Sistemas de 3G

download Sistemas de 3G

of 115

Transcript of Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    1/115

    WCDMA Fundamentals

    Henry A. Vasquez

    UPAO

  • 7/30/2019 Sistemas de 3G

    2/115

    Module Contents

    Standardisation and frequency bands

    Main properties of UMTS Air Interface

    Overview of Radio Resource Management (RRM)

  • 7/30/2019 Sistemas de 3G

    3/115

    Module Contents

    Standardisation and frequency bands

    Standardisation of 3G cellular networks IMT-2000 frequency allocations

    UMTS FDD Frequency band evolution

    Main properties of UMTS Air Interface

    Overview Radio Resource Management (RRM)

  • 7/30/2019 Sistemas de 3G

    4/115

    Standardisation of 3G cellular networks

    ITU (Global guidelines and recommendations)

    IMT-2000: Global standard for third generation (3G) wireless communications 3GPP is a co-operation between standardisation bodies

    ETSI (Europe), ARIB/TTC (Japan), CCSA (China), ATIS (North America) and TTA (South Korea)

    GSM

    EDGE

    UMTS WCDMA - FDD

    WCDMA - TDD

    TD-SCDMA

    3GPP2 is a co-operation between standardisation bodiesARIB/TTC (Japan), CCSA (China), TIA (North America) and TTA (South Korea)

    CDMA2000

    CDMA2000 1x

    CDMA2000 1xEV-DO

  • 7/30/2019 Sistemas de 3G

    5/115

    IMT-2000 frequency allocations2200 MHz20001900 1950 2050 2100 21501850

    JapanIMT-2000PHS

    IMT-2000

    ITUMobile

    Satellite

    IMT-2000 IMT-2000

    EuropeUMTS(FDD)DE

    CT

    UMTS

    (TDD)

    GSM

    1800

    U

    MTS

    (TDD)

    UMTS(FDD)

    USAPCS

    unlicensed

    PCSPCS

    UMTS

    (TDD)

    IMT-2000(TDD)

    Mobile

    Satellite

    Mobile

    Satellite

    Mobile

    Satellite

    Mobile

    Satellite

    Mobile

    Satellite

    Mobile

    Satellite

    Mobile

    Satellite

  • 7/30/2019 Sistemas de 3G

    6/115

    UMTS FDD Frequency band evolution

    Release 99

    I 1920 1980 MHz 21102170 MHz UMTS only in Europe, Japan II 18501910 MHz 19301990 MHz US PCS, GSM1900

    New in Release 5

    III 1710-1785 MHz 1805-1880 MHz GSM1800

    New in Release 6

    IV 1710-1755 MHz 2110-2155 MHz US 2.1 GHz band

    V 824-849MHz 869-894MHz US cellular, GSM850

    VI 830-840 MHz 875-885 MHz Japan

    New in Release 7

    VII 2500-2570 MHz 2620-2690 MHz

    VIII 880-915 MHz 925-960 MHz GSM900

    IX 1749.9-1784.9 MHz 1844.9-1879.9 MHz Japan

  • 7/30/2019 Sistemas de 3G

    7/115

    Module Contents

    Standardisation and frequency bands

    Main properties of UMTS Air Interface

    UMTS Air interface technologies

    WCDMA FDD

    WCDMA vs. GSM

    CDMA principle

    Processing gain

    WCDMA codes and bit rates

    Overview of Nokia Radio Resource Management (RRM)

  • 7/30/2019 Sistemas de 3G

    8/115

    UMTS Air Interface technologies

    UMTS Air interface is built based on two technological solutions

    WCDMA FDD WCDMA TDD

    WCDMA FDD is the more widely used solution

    FDD: Separate UL and DL frequency band

    WCDMA TDD technology is currently used in limited number of networks

    TDD: UL and DL separated by time, utilizing same frequency

    Both technologies have own dedicated frequency bands

    This course concentrates on design principles of WCDMA FDD solution, basic

    planning principles apply to both technologies

  • 7/30/2019 Sistemas de 3G

    9/115

    WCDMA FDD technology

    Multiple access technology is wideband CDMA (WCDMA)

    All cells at same carrier frequency Spreading codes used to separate cells and users

