Tema 6 (2da Parte)

57
UNIVERSIDAD NACIONAL DE TUCUMAN UNIVERSIDAD NACIONAL DE TUCUMAN FACULTAD DE BIOQUIMICA QUIMICA Y FACULTAD DE BIOQUIMICA QUIMICA Y FARMACIA FARMACIA INSTITUTO DE QUIMICA FISICA INSTITUTO DE QUIMICA FISICA San Miguel de Tucumán San Miguel de Tucumán República Argentina República Argentina FISICOQUÍMICA FISICOQUÍMICA APLICADA APLICADA

description

Tema 6

Transcript of Tema 6 (2da Parte)

Page 1: Tema 6 (2da Parte)

UNIVERSIDAD NACIONAL DE TUCUMANUNIVERSIDAD NACIONAL DE TUCUMAN

FACULTAD DE BIOQUIMICA QUIMICA Y FACULTAD DE BIOQUIMICA QUIMICA Y FARMACIAFARMACIA

INSTITUTO DE QUIMICA FISICAINSTITUTO DE QUIMICA FISICASan Miguel de Tucumán – República ArgentinaSan Miguel de Tucumán – República Argentina

FISICOQUÍMICA FISICOQUÍMICA APLICADAAPLICADA

Page 2: Tema 6 (2da Parte)

REGLA DE LAS FASESREGLA DE LAS FASES

o Propiedades de las solucioneso Ecuación de Duhem Marguleso Aplicación de la ley de Raoult a las soluciones ideales Soluciones no ideales. Desviaciones del comportamiento idealo Propiedades Coligativas de las soluciones a partir del potencial químico

Page 3: Tema 6 (2da Parte)

Propiedades de las soluciones

Solución líquida ideal: obedece a la forma idealizada de la Ley de Raoult en el intervalo completo de composiciones a todas las P y T

Ley de Raoult: la presión de vapor parcial (pi) de un constituyente de una solución líquida es igual al producto de su fracción molar (xi) por la presión parcial en el estado puro (Pi°):

(1)

Page 4: Tema 6 (2da Parte)

Para fines termodinámicos se usa la forma idealizada:

(2)

fi : fugacidad del constituyente i, en el vapor o en la solución en equilibrio con el vapor

fi° :fugacidad del líquido puro a igual P y T

Para una solución de 2 componentes, si la ecuación (2) se aplica a un constituyente en el intervalo completo de composiciones, deberá aplicarse también al otro.

Por lo que :”En una solución ideal la fugacidad de cada componente es proporcional a la fracción molar en la solución dada a todas las concentraciones”. La constante de proporcionalidad es la fugacidad del correspondiente constituyente puro a la temperatura y presión del sistema.

Page 5: Tema 6 (2da Parte)

ECUACIÓN DE DUHEM-MARGULES

El potencial químico () de una sustancia es la pendiente del gráfico de la energía de Gibbs total de una mezcla en función de la cantidad de esa sustancia.

Page 6: Tema 6 (2da Parte)

  Para un sistema formado por una solución líquida de 2 componentes en equilibrio con sus vapores a T y P ctes., la condición para un cambio infinitesimal viene dada por la ecuación de Gibbs-Duhem, donde los potenciales químicos dependen de la composición:

(3) n1 y n2 : N° de moles de los constituyentes 1 y 2 µ1 y µ2 : potenciales químicos de 1 y 2 Dividimos la ecuación (3) por n1 + n2 :

(4)

x1 y x2:fracciones molares

Page 7: Tema 6 (2da Parte)

T P composición de la soluciónSi P y T = ctes. Para un cambio infinitesimal de concentración:

Sustituyendo en (4)

(5)

x1 x2=1

dx1 dx2=0

dx1=- dx2

Page 8: Tema 6 (2da Parte)

(6)

Ecuación de Gibbs-Duhem (forma útil)

El potencial químico de cualquier constituyente viene definido por:

f i : es la fugacidad del constituyente en el líquido o en la fase de vapor con la que está en equilibrio.

