Prueba de Pozos

15
PRUEBAS DE POZOS Son pruebas que se realizan con el propósito de determinar la habilidad de la formación para producir fluidos; y dependiendo del estado de desarrollo del campo se pueden dividir en: Identificación de la naturaleza de los fluidos del yacimiento, estimación del comportamiento del pozo. 1.1. Parámetros Que Se Calculan Con Las Pruebas De Pozo Permeabilidad de la formación (k). Daño o estimulación en la formación (s). Presión del yacimiento (P). Límites del yacimiento, anisotropías, volumen del yacimiento. Área de drenaje. 1.2.- Tipos de pruebas de pozos Tenemos las siguientes pruebas que se realizan en un pozo según el interés que se busca. 1. Pruebas de caudal de producción ( Control ) 2. Pruebas de presión y temperatura 3. Pruebas de formación en agujero abierto y entubado 4. Pruebas de potencial a. ( Flujo tras flujo b. Isocronal c. Isocronal modificado 1.- Pruebas de flujo o control de producción.- Cuando un pozo inicia su vida productiva, queremos saber cuánto de líquido, gas y agua va a producir. A estas pruebas las llamamos pruebas de producción; para esto es necesario saber las características de los fluidos; hay que hacer un muestreo y saber los caudales ( Pet, gas y agua ). El aspecto de mayor importancia es el de conocer sus condiciones y características de flujo. Cuando más agua produzca, más pesada es la columna y va haber un Drow-Daw (caída de presión). P Q = V / T Q = V x A V = Q / A T A = PI x r2 Nosotros podremos cuantificar el volumen de producción a un tiempo. Es importante referir a condiciones que estamos midiendo (P y Temp ). Cualquier volumen producido va estar referida a una presión y temperatura media, condiciones STD. Los volúmenes medidos hay que corregir a P y Temp estándar (P = 14.7 Psia y T = 60 °F )1010

Transcript of Prueba de Pozos

Page 1: Prueba de Pozos

PRUEBAS DE POZOS

Son pruebas que se realizan con el propósito de determinar la habilidad de la formación para producir fluidos; y dependiendo del estado de desarrollo del campo se pueden dividir en: Identificación de la naturaleza de los fluidos del yacimiento, estimación del comportamiento del pozo.

1.1. Parámetros Que Se Calculan Con Las Pruebas De Pozo Permeabilidad de la formación (k). Daño o estimulación en la formación (s). Presión del yacimiento (P). Límites del yacimiento, anisotropías, volumen del yacimiento. Área de drenaje.

1.2.- Tipos de pruebas de pozos Tenemos las siguientes pruebas que se realizan en un pozo según el interés que se busca.

1. Pruebas de caudal de producción ( Control ) 2. Pruebas de presión y temperatura 3. Pruebas de formación en agujero abierto y entubado 4. Pruebas de potencial

a. ( Flujo tras flujo b. Isocronal c. Isocronal modificado

1.- Pruebas de flujo o control de producción.- Cuando un pozo inicia su vida productiva, queremos saber cuánto de líquido, gas y agua va a producir. A estas pruebas las llamamos pruebas de producción; para esto es necesario saber las características de los fluidos; hay que hacer un muestreo y saber los caudales ( Pet, gas y agua ). El aspecto de mayor importancia es el de conocer sus condiciones y características de flujo. Cuando más agua produzca, más pesada es la columna y va haber un Drow-Daw (caída de presión). P Q = V / T Q = V x A V = Q / A

T A = PI x r2

Nosotros podremos cuantificar el volumen de producción a un tiempo. Es importante referir a

condiciones que estamos midiendo (P y Temp ). Cualquier volumen producido va estar referida a

una presión y temperatura media, condiciones STD. Los volúmenes medidos hay que corregir a P

y Temp estándar (P = 14.7 Psia y T = 60 °F )1010

Page 2: Prueba de Pozos

Las pruebas de producción se las realiza en pozos productores de petróleo y en pozos de gas

condensado. Cuando se trata de pozos gasíferos estas pruebas se complementan con las llamadas

pruebas de contrapresión.

