellsand neutrophils. FEBS Lett. 579, 6159–6168.

van Gisbergen, K.P., Sanchez-Hernandez, M., Geijtenbeek, T.B., van Kooyk, Y.,2005b. Neutrophils mediate immune modulation of dendritic cells throughglycosylation-dependent interactions between Mac-1 and DC-SIGN. J. Exp. Med.201, 1281–1292.

van Kooyk, Y., Geijtenbeek, T.B., 2003. DC-SIGN: escape mechanism for pathogens.Nat. Rev. Immunol. 3, 697–709.

109

Page 104: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Discusión

Page 105: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Discusión

La plasticidad del proceso de activación de macrófagos se refleja en la existencia de

subpoblaciones de este tipo celular con funciones diferentes e, incluso, opuestas [87]. Con el fin de

determinar las bases moleculares de estas diferencias funcionales, se realizaron estudios de

expresión génica diferencial entre distintas poblaciones de macrófagos generados in vitro a partir de

monocitos de sangre periférica en presencia de GM-CSF (M1), M-CSF (M2), IFNγ (CAMØ) o IL-4

(AAMØ) (Figura 11).

Figura 11.- Diferenciación in vitro de macrófagos. Esquema ilustrativo de la generación in vitro de las poblaciones de macrófagos utilizadas en los ensayos de expresión génica.

El perfil de expresión génica de cada población de macrófagos se conoce como su “firma genética”,

y permite determinar su presencia en un tejido sano o su implicación en procesos inflamatorios. A su

vez, la firma genética puede ser utilizada para predecir la evolución de procesos patológicos, debido

a que el diferente comportamiento de estas subpoblaciones celulares permite prognosticar el

desarrollo de ciertas enfermedades, como por ejemplo la progresión de tumores (actividad pro-/anti-

tumoral). Por otro lado, la comparación de los perfiles de expresión génica de diferentes poblaciones

celulares permite establecer diferencias y semejanzas fenotípicas entre ellas. De este modo, hemos

identificado genes diferencialmente expresados entre las poblaciones de macrófagos analizadas,

cuya expresión restringida ha sido validada mediante PCR cuantitativa, y que podrían ser utilizados

como “marcadores fenotípicos” específicos de cada una de ellas (Figura 12). En este sentido, se

han identificado 149 genes diferencialmente expresados entre macrófagos generados con GM-CSF

(M1) y M-CSF (M2) (>2 veces de diferencia, p<0.05), 94 de los cuales están significativamente

sobre-expresados en macrófagos M2. Por otro lado, entre AAMØ y CAMØ existen 283 genes

diferencialmente expresados (>2 veces de diferencia, p<0.05), de los cuales 112 están asociados a

la activación alternativa de macrófagos. Entre los genes sobre-expresados en macrófagos M2

Macrófago pro-inflamatorio (M1)

Macrófago anti-inflamatorio(M2)

M-CSF

GM-CSF IL-4

INFγ

Activación clásica (CAMØ)

Activación alternativa (AAMØ)

Monocito

113

Page 106: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Discusión

Figura 12.- Representación gráfica de la expresión relativa de genes en las diferentes poblaciones de macrófagos. La escala de colores representa la expresión relativa de cada gen respecto a la media de intensidad de fluorescencia de las cuatro poblaciones (negro), desde los genes con menor expresión (verde) a los genes más expresados que la media (rojo). A la derecha se han seleccionado algunos de los genes con mayor expresión en macrófagos generados con IL-4 (cuadro verde), M-CSF (cuadro azul) o IFNγ (cuadro naranja).

114

Page 107: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Discusión

generados en presencia de M-CSF encontramos genes que justifican su fenotipo anti-inflamatorio.

Por ejemplo, genes inducidos o regulados por TGFβ como TGFB1 o SEPP1, genes que promueven

angiogénesis como IGF-1, o genes involucrados en reparación de heridas como F13A1, se

encuentran diferencialmente expresados en macrófagos M2. Del mismo modo, en estas células se

sobre-expresan genes relacionados con la producción de la citoquina anti-inflamatoria IL-10, como el

factor de transcripción MAF, del cual depende su expresión y la inhibición de IL-12p70 [213, 214], o

la enzima HMOX-1 y el receptor “scavenger” CD163, que son inducidos por IL-10 [215]. Por otro

lado, hemos evaluado la expresión de grupos funcionales de genes entre las subpoblaciones de

macrófagos para intentar explicar sus diferentes características. Por ejemplo, la expresión de genes

implicados en la regulación de los niveles de hierro intracelular podría justificar la función microbicida

de los macrófagos M1 (asociada con bajos niveles de hierro intracelular) y el papel permisivo frente

a patógenos de los macrófagos M2 (asociado con un elevado contenido de hierro intracelular)

(Sierra-Filardi et al., Immunobiology, en prensa, 2010). A su vez, los estudios de expresión génica

en las diferentes poblaciones de macrófagos también nos han permitido identificar genes cuya

expresión no se encuentra descrita en dichas células, lo que posibilita el estudio de la regulación de

su expresión y de sus posibles funciones en ellas.

El receptor de folato β es un marcador de macrófagos anti-inflamatorios M2 y TAM,

cuya expresión es regulada por activina A.

El receptor de folato β (FRβ) es uno de los genes que hemos identificado como marcador de

macrófagos anti-inflamatorios generados en presencia de M-CSF (M2). El folato o vitamina B9 es un

nutriente hidrosoluble esencial en las células, ya que se encuentra implicado en numerosas rutas

bioquímicas como el metabolismo de aminoácidos, la síntesis de purinas y pirimidinas, y la

metilación de ácidos nucleicos, proteínas y lípidos [216]. La deficiencia de esta vitamina conlleva a

una serie de anormalidades clínicas [217] como anemia megaloblástica, retraso del crecimiento,

desórdenes neurológicos, depresión [216] y enfermedad de Alzheimer [218]. Por el contrario, su

suplemento óptimo previene defectos en el tubo neural durante el embarazo y reduce el riesgo de

enfermedades cardiovasculares, desarrollo de tumores [219] y la predisposición a aterosclerosis

[220]. La forma biológicamente activa es el tetrahidrofolato (THF), cofactor esencial en reacciones

de metilación entre las que se incluye la formación de metionina a partir de homocisteína en el

conocido como ciclo de la homocisteína/metionina [221], y que se encuentra acoplado a un segundo

ciclo, conocido como ciclo del folato [222] (Figura 13).

115

Page 108: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Discusión

THF

5-MTHF5,10-MTHF

Metionina

Homocisteína

SAH SAM

MTHFR

Cisteína

Cistationina

SHMT

CH3X

Metionina sintasa

CBS

XMetilación de DNA, proteínas, lípidos

Folato

DHFR

Biosíntesis de nucleótidos

THF

5-MTHF5,10-MTHF

Metionina

Homocisteína

SAH SAM

MTHFR

Cisteína

Cistationina

SHMT

CH3X

Metionina sintasa

CBS

XMetilación de DNA, proteínas, lípidos

Folato

DHFR

Biosíntesis de nucleótidos

Figura 13.- Metabolismo del folato y vías relacionadas. Esquema simplificado de la conexión entre los ciclos del folato y de la homocisteína. Los rectángulos muestran los sustratos y los óvalos las enzimas. DHFR, dihidrofolato reductasa; THF, tetrahidrofolato; SHMT, serinhidroximetil transferasa; 5,10-MTHF, 5,10-metilentetrahidrofolato; MTHFR, 5,10-metilentetrahidrofolato reductasa; 5-MTHF, 5-metiltetrahidrofolato; SAM, S-adenosilmetionina; SAH, S-adenosilhomocisteína; X, sustrato para metilación; CBS, cistationina-β-sintasa.

El ácido fólico y sus formas reducidas (folatos) son captados a través de la membrana celular

mediante dos principales sistemas de transporte: 1) transporte vía canales o proteínas

transportadoras de membrana con baja afinidad (Kd~μM); y 2) endocitosis vía receptor de folato (FR)

de alta afinidad (Kd~pM) [223]. Además, existe un flujo de transporte asociado al metabolismo

energético de la célula que permite el flujo de folato hacia el exterior celular mediante hidrólisis de

ATP [224]. La expresión de los FR se encuentra restringida a aquellos tejidos que utilizan la

segunda vía de captación de folato. Así, a excepción de riñón y placenta, el resto de tejidos sanos

expresan niveles bajos o no detectables [225], mientras que numerosos tejidos tumorales (ovario,

mama, bronquios, riñón, cerebro) expresan altos niveles de estos receptores [226]. La expresión de

los FR se modula de manera inversa por la concentración extracelular de folato: en cultivos

celulares, niveles bajos de folato en el medio incrementan la expresión del receptor en membrana,

mientras que la adición de ácido fólico al medio revierte este aumento [227]. En humanos, existen 4

isoformas del FR, FRα (FOLR1), FRβ (FOLR2), FRγ (FOLR3) y FRδ (FOLR4) [228], cuyos perfiles

de expresión en tejidos normales y patológicos son diferentes [229]. Así, el FRα es la isoforma más

expresada en tejidos adultos sanos, sobre todo en tejidos epiteliales, y en algunos tipos de tumores

como los ginecológicos (ovario, útero) [230]. A diferencia del resto de isoformas, el FRγ y su forma

truncada (FRγ’) no se encuentran anclados a la membrana plasmática y son secretados por células

hematopoyéticas de algunos tejidos sanos y tumorales, como médula ósea, bazo y timo [231, 232].

Por el contrario, ni la expresión en tejidos adultos ni embrionarios, ni la capacidad de unir folato del

116

Page 109: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Discusión

FRδ ha sido descrita [233]. En ratón se han identificado homólogos de FRα y FRβ [234], y un tercer

FR que se expresa en bazo y timo [233]. Debido al papel del ácido fólico en el desarrollo

embrionario, los ratones Folbp1-/- y Folbp2-/- presentan defectos en la formación del tubo neural [235,

236].

Respecto a la expresión del FRβ, éste se encuentra restringido al linaje mieloide [237], se

detecta en células hematopoyéticas de médula ósea CD34+ [238] y está incrementado durante la

maduración de neutrófilos y la activación de monocitos y macrófagos [239]. En tejidos sanos el FRβ

sólo se expresa significativamente en placenta, bazo y timo [240], mientras que lo hace en el 70%

de los casos de leucemia mieloide aguda (AML), donde se localiza también en células CD34+ [237,

241]. Además, el FRβ se expresa en macrófagos sinoviales de pacientes con artritis reumatoide

(RA) [239] y en un modelo inducido de artritis en rata [242]. Respecto a su capacidad funcional, el

FRβ expresado en células hematopoyéticas CD34+, neutrófilos y monocitos no es capaz de unir

folato [238], mientras que sí lo hace en condiciones patológicas como AML [231, 241] y en

macrófagos sinoviales en RA [243]. Como se ha comentado anteriormente, en nuestros estudios de

expresión génica hemos determinado que el FRβ se expresa en macrófagos anti-inflamatorios M2,

donde su expresión es inducida por M-CSF. Adicionalmente, hemos observado que otras citoquinas

de activación alternativa de macrófagos, como IL-4 e IL-13, mantienen o aumentan su expresión en

dichas células, a diferencia de estímulos pro-inflamatorios, como GM-CSF o LPS, que la inhiben. En

este sentido, el patrón de expresión del FRβ en ratón es similar al que hemos observado en

humano, ya que se expresa en macrófagos peritoneales activados F4/80+ CD68+ que presentan un

fenotipo M2 [244][245], y se induce con IL-4 [128]. Por tanto, el FRβ también podría considerarse un

marcador de macrófagos anti-inflamatorios y de activación alternativa en ratón. Por otro lado, hemos

demostrado que los macrófagos M2 son capaces de captar folato mediante endocitosis vía receptor,

y que es únicamente el FRβ el que media esta unión, ya que ni el FRα ni el FRγ se expresan en

estas células. A diferencia de nuestros resultados, en macrófagos peritoneales de ratón el FRβ sólo

es funcional tras la activación con estímulos inflamatorios [246]. En conclusión, el FRβ constituye un

marcador de macrófagos anti-inflamatorios/alternativos, ya que su expresión es inducida por M-CSF

y citoquinas Th2 in vitro en monocitos y macrófagos M2, y además es el responsable de la captación

de folato por estas células.

Además de la inhibición de la expresión del FRβ por estímulos inflamatorios como GM-CSF,

observamos que el medio condicionado de macrófagos M1 es también capaz de inhibir su

adquisición. Este hecho nos llevó a buscar factores secretados por estas células que pudiesen

regular la expresión de este receptor. Según nuestros estudios de expresión génica, la activina A es

el gen más diferencialmente expresado entre macrófagos M1 y M2, y además hemos determinado

que es un citoquina secretada al medio de cultivo de los macrófagos M1. Según nuestras

observaciones, la expresión y secreción de activina A es inducida por GM-CSF in vitro en la

diferenciación de macrófagos a partir de monocitos de sangre periférica y de células de médula ósea

117

Page 110: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Discusión

de ratón. Además, y de acuerdo con su rápida secreción en procesos inflamatorios [247], la activina

A es liberada al medio de cultivo desde las primeras horas de estimulación con GM-CSF. Por el

contrario, los macrófagos diferenciados en presencia de M-CSF no son capaces de secretar activina

A ni siquiera en presencia de un estímulo inflamatorio como LPS, a diferencia de lo descrito en

macrófagos de ratón [248]. Por tanto, la diferente regulación de la expresión de activina A y FRβ por

GM-CSF y M-CSF, respectivamente, nos hizo pensar que la activina A podría ser un factor regulador

de la expresión del FRβ y otros marcadores de macrófagos M2.

Las activinas son factores de crecimiento y diferenciación pertenecientes a la familia de TGFβ,

que estructuralmente están compuestas por dos subunidades β (activina A, βA-βA; activina B, βB-

βB; activina AB, βA-βB) unidas por un único enlace disulfuro [249]. La activina A (INHBA) se

identificó inicialmente por su papel en el control de la secreción de la hormona estimuladora del

folículo (FSH) [2], y en la actualidad es conocida por sus numerosas funciones en diferenciación,

proliferación y apoptosis celular, homeostasis, reparación de heridas, inflamación, además de su

función endocrina y su papel en la progresión de tumores [249-253]. Su actividad biológica es

neutralizada por folistatina, debido a la elevada afinidad de esta proteína por las activinas [254-256].

Respecto a la señalización de la activina A, como miembro de la familia de TGFβ, se une a los

receptores transmembrana ActRIB y ActRIIA y señaliza a través de las proteínas Smad2/3 [257,

258]. La activina A es sintetizada por una gran variedad de células, incluyendo monocitos [259, 260],

macrófagos [261], células dendríticas [262, 263], células endoteliales [264], células del estroma de la

médula ósea [265-267] y mastocitos [268], y algunas células linfoides como timocitos [269] y células

esplénicas T CD4+ de ratón [270]. A su vez, la activina A es secretada durante procesos

inflamatorios por lo que está considerada como un factor modulador de la respuesta inmunitaria.

