Procesamiento Digital de Señales (DSP)

52
Procesamiento Digital de Señales (DSP) Es el tratamiento o manipulación de datos digitales que representan alguna señal física. Los datos son normalmente generados mediante un proceso de conversión A/D. El procesamiento se puede clasificar en dos grupos: 1. Estadístico 2. Fourier

description

Procesamiento Digital de Señales (DSP). Es el tratamiento o manipulación de datos digitales que representan alguna señal física. Los datos son normalmente generados mediante un proceso de conversión A/D. El procesamiento se puede clasificar en dos grupos: Estadístico Fourier. - PowerPoint PPT Presentation

Transcript of Procesamiento Digital de Señales (DSP)

Page 1: Procesamiento Digital de Señales (DSP)

Procesamiento Digital de Señales (DSP) Es el tratamiento o manipulación de datos digitales que

representan alguna señal física. Los datos son normalmente generados mediante un proceso de conversión A/D.

El procesamiento se puede clasificar en dos grupos:1. Estadístico2. Fourier

Page 2: Procesamiento Digital de Señales (DSP)

Análisis de Fourier:

Encontrar información “escondida” dentro de los datos:- Limpiarla (ruido)- Ubicar patrones- Compactarla- Reacomodarla

Técnicas empleadas- Transformaciones de Fourier- Filtrado Digital- Convolución y Correlación

Page 3: Procesamiento Digital de Señales (DSP)

Aplicaciones:

• Óptica• Astronomía• Geología• Análisis Químico• Materiales• Computación• Medicina• Acústica• Música• Video

Page 4: Procesamiento Digital de Señales (DSP)

Series de Fourier

Cualquier señal periódica continua se puede representar como una serie infinita de senos y cosenos de diferentes amplitudes cuyas frecuencias son harmónicas de la frecuencia de la señal. Esto es lo que se conoce como la serie de Fourier de la señal.

Page 5: Procesamiento Digital de Señales (DSP)

Una Función Periódica f(t) tiene la siguiente propiedad para todo valor de t.

f(t)=f(t+T)

A la constante mínima T para la cual se cumple lo anterior se le llama el periodo de la función

Repitiendo la propiedad se puede obtener:f(t)=f(t+nT), donde n=0,1, 2, 3,...

Page 6: Procesamiento Digital de Señales (DSP)

Serie Trigonométrica de Fourier

Las Funciones periódicas f(t) de periodo T pueden expresarse por la siguiente serie, llamada Serie Trigonométrica de Fourier

f(t) = ½ a0 + a1cos(w0t)+a2cos(2w0t)+... + b1sen(w0t)+b2sen(2w0t)+...

Donde w0=2p/T.Es decir,

])tn(senb)tncos(a[a)t(f1n

0n0n021 ww

Page 7: Procesamiento Digital de Señales (DSP)

Es posible escribir de una manera ligeramente diferente la Serie de Fourier, si observamos que el término ancos(nw0t)+bnsen(nw0t) se puede escribir como

Podemos encontrar una manera más compacta para expresar estos coeficientes pensando en un triángulo rectángulo:

w

w

)tn(sen

bab)tncos(

baaba 02

n2n

n02

n2n

n2n

2n

Page 8: Procesamiento Digital de Señales (DSP)

Con lo cual la expresión queda

n2n

2n

n

n2n

2n

n

senba

b

cosba

a

an

bn

2n

2nn baC

n

)tn(sensen)tncos(cosC 0n0nn ww

)tncos(C n0n w

Page 9: Procesamiento Digital de Señales (DSP)

Si además definimos C0=a0/2, la serie de Fourier se puede escribir como

Así,

y

w1n

n0n0 )tncos(CC)t(f

2n

2nn baC

n

n1n a

btan

Page 10: Procesamiento Digital de Señales (DSP)

Así, una función periódica f(t) se puede escribir como la suma de componentes sinusoidales de diferentes frecuencias wn=nw0.

A la componente sinusoidal de frecuencia nw0: Cncos(nw0t+n) se le llama la enésima armónica de f(t).

