Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima...

40
Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio cinético del recambio enzimatico 2. Regulación de la actividad enzimática: 2.1.Modificaciones covalentes 2.1.1. Modificaciones covalentes irreversibles 2.1.2. Modificaciones covalentes reversibles

Transcript of Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima...

Page 1: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

Tema 19. Estrategias de control de actividad enzimática

1. Regulación de la cantidad de enzima

2.1. Enzimas constitutivas y enzimas inducibles

2.2. Estudio cinético del recambio enzimatico

2. Regulación de la actividad enzimática:

2.1.Modificaciones covalentes

2.1.1. Modificaciones covalentes irreversibles 2.1.2. Modificaciones covalentes reversibles

Page 2: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

Introducción* En este tema consideraremos otra de las características

peculiares de las enzimas: la capacidad de regular su actividad, es decir, la propiedad de regulación de la actividad enzimática

según convenga, especialmente “in vivo”.

1)1) Regulando la cantidad de enzima

2) 2) Regulando la actividad de las enzimas presentes

Page 3: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

1. Regulando la cantidad de enzima.

Este procedimiento se conoce como: Regulación a largo plazo

Vida media Ornitina descarboxilasa 15-20 minutos Lactato deshidrogenasa 150 horas

Gran gasto energético 3 ATP por aminoácido

Ventajas:

1. Adaptación cambios en el metabolismo celular debido a señales químicas (hormonas, segundos mensajeros, nutrientes, etc), físicas (energía radiante, temperatura).

2. Supresión de proteínas mutadas (mamiferos superiores, el número diario de errores o mutaciones en la síntesis de proteínas del orden del millón).

Cantidad Balance de síntesis y degradación

Velocidad o la actividad es función de la cantidad

Page 4: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

1.1. Enzimas constitutivas y enzimas inducibles

Enzimas constitutivas (house keeping enzymes)Mismo nivel Procesos de síntesis y degradación ajustados y compensados

Cantidad de proteína y mRNA permanecen inalterados

No suelen presidir pasos reguladores de vías metabólicas

Enzimas inducibles

Niveles según las diferentes circunstancias metabólicas

Inducción de la cantidad debido a estimulos

Enzimas controladoras de vías metabólicas

Estímulo : Variar la velocidad de síntesis

(inducción o represión síntesis proteica)

Variar el proceso de degradación

Cambio cantidad total de la proteína enzimática

Desde el punto de vista de adaptación, se pueden considerar dos tipos de enzimas

ActividadEstudiar la cinética de recambio

Page 5: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

1.2. Estudio cinético del recambio enzimático

Procesos de síntesis siguen cinética de orden 0

(independiente de la cantidad de enzima)

ks constante fenomenológica del proceso total de síntesis (M t-1)Procesos de degradación siguen cinética de orden 1 (depende de la cantidad de enzima) kD constante de degradación (t-1)

Ekks

dt

EdD

0

dt

Ed Ekks D

Estado estacionario elemental

ESTIMULO

Nuevo estado estacionario

Eksk

dt

EdD´´ Cambios en las

constantes

Page 6: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

Separando variables

dt

Eksk

Ed

D

´´

Integrando la ecuación entre [Eo] y [Et] y entre 0 y t

[Eo] enzima antes del estímulo[Et] enzima después del estímulo en el nuevo estado estacionario al cabo del tiempo t

tEt

E Ddt

Eksk

Edo 0´´

Resolución de la integral, aplicando los límites de integración

tk

D

DDe

Etksk

Eoksk ´

´´

´´

Después del estímulo la Ks tiende a cero y la ecuación queda como

tk DeEt

Eo ´

D

tk

k

Lnt

eEt

EoD

´

2

5,0

2/1

´ 2/1

Vida media de una proteína

La vida media es función de la constante de degradación

Page 7: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

Tiempo (horas)

Triptofano dioxigenasa2,5 horas

Piruvato quinasa84 horas

Cambio en las actividades enzimáticas inducidas por un estímulo . A la 5 horas cesa el estímulo y comienza la degradación. Cuanto menor es el tiempo de vida media el nuevo estado estacionaro se alcanza más rapidamente.

Actividad enzimática

Ornitina descarboxilasa 0,3-0,5 horas

5

Proteínas enzimáticas que responden rápidamente a un estímulo externo son proteínas fácilmente degradadas

Page 8: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

Medida experimental de la velocidad de síntesis

Incorporación de aminoacidos marcados

Separación selectiva de la proteína

(Inmunoprecipitación selectiva)

Page 9: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

2. Regulando la actividad de las enzimas: Regulación a corto plazo.

* Este sistema de regulación permite dar respuestas mucho más rápidas, prácticamente inmediatas, a los cambios

experimentados por la célula, y básicamente responde a algunos de los siguientes mecanismos:

- Mecanismos varios: inhibidores/activadores, variaciones de: pH, temperatura, ..., disponibilidad de cofactores, reacciones catalíticas no-enzimáticas, etc.