    Signal bandwidth 3.84 MHz

    Multiple carriers can be used to increase capacity

    Inter-Frequency functionality to support mobility between frequencies

    Compatibility with GSM technology

    Inter-System functionality to support mobility between GSM and UMTS

  • 7/30/2019 Sistemas de 3G

    10/115

    WCDMA Technology

    5 MHz

    3.84 MHz

    f

    5+5 MHz in FDD mode5 MHz in TDD mode

    Frequency

    TimeDirect Sequence (DS) CDMA

    WCDMACarrier

    WCDMA5 MHz, 1 carrier

    TDMA (GSM)5 MHz, 25 carriers

    Users share same time and frequency

  • 7/30/2019 Sistemas de 3G

    11/115

    Principios de CDMA

    CDMA combina 3 secuencias de ensanchamientopara crear un cdigo nico.

    En el receptor las secuencias se utilizan en el ordeninverso que en el emisor

    Las 3 secuencias son generadas en ambos extremosy necesariamente no son utilizadas simultaneamente

    Secuencias de ensanchamiento

  • 7/30/2019 Sistemas de 3G

    12/115

    Principios de CDMA

    Walsh Codes: (64 disponibles)

    64 chips de longitud dura 1/19200 Seg

    Ortogonales mutuamente

    PN Short codes: Se usa por pares (I + Q)

    Longitud de 215 --- dura 26mS aprox

    Se genera en registro de desplazamiento (15 bits)

    PN Long Code: 1 disponible

    Longitud de 242 --- se repita cada 40 dias

    Se genera en un registro de desplazamiento (42 bits)

    Secuencias de ensanchamiento

  • 7/30/2019 Sistemas de 3G

    13/115

    rincipios de CDMA

    Funciones Walsh

    En CDMA cadasmbolo es

    expandido con los

    64 chips de los

    cdigo de Walsh

    Luego, por cada bit

    de data se tendrn64 chips de salida.

  • 7/30/2019 Sistemas de 3G

    14/115

    Principios de CDMA

    Cdigos Offset de Pseudo Ruido (PN Offset) Son secuencias binarias con caractersticas aleatorias.

    Si un mismo cdigo PN es cambiado en el tiempo (time offset), se obtienen dos cdigos que son casi ortogonales.

    Para agregar el offset a un cdigo PN y crear secuencias cuasi ortogonales, se usa un sistema enmascaramiento. Con

    diferentes time offsets, se lograrn tener varias secuencias cuasi ortogonales.

    Autocorrelacin Generacin de cdigos de pseudo rudo

    Seq A: 0010 1011 0011 011

    Seq A: 1011 0011 0110 010

    4 chips offset

  • 7/30/2019 Sistemas de 3G

    15/115

    Principios de CDMA

    Cdigos Offset de Pseudo Ruido (PN Offset)

    Se usan tres cdigos PN en CDMA: 2 Cdigos Cortos y 1 Cdigo largo La secuencia corta PN sequence posee 32,768 bits, utiliza offset de 64 bits y un total de 512 time offsets,

    La transmisin toma 26.667 ms por cada ciclo. PN offset se utiliza para identificar las celdas y sectores

    0

    Receptor / Correlador CDMA

  • 7/30/2019 Sistemas de 3G

    16/115

    UMTS & GSM Network Planning

    GSM900/1800: 3G (WCDMA):

  • 7/30/2019 Sistemas de 3G

    17/115

    Differences between WCDMA & GSM

    WCDMA GSM

    Carrier spacing 5 MHz 200 kHz

    Frequency reuse factor 1 118

    Power controlfrequency

    1500 Hz 2 Hz or lower

    Quality control Radio resourcemanagement algorithms

    Network planning(frequency planning)

    Frequency diversity 5 MHz bandwidth givesmultipath diversity with

    Rake receiver

    Frequency hopping

    Packet data Load-based packetscheduling

    Timeslot basedscheduling with GPRS

    Downlink transmitdiversity

    Supported forimproving downlink

    capacity

    Not supported by thestandard, but can be

    applied

    High bit rates

    Serviceswith

    Different

    qualityrequirement

    sEfficient

    packet data

  • 7/30/2019 Sistemas de 3G

    18/115

    Multiple WCDMA carriers Layered network

    F1

    F2

    F2

    F3

    F3

    F3

    Micro BTSMacro BTS

    Pico BTSs

    1 - 10 km

    50 - 100 m200 - 500 m

  • 7/30/2019 Sistemas de 3G

    19/115

    Spreading Code

    Spread Signal

    Data

    Air Interface

    CDMA principle - Chips & Bits & SymbolsBits (In this drawing, 1 bit = 8 Chips SF=8)