A la primera armónica (n=1) se le llama la componente fundamental y su periodo es el mismo que el de f(t)

A la frecuencia w0=2pf0=2p/T se le llama frecuencia angular fundamental.

Page 11: Procesamiento Digital de Señales (DSP)

Cálculo de los coeficientes de la Serie

Dada una función periódica f(t) ¿cómo se obtiene su serie de Fourier?

Obviamente, el problema se resuelve si sabemos como calcular los coeficientes a0,a1,a2,...,b1,b2,...

Esto se puede resolver considerando la ortogonalidad de las funciones seno y coseno.

])tn(senb)tncos(a[a)t(f1n

0n0n021 ww

Page 12: Procesamiento Digital de Señales (DSP)

Functiones Ortogonales

Un conjunto de funciones {k} es orthogonal en el intervalo a < t < b si se cumple que

nmrnm

dtttn

b

a nm

0)()(

Page 13: Procesamiento Digital de Señales (DSP)

Functiones senoidales ortogonales

w0=2p/T.0 ,0)cos(

2/

2/ 0 w mdttmT

T0 ,0)sin(

2/

2/ 0 w mdttmT

T

ww nmTnm

dttntmT

T 2/0

)cos()cos(2/

2/ 00

ww nmTnm

dttntmT

T 2/0

)sin()sin(2/

2/ 00

nmdttntmT

T and allfor ,0)cos()sin(

2/

2/ 00 ww

Page 14: Procesamiento Digital de Señales (DSP)

Multiplicando ambos miembros de la identidad por cos(nw0t) e integrando de –T/2 a T/2, obtenemos:

Similarmente, multiplicando por sen(nw0t) e integrando de –T/2 a T/2, obtenemos:

,...3,2,1,0ndt)tncos()t(fa2/T

2/T0T

2n w

,...3,2,1ndt)tn(sen)t(fb2/T

2/T0T

2n w

2/T

2/TT2

0 dt)t(fa

Page 15: Procesamiento Digital de Señales (DSP)

Ejemplo: Encontrar la Serie de Fourier para la siguiente función de periodo T:

Solución: La expresión para f(t) en –T/2<t<T/2 es

1f(t)

t. . . -T/2

0

T/2 T . . .

-1

2T

2T

t0para10tpara1

)t(f

Page 16: Procesamiento Digital de Señales (DSP)

Coeficientes an: w

2/T

2/T0T

2n dt)tncos()t(fa

w w

2/T

00

0

2/T0T

2 dt)tncos(dt)tncos(

w

ww

w

0

2/T

002/T

0

00

T2 )tn(sen

n1)tn(sen

n1

0npara0

Page 17: Procesamiento Digital de Señales (DSP)

Coeficiente a0:

2/T

2/TT2

0 dt)t(fa

2/T

0

0

2/TT2 dtdt

0

2/T

2/T

0

T2 tt

0

Page 18: Procesamiento Digital de Señales (DSP)

Coeficientes bn: w

2/T

2/T0T

2n dt)tn(sen)t(fb

w w

2/T

00

0

2/T0T

2 dt)tn(sendt)tn(sen

w

ww

w

0

2/T

002/T

0

00

T2 )tncos(

n1)tncos(

n1

)1)n(cos())ncos(1(n1 ppp

0npara))1(1n2 n p

Page 19: Procesamiento Digital de Señales (DSP)

Serie de Fourier: Finalmente la Serie de Fourier queda como

En la siguiente figura se muestran: la componente fundamental y los armónicos 3, 5 y 7 así como la suma parcial de estos primeros cuatro términos de la serie para w0=p, es decir, T=2:

...)t5(sen)t3(sen)t(sen4)t(f 051

031

0 wwwp

Page 20: Procesamiento Digital de Señales (DSP)

-1 -0.5 0 0.5 1-1.5

-1

-0.5

0

0.5

1

1.5Componentes de la Serie de Fourier

t

Com

pone

ntes

Sumafundamentaltercer armónicoquinto armónicoseptimo armónico

Page 21: Procesamiento Digital de Señales (DSP)

Forma Compleja de la Serie de Fourier

Consideremos la serie de Fourier para una función periodica f(t), con periodo T=2p/w0.