A pesar de su secreción por macrófagos pro-inflamatorios M1, la activina A está descrita como

una citoquina secretada preferentemente por células Th2 y que promueve activación alternativa de

macrófagos en ratón, al inducir la expresión de Arg1 e inhibir la expresión de iNOS [270]. Además,

otra citoquina Th2 como IL-13 aumenta la concentración de activina A en el lavado broncoalveolar e

intraepitelial en ratones naive y durante inflamación alérgica [271], mientras que IFNγ (citoquina Th1)

no es capaz de inducirla [272]. Sin embargo, según nuestras observaciones, la activina A secretada

por macrófagos M1, al igual que la proteína recombinante, ejerce funciones pro-inflamatorias en la

diferenciación de monocitos, ya que previene la adquisición de la expresión del FRβ (FOLR2), y

otros marcadores de macrófagos M2 como SERPINB2 o MAF. Además, hemos determinado que la

activina A regula la función anti-inflamatoria de los macrófagos generados en presencia de M-CSF,

al inhibir la secreción de IL-10 por estas células tras ser estimuladas con LPS. De acuerdo con

nuestro resultado, la activina A inhibe la producción de IL-10 en cultivos de células epiteliales

prostáticas [273]. Por tanto, la activina A es capaz de regular el fenotipo y función de los MDM. Por

otro lado, a pesar de regular la función anti-inflamatoria de los macrófagos M2 en cuanto a la

producción de IL-10, hemos observado que la activina A no afecta a la capacidad presentadora de

118

Page 111: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Discusión

antígeno de estas células. Además, el medio condicionado de macrófagos M1 no induce la

maduración de DC, mientras que sí lo hace después de estimular dichas células con LPS. Es decir,

según nuestras observaciones y de acuerdo con un trabajo previo [263], la activina A secretada

constitutivamente por macrófagos M1 no induce maduración de DC, mientras que sí lo hacen otras

citoquinas pro-inflamatorias secretadas tras estimulación. En conclusión, en papel modulador en la

respuesta inflamatoria de la activina A podría deberse a su capacidad de regular el fenotipo y

función de los macrófagos, ya que inhibe la adquisición de marcadores anti-inflamatorios y la

producción de IL-10 por macrófagos M2, pero no influye en la capacidad de activación de linfocitos T

en estas células o en la maduración de DC.

IL-1β TNFα

IL-6 iNOS

Inflamación

Célula TCélula NK

Macrófago

DC

Célula B

Activina A

NFκBMAPK

TLRRespuesta inmunitaria

IL-1β TNFα

IL-6 iNOS

Inflamación

Célula TCélula NK

Macrófago

DC

Célula B

Activina A

NFκBMAPK

TLRRespuesta inmunitaria

Figura 14.- Funciones de la activina A en procesos inflamatorios. La activina A es capaz de inducir la producción de mediadores inflamatorios, como IL-1β, TNFα, IL-6 e iNOS, a la vez que, por su función anti-inflamatoria, puede ejercer un efecto inhibidor sobre la respuesta inmunitaria [274].

Respecto al papel modulador en la respuesta inmunitaria de la activina A, existe una dicotomía

entre sus acciones pro- y anti-inflamatorias [274] (Figura 14), a diferencia de otro miembro de su

misma familia, como el TGFβ, que presenta siempre funciones supresoras [275]. Por su acción

inflamatoria, la activina A estimula la secreción in vitro de citoquinas pro-inflamatorias como

TNFα, IL-1β e IL-6 [276-278], así como la expresión de iNOS y la producción de NO [277, 279].

Además, la activina A está implicada en la degradación de IκB, la translocación al núcleo de NFκB y

la fosforilación de ERK1/2 y la quinasa p38 [280-282]. Respecto a sus acciones anti-inflamatorias, la

activina A puede bloquear la producción y función de citoquinas inflamatorias como IL-1β e IL-6. En

monocitos humanos, la activina A inhibe la producción de IL-1β, bloqueando la conversión de su

precursor a su forma activa, e induce la expresión del antagonista del receptor IL-1 (IL-1RN), dando

119

Page 112: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Discusión

lugar a una reducción neta en la actividad de IL-1β [282]. Respecto a la IL-6, se ha demostrado que

la activina A inhibe su expresión en respuesta a LPS en microglía de ratón in vitro e in vivo [283] y

en células humanas epiteliales del endometrio [284]. Por otro lado, la activina A inhibe numerosas

funciones pro-inflamatorias de estas citoquinas, incluyendo proliferación de células T y B, o la

fagocitosis de monocitos [282, 285-289] (Figura 14). Esta dualidad en los efectos estimuladores o

inhibitorios de la activina A depende de su concentración. Así, en células amnióticas humanas la

producción IL-6 se estimula a dosis bajas, mientras que a mayores dosis su efecto es inhibitorio

[290]. Por tanto, la actividad pro- o anti-inflamatoria de la activina A depende de su concentración

local en tejidos.

Como ya mencionamos en el apartado de Introducción, los TAM son considerados

fundamentalmente macrófagos anti-inflamatorios/M2 [111, 127, 291], aunque su fenotipo y función

varía durante el desarrollo de los tumores [118]. Por ello, nos planteamos determinar la expresión

del FRβ en TAM como marcador fenotípico de macrófagos M2. Así, hemos observado que este

receptor se expresa en TAM de melanoma primario y metastático, mientras que no lo hace en el

resto de células tumorales. Adicionalmente, hemos determinado que el FRβ se expresa en células

CD14+ aisladas ex vivo de líquido pleural de melanoma y fluido ascítico de adenocarcinoma de

mama metastático, donde es funcional y tiene la capacidad de captar folato. Estos resultados están

de acuerdo con la expresión del receptor en células CD68+ CD163+ en glioblastoma humano y de

rata [244]. Por el contrario, en otro estudio afirman que los TAM de fibrosarcoma de ratón expresa

menores niveles de FRβ que los macrófagos peritoneales elicitados con tioglicolato [127]. Esta

discrepancia puede ser debida a la influencia del microambiente tumoral en la expresión de este

receptor, y que puede variar en función del tipo de tumor o de la fase de desarrollo en la que se

encuentre. En este sentido, hemos determinado que tanto el líquido ascítico de algunos carcinomas

gástricos o los medios condicionados de algunas líneas celulares tumorales, como las citoquinas

anti-inflamatorias liberadas por los tumores como M-CSF e IL-10, inducen la expresión in vitro del

FRβ en monocitos. Además, la exposición conjunta a varias de estas citoquinas, situación similar a

la que ocurriría in vivo, tiene un efecto sinérgico en la inducción de este receptor. Por otro lado, está

descrito que la expresión de activina A es mayor en tejidos tumorales que en tejidos sanos [292,

293], y disminuye con la progresión tumoral, siendo más elevada en tumores primarios que en

carcinomas metastáticos [294]. Según nuestras observaciones, los líquidos ascíticos de algunos

carcinomas gástricos inducen la expresión del FRβ e inhiben la expresión de activina A en

monocitos y macrófagos pro-inflamatorios M1. Por tanto, el microambiente tumoral condiciona el

fenotipo de los TAM y, en consecuencia, el desarrollo tumoral. Además, la activina A secretada en la

primera fase de iniciación del tumor contribuiría a la inhibición de las propiedades supresoras de los

TAM, por lo que la activina A sería un regulador el establecimiento y desarrollo tumoral.

El fenotipo de los TAM es un factor importante en la progresión de los tumores, debido a que los

macrófagos son las células inflamatorias que regulan el inicio y desarrollo tumoral [129, 295, 296].

120

Page 113: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Discusión

En los sitios de inflamación crónica donde se inicia la formación del tumor los macrófagos presentan

un fenotipo inflamatorio M1 con actividad anti-tumoral [297, 298] (Figura 15). Posteriormente cuando

el tumor se establece, los TAM dejan de secretar citoquinas inflamatorias como TNFα, IL-1β e IL-6, y

producen señales de supervivencia para las células tumorales, apoyando el crecimiento,

angiogénesis y metástasis del tumor [120, 299-301]. Este hecho se ha observado en modelos de

cáncer colorectal inducido por colitis y cáncer de hígado inducido químicamente en ratón, donde

existe una inhibición de la producción de citoquinas inflamatorias (IL-6, TNFα) [302-304]. Por tanto,

los macrófagos presentan una función dual en el contexto de la progresión tumoral: mientras que en

las primeras etapas de formación del tumor los macrófagos tienen el potencial de expresar

actividades anti-tumorales (fenotipo M1), en tumores establecidos juegan un papel pro-tumoral

(fenotipo M2) [126] (Figura 15). Una posible explicación a estas diferencias funcionales de los

macrófagos puede ser la eficacia de la respuesta inmunitaria en las distintas etapas de desarrollo

tumoral [305, 306]. Así, en estados tempranos de formación del tumor, la respuesta inmunitaria es

eficaz y los macrófagos ejercen su actividad citotóxica eliminando células tumorales. Una vez

estabilizado el tumor, cuando las células tumorales persistentes han escapado del “ataque”

inmunitario, se crea un ambiente inmunosupresor con una polarización anti-inflamatoria/M2

predominante en los macrófagos. Por ello, una posible estrategia terapéutica frente al avance

tumoral podría consistir en alterar el balance funcional de los macrófagos hacia un fenotipo

tumoricida [307].

CD8

INICIACIÓN EQUILIBRIO ESCAPE

Progresión del tumor

M1 M2

CD4CD4

NK CD8CD8

NKNK

CD8 CD4

ELIMINACIÓN

CD4CD8

INICIACIÓN EQUILIBRIO ESCAPE

Progresión del tumor

M1 M2

CD4CD4

NK CD8CD8

NKNK

CD8 CD4

ELIMINACIÓN

CD4

Figura 15.- Polarización de los macrófagos en el desarrollo tumoral. El fenotipo de los macrófagos sufre un cambio progresivo con el avance tumoral, desde un fenotipo tumoricida/M1 en las primeras etapas de iniciación hasta un fenotipo supresor/M2 cuando el tumor se establece [308].

Por otro lado, la función de los TAM está condicionada por su localización en respuesta a

señales locales [309]. Así, en áreas del tumor poco vascularizadas los TAM son altamente pro-

121

Page 114: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Discusión

angiogénicos en respuesta a hipoxia [310], y su presencia se ha correlacionado con el crecimiento

de tumores de mama [311]. Por el contrario, un elevado número de TAM en áreas vascularizadas

del tumor se correlaciona con buena prognosis en algunos tumores humanos, sugiriendo un posible

fenotipo anti-tumoral M1 en esos sitios [312]. Además, existe un fenotipo “mixto” debido a que los

TAM pueden presentar al mismo tiempo características pro-inflamatorias (M1) y anti-inflamatorias

(M2). Así, en un modelo tumoral en ratón los TAM son capaces de expresar a la vez iNOS y Arg1

[313, 314]. De forma similar, monocitos de pacientes con tumor gástrico avanzado expresan niveles

elevados y mayores de IL-12 e IL-10, citoquinas pro- y anti-inflamatorias respectivamente, que los

monocitos de individuos sanos [315]. En estos casos los TAM pueden exhibir actividades que

previenen el establecimiento y la extensión de las células tumorales y, simultáneamente, contribuir al

crecimiento y diseminación del tumor [316].

Al igual que ocurre en tumores, los macrófagos parecen ser los promotores principales de

enfermedades inflamatorias/autoinmunes como RA, donde existe una correlación directa entre la

actividad de estas células y la inflamación de las articulaciones y la destrucción del hueso [243].

Esto es debido a que los macrófagos del líquido sinovial de RA secretan múltiples mediadores de

inflamación y destrucción de tejido, incluidas citoquinas pro-inflamatorias (IL-1, IL-6, TNFα),

quimioquinas, prostaglandinas, metaloproteasas y ROS [317]. Además, estos macrófagos activados

participan en presentación de antígeno contribuyendo a la activación y proliferación de las células T

y su consecuente actividad destructiva [318]. Por todo ello, los macrófagos presentes en el líquido

sinovial de RA tendrían un fenotipo pro-inflamatorio M1. De acuerdo con esto, la expresión de

activina A en membranas sinoviales y su concentración en el líquido sinovial es elevada en

pacientes con RA [286, 288, 319]. Sin embargo, está descrita la expresión del FRβ en los

macrófagos presentes en el líquido sinovial de RA [243]. La expresión de este marcador de

macrófagos anti-inflamatorios estaría justificada por los elevados niveles de M-CSF existentes en el

líquido sinovial de RA, producidos por los fibroblastos sinoviales [57, 59, 320]. Por tanto, al igual que

ocurre en tumores, los factores presentes en el líquido sinovial de RA pueden condicionar el fenotipo

de los macrófagos, existiendo un cambio entre sus funciones inflamatorias (M1) y supresoras (M2).

Por otro lado, la activina A está involucrada en otras enfermedades inflamatorias como la

enfermedad inflamatoria intestinal, meningitis, asma, etc. En enfermedad inflamatoria intestinal, la

activina A se localiza en la mucosa de tejidos inflamados donde existe una elevada expresión de IL-

1β [287], y en intestino y plasma en tres modelos diferentes de la enfermedad en ratón [321]. Los

niveles de activina A son elevados en células T CD4+ y en suero en pacientes asmáticos [272, 322]

y en el de lavado broncoalveolar en modelos de asma en ratón [268, 271, 323]. Por tanto, la activina

A secretada en los sitios de inflamación, podría condicionar el fenotipo de los macrófagos allí

presentes, regulando así la respuesta inflamatoria.

La expresión y capacidad de endocitosis selectiva del FRβ en TAM o macrófagos sinoviales de

RA, posibilita el desarrollo de conjugados de folato como agentes terapéuticos frente a tumores y

122

Page 115: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Discusión

enfermedades inflamatorias e autoinmunes [324] (Figura 16). Estos conjugados irían dirigidos de

forma específica frente a las células implicadas en procesos patológicos, evitando el daño colateral

en las células sanas [325]. A su vez, el ácido fólico es un ligando óptimo como agente terapéutico

debido a su facilidad de conjugarse y a su elevada afinidad por su receptor incluso después de su

conjugación [324]. Un ejemplo del uso de terapéutico del FRβ se demuestra en dos modelos de

ratón de lupus eritematoso sistémico, enfermedad autoinmune crónica caracterizada por inflamación

y daño en el tejido conjuntivo, y en la que los macrófagos activados contribuyen a su desarrollo al

secretar mediadores inflamatorios y atraer otras células inflamatorias. En ellos se ha demostrado

que la depleción de macrófagos FRβ+ mediante inmunoterapia frente al receptor reduce los síntomas

de la enfermedad, sin provocar daño en tejidos sanos, y prolonga la supervivencia de los animales

[326]. Por otro lado, un estudio reciente muestra la posibilidad de reducir el crecimiento tumoral por

la unión selectiva a los TAM de una inmunotoxina usando un anticuerpo monoclonal frente al FRβ

[244].