    Baseband Data

    -1

    +1

    +1

    +1

    +1

    +1

    -1

    -1

    -1

    -1

    ChipChip

  • 7/30/2019 Sistemas de 3G

    20/115

    Energy Box

    Duration(t = 1/Rb)

    Originating Bit Received Bit

    Energy per bit = Eb= const

    Higher spreading factorWider frequency band Lower power spectral densityBUT

    Same Energy per Bit

  • 7/30/2019 Sistemas de 3G

    21/115

    FrequencyPowerdensity(Watts/Hz)

    Unspread narrowband signal Spread wideband signal

    Bandwidth W (3.84 Mchip/sec)

    User bitrate

    R

    sec84.3

    MchipconstW

    RWdBGp Processing gain:

    Spreading & Processing Gain

  • 7/30/2019 Sistemas de 3G

    22/115

    Frequency (Hz)

    Voice user (R=12,2 kbit/s)

    Packet data user (R=384 kbit/s)

    Powerdensity(W/Hz)

    R

    Frequency (Hz)

    Gp=W/R=24.98dB

    Powerdensity

    (W/Hz)

    R

    Gp=W/R=10 dB

    Spreading sequences

    have a different length Processing gaindepends on the userdata rate

    Processing Gain Examples

  • 7/30/2019 Sistemas de 3G

    23/115

    Transmission Power

    Frequency

    5MHz

    Power density

    Time

    High bit rate user

    Low bit rate user

  • 7/30/2019 Sistemas de 3G

    24/115

    WCDMA Codes

    In WCDMA two separate codes are used in the spreading operation

    Channelisation code

    Scrambling code

    Channelisation code

    DL: separates physical channels of different users and common channels, defines

    physical channel bit rate UL: separates physical channels of one user, defines physical channel bit rate

    Scrambling code

    DL: separates cells in same carrier frequency

    UL: separates users

  • 7/30/2019 Sistemas de 3G

    25/115

    DL Spreading and Multiplexing in WCDMA

    User 3

    User 2

    User 1

    BCCH

    Pilot X

    CODE 1

    X

    CODE 2

    X

    CODE 3

    X

    CODE 4

    X

    CODE 5

    +

    X

    SCRAMBLINGCODE

    RF

    SUM

    User 2

    User 1

    BCCH

    Pilot

    Radio frame = 15 time slots

    Time

    User 3

    3.84 MHzRF carrier

    3.84 MHz bandwidth

    CHANNELISATION codes:

    P-CPICH

    P-CCPCH

    DPCH1

    DPCH2

    DPCH3

  • 7/30/2019 Sistemas de 3G

    26/115

    DL & UL Channelisation Codes

    Walsh-Hadamard codes: orthogonal variable spreading factor codes (OVSF codes)

    SF for the DL transmission in FDD mode = {4, 8, 16, 32, 64, 128, 256, 512}

    SF for the UL transmission in FDD mode = {4, 8, 16, 32, 64, 128, 256}

    Good orthogonality properties: cross correlation value for each code pair in the code set

    equals 0

    In theoretical environment users of one cell do not interfere each other in DL

    In practical multipath environment orthogonality is partly lost Interference between users of

    same cell

    Orthogonal codes are suited for channel separation, where synchronisation betweendifferent channels can be guaranteed

    Downlink channels under one cell

    Uplink channels from a single user

    Orthogonal codes have bad auto correlation properties and thus not suited in an

    asynchronous environment Scrambling code required to separate signals between cells in DL and users in UL

    C C

  • 7/30/2019 Sistemas de 3G

    27/115

    Channelisation Code Tree

    C0(0)=[1]

    C2(1)=[1-1]

    C2(0)=[11]

    C4(0)=[1111]

    C4(1)=[11-1-1]

    C4(2)=[1-11-1]

    C4(3)=[1-1-11]

    C8(0)=[11111111]

    C8(1)=[1111-1-1-1-1]

    C8(2)=[11-1-111-1-1]

    C8(3)=[11-1-1-1-111]

    C8(0)=[1-11-11-11-1]

    C8(5)=[1-11-1-11-11]

    C8(6)=[1-1-111-1-11]

    C8(7)=[1-1-11-111-1]

    C16(0)=[.........