Es posible obtener una forma alternativa usando las fórmulas de Euler:

Donde

])tn(senb)tncos(a[a)t(f1n

0n0n021 ww

)ee()tn(sen

)ee()tncos(tjntjn

j21

0

tjntjn21

0

00

00

ww

ww

w

w

1j

Page 22: Procesamiento Digital de Señales (DSP)

Series de Fourier. 22

Forma Compleja de la Serie de Fourier

La serie se puede escribir como

O bien,

Es decir,

)ecec(c)t(f1n

tjnn

tjnn0

00

w

w

w

w 1n

tjnn

1n

tjnn0

00 ececc)t(f

wn

tjnn

0ec)t(f

Page 23: Procesamiento Digital de Señales (DSP)

A la expresión obtenida

Se le llama forma compleja de la serie de Fourier y sus coeficientes cn pueden obtenerse a partir de los coeficientes an, bn como ya se dijo, o bien:

Para n=0, 1, 2, 3, ...

wT

0

tjnT1

n dte)t(fc 0

wn

tjnn

0ec)t(f

Page 24: Procesamiento Digital de Señales (DSP)

Espectros de Frecuencia DiscretaDada una función periódica f(t), le corresponde una y sólo una serie de Fourier, es decir, le corresponde un conjunto único de coeficientes cn.

Por ello, los coeficientes cn especifican a f(t) en el dominio de la frecuencia de la misma manera que f(t) especifica la función en el dominio del tiempo.

Page 25: Procesamiento Digital de Señales (DSP)

Espectros de Frecuencia Discreta

Observación: El eje horizontal es un eje de frecuencia, (n=número de armónico = múltiplo de w0).

-30 -20 -10 0 10 20 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Espectro de Amplitud de f(t)

n

Cn

Frecuencia negativa (?) Frecuencia

Page 26: Procesamiento Digital de Señales (DSP)

Ancho de banda de una señal Existen muchas definiciones para el ancho de banda de

una señal, dependiendo del contexto en que se emplee el término.

Una de ellas se refiere al conjunto de las componentes de frecuencia cuya amplitud no es menor en 3 dB a la mayor componente del espectro de Fourier de la señal.

Esta definición sería inapropiada si el objetivo es mantener una representación fiel de la señal.

Obviamente, para una señal periódica podemos obtener su ancho de banda con su serie de Fourier.

Page 27: Procesamiento Digital de Señales (DSP)

De la Serie a la Transformada de FourierLa serie de Fourier nos permite obtener una representación en el dominio de la frecuencia para funciones periódicas f(t).

¿Es posible extender de alguna manera las series de Fourier para obtener el dominio de la frecuencia de funciones no periódicas?

La respuesta es sí, pero ahora el espectro de frecuencias NO es discreto sino continuo.

Page 28: Procesamiento Digital de Señales (DSP)

De la Serie a la Transformada de FourierTren de pulsos de amplitud 1, ancho P y periodo T:

1f(t)

t. . . -T -T/2

0

T/2 T . . .

p

-p/2 p/2

2T

2p

2p

2p

2p

2T

t0t1t0

)t(f

Page 29: Procesamiento Digital de Señales (DSP)

Espectro del tren de pulsos para P=1, T=2

-60 -40 -20 0 20 40 60-0.2

0

0.2

0.4

0.6

w=nw0

c n

Page 30: Procesamiento Digital de Señales (DSP)

-50 0 50-0.1

0

0.1

0.2

0.3

p=1, T=5

-50 0 50-0.05

0

0.05

0.1

0.15

p=1, T=10

-50 0 50-0.02

0

0.02

0.04

0.06p=1, T=20

-50 0 50

-0.2

0

0.2

0.4

0.6 p=1, T=2

w=nw0

c n

Page 31: Procesamiento Digital de Señales (DSP)

Si hace T muy grande sin aumentar P (T): El espectro se vuelve ¡continuo!

