PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo...

78
PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana Luis Blanch Puertes

Transcript of PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo...

Page 1: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS DE

TOPOGRAFÍA DE OBRAS

(Tomo I)

Ricardo López Albiñana

Luis Blanch Puertes

Page 2: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

2

ÍNDICE

Problema nº 1. Elementos de la curva circular. Cálculo de las coordenadas de un punto .............. 4

Problema nº 2. Elementos de la curva circular. Cálculo de las coordenadas de un punto .............. 7

Problema nº 3. Curvas en “S” con tramo recto intermedio ............................................................ 11

Problema nº 4. Circulares. Enlace de alineaciones circulares ...................................................... 14

Problema nº 5. Circulares. Curvas de dos centros ....................................................................... 17

Problema nº 6. Circulares. Curvas de dos centros ....................................................................... 22

Problema nº 7. Clotoides. Elementos de la clotoide ..................................................................... 31

Problema nº 8 Clotoides. Puntos de la clotoide ............................................................................ 33

Problema nº 9 Clotoides. Enlace en Punta.................................................................................. 35

Problema nº 10. Clotoides. Enlace con círculo central ................................................................. 40

Problema nº 11. Clotoides. Ovoide ............................................................................................... 43

Problema nº 12. Clotoides. ........................................................................................................... 49

Problema nº 13. Acuerdo vertical. Elementos del acuerdo ........................................................... 54

Problema nº 14. Acuerdo vertical. Puntos secuenciales ............................................................... 56

Problema nº 15. Acuerdo vertical. Punto de obligado paso .......................................................... 58

Problema nº 16. Acuerdo vertical ................................................................................................. 64

Problema nº 16. Acuerdo vertical. Punto de obligado paso. Pendiente de un punto. .................... 60

Problema nº 17. Acuerdo vertical .Intersección de calles ............................................................. 67

Problema nº 18. Transición al peralte ........................................................................................... 72

Problema nº 19. Transición al peralte ........................................................................................... 75

Page 3: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

CURVAS CIRCULARES

CU

RV

AS

CIR

CU

LA

RE

S

Page 4: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

4

PROBLEMA Nº 1. Elementos de la curva circular. Cálculo de las coordenadas de un punto

El estado de alineaciones de un tramo de un camino rural queda determinado por los vértices VEA-1, VEA-2 y VEA-3, de los que se conocen sus coordenadas. El giro se quiere efectuar por medio de una curva circular de radio R = 15,70 m.

Se pide:

1.- Coordenadas planimétricas de tangente de entrada TE, tangente de salida TS y Centro(O)

2.- Coordenadas planimétricas de un punto p que dista 14 m en desarrollo dese la tangente de entrada, obtenidas a partir de la tangente de entrada y a partir del centro de la curva circular.

3.- Datos de replanteo de los puntos calculados: p, TE, TS y O desde un vértice exterior de coordenadas planimétricas: X =1000,000 ; Y = 1000,000

VEA-1 (1079.868 ; 924.276) - VEA-2 (1094.0087 ; 931.7614) - VEA-3 (1115.56 ; 921.20)

DATOS:

RESOLUCIÓN:

Datos de interés para la resolución del problema:

A partir de las coordenadas de los vértices del estado de alineaciones se obtienen los valores de acimut existentes entre ellos.

θ21 = 269.0060g θ2

3 = 129.0084g

VEA-2

VEA-1

O

VEA-3

V. R.-1

R

TE TS

Page 5: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

5

1º Cálculo de las coordenadas de la tangente de salida de la curva circular:

Ángulo α = 200 - 2̂V (100 + 100 + 2̂V + α = 400g)

V̂ = θ21 - θ2

3 = 269.0006g -129.0084g ≈ 140g

α = 200 - 140g = 60g

α / 2 = 30g

R = 15,70 m

Las coordenadas de la tangente de entrada (Te) y las de la tangente de salida (Ts) las obtenemos a partir de las coordenadas del vértice del estado de alineaciones VEA-2, el acimut correspondiente y la distancia que les separa, que no es mas que el valor de la tangente calculado.

VEA-2 X = 1094,0087

Y = 931,7614

θ21 = 269,006g

Distancia (VEA2-TE) = 8 m.

θ23 = 129.0084g

Distancia (VEA2-TS)= 8 m

XTE = 1086,938

YTE = 928,019

θTEO = θTE

V +100 =169,006g

Distancia (Te-O)= Radio= 15.7 m

2º Calculo de las coordenadas del Punto p

Para obtener sus coordenadas necesitamos conocer el acimut y la distancia existente desde tangente de entrada de la curva circular Te y el punto. Para ello calcularemos el ángulo tangente cuerda desde Te (ángulo polar) y la cuerda (distancia polar).

- Cuerda = 2.R.sen α / 2 = 14.258 m

- Desarrollo = 2. π R.δ / 400 = 14.798 m

- Tangente (Te-VEA2 = VEA2-Ts) = R.Tg α / 2 = 8 m.

XTE = 1086,938 YTE = 928,019

XTS = 1101.192 YTS = 928.241

XO = 1094,283 YO = 914.143

Page 6: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

6

El ángulo tangente cuerda (δ /2) es la mitad del ángulo central del arco considerado (δ) de 14 metros de desarrollo.

como d = 2.π R. δ / 400 δ = 56.7686g; δ /2 (ángulo polar) = 28.3816g

Cuerda = 2.R.sen δ / 2 ; Distancia polar de TE a P= 13.5408 m

θTEP =θ1

2 +2

Pα = 97.39039g

Con estos dos valores calculados y las coordenadas de TE se obtiene las coordenadas del punto p

XP = 1100,4674

YP = 928,5745

3º Datos de replanteo desde el vértice de coordenadas VR-1 (1000;1000):

Con las coordenadas del vértice y la de los puntos a replantear se obtiene los siguientes datos de replanteo:

Punto p

Tangente de entrada TE

Tangente de salida TS

Centro O

mD pVR 269,1231 =−

gpVR 3450,1391 =−θ

gOVR 0243,1471 =−θ mDO

VR 517.1271 =−

gTSVR 2687,1391 =−θ mDTS

VR 0530,1241 =−

gTEVR 0259,1441 =−θ mDTE

VR 869,1121 =−

Page 7: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

7

PROBLEMA Nº 2. Elementos de la curva circular. Cálculo de las coordenadas de un punto

Datos de la curva de circular:

Giro: 74g a derechas

R: 93 m.

XTE: 980.785 m. YTE: 878.681 m. (Tangente de entrada)

XTS: 1069.089 m. YTS: 929.972 m. (Tangente de salida)

Calcular:

1.- Los elementos de la curva circular (Tangente, cuerda, flecha, distancia al vértice)

2.- Las coordenadas del vértice.

3.- Las coordenadas de dos puntos que distan, en desarrollo a la tangente de entrada 30 y 90 m respectivamente. El cálculo se realizará a partir de la tangente de salida y a partir del centro de la curva circular

4.- Los datos de replanteo de dichos puntos desde la tangente de entrada.

RESOLUCIÓN

1.-Calculo de los elementos de la curva circular

Cálculos auxiliares:

Conocidas las coordenadas de TE y de TS calcularemos TSTEθ y TS

TED

TSTEθ =66.50 g , TS

TED =102.1193m

Sabiendo que α=Giro=74 g y que V=200-α obtendremos 2α =37 g .

Para calcular Eθ lo haremos de la siguiente forma Eθ = TSTEθ -

2α , como todos los datos son

conocidos obtendremos Eθ =29.5 g

Cálculo de la Tangente:

T=R*tg 2α como todo es conocido obtendremos T=61.0895m

Cálculo distancia al vértice:

VB= RR−

2cosα

de donde obtendremos VB=18.2696m

Page 8: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

8

Cálculo de la cuerda:

Cuerda=2R*sen2α que obtendremos un valor de cuerda=102.1182 m

Cálculo de la flecha:

Flecha=R-R*cos2α , obteniendo una flecha de 15.2699 m

2.-Calculo de las coordenadas del vértice

gTSTE

VTE 5,29

2=−=

αθθ

VTED = T. V (1008.091 ; 933.329)

Coordenadas de TE

3.- Cálculo de las coordenadas de dos puntos que distan, en desarrollo a la tangente de entrada 30 y 90 m respectivamente, a partir del centro de la curva circular y desde la tangente de salida.

Calculo de las coordenadas de los puntos desde el centro:

50.129100 =+= eOTE θθ

93== RDOTE

Coordenadas del centro desde TE : O (1063.9776;837.119)

Cálculos auxiliares:

RD

p ⋅⋅⋅

α2

400 donde D es el desarrollo sobre la curva ,R es el radio de la curva , pα es el

ángulo comprendido entre la tangente de entrada y el punto genérico P.

De esta forma obtendremos 30α para el punto que dista 30 m y un 90α para el que dista 90 m.

30α =20.536 g

90α =61.6083 g

Page 9: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

9

Coordenadas de los puntos:

50.329200 =+= OTE

TEO θθ g

036.3503030 =+= αθθ TE

OOg

1083.3919090 =+= αθθ TE

OOg

939030 === RDD OO m

Calculando desde el centro las coordenadas son las siguientes:

30P (998.2538 ; 902.9100)

90P (1051.0304 ;929.2062)

Coordenadas de los puntos desde TS:

50.303200 =++= GiroVTE

VTS θθ g

464.5330´

30 =−= αααTSg

3917.1290´

90 =−= αααTSg

Calculo de la cuerda de los puntos ( PTSD ):

2´2´ αsenRC ⋅⋅=

8273.75´30 =C m

0735.18´90 =C m

gTSVTSTS 768.276

2

´3030 =−=

αθθ

gTSVTSTS 3041.297

2

´9090 =−=

αθθ

Conocidos los acimuts y las distancias a los puntos desde la TS obtenemos las siguientes coordenadas:

30P (998.2549 ; 902.9106)

90P (1051.031 ; 929.206)

Page 10: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

10

4.-Datos de replanteo de dichos puntos desde la tangente de entrada.