Page 10: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

- Mecanismos que implican cambios covalentes:Regulación por modificación covalente.

- Mecanismos que implican cambios conformacionales: Regulación alostérica.

Tema siguiente

* Entre las modificaciones covalentes cabe distinguir dos grandes grupos:

* Reversible Frecuencia ALTA Intracelular

* Irreversible Frecuencia BAJA Extracelular

Page 11: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

2.1 MODIFICACIÓN COVALENTE

2.1.1. Modificación Covalente Irreversible.

- Dentro del grupo de las modificaciones covalentes irreversibles, destaca por su importancia, las modificaciones por Proteolisis

Parcial.

Page 12: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

ENZIMA PRECURSOR- Tripsina Tripsinógeno Secreción pancreática

- Quimotripsina Quimotripsinógeno Secreción pancreática

- Elastasa Proelastasa Secreción pancreática

- Carboxipeptidasa Procarboxipeptidasa Secreción pancreática

- Fosfolipasa A2* Fosfolipasa A2 Secreción pancreática

- Pepsina Pepsinógeno Secreción gástrica (jugo gástrico), actividad óptima pH 1-5

-Trombina Protrombina Parte del sistema de

coagulación sangíneo

- Clr Clr Parte del primer componente del sistema del complemento

- Quitina sintasa** Zimógeno Implicada en la formación del septum durante la división cellular en las levaduras

-----------------------------------------------------------------------------------------------------------------------------------------------------* Dijkstra et al (1981) Nature 289, 604 ** Cabib (1976) Trends Biochem Sci. 1, 275

En la siguiente Tabla se muestran algunas enzimas que se activan por proteolisis parcial

Page 13: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

•Veamos este tipo de regulación para el caso particular de las proteasas pancreáticas:

- tripsina, - quimotripsina, - elastasa y- carboxipeptidasa.

* Todas ellas se sintetizan en el páncreas, y se segregan a través del conducto pancreático al duodeno del intestino delgado, en respuesta a una señal hormonal generada cuando el alimento

sale del estómago.

* Sin embargo, estas proteasas no se sintetizan en su forma activa. Sino que se sintetizan en forma de moléculas ligeramente más grandes, catalíticamente inactivas, denominadas zimógenos

o proproteasas: tripsinógeno, quimotripsinógeno, proelastasa y procarboxipeptidasa.

Page 14: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

* Los zimógenos tras un proceso de proteolisis parcial, en el duodeno, se transforman en las correspondientes enzimas activas. Estas enzimas tras

cumplir sus fines, se degradan completamente, por lo que no ponen en peligro el tejido intestinal.

Page 15: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.
Page 16: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

Tripsinógeno

Tripsina

EnteopeptidasaQuimotripsinógeno

-Quimotripsina

-Quimotripsina

ProcarboxipeptidasaProelastasa

Elastasa Carboxipeptidasa

* La transformación de los zimógenos o proproteasas en proteasas activas la podemos representar esquemáticamente de

la siguiente manera:Tripsinógeno

Tripsina

Enteropeptidasa

Page 17: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

* El primer paso es la activación de la tripsina en el duodeno.

* Se elimina un hexapéptido del extremo N-terminal del tripsinógeno gracias a la enteropeptidasa, proteasa secretada

por las células duodenales.

Page 18: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

* Esta acción produce la tripsina activa, que a su vez activa los demás zimógenos y proenzimas, mediante rupturas proteolíticas

específicas.

* La tripsina una vez formada actúa de manera autocatalítica, activando más moléculas de tripsinógeno, además de activar los

demás zimógenos y proenzimas.

* La activación del quimotripsinógeno a quimotripsina es uno de los ejemplos más complejos y mejor estudiados de la

activación por proteolisis parcial.

Page 19: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.
Page 20: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

* En el primer paso la tripsina rompe el enlace entre la Arg15 y la Ile16. El péptido N-terminal continua unido al resto de la molécula

a través de un punte -S-S- entre los residuos 1 y 122. El producto resultante se denomina -quimotripsina, que ya es

una forma activa.

* La -quimotripsina no es aun la forma “terminada” o final de la quimotripsina (-quimotripsina), para ello es necesario que se

produzcan una serie de rupturas autocatalíticas, catalizadas por la -quimotripsina:

- Eliminación de los residuos 14 y 15, y cortando entre el 145 y 146.

Page 21: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.
Page 22: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

* De esta manera se forma la -quimotripsina, que es la forma activa de la enzima que se encuentra en el tracto digestivo.