Page 32: Procesamiento Digital de Señales (DSP)

Es decir,

Donde

Estas expresiones nos permiten calcular la expresión F(w) (dominio de la frecuencia) a partir de f(t) (dominio del tiempo) y viceversa

wp ww de)(F)t(f tj

21

ww dte)t(f)(F tjTransformadaDe Fourier

IdentidadDe Fourier

Page 33: Procesamiento Digital de Señales (DSP)

Notación: A la función F(w) se le llama transformada de Fourier de f(t) y se denota por F, es decir

En forma similar, a la expresión que nos permite obtener f(t) a partir de F(w) se le llama transformada inversa de Fourier y se denota por F –1 ,es decir

wp

www de)(F)t(f)](F[ tj211F

ww dte)t(f)(F)]t(f[ tjF

Page 34: Procesamiento Digital de Señales (DSP)

Ejemplo. Calcular F(w) para el pulso rectangular f(t) siguiente

Solución. La expresión en el dominio del tiempo de la función es

-p/2 0 p/2

1f(t)

t

t0t1

t0)t(f

2p

2p

2p

2p

Page 35: Procesamiento Digital de Señales (DSP)

Integrando

Usando la fórmula de Euler:

Obsérvese que el resultado es igual al obtenido para cn cuando T , pero multiplicado por T.

w

w w2/p

2/p

tjtj dtedte)t(f)(F

2/p

2/p

tjj1 e

ww

)ee( 2/pj2/pjj1 www

2/p)2/p(senp)(F

www

Page 36: Procesamiento Digital de Señales (DSP)

En forma Gráfica

-50 0 50

0

0.5

1F(w) con p=1

w

F(w

)

Page 37: Procesamiento Digital de Señales (DSP)

Señales Discretas

Tipos de señales :1) Analógica : Continua en tiempo y amplitud

2) Discreta en el Tiempo:

Page 38: Procesamiento Digital de Señales (DSP)

Transformada Discreta de Fourier

FT: Cuando la señal de origen es continua

2( ) ( ) j ftx f x t e dtp

Pero si las señales son discretas DTFT(Discrete Time Fourier Transform)

2( ) ( ) j fnx f x n e p

El tiempo y la frecuencia son variables continuas

El tiempo se discretiza pero la frecuencia sigue siendo continua (la suma es infinita)

Page 39: Procesamiento Digital de Señales (DSP)

The DFT

Para discretizar ambas variables

1) Limitamos la frecuencia continua a un valor máximo value de Fs 2) Discretizamos la frecuencia a valores m

SnFmN

La Transformada se convierte en

12 /

0

( ) ( )N

j nm N

n

X m x n e p

Page 40: Procesamiento Digital de Señales (DSP)

The DFT 1

2 /

0

( ) ( )N

j nm N

n

X m x n e p

En donde :

X(m) = la mth DFT componente de salida: X(0), X(1),X(2)…m = Indice de la salida de la DFT en el dominio de la fecuenciam = 0,1,2,…,N-1x(n) = muestras de entrada, x(0),x(1),x(2)…..n = Indice de las muestras de entrada,n = 0,1,2,3,…, N-1N = Número total de muestras de entrada y de los puntos de frecuencia en la salida de la DFT.

Page 41: Procesamiento Digital de Señales (DSP)

DFT

( ) ( ) ( )real imagX m X m jX m

La magnitus de X(m) es :

2 2( ) ( ) ( ) ( )mag real imagX m X m X m X m

El ángulo de X(m) es :

La DFT es una cantidad compleja

1 ( )( ) tan

( )imag

real

X mX m

X m

Page 42: Procesamiento Digital de Señales (DSP)

DFT EjemploSupongamos que se desea evaluar la DFT en 8 puntos a una señal Senoidal con componenetes de frequencia de 1KHz and 2KHz

Supongamos que:

( ) sin(2 .1000. ) 0.5sin(2 .2000 3 / 4)x t t tp p p Periodo de x(t) = 1/1Khz = 1/10008 muestras/periodo => Ts = 1/8000 secO sea Fs = 8000 muestras/s

t = nTs

( ) sin(2 .( / 8)) 0.5sin(2 .(2 / 8) 3 / 4)x n n np p p n = 0,1,…,7

Page 43: Procesamiento Digital de Señales (DSP)

DFT Ejemplo (Cont…)

Entonces 1

0

(0) ( )N

n

X x n

7

0

(1) ( )[cos(2 / 8) sin(2 / 8)]n

X x n n j np p

Etc...