Obtenidos anteriormente tenemos,

30α =20.536 g

90α =61.6083 g

Calculamos la cuerda como hicimos anteriormente,

22 αsenRC ⋅⋅=

Obteniendo,

8699.2930 =C m

5288.8690 =C m

Estas serán las distancias de replanteo para los puntos que distan 30 y 90 metros.

Calculo de los acimuts de replanteo:

gETE 768.39

23030 =+=

αθθ

gETE 3041.60

29090 =+=

αθθ

Page 11: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

11

PROBLEMA Nº 3. Curvas en “S” con tramo recto intermedio

Dado el trazado en Planta del proyecto de una Vía Férrea, del cual se conoce:

Algunos datos geométricos del Eje en Planta del Trazado, coincidente a la vez con el Eje de la vía derecha (visto en sentido de avance del proyecto). Ver croquis adjunto.

Se pide:

Calcular las coordenadas de la T.S. de la Curva Circular de R=-1950m.; y la T.E. de la Curva Circular de R=190m. y del PK 0+743 desde la Te2

Page 12: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

12

PLANIMETRIA

X=661.09mY=88.02m

TEAz= 94.1098

O1O2

R2=190mR1=1950m

b

TS

c

a

a

Az= 192.1973

TE

TS Az= 97.6612

X=735.58mY=95.60m

Coordenadas O1 - O2 :

ggE

OTE 1098,3941001

1 =−= θθ ggS

OTS 6612,1971002

2 =+= θθ

mRD 19501 == mRD 1902 ==

DO1-O2 =2140.004m

θO1-O2 =192.1973g

b2 + a2 = c2 a2 = c2 – b2 a = 4.13763m

α = 0.123088g cosα = 2140 / 2140.004 α = 0.12309g

• Coordenadas TS : desde O1

• Coordenadas TE : desde O2

Xo1 = 480.927 m Yo1 = 2029.679 m

Xo2 = 742.559 m Yo2 = -94.272 m

θO1-TS = θO1-O2 + α DO1-TS =1950 m

XTS = 715.587 m YTS = 93.850 m

θO2-TE = θO2-O1 + α DO2-TE =190 m

Page 13: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

13

θTS-TE = 92.335g (redondeo) debe ser: 92.320388g

DTE-TS = 4.138 m

• Coordenadas Pk0+743 : gTS

OTEO 7894,11

11

11 =+= θθα

gTEO 1098,1941

1 =θ

gTSO 3204,1921

1 =θ

Desarrollo de la C.C.1., obtengo el PK de la TE2.

mRD 810,54400

7894,1*1950**2400

***2 11 ===παπ

Distancia de TS1 a TS2

mDTETS 138,42

1 =

mPKTE 325,67401 +=

mDPKPK TETE 135,729111 =+=

mDPKPK TETSTSTE 273,7332

112 =+=

Ahora, con el PKTE2 puedo calcular el desarrollo hasta PK 0+743:

D=743-733,273=9,727m

Y con el desarrollo obtengo δ para luego sumárselo al 22

TEOθ y obtener las coordenadas del

Pk 0+743:

400***2 2 δπ RD =

400*190**2727,9 δπ

= g2592,3=δ

gTEO

PKO 5798,3952

27430

2 =+=+ δθθ mRDPKO 1902

74302 ==+

XTE = 719.695 m YTE = 94.347 m

X0+743 = 729.376 m Y0+743 = 95.270 m

Page 14: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

14

PROBLEMA Nº 4. Circulares. Enlace de alineaciones circulares

Se quiere realizar el estudio del enlace de dos alineaciones circulares exteriores con el mismo sentido de curvatura.

Se propone el enlace mediante dos soluciones:

1.- Utilizando una alineación recta

2.- Utilizando una curva circular de radio R3= 850 m

Datos:

Curva circular 1

R1 = 190 m

Coordenadas del centro C1 (2990.5989; 904.5324)

Curva circular 2

R2 = 420 m

Coordenadas del centro C2 (3759.2879; 1149.1444)

Calcular:

- Coordenadas de los puntos de tangencia

- Longitud de los tramos utilizados

RESOLUCIÓN

1.-Utilizando una alineación recta.

C2

C1

T1

T2

Page 15: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

15

Conocidas las coordenadas de 1C y de 2C obtenemos su distancia y su orientación:

gcc 3866.8021 =θ mDc

c 672082.80621 =

Según el dibujo obtenemos:

21

12

21

2ccD

RRCCPCsen −

==α

21

1

21

1cos cc

Pc

DD

CCPC

==α

α=18.4068 g

Conocido α obtenemos pcD 1 =773.1869m y gc

cp

c 97976.61211 =−= αθθ

Cálculo de las coordenadas de T1 desde 1C .

gpc

TEc 97976.36110011 =−=θθ

mRDTEc 19011 ==

Obteniendo las coordenadas de T1(2883.753;1061.644)

Cálculo de las coordenadas de T2 desde 2C .

gTEc

TSc 97976.36112 ==θθ

mRDTSc 42022 ==

Obteniendo las coordenadas de T2(3523.102;1496.443)

Page 16: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

16

2.-Utilizando una curva circular de radio mR 8503 =

T1

T2

C1

C2

C3

mRRDmRRD

mD

cc

cc

cc

660

430

67082.806

1313

2323

21

=−=

=−=

=

Resolviendo el triangulo con los lados conocidos, obtendremos:

g

g

39083.10373436.35

=

=

β

α

Calculo de 3C :

gcc

cc 1209.1162

13

1 =+= αθθ

mRRDcc 66013

13 =−=

Las coordenadas de 3C (3629.551; 739.183)

Cálculo de las coordenadas de T1desde 1C .

gcc

TEc 1209.3162003

11 =+=θθ

mRDTEc 19011 ==

Obteniendo las coordenadas de T1(2806.658;952.133)

Cálculo de las coordenadas de T2 desde 3C .

gTEc

TSc 5117308.1913 =+= βθθ

mRDTSc 85033 ==

Obteniendo las coordenadas de T2(3886.007;1549.572)

Page 17: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

17

PROBLEMA Nº 5. Circulares. Curvas de dos centros

Datos:

Estado de alineaciones:

- VEA-1: (x=832.707; y=1075.834)

- VEA-2: (x=852.314; y=1176.210)

- VEA-3: (x=1090.645; y=1183.121)

T3: (x=868.178; y=1160.563).

VEA-2 VEA-3

VEA-1

T2

T3

T4

O2

O1

R2

R2

Calcular las coordenadas planimétricas de T2 T4 y de los puntos kilométricos 1+425 y 1+450, sabiendo que la tangente de entrada T2 es el Pk 1+372,972

RESOLUCIÓN

Son datos conocidos:

-Las coordenadas de los vértices:

Vértice X Y

VEA-1 832.707 1075.834

VEA-2 852.314 1176.210

Page 18: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

18

VEA-3 1078.653 1182.773

-Las coordenadas del punto de tangencia T3, en la curva circular de 2 centros.

Punto X Y

T3 868.178 1160.563

-Distancia 22

TVEAD − = 57.255 m

-Acimuts: 7

1TVEA−θ = 150.7973

73

TVEA −θ = 209.5979

Partiendo de las coordenadas de los vértices, calculo acimuts y distancias:

Vértices Distancia Acimut

VEA-1 – VEA-2 102.273 12.2808g

VEA-2 – VEA-3 226.434 98.1546g

Para calcular los puntos T1 y P1, necesito conocer el radio R1.

R1 lo calculo resolviendo la curva circular correspondiente:

Conozco las coordenadas de VEA-2, el acimut de la alineación VEA-2 a VEA-1 y la distancia de VEA-2 a T2. Calculo las coordenadas de T2:

Punto X Y

T2 841.338 1120.017

Page 19: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

19

Conocidos T2 y T3, calculo distancia y acimut:

Punto Distancia (cuerda) Acimut

T2-T3 48.625 37.2257g

945.2422

132

1 =−= VV

TT θθα

8898.491 =α

C=2*R1*Sen (α1/2)

R1=63.665 m

COORDENADAS DE LOS PUNTOS P2, P3 Y T4

Para hallar las coordenadas de estos puntos debemos resolver el triangulo que se forma en la curva circular de dos centros.

T2VA = R1*Tg 21α =26.306 m

En el triángulo VA- VEA2- VB.

El giro en VEA2 es de 85.8741, luego V= 114.1262

Conocido 1α , podemos saber 2α =35.984

VA-VEA2=30.949 m

;2

2

VAVBSenV

VEAVASen

VAVB= 56.365 m

T3 VB=VAVB-VAT3=30.059 m

Page 20: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

20

;22

21 αα SenVAVEA

SenVBVEA

=

VEA2 VB=40.787 m

VEA2 T4=40.787+30.059= 70.846 m

Conocido el acimut y la distancia de VEA2 a T4 podemos obtener sus coordenadas.