Célula tumoral

H+

R-SH

H+

R-SH

H+H+

H+

H+

H+H+

H+

R-SH

FRβ

Conjugado de folato

Endosoma

Lisosoma

H+

R-SH

H+

H+ Célula tumoral

FcRAnticuerpo

Macrófago

Célula NK

A B

Célula tumoral

H+

R-SH

H+

R-SH

H+H+

H+

H+

H+H+

H+

R-SH

FRβ

Conjugado de folato

Endosoma

Lisosoma

H+

R-SH

H+

H+ Célula tumoral

FcRAnticuerpo

Macrófago

Célula NK

A B

Figura 16.- Estrategias terapéuticas frente al FRβ. A. Endocitosis de conjugados de folato. Los conjugados de folato se unen al FRβ con elevada afinidad, se internalizan por invaginación de la membrana, y posteriormente, se separan y reducen liberando el agente terapéutico. B. Inmunoterapia mediada por el FRβ. Los haptenos unidos a folato son capaces de estimular una respuesta inmunitaria, produciéndose la destrucción de células tumorales por macrófagos y células NK.

123

Page 116: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran
Page 117: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Discusión

125

DC-SIGN constituye un marcador de macrófagos anti-inflamatorios M2 y AAMØ [56, 151], ya

que su expresión en monocitos y macrófagos es inducida por M-CSF e IL-4 [92, 150], e inhibida por

estímulos inflamatorios como IFNγ [92]. Por ello, DC-SIGN se expresa en macrófagos implicados en

reparación de heridas y en macrófagos alternativos/reguladores M2. Por otro lado, un estudio

reciente realizado en nuestro grupo demuestra que DC-SIGN se expresa en TAM, y al igual que en

el caso del FRβ, su expresión podría contribuir a la adquisición fenotipo inmunosupresor en los

tumores (Domínguez-Soto et. al, J Immunol en revisión, 2010).

Requerimientos estructurales de DC-SIGN para su multimerización. Influencia de la presencia de variantes con menor tamaño en la región del cuello.

El reconocimiento de PAMP por las células dendríticas (DC) es el primer paso para

desencadenar la respuesta inmunitaria. DC-SIGN es un receptor de DC que interacciona con

proteínas glicosiladas presentes en patógenos, por lo que está implicado en etapas tempranas de

infecciones producidas por virus, hongos y bacterias [149, 193, 196]. Este reconocimiento a través

de DC-SIGN permite la internalización, procesamiento y posterior presentación antigénica a los

linfocitos T [150, 164, 187]. Estructuralmente DC-SIGN es una proteína de membrana cuya región

citoplásmica contiene motivos de reciclaje e internalización [149, 150], y su dominio extracelular

(ECD) consta de un cuello formado por 8 repeticiones de 23 aminoácidos seguido de un CRD [164,

165]. Procesos de “splicing” alternativo y polimorfismos a nivel genético dan lugar a variantes de DC-

SIGN tanto a nivel de RNA como a nivel proteico [168, 327].

Mummidi y colaboradores identificaron variantes de “splicing” de DC-SIGN en PBMC activados

con PHA, DC maduras derivadas de células hematopoyéticas CD34+ y células THP-1, que

presentan un tamaño variable en la región del cuello y en el CRD, así como isoformas solubles o

con una cola citoplásmica “alternativa” [168]. En nuestro estudio por primera vez se identificaron

isoformas de “splicing” de DC-SIGN en células dendríticas derivadas de monocitos (MDDC) que,

además, dan lugar a proteínas funcionales que se expresan en membrana. La generación de

construcciones de DC-SIGN con diferente tamaño y disposición de las repeticiones del cuello a partir

de estas isoformas, y su expresión en líneas celulares, ha sido de gran ayuda para determinar los

requerimientos estructurales de la multimerización y función de DC-SIGN. A su vez, para este

estudio hemos generado y utilizado mutantes de DC-SIGN sin CRD y con un número variable de

repeticiones en la región del cuello.

Aunque ya existían evidencias de la capacidad de oligomerización de la proteína recombinante

[166], se ha descrito que DC-SIGN aparece formando tetrámeros en la membrana de MDDC [164],

aumentando así la avidez por sus ligandos [165, 328]. La región del cuello es la responsable de esta

multimerización, mientras que existe controversia en el papel que desempeña el CRD [166, 329]. En

Page 118: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Discusión

este sentido, un estudio reciente afirma que el CRD no influye en la formación ni en la estabilidad de

los tetrámeros de DC-SIGN [328]. Sin embargo, y en un contexto celular, nosotros observamos que

el mutante que carece de CRD tiene disminuida su capacidad de multimerización. Por tanto, aunque

la oligomerización de DC-SIGN tiene lugar a través de la región del cuello, las interacciones entre

CRD contribuirían a su estabilización. Así, la ausencia de este dominio podría provocar una

disminución en las interacciones entre las regiones c-terminal de los cuellos, que llevaría a la

pérdida de estabilidad de los tetrámeros. Por otro lado, hemos determinado que la coexpresión de la

forma completa de DC-SIGN (1A) y el mutante sin CRD (8d) disminuye la formación de homo-

multímeros 1A-1A, debido posiblemente a la formación de hetero-multímeros 1A-8d, y que tendrían

menor estabilidad frente a agentes desnaturalizantes ya que no son detectables mediante Western

blot. El hecho de que la forma prototípica de DC-SIGN sea capaz de asociarse con mutantes sin

CRD confirma que la multimerización tiene lugar a través del cuello, y la menor estabilidad de los

hetero-multímeros 1A-8d vuelve a demostrar que la presencia de CRD estabiliza los oligómeros.

Por otro lado, el estado de oligomerización de DC-SIGN depende en gran medida del pH del

entorno [329]. Así, la elevada acidez existente en los endosomas provoca un cambio de

conformación de los tetrámeros con la consiguiente pérdida de afinidad y liberación de los ligandos

unidos a DC-SIGN [330]. De acuerdo con nuestros resultados, la estabilización de los multímeros de

DC-SIGN por el CRD se observa en ensayos con proteínas recombinantes donde al disminuir el pH,

en ausencia de CRD los tetrámeros se disocian totalmente, mientras que el ECD completo no lo

consigue. Al igual que el pH, otros factores como la concentración de sales estabilizan los

tetrámeros por aumento en las interacciones hidrofóbicas entre las regiones de cuello de DC-SIGN

[331].

Respecto al número de repeticiones de la región del cuello requeridas para la multimerización

de DC-SIGN, un estudio con proteínas recombinantes con el ECD truncado afirma que la presencia

de seis dominios mantiene la formación del tetrámero, mientras que la deleción de sucesivos

dominios (≤ 5.5 repeticiones) lo disocia parcialmente (dímeros) [165]. Además, proteínas de 3.5-2.5

repeticiones son difíciles de purificar por su baja estabilidad, lo que impide la determinación de su

estado de oligomerización; proteínas de menos de 2 repeticiones son más estables y presentan una

parcial disociación de los dímeros (monómeros); y el CRD sólo o con 0.5 repeticiones aparece como

monómero. Por ello y según estos autores, se requiere la presencia de al menos 3 dominios en el

cuello para que DC-SIGN pueda tetramerizar. En nuestro estudio, las construcciones de DC-SIGN

generadas a partir de las isoformas de “splicing” alternativo identificadas en MDDC y que contienen

4, 3, 2 ó 1 dominio repetido en el cuello, difieren en su capacidad de multimerización en líneas

celulares. Así, la isoforma de DC-SIGN con sólo la primera repetición en el cuello aparece como

monómero, mientras que las construcciones con mayor número de dominios (2, 3 y 4) lo hacen de

forma similar a la proteína completa con las 8 repeticiones de esta región. Por tanto, sería necesario

la presencia de al menos 2 repeticiones en el cuello para que DC-SIGN pueda multimerizar. De

126

Page 119: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Discusión

acuerdo con nuestras observaciones, un estudio realizado con su homólogo DC-SIGNR afirma que

la secuencia GELSE es necesaria para la multimerización de la molécula [332], por lo que la

presencia del segundo dominio de DC-SIGN sería necesaria para su multimerización (Figura 17).

DOMINIOV S K V P S S I S Q E Q S R Q D A I Y Q N L T Q L K A A V 1

G E L S E K S K L Q E I Y Q E L T Q L K A A V 2G E L P E K S K L Q E I Y Q E L T R L K A A V 3G E L P E K S K L Q E I Y Q E L T W L K A A V 4G E L P E K S K M Q E I Y Q E L T R L K A A V 5G E L P E K S K Q Q E I Y Q E L T R L K A A V 6G E L P E K S K Q Q E I Y Q E L T R L K A A V 7G E L P E K S K Q Q E I Y Q E L T Q L K A A V 8

DOMINIOV S K V P S S I S Q E Q S R Q D A I Y Q N L T Q L K A A V 1

G E L S E K S K L Q E I Y Q E L T Q L K A A V 2G E L P E K S K L Q E I Y Q E L T R L K A A V 3G E L P E K S K L Q E I Y Q E L T W L K A A V 4G E L P E K S K M Q E I Y Q E L T R L K A A V 5G E L P E K S K Q Q E I Y Q E L T R L K A A V 6G E L P E K S K Q Q E I Y Q E L T R L K A A V 7G E L P E K S K Q Q E I Y Q E L T Q L K A A V 8

Figura 17.- Secuencia de aminoácidos de las repeticiones de la región del cuello de DC-SIGN.

Como puede verse en la Figura 17, las repeticiones que forman parte de la región del cuello de

DC-SIGN difieren en su secuencia de aminoácidos. Los estudios realizados con las isoformas

identificadas en MDDC que presentan el mismo número pero distinta disposición de los dominios del

cuello (4d vs. 4d’), nos permiten afirmar que las repeticiones no son equivalentes funcionalmente.

Así observamos que estas isoformas difieren en su capacidad de multimerización y unión a ligandos.

De nuevo el residuo de serina (S) presente en el segundo dominio y en la isoforma 4d’ parece

contribuir en la multimerización de DC-SIGN. Por otro lado, las repulsiones entre los residuos de

arginina (R) con carga positiva y presentes en los dominios 6 y 7 de la isoforma 4d podrían

desestabilizar los tetrámeros. De acuerdo con esto, las diferencias funcionales existentes entre DC-

SIGN y DC-SIGNR, como la estabilidad de los oligómeros, la especificidad de unión de azúcares y la

señalización intracelular [188], podrían justificarse en parte por la diferente secuencia de

aminoácidos de las regiones del cuello de ambos receptores. Así, la presencia de un residuo de

leucina (L) en las repeticiones 6 y 7 de DC-SIGNR en lugar de la glutamina (Q) existente en DC-

SIGN, hace que este receptor sea más estable en estudios desnaturalización [328]. Además, la

sustitución del residuo de leucina (L) por glutamina (Q) en moléculas quiméricas de DC-SIGNR hace

que adquieran el comportamiento de DC-SIGN [328].

Por otro lado y como se ha comentado anteriormente, DC-SIGN presenta variaciones génicas

tanto en la región reguladora como en la región codificante, y cuya presencia se asocia a una

susceptibilidad alterada frente a infecciones por HIV-1 o M. tuberculosis [171, 172]. Los

polimorfismos en el exón 4 de DC-SIGN dan lugar principalmente a variantes con diferente número

de repeticiones en la región del cuello, y su frecuencia entre la población es baja (aprox. 1%) [333].

La presencia de estas variantes puede influir en la función de la molécula debido al papel del cuello

en la multimerización y soporte del CRD. Al igual que ocurría en el caso de los polimorfismos en la

región reguladora de DC-SIGN, existe controversia entre el posible papel protector de las variantes

127

Page 120: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Discusión

del cuello frente a determinadas infecciones. En este sentido, existen estudios que asocian la

presencia de variantes génicas del cuello de DC-SIGN a una resistencia a la infección por HIV-1 en

individuos de EEUU [327] o China [334], mientras que otros estudios no encuentran esta asociación

en la población del norte de Asia [335], norte de India [336, 337], sur de África, Tailandia [337] o

China [333]. Respecto a la susceptibilidad a la infección por M. tuberculosis no se ha encontrado un

papel protector de estas variantes en individuos de Colombia [178], sur de África [338] o Túnez

[179].

Esta discrepancia existente en la presencia de variantes de DC-SIGN con menor tamaño del

cuello y su asociación con susceptibilidad alterada frente a la infección por HIV-1, puede ser debida

al grupo étnico en el que se realiza el estudio, ya que tanto el tipo de polimorfismo como su

frecuencia es diferente entre ellos [180, 339, 340]. Así, las variantes de DC-SIGN son más

numerosas y frecuentes en individuos de China respecto a la población caucásica [333, 334].

Mientras que en individuos de China se han identificado alelos con 4, 5, 6, 7 y 9 repeticiones en el

cuello (genotipos 4/8, 5/8, 6/8, 7/8 y 8/9) [333, 334], en individuos de EEUU, sur de África, norte de

India y Tailandia sólo se han encontrado variantes con 7 y 9 repeticiones (genotipos 7/8 y 8/9) [327,

337], y en individuos de Colombia y Túnez únicamente se han encontrado variantes con 7

repeticiones (genotipos 7/7 y 7/8, y 7/8, respectivamente) [178, 179]. Por el contrario, otro estudio ha

identificado alelos con 5, 6, 7 y 9 dominios repetidos (genotipos 5/8, 6/8, 7/8 y 8/9) en individuos del

sur de África [338]. La discrepancia en las variantes génicas de DC-SIGN encontradas en los

diversos grupos étnicos puede ser debida a la generación de formas “resistentes” del receptor frente

a los patógenos presentes en las diferentes áreas geográficas, constituyendo un mecanismo de

“escape” del sistema inmunitario frente a dichos patógenos. Por ejemplo, un estudio realizado en la

población de un país en vías de desarrollo y un país industrializado, demuestra que la diversidad

genética de DC-SIGN en la población de Zimbawe es mayor (82%) que en individuos de Canadá

(33%) [171].

De acuerdo con los estudios mencionados anteriormente, las variantes de DC-SIGN que hemos

identificado en la población española corresponden a alelos con una repetición menos en el cuello,

encontrando individuos heterocigotos con genotipo 7/8 y un individuo homocigoto con genotipo 7/7.

Además, hemos determinado que estos alelos carecen de las repeticiones 3, 5 ó 7. Con la intención

de justificar su posible papel protector, caracterizamos estructural y funcionalmente estas variantes.