    ...]C16(1)=[.........

    ...]

    C16(15)=[...........]

    C16(14)=[...........]

    C16(13=[...........]

    C16(12)=[...........]

    C16(11)=[...........]

    C16(10)=[...........]

    C16(9)=[............]

    C16(8)=[............]

    C16(7)=[............]

    C16(6)=[............]

    C16(5)=[............]

    C16(4)=[............]

    C16(3)=[............]

    C16(2)=[............]

    SF=1

    SF=2

    SF=4

    SF=8

    SF=16 SF=256 SF=512...

    Ph i l L Bi R (DL)

  • 7/30/2019 Sistemas de 3G

    28/115

    Spreadingfactor

    Channelsymbol

    rate(ksps)

    Channel bitrate

    (kbps)

    DPDCHchannel bitrate range

    (kbps)

    Maximum userdata rate with -

    rate coding(approx.)

    512 7.5 15 36 13 kbps

    256 15 30 1224 612 kbps

    128 30 60 4251 2024 kbps

    64 60 120 90 45 kbps

    32 120 240 210 105 kbps

    16 240 480 432 215 kbps8 480 960 912 456 kbps

    4 960 1920 1872 936 kbps

    4, with 3parallelcodes

    2880 5760 5616 2.3 Mbps

    Half rate speech

    Full rate speech

    128 kbps384 kbps

    2 Mbps

    Symbolphyb RR 2_SF

    WRSymbol

    (QPSK modulation)

    Physical Layer Bit Rates (DL)

    Ph i l L Bit R t (DL) HSDPA

  • 7/30/2019 Sistemas de 3G

    29/115

    Physical Layer Bit Rates (DL) - HSDPA

    3GPP Release 5 standards introduced enhanced DL bit rates with High Speed

    Downlink Packet Access (HSDPA) technology

    Shared high bit rate channel between users High peak bit rates

    Simultaneous usage of up to 15 DL channelisation codes (In HSDPA SF=16)

    Higher order modulation scheme (16-QAM) Higher bit rate in same band

    16-QAM provides 4 bits per symbol 960 kbit/s / code physical channel peak rate

    Coding rate

    QPSK

    Coding rate

    1/4

    2/4

    3/4

    5 codes 10 codes 15 codes

    600 kbps 1.2 Mbps 1.8 Mbps

    1.2 Mbps 2.4 Mbps 3.6 Mbps

    1.8 Mbps 3.6 Mbps 5.4 Mbps

    16QAM

    2/4

    3/4

    4/4

    2.4 Mbps 4.8 Mbps 7.2 Mbps

    3.6 Mbps 7.2 Mbps 10.7 Mbps

    4.8 Mbps 9.6 Mbps 14.4 Mbps

    HSDPA

    Ph i l L Bit R t (UL) HSUPA

  • 7/30/2019 Sistemas de 3G

    30/115

    Physical Layer Bit Rates (UL) - HSUPA

    3GPP Release 6 standards introduced enhanced UL bit rates with High Speed

    Downlink Packet Access (HSUPA) technology

    Fast allocation of available UL capacity for users High peak bit rates

    Simultaneous usage of up to 2+2 UL channelisation codes (In HSUPA SF=2 4)

    Initial expected capability 1.46 Mbps

    Coding rate

    1/2

    3/4

    4/4

    1 x SF4 2 x SF4 2 x SF22 x SF2 +2 x SF4

    480 kbps 960 kbps 1.92 Mbps 2.88 Mbps

    720 kbps 1.46 Mbps 2.88 Mbps 4.32 Mbps

    960 kbps 1.92 Mbps 3.84 Mbps 5.76 Mbps

    DL & UL Scrambling Codes

  • 7/30/2019 Sistemas de 3G

    31/115

    DL & UL Scrambling Codes

    DL Scrambling Codes

    Pseudo noise codes used for cell separation 512 Primary Scrambling Codes

    UL Scrambling Codes

    Two different types of UL scrambling codes are generated

    Long scrambling codes of length of 38 400 chips = 10 ms radio frame

    Short scrambling codes of length of 256 chips are periodically repeated to get thescrambling code of the frame length