Punto X Y

T4 923.133 1178.263

Calculamos los desarrollos de las 2 curvas:

D= π*R*α/200

Desarrollo C1= 49.892 m

Desarrollo C2= 58.513 m

Situación de los puntos P2 1+425 y P3 1+450:

Primero calcularemos que PK le corresponde al punto T3, que será el PK de inicio más la longitud de la clotoide más el desarrollo de la curva circular de radio 1.

T3= PK(250+122.972+49.892)= PK 1+422.864

Luego P2 está a 2.136 m en desarrollo de T3 y P3 está a 27.136 de T3.

Calcularemos las coordenadas de estos puntos desde O2.

Cálculo de las coordenadas de O2:

Desde T4:

1546.19810032

24 =+= VEA

VEAOT θθ

Page 21: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

21

Distancia = R2= 103.5185 m

Punto X Y

O2 926.134 1074.788

Cálculo de las coordenadas de P2 y P3:

Conocido su desarrollo desde T3, calculo el ángulo β1 y el ángulo β2 en la curva:

D=2.136 = π*R*β1 /200; β1=1.3136

D=27.136 = π*R*β2 /200; β2= 16.688

Conocido el acimut 1709.36232 =T

Oθ y que la distancia a todos los puntos en la curva circular es R2, calculo las coordenadas de P2 y P3:

4845.363132

22 =+= βθθ T

OPO

8589.378232

32 =+= βθθ T

OPO

Punto X Y

P2 869.960 1161.740

P3 892.386 1172.651

Page 22: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

22

PROBLEMA Nº 6. Circulares. Curvas de dos centros

Dado el estado de alineaciones determinado por las coordenadas de los vértices: V1,V2,V3 y V4, encajar el siguiente diseño geométrico de carreteras.

V2

T1

V1

α

T2

R1

O1

T3

I II

V'

V3

T4V''

T5

T3'

O4

R4

R2

O2R3

O3

β1

β

β2

V4

Curva I:

Curva circular de radio R1= 117.9383 m

A partir de la tangente de salida de Curva I,T2, tramo recto hasta T3.

Curva II:

En un principio se había proyectado una sola curva circular de radio R2= 147.4022 m.

En su trayectoria hay una edificación de interés artístico que se pretende conservar, lo cual obliga a modificar el trazado, optando por dos curvas circulares. Sin modificar el estado de alineaciones.

Se conservarán los puntos de obligado paso:

-T3, punto de salida del tramo recto.

-T4, punto de coordenadas conocidas.

ESTADO DE ALINEACIONES

Las coordenadas de los vértices son:

VÉRTICE X Y V1 342.1059 360.8236 V2 478.7639 458.2610 V3 663.6712 262.6088 V4 969.6336 491.9259

Las coordenadas del punto de paso obligado son:

PUNTO X Y T4 679.956 298.6627

Page 23: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

23

CALCULAD:

A) Coordenadas de T1, T2, T3, T5.

B) Sabiendo que a T1 le corresponde el Pk. 2+300, calcular las coordenadas de los Pks 2+400, 2+500, 2+600

RESOLUCIÓN

a)Cálculo de las coordenadas de T1,T2,T3 Y T5:

A partir de las coordenadas de los vértices del estado de alineaciones se obtienen los valores de acimuts y distancias entre ellos:

ACIMUTS Cent. V1-V2 60.5678 V2-V3 151.797 V3-V4 59.054

DISTANC. METROS V1-V2 167.837 V2-V3 269.2034 V3-V4 382.3602

T1=? , T2=?

7708.108ˆ 32

122 =−= V

VVVV θθ

2292.91ˆ200 2 =−= Vα

Tangente de entrada y salida:

mTgRVTVT 7144.1022

*12221 ===α

Coordenadas de T1 y T2 desde V2:

1310.395)*( 212121

=+= VVVT SenVTXX θ

6305.399)*( 212121

=+= VVVT CosVTYY θ

Page 24: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

24

3151.549)*( 212222 =+= V

VVT SenVTXX θ

6100.383)*( 212222 =+= V

VVT CosVTYY θ

T3=?

257.107200ˆ 43

323 =+−= V

VVVV θθ

743.92ˆ200 3 =−= Vβ

mTgRVT 489.1312

*233 ==β

Coordenadas de T3 desde V3:

3556.573)*( 233333 =+= V

VVT SenVTXX θ

1726.358)*( 233333 =+= V

VVT CosVTYY θ

T5=? R3=?β1=?

2*2 1

334β

SenRTT =

0863.1222234 =∆+∆= YXTT

4139.13243 =T

β1V2

T3200−β1

V''

T5

O4

R4

R3

β1

β1/2

V3

Ο3

V4

V''

T4

β2

Page 25: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

25

3831.192

43

32

1 =−= TT

VV θθ

β

7662.381 =β

6220.2033 =R

?2 =β

9768.5312 =−= βββ

?''4 =VT

mTgRVTVT 986.632

*'' 1343 ===

β

Coordenadas de V’ desde T3:

3056.617)'*( 3233' =+= V

VTV SenVTXX θ

6686.311)'*( 3233' =+= V

VTV CosVTYY θ

5028.67' 223 =∆+∆= YXVV

44 '''''' TVVVVT −=

V'β1

T4

V3

β2 V''

T5

β2

O2

R2

Page 26: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

26

?''' =VV

Por el Teorema del Seno:

4351.89''''

ˆ'''

2

3

3

=⇒= VVSen

VVVSen

VVβ

4491.25''4 =VT

mTgRVT 986.632

*'' 244 ==

β

391.564 =R

5353 '''' TVVVTV −=

Por el Teorema del Seno:

4908.51''ˆ'''''

331

3 =⇒= VVVSen

VVSen

VVβ

940.7653 =TV

Coordenadas de T5 desde V3:

238.725)*( 433535 =+= V

VVT SenVTXX θ

753.308)*( 433535 =+= V

VVT CosVTYY θ

b)Cálculo de Pk. 2+ 400, 2+500 y 2+600:

Page 27: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

27

Calculamos los desarrollos de las curvas I y II:

Desarrollo de la curva I:

008.169200

** 11 ==απ RD

-Desarrollo de la curva II:

La curva II está compuesta por dos curvas, de radios R3 y R4, luego el desarrollo total, será la suma de D2 y D3:

993.123200

** 132 ==

βπ RD

812.47200

** 243 ==

βπ RD

El punto de tangencia de entrada de la curva I, T1, se encuentra en el P.k. 2 + 300, a partir de este dato y conociendo los desarrollos de las curvas y la longitud del tramo recto, podemos situar los P.k. en sus tramos correspondientes:

P.k. 2 + 400, pertenece a la curva I.

P.k. 2 + 500, pertenece al tramo recto.

P.k. 2 + 600 pertenece en la curva II, a la curva de radio R3.

CÁLCULO COORDENADAS DEL P.k. 2 + 400.

Pk T1=2+300

D1 = 169.008 m

200** 1

pp RD

απ=

Dp= 100 m

979.53100200

*9383.117* =⇒== pp

pD αα

π

9895.262

=Pα

Page 28: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

28

031.972

**2 1 == Pp SenRC α

Conocida la distancia T1 al P.k. 2 + 400, necesitamos el acimut:

5573.872

21

4002..1 =+=+ PV

VKP

θθ

3146.490)*( 4002..114002.. =+= +

+KP

TPTKP SenCXX θ

4746.418)*( 4002..114002.. =+= +

+KP

TPTKP CosCYY θ

COORDENADAS DEL P.k. 2+500:

008.4692.... 112 +=+= DTkPTkP

mTVTVVVTT 3533223232 =−−=

992.30008.4695005002.... 2 =+=+kPTkP

32

5002..2

VV

kPT θθ =+

Conocido azimut y distancia podemos calcular las coordenadas:

6025.570)*5002....( 5002..2225002.. =++= +

+KP

TTKP SenKPTkPXX θ

0856.361)*5002....( 5002..2225002.. =++= +

+KP

TTKP CosKPTkPYY θ

COORDENADAS DEL P.k.2+600:

008.5042.... 3223 +=+= TTTkPTkP

001.6282.... 234 +=+= DTkPTkP

Luego el P.k. 2+600 está en la curva de radio R3.

232

6002..3

pVV

kPT

βθθ −=+

Page 29: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CIRCULARES Autores: Ricardo López Albiñana - Luis Blanch Puertes

29

0117.302

**992.95 3 =⇒== PP

P RD ββ

π

7911.1366002..3 =+kP

La distancia medida sobre la cuerda:

1056.952

**2 3 == PP SenRC

β

Las coordenadas de P.k.2+600 serán:

0165.653)*( 6002..336002.. =+= +

+KP

TPTKP SenCXX θ

2186.306)*( 6002..336002.. =+= +

+KP

TPTKP CosCYY θ

Page 30: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

TR

AN

SIC

IÓN

EN

PL

AN

TA

. CL

OT

OID

ES

CURVAS DE TRANSICIÓN EN PLANTA. CLOTOIDES

Page 31: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CLOTOIDES Autores: Ricardo López Albiñana - Luis Blanch Puertes

31

PROBLEMA Nº 7. Clotoides. Elementos de la clotoide

Calcular los elementos de la clotoide que enlaza con un círculo de radio “R”, con la alineación recta CV por medio de un arco de transición de desarrollo “L”.

Datos:

R= 100m → (radio en “F”, es positivo, porque la curva gira a derechas)

L= 100m → (longitud de transición, en metros)

C = (1000;1000) → Coordenadas del punto de comienzo de la clotoide.