Estas pruebas de producción se las realiza cuando el pozo entra por primera vez en producción, es

decir al finalizar la perforación, sin embargo es conveniente realizar dichas pruebas

periódicamente durante la vida productiva del pozo, de este modo se puede conocer la

declinación de las arenas además de otros factores de interés.

Mediciones de los volúmenes de producción y de las presiones sirven también para estimar las

reservas de petróleo y de gas y predecir el comportamiento futuro del campo.

No está por demás hacer notar el cuidado que se debe observar en la obtención de datos de

presión y de volumen, especialmente cuando se tiene problemas de exceso de gas, agua o arena

en las producciones.

1.1.- Objeto de las pruebas.-

El objeto de las pruebas de producción se puede sintetizar en lo siguiente: Producir el pozo en la

forma más racional, es decir escoger el choke óptimo de producción.

Una arena petrolífera o gasífera que no se produzca con este criterio se vera fuertemente afectada

por problemas de invasión ya sea de agua o de arena. Es muy frecuente también la presencia

excesiva de gas que se produce conjuntamente con el petróleo. En estos casos es muy necesario

llevar un riguroso control del pozo.

Cuando se tiene este problema de conificacion de gas, caso del campo Tatarenda en su flanco

oriental, será preciso llevar el control diario de cada pozo para evitar producir demasiado gas con

pozo petrolero es decir producir con RGP alta. De lo contario se corre el riesgo de perder el pozo.

Invasión de agua y arena también son frecuentes y ocasionan serios problemas cuando no son

atendidos a su debido tiempo.

Vamos a enumerar algunas de la razones mas importantes por lo cual se realizan estas pruebas.

Con algunos datos de características de la arena, sirve para conocer qué tipo de

reservorio se tiene ( empuje de agua, capa de gas o gas en solución )

Las declinación de la arena y por lo tanto el estado de reservas.

Para evaluar trabajos de reacondicionamiento y/o reterminacion.

Para el diseño de métodos de recuperación artificial.

Finalmente y resumiendo podemos decir que controlando la relación Gas – petróleo ( RGP ) se

tiene un control eficiente de la energía del yacimiento y por lo tanto se mantiene los caudales de

producción programados.

Page 3: Prueba de Pozos

1.2. Descripción del método

El método para realizar una prueba de producción es muy sencillo, en lo que se refiere a las

operaciones de campo, se lo puede hacer en la siguiente forma.

1. Dejar el pozo en producción hasta obtener producción limpia. Generalmente se utiliza

choke tamaño grande.

2. Cambiar choke pequeño (Especialmente cuando se espera mucha agua o gas ) y

producir suficiente tiempo para tener el pozo estabilizado. Medir con precisión datos

de presión y volúmenes.

3. Cambiar a un choke mayor, procediendo de la misma forma que el punto 2

4. Realizar estas operaciones con 4 o 5 chokes diferentes.

5. Tabular los datos obtenidos de presiones y volúmenes y hacer una gráfica donde se

analice y obtenga el choke óptimo.

Choke Hrs

Petroleo Gas Agua RGP

Presión Observ

64" M3/Dia M3/Dia M3/Dia Psi

16 10 50 9000 15 180 190

20 15 60 9100 10 152 170

24 15 40 9000 20 225 150 Poca arena

28 5 30 10000 25 330 120 arena

Corte de agua = Qw/Ql = Qw/Qw + Qo

RGL = Qg / Ql

Jo = Qo / DD = Qo / Pr-Pwf Índice Productividad

DD = Caída de presión ( Drow Dow )

1.3. Frecuencia a realizar las pruebas.-

Las pruebas de producción se deben realizarse en primer lugar al terminar la perforación del

pozo. En estas circunstancias se debe dejar el pozo fluyendo por determinado tiempo. Este

tiempo varía según el tipo de reservorio que se tenga.

Cuando se trata de reservorios con empuje de gas, es decir que el gas es el elemento que

mueve los fluidos dentro el reservorio, este tiempo debe ser corto digamos 15 a 30 días. En

otras circunstancias estas pruebas se las realizan cada 3 a 6 meses.

Page 4: Prueba de Pozos

Es importante indicar que cualquier cambio en el comportamiento del pozo será señal para

que se investigue las causas de esta variación de volumen o presión y por lo tanto efectuar

pruebas de producción.