Las variantes génicas de DC-SIGN que carecen del dominio 3, 5 ó 7 expresadas en líneas celulares

de forma estable o transitoria, mantienen respecto a la molécula completa su expresión en

membrana y su capacidad de multimerización, internalización de ligando y unión a ligandos o

patógenos. Por otro lado, demostramos por primera vez que los polimorfismos de DC-SIGN se

expresan a nivel de proteína en MDDC de individuos heterocigotos, y lo hacen de manera similar a

la proteína prototípica y sin influir en su expresión. Además, en MDDC estas variantes son

funcionales y mantienen su capacidad de unión de ligandos, sin existir diferencias funcionales entre

128

Page 121: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Discusión

las MDDC de individuos que no presentan polimorfismos en el exón 4 de DC-SIGN e individuos con

un genotipo 7/8 en esa región. Respecto a la capacidad de asociación de estas variantes con la

forma completa de DC-SIGN, en líneas celulares la formación de homo-oligómeros está favorecida

respecto a la hetero-oligomerización, mientras que en MDDC de individuos heterocigotos no hay

evidencias de asociación entre ellas. Esto confirmaría la asociación preferente de moléculas con un

tamaño de cuello similar, debido posiblemente a que el mayor contacto entre los cuellos de igual

tamaño estabiliza las interacciones homotípicas, mientras que la disposición de CRD a diferente

altura no las favorece.

A pesar de los estudios que relacionan la presencia de variantes alélicas en la región del cuello

de DC-SIGN con una protección frente a la infección por HIV-1, no está muy claro el papel protector

de estas variantes. Según nuestro estudio, la formación preferencial de homo-multímeros y el hecho

de que las variantes con una repetición menos en el cuello mantienen su capacidad de unión de

ligandos, no justificaría su papel protector frente a la infección por HIV-1 en individuos heterocigotos.

Por el contrario, una posible causa de esta protección podría ser que la presencia de algunos

polimorfismos en el cuello de DC-SIGN provoque una menor expresión de moléculas en membrana.

En este sentido, en un estudio reciente identifican variantes de DC-SIGNR a partir de DNA

genómico de individuos polimórficos, las expresan en células Raji, y realizan ensayos de trans-

infección de HIV-1 [341]. Los polimorfismos estudiados consisten en cuellos de diferente tamaño (6,

8 y 10 dominios) y un cambio de nucleótido (A/G) en el exón 5, y afectan a la susceptibilidad frente a

la infección por HIV-1 [342-344]. Según estos autores, estas variantes de DC-SIGNR afectan a la

cantidad de moléculas expresadas en la superficie celular, lo que se correlaciona con la eficiencia de

trans-infección de DC-SIGNR independientemente del tamaño de la región del cuello o del

aminoácido codificado en el exón 5 (A/G). Por tanto, esta justificación basada en la disminución en

la expresión in vivo de DC-SIGN o DC-SIGNR en membrana estaría de acuerdo con nuestros

resultados donde las variantes de DC-SIGN en MDDC mantienen su expresión y, por tanto, su

funcionalidad. En este mismo sentido, la variante -336G de DC-SIGN que afecta al sitio de unión de

Sp1, modula su actividad transcripcional in vitro disminuyendo su expresión [182], por lo que su

presencia justificaría también una protección frente determinadas infecciones. De acuerdo con esto,

la presencia de isoformas de “splicing” de DC-SIGN también puede influir en el número de

moléculas expresadas en la superficie. En mucosas genitales o intestinales esta descrita la

presencia de isoformas solubles que pueden ser intracelulares o secretadas [168, 345] y que son

más abundantes que la forma prototípica [346], dando lugar a una menor avidez de DC-SIGN por

HIV-1 y, en consecuencia, una protección frente a la infección.

Por otro lado, la cantidad de moléculas de DC-SIGN expresada en la superficie celular se

correlaciona con los diferentes estados de oligomerización y se refleja en su estabilidad y avidez por

los ligandos. Así, la protección de las variantes del cuello de DC-SIGN frente a la infección por HIV-1

estaría también justificada porque el menor número de repeticiones en el cuello disminuye la

129

Page 122: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Discusión

formación y la estabilidad de tetrámeros [171, 330]. A su vez, estas variantes alterarían la posición

del CRD respecto la superficie celular, afectando a su accesibilidad y unión de patógenos [347, 348].

La señalización de DC-SIGN modula la respuesta inmune en función del patógeno involucrado

[207]. En el caso de HIV-1, la señalización de DC-SIGN conlleva la trans-infección del virus a células

T, lo que promueve infección del hospedador siendo beneficioso para el virus [212]. En este sentido,

existen estudios in vitro que dicen que HIV-1 y otros patógenos utilizan DC-SIGN para escapar de la

vigilancia inmunológica y promover su supervivencia [349, 350]. Por ello, el posible papel protector

de las variantes de DC-SIGN quedaría reflejado en la disminución de la unión e internalización del

virus. Por otro lado, la expresión reducida de DC-SIGN por la presencia de polimorfismos en DC y

macrófagos podría tener efectos perjudiciales en la eliminación de patógenos por la disminuida

capacidad de presentación de antígeno de estas células [171]. Así, un estudio reciente en ratones

transgénicos que expresan DC-SIGN humano exhiben un reducido daño tisular y una prolongada

supervivencia [351]. Por tanto, la presencia de polimorfismos de DC-SIGN también puede tener un

efecto indirecto en la modulación de respuestas inmunológicas frente a la infección por diferentes

patógenos.

Identificación epítopos en la molécula de DC-SIGN.

En un segundo estudio hemos empleado las construcciones de DC-SIGN generadas a partir de

las variantes de “splicing” y polimorfismos identificados en MDDC, así como los mutantes sin CRD y

con distinto número de repeticiones en el cuello de la molécula, para identificar siete epítopos

independientes en la molécula de DC-SIGN y confirmar algunas de las observaciones a las que

llegamos en el trabajo anterior. Para ello, empleamos anticuerpos monoclonales frente a DC-SIGN

que son capaces de inhibir trans-infección de HIV-1 por células Raji-DC-SIGN a linfocitos T [151]. Al

igual que ocurría con la unión a ligandos de DC-SIGN, el CRD es reconocido por los anticuerpos

independientemente del tamaño del cuello, y el reconocimiento de la molécula por los anticuerpos

dirigidos frente al cuello es dependiente de su tamaño, siendo necesaria la presencia de al menos

dos dominios para su reconocimiento. Aunque según nuestro anterior estudio el estado de

multimerización de DC-SIGN no predice su capacidad de unión a ligandos o patógenos, los

anticuerpos frente al CRD reconocen mejor las formas de DC-SIGN que se expresan en la

membrana como monómeros (1d) que como multímeros (2d), debido posiblemente a la disposición

espacial de los epítopos que reconocen. Por otro lado y de acuerdo con su capacidad de unión de

ligandos, las variantes polimórficas de DC-SIGN son reconocidas por igual por los anticuerpos

dirigidos frente al cuello y el CRD.

130

Page 123: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Discusión

131

Respecto a la capacidad de los anticuerpos de inhibir la unión de DC-SIGN a ligandos o

patógenos, los anticuerpos frente al CRD la bloquean total o parcialmente, mientras que los

anticuerpos frente al cuello lo hacen en menor extensión o incluso no lo consiguen. La diferencia en

la capacidad de inhibición por parte de los anticuerpos frente al CRD puede ser debida al epítopo

que reconocen y bloquean en cada caso. En este sentido, existen aminoácidos en el CRD de DC-

SIGN claves en la unión de ligandos (Glu347, Asn349, Glu354 y Asn365), ya que interactúan con el Ca2+

dictando el reconocimiento específico de carbohidratos, y cuya mutación conlleva a la pérdida total

de capacidad de unión de ligandos [352]. Mientras, la modificación de otros residuos como Val351,

sólo afecta a la interacción con determinados ligandos sin afectar a la unión de otros, lo que indica

que los ligandos de DC-SIGN pueden tener diferentes, pero solapados, sitios de unión [162]. Por

otro lado, el bloqueo funcional que producen los anticuerpos frente al cuello puede deberse a su

habilidad de modificar el estado de multimerización de la molécula, que altera su avidez por

ligandos, o bien a su capacidad de inducir su internalización, disminuyendo así el número de

moléculas en superficie.

En conclusión, la identificación de epítopos independientes en la molécula de DC-SIGN podría

facilitar el diseño de reactivos que modulen parte de las funciones de las células que expresan este

receptor. De este modo, se podría alterar el estado de multimerización de DC-SIGN en membrana,

inducir su internalización o bloquear su unión a patógenos de manera independiente. Por ejemplo,

en este estudio describimos anticuerpos capaces de potenciar la internalización de DC-SIGN en

MDDC, lo que generaría el desarrollo de una respuesta inmunológica, sin bloquear su capacidad de

unión. Debido a que la señalización de DC-SIGN depende del ligando que involucrado [207], el uso

de reactivos específicos frente a diferentes epítopos podrían ser una herramienta útil para el estudio

de las vías de señalización de la lectina, o incluso para modular la polarización de linfocitos T por

DC.

Page 124: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Conclusiones

Page 125: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Conclusiones

1. El receptor de folato β es un marcador de macrófagos anti-inflamatorios/M2 in vitro y de

macrófagos asociados a tumores (TAM), en los que media la captación de folato.

2. La expresión del receptor de folato β se induce por factores presentes en el microambiente

tumoral como M-CSF o IL-10, y citoquinas promotoras de la activación alternativa de macrófagos

como IL-4 o IL-13, y es inhibida por estímulos inflamatorios como LPS o IFNγ.

3. La activina A es secretada por macrófagos pro-inflamatorios/M1 y condiciona la adquisición

de los marcadores y las funciones efectoras características de los macrófagos M2, lo que sugiere su

implicación en la progresión tumoral.

4. La multimerización del receptor de patógenos DC-SIGN en la membrana celular depende de

la región del cuello y el dominio de reconocimiento de carbohidratos, y requiere la presencia de al

menos dos dominios en la región del cuello.

5. Las variantes polimórficas de DC-SIGN se expresan en la membrana de células dendríticas

derivadas de monocitos, y mantienen la capacidad de multimerización y unión de ligandos.

6. Al menos se pueden identificar siete epítopos independientes en la molécula de DC-SIGN,

tres de ellos localizados en la región del cuello y cuatro en el dominio de reconocimiento de

carbohidratos.

135

Page 126: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Bibliografía

Page 127: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Bibliografía

1. Medzhitov, R. and C.A. Janeway, Jr., Innate immune recognition and control of adaptive immune responses. Semin Immunol, 1998. 10(5): p. 351-3.

2. Hoffmann, J.A., et al., Phylogenetic perspectives in innate immunity. Science, 1999. 284(5418): p. 1313-8.

3. Gallucci, S. and P. Matzinger, Danger signals: SOS to the immune system. Curr Opin Immunol, 2001. 13(1): p. 114-9.

4. Medzhitov, R., Recognition of microorganisms and activation of the immune response. Nature, 2007. 449(7164): p. 819-26.

5. Abramson, S., R.G. Miller, and R.A. Phillips, The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems. J Exp Med, 1977. 145(6): p. 1567-79.

6. Akashi, K., et al., A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature, 2000. 404(6774): p. 193-7.

7. Kondo, M., I.L. Weissman, and K. Akashi, Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell, 1997. 91(5): p. 661-72.

8. Gordon, S. and P.R. Taylor, Monocyte and macrophage heterogeneity. Nat Rev Immunol, 2005. 5(12): p. 953-64.

9. Whitelaw, D.M., Observations on human monocyte kinetics after pulse labeling. Cell Tissue Kinet, 1972. 5(4): p. 311-7.

10. Tacke, F. and G.J. Randolph, Migratory fate and differentiation of blood monocyte subsets. Immunobiology, 2006. 211(6-8): p. 609-18.

11. Auffray, C., M.H. Sieweke, and F. Geissmann, Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol, 2009. 27: p. 669-92.

12. Stout, R.D. and J. Suttles, Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol, 2004. 76(3): p. 509-13.

13. Zou, W., et al., Macrophage-derived dendritic cells have strong Th1-polarizing potential mediated by beta-chemokines rather than IL-12. J Immunol, 2000. 165(8): p. 4388-96.

14. Duffield, J.S., The inflammatory macrophage: a story of Jekyll and Hyde. Clin Sci (Lond), 2003. 104(1): p. 27-38.

15. Erwig, L.P., et al., Initial cytokine exposure determines function of macrophages and renders them unresponsive to other cytokines. J Immunol, 1998. 161(4): p. 1983-8.

16. Sallusto, F. and A. Lanzavecchia, Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med, 1994. 179(4): p. 1109-18.

17. Sanchez-Torres, C., et al., CD16+ and CD16- human blood monocyte subsets differentiate in vitro to dendritic cells with different abilities to stimulate CD4+ T cells. Int Immunol, 2001. 13(12): p. 1571-81.

18. Conti, L. and S. Gessani, GM-CSF in the generation of dendritic cells from human blood monocyte precursors: recent advances. Immunobiology, 2008. 213(9-10): p. 859-70.

19. Akagawa, K.S., Functional heterogeneity of colony-stimulating factor-induced human monocyte-derived macrophages. Int J Hematol, 2002. 76(1): p. 27-34.

20. Rougier, N., D. Schmitt, and C. Vincent, IL-4 addition during differentiation of CD34 progenitors delays maturation of dendritic cells while promoting their survival. Eur J Cell Biol, 1998. 75(3): p. 287-93.

21. Chomarat, P., et al., IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol, 2000. 1(6): p. 510-4.

139

Page 128: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Bibliografía

22. Valledor, A.F., et al., Transcription factors that regulate monocyte/macrophage differentiation. J Leukoc Biol, 1998. 63(4): p. 405-17.

23. Steinman, R.M. and Z.A. Cohn, Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med, 1973. 137(5): p. 1142-62.

24. Van Voorhis, W.C., et al., Human dendritic cells. Enrichment and characterization from peripheral blood. J Exp Med, 1982. 155(4): p. 1172-87.

25. Steinman, R.M. and M.D. Witmer, Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc Natl Acad Sci U S A, 1978. 75(10): p. 5132-6.

26. Steinman, R.M. and M.C. Nussenzweig, Dendritic cells: features and functions. Immunol Rev, 1980. 53: p. 127-47.

27. Mellman, I. and R.M. Steinman, Dendritic cells: specialized and regulated antigen processing machines. Cell, 2001. 106(3): p. 255-8.

28. Kubach, J., et al., Dendritic cells: sentinels of immunity and tolerance. Int J Hematol, 2005. 81(3): p. 197-203.

29. Banchereau, J., et al., Immunobiology of dendritic cells. Annu Rev Immunol, 2000. 18: p. 767-811.

30. Shortman, K. and S.H. Naik, Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol, 2007. 7(1): p. 19-30.

31. Van Voorhis, W.C., et al., Relative efficacy of human monocytes and dendritic cells as accessory cells for T cell replication. J Exp Med, 1983. 158(1): p. 174-91.

32. Marquez, C., et al., Identification of a common developmental pathway for thymic natural killer cells and dendritic cells. Blood, 1998. 91(8): p. 2760-71.

33. Nakano, H., M. Yanagita, and M.D. Gunn, CD11c(+)B220(+)Gr-1(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J Exp Med, 2001. 194(8): p. 1171-8.

34. Fitzgerald-Bocarsly, P. and D. Feng, The role of type I interferon production by dendritic cells in host defense. Biochimie, 2007. 89(6-7): p. 843-55.