θE =325.4220g → Acimut de entrada

Se pide:

Calcular los elementos que definen la clotoide.

Obtened las coordenadas absolutas del punto F y del centro del circulo osculador O

RESOLUCIÓN:

Se trata de obtener:

Α → Parámetro de la clotoide

σ→ Ángulo polar τ→ Ángulo girado

(XO,YO) → coords. Absolutas del centro de la curva circular tangente a la clotoide en el

punto F

(XF,YF) → Coords. punto final absolutas y coordenadas relativas (Xf,Yf)

TL→ Tangente larga Tc→ Tangente corta ΔR→ retranqueo de la curva

SL→ Cuerda o distancia polar.

Aplicando la Ley de Curvatura :

A2 = L*R = lp*rp

El valor del parámetro A :

A2 = L*R = 100*100 → A= 100

τ → ½* (A2/ R2) = ½*(1002/1002) = 0.5 radianes hay que pasar a grados → 31.8310g

σ→ 10.5877g SL→ 98.8933 m

Page 32: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CLOTOIDES Autores: Ricardo López Albiñana - Luis Blanch Puertes

32

ΔR→ 4.1297 m TL→ 67.5611 m Tc→ 34.1480 m

(Xf,Yf) → (97.5288; 16.3714) m coordenadas relativas

(XF,YF) → Coordenadas Absolutas , desde C :

XF = Xc + SL* sen θCF= 903.7794 m

YF = Yc + SL* cos θCF = 1022.8358 m

θCF= θE- σ = 325.4220g - 10.5877g =3 14.

ΔR = Yf + R*cosτ - R = 16.3714 + (100*cos 31.8310) – 100 = 4.1297m

σ = arctg (Xf / Yf) = arctg ( 16.3714/97.5288) = 10.5877g

Tc = Yf / sen τ = 16.3714 / sen (31.8310) = 34.1480 m

TL = Xf – Tc * cos τ = 97.5288 – 34.1480* cos ( 31.8310)= 67.5611 m.

Coordenadas relativas del centro de la curva circular tangente a la clotoide en el

punto “F”, (Xo,Yo) :

Yo =R+ ΔR = 100+4.1297 =104.1297 m.

Xo = Xf –NH = 97.5288-47.9425 = 49.5862 m.

NH = R * sen τ = 100* sen (31.8310) = 47.94256 m

SL= Xf 2 + Yf

2 = (97.522) 2 + (16.3714) 2 = 98.8933 m.

Coordenadas absolutas del centro, para ello calcularemos las coordenadas del punto N y a partir de este sacaremos las del centro.

Coordenadas de N: desde C podemos sacarlas ya que tenemos el acimut= θE =325.4220g

y la distancia que será Xo =49.5862m

XN = 954.3151164m

YN = 1019.279073m

Ahora ya podemos sacar las coordenadas absolutas del centro:

θNO = θE - 100 =225.4220g y la distancia será Yo= 104.1297m

XO = 954.3151164m

YO = 1019.279073m

Page 33: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CLOTOIDES Autores: Ricardo López Albiñana - Luis Blanch Puertes

33

PROBLEMA Nº 8 Clotoides. Puntos de la clotoide

A partir de los datos y croquis que se adjuntan, CALCULAR:

1- El parámetro “A”.

2- Las coordenadas absolutas de un punto “P” que dista desde C (comienzo de clotoide) en desarrollo 66,42m.

4-Datos para efectuar el replanteo del punto “P” desde V.

El sistema es simétrico y centrado respecto a la bisectriz V-O.

Datos:

F-F’ (en desarrollo)= 58,32m.

O ( X= 310 ; Y= 410).

R=100m

V ( X= 464,1326 ; Y= 398,0717). gC

V 0446,257=θ

gCV 7892,352' =θ

RESOLUCIÓN:

V=95,7446g.

=+= ταω 2 giro total.

V−= 200ω ; Giro total= 104,2554g.

400*2 ατ −= Rd ; g1276,37=α .

.5638,332

1276,372554,104 g=−

RL

2τ ; L=105,444m.

R*L=A2; A=102,6664m.

Con el programa:

C'

F'

F

VO

C

Page 34: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CLOTOIDES Autores: Ricardo López Albiñana - Luis Blanch Puertes

34

Xf=102,551 587,4=∆R X0=52,237

Yf=18,166 SL=104,147 Y0=104,587

TC=36,106 TL=71,348 161,11=σ

T=X0+Y0*tang 2ω = 164,0595

C=(336,024;295,584)

2)

66,42*rp=102,66642 → rp=158,693 → 439,4=pσ .

→ Slp=66,291.

gv

CP

C 6060,52=−= σθθ

PPC SlD = P=( 384,778; 340,501).

Page 35: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CLOTOIDES Autores: Ricardo López Albiñana - Luis Blanch Puertes

35

PROBLEMA Nº 9. Enlace en Punta Se pretende replantear una serie de puntos pertenecientes a un tramo de carretera. Su geometría queda determinada por un sistema compuesto por un tramo recto y dos ramas de clotoide en punta, de vértice común, y simétricas respecto a la bisectriz (ver croquis adjunto).

El tramo de la carretera está formado por dos carriles en el sentido de avance, y uno en sentido contrario. Sabemos que el ancho de cada carril es de 3,5 m.

El arcén es de 1 m de ancho y tiene una pendiente de -0.04.

El eje de la carretera coincide con el eje que separa ambos sentidos de circulación.

La rasante de la carretera está 20 cm por encima del terreno en el origen del tramo (Pk 0+000) y tiene una pendiente longitudinal de 1% descendente en sentido de avance y un bombeo del 2%.La cuneta tiene un talud de 1,5 (3/2)

Las coordenadas planimétricas del Pk 0+000 son: X=100; Y=100.

El tramo recto tiene una longitud de 54 m.

Se pide:

Calcular los datos de replanteo del eje de los Pks 0+058, 0+062, 0+066, y 0+072 desde un vértice de coordenadas (110;110;50) y el fondo de la cuneta, correspondiente a los ( puntos 1,2,3,4,5,6,7 y 8 representados en el croquis adjunto) y el Pk 0+000.

Calcular la profundidad de excavación en los puntos replanteados.

Page 36: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CLOTOIDES Autores: Ricardo López Albiñana - Luis Blanch Puertes

36

RESOLUCIÓN:

Planimetría

Datos de partida:

R = 16m (Radio de la clotoide)

Coordenadas del Pk 0+000: (100; 100)

Coordenadas del vértice de replanteo VR: (110; 110; 50)

Longitud del tramo recto es de 54m.

Acimut de entrada=ϑ E = 20g;

V = 136.3380 g es el ángulo en el vértice. ¡OJO! No confundir con el ángulo girado

Se trata de un tramo de de una carretera, en cuyo eje se sitúa el Pk 0+00 de coordenadas conocidas, el acimut de la alineación de entrada es conocido y sabemos que la distancia del tramo recto antes de entrar en la clotoide es de 54 m. Por lo tanto, conocemos la situación del punto de entrada del primer ramal de clotoide que se sitúa en el Pk 0+054= C = Te.

Podemos calcular las coordenadas del Pk 0+054, a partir de las coordenadas del Pk 0+00 y sabiendo el acimut de entrada y la distancia entre los dos puntos, que resultarán:

ϑ E = ϑ Pk0+00 Pk 0+054 =20g

D = 54m. Pk 0+00 = (100; 100)

Obtenemos:

XPk 0+054 = 116.6869177m ≈ 116.687m.

YPk 0+054 = 151.3570519m ≈ 151.357m.

Queremos obtener los datos de la clotoide, para ello necesitamos conocer al menos 2 datos. Tenemos el radio R=16m, necesitaremos saber “L”(longitud de la clotoide) o “τ”(ángulo de giro de la clotoide).

Podemos sacar τ :

200 g = V +2τ

C V 200 g = 136.338g +2 τ

2τ 2 τ =63.6662g

τ =31.831g

Page 37: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CLOTOIDES Autores: Ricardo López Albiñana - Luis Blanch Puertes

37

Con τ y R sacamos los parámetros necesarios de la clotoide:

A = 16m τ =31.831g σ = 10.588g Sl=15.823m

R = 16m es el desarrollo de la clotoide.

Con estos datos podemos calcular las coordenadas del Pk 0+058, a partir del punto de entrada de la clotoide 1 (”C”) situado en el Pk 0+054 que ya conocemos.

Necesitaremos saber el acimut de entrada y la distancia entre los dos puntos, Pk 0+054 y

Pk 0+058 para ello, obtendremos los datos que necesitamos que resultarán:

Aplicando la ley de curvatura de la clotoide en ese punto, sacaremos el radio en ese punto:

A2 = R*L = rp*lp

Para A=16m y lp= 4m ; rp= A2/ rp rp= 64m.

Particularizando para estos datos (rp y lp , obtendremos los valores necesarios para σ y Sl en ese punto.

σ = 0.6631 g y Sl = 3.9998m

Así obtenemos las coordenadas del Pk 0+058:

ϑ Pk0+054 Pk 0+058 = ϑ E + σ = 20g + 0.6631 g = 20.6631 g

D = SL Pk 0+058 = 3.999m.

XPk 0+058 = 117.9623059m ≈ 117.962m.

YPk 0+058 = 155.1471973m ≈ 155.147m.

Del mismo modo podemos calcular las coordenadas de los Pks que faltan, teniendo en cuenta, el particularizar en cada caso para cada punto.