1.4.- Precauciones que se debe tener en las pruebas.-

La mayor Parte de las precauciones se las debe tomar en las instalaciones del equipo y por

supuesto en saber escoger la capacidad del mismo. Entre las previsiones más importante

podemos indicar:

Cualquier equipo instalado temporalmente debe estar bien revisado si las

instalaciones son las correctas (Líneas de surgencia, venteo, descarga, etc) y si

pueden soportar las presiones que se esperan tener en la prueba.

Si la presión esperada es igual a la presión de trabajo del equipo, es conveniente

cambiar de equipo a uno de mayor presión, pues se debe considerar el daño que

sufren los aparatos en los traslados de un pozo a otro donde reciben golpes que

afectan la resistencia del material.

El personal a cargo de las pruebas debe tener suficiente experiencia en esta clase de

trabajos.

Las líneas de venteo de gas estarán bien localizadas de modo que sea posible quemar

el gas producido.

Pozos de alta presión deben ser cerrados y abiertos en forma lenta para evitar que se

dañen las instalaciones superficiales.

El personal que trabaja en las pruebas debe evitar respirar gas por tratarse de

substancias toxicas.

Instalar separadores o cualquier aparato que tenga pequeñas emanaciones de gas en

lugares despejados y que estén a una distancia prudente de motores a combustión o

motores eléctricos.

2.- Pruebas de presión temperatura.-

Los gradientes de temperatura, se sacan de los perfiles eléctricos BHT, también se usan

termómetros de fondo, pero nosotros queremos gradientes por eso utilizamos registradores

de temperatura que son el Bourdon que es la bomba amerada y el registrador electrónico.

En estos instrumentos podemos registrar cualquier información en función del tiempo. Cada

instrumento tiene su calibración (Pulg) desplazamiento.

Los instrumentos electrónicos nos dan directamente la temperatura en función del tiempo y

profundidad. También podemos hacer un perfil de temperatura a medida que vamos bajando

el instrumento al pozo y la información es inmediata y es de alta resolución. Con ambos

instrumentos podemos hacer gradientes de presión.

Page 5: Prueba de Pozos

3.0.- PRUEBAS DE FORMACION DST

Un DST es un procedimiento para realizar pruebas en la formación a través de la tubería de perforación, el cual permite registrar la presión y temperatura de fondo y evaluar parámetros fundamentales para la caracterización adecuada del yacimiento. También se obtienen muestras de los fluidos presentes a condiciones de superficie, fondo y a diferentes profundidades para la determinación de sus propiedades; dicha información se cuantifica y se utiliza en diferentes estudios para minimizar el daño ocasionado por el fluido de perforación a pozos exploratorios o de avanzada, aunque también pueden realizarse en pozos de desarrollo para estimación de reservas. Durante la perforación, el fluido es bombeado a través del drill stem (derecha) y fuera de la mecha, por lo tanto, en un DST, el fluido proveniente de la formación es recolectado a través del drill stem mientras se realizan medidas de presiones.

A la izquierda se observa una Carta de Presión Esquemática para una prueba DST. (Tomado de Lee,

1982) representándose lo siguiente:

A: Bajando herramienta al hoyo

B: Herramienta en posición

C: Empacaduras en zona a evaluar

D: Apertura de válvula

E: Cierre de pozo (restauración)

F: Final del cierre

G: Se abre pozo, ultimo período de flujo, hasta llegar al punto H

Entre H e I: último cierre

Entre J y K: retiro de equipos de prueba.

Page 6: Prueba de Pozos

Después de construir la Carta de Presión Esquemática para una prueba DST, se compara con las

diferentes cartas bases (obtenidas en pruebas de campo) para con ello identificar permeabilidades

y fluidos presentes.

Cuando se realizan pruebas DST se deben tomar en cuenta tres factores que afectan los

resultados, entre esos efectos se tienen:

1.- Efecto de la prueba previa de presión (pretest): Para presiones altas, la respuesta de la presión

de cierre en ambos períodos se incrementa. La variación entre las respuestas se reduce en el

segundo período de cierre y a medida que la presión del pretest se acerca a la presión estática de

la formación, el efecto del pretest en el DST es muy pequeño

Page 7: Prueba de Pozos

2.- Efecto de la permeabilidad: Cuando la permeabilidad aumenta, la presión del pozo se recupera

más rápido, aunque el efecto es pronunciado incluso en el caso de altos valores de permeabilidad.