35. Banchereau, J. and R.M. Steinman, Dendritic cells and the control of immunity. Nature, 1998. 392(6673): p. 245-52.

36. Lambrecht, B.N., et al., Dendritic cells are required for the development of chronic eosinophilic airway inflammation in response to inhaled antigen in sensitized mice. J Immunol, 1998. 160(8): p. 4090-7.

37. Hume, D.A., Macrophages as APC and the dendritic cell myth. J Immunol, 2008. 181(9): p. 5829-35.

38. Karnovsky, M.L., Metchnikoff in Messina: a century of studies on phagocytosis. N Engl J Med, 1981. 304(19): p. 1178-80.

39. Gordon, S., The macrophage: past, present and future. Eur J Immunol, 2007. 37 Suppl 1: p. S9-17.

40. Nathan, C.F., H.W. Murray, and Z.A. Cohn, The macrophage as an effector cell. N Engl J Med, 1980. 303(11): p. 622-6.

41. Randolph, G.J., C. Jakubzick, and C. Qu, Antigen presentation by monocytes and monocyte-derived cells. Curr Opin Immunol, 2008. 20(1): p. 52-60.

42. van Furth, R., Origin and turnover of monocytes and macrophages. Curr Top Pathol, 1989. 79: p. 125-50.

43. Barreda, D.R., P.C. Hanington, and M. Belosevic, Regulation of myeloid development and function by colony stimulating factors. Dev Comp Immunol, 2004. 28(5): p. 509-54.

140

Page 129: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Bibliografía

44. Hanamura, T., et al., Quantitation and identification of human monocytic colony-stimulating factor in human serum by enzyme-linked immunosorbent assay. Blood, 1988. 72(3): p. 886-92.

45. Oster, W., et al., Tumor necrosis factor (TNF)-alpha but not TNF-beta induces secretion of colony stimulating factor for macrophages (CSF-1) by human monocytes. Blood, 1987. 70(5): p. 1700-3.

46. Douglass, T.G., et al., Macrophage colony stimulating factor: not just for macrophages anymore! A gateway into complex biologies. Int Immunopharmacol, 2008. 8(10): p. 1354-76.

47. Bartocci, A., J.W. Pollard, and E.R. Stanley, Regulation of colony-stimulating factor 1 during pregnancy. J Exp Med, 1986. 164(3): p. 956-61.

48. Wiktor-Jedrzejczak, W., et al., Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci U S A, 1990. 87(12): p. 4828-32.

49. Stanley, E., et al., Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci U S A, 1994. 91(12): p. 5592-6.

50. Guilbert, L.J. and E.R. Stanley, Specific interaction of murine colony-stimulating factor with mononuclear phagocytic cells. J Cell Biol, 1980. 85(1): p. 153-9.

51. Chiba, S., et al., Identification and cellular distribution of distinct proteins forming human GM-CSF receptor. Cell Regul, 1990. 1(4): p. 327-35.

52. Caracciolo, D., et al., Recombinant human macrophage colony-stimulating factor (M-CSF) requires subliminal concentrations of granulocyte/macrophage (GM)-CSF for optimal stimulation of human macrophage colony formation in vitro. J Exp Med, 1987. 166(6): p. 1851-60.

53. Walker, F., et al., Hierarchical down-modulation of hemopoietic growth factor receptors. Cell, 1985. 43(1): p. 269-76.

54. Metcalf, D. and N.A. Nicola, The clonal proliferation of normal mouse hematopoietic cells: enhancement and suppression by colony-stimulating factor combinations. Blood, 1992. 79(11): p. 2861-6.

55. Verreck, F.A., et al., Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci U S A, 2004. 101(13): p. 4560-5.

56. Verreck, F.A., et al., Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J Leukoc Biol, 2006. 79(2): p. 285-93.

57. Li, G., Y.J. Kim, and H.E. Broxmeyer, Macrophage colony-stimulating factor drives cord blood monocyte differentiation into IL-10(high)IL-12absent dendritic cells with tolerogenic potential. J Immunol, 2005. 174(8): p. 4706-17.

58. Weber, M.S., et al., Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med, 2007. 13(8): p. 935-43.

59. Hamilton, J.A., Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol, 2008. 8(7): p. 533-44.

60. Fleetwood, A.J., et al., Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J Immunol, 2007. 178(8): p. 5245-52.

61. Kiefer, F., et al., The Syk protein tyrosine kinase is essential for Fcgamma receptor signaling in macrophages and neutrophils. Mol Cell Biol, 1998. 18(7): p. 4209-20.

62. Akagawa, K.S., et al., Functional heterogeneity of colony-stimulating factor-induced human monocyte-derived macrophages. Respirology, 2006. 11 Suppl: p. S32-6.

141

Page 130: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Bibliografía

63. Komuro, I., et al., Human alveolar macrophages and granulocyte-macrophage colony-stimulating factor-induced monocyte-derived macrophages are resistant to H2O2 via their high basal and inducible levels of catalase activity. J Biol Chem, 2001. 276(26): p. 24360-4.

64. Matsuda, S., et al., Suppression of HIV replication in human monocyte-derived macrophages induced by granulocyte/macrophage colony-stimulating factor. AIDS Res Hum Retroviruses, 1995. 11(9): p. 1031-8.

65. Pollard, J.W., Trophic macrophages in development and disease. Nat Rev Immunol, 2009. 9(4): p. 259-70.

66. Naito, M., Macrophage differentiation and function in health and disease. Pathol Int, 2008. 58(3): p. 143-55.

67. Mikkelsen, H.B. and L. Thuneberg, Op/op mice defective in production of functional colony-stimulating factor-1 lack macrophages in muscularis externa of the small intestine. Cell Tissue Res, 1999. 295(3): p. 485-93.

68. Hume, D.A., et al., Immunohistochemical characterisation of macrophages in human liver and gastrointestinal tract: expression of CD4, HLA-DR, OKM1, and the mature macrophage marker 25F9 in normal and diseased tissue. J Leukoc Biol, 1987. 42(5): p. 474-84.

69. Schenk, M., et al., Macrophages expressing triggering receptor expressed on myeloid cells-1 are underrepresented in the human intestine. J Immunol, 2005. 174(1): p. 517-24.

70. Smith, P.D., C. Ochsenbauer-Jambor, and L.E. Smythies, Intestinal macrophages: unique effector cells of the innate immune system. Immunol Rev, 2005. 206: p. 149-59.

71. Smythies, L.E., et al., Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Invest, 2005. 115(1): p. 66-75.

72. Monteleone, G., et al., Blocking Smad7 restores TGF-beta1 signaling in chronic inflammatory bowel disease. J Clin Invest, 2001. 108(4): p. 601-9.

73. Monteleone, G., F. Pallone, and T.T. MacDonald, Smad7 in TGF-beta-mediated negative regulation of gut inflammation. Trends Immunol, 2004. 25(10): p. 513-7.

74. Weinberg, J.B., et al., Peritoneal fluid and plasma levels of human macrophage colony-stimulating factor in relation to peritoneal fluid macrophage content. Blood, 1991. 78(2): p. 513-6.

75. Van Ginderachter, J.A., et al., Classical and alternative activation of mononuclear phagocytes: picking the best of both worlds for tumor promotion. Immunobiology, 2006. 211(6-8): p. 487-501.

76. Nau, G.J., et al., Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci U S A, 2002. 99(3): p. 1503-8.

77. Martinez, F.O., L. Helming, and S. Gordon, Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol, 2009. 27: p. 451-83.

78. Mosmann, T.R. and R.L. Coffman, TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol, 1989. 7: p. 145-73.

79. Stein, M., et al., Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med, 1992. 176(1): p. 287-92.

80. Goerdt, S. and C.E. Orfanos, Other functions, other genes: alternative activation of antigen-presenting cells. Immunity, 1999. 10(2): p. 137-42.

81. Song, E., et al., Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell Immunol, 2000. 204(1): p. 19-28.

82. Schebesch, C., et al., Alternatively activated macrophages actively inhibit proliferation of peripheral blood lymphocytes and CD4+ T cells in vitro. Immunology, 1997. 92(4): p. 478-86.

83. Kodelja, V., et al., Differences in angiogenic potential of classically vs alternatively activated macrophages. Immunobiology, 1997. 197(5): p. 478-93.

84. Riboldi, E., et al., Cutting edge: proangiogenic properties of alternatively activated dendritic cells. J Immunol, 2005. 175(5): p. 2788-92.

142

Page 131: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Bibliografía

85. Gordon, S., Alternative activation of macrophages. Nat Rev Immunol, 2003. 3(1): p. 23-35.

86. Mantovani, A., et al., The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol, 2004. 25(12): p. 677-86.

87. Mosser, D.M. and J.P. Edwards, Exploring the full spectrum of macrophage activation. Nat Rev Immunol, 2008. 8(12): p. 958-69.

88. Taylor, P.R., et al., Macrophage receptors and immune recognition. Annu Rev Immunol, 2005. 23: p. 901-44.

89. Cihakova, D., et al., Interleukin-13 protects against experimental autoimmune myocarditis by regulating macrophage differentiation. Am J Pathol, 2008. 172(5): p. 1195-208.

90. Willment, J.A., et al., Dectin-1 expression and function are enhanced on alternatively activated and GM-CSF-treated macrophages and are negatively regulated by IL-10, dexamethasone, and lipopolysaccharide. J Immunol, 2003. 171(9): p. 4569-73.

91. Puig-Kroger, A., et al., Regulated expression of the pathogen receptor dendritic cell-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin in THP-1 human leukemic cells, monocytes, and macrophages. J Biol Chem, 2004. 279(24): p. 25680-8.

92. Relloso, M., et al., DC-SIGN (CD209) expression is IL-4 dependent and is negatively regulated by IFN, TGF-beta, and anti-inflammatory agents. J Immunol, 2002. 168(6): p. 2634-43.

93. Martinez, F.O., et al., Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression. J Immunol, 2006. 177(10): p. 7303-11.

94. Kanazawa, N., K. Tashiro, and Y. Miyachi, Signaling and immune regulatory role of the dendritic cell immunoreceptor (DCIR) family lectins: DCIR, DCAR, dectin-2 and BDCA-2. Immunobiology, 2004. 209(1-2): p. 179-90.

95. Kato, M., et al., Hodgkin's lymphoma cell lines express a fusion protein encoded by intergenically spliced mRNA for the multilectin receptor DEC-205 (CD205) and a novel C-type lectin receptor DCL-1. J Biol Chem, 2003. 278(36): p. 34035-41.

96. Fang, F.C. and C.F. Nathan, Man is not a mouse: reply. J Leukoc Biol, 2007. 81(3): p. 580.

97. Raes, G., et al., Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells. J Immunol, 2005. 174(11): p. 6561; author reply 6561-2.

98. Hesse, M., et al., Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J Immunol, 2001. 167(11): p. 6533-44.

99. Raes, G., et al., Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. J Leukoc Biol, 2002. 71(4): p. 597-602.

100. Vats, D., et al., Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab, 2006. 4(1): p. 13-24.

101. Scotton, C.J., et al., Transcriptional profiling reveals complex regulation of the monocyte IL-1 beta system by IL-13. J Immunol, 2005. 174(2): p. 834-45.

102. Huang, J.T., et al., Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature, 1999. 400(6742): p. 378-82.

103. Odegaard, J.I., et al., Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature, 2007. 447(7148): p. 1116-20.

104. Ricote, M., et al., The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature, 1998. 391(6662): p. 79-82.

105. Stout, R.D., et al., Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol, 2005. 175(1): p. 342-9.

143

Page 132: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Bibliografía

106. Bosisio, D., et al., Stimulation of toll-like receptor 4 expression in human mononuclear phagocytes by interferon-gamma: a molecular basis for priming and synergism with bacterial lipopolysaccharide. Blood, 2002. 99(9): p. 3427-31.

107. Fong, C.H., et al., An antiinflammatory role for IKKbeta through the inhibition of "classical" macrophage activation. J Exp Med, 2008. 205(6): p. 1269-76.

108. Hagemann, T., et al., "Re-educating" tumor-associated macrophages by targeting NF-kappaB. J Exp Med, 2008. 205(6): p. 1261-8.

109. Porta, C., et al., Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB. Proc Natl Acad Sci U S A, 2009. 106(35): p. 14978-83.

110. Lacaze, P., et al., Combined genome-wide expression profiling and targeted RNA interference in primary mouse macrophages reveals perturbation of transcriptional networks associated with interferon signalling. BMC Genomics, 2009. 10: p. 372.

111. Mantovani, A., et al., Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol, 2002. 23(11): p. 549-55.

112. Murdoch, C., et al., Expression of Tie-2 by human monocytes and their responses to angiopoietin-2. J Immunol, 2007. 178(11): p. 7405-11.

113. Lewis, C.E. and J.W. Pollard, Distinct role of macrophages in different tumor microenvironments. Cancer Res, 2006. 66(2): p. 605-12.

114. Mantovani, A., et al., Origin and regulation of tumor-associated macrophages: the role of tumor-derived chemotactic factor. Biochim Biophys Acta, 1986. 865(1): p. 59-67.

115. Lewis, J.S., et al., Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol, 2000. 192(2): p. 150-8.

116. Sica, A. and V. Bronte, Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest, 2007. 117(5): p. 1155-66.

117. Van Ginderachter, J.A., et al., Macrophages, PPARs, and Cancer. PPAR Res, 2008. 2008: p. 169414.

118. Mantovani, A., et al., Tumour immunity: effector response to tumour and role of the microenvironment. Lancet, 2008. 371(9614): p. 771-83.

119. Sica, A., et al., Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer, 2006. 42(6): p. 717-27.

120. Lin, E.Y., et al., Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med, 2001. 193(6): p. 727-40.

121. Sica, A., et al., Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. J Immunol, 2000. 164(2): p. 762-7.

122. Weigert, A. and B. Brune, Nitric oxide, apoptosis and macrophage polarization during tumor progression. Nitric Oxide, 2008. 19(2): p. 95-102.

123. Sakaguchi, S., Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol, 2005. 6(4): p. 345-52.

124. Smyth, M.J., et al., CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol, 2006. 176(3): p. 1582-7.

125. Leek, R.D., et al., Relation of hypoxia-inducible factor-2 alpha (HIF-2 alpha) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in Human breast cancer. Cancer Res, 2002. 62(5): p. 1326-9.

126. Allavena, P., et al., The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev, 2008. 222: p. 155-61.

144

Page 133: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Bibliografía

127. Biswas, S.K., et al., A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood, 2006. 107(5): p. 2112-22.

128. Ghassabeh, G.H., et al., Identification of a common gene signature for type II cytokine-associated myeloid cells elicited in vivo in different pathologic conditions. Blood, 2006. 108(2): p. 575-83.

129. Biswas, S.K., A. Sica, and C.E. Lewis, Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J Immunol, 2008. 180(4): p. 2011-7.