Así las coordenadas de los Pks siguientes serán:

Pk 0+062 :

Page 38: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CLOTOIDES Autores: Ricardo López Albiñana - Luis Blanch Puertes

38

Para A= 16m y lp= 8 m ; rp= A2/ rp rp= 32 m.

σ = 2.6522 g y Sl = 7.994m ≈ 8m.

Obtenemos las coordenadas del Pk 0+062 :

ϑ Pk0+054 Pk 0+058 = ϑ E + σ = 20g + 2.6522 g = 22.6522 g

D = SL Pk 0+058 = 7.999m ≈ 8m

XPk 0+062 = 119.4719216 m ≈ 119.472 m.

YPk 0+062 = 158.8506402 m ≈ 158.850 m.

Pk 0+066 :

Para A= 16m y lp= 12 m ; rp= A2/ rp rp= 21.3333 m.

σ = 5.9644 g y Sl = 11.958m ≈ 12m.

Obtenemos las coordenadas del Pk 0+066 :

ϑ Pk0+054 Pk 0+058 = ϑ E + σ = 20g + 5.9644 g = 25.9644 g

D = SL Pk 0+058 = 11.958m ≈ 12m.

XPk 0+066 = 121.4299567 m ≈ 121.430 m.

YPk 0+066 = 162.3341638 m ≈ 162.334 m.

Pk 0+070 :

Para A= 16m y lp= 16 m ; rp= A2/ rp rp= 21.3333 m.

σ = 5.9644 g y Sl = 11.958m ≈ 12m.

Obtenemos las coordenadas del Pk 0+066 :

Page 39: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CLOTOIDES Autores: Ricardo López Albiñana - Luis Blanch Puertes

39

ϑ Pk0+054 Pk 0+058 = ϑ E + σ = 20g + 5.9644 g = 25.9644 g

D = SL Pk 0+058 = 11.958m ≈ 12m.

XPk 0+066 = 121.4299567 m ≈ 121.430 m.

YPk 0+066 = 162.3341638 m ≈ 162.334 m.

FALTAN LAS COORDENADAS DE C’

Pk 0+072 :

Para A= 16m y lp= 14 m ; rp= A2/ rp rp= 18.2857 m.

σ = 8.11342 g y Sl = 13.909 m

Obtenemos las coordenadas del Pk 0+072:

ϑ Pk0+086 Pk 0+072 = ϑ s + 200-σ0+072 = 83.662g + 200 - 8.11342 g = 275.5486 g

D = SL Pk 0+072

= 13.909 m.

XPk 0+066 = 121.4299567 m ≈ 121.430 m.

YPk 0+066 = 162.3341638 m ≈ 162.334 m.

Page 40: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CLOTOIDES Autores: Ricardo López Albiñana - Luis Blanch Puertes

40

PROBLEMA Nº 10. Clotoides. Enlace con círculo central

Se desea unir el vial principal de un polígono industrial con una carretera secundaria. Con el trazado se pretende utilizar un paso superior existente formado por un tramo de curva circular.

Tras el estudio de la situación se opta por realizar el enlace mediante un sistema simétrico y centrado respecto a la bisectriz O-V.

De los proyectos existentes se extraen los siguientes datos:

XO = 1000,000 m XVE = 950,000 m θB A

YO = 1000,000 m YVE = 1050,000 m

=150,2641g

Para poder calcular el encaje, se obtiene a partir del vértice VE, perteneciente a una red de bases materializadas en el terreno, los siguientes datos de campo:

θF E = 120,4833g θF'

E

D

= 137,4050g

F E = 158,114 m DF'

E

Calculad:

= 168,360 m

1.- Coordenadas absolutas de un punto “Q” que dista, en desarrollo, 70 m del punto C (origen de la clotoide de entrada).

2.- Coordenadas absolutas de un punto “P” que dista, en desarrollo, 70 m del punto C’ (origen de la clotoide de salida).

3- Calcular las coordenadas de V

4.- Longitud total del enlace.

RESOLUCIÓN

1º El problema consiste en resolver un encaje tipo clotoide-curva circular-clotoide simétrico respecto a la bisectriz O-V.

A partir de los datos de campo se obtienen las coordenadas de F y F’:

XF = 1100,000 m XF’ = 1090,126 m

YF = 1000,000 m YF’ = 956,673 m

Con estas coordenadas y las del centro de la curva circular se obtiene:

θF O = 100,0000g θF'

O

V

C

C'

O F

F'

Puente

R

B

Vial

Vertice Exterior

= 128,5282g

Page 41: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CLOTOIDES Autores: Ricardo López Albiñana - Luis Blanch Puertes

41

DF O = R = 100,000 m DF'

O

= R = 100,000 m

El ángulo τ es el ángulo que forma la alineación A-B con la tangente de la curva en el punto F. Puesto que dicha tangente es perpendicular a la dirección de O-F, se tendrá:

τ = θF O + 100g - θB

A

Dado que ya se conoce τ y R se pueden determinar los parámetros de la clotoide:

= 100g + 100g - 150,2641g = 49,7359g

CLOTOIDE C-F

τ =49,7359g R= 100 m

L=156,250 m ∆R 9,954 m A 125

xF 146,979 m SL 152,052 m xo 76,562 m TL 107,704 m

yF 38,950 m σ= 16,4917g yo 109,954 m TC 55,314 m

Partiendo de las coordenadas del punto F y calculando el acimut θC F y la distancia DC

F

, se determinarán las coordenadas del punto C, origen de la clotoide:

θC F = θB

A

D

+ σ + 200g = 150,2641g + 16,4917g + 200g = 366,7558g

C F

Así:

= SL = 152,052 m

XC = 1024,159 m

YC = 1131,788 m

El punto Q dista 70 m en desarrollo del punto C, luego:

R 100,000 m L 156,250 m

A 125,000 m lP 70,000 m

xP 69,828 m SLP 69,924 m

yP 3,652 m σ P 3,3267g Con estos datos:

Page 42: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CLOTOIDES Autores: Ricardo López Albiñana - Luis Blanch Puertes

42

θQ C= θB

A

D

+ σ P = 153,5808g

C Q

= SLP = 69,924 m

Con todo, se pueden calcular fácilmente las coordenadas de Q desde C, respondiendo al primer apartado:

XQ = 1070,736 m

YQ = 1079,636 m

XV = 1200,074 m

YV = 954,405 m

3º En el tercer apartado se pide determinar la longitud total del enlace y para ello se procederá a calcular el ángulo de la curva circular:

Cu = 44,438 m

α = θF' O - θF

O

= 128,5282 - 100,0000 = 28,5282g

Y, con ello:

LTOTAL = 2·LCLOTOIDE + LCÍRCULO = 2·156,25 + 28,5282g *·R·2π·/400 = 357,312 m

Page 43: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CLOTOIDES Autores: Ricardo López Albiñana - Luis Blanch Puertes

43

PROBLEMA Nº 11. Clotoides. Ovoide.

Se pretende encajar el siguiente diseño de carreteras, tal y como muestra el croquis que se adjunta, enlazando el círculo número 1 con el círculo 2 a través de una clotoide continuando con un círculo para terminar enlazando mediante otra clotoide con el círculo 3.

Datos:

O2=(5000,5000); gO 000,952

2=θ

R1=500m A1=250m.

R2=1200m Desarrollo circular=300m.

R3=400m A2=300m.

Se pide:

1-Calcular la longitud total del sistema (puntos del 1al 4).

2-Coordenadas de los puntos de tangencia 1,2,3,4.

3-Coordenadas de los centros O1 y O3.

4-El punto de tangencia número 1 pertenece al PK 1+000, calcular las coordenadas y los datos de replanteo de los PK 1+060, PK 1+130, PK 1+420 desde O2.

R3= 500 m

R2= 1200 m

Clotoide 2

R1= 400 m

O1

O2( 5000 ; 5000)

O3

Clotoide 1

Circular 1

Circular 2

Circular 3

1

2

3

4

Page 44: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CLOTOIDES Autores: Ricardo López Albiñana - Luis Blanch Puertes

44

RESOLUCIÓN

1)

Clotoide 1:

A2=R*L → (250)2=500*L1 → L1=125m. (L1 va desde el comienzo de la clotoide hasta el punto 1).

A2=R*L → (250)2=1200*L2 → L1=125m. (L2 va desde el comienzo de la clotoide hasta el punto 2).

Longitud clotoide 1 =L1-L2=72,917m. (distancia en desarrollo entre 1 y 2).

Clotoide 2:

A2=R*L → (300)2=400*L3 → L3=225m. (L3 va desde el comienzo de C’

hasta el punto 4).

A2=R*L → (300)2=1200*L4 → L4=75m. (L4 va desde el comienzo de C’

hasta el punto 3).

Longitud clotoide 2 =L3-L4=150m. (distancia en el desarrollo entre 3 y 4).

Curva circular:

D=300m.

Longitud total del sistema=72,917+300+150=522,917m.

2)

X2=6196,301m.

Y2=5094,151m.

400***2 απ RD = ;

400*1200**2300 απ

= ; g9155,15=α .

gOO 0845,792

23

2 =−= αθθ

X3=6135,817m.

Y3=5387,194m.

Page 45: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CLOTOIDES Autores: Ricardo López Albiñana - Luis Blanch Puertes

45

Clotoide 1: g3815,12 =τ

g4605,02 =σ

Sl2=52,082m.= 2CD .

Si gO 952

2 =θ → ggO 1951002

22 =+= θθ .

gEClotoide 6185,193221 =−= τθθ .

gEClotoideC 0790,19421

2 =+= σθθ gC 0790,3942 =θ .