En todos los casos, la presión se eleva por encima de la presión de la formación. Para un DST en

formaciones de gran permeabilidad, la respuesta de la presión es significativamente afectada por

el período del pretest.

3.- Efecto de la temperatura: Para permeabilidades bajas (aproximadamente 0,2 md/ft), el efecto

de la temperatura provoca un incremento constante de la presión al final de cada período de

cierre. Para formaciones de alta permeabilidad, el cambio de la presión resultante, debido al

efecto de la temperatura, es despreciable ya que el líquido puede fluir dentro o fuera de la

formación. Si la variación de temperatura es alta (> 1°C) el efecto de ésta podría ser más

importante.

Aplicaciones especiales

1.-Extrapolación de la Presión: La experiencia en el trazado de un gran número de cartas DST en

papel semi-logarítmico ha demostrado que cuando el índice kh/μ es mayor de 10 pies md / cp se

obtiene una línea recta. Por el contrario, cuando este índice es menor a 10 pies md / cp se obtiene

una línea curva; dicho comportamiento también es habitual cuando el flujo radial no está

presente.

La producción de una pequeña cantidad de líquido es suficiente para notar una caída en la presión

de la formación, de modo que se necesita un tiempo mayor de cierre para obtener una curva

build-up útil. El cierre inicial es utilizado para minimizar los efectos de la producción excesiva de

fluido.

El tiempo de flujo y la capacidad de la formación inciden directamente en el tiempo de cierre de la

prueba, el cual, al no ser el apropiado, conlleva a cartas DST erróneas. En formaciones de baja

capacidad (K.h), largos tiempos de cierre permiten una mayor precisión en la extrapolación a la

presión original.

Page 8: Prueba de Pozos

En formaciones de baja capacidad, largos tiempos de cierre permiten una mayor precisión en la

extrapolación a la presión original.

Efecto del tiempo de cierre en la precisión de la Extrapolación de la Presión

2. Permeabilidad Efectiva

La permeabilidad efectiva es otro parámetro que se puede obtener mediante el análisis de las

pruebas DST, nuevamente con la aplicación de la teoría aplicada a las pruebas build-up. El uso de

la tasa promedio del total recobrado dividido por el tiempo de flujo es suficiente para el

uso de la fórmula:

En el caso de no ser la curva de flujo una línea recta, nos indica que la tasa asumida “constante” no

lo es. Esto altera el valor de la permeabilidad que se obtiene de la prueba, pero afortunadamente

los requerimientos en la precisión de la permeabilidad no son estrictos por lo que el valor

aproximado obtenido con el DST resulta útil. Dicho valor representa el promedio de todo el área

de drenaje, de hecho este puede ser mejor que el que se obtiene de pruebas en núcleos.

Método de campo eficaz para el cálculo de la permeabilidad:

Es necesario tener un buen sistema de doble cierre durante la prueba DST, en la que en el primer

cierre la presión se debe restaurar casi hasta la presión original y en el segundo cierre solo será

necesaria hasta que la presión llegue a unas tres cuartas partes de la original. El Procedimiento es

el siguiente: Extender la presión inicial de cierre hasta intersectar la ordenada de la presión donde

(t + θ)/θ =1. Unir este punto con el correspondiente a la presión final de cierre (t + θ)/θ y donde el

tiempo de apertura es (t) y el tiempo de cierre es (θ). Extender la unión anterior hasta que corte la

ordenada de presión donde (t + θ)/θ =10.

Usando el ΔP que se genera por cada ciclo se calcula la permeabilidad efectiva de acuerdo a la

ecuación:

Page 9: Prueba de Pozos

Técnica para Interpretación de la Permeabilidad Efectiva de un pozo

3. Índice de productividad y daño

Se pueden obtener dos valores de IP a partir de pruebas DST. El primero proviene del periodo de

flujo y es determinado mediante la cantidad de líquido recobrado, el tiempo de flujo y la diferencia

entre la presión de flujo y la presión de la formación. El segundo valor proviene del análisis del

final de la curva de cierre. La diferencia entre los dos valores de IP indica el grado de daño a la

formación. Este daño es comúnmente causado por el filtrado de lodo en la cara de la formación.