    Short codes enable advanced receiver structures in future

    Scrambling Codes & Multipath Propagation

  • 7/30/2019 Sistemas de 3G

    32/115

    Scrambling Codes & Multipath Propagation

    Scrambling code

    C1

    Scramblingcode C2

    C1+2

    UE has simultaneousconnection to two cells (soft

    handover)

    RAKE Receiver

  • 7/30/2019 Sistemas de 3G

    33/115

    RAKE Receiver

    Combination or multipath components and signal from different cells

    Delay1

    Code usedfor the

    connection

    Rx

    Output

    Finger

    t

    Cell-1

    Cell-1

    Cell-1

    Cell-2

    Rx

    Rx

    Rx

    Finger

    Finger

    Finger

    Delay2

    Delay3

    Channelisation and Scrambling Codes

  • 7/30/2019 Sistemas de 3G

    34/115

    Channelisation code Scrambling code

    Usage Uplink: Separation of physical data

    (DPDCH) and control channels(DPCCH) from same terminal

    Downlink: Separation of downlink

    connections to different users within one

    cell

    Uplink: Separation of mobile

    Downlink: Separation of sectors (cells)

    Length 4256 chips (1.066.7 s)

    Downlink also 512 chips

    Different bit rates by changing the lengthof the code

    Uplink: (1) 10 ms = 38400 chips or (2)

    66.7 s = 256 chips

    Option (2) can be used with advancedbase station receivers

    Downlink: 10 ms = 38400 chips

    Number of codes Number of codes under one scrambling

    code = spreading factor

    Uplink: 16.8 million

    Downlink: 512

    Code family Orthogonal Variable Spreading Factor Long 10 ms code: Gold code

    Short code: Extended S(2) code family

    Spreading Yes, increases transmission bandwidth No, does not affect transmission

    bandwidth

    Channelisation and Scrambling Codes

  • 7/30/2019 Sistemas de 3G

    35/115

  • 7/30/2019 Sistemas de 3G

    36/115

    Physical, transport and logical channels in the network

  • 7/30/2019 Sistemas de 3G

    37/115

    Module Contents

  • 7/30/2019 Sistemas de 3G

    38/115

    Module Contents

    Standardisation and frequency bands

    Main properties of UMTS Air Interface

    Overview of Nokia Radio Resource Management (RRM)

    Load control

    Admission Control

    Packet Scheduler

    Resource Manager

    Power Control

    Handover Control

    Radio Resource Management

  • 7/30/2019 Sistemas de 3G

    39/115

    Radio Resource Management

    RRM is responsible for optimal utilisation of the radio resources:

    Transmission power and interference

    Logical codes

    The trade-off between capacity, coverage and quality is done all the time

    Minimum required quality for each user (nothing less and nothing more)

    Maximum number of users

    The radio resources are continuously monitored and optimised by several RRM

    functionalitiesservice quality

    cell coverage cell capacity

    Optimizationand Tailoring

    RRM Functionalities

  • 7/30/2019 Sistemas de 3G

    40/115

    RRM Functionalities

    LC Load Control

    AC Admission Control

    PS Packet Scheduler

    RM Resource Manager

    PC Power Control

    HC HO Control

    PC

    HCFor each connection/user

    LC

    AC

    For each cell

    PS

    RM

    Load Control (LC)

  • 7/30/2019 Sistemas de 3G

    41/115

    Load Control (LC)

    LC performs the function of load control in association with AC & PS

    LC updates load status using measurements & estimations provided by AC and PS

    Continuously feeds cell load information to PS and AC;

    Interference levels (UL)

    BTS power level (DL)

    LC

    AC

    PSNRT load

    Load change

    info

    Load status

    Load Control Load Status

  • 7/30/2019 Sistemas de 3G

    42/115

    Load Control Load Status

    Load thresholds set by radio network planning parameters

    Overloadthreshold x

    Load Targetthreshold y

    Power

    Time

    Load Margin

    Overload

    Normal load

    Measured loadFree capacity

    Admission Control (AC)

  • 7/30/2019 Sistemas de 3G

    43/115

    Admission Control (AC)

    Checks that admitting a new user will not sacrifice planned coverage or quality of

    existing connections

    Admission control handles three main tasks

    Admission decision of new connections

    Take into account current load conditions (from LC) and load increase by the new

    connection

    Real-time higher priority than non-real time

    In overload conditions no new connections admitted

    Connection QoS definition

    Bit rate, BER target etc.