XC=6191,464m.

YC=5146,008m.

Con el programa “Elementos de la clotoide” obtengo los elementos de la clotoide 1 en el punto1.

Punto 1: g9577,71 =τ

g6522,21 =σ

Sl2=124,913m. g

EClotoideC 2707,196111 =+= σθθ

X1=6198,777m.

Y1=5021,309m.

Clotoide 2:

Punto 3:

Si gO 0845,793

2 =θ → gg

O 0845,179100323 =+= θθ .

g9894,13 =τ , g6631,03 =σ

Sl2=74,997m.= '3CD .

ggEClotoide 0793,381200332 =++= τθθ .

gEClotoideC 4108,38032

3' =−= σθθ

gC 4108,180'3 =θ

R1= 500 mO3

Cl. 2

C.C

. 2

3

F

R2= 1200 m

C'

C.C

. 3

Y

X

Page 46: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CLOTOIDES Autores: Ricardo López Albiñana - Luis Blanch Puertes

46

XC’=6158,532m.

YC’=5315,720m.

Con el programa “Elementos de la clotoide” obtengo los elementos de la clotoide 2 en el punto4. g9049,174 =τ

g9643,53 =σ

Sl2=224,210m. g

EClotoideC 1096,375424

' =−= σθθ

X4=6073,087m.

Y4=5523,010m.

3)

Coordenadas de O1: gg

EClotoideO 5762,30110011

11 =++= τθθ .

.50011

1 mRDO ==

XO1=5698,930m.

YO1=5033,687m.

Coordenadas de O3: gg

EClotoideO 1690,26310042

34 =−−= τθθ .

.40033

4 mRDO ==

XO3=5738,182m.

YO3=5304,289m.

4)

Localización de los puntos

PK 1+060 → 1ª clotoide.

PK 1+130 → Curva circular.

PK 1+420 → 2ª clotoide.

Si no hubiésemos calculado las longitudes de las clotoides, tendríamos que haberlo hecho para saber dónde está cada PK.

Page 47: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CLOTOIDES Autores: Ricardo López Albiñana - Luis Blanch Puertes

47

PK 1+060:

Sabiendo que el punto 1 es el PK 1+000, calculo la distancia que hay entre PK 1+060 y C.

L1 = 125 m (desde C hasta el punto 1 (PK 1+000)). 06010001

++

PKPKD = 60m.

0600+PKCL = 125-60 = 65m.

Con el programa “Tabla de clotoides” obtengo:

0601+τ =2,1518g.

.997,640601 mSl =+

g7173,00601 =+σ

gEClotoideC 3358,19406011

0601 =+= ++ τθθ .

X1+060=6197,239m.

Y1+060=5081,268m.

PK 1+130:

Como la longitud de la clotoide 1 es 72,917m, sabemos que entre este PK está en la curva circular. Necesitamos saber a qué distancia de 2 está el PK 1+130.

130-72,917=57,083m.

400**2 απ

=D ; 400

*1200**2083,57 απ= ; g0283,3=α .

gggO 9717,910283,3951301

2 =−=+θ .

.1200213012 mRDO ==+

X1+130=6190,471m.

Y1+130=5150,929m

PK 1+420:

Page 48: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CLOTOIDES Autores: Ricardo López Albiñana - Luis Blanch Puertes

48

420-72,917-300=47,083m.

L4=75m.

.083,122083,47754201' mLC =+=+

Con el programa “Tabla de clotoides” obtengo: g2713,54201 =+τ .

Sl1+420=122,0458Mm. g7570,14201 =+σ .

gEClotoideC 3169,37942012

4201' =−= ++ σθθ .

X1+420=6119,574m.

Y1+420=5431,381m

Solo falta calcular los datos des replanteo desde O2 para cada PK

Page 49: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CLOTOIDES Autores: Ricardo López Albiñana - Luis Blanch Puertes

49

PROBLEMA Nº 12. Clotoides.

Se pretende solucionar la intersección de dos carreteras mediante un paso inferior.

El trazado geométrico para llegar al paso inferior consiste en dos clotoides de curvatura contraria, unidas en forma de “S” y una curva circular.

El trazado comienza en el punto de tangencia “F1” (punto final de la clotoide 1) y pasa por el punto “C” (tangente de entrada común a ambas clotoides y además está alineado con los centros O1 y O2), el trazado continúa por “F2” (punto final de la clotoide 2 y tangente de entrada de la curva circular con centro O2 y termina en el punto de intersección “I” (intersección de la curva circular con la carretera principal), A partir de aquí la carretera sigue el trazado mediante un tramo recto que es tangente a la curva circular en el punto “I”.

El eje del tramo de carretera principal queda definido por la recta PQ que además es tangente a la clotoide 1 en el punto F1.

Datos conocidos: τ1 = τ2 = 30g6400 O1 = (5000 ; 5000) O2 = (4229.951 ; 4783.123) P = (4923.369 ; 3930.482) Q = (3930.482 ; 4946.642)

Se pide: calcular las coordenadas de los puntos F1, C ,F2, I y longitud del itinerario desde F1 hasta I.

Curva Circular

Clotoide 2

Clotoide 1

CARRETERA PRINCIPAL

Tram

o re

cto

O2

F2

F1

P

Q

Recta tangente a ambas clotoides en "C"

O1

I

C

Page 50: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CLOTOIDES Autores: Ricardo López Albiñana - Luis Blanch Puertes

50

RESOLUCIÓN

El radio R1 es la distancia desde O1, a la recta PQ

1ª Calcularemos el acimut de la recta PQ , mediante el incremento de coordenadas:

Acimut de la alineación ⇒ 324g 436485 (PQ) Dist = 1070.809

Como además podemos conocer de la misma manera la distancia desde O1 hasta el punto P, resultando: θ = 210g 6368

dist = 460.783m Como la tangente a el punto F1 es perpendicular a O1, (por ser el punto final de clotoide), el acimut de F1 a O1, su valor será: Acimut de la alineación ⇒ 324g 436485 (PQ) + 100g = 24g 436485, obviamente el acimut de O1 a F1 será 224g 436485, obteniendo el ángulo α, como la resta de los dos acimuts con un valor de 13g 7997

O1 α F1 P

Curva Circular

Clotoide 2

Clotoide 1

CARRETERA PRINCIPAL

Tram

o re

cto

O2

F2

F1

P

Q

Recta tangente a ambas clotoides en "C"

O1

I

C

Page 51: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CLOTOIDES Autores: Ricardo López Albiñana - Luis Blanch Puertes

51

Aplicando el teorema del seno obtenemos la distancia de P a F1 ⇒ 99.1013, ya estamos en condiciones de dar las coordenadas de F1 ⇒ (4831.479 ; 4582.747) Con las coordenadas de F1 y O1, obtenemos el radio de la primera clotoide. Su valor es de R1 = 449.99988 ≈ 450m Solución de la primera Clotoide. Teniendo dos de los parámetros de la clotoide podemos calcular el resto de los parámetros entrando en tablas, como en este caso tenemos R1 = 449.9997 ≈ 450 m, y el ángulo τ1 = 30g6400, es fácil obtener el resto de datos necesarios. L / R = 0.96258399 obteniendo una long. ⇒ L1= 433.165795 El resto de parámetros se calcula de la misma forma. xf1 = 423.2359575 yf1 = 68.35122116 xO1 = 214.9198055 yO1 = 467.2301261 Tc = 147.650814 Tl = 292.358637 Nota ⇒ No es necesario calcular todos los parámetros, solo los que nos hagan falta.

Cálculo de las coordenadas del punto C: Nota ⇒ El punto m1, que se va a calcular, se encuentra en la recta PQ, y no en la clotoide como indica el dibujo. Coordenadas del punto m1 ⇒ El acimut es el de la recta PQ, y su distancia la tangente corta de la clotoide 1.

324g 4365 y con la distancia = 147.650814, tenemos las coordenadas del punto m1 ⇒ (4694.573 ; 4638.041). Con estas coordenadas las coordenadas del punto C se obtienen: siendo el acimut de m1 a C, el acimut de la alineación PQ más τ1 = 30g6400, y la distancia antes dela tangente larga = 292.358637 C ⇒ (4504.968 ; 4860.580)

Solución de la clotoide 2:

Primero calcularemos los acimuts de m1 a C, de m2 a O2, de O2 a F2 y de O2 a C. El acimut de m1 a C ⇒ 355g076376 (por coordenadas) El acimut de m2 a O2 ⇒ 355g076376 – 100g = 255g076376, puesto que nuestro punto m2, es

perpendicular al centro O2. El acimut de O2 a F2 ⇒ El acimut de O2 a m2 menos Tau2 ⇒ 55g076376 – 30g64 ⇒

24g436376 Tau2, es el ángulo que forma F2 O2 m2. El acimut de O2 a C ⇒ 82g5227 y una distancia de 285.7165m (Por coordenadas).