*: es el potencial químico constante para la sustancia a T cte. Diferenciando: Reemplazando en (6) (7)

ECUACIÓN DE DUHEM-MARGULES

Page 9: Tema 6 (2da Parte)

Suponiendo la aproximación donde el vapor se comporta como un gas

ideal:

p1 y p2 son las presiones de vapor parciales de los constituyentes 1 y 2 en equilibrio con el líquido que contiene fracciones molares x1 y x2

Esta ecuación es aplicable a cualquier solución líquida de dos constituyentes, independientemente que la solución o el vapor sean ideales o no.

Page 10: Tema 6 (2da Parte)

Aplicación de la ley de Raoult a ambos constituyentes de una solución ideal

Por medio de la ecuación de Duhem-Margules se puede demostrar que si la ecuación de Raoult es aplicable a un constituyente de una solución binaria ideal, en el intervalo completo de composiciones, deberá ser aplicable también al otro constituyente.

Supongamos que la ley es válida para el constituyente 1:

Tomando ln y derivando respecto a x1 a P y T ctes.:

Page 11: Tema 6 (2da Parte)

Si el resultado es aplicable a todas las concentraciones, a P y T ctes, también lo será:

Si integramos y como f2 = f2° cuando x2 = 1, entonces

Si la ley de Raoult es aplicable a uno de los constituyentes de una mezcla líquida a todas las composiciones deberá ser igualmente aplicable al otro constituyente..

Page 12: Tema 6 (2da Parte)

Curvas de Presión de vapor

Aunque el tratamiento termodinámico preciso requiere el uso de fugacidades desde el punto de vista práctico se usan presiones de vapor.

Si la presión no es elevada el vapor no se desviará mucho del comportamiento ideal y se puede usar:

Si es válido para un constituyente lo es para el otro:

Para todas las mezclas de 1 y 2

Page 13: Tema 6 (2da Parte)

PT = p1 + p2

x2 = 1- x1

PT = x1p1 + x2 p2

PT = x1p10

+ (1- x1) p20

PT = p°2 + x1 (p1° - p°2) (8)

De aquí podemos ver que la presión total varía también en forma lineal.

Page 14: Tema 6 (2da Parte)

Composición de líquido y vapor en equilibrio

La composición de la fase de vapor en equilibrio con cualquier solución líquida se deduce fácilmente del hecho de que el número de moles (o la fracción molar) de cada constituyente en la fase de vapor debe ser proporcional a su presión parcial, suponiendo que el vapor se comporta idealmente.

x1’ y x2’, representan las fracciones molares de los dos componentes en el vapor:

(9)

Es válido siempre que sea aplicable la ley de Raoult

022

01

2

1,2

,1

px

px

p

p

x

x1

Page 15: Tema 6 (2da Parte)

x’2 = 1- x’1 reemplazando en la ec. (9) y combinando con la ec. (8)

x2 = 1- x1

La presión de vapor total no es una función lineal de la composición del vapor en fracciones molares.

curva superior: PT=f(x1) , líquido, (lineal)

curva inferior PT=f(x’1), vapor, (no es lineal)

A representan la composición del líquido en fracciones molares en equilibrio con el vapor de composición B

Page 16: Tema 6 (2da Parte)

Soluciones no idealesDesviaciones del comportamiento ideal

Mezcla de dos líquidos: Comportamiento ideal:

Desviaciones del comportamiento ideal:

Si las desviaciones son positivas (+):

los dos tipos de moléculas son similares obedecerá la ley de Raoult

los constituyentes de una mezcla son de naturaleza diferente

La presión parcial real (f) de cada constituyente será >que si obedeciera la ley de Raoult

Page 17: Tema 6 (2da Parte)

De la ecuación de Duhem-Margules

Si , indica que hay desviaciones + para el constituyente 1 y:

, indicando que el constituyente 2 también tiene desviaciones (+)

“ Si un constituyente de una mezcla muestra desviaciones positivas del comportamiento ideal, el otro constituyente debe mostrarlas también”.

f1 > x1

f1°

f2 > x2

f2°

Page 18: Tema 6 (2da Parte)

Una solución no ideal que muestre desviaciones positivas:

Al aumentar T, la mayoría de los sistemas tienden al comportamiento

ideal, por lo que disminuye el cociente Como y

Si la desviación es negativa para un constituyente también lo debe ser para el otro. Se observan únicamente en sistemas en los que las moléculas distintas ejercen una atracción mutua muy fuerte.