Método de campo para el cálculo de la relación de daño

Aunque existen métodos más precisos para su determinación, la relación de daño se puede

determinar inmediatamente después de culminada la prueba DST mediante el uso de la siguiente

ecuación empírica:

Siguiendo el mismo método para la obtención de la permeabilidad, hallamos el ΔP por cada ciclo.

La presión de flujo final (Pf) es obtenida directamente de la prueba DST. La figura muestra el

procedimiento usado.

Técnica para Interpretación del Radio de Daño de un pozo

4. Presencia de barreras (fallas, pinchouts, cambios de permeabilidad, etc.)

En principio, la detección de cambios en la transmisibilidad (K.h/μ) en las cercanías del pozo puede

ser determinado mediante el estudio de las pruebas de Build-up. Pero cuando las condiciones de

la formación son favorables, las pruebas DST pueden ser analizadas para estimar la presencia de

barreras.

El análisis de las pruebas DST para la determinación de la presencia de barrera presenta las

siguientes dificultades:

• Se puede demostrar que la distancia de penetración es proporcional al tiempo de flujo. Una

relación empírica b2=K.t puede ser usada para estimar el rango de penetración detectable por una

prueba DST, la capacidad de la formación (k.h) puede ser desfavorable para largos radios de

Page 10: Prueba de Pozos

penetración sin el tiempo de flujo adecuado.

• La tasa de producción no es constante. Efectos similares a la ruptura de la linealidad pueden ser

causados por una reducción de la tasa de producción.

• Las características del yacimiento no son compatibles con la simplificación de las suposiciones.

Cualquier cambio en las condiciones causará una curvatura en la carta.

4.0.- PRUEBAS DE POTENCIAL

El análisis de un pozo productor de gas puede ser dividido en dos regiones de presión: Pozos de baja a mediana presión y pozos de alta presión. Gran cantidad de la teoría básica de las pruebas y análisis de las mismas, fue desarrollado a partir de las pruebas realizadas en pozos con niveles de presión de yacimiento por debajo de 2500 (lb/pulg2). Con el advenimiento de la perforación de pozos profundos, se ha encontrado que los pozos productores de gas presentan una presión de yacimiento aproximadamente de 10000 (lb/pulg2). En estos casos y todos aquellos que presentan presiones por debajo de 2500 (lb/pulg2), se debe utilizar métodos convencionales de análisis, así como también la teoría de potencial de gas real para una mejor aproximación. Las principales pruebas convencionales o flujo estabilizados empleadas en el análisis de comportamiento de afluencia en pozos de gas son:

· Pruebas de tipo convencional. · Pruebas de tipo Isocronal. · Pruebas de tipo Isocronal modificada.

El tipo de prueba a seleccionar dependerá del tiempo de estabilización del pozo, el cual es una función de la permeabilidad del yacimiento. Si un pozo se estabiliza medianamente rápido, se podrá efectuar una prueba de potencial. La experiencia en trabajos de campo ha mostrado que para pozos con diámetro reducido o estrecho es conveniente emplear una prueba isocronal. Para pozos con tiempos muy grandes de estabilización una prueba isocronal modificada resulta más práctica. 4.1.- PRUEBAS DE TIPO CONVENCIONAL O CONTRAPRESION

La prueba convencional ha sido llamada también prueba de potencial absoluto o prueba de contrapresión, consiste en cerrar el pozo a producción y permitir una restauración de presión hasta obtener una estabilización. Luego, se abre a producción y se toman medidas de presión a diferentes tasas de flujo las cuales varían después que las presiones de flujo se han estabilizado. El número de tasas de flujo es por lo general de cuatro y una vez obtenidas las mediciones, se cierra el pozo. El método de análisis consiste en graficar presión( PR˄2-Pwf˄2) vs. Q (caudal ) en el papel Log-Log.

Resultaba casi una recta.