Page 52: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS CLOTOIDES Autores: Ricardo López Albiñana - Luis Blanch Puertes

52

m2 C β F2

α O2 Con el teorema del seno, obtenemos la distancia de C a m2 ⇒ 119.39916, con lo que ya

tenemos los dos parámetros de la clotoide, en este caso tenemos el ángulo τ y Xo al igual que antes y entrando en tablas, obtenemos solo los parámetros que nos hagan falta. Xo / R = 0.47759957 ⇒ R2 = 250

Yo=259,57229 L2= 240.645997 Como conocemos el acimut y la distancia de O2 a F2, podemos obtener las coordenadas de F2 ⇒ (4323.573 ; 5014.931)

Cálculo de las coordenadas de I: Calculamos primeramente el punto m3 (por intersección de rectas (PQ y O2 F2)), obtenemos un punto con coordenadas m3 (4244.723 ; 4819.722), calculamos su acimut y su distancia, como tenemos dos distancias y el ángulo entre las dos alineaciones, obtenemos el ángulo β = 10g09361025 y α = 100 - β = 89.90638975 I m3 α O2

Punto I: Siendo el acimut de O2 a I, sumando el acimut de O2 a F2, menos el ángulo α resultando ⇒

334g 530056 Distancia de ⇒ 250m I ⇒(4015.833 ; 4912.171) Longitud total del enlace Desarrollo de la curva circular = 353.0617 Lt = L1 + L2 + L cc = 433.162795 + 240.645997 + 353.0617 = 1026.870513 m

α = (θ02 a C - θ02 a F2) - τ = 27g44632 β = α − 100 =72g55368

Page 53: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

TR

AN

SIC

IÓN

EN

AL

ZA

DO

. AC

UE

RD

OS

VE

RT

ICA

LE

S

CURVAS DE TRANSICIÓN EN ALZADO. ACUERDOS VERTICALES

Page 54: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS ACUERDOS VERTICALES Autores: Ricardo López Albiñana - Luis Blanch Puertes

54

PROBLEMA Nº 13. Acuerdo vertical. Elementos del acuerdo

A partir de los datos del croquis encajar un acuerdo parabólico de Kv=2000

1. Calcular la Distancia al origen y cota del vértice “V”.

2. Elementos del acuerdo (giro, L, bisectriz).

3. Calcular la cota roja del punto P, sabiendo que este punto se corresponde con el Pk 0+170

A

B

0,0 10 170 330

321

Pterreno

Prr

321,8

324,6

Yp

Z p

T'

T

P1= 4%P2=3%

V

Prc

Xp

Do Distancia origen

Cot

as

giro

rcrr

Recta 1: Recta 2:

m= 0,04 m= -0,03

x=100 x=330

y=321 y=321,8

X=210m

Punto intersección: Y=325,4m=Z

Giro= 07,0%7%4%312 =−=−−=−PP .

L=Kv*θ =2000*0,07=140m → 70m a cada lado de V.

8* 2θKvd = ; .225,1

8)07,0(*2000 2

md ==

0

Page 55: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS ACUERDOS VERTICALES Autores: Ricardo López Albiñana - Luis Blanch Puertes

55

Calcular la cota roja del punto P en el terreno:

ZT1=Zv-T*0,03=325,4-70*0,03=322,6m.

XT1=Xv-T=110-70=40m.

ZT2=Zv-T*0,03=325,4-70*0,03=323,3m.

XT2=Xv+T=110+70=180m.

.3040701 mDPT =−=

.225,02000*2

30*2

22

mKv

XZP ===∆

PPP ZZZRRRC

∆−=

.8,32330*04,06,32230*04,01 mZZ TPRR=+=+=

RRPZ =323,8-0,225=323,575m.

Page 56: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS ACUERDOS VERTICALES Autores: Ricardo López Albiñana - Luis Blanch Puertes

56

PROBLEMA Nº 14. Acuerdo vertical. Puntos secuenciales

Se pretende encajar un acuerdo vertical parabólico de tangentes iguales entre dos rasantes rectas.

DATOS:

Pentrada=1.21% ; Psalida=-5.99%

Pk tangente de entrada= 0+197.008

Pk tangente de salida= 0+ 340.992

Cota tangente de salida = 627.682 m

SE PIDE:

Calcular las cotas de los puntos secuenciales cada 20 metros desde el Pk 0+180 hasta el final del acuerdo. Las cotas de los Pks 0+280 y 0+320 se obtendrán a partir de la tangente de entrada y a partir de la tangente de salida

RESOLUCIÓN:

Longitud del acuerdo = 143.984 m

T=71.992 m

Cota del vértice = 631.9943 m

Cota tangente de entrada = 631.123 m

Pk vértice=0+269

El Pk 0+200 se encuentra a 2.992 m del comienzo del acuerdo

KvX

Z2

22000

2000+

+ =∆ =0.00224

Cota rasante recta del Pk 0+200 Crc0+200= 631.159

Cota rasante curva del Pk 0+200 Crc0+200= 631.1569

Cota rasante curva del Pk 0+280 Crc0+280= 630.4053

Se repite para el resto de puntos.

¡OJO! Cuando se sobrepasa el vértice, es decir a partir del Pk 280 hasta el Pk 340 el cálculo se puede realizar desde la tangente de entrada o desde la tangente de salida.

El cálculo desde la tangente de entrada se obtendrá de la misma forma que los Pks anteriores utilizando como X del Pk la distancia a al tangente de entrada y como pendiente para el cálculo de la cota en rasante recta la pendiente de entrada. Si calculamos la cota del Pk desde la tangente de salida utilizaremos como X del Pk la distancia a la tangente de salida y como pendiente para el cálculo de la cota en rasante recta la pendiente de salida.

Ver resultados en el perfil longitudinal:

Page 57: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS ACUERDOS VERTICALES Autores: Ricardo López Albiñana - Luis Blanch Puertes

57

Page 58: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS ACUERDOS VERTICALES Autores: Ricardo López Albiñana - Luis Blanch Puertes

58

PROBLEMA Nº 15. Acuerdo vertical. Punto de obligado paso

Se pretende encajar un acuerdo vertical parabólico de tangentes iguales entre dos rasantes rectas.

Este acuerdo vertical corresponde a la parte superior del tablero de un puente, cuyo espesor es de 80cm.

La rasante AV tiene una pendiente del –1% y la rasante VB tiene una pendiente del –3.5%.

El acuerdo vertical parabólico tiene un punto de paso obligado que se encuentra a un gálibo de 5m por encima de un punto del terreno cuya posición es (PK 1+500 y una cota de Z=124m)

Datos conocidos:

- Espesor del tablero del puente = 0.80m

- P1= -1%; P2=-3.5%

- Punto de paso obligado del terreno (1+500; 124m)

- Gálibo=5m

- Posición de V (1+480; 133m)

Calcular: Los elementos que definen el acuerdo vertical y las posiciones de los puntos de tangencia.

RESOLUCIÓN:

θ⋅= KvL 025.0=θ KvT 025.02 =

Cálculo a partir de la tangente de salida

2) 2015001 += +XT KvT 0125.0= PX =0.0125Kv-20

Crr1+500= 133-(20 *3.5)= 132.30 m

Crc1+500= Cota terreno + 5 m de gálibo + 0.80 m del espesor tablero

Crc1+500= 124+5+0.8 = 129.80 m

Z∆ = 132.30-129.80 =2.5 m

Page 59: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS ACUERDOS VERTICALES Autores: Ricardo López Albiñana - Luis Blanch Puertes

59

Z∆ =2.5 m

KvX

Z2

215001+=∆ 22 XKvZ =⋅∆ 2.5*2 Kv = (0.0125Kv-20)2

5Kv = 0.000156Kv2-2*0.0125Kv*20 + 400

5Kv = 0.000156Kv2-0.5Kv + 400

0 = 0.000156Kv2-5.5Kv + 400

α = 35127,1 L = 878.18 m

β = 72,878 L =1.821 m Con esta L el punto de obligado paso quedaría fuera del acuerdo

Por tanto

L = 878.18 m

T = 439.09 m

Te (1040.91 ; 137.391)

Ts (1919.09 ; 117.632)

Page 60: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS ACUERDOS VERTICALES Autores: Ricardo López Albiñana - Luis Blanch Puertes

60

PROBLEMA Nº 16. Acuerdo vertical. Punto de obligado paso. Pendiente de un punto

Se pretende encajar un acuerdo vertical parabólico de tangentes iguales entre dos rasantes rectas.

El acuerdo vertical parabólico tiene un punto de obligado paso

Datos conocidos:

Punto de la primera rasante A(300;604)

Punto de la segunda rasante B(610;606)

Vértice (450;610)

Punto de paso obligado del acuerdo vertical P(400; 607,20)

Calcular:

a) Los elementos que definen el acuerdo vertical

b) Puntos de tangencia.

c) Cota y pendiente de un punto Q que dista del origen 500 m

d) Punto de pendiente nula*

*(En acuerdos con rasantes de distinto signo se corresponde con el punto de mayor o menor cota del acuerdo)

RESOLUCIÓN:

Cálculo de las pendientes de las rasantes

04,01506

300450604610

1 === −−P

025,01604

610450606610

2 −=== −−−P

Cálculo DZp

%5,6065,0)025,0(04,0 ==−−=θ

Page 61: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS ACUERDOS VERTICALES Autores: Ricardo López Albiñana - Luis Blanch Puertes

61

CrrP= Cota A+ P1*DP A

= (604+0,04*(400-300)=608 m

PZ∆ = 608-607,20=0,8 m

CrcP= 607,20 m

PZ∆ =0,8 m

KvXZ P

P 2

2

=∆ PP XKvZ 22 =⋅∆ 0,8*2 Kv = X

θ⋅= KvL

2 p

KvT 065.02 = KvT 0325.0= 0,8*2 Kv=(0,0325 Kv-50)2

XP= 0,0325Kv-50

50+= PXT (T=XP+ D VORIGEN - D P

ORIGEN )

1,6Kv= 0,00105625 Kv2-2*0,0325 Kv*50+502

1,6Kv= 0,00105625 Kv2-3,25 Kv+2500

0 = 0.00105625Kv2-4,85Kv +2500

Kv = 4000m L = 260 m.