* Esta batería de enzimas: tripsina, quimotripsina, elastasa y carboxipeptidasa, junto con la pepsina del estómago, y otras proteasas secretadas por las células de la pared intestinal, es

capaz de digerir finalmente la mayor parte de las proteínas ingeridas en la dieta a aminoácidos libres, dipéptidos y tripéptidos,

que son absorbidos por el epitelio intestinal.

Page 23: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

NOTA:* Incluso los zimógenos inactivos son una posible fuente de

peligro para el páncreas.* Dado que la activación de la tripsina puede ser autocatalítica, la presencia de una sola molécula activa de tripsina podría poner

en marcha toda la cadena de manera prematura.* En consecuencia el páncreas se protege a sí mismo mediante la

síntesis de una proteína denominada Inhibidor de la Tripsina Pancreática Secretora (para distinguirlo del Inhibidor de la

Tripisina Pancreática que es una proteína intracelular que se encuentra únicamente en los rumiantes). Este inhibidor

competitivo se une de manera tan intensa al centro activo de la tripsina que la inactiva de manera efectiva incluso a

concentraciones muy bajas.

Page 24: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

* Sin embargo la activación del pepsinógeno es un proceso mucho más simple:

- El pepsinógeno es una proteína de masa molecular 40 kDa que se autohidroliza al bajar el pH, eliminándose un un péptido de

naturaleza básica de 44 AAs del extremo N-terminal.

Page 25: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

* Así pues, en los casos en que unas proteasas activan a otras y/o se autoactivan lo que tiene lugar es una activación en

cascada, consiguiéndose una respuesta rápida y amplificada.

* Ahora bien, también hay procesos de activación por proteolisis limitada o parcial mucho más complejos, como por ejemplo los implicados en la coagulación sanguínea o en la fibrinolísis.

* La digestión ocurre espontáneamente a pH ácido y en ella intervienen de manera activa determinados restos de Asp.

Page 26: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

*2.1.2.*2.1.2.Modificación covalente reversibleModificación covalente reversible

* Actualmente sabemos que un elevado número de enzimas existen en dos formas (con propiedades catalíticas diferentes), que se pueden interconvertir una en otra gracias a la acción de

otras enzimas.

* Estas enzimas sufren un cambio en la actividad debido a la modificación covalente de algunos restos aminoacídicos de la

cadena polipeptídica.

- Las principales modificaciones covalentes que conducen a una modificación de la actividad enzimática (activa <--> inactiva) son:

* Fosforilación <==> Desfosforilación

* Acetilación <==> Desacetilación

* Adenilación <==> Desadenilación

* Uridilación <==> Desurilación

* ADP-ribosilación

Page 27: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

- El paso de una forma a otra, generalmente, tiene lugar gracias a una enzima

convertidora (Ec), siendo el sustrato la enzima interconvertible (Eic)

La nomenclatura aceptada, es llamar a) a la forma activa de la enzima interconvertible y

b) a la forma inactiva:

E-OH E-O-P

ADPATP

H2O

P

Proteina quinasa

Proteina fosfatasa

b) a)

Page 28: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

Ventajas de este sistema de regulación

a) Un pequeño consumo energético Rápido cambio en la cantidad de enzima

b) Cambios en la enzima activa del todo/nada

c) Permite la amplificación de una señal, pueden depender en su actividad de señales (segundos mensajeros) intracelulares

d) Sistemas de enzimas interconvertibles en cascadas permite la amplificación de señal más extensa

Page 29: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

- Un ejemplo clásico es el de la glucógeno fosforilasa que cataliza la siguiente reacción:

Glucógeno Fosforilasa(Glucógeno)n + Pi == (Glucógeno)n-1 + D-Glucosa-1-P

Page 30: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.
Page 31: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.
Page 32: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

Phosphorylationinactivates

Phosphorylationactivates

•En una serie de reacciones conocidas como cascada reguladora, la señal hormonal que se produce por contacto, en la superficie celular, con el correspondiente receptor, se

amplifica para convertir muchas moléculas de Fosforilasa-b en Fosforilasa-a.

•Los iones Ca2+, que se liberan en las células musculares cuando se estimulan para que se contraigan, potencian este

proceso.

* Así pues, el músculo puede responder rápidamente cuando necesita una cantidad de energía adicional.

Page 33: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

From Meisenberg & Simmons, Fig. 17.16.

Phosphorylationinactivates

Phosphorylationactivates

Ahora bien, la fosforilación no necesarimente implica activación.

Page 34: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

* La fosforilación-desfosforilación reversible tiene lugar sobre restos aminoacídicos de: Ser, Thr o Tyr.