    Connection specific power allocation (Initial, maximum and minimum power)

    Packet Scheduler (PS)

  • 7/30/2019 Sistemas de 3G

    44/115

    ( )

    PS allocates available capacity after real-time (RT) connections to non-real time

    (NRT) connections

    Each cell separately

    In overload conditions bit rates of NRT connections decreased

    PS selects allocated channel type (common or dedicated)

    PS relies on up-to-date information from AC and LC

    Capacity allocated on a needs basis using best effort approach

    RT higher priority

  • 7/30/2019 Sistemas de 3G

    45/115

    How the AC, LC and PS work together

    Resource Manager (RM)

  • 7/30/2019 Sistemas de 3G

    46/115

    g ( )

    Responsible for managing the logical radio resources of the RNC in co-operation

    with AC and PS

    On request for resources, from either AC(RT) or PS(NRT), RM allocates:

    DL spreading code

    UL scrambling code

    Code Type Uplink Downlink

    Scrambling codes

    Spreading codes

    User separation Cell separation

    Data & control channels from same UE Users within one cell

    Power control (PC) in WCDMA

  • 7/30/2019 Sistemas de 3G

    47/115

    Fast, accurate power control is of utmost importance particularly in UL;

    UEs transmit continuously on same frequency Always interference between users

    Poor PC leads to increased interference reduced capacity

    Every UE accessing network increase interference

    PC target to minimise the interference Minimize transmit power of each link while

    still maintaining the link quality (BER)

    Mitigates 'near far effect in UL by providing minimum required power for each

    connection

    Power control has to be fast enough to follow changes in propagation conditions

    (fading)

    Step up/down 1500 times/second

    Uplink power control target

  • 7/30/2019 Sistemas de 3G

    48/115

    Minimise required UL received power

    minimised UL transmit power and interference

    UE1 UE2

    min(Prx1

    )

    min(Prx2)

    About equal when

    Rb1 = Rb2

    Target:

    Ptx1Ptx1

    Power Control types

  • 7/30/2019 Sistemas de 3G

    49/115

    Power control functionality can be divided to three main types

    Open loop power control

    Initial power calculation based on DL pilot level/pathloss measurement by UE

    Outer (closed) loop power control

    Connection quality measurement (BER, BLER) and comparison to QoS target

    RF quality target (SIR target) setting for fast closed loop PC based on connectionquality

    Fast closed loop power control

    Radio link RF quality (SIR) measurement and comparison to RF quality target (SIR

    target)

    Power control command transmission based on RF quality evaluation

    Change of transmit power according to received power control command

    Power Control types

  • 7/30/2019 Sistemas de 3G

    50/115

    UL Outer Loop

    Power Control

    Open Loop Power Control (Initial Access)

    Closed Loop Power Control

    RN

    C

    BS

    MS

    DL Outer LoopPower Control

    BLER target

    Power control in HSPA

  • 7/30/2019 Sistemas de 3G

    51/115

    In HSDPA (DL) the transmit power from base station is kept constant and the

    signal modulation and coding is adapted according to the channel conditions

    2 ms interval 500 Hz

    In HSUPA (UL)

    The power control of HSUPA channels in UL utilise both

    Fast closed loop power control

    Outer loop power control

    Both work according to similar principles as the dedicated channel power control

    Handover Control (HC)

  • 7/30/2019 Sistemas de 3G

    52/115

    HC is responsible for:

    Managing the mobility aspects of an RRC connection as UE moves around the

    network coverage area

    Maintaining high capacity by ensuring UE is always served by strongest cell

    Soft handover

    MS handover between different base stations

    Softer handover

    MS handover within one base station but between different sectors

    Hard handover

    MS handover between different frequencies or between WCDMA and GSM

    Soft/softer handover

  • 7/30/2019 Sistemas de 3G

    53/115

    UE is simultaneously connected to 2 to 3 cells during soft handover

    Soft handover is performed based on UE cell pilot power measurements and

    handover thresholds set by radio network planning parameters

    Radio link performance is improved during soft handover

    Soft handover consumes base station and transmission resources

    BS1

    BS2

    BS3Rec

    eivedsignalstrength

    BS3

    Distance from BS1

    Threshold

    Soft handover

    BS2

    BS1

    Hard handover

  • 7/30/2019 Sistemas de 3G

    54/115

    Hard handovers are typically performed between WCDMA frequencies and

    between WCDMA and GSM cells

    GSM/GPRSGSM/GPRS

    f1

    f2

    f1

    f2f2f2

    Inter-System handovers (ISHO)

    Inter-Frequency handovers (IFHO)

  • 7/30/2019 Sistemas de 3G

    55/115

    WCDMA RNC dimensioning

  • 7/30/2019 Sistemas de 3G

    56/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    57/115

    Sistemas de 3G

    http://www.3gpp.org/

  • 7/30/2019 Sistemas de 3G

    58/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    59/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    60/115

    Sistemas de 3G

    Evolution of HSPA maximum peak bit rate

  • 7/30/2019 Sistemas de 3G

    61/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    62/115

    Sistemas de 3G

    Si d 3G

  • 7/30/2019 Sistemas de 3G

    63/115

    Sistemas de 3G

    Si t d 3G

  • 7/30/2019 Sistemas de 3G

    64/115

    Sistemas de 3G

    Si t d 3G

  • 7/30/2019 Sistemas de 3G

    65/115

    Sistemas de 3G

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    66/115

    Sistemas de 3G

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    67/115

    Sistemas de 3G

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    68/115

    Sistemas de 3G

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    69/115

    Sistemas de 3G

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    70/115

    Sistemas de 3G

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    71/115

    Sistemas de 3G

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    72/115

    Sistemas de 3G

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    73/115

    Sistemas de 3G

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    74/115

    Sistemas de 3G

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    75/115

    Sistemas de 3G

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    76/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    77/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    78/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    79/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    80/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    81/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    82/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    83/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    84/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    85/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    86/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    87/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    88/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    89/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    90/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    91/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    92/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    93/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    94/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    95/115

    Sistemas de 3G

  • 7/30/2019 Sistemas de 3G

    96/115

    Module 1

    WCDMA Fundamentals

    Summary

    R di i t f t h l f UMTS i WCDMA ith FDD

  • 7/30/2019 Sistemas de 3G

    97/115

    Radio interface technology of UMTS is WCDMA with FDD

    and TDD versions

    WCDMA networks can be built on European, US-based and

    Asian/Japanese frequency bands

    WCDMA air interface utilises combination of two spreading

    codes

    Radio Resource Management is responsible of efficient

    utilisation of radio resources while offering required quality of

    service to users

    Sistemas 3G

  • 7/30/2019 Sistemas de 3G

    98/115

    Sistemas 3GUMTS network structure

  • 7/30/2019 Sistemas de 3G

    99/115

    Access Stratum contains the message flows and procedures needed to establish the connection between the MT(mobile terminal) and network (roughly RNC in this case).

    Serving Stratum handles message flows and procedures where the USIM+MT (same as UE, user equipment) and the

    network establish a service. Service in this context means, for instance, setting up a bearer for further purposes. Thesemessage flows are transferred transparently over the Access Stratum.

    Application Stratum is the 'layer' handling message flows and procedures related to the user's applications. Hence itsscope is wider. For example, the UE has Internet browser and requests a certain URL to be downloaded. The UMTSnetwork only provides the 'pipe' (Serving Stratum), but the real HTML page is downloaded from the Internet service

    provider.

    Sistemas 3G

  • 7/30/2019 Sistemas de 3G

    100/115

    The network management layers through the network

    Sistemas 3G

  • 7/30/2019 Sistemas de 3G

    101/115

    Relationship between the RAB and the RRC

    Sistemas 3G

    The radio access bearer (RAB) contains a service connection between the UE and the

  • 7/30/2019 Sistemas de 3G

    102/115

    The radio access bearer (RAB) contains a service connection between the UE and the

    core network. A subscriber in UMTS may have several RABs and these are combined

    into a radio resource connection (RRC) across the air interface.