Page 19: Tema 6 (2da Parte)

y como

El contenido calórico de una solución será mayor que el de los

constituyentes puros antes de la mezcla.

En una mezcla de dos líquidos puros que forman un sistema que muestra desviaciones positivas de la ley de Raoult hay una absorción de calor La formación de una solución que muestre desviaciones negativas a la ley de Raoult va acompañada de desprendimiento de calor

Page 20: Tema 6 (2da Parte)

Curvas de presión de vapor de sistemas no ideales

Si se supone que los vapores se comportan idealmente, lo que es posible aunque la solución no sea ideal, la ec de Duhem-Margules:

a P y T constantes

Para una solución dada el valor del producto es el mismo para ambos constituyentes.

Page 21: Tema 6 (2da Parte)

Si la presión de vapor de los constituyentes puros se encuentran muy próximas, una desviación (+) apreciable de la ley de Raoult dará un máximo en la curva de presión de vapor total; una desviación (-) dará un mínimo.

ADesviaciones positivas

ADesviaciones positivas

BDesviaciones negativas

BDesviaciones negativas

Page 22: Tema 6 (2da Parte)

Soluciones diluídasLey de Henry Se ha encontrado experimentalmente que:

En las Fig. A y B puede ver este comportamiento, las presiones de vapor parciales reales o fugacidades resultan asintóticas a la curva ideal cuando x 1.

Cuando la fracción molar de un constituyente dado de una solución 1, la fugacidad de dicho constituyente tiende al valor para un sistema ideal

Page 23: Tema 6 (2da Parte)
Page 24: Tema 6 (2da Parte)
Page 25: Tema 6 (2da Parte)

“En una solución diluída el comportamiento del solvente se aproxima al exigido por la ley de Raoult, aunque se desvíe de la idealidad a soluciones concentradas”

Llamamos 1 al solvente y 2 al soluto

Para soluciones diluídas x1 1 y x2 0

Luego : f1=x1 f1° cuando x1 1 y x2 0

obedece la ley de Raoult, pero el soluto no a menos que el sistema en conjunto muestre una desviación muy pequeña o ninguna del comportamiento ideal.

Page 26: Tema 6 (2da Parte)

cuando x1 1 y x2 0

Expresión idealizada de la ley de Henry:

Por lo que vimos : “Una solución diluída será aquella

en la que el solvente obedece a la ley del Raoult y el soluto a la Ley de Henry”

f2= x2 k

“La fugacidad del soluto en una solución diluída es proporcional a su fracción molar”

Page 27: Tema 6 (2da Parte)

La ley de Henry puede deducirse de la ec. de Duhem –Margules:

Sabemos que para el solvente. (I)

Para el soluto será: (II)

Para todo el intervalo de composiciones, pero si el solvente se comporta en forma ideal.

Cuando x1 1, la integración de la ecuación (II) se puede efectuar en un intervalo limitado:

ln f2= ln x2 cte.

cuando x1 1 y x2 0

f1=x1 f1 °

f2= x2 k

Page 28: Tema 6 (2da Parte)

En cualquier solución para la cual es apreciable la ley de Raoult, la ley de Henry deberá ser válida para el soluto en el mismo intervalo de concentraciones.

.

Curva I : es el sistema ideal que obedece a la ley de Raoult en el intervalo completo de composiciones. En este caso k = f° y la ley de Henry y Raoult son iguales.