130. Dranoff, G., Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer, 2004. 4(1): p. 11-22.

131. Zaslona, Z., et al., Transcriptome profiling of primary murine monocytes, lung macrophages and lung dendritic cells reveals a distinct expression of genes involved in cell trafficking. Respir Res, 2009. 10: p. 2.

132. Weigelt, K., et al., Transcriptomic profiling identifies a PU.1 regulatory network in macrophages. Biochem Biophys Res Commun, 2009. 380(2): p. 308-12.

133.Deonarine, K., et al., Gene expression profiling of cutaneous wound healing. J Transl Med, 2007. 5: p. 11.

134. Welch, J.S., et al., TH2 cytokines and allergic challenge induce Ym1 expression in macrophages by a STAT6-dependent mechanism. J Biol Chem, 2002. 277(45): p. 42821-9.

135. Loke, P., et al., IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype. BMC Immunol, 2002. 3: p. 7.

136. Lehtonen, A., et al., Gene expression profiling during differentiation of human monocytes to macrophages or dendritic cells. J Leukoc Biol, 2007. 82(3): p. 710-20.

137. Jung, M., et al., Expression profiling of IL-10-regulated genes in human monocytes and peripheral blood mononuclear cells from psoriatic patients during IL-10 therapy. Eur J Immunol, 2004. 34(2): p. 481-93.

138. Fleetwood, A.J., et al., GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on type I interferon signaling. J Leukoc Biol, 2009. 86(2): p. 411-21.

139. Gonzalez-Juarrero, M., et al., Immune response to Mycobacterium tuberculosis and identification of molecular markers of disease. Am J Respir Cell Mol Biol, 2009. 40(4): p. 398-409.

140. Benoit, M., B. Desnues, and J.L. Mege, Macrophage polarization in bacterial infections. J Immunol, 2008. 181(6): p. 3733-9.

141. Shaykhiev, R., et al., Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease. J Immunol, 2009. 183(4): p. 2867-83.

142. Ojalvo, L.S., et al., High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. Am J Pathol, 2009. 174(3): p. 1048-64.

143. McGuire, K. and E.J. Glass, The expanding role of microarrays in the investigation of macrophage responses to pathogens. Vet Immunol Immunopathol, 2005. 105(3-4): p. 259-75.

144. Chan, G., et al., Transcriptome analysis reveals human cytomegalovirus reprograms monocyte differentiation toward an M1 macrophage. J Immunol, 2008. 181(1): p. 698-711.

145. Kilpatrick, D.C., Animal lectins: a historical introduction and overview. Biochim Biophys Acta, 2002. 1572(2-3): p. 187-97.

146. Zelensky, A.N. and J.E. Gready, The C-type lectin-like domain superfamily. Febs J, 2005. 272(24): p. 6179-217.

147. Weis, W.I., M.E. Taylor, and K. Drickamer, The C-type lectin superfamily in the immune system. Immunol Rev, 1998. 163: p. 19-34.

145

Page 134: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Bibliografía

148. Dominguez-Soto, A. and A.L. Corbi, Myeloid dendritic cell lectins and their role in immune responses. Curr Opin Investig Drugs, 2007. 8(11): p. 910-20.

149. Curtis, B.M., S. Scharnowske, and A.J. Watson, Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120. Proc Natl Acad Sci U S A, 1992. 89(17): p. 8356-60.

150. Geijtenbeek, T.B., et al., Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell, 2000. 100(5): p. 575-85.

151. Granelli-Piperno, A., et al., Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction. J Immunol, 2005. 175(7): p. 4265-73.

152. Soilleux, E.J., et al., Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J Leukoc Biol, 2002. 71(3): p. 445-57.

153. Geijtenbeek, T.B., et al., DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat Immunol, 2000. 1(4): p. 353-7.

154. Kamada, N., et al., Human CD14+ macrophages in intestinal lamina propria exhibit potent antigen-presenting ability. J Immunol, 2009. 183(3): p. 1724-31.

155. Soilleux, E.J., et al., Placental expression of DC-SIGN may mediate intrauterine vertical transmission of HIV. J Pathol, 2001. 195(5): p. 586-92.

156. Bockle, B.C., et al., DC-sign+ CD163+ macrophages expressing hyaluronan receptor LYVE-1 are located within chorion villi of the placenta. Placenta, 2008. 29(2): p. 187-92.

157. van Lent, P.L., et al., Expression of the dendritic cell-associated C-type lectin DC-SIGN by inflammatory matrix metalloproteinase-producing macrophages in rheumatoid arthritis synovium and interaction with intercellular adhesion molecule 3-positive T cells. Arthritis Rheum, 2003. 48(2): p. 360-9.

158. Chehimi, J., et al., HIV-1 transmission and cytokine-induced expression of DC-SIGN in human monocyte-derived macrophages. J Leukoc Biol, 2003. 74(5): p. 757-63.

159. Dominguez-Soto, A., et al., PU.1 regulates the tissue-specific expression of dendritic cell-specific intercellular adhesion molecule (ICAM)-3-grabbing nonintegrin. J Biol Chem, 2005. 280(39): p. 33123-31.

160. Caparros, E., et al., DC-SIGN ligation on dendritic cells results in ERK and PI3K activation and modulates cytokine production. Blood, 2006. 107(10): p. 3950-8.

161. Cambi, A., et al., Microdomains of the C-type lectin DC-SIGN are portals for virus entry into dendritic cells. J Cell Biol, 2004. 164(1): p. 145-55.

162. van Kooyk, Y. and T.B. Geijtenbeek, DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol, 2003. 3(9): p. 697-709.

163. Soilleux, E.J., R. Barten, and J. Trowsdale, DC-SIGN; a related gene, DC-SIGNR; and CD23 form a cluster on 19p13. J Immunol, 2000. 165(6): p. 2937-42.

164. Bernhard, O.K., et al., Proteomic analysis of DC-SIGN on dendritic cells detects tetramers required for ligand binding but no association with CD4. J Biol Chem, 2004. 279(50): p. 51828-35.

165. Feinberg, H., et al., Extended neck regions stabilize tetramers of the receptors DC-SIGN and DC-SIGNR. J Biol Chem, 2005. 280(2): p. 1327-35.

166. Mitchell, D.A., A.J. Fadden, and K. Drickamer, A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands. J Biol Chem, 2001. 276(31): p. 28939-45.

167. Engering, A., et al., The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J Immunol, 2002. 168(5): p. 2118-26.

146

Page 135: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Bibliografía

168. Mummidi, S., et al., Extensive repertoire of membrane-bound and soluble dendritic cell-specific ICAM-3-grabbing nonintegrin 1 (DC-SIGN1) and DC-SIGN2 isoforms. Inter-individual variation in expression of DC-SIGN transcripts. J Biol Chem, 2001. 276(35): p. 33196-212.

169. Park, C.G., et al., Five mouse homologues of the human dendritic cell C-type lectin, DC-SIGN. Int Immunol, 2001. 13(10): p. 1283-90.

170. Powlesland, A.S., et al., Widely divergent biochemical properties of the complete set of mouse DC-SIGN-related proteins. J Biol Chem, 2006. 281(29): p. 20440-9.

171. Boily-Larouche, G., et al., DC-SIGN and DC-SIGNR genetic diversity among different ethnic populations: potential implications for pathogen recognition and disease susceptibility. Hum Immunol, 2007. 68(6): p. 523-30.

172. Khoo, U.S., et al., DC-SIGN and L-SIGN: the SIGNs for infection. J Mol Med, 2008. 86(8): p. 861-74.

173. Liu, H., et al., Isolation and characterization of the human DC-SIGN and DC-SIGNR promoters. Gene, 2003. 313: p. 149-59.

174. Martin, M.P., et al., Association of DC-SIGN promoter polymorphism with increased risk for parenteral, but not mucosal, acquisition of human immunodeficiency virus type 1 infection. J Virol, 2004. 78(24): p. 14053-6.

175. Koizumi, Y., et al., RANTES -28G delays and DC-SIGN - 139C enhances AIDS progression in HIV type 1-infected Japanese hemophiliacs. AIDS Res Hum Retroviruses, 2007. 23(5): p. 713-9.

176. Barreiro, L.B., et al., Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis. PLoS Med, 2006. 3(2): p. e20.

177.Vannberg, F.O., et al., CD209 genetic polymorphism and tuberculosis disease. PLoS One, 2008. 3(1): p. e1388.

178. Gomez, L.M., et al., Analysis of DC-SIGN (CD209) functional variants in patients with tuberculosis. Hum Immunol, 2006. 67(10): p. 808-11.

179. Ben-Ali, M., et al., Promoter and neck region length variation of DC-SIGN is not associated with susceptibility to tuberculosis in Tunisian patients. Hum Immunol, 2007. 68(11): p. 908-12.

180. Olesen, R., et al., DC-SIGN (CD209), pentraxin 3 and vitamin D receptor gene variants associate with pulmonary tuberculosis risk in West Africans. Genes Immun, 2007. 8(6): p. 456-67.

181. Selvaraj, P., et al., CD209 gene polymorphisms in South Indian HIV and HIV-TB patients. Infect Genet Evol, 2009. 9(2): p. 256-62.

182. Sakuntabhai, A., et al., A variant in the CD209 promoter is associated with severity of dengue disease. Nat Genet, 2005. 37(5): p. 507-13.

183. Nunez, C., et al., A functional variant in the CD209 promoter is associated with DQ2-negative celiac disease in the Spanish population. World J Gastroenterol, 2006. 12(27): p. 4397-400.

184. Kashima, S., et al., DC-SIGN (CD209) gene promoter polymorphisms in a Brazilian population and their association with human T-cell lymphotropic virus type 1 infection. J Gen Virol, 2009. 90(Pt 4): p. 927-34.

185. Feinberg, H., et al., Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science, 2001. 294(5549): p. 2163-6.

186. Frison, N., et al., Oligolysine-based oligosaccharide clusters: selective recognition and endocytosis by the mannose receptor and dendritic cell-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin. J Biol Chem, 2003. 278(26): p. 23922-9.

187. Appelmelk, B.J., et al., Cutting edge: carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J Immunol, 2003. 170(4): p. 1635-9.

147

Page 136: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Bibliografía

188. Guo, Y., et al., Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat Struct Mol Biol, 2004. 11(7): p. 591-8.

189. van Die, I., et al., The dendritic cell-specific C-type lectin DC-SIGN is a receptor for Schistosoma mansoni egg antigens and recognizes the glycan antigen Lewis x. Glycobiology, 2003. 13(6): p. 471-8.

190. Tacken, P.J., et al., Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody. Blood, 2005. 106(4): p. 1278-85.

191. Cambi, A., M. Koopman, and C.G. Figdor, How C-type lectins detect pathogens. Cell Microbiol, 2005. 7(4): p. 481-8.

192. Geijtenbeek, T.B., et al., Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med, 2003. 197(1): p. 7-17.

193. Tailleux, L., et al., DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med, 2003. 197(1): p. 121-7.

194. Konstantinov, S.R., et al., S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci U S A, 2008. 105(49): p. 19474-9.

195. Cambi, A., et al., The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur J Immunol, 2003. 33(2): p. 532-8.

196. Serrano-Gomez, D., et al., Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin mediates binding and internalization of Aspergillus fumigatus conidia by dendritic cells and macrophages. J Immunol, 2004. 173(9): p. 5635-43.

197. Colmenares, M., et al., Dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin (DC-SIGN, CD209), a C-type surface lectin in human DCs, is a receptor for Leishmania amastigotes. J Biol Chem, 2002. 277(39): p. 36766-9.

198. Cormier, E.G., et al., L-SIGN (CD209L) and DC-SIGN (CD209) mediate transinfection of liver cells by hepatitis C virus. Proc Natl Acad Sci U S A, 2004. 101(39): p. 14067-72.

199. Marzi, A., et al., DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J Virol, 2004. 78(21): p. 12090-5.

200. Hsu, S.C., et al., Functional interaction of common allergens and a C-type lectin receptor, DC-specific ICAM3-grabbing non-integrin (DC-sign), on human dendritic cells. J Biol Chem.

201. van Gisbergen, K.P., et al., Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. J Exp Med, 2005. 201(8): p. 1281-92.

202. van Gisbergen, K.P., et al., Interactions of DC-SIGN with Mac-1 and CEACAM1 regulate contact between dendritic cells and neutrophils. FEBS Lett, 2005. 579(27): p. 6159-68.

203. Bogoevska, V., et al., CEACAM1, an adhesion molecule of human granulocytes, is fucosylated by fucosyltransferase IX and interacts with DC-SIGN of dendritic cells via Lewis x residues. Glycobiology, 2006. 16(3): p. 197-209.

204. Samsen, A., et al., DC-SIGN and SRCL bind glycans of carcinoembryonic antigen (CEA) and CEA-related cell adhesion molecule 1 (CEACAM1): recombinant human glycan-binding receptors as analytical tools. Eur J Cell Biol, 2009.

205. Real, E., et al., Immature dendritic cells (DCs) use chemokines and intercellular adhesion molecule (ICAM)-1, but not DC-specific ICAM-3-grabbing nonintegrin, to stimulate CD4+ T cells in the absence of exogenous antigen. J Immunol, 2004. 173(1): p. 50-60.

206. Gijzen, K., et al., Relevance of DC-SIGN in DC-induced T cell proliferation. J Leukoc Biol, 2007. 81(3): p. 729-40.

148

Page 137: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Bibliografía

207. Gringhuis, S.I., et al., Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol, 2009. 10(10): p. 1081-8.

208. Gringhuis, S.I., et al., C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity, 2007. 26(5): p. 605-16.

209. Shan, M., et al., HIV-1 gp120 mannoses induce immunosuppressive responses from dendritic cells. PLoS Pathog, 2007. 3(11): p. e169.

210. Shreffler, W.G., et al., The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro. J Immunol, 2006. 177(6): p. 3677-85.

211. Hovius, J.W., et al., Salp15 binding to DC-SIGN inhibits cytokine expression by impairing both nucleosome remodeling and mRNA stabilization. PLoS Pathog, 2008. 4(2): p. e31.

212. den Dunnen, J., S.I. Gringhuis, and T.B. Geijtenbeek, Innate signaling by the C-type lectin DC-SIGN dictates immune responses. Cancer Immunol Immunother, 2009. 58(7): p. 1149-57.

213. Cao, S., et al., The protooncogene c-Maf is an essential transcription factor for IL-10 gene expression in macrophages. J Immunol, 2005. 174(6): p. 3484-92.

214. Homma, Y., et al., The Th2 transcription factor c-Maf inhibits IL-12p35 gene expression in activated macrophages by targeting NF-kappaB nuclear translocation. J Interferon Cytokine Res, 2007. 27(9): p. 799-808.

215. Ricchetti, G.A., L.M. Williams, and B.M. Foxwell, Heme oxygenase 1 expression induced by IL-10 requires STAT-3 and phosphoinositol-3 kinase and is inhibited by lipopolysaccharide. J Leukoc Biol, 2004. 76(3): p. 719-26.