Gammaphosphorylgroup

Page 35: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

Las enzimas que catalizan la fosforilación se denominan:- proteina quinasas, o quinasas, y

las que catalizan la desfosforilación.- proteina fosfatasas o fosfatasas.

* La importancia de las proteina quinasas en la regulación de los procesos celulares viene reflejada por el gran número de genes presentes en los genomas eucariotas que codifican por este tipo

de enzima.

* En el hombre se calcula que hay unos 2000 genes que codifican por proteina quinasas y unos 1000 genes que codifican

por proteina fosfatasas.

* Las proteinas quinasas actúan sobre un gran número de proteínas diferentes (sustrato), por lo que sería inadecuado clasificarlas de acuerdo con la siguiente reacción general:

Proteína + ATP = Fosfo-Proteína + ADP

Page 36: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

* Inicialmente las podemos clasificar de acuerdo con el tipo de resto aminoacídico sobre el que tiene lugar la fosforilación:

i) Ser/Thrii) Tyr

- Si bien también hay algunas protein quinasas que fosforilan restos de His, Lys, Arg, Gln, o Asp.

* Mientras las fosforilaciónes sobre Ser/Thr están asociadas, generalmente, a procesos de regulación metabólica, la

fosforilación sobre Tyr lo está con procesos de crecimiento celular y diferenciación.

* Otra subdivisión de las protein-quinasas es la que puede hacerse en base a la naturaleza del regulador intracelular, ya que muchas protein-quinasas, aunque no todas, están controladas por

un sistema de transducción de señales.

Page 37: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

* En la siguiente Tabla se muestra de manera resumida la clasificación de las proteín-quinasas:

Familia Resto aminoacídicoaceptor

Regulador

PK cAMP-dependientes Ser/Thr cAMPPK cGMP-dependientes Ser/Thr cGMPProtein quinasa C Ser/Thr Diacilglicerol, Ca2+

PK Ca2+ /calmodulina Ser/Thr Ca2+

Kinasa ciclin-dependiente

Ser/Thr Ciclinas

Mitogen activatedprotein kinase (MAP kinase)

Ser/Thr Factores de crecimientoCitoquinas

FeromonasReceptor tyrosin

kinasesTyr Factores de crecimiento

Cytosolic tyrosinkinases

Tyr Citoquinas

Page 38: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

Ultrasensibilidad de orden cero

Amplificación de la señal Ec (enzimas convertidoras) Orden cero

[Ec] <<<<[substrato] la Enzima interconvertible

Siempre en saturación

Eci(a) Eci(b)

ADPATP

H2O

P

Eca

Ecb

b) a)

Page 39: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

v`a

v a

v b

0 Ea/Eo 1,0

1 Eb/Eo 0

v

EE2 EE1

ORDEN 1

v`a

v a

v b

EE2 EE1

0 Ea/Eo 1,0

1 Eb/Eo 0

ORDEN O

Las enzimas modificadoras o convertidoras deben estar a muy pequeña concentración en comparación con las enzimas interconvertibles

Gran dificultad en el aislamiento y purificación de enzimas convertidoras

Page 40: Tema 19. Estrategias de control de actividad enzimática 1. Regulación de la cantidad de enzima 2.1. Enzimas constitutivas y enzimas inducibles 2.2. Estudio.

Resumen

La regulación por modificación covalente puede ser irrevesible y reversible.

Irreversible es una proteolisis específica y controlada la sufren proteínas denominadas zimógenos convirtiéndose en una proteína activa.

Todas las enzimas están sujetas a un continuo recambio. La cantidad actual de una proteína es el resultado de un proceso de síntesis y un proceso de degradación que actuan de forma simulánea.

El recambio enzimático tiene las siguientes ventajas: a) la eliminación de proteínas defectuosas; b) la adaptación a nuevas situaciones metabólicas

Las enzimas pueden ser constituivas (sus niveles estacionarios permanecen constantes) o inducibles (sus niveles varian de acuerdo a estímulos).

El proceso de síntesis, desde el punto de vista cinético es un proceso de orden cero, no depende de la cantidad de proteína; la degradación, en cambio, es un proceso de orden uno y, generalmente, más rápido que el proceso de síntesis.El tiempo de vida media suele depender de la constante de degradación.

Estrategia de regulación más difundida es la modificación reversible en la estructura covalente de la enzima. Los cambios más comunes son fosforilación-desfosorilación, mediante la acción de enzimas convertidoras: proteínas quinasas y proteínas fosfatasas.La forma activa puede ser bien la forma fosforilada o la forma desfosforilada. Para que pueda darse un cambio notable de amplificación de la señal las enzimas convertidoras deben trabajar en orden cero de reacción, lo que supone que la concentración de las enzimas convertidoras es mucho menor que las enzimas interconvertible, sus substratos.