Sisitemas de Ecuaciones y Inecuaciones
Embed Size (px)
Transcript of Sisitemas de Ecuaciones y Inecuaciones
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
1/23
SYSTEM OF EQUATIONSSYSTEM OF EQUATIONS
& INEQUALITIES& INEQUALITIES
VIVIANA MARCELA BAYONAVIVIANA MARCELA BAYONA
CARDENASCARDENAS
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
2/23
CONTENT
6.1 System of Linear Equations
6.11 Solve using inverse matrix
6.12 Solve using Cramers Rule 6.13 Solve using Gauss & Gauss Jordan
Elimination Method
6.2 System of Nonlinear Equations
6.3 System of Inequalities
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
3/23
6.1 System of Linear Equations
By the end of this topic, you should be able to
Discuss system of linear equations and the types of
solution namely: unique, inconsistent and infinite
solutions.
Write a system of linear equations in matrix form
Solve a system of linear equation by using inverse
matrix, Cramers Rule, and Gauss & Gauss-Jordan
Elimination Method.
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
4/23
What is system?
is an assemblage of
entity/objects, real or
abstract, comprising a
whole with each and
every component/element interacting or
related to another one.
Solar system, blood
system, computersystem, ext..
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
5/23
System of Linear Equations
11 12 1 1 1
2 2 221 22
1 2
or
n
n
n mm m mn
a a a x b
a x ba a
x ba a a
!
- - -
AX = b
K
L
M MM M M
L
11 1 12 2 1 1
21 1 22 2 2 2
1 1 2 2
n n
n n
m m mn n m
a x a x a x b
a x a x a x b
a x a x a x b
!
!
!
K
K
M
K
11 12 1
221 22
1 2
1 1
2 2
,
and
n
n
m m mn
n m
a a a
aa a
a a a
x b
x b
x b
! -
! - -
A
X = b
K
L
M M M
L
M M
The system of linear equations
Can be written in matrix form as
where
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
6/23
Augmented Matrix
? A
11 12 1 1
2 221 22
1 2
or |
n
n
n
a a a b
a ba a
ba a a
-
A b
K
L
MM M M
L
11 1 12 2 1 1
21 1 22 2 2 2
1 1 2 2
n n
n n
m m mn n m
a x a x a x b
a x a x a x b
a x a x a x b
!
!
!
K
K
M
K
11 12 1
221 22
1 2
1
2
,
and
n
n
m m mn
m
a a a
aa a
a a a
b
b
b
! -
! -
A
b
K
L
M M M
L
M
For the system of linear equations
The augmented matrix is given by,
where
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
7/23
Types of solution
Linear systems
Homogenous AX = 0 AX = b
m = n .
. m < n
m > n
unique infinite
unique
m = n .
.
.
unique
m < n
m > n
infinite
unique
infinite
.
infinite
infinite None
None
Noneinfinite
0{A 0{A
0!A0!A
m n{ m n{
m Number of Row n Number of Column
Unique only 1 solution (the system is consistent)
Infinite many solution (the system is consistent)
None No solution (the system is not consistent)
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
8/23
6.11 Solve using Inverse Matrix
Only for Square matrix
The formula given by:
1
1 1
1
1
From P re-multiply by
!
!
AX b A
A AX A b
IX A b
X A b
and 0m n! {A
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
9/23
Examples 1 (Solve using Inverse Matrix)
1 2
1 2
3 2 6
5 4 8
x x
x x
!
!
1 2 3
1 2 3
1 2
2 2 1
3 2
2 3
x x x
x x x
x x
!
!
!
1 2
1 2
2 4
4 3 3
x x
x x
!
!
1 2
1 2 3
1 2 3
1
2 2 5
2 2 3
x x
x x x
x x x
!
!
!
1 2
3 4
Solve each of the following system of equality by Inverse Matrix
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
10/23
6.12 Solve Using Cramers Rule
Only for Square matrix
The formula given by:
1 12 1 11 1 1
2 22 22 21 2
1 2
2 1
for 1, 2,...,
where , and so on
i
i
n n
n n
m m mn m m mn
x i n
b a a a b aa ab a a b
b a a a b a
! !