216. Miller, A.L., The methylation, neurotransmitter, and antioxidant connections between folate and depression. Altern Med Rev, 2008. 13(3): p. 216-26.

217.Lucock, M., Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab, 2000. 71(1-2): p. 121-38.

218. Sommer, B.R., A.L. Hoff, and M. Costa, Folic acid supplementation in dementia: a preliminary report. J Geriatr Psychiatry Neurol, 2003. 16(3): p. 156-9.

219. Bailey, L.B., G.C. Rampersaud, and G.P. Kauwell, Folic acid supplements and fortification affect the risk for neural tube defects, vascular disease and cancer: evolving science. J Nutr, 2003. 133(6): p. 1961S-1968S.

220. Haynes, W.G., Hyperhomocysteinemia, vascular function and atherosclerosis: effects of vitamins. Cardiovasc Drugs Ther, 2002. 16(5): p. 391-9.

221. Forges, T., et al., Impact of folate and homocysteine metabolism on human reproductive health. Hum Reprod Update, 2007. 13(3): p. 225-38.

222. Fowler, B., The folate cycle and disease in humans. Kidney Int Suppl, 2001. 78: p. S221-9.

223. Matherly, L.H. and D.I. Goldman, Membrane transport of folates. Vitam Horm, 2003. 66: p. 403-56.

224. Brzezinska, A., P. Winska, and M. Balinska, Cellular aspects of folate and antifolate membrane transport. Acta Biochim Pol, 2000. 47(3): p. 735-49.

225. Antony, A.C., Folate receptors. Annu Rev Nutr, 1996. 16: p. 501-21.

226. Ross, J.F., P.K. Chaudhuri, and M. Ratnam, Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer, 1994. 73(9): p. 2432-43.

227. Kane, M.A., et al., Influence on immunoreactive folate-binding proteins of extracellular folate concentration in cultured human cells. J Clin Invest, 1988. 81(5): p. 1398-406.

149

Page 138: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Bibliografía

228. Leamon, C.P. and A.L. Jackman, Exploitation of the folate receptor in the management of cancer and inflammatory disease. Vitam Horm, 2008. 79: p. 203-33.

229. Elnakat, H. and M. Ratnam, Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv Drug Deliv Rev, 2004. 56(8): p. 1067-84.

230. Wu, M., W. Gunning, and M. Ratnam, Expression of folate receptor type alpha in relation to cell type, malignancy, and differentiation in ovary, uterus, and cervix. Cancer Epidemiol Biomarkers Prev, 1999. 8(9): p. 775-82.

231. Shen, F., et al., Identification of a novel folate receptor, a truncated receptor, and receptor type beta in hematopoietic cells: cDNA cloning, expression, immunoreactivity, and tissue specificity. Biochemistry, 1994. 33(5): p. 1209-15.

232. Shen, F., et al., Folate receptor type gamma is primarily a secretory protein due to lack of an efficient signal for glycosylphosphatidylinositol modification: protein characterization and cell type specificity. Biochemistry, 1995. 34(16): p. 5660-5.

233. Spiegelstein, O., J.D. Eudy, and R.H. Finnell, Identification of two putative novel folate receptor genes in humans and mouse. Gene, 2000. 258(1-2): p. 117-25.

234. Brigle, K.E., et al., Characterization of two cDNAs encoding folate-binding proteins from L1210 murine leukemia cells. Increased expression associated with a genomic rearrangement. J Biol Chem, 1991. 266(26): p. 17243-9.

235. Piedrahita, J.A., et al., Mice lacking the folic acid-binding protein Folbp1 are defective in early embryonic development. Nat Genet, 1999. 23(2): p. 228-32.

236. Wlodarczyk, B., et al., Arsenic-induced congenital malformations in genetically susceptible folate binding protein-2 knockout mice. Toxicol Appl Pharmacol, 2001. 177(3): p. 238-46.

237. Ross, J.F., et al., Folate receptor type beta is a neutrophilic lineage marker and is differentially expressed in myeloid leukemia. Cancer, 1999. 85(2): p. 348-57.

238. Reddy, J.A., et al., Expression and functional characterization of the beta-isoform of the folate receptor on CD34(+) cells. Blood, 1999. 93(11): p. 3940-8.

239. Nakashima-Matsushita, N., et al., Selective expression of folate receptor beta and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis. Arthritis Rheum, 1999. 42(8): p. 1609-16.

240. Ratnam, M., et al., Homologous membrane folate binding proteins in human placenta: cloning and sequence of a cDNA. Biochemistry, 1989. 28(20): p. 8249-54.

241. Pan, X.Q., et al., Strategy for the treatment of acute myelogenous leukemia based on folate receptor beta-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid. Blood, 2002. 100(2): p. 594-602.

242. Turk, M.J., et al., Folate-targeted imaging of activated macrophages in rats with adjuvant-induced arthritis. Arthritis Rheum, 2002. 46(7): p. 1947-55.

243. Paulos, C.M., et al., Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis. Adv Drug Deliv Rev, 2004. 56(8): p. 1205-17.

244. Xia, W., et al., A functional folate receptor is induced during macrophage activation and can be used to target drugs to activated macrophages. Blood, 2009. 113(2): p. 438-46.

245. Nagai, T., et al., Targeting tumor-associated macrophages in an experimental glioma model with a recombinant immunotoxin to folate receptor beta. Cancer Immunol Immunother, 2009. 58(10): p. 1577-86.

246. Xu, W., et al., Human peritoneal macrophages show functional characteristics of M-CSF-driven anti-inflammatory type 2 macrophages. Eur J Immunol, 2007. 37(6): p. 1594-9.

247. Chen, Y.G., et al., Activin signaling and its role in regulation of cell proliferation, apoptosis, and carcinogenesis. Exp Biol Med (Maywood), 2006. 231(5): p. 534-44.

150

Page 139: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Bibliografía

248. Luisi, S., et al., Expression and secretion of activin A: possible physiological and clinical implications. Eur J Endocrinol, 2001. 145(3): p. 225-36.

249. Jones, K.L., et al., Activin A and follistatin in systemic inflammation. Mol Cell Endocrinol, 2004. 225(1-2): p. 119-25.

250. Sulyok, S., et al., Activin: an important regulator of wound repair, fibrosis, and neuroprotection. Mol Cell Endocrinol, 2004. 225(1-2): p. 127-32.

251. Chen, Y.G., et al., Regulation of cell proliferation, apoptosis, and carcinogenesis by activin. Exp Biol Med (Maywood), 2002. 227(2): p. 75-87.

252. Attisano, L., et al., Activation of signalling by the activin receptor complex. Mol Cell Biol, 1996. 16(3): p. 1066-73.

253. Phillips, D.J. and D.M. de Kretser, Follistatin: a multifunctional regulatory protein. Front Neuroendocrinol, 1998. 19(4): p. 287-322.

254. Sugino, K., et al., Molecular heterogeneity of follistatin, an activin-binding protein. Higher affinity of the carboxyl-terminal truncated forms for heparan sulfate proteoglycans on the ovarian granulosa cell. J Biol Chem, 1993. 268(21): p. 15579-87.

255. Peng, C. and S.T. Mukai, Activins and their receptors in female reproduction. Biochem Cell Biol, 2000. 78(3): p. 261-79.

256. Bernard, D.J., S.C. Chapman, and T.K. Woodruff, Mechanisms of inhibin signal transduction. Recent Prog Horm Res, 2001. 56: p. 417-50.

257. Eramaa, M., et al., Activin A/erythroid differentiation factor is induced during human monocyte activation. J Exp Med, 1992. 176(5): p. 1449-52.

258. Yu, J., et al., Induced expression of the new cytokine, activin A, in human monocytes: inhibition by glucocorticoids and retinoic acid. Immunology, 1996. 88(3): p. 368-74.

259. Ebert, S., et al., Microglial cells and peritoneal macrophages release activin A upon stimulation with Toll-like receptor agonists. Neurosci Lett, 2007. 413(3): p. 241-4.

260. Robson, N.C., et al., Activin-A: a novel dendritic cell-derived cytokine that potently attenuates CD40 ligand-specific cytokine and chemokine production. Blood, 2008. 111(5): p. 2733-43.

261. Scutera, S., et al., Production and function of activin A in human dendritic cells. Eur Cytokine Netw, 2008. 19(1): p. 60-8.

262. Wilson, K.M., A.I. Smith, and D.J. Phillips, Stimulatory effects of lipopolysaccharide on endothelial cell activin and follistatin. Mol Cell Endocrinol, 2006. 253(1-2): p. 30-5.

263. Shao, L., et al., Regulation of production of activin A in human marrow stromal cells and monocytes. Exp Hematol, 1992. 20(10): p. 1235-42.

264. Shao, L.E., et al., Contrasting effects of inflammatory cytokines and glucocorticoids on the production of activin A in human marrow stromal cells and their implications. Cytokine, 1998. 10(3): p. 227-35.

265. Yamashita, T., S. Takahashi, and E. Ogata, Expression of activin A/erythroid differentiation factor in murine bone marrow stromal cells. Blood, 1992. 79(2): p. 304-7.

266. Cho, S.H., et al., Regulation of activin A expression in mast cells and asthma: its effect on the proliferation of human airway smooth muscle cells. J Immunol, 2003. 170(8): p. 4045-52.

267. Licona, P., J. Chimal-Monroy, and G. Soldevila, Inhibins are the major activin ligands expressed during early thymocyte development. Dev Dyn, 2006. 235(4): p. 1124-32.

268. Ogawa, K., et al., Activin A functions as a Th2 cytokine in the promotion of the alternative activation of macrophages. J Immunol, 2006. 177(10): p. 6787-94.

269. Phillips, D.J., et al., Evidence for activin A and follistatin involvement in the systemic inflammatory response. Mol Cell Endocrinol, 2001. 180(1-2): p. 155-62.

151

Page 140: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Bibliografía

270. Wang, S.Y., et al., Inhibitory effect of activin A on activation of lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Cytokine, 2008. 42(1): p. 85-91.

271. Hardy, C.L., et al., Follistatin is a candidate endogenous negative regulator of activin A in experimental allergic asthma. Clin Exp Allergy, 2006. 36(7): p. 941-50.

272. Karagiannidis, C., et al., Activin A is an acute allergen-responsive cytokine and provides a link to TGF-beta-mediated airway remodeling in asthma. J Allergy Clin Immunol, 2006. 117(1): p. 111-8.

273. Wang, M., et al., Growth of HPV-18 immortalized human prostatic intraepithelial neoplasia cell lines. Influence of IL-10, follistatin, activin-A, and DHT. Int J Oncol, 1999. 14(6): p. 1185-95.

274. Phillips, D.J., D.M. de Kretser, and M.P. Hedger, Activin and related proteins in inflammation: not just interested bystanders. Cytokine Growth Factor Rev, 2009. 20(2): p. 153-64.

275. Bogdan, C. and C. Nathan, Modulation of macrophage function by transforming growth factor beta, interleukin-4, and interleukin-10. Ann N Y Acad Sci, 1993. 685: p. 713-39.

276. Yamashita, N., et al., Effects of activin A on IgE synthesis and cytokine production by human peripheral mononuclear cells. Clin Exp Immunol, 1993. 94(1): p. 214-9.

277. Nusing, R.M. and J. Barsig, Induction of prostanoid, nitric oxide, and cytokine formation in rat bone marrow derived macrophages by activin A. Br J Pharmacol, 1999. 127(4): p. 919-26.

278. Ge, J., et al., Direct effects of activin A on the activation of mouse macrophage RAW264.7 cells. Cell Mol Immunol, 2009. 6(2): p. 129-33.

279. Zhang, X.J., et al., Effects of activin A on the activities of the mouse peritoneal macrophages. Cell Mol Immunol, 2005. 2(1): p. 63-7.

280. Murase, Y., et al., Possible involvement of protein kinases and Smad2 signaling pathways on osteoclast differentiation enhanced by activin A. J Cell Physiol, 2001. 188(2): p. 236-42.

281. Sugatani, T., U.M. Alvarez, and K.A. Hruska, Activin A stimulates IkappaB-alpha/NFkappaB and RANK expression for osteoclast differentiation, but not AKT survival pathway in osteoclast precursors. J Cell Biochem, 2003. 90(1): p. 59-67.

282. Ohguchi, M., et al., Activin A regulates the production of mature interleukin-1beta and interleukin-1 receptor antagonist in human monocytic cells. J Interferon Cytokine Res, 1998. 18(7): p. 491-8.

283. Sugama, S., et al., Activin as an anti-inflammatory cytokine produced by microglia. J Neuroimmunol, 2007. 192(1-2): p. 31-9.

284. Perrier d'Hauterive, S., et al., Human endometrial leukemia inhibitory factor and interleukin-6: control of secretion by transforming growth factor-beta-related members. Neuroimmunomodulation, 2005. 12(3): p. 157-63.

285. Hedger, M.P., D.J. Phillips, and D.M. de Kretser, Divergent cell-specific effects of activin-A on thymocyte proliferation stimulated by phytohemagglutinin, and interleukin 1beta or interleukin 6 in vitro. Cytokine, 2000. 12(6): p. 595-602.

286. Gribi, R., et al., Expression of activin A in inflammatory arthropathies. Mol Cell Endocrinol, 2001. 180(1-2): p. 163-7.

287. Hubner, G., et al., Activin A: a novel player and inflammatory marker in inflammatory bowel disease? Lab Invest, 1997. 77(4): p. 311-8.

288. Yu, E.W., et al., Suppression of IL-6 biological activities by activin A and implications for inflammatory arthropathies. Clin Exp Immunol, 1998. 112(1): p. 126-32.

289. Yu, J. and K.E. Dolter, Production of activin A and its roles in inflammation and hematopoiesis. Cytokines Cell Mol Ther, 1997. 3(3): p. 169-77.

290. Keelan, J.A., R.L. Zhou, and M.D. Mitchell, Activin A exerts both pro- and anti-inflammatory effects on human term gestational tissues. Placenta, 2000. 21(1): p. 38-43.

152

Page 141: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Bibliografía

291. Saccani, A., et al., p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res, 2006. 66(23): p. 11432-40.

292. Reis, F.M., et al., Activin, inhibin and the human breast. Mol Cell Endocrinol, 2004. 225(1-2): p. 77-82.

293. Seder, C.W., et al., Upregulated INHBA expression may promote cell proliferation and is associated with poor survival in lung adenocarcinoma. Neoplasia, 2009. 11(4): p. 388-96.

294. Reinholz, M.M., et al., Differential gene expression of TGF-beta family members and osteopontin in breast tumor tissue: analysis by real-time quantitative PCR. Breast Cancer Res Treat, 2002. 74(3): p. 255-69.

295. Pollard, J.W., Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer, 2004. 4(1): p. 71-8.

296. Lin, W.W. and M. Karin, A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest, 2007. 117(5): p. 1175-83.

297. Balkwill, F., K.A. Charles, and A. Mantovani, Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 2005. 7(3): p. 211-7.