Curva II Para un sistema con desviaciones positivas , en el intervalo diluído a la izquierda del diagrama hay desviación de la ley de Raoult, pero la curva tiene una pendiente lineal o sea satisface la ley de Henry.

Curva III: Lo mismo ocurre cuando hay desviaciones negativas.

Page 29: Tema 6 (2da Parte)
Page 30: Tema 6 (2da Parte)
Page 31: Tema 6 (2da Parte)

Descenso relativo de la presión de vapor de la solución respecto a la que tendría el solvente puro a la misma temperatura.

Ascenso del punto de ebullición de la solución con respecto al del solvente puro: ascenso ebulloscópico.

Descenso del punto de congelación de la solución con respecto al punto de congelación del solvente puro: descenso crioscópico.

Presión osmótica de la solución

Las propiedades que dependen del número de partículas y no de su naturaleza se llaman propiedades coligativas

Las soluciones diluídas de solutos no volátiles presentan cuatro propiedades coligativas:

PROPIEDADES COLIGATIVAS

Page 32: Tema 6 (2da Parte)

• Soluciones ideales

• Soluciones diluídas

• Soluciones de no

electrolitos

• Sistema de dos

componentes

• Soluto no volátil

Condiciones para su estudio:

Page 33: Tema 6 (2da Parte)

Las propiedades coligativas giran alrededor del concepto de potencial químico (μ) 1,,1

1

nniPTn

G

Las propiedades coligativas surgen de la reducción del

potencial químico del solvente en una solución diluída, como

consecuencia de la presencia de un soluto no volátil.1

011 xlnRT)P,T(

Page 34: Tema 6 (2da Parte)

Variación del potencial químico con la temperatura para las diferentes fases

ST P

Page 35: Tema 6 (2da Parte)

Diagrama de fases para un solvente puro y una solución diluída de un soluto no volátil

ΔP = P01 – P1

P

Page 36: Tema 6 (2da Parte)

Según la Ley de Raoult:

Descenso de la presión de vapor del solvente

El descenso relativo de la presión de vapor depende sólo de la fracción molar del soluto.

2º1 xpp

º1

2p

Δx

P

Page 37: Tema 6 (2da Parte)

Determinación del peso molecular del soluto

En soluciones muy diluídas:

Este método no se aplica corrientemente ya que conduce a un gran error por los pequeños valores de las diferencias de Pv con que se trabaja.

Page 38: Tema 6 (2da Parte)

En el equilibrio:

Aumento del punto de ebullición

Ya que el solvente es el único que está en las dos fases: líquido y vapor.

Si la solución es ideal:

:

Potencial químico del solvente puro en la fase vapor

Potencial químico del solvente puro en la fase líquida

Page 39: Tema 6 (2da Parte)

Para el proceso (líquido)1 (vapor)1

La energía libre de vaporización del solvente puro es:

Diferenciando:

Usando la ecuación de Gibbs Helmholtz:

Page 40: Tema 6 (2da Parte)

Integrando

Como ∆Tb =T-T0 es pequeño; T.T0 T02 y x1 = 1-x2 :

:

Page 41: Tema 6 (2da Parte)

Desarrollando –ln (1-x2) en serie, según la expansión en serie de Mac Laurin:

Tb = Kb m2

1000

mM 212 x

Page 42: Tema 6 (2da Parte)

Kb: constante ebulloscópica , que solo depende de las propiedades del solvente.

p.e. : para el agua es M1= 18, T0= 373,15 K , ∆Hv= 9717,1 cal/mol, Kb= 0,513 ° Kg mol-1

Cuanto mayor sea el valor de Kb mayor será el ∆T

Page 43: Tema 6 (2da Parte)

Determinación del Peso Molecular

1

22 M

1000m

x

Page 44: Tema 6 (2da Parte)

El solvente se encuentra en 2 fases: sólida y líquida, el soluto sólo está en la solución.