! ! - -
A
A
A A
K K
L L
M M M MM M
L L
and 0m n! {A
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
11/23
Examples 2 (Solve Using Cramers Rule)
1 2
1 2
3 2 6
5 4 8
x x
x x
!
!
1 2 3
1 2 3
1 2
2 2 1
3 2
2 3
x x x
x x x
x x
!
!
!
1 2
1 2
2 4
4 3 3
x x
x x
!
!
1 2
1 2 3
1 2 3
1
2 2 5
2 2 3
x x
x x x
x x x
!
!
!
1 2
3 4
Solve each of the following system of equality by Cramers Rule
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
12/23
6.13 Solve Using Gauss &
Gauss-Jordan Elimination Method
For any matrix
Gauss Elimination Method
Reduce the augmented matrix [A|b] into row echelonform
Starting with the last nonzero row, use back-substitution to find X
Gauss-Jordan Elimination Method
Reduce the augmented matrix [A|b] into reduced rowechelon form [I|X]
? AWrite in Augmented matrix |AX b A b
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
13/23
Examples 3 (Solve Using Gauss &
Gauss-Jordan Elimination Method)
1 2
1 2
3 2 6
5 4 8
x x
x x
!
!
1 2 3
1 2 3
1 2
2 2 1
3 2
2 3
x x x
x x x
x x
!
!
!
1 2
1 2
2 4
4 3 3
x x
x x
!
!
1 2
1 2 3
1 2 3
1
2 2 5
2 2 3
x x
x x x
x x x
!
!
!
1 2
3 4
Solve each of the following system of equality by Gauss &Gauss-Jordan Elimination Method
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
14/23
Example 4 (Solve system of equation )
Use inverse matrix, Cramers Rule, and Gauss &Gauss-Jordan Elimination Method to solve thefollowing system of equation. Compare youanswer.
0
2 7
2
x y z
y z
x z
!
!
!
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
15/23
6.2 System of NonLinear Equations
By the end of this topic, you should be
able to
Solve a System of NonLinear Equations usingsubstitution
Solve a System of NonLinear Equations using
elimination
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
16/23
Solve a System of NonLinear
Equations
System of NonLinear Equations contains 1 ormore nonlinear equation.
The solution(s) represent the point(s) of intersection
(if any) of the graphs of the equations.
There is no general methodology Substitution, elimination or neither
If the system contains 2 variables & easy to graph(lines, quadratic (parabolas), hyperbolas, circles &ellipse), then graph them.
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
17/23
Examples 5
(Solve system of NonLinear Equations)
2
3 2
2 0
x y
x y
!
!
2 2
2
3 2 0
1 0
x x y y
y yx
x
!
!
2 2
2
13
7
x y
x y
!
!
2 2
2
4x y
y x
!
!
1 2
3 4
Solve each of the following system of nonlinear equality
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
18/23
6.3 System of Inequalities
By the end of this topic, you should be
able to
Graph an inequality
Graph a system of Inequalities
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
19/23
Graph an Inequality
Replace the inequality symbol by an equal sign andgraph the resulting equation
If the inequality is strict, use dashes mark
If the inequality is non-strict, use a solid mark
In each of the regions, select a test point P
If the coordinate ofPsatisfy the inequality, then all the points in
that region satisfy the inequality. Indicate this by shading theregion
If the coordinate ofPdo not satisfy the inequality, then none ofthe points in that region do.
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
20/23
Examples 6 (Graph an Inequality)
3 2x y
2 2x y "
4x y u
2 2x y e
1 2
3 4
Graph each of the following Inequality
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
21/23
Graph a system of inequality
Graph each inequality in the system
Superimpose all the graphs
The overlapping regions are the
solutions of the system.
If there is no overlapping region, thesystem has no solution.
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
22/23
Examples 7
(Graph a system of Inequality)
2
2 4
x y
x y
u
e
2 2
2 0
x y
x y
u
u
2
0
x y
x y
e
u
3
2 4
0
0
x y
x y
x
y
u
u
u
u
1 2
3 4
Graph each of the following system of Inequality
2 2
0
x y
x y
e
u
6 25
155
0
0
x y
xy
x
y
e
ue
u
u5
-
8/9/2019 Sisitemas de Ecuaciones y Inecuaciones
23/23
THaNk YoU