Evaluando se tiene:

X(0) = 0 + j 0 (dc)X(2) = 1.414 + j1.414 (2Khz)X(4) = 0 + j 0 (4Khz)X(6) = 1.414 – j 1.414 (6Khz)

X(1) = 0 – j 4 (1KHz) X(3) = 0 + j 0 (3Khz)X(5) = 0 + j 0 (5Khz)X(7) = 0 + j 4 (7KHz)

Componente DC

Page 44: Procesamiento Digital de Señales (DSP)

DFT Ejemplo (Resultados)

Page 45: Procesamiento Digital de Señales (DSP)

Simetría en la DFT

Se observa que: magnitud de X(N-m) = magnitud de X(m) fase de X(N-m) = fase de X(m)O: X(m) = complejo conjugado de X(N-m)

Conclusión: Al calcular la DFT de x(n) en N puntos, obtenemos N términos complejos de salida pero sólo los primeros N/2 términos son independientes

Page 46: Procesamiento Digital de Señales (DSP)

Propiedades de la DFT

1) Linealidad: si a(n) = b(n) + c(n) entonces A(m) = B(m) + C(m)

2) Teorema del corrimiento: : Si y(n) = x(n+k) entonces Y(m) = ej2pikm/N X(m)

Page 47: Procesamiento Digital de Señales (DSP)

Transformada Inversa IDFT

12 /

0

1( ) ( )N

j mn N

m

x n X m eN

p

Para obtener x(n) a partir de X(m)

Page 48: Procesamiento Digital de Señales (DSP)

Fugas en la DFT

Las salidas de DFT corresponden a las frecuencias f = mfs/N¿Qué sucede si la entrada tiene frecuencias que no coincidenCon esos valoresDigamos que en el ejemplo anterior se tienen frecuencias 2.3 Khz y muestreamos 8000 M/s

Los picos detectados son = 0Kkz, 1Khz, 2Khz,…,7Khz pero el pico 2.3 Khz no aparece!!

Este pico de frecuencia se ha “fugado” (escurrido)

Remedio “Windowing”

Page 49: Procesamiento Digital de Señales (DSP)

Ejemplo gráfico

Dominio del Tiempo

Dominio de la Frecuencia

Page 50: Procesamiento Digital de Señales (DSP)

La Transformada Discreta de Fourier (DFT) requiere el cálculo de N funciones exponenciales para obtener F(n), lo cual resulta un esfuerzo de cálculo enorme para N grande.

Se han desarrollado métodos que permiten ahorrar cálculos y evaluar de manera rápida la Transformada discreta, a estos métodos se les llama

Transformada Rápida de Fourier (FFT)

Page 51: Procesamiento Digital de Señales (DSP)

En el cálculo de la transformada directa de Fourier el número de operaciones requeridas es proporcional a N2

En el cálculo de la transformada rápida de Fourier (FFT) el número de operaciones requeridas es proporcional a N(lnN)

Page 52: Procesamiento Digital de Señales (DSP)

En Resumen: Para encontrar el espectro de frecuencias de una señal

continua y periódica empleamos su SERIE DE FOURIER

Para encontrar el espectro de frecuencias de una señal continua aperiódica empleamos la TRANSFORMADA DE FOURIER

Para encontrar el espectro de frecuencias de una señal discreta y periódica empleamos la DFT

Para encontrar el espectro de frecuencias de una señal discreta aperiódica aproximamos con la DFT

La DFT se implementa con la FFT