298. Coussens, L.M. and Z. Werb, Inflammation and cancer. Nature, 2002. 420(6917): p. 860-7.

299. Karin, M. and F.R. Greten, NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol, 2005. 5(10): p. 749-59.

300. Karin, M., T. Lawrence, and V. Nizet, Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell, 2006. 124(4): p. 823-35.

301.Lin, E.Y., et al., Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res, 2006. 66(23): p. 11238-46.

302. Greten, F.R., et al., IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell, 2004. 118(3): p. 285-96.

303. Maeda, S., et al., IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell, 2005. 121(7): p. 977-90.

304. Pikarsky, E., et al., NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature, 2004. 431(7007): p. 461-6.

305. Dunn, G.P., L.J. Old, and R.D. Schreiber, The immunobiology of cancer immunosurveillance and immunoediting. Immunity, 2004. 21(2): p. 137-48.

306. Smyth, M.J., G.P. Dunn, and R.D. Schreiber, Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol, 2006. 90: p. 1-50.

307. Colombo, M.P. and A. Mantovani, Targeting myelomonocytic cells to revert inflammation-dependent cancer promotion. Cancer Res, 2005. 65(20): p. 9113-6.

308. Mantovani, A. and A. Sica, Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 22(2): p. 231-7.

309. De Palma, M., et al., Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 2005. 8(3): p. 211-26.

310. Murdoch, C., M. Muthana, and C.E. Lewis, Hypoxia regulates macrophage functions in inflammation. J Immunol, 2005. 175(10): p. 6257-63.

311. Leek, R.D., et al., Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res, 1996. 56(20): p. 4625-9.

312. Ohno, S., et al., Correlation of histological localization of tumor-associated macrophages with clinicopathological features in endometrial cancer. Anticancer Res, 2004. 24(5C): p. 3335-42.

153

Page 142: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Bibliografía

313. Kusmartsev, S. and D.I. Gabrilovich, STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol, 2005. 174(8): p. 4880-91.

314. Tsai, C.S., et al., Macrophages from irradiated tumors express higher levels of iNOS, arginase-I and COX-2, and promote tumor growth. Int J Radiat Oncol Biol Phys, 2007. 68(2): p. 499-507.

315. Sugai, H., et al., Characteristic alteration of monocytes with increased intracellular IL-10 and IL-12 in patients with advanced-stage gastric cancer. J Surg Res, 2004. 116(2): p. 277-87.

316. Sica, A., et al., Macrophage polarization in tumour progression. Semin Cancer Biol, 2008. 18(5): p. 349-55.

317. Kinne, R.W., et al., Macrophages in rheumatoid arthritis. Arthritis Res, 2000. 2(3): p. 189-202.

318. Burmester, G.R., et al., Mononuclear phagocytes and rheumatoid synovitis. Mastermind or workhorse in arthritis? Arthritis Rheum, 1997. 40(1): p. 5-18.

319. Ota, F., et al., Activin A induces cell proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Rheum, 2003. 48(9): p. 2442-9.

320. Campbell, I.K., et al., The colony-stimulating factors and collagen-induced arthritis: exacerbation of disease by M-CSF and G-CSF and requirement for endogenous M-CSF. J Leukoc Biol, 2000. 68(1): p. 144-50.

321. Dohi, T., et al., Therapeutic potential of follistatin for colonic inflammation in mice. Gastroenterology, 2005. 128(2): p. 411-23.

322. Wohlfahrt, J.G., et al., T cell phenotype in allergic asthma and atopic dermatitis. Int Arch Allergy Immunol, 2003. 131(4): p. 272-82.

323. Le, A.V., et al., Inhibition of allergen-induced airway remodeling in Smad 3-deficient mice. J Immunol, 2007. 178(11): p. 7310-6.

324. Low, P.S., W.A. Henne, and D.D. Doorneweerd, Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res, 2008. 41(1): p. 120-9.

325. Salazar, M.D. and M. Ratnam, The folate receptor: what does it promise in tissue-targeted therapeutics? Cancer Metastasis Rev, 2007. 26(1): p. 141-52.

326. Varghese, B., N. Haase, and P.S. Low, Depletion of folate-receptor-positive macrophages leads to alleviation of symptoms and prolonged survival in two murine models of systemic lupus erythematosus. Mol Pharm, 2007. 4(5): p. 679-85.

327. Liu, H., et al., Analysis of genetic polymorphisms in CCR5, CCR2, stromal cell-derived factor-1, RANTES, and dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin in seronegative individuals repeatedly exposed to HIV-1. J Infect Dis, 2004. 190(6): p. 1055-8.

328. Yu, Q.D., et al., Autonomous tetramerization domains in the glycan-binding receptors DC-SIGN and DC-SIGNR. J Mol Biol, 2009. 387(5): p. 1075-80.

329. Tabarani, G., et al., DC-SIGN neck domain is a pH-sensor controlling oligomerization: SAXS and hydrodynamic studies of extracellular domain. J Biol Chem, 2009. 284(32): p. 21229-40.

330. Snyder, G.A., et al., Characterization of DC-SIGN/R interaction with human immunodeficiency virus type 1 gp120 and ICAM molecules favors the receptor's role as an antigen-capturing rather than an adhesion receptor. J Virol, 2005. 79(8): p. 4589-98.

331. Kohn, W.D., C.M. Kay, and R.S. Hodges, Salt effects on protein stability: two-stranded alpha-helical coiled-coils containing inter- or intrahelical ion pairs. J Mol Biol, 1997. 267(4): p. 1039-52.

332. Guo, Y., et al., All but the shortest polymorphic forms of the viral receptor DC-SIGNR assemble into stable homo- and heterotetramers. J Biol Chem, 2006. 281(24): p. 16794-8.

333. Wang, H., et al., [Analysis of DC-SIGN and DC-SIGNR genetic polymorphism in Chinese Han population]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2006. 23(4): p. 466-9.

334. Zhang, J., et al., Protective role of DC-SIGN (CD209) neck-region alleles with <5 repeat units in HIV-1 transmission. J Infect Dis, 2008. 198(1): p. 68-71.

154

Page 143: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Bibliografía

155

335. Chaudhary, O., et al., Polymorphic variants in DC-SIGN, DC-SIGNR and SDF-1 in high risk seronegative and HIV-1 patients in Northern Asian Indians. J Clin Virol, 2008. 43(2): p. 196-201.

336. Rathore, A., et al., Risk for HIV-1 infection is not associated with repeat-region polymorphism in the DC-SIGN neck domain and novel genetic DC-SIGN variants among North Indians. Clin Chim Acta, 2008. 391(1-2): p. 1-5.

337. Alagarasu, K., et al., CCR2, MCP-1, SDF-1a & DC-SIGN gene polymorphisms in HIV-1 infected patients with & without tuberculosis. Indian J Med Res, 2009. 130(4): p. 444-50.

338. Barreiro, L.B., et al., Length variation of DC-SIGN and L-SIGN neck-region has no impact on tuberculosis susceptibility. Hum Immunol, 2007. 68(2): p. 106-12.

339. Bashirova, A.A., et al., A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection. J Exp Med, 2001. 193(6): p. 671-8.

340. Barreiro, L.B., et al., The heritage of pathogen pressures and ancient demography in the human innate-immunity CD209/CD209L region. Am J Hum Genet, 2005. 77(5): p. 869-86.

341. Zhu, D., et al., Influence of polymorphism in dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin-related (DC-SIGNR) gene on HIV-1 trans-infection. Biochem Biophys Res Commun. 393(4): p. 598-602.

342. Wichukchinda, N., et al., The polymorphisms in DC-SIGNR affect susceptibility to HIV type 1 infection. AIDS Res Hum Retroviruses, 2007. 23(5): p. 686-92.

343. Kobayashi, N., et al., Polymorphisms and haplotypes of the CD209L gene and their association with the clinical courses of HIV-positive Japanese patients. Jpn J Infect Dis, 2002. 55(4): p. 131-3.

344. Liu, H., et al., Repeat-Region Polymorphisms in the Gene for the Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin-Related Molecule: Effects on HIV-1 Susceptibility. J Infect Dis, 2006. 193(5): p. 698-702.

345. Liu, H., et al., Most DC-SIGNR transcripts at mucosal HIV transmission sites are alternatively spliced isoforms. Eur J Hum Genet, 2005. 13(6): p. 707-15.

346. Jameson, B., et al., Expression of DC-SIGN by dendritic cells of intestinal and genital mucosae in humans and rhesus macaques. J Virol, 2002. 76(4): p. 1866-75.

347. Chan, V.S., et al., Homozygous L-SIGN (CLEC4M) plays a protective role in SARS coronavirus infection. Nat Genet, 2006. 38(1): p. 38-46.

348. Rathore, A., et al., Role of homozygous DC-SIGNR 5/5 tandem repeat polymorphism in HIV-1 exposed seronegative North Indian individuals. J Clin Immunol, 2008. 28(1): p. 50-7.

349. Zhou, T., et al., DC-SIGN and immunoregulation. Cell Mol Immunol, 2006. 3(4): p. 279-83.

350. Lekkerkerker, A.N., Y. van Kooyk, and T.B. Geijtenbeek, Viral piracy: HIV-1 targets dendritic cells for transmission. Curr HIV Res, 2006. 4(2): p. 169-76.

351. Schaefer, M., et al., Decreased pathology and prolonged survival of human DC-SIGN transgenic mice during mycobacterial infection. J Immunol, 2008. 180(10): p. 6836-45.

352. Geijtenbeek, T.B., et al., Identification of different binding sites in the dendritic cell-specific receptor DC-SIGN for intercellular adhesion molecule 3 and HIV-1. J Biol Chem, 2002. 277(13): p. 11314-20.

Page 144: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Anexo

Page 145: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Anexo

Durante la realización de esta Tesis Doctoral he participado en diferentes proyectos que han dado lugar a las siguientes publicaciones:

1.- Caparrós E, Muñoz P, Sierra-Filardi E, Serrano-Gómez D, Puig-Kröger A, Rodríguez-

Fernández JL, Mellado M, Sancho J, Zubiaur M, Corbí AL. DC-SIGN ligation on dendritic cells results

in ERK and PI3K activation and modulates cytokine production. Blood, 2006 May 15;107(10):3950-8.

2.- Núñez C, Rueda B, Martínez A, Malvenda C, Polanco I, López-Nevot MA, Ortega E, Sierra-Filardi E, Gómez de la Concha E, Urcelay E, Martín J. A functional variant in the CD209 promoter is

associated with DQ2-negative celiac disease in the Spanish population. World J Gastroenterol, 2006 Jul 21;12(27):4397-400.

3.- Puig-Kröger A, Domínguez-Soto A, Martínez-Muñoz L, Serrano-Gómez D, Lopez-Bravo M,

Sierra-Filardi E, Fernández-Ruiz E, Ruiz-Velasco N, Ardavín C, Groner Y, Tandon N, Corbí AL,

Vega MA. RUNX3 negatively regulates CD36 expression in myeloid cell lines. J Immunol, 2006 Aug 15;177(4):2107-14.

4.- Gómez LM, Anaya JM, Sierra-Filardi E, Cadena J, Corbí A, Martín J. Analysis of DC-SIGN

(CD209) functional variants in patients with tuberculosis. Hum Immunol, 2006 Oct;67(10):808-11.

5.- Serrano-Gómez D, Martínez-Nuñez RT, Sierra-Filardi E, Izquierdo N, Colmenares M, Pla J,

Rivas L, Martinez-Picado J, Jimenez-Barbero J, Alonso-Lebrero JL, González S, Corbí AL. AM3

modulates dendritic cell pathogen recognition capabilities by targeting DC-SIGN. Antimicrob Agents Chemother, 2007 Jul;51(7):2313-23.

6.- Sierra-Filardi E, Serrano-Gómez D, Martínez-Nuñez RT, Caparrós E, Delgado R, Muñoz-

Fernández MA, Abad MA, Jimenez-Barbero J, Leal M, Corbí AL. Structural requirements for

multimerization of the pathogen receptor DC-SIGN (CD209) on the cell surface. J Biol Chem, 2008 Feb 15;283(7):3889-903.

7.- Fernández de Palencia P, Werning ML, Sierra-Filardi E, Dueñas MT, Irastorza A, Corbí AL,

López P. Probiotic properties of the 2-substituted (1,3)-β-D-glucan producing Pedioccus parvulus 2.6.

Appl Environ Microbiol, 2009 Jul;75(14):4887-91.

8.- Sierra-Filardi E, Puig-Kröger A, Domínguez-Soto A, Samaniego R, Corcuera MT, López-

Aguado F, Ratnam M, Sánchez-Mateos P, Corbí AL. Folate receptor beta is expressed by tumor-

associated macrophages and constitutes a marker for M2 anti-inflammatory/regulatory macrophages.

Cancer Res, 2009 Dec 15;69(24):9395-403.

159

Page 146: UNIVERSIDAD COMPLUTENSE DE MADRID · una gran variedad de patógenos, y distinguirlos de las células y tejidos del propio organismo. En vertebrados, en este sistema de defensa colaboran

Anexo

160

9.- Sierra-Filardi E, Estecha A, Samaniego R, Fernández-Ruiz E, Colmenares M, Sánchez-

Mateos P, Steinman RM, Granelli-Piperno A, Corbí AL. Epitope mapping on the dendritic cell-specific

ICAM3-grabbing non-integrin (DC-SIGN) pathogen-attachment factor. Mol Immunol, 2010 Jan;47(4):840-848.

10.- Martin-Gayo E, Sierra-Filardi E, Corbí AL, Toribio ML. Plasmacytoid dendritic cells resident

in human thymus drive natural Treg cell development. Blood, en prensa, 2010.

11.- Sierra-Filardi E, Vega MA, Sánchez-Mateos P, Puig-Kröger A, Corbí AL. Heme

Oxygenase-1 expression in M-CSF-polarized M2 macrophages contributes to LPS-induced IL-10

release. Immunobiology, en prensa, 2010.

12.- Garai-Ibabe G, Dueñas MT, Irastorza A, Sierra-Filardi E, Werning ML, López P, Corbí AL,

Fernández de Palencia P. Naturally occurring 2-substituted (1,3)-β-D-glucan producing Lactobacillus

suebicus and Pediococcus parvulus strains with potential utility in the production of functional foods.

Bioresour Technol, en prensa, 2010.

13.- Domínguez-Soto A, Sierra-Filardi E, Puig-Kröger A, Blanca Pérez-Maceda B, Gómez-

Aguado F, Corcuera MT, Sánchez-Mateos P, Corbí AL. M-CSF promotes DC-SIGN expression in

M2-polarized and Tumor-Associated Macrophages. J Immunol, en revisión, 2010.

14.- Sierra-Filardi E, Puig-Kröger A, Sánchez-Mateos P, Vega MA, Corbí AL. Activin prevents

the acquisition of M2/anti-inflamatoy markers and skews the macrophage cytikine profile.

Manuscrito en preparación.