    There are basically two types of information: the user information and the control

    information.

    In the case of the RAB, the data (for instance a voice call or video) is the user plane.

    Sistemas 3G

  • 7/30/2019 Sistemas de 3G

    103/115

    OSI model adaptation to UMTS

    Sistemas 3GImplementation of the transport layers

    Uu (air) interface

  • 7/30/2019 Sistemas de 3G

    104/115

    The transport plane of the Uu interface covers the three lowest layers of the OSI stack. Layer 1, thephysical layer, uses WCDMA-FDD/TDD technology.

    The Layer 1 is controlled by Layer 2, the data link layer. The structure of Layer 2 in the Uu interface is a

    bit exceptional when compared to the other interfaces. Layer 2 has two sublayers in the Uu (air)

    interface, MAC and RLC.

    MAC (Medium Access Control) physically implements radio link management, that is, radio link set-up,

    maintaining the physical radio channel configuration, error protection, encryption and radio link deletion.

    The functionality of the RLC (Radio Link Control) is similar as in normal Layer 2. This means mainly

    flow control-related activities like for instance data block sequencing.

    The Layer 3 of the Uu interface contains functions needed for the transport plane control. The control

    entity is called Radio Resource Control (RRC). RRC manages the physical layer and its activities

    whenever required. If, for instance, a radio link is to be set up, the RRC gives a command to perform

    this activity. The command is delivered via RLC to MAC, and MAC performs the activity. Finally, the

    radio link set-u is carried throu h the La er 1.

    Uu (air) interface

    Sistemas 3G

  • 7/30/2019 Sistemas de 3G

    105/115

    Transport plane in the Uu interface

    Sistemas 3G

  • 7/30/2019 Sistemas de 3G

    106/115

    Iub, Iur and Iu interfaces

    Iub transport plane Iur interface transport plane

    Sistemas 3GIub, Iur and Iu interfaces

  • 7/30/2019 Sistemas de 3G

    107/115

    Iu-PS interface transport plane

    Iu-CS interface transport plane

    Sistemas 3G

    Control plane ( Serving Stratum)

    I b i t f t l l (NBAP N d B A li ti P t)

  • 7/30/2019 Sistemas de 3G

    108/115

    Iub interface control plane (NBAP - Node B Application Part)

    In the Iub interface the control plane is maintained by the signalling protocol NBAP (Node B Application Part). In order to adapt the NBAPproperly on top of the AAL5 (ATM Adaptation Layer 5), some convergence protocols are required.

    Note: In this chapter the term convergence protocol(s) means signalling protocols making adaptations between two protocol layers in general.

    Iub radio network control plane

    Sistemas 3G

    Iu interface control plane (RANAP Radio Access Network Application Part)

    In the Iu interface the control plane is maintained by the signalling protocol RANAP (Radio Access

  • 7/30/2019 Sistemas de 3G

    109/115

    In the Iu interface the control plane is maintained by the signalling protocol RANAP (Radio Access

    Network Application Part).

    Iu interface control plane

    Sistemas 3G

  • 7/30/2019 Sistemas de 3G

    110/115

    RAB and CN domains

    Sistemas 3G

  • 7/30/2019 Sistemas de 3G

    111/115

    Bearer between the UE and core network circuit domain

    Sistemas 3G

  • 7/30/2019 Sistemas de 3G

    112/115

    Bearer between the UE and core network packet domain

    Sistemas 3G

    User plane ( Application Stratum)The user plane signalling takes place between the application(s) of the UE (user) and the destination over the physical

  • 7/30/2019 Sistemas de 3G

    113/115

    connection established over the transport plane by using the facilities the control plane offers.

    In the Uu interface the user plane consists of the DPDCHs (Dedicated Physical Data Channels) allocated for theconnection (and the data they carry, naturally).

    Iub user plane

    Sistemas 3G

  • 7/30/2019 Sistemas de 3G

    114/115

    Iu interface user planes for CN circuit and packet domain

    Sistemas 3G

  • 7/30/2019 Sistemas de 3G

    115/115