En el equilibrio:

La variación de ΔG para el proceso:

(sólido)1 → (líquido)1

Descenso del punto de congelación (descenso crioscópico)

:

Page 45: Tema 6 (2da Parte)
Page 46: Tema 6 (2da Parte)

Si ∆Tf =T0 -T es pequeño; T0 T T02 y si x1 = 1-x2

Determinación del Peso Molecular::

∆Tf = Kf m2

A Kf ΔTf y más precisas serán las medidas, por eso se deben elegir solventes con constantes crioscópicas altas

1000

mM 212 x

Page 47: Tema 6 (2da Parte)

Abate Nollet: (1748) Dutruchet (1827-32) y Vierordt (1848) Van´t Hoff (1886)

Presión Osmótica

Ósmosis: (del griego: empuje): describe el flujo espontáneo del agua en una solución o de una solución a otra más concentrada cuando están separadas por una membrana semipermeable.Membrana animal: vejiga de cerdo.

Page 48: Tema 6 (2da Parte)

Presión osmótica: es el exceso de presión que se debe aplicar a una solución para impedir el paso a ella de solvente cuando ambos se encuentran separados por una membrana semipermeable.

p=presión del solvente

p= presión de la solución

= presión osmótica=p-p

Page 49: Tema 6 (2da Parte)

.

En el equilibrio y a T=cte:

Ya que x1 = 1

en la solución:

:

1βP,T,01βp,T,

β1 xRTμμ ln

Page 50: Tema 6 (2da Parte)

Sabemos que:

V1: volúmen molar del solvente

v

Tp

α

β

α

p

p

βα110

β)p,1(T,0

)P1(T, ppvdpvμμ

21

21

x)xln(1πv

RT

v

RT

Page 51: Tema 6 (2da Parte)

En soluciones diluídas:

Ecuación de Van´t Hoff

Page 52: Tema 6 (2da Parte)

A 25 °C RT= 24,4 L. atm.mol-1

Para soluciones 1 M = 24,4 atm h = 800 pies ~ 24 m

Para C= 10-3 M h ~ 2,4 cm.

Determinación del Peso Molecular

Page 53: Tema 6 (2da Parte)

Propiedades coligativas de soluciones reales

A) Descenso de la presión de vapor: caso ideal

caso real

B) Descenso de la temperatura de congelación:

Page 54: Tema 6 (2da Parte)

C) Aumento de la temperatura de ebullición:

D) Presión osmótica:

Page 55: Tema 6 (2da Parte)

Propiedades coligativas de soluciones de electrolitos

Soluciones de no electrolitos en agua y otros solventes no conducen la electricidad presentando las propiedades coligativas antes descriptas

Soluciones de electrolitos en agua y otros solventes conducen la electricidad presentando propiedades coligativas que no obedecen las relaciones de los no electrolitos.

Sus efectos coligativos son mayores que los que se espera para una concentración determinada.

Ej: Kf H2O= 1,86 ° Kg mol-1

Kf HCl= 3,72° Kg mol-1

Page 56: Tema 6 (2da Parte)

Factor de Van´t Hoff :

i: razón del efecto coligativo producido por una concentración m de electrolito dividida por el efecto observado para la misma concentración de un no electrolito.

Page 57: Tema 6 (2da Parte)

Titulo Autor/es Editorial Año de edición

Fundamentos de Fisicoquímica

S. H. Maron y C. F. Prutton

Limusa – S.A de CV México

1989

Termodinámica para Químicos

S. Glasstone Aguilar – (edición española)

1978

Tratado de Química Física

S. Glasstone Aguilar – (edición española)

1976

Fisicoquímica G. W. Castellan Fondo Educativo Interamericano S.A.

1976

Fisicoquímica P. W. Atkins Fondo Educativo Interamericano S.A.

1985

Fisicoquímica I. N. Levine Mc. Graw-Hill 1996

Química Física Tomo II

M. Díaz Peña y A. Roig Muntaner

Alhambra 1976

BIBLIOGRAFIA