1/n = pendiente de la línea recta. Además, el valor indicado en la figura como AOF, es el valor de

las tasas de flujo de gas obtenidas cuando Pwf=Pb=14.7psia.Es decir, AOF es el valor teórico de la

tasa de flujo que se obtendrá si la presión de fondo fluyente en la cara de la arena fuese la presión

atmosférica.(AOF=qmáxima).

Page 11: Prueba de Pozos

Las pruebas de potencial en los pozos de gas se realizan para determinar la capacidad productiva

teórica de los mismos, bajo condiciones de flujo abierto. Anteriormente se acostumbraba hacer

estas pruebas poniendo el pozo en producción con una presión en la cabeza del pozo igual al

atmosférico 14.7 lbs/Pulg2. Actualmente con el fin de evitar desperdicios y daño a la formación, la

capacidad a flujo abierto de los pozos de gas se obtiene extrapolando los resultados de las pruebas

hechas a diferentes gastos moderados de producción, en lugar de abrir los pozos a flujo total. En

este método, un pozo se pone a producción a un gasto constante seleccionado hasta que la

presión de fondo fluyendo se estabiliza. El gasto estabilizado y la presión de fondo son registrados,

y a continuación se cambia el gasto (usualmente se incrementa). Así, el pozo está fluyendo a un

nuevo gasto hasta alcanzar nuevamente el estado pseudo estacionario. La presión puede ser

medida con un registrador de fondo (preferentemente) o bien, a partir del cálculo utilizando

valores medidos en superficie. Este proceso es repetido, cada vez que se registra la presión y gasto

estabilizados. Se recomienda utilizar cuatro caudales diferentes.

4.2.- PRUEBAS FLUJO TAS FLUJO

Una prueba de flow after flow empieza con un cierre del pozo mientras la presión estática promedio PR se estabiliza. El pozo es colocado luego en producción a una rata constante hasta que la presión de pozo fluyendo se estabiliza y se vuelve constante. La presión de flujo debe ser medida con un registrador de fondo de pozo. Una vez la Pwf se estabiliza, la rata de producción se cambia hasta que se estabilice y vuelve a registrarse la presión de fondo fluyendo. El procedimiento se repite para varias ratas, 3 a 4. Hay que esperar la estabilización de la producción y de la presión para que el valor de C sea constante. Generalmente las pruebas multirata deben ser corridas a ratas crecientes pero también pueden ser hechas mediante ratas decrecientes. La prueba es analizada haciendo una gráfica log-log de PR˄2-Pwf˄2 versus caudal ( q ) y trazando la mejor línea recta que pase por los puntos. El exponente n es determinado del recíproco de la pendiente de la línea. Ver figuras 1 y 2 que muestran la forma de hacer la prueba y su procedimiento de análisis respectivamente.

Page 12: Prueba de Pozos

4.2.- PRUEBAS ISOCRONALES.- Un cambio en el gasto de producción de un pozo de gas, provoca o genera una “presión transitoria” (onda de presión o disturbio), la cual se propaga fuera del pozo (radio de drene del pozo). La distancia recorrida a esta presión transitoria en un tiempo particular es conocida como el “radio de investigación”. El objeto de las pruebas Isocronales, es obtener datos para establecer una curva de productividad o capacidad estabilizada sin que se deje fluir el pozo tiempo innecesario para alcanzar condiciones estabilizadas a cada gasto. El principio o fundamento es que el radio de investigación alcanzado en un tiempo dado, en una prueba de flujo, es independiente del gasto de flujo. Por lo tanto, si una serie de pruebas de flujo se realizan en un pozo, cada una para el mismo periodo de tiempo (isocronal), el radio de investigación será el mismo al final de cada prueba. Consecuentemente, la misma porción del yacimiento será drenada en cada gasto. Fluye a diferentes Q, pero tiempo de flujo iguales. Los tiempos de flujo son diferentes a los tiempos de cierre. Consiste en cambiar la tasa y tomar las presiones a intervalos de tiempos iguales y luego cerrar el pozo hasta restaurarlo. Objetivo de las Pruebas Isocronales. Obtener datos para establecer una curva de productividad o capacidad estabilizada sin que deje de fluir el pozo tiempo innecesario para alcanzar condiciones estabilizadas a cada gasto. Si el tiempo requerido para que la producción se estabilice para un tamaño de choque determinado o si la rata de producción es excesiva y se demora mucho en lograr la estabilización de la presión, se puede hacer una prueba isócrona o de tiempos iguales en donde los periodos de flujo pueden ser transientes. El procedimiento para hacer una prueba isócrona es el siguiente:

Page 13: Prueba de Pozos

• Empiece con el pozo cerrado, abra el pozo a producir a una rata constante y mida la Pwf a períodos específicos de tiempo. El período de producción para cada rata puede ser menor que el requerido para la estabilización. • Cierre el pozo y deje que la presión se recupere al valor de PR • Abra el pozo a producción a otra rata de flujo por periodo de tiempo igual al periodo de flujo anterior y mida la presión. • Cierre el pozo de nuevo hasta que Pws= PR • Repita el procedimiento para varias ratas y el último periodo de flujo debe ser lo suficientemente largo para allí si tener estabilización. Los valores de PR˄2− Pwf˄2 determinados en los diferentes períodos son graficados versus q y n es obtenida de la pendiente de la línea. Para determinar el valor de C se deben usar los datos del último período de flujo que debió ser estabilizado. La figura 3 muestra un esquema de la prueba isócrona.

Page 14: Prueba de Pozos

Análisis de una prueba isocronal METODO FECKOVICH

Q sc = C ( PR2 - Pwf2)˄n EC. FUNDAMENTAL

n = 1 / tg ɸ = 1 / m m = tg ɸ

C = (Qsc o AOF) / ( PR˄2 - Pfw ˄2) ˄n

Si Pfw ˄2 = 0 por lo tanto AOF / ( PR˄2) ˄n esto en MMPD/MMPSI ˄2

Donde:

n = Factor de turbulencia (mide el grado de turbulencia)

Si n = 0.5 es flujo es completamente turbulento

4.3.- PRUEBAS ISOCRONAL MODIFICADA

El Objetivo de las pruebas Isocronales modificadas, es obtener la misma información que las pruebas Isocronales, sin requerir, en algunas ocasiones, de largos periodos de cierre. De hecho, las verdaderas pruebas Isocronales han probado ser imprácticas como tipo de pruebas para muchos pozos. Con el propósito de acortar los tiempos de prueba, se propuso desarrollar las pruebas Isocronales modificadas, las cuales se realizan empleando periodos de cierre igual a los periodos de flujo, lo cual proporciono resultados satisfactorios. En este tipo de pruebas se emplean las presiones de cierre inestabilizadas para calcular la diferencia de la relación de presiones para el próximo gasto. Las pruebas Isocronales modificadas han sido empleadas extensivamente en yacimientos de baja permeabilidad, debido a que permiten “salvar” tiempo y dinero. Además, han probado ser una excelente aproximación de las pruebas Isocronales verdaderas. La modificación consiste en que cada periodo de cierre dure lo mismo que el periodo de flujo en

lugar de dejar que se alcancen condiciones estabilizadas. La manera de graficar los resultados es

idéntica a la prueba Isocronal pero utilizando la presión de cierre no estabilizadas ( Pfw ) para

calcular la diferencia de los cuadrados para el siguiente punto de flujo. Como se hizo con la

prueba isocronal, el ultimo caudal se extiende hasta alcanzar condiciones de estabilización.

Como en las pruebas isócronas el tiempo de cierre requerido para que la presión se restaure al valor de PR entre los períodos de flujo puede ser excesivo, la prueba isócrona puede ser modificada. La modificación consiste en cerrar el pozo entre los períodos de flujo por un tiempo igual al tiempo de producción.. La presión de pozo estática Pws puede no llegar al valor de PR, pero una gráfica de Pwsi˄2-Pwfi˄2 versus q generalmente producirá un línea recta de la cual se puede obtener n. El objetivo es obtener los mismos datos de la isócrona pero sin tener periodos prolongados de cierre. En este caso los periodos de cierre tienen la misma duración de los

Page 15: Prueba de Pozos

periodos de flujo. Una prueba estabilizada también es necesaria para hallar el valor de C. El procedimiento de prueba es ilustrado en la figura 4.

Análisis de una prueba isocronal modificado