Kv = 591.716m L =38,462 m. Con esta L el punto de obligado paso quedaría fuera del acuerdo

Por tanto

a) L = 260 m

T = 130 m

b) Te (320 ; 604,8)

Ts (580; 606,75)

C) Cálculo a partir de la tangente de entrada:

Page 62: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS ACUERDOS VERTICALES Autores: Ricardo López Albiñana - Luis Blanch Puertes

62

Un punto con Dorigen = a 500m dista de Te 180,04 m por tanto

KvX

Z QQ 2

2

=∆ 4000*2

1802

=∆ QZ mZQ 05.4=∆

CrrQ= Cota Te+ P1*DQ Te

= 604,799 +(0,04*180)= 612,000 m

CrcQ= CrrQ-DZQ=607,95 m

Cálculo a partir de la tangente de salida:

Un punto con Dorigen= a 500m dista de Ts 80 m por tanto

KvX

Z QQ 2

2

=∆ 4000*2

802

=∆ QZ mZQ 80,0=∆

CrrQ= Cota Te+ P2*DQ Ts

= 606.749+(0,025*80)= 608.75 m.

CrcQ= CrrQ-DZQ= 607,95 m.

Q (500 ; 607,95)

d) Cálculo de la pendiente de un punto

θ⋅= KvL (diferencia de pendientes)para el punto Q QQ KvX θ⋅= KvX

QQ=θ

La pendiente en el punto Q será la pendiente inicial, menos (por ser un acuerdo convexo en el que se pasa de pendiente P1 positiva a P2 negativa) el giro de pendientes producido desde el comienzo del acuerdo hasta la posición del móvil en ese punto.

KvX

QQPP −= 1 11.4001

04.18004,0 −=QP 005,0−=QP =-0,5%.

En el punto Q ya se ha sobrepasado el punto de curvatura nula

Page 63: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS ACUERDOS VERTICALES Autores: Ricardo López Albiñana - Luis Blanch Puertes

63

Cálculo del punto con pendiente nula L punto del acuerdo estudiado con cota máxima

Cálculo a partir de la tangente de entrada:

KvX

nulonuloPP −== 10 KvPX nulo 1= .1604000*04.0 mX nulo ==

mX nulo 160=

4000*21602

=∆ nuloZ mZnulo 20,3=∆

Crr0= Cota Te+ P1*D0 Te

Crc0= Crr0-DZ0=608,000 m

= 604,799 +(0,04*160.044)= 611,2007 m

Por tanto

Punto de P nula (480; 608)

Page 64: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS ACUERDOS VERTICALES Autores: Ricardo López Albiñana - Luis Blanch Puertes

64

PROBLEMA Nº 16. Acuerdo vertical

Dado el trazado en Alzado del proyecto de una Vía Férrea, del cual se conoce:

Algunos datos del perfil longitudinal correspondiente a un tramo que se pretende estudiar compuesto por dos acuerdos verticales de tangentes iguales. Ver croquis adjunto.

Se pide:

1. Calcular los elementos que definen los dos acuerdos verticales y completar las casillas vacías de los PK que están dentro de los acuerdos verticales.

ALTIMETRIA

ACUERDO 1:

P1= 0.331%

P2= -2.5%

θ= 2.831%= 0.02831

Page 65: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS ACUERDOS VERTICALES Autores: Ricardo López Albiñana - Luis Blanch Puertes

65

COTA DE V DESDE PK1+200

44.558+(37*0.00331)=44.68m

COTA DE V DESDE PK1+300

43.105+(63*0.025)=44.68m

Pk1+220 :

Cota rasante recta : 44.558+(20*0.00331)=44.6242m

Cota rasante curva : 44.556m

YRr-Rc = 0.0682= (X1+220)2 / 2*KV ; KV= (X1+220)2 / 0.1364

Pk1+260 :

Cota rasante recta desde Pk1+200 : 44.558+(60*0.00331)=44.7566m

YRr-Rc = 0.6826= (X1+260)2 / 2*KV ; KV= (X1+260)2 / 1.3652 = (X1+260+40)2 /1.3652

X2 = 0.1364*(X2+402+80*X) / 1.3652

0.0999*X2 + 159.8594 + 7.993*X = X2

0.9*X – 7.993*X – 159.8594 ≠ 0 X1+220 = 18.4883

T= X1+220 + 17=35.4883

L= 70.9766

KV= 2507.12 ≅ 2500 (consecuencia del redondeo en las cotas de rasante)

Pk1+240 :

Cota rasante recta desde Pk1+220 : 44.558+(40*0.00331)=44.6904m

Cota rasante curva:

Y= X2 / 2*KV TE=Pk1+201.5117

Y= 38.48832 /2*2500 = 0.2962 CRc = 44.3946m = 44.395m

Page 66: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS ACUERDOS VERTICALES Autores: Ricardo López Albiñana - Luis Blanch Puertes

66

Y= 38.48832 /2*2507.12 = 0.2954 CRc = 44.3937m = 44.394m

Pk1+280 : se encuentra en rasante recta

Pk TS = 1272.4883

Cota rasante recta Pk1+280 : 43.105+(20*0.025)=43.605m

ACUERDO 2:

Page 67: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS ACUERDOS VERTICALES Autores: Ricardo López Albiñana - Luis Blanch Puertes

67

PROBLEMA Nº 17. Acuerdo vertical .Intersección de calles

Definidas dos calles con distinta anchura, se pide dar solución geométrica al trazado en alzado en la zona de la intersección.

Respecto a la Avda. Diputación:

- El ancho total es de 25m, está definida por la sección tipo.

- Consta de una rasante recta que pasa por los puntos A y B.

- El punto “A” pertenece al eje de la calle y la rasante pasa a 0.20m. por debajo de este punto.

- El punto “B” también pertenece al eje y la rasante coincide con la cota del terreno en este punto. ZB= 10.10m.

Respecto a la C/. Marines:

- El ancho total es de 15m., está definida por la sección tipo.

- Forma un ángulo respecto a la Avda. Diputación de 76.0604 g.

- Consta de dos rasantes rectas, cuyo vértice es el punto de intersección de las dos calles.

- El punto “C” se encuentra donde acaba la acera. A partir de este punto hay que hallar el eje de la C/. Marines en función de la sección tipo que se adjunta.

Calculad:

1. El punto de intersección en planta de ambas calles

2. Las coordenadas del punto “C” referidas al eje de la calle Marines (C’)

3. La pendiente del tramo de la C/. Marines que falta por definir hasta el punto de intersección.

4. La cota de final de acera que le correspondería a la parte izqda. del punto “A” según la sección tipo que se adjunta (A’).

5. Las coordenadas en planta de la tangente de entrada y salida de un acuerdo vertical a encajar en la calle Marines. El acuerdo vertical es de tangentes iguales, cuya tangente de salida se encuentra en el eje y enfrente de la tangente de salida de la fachada de la curva “2”.

6. Las cotas rojas de dos puntos situados en la calle Marines, a 6m. a ambos lados del punto de intersección (m1 y m2)

7. Lecturas de mira para el replanteo de los 2 puntos del apartado anterior.

Page 68: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS ACUERDOS VERTICALES Autores: Ricardo López Albiñana - Luis Blanch Puertes

68

Datos:

A( 1000; 1000; 10) B( 1060; 1000; )

C (final de acera) ( 1020; 980; 9.50)

P3 (pendiente) = -1.03 %

VR-1 (1020; 1040; 12 )

Plano de comparación = 13.50m.

1) Punto intersección I

XI = 1035,960m

YI = 1000,000m

ZI = 9,9798m

2) Coordenadas de C’

BAD = 35,96m

Pendiente AB %5,060

80,910,10=

−=

ZI = 9,8 + (0,005*35,96)= 9,9798m

Page 69: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS ACUERDOS VERTICALES Autores: Ricardo López Albiñana - Luis Blanch Puertes

69

XC = 1020m XC’= 1026,976m

YC = 980m YC’= 977,246m

ZC = 9,50m ZC’ = 9,43m (9,50 – 0,04 – 0,03) gC

C 9396,123' =θ

50,7' =CCD

3) 463,24' =ICD m

55,043,99798,9' =−=∆ ICZ m

%25,2100

55,0463,24' ==→

→→ I

CPxxm

mm

4) Cota A’ = Cota A -0,06 + (2,5*0,02) = 9,79m

5)

TCurva circular = R*tan ( α /2) = 29.399

Tacuerdo = 45.799 (ver dibujo)

27,5

(42.

599/

sen

76.0

604)

45,7

99

32,5

B

(27.5*sen 23.9396)

10,0

99

Ts

7,5

R20

12,5

ICPendiente ' = 0,0225

Cota A’= 9,79 m

Page 70: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS ACUERDOS VERTICALES Autores: Ricardo López Albiñana - Luis Blanch Puertes

70

6)

Zv = 9.9798

ZTe = 9.9798 – (45.799*0.0225) =8.949

ZTs = 9.9798 – (45.799*0.0103) =9.508

θ= 0.0103+0.0225 =0.0328

Kv 2T/θ

Kv =2792.622

Xm1 = 45.799-6 = 39.799

Ym1 = X2m1/2Kv = 0.2836

CRRm1= 9.9798 –(6*0.0225) =9.8448 ; CRCm1= CRRm1 -Y m1 =9.561

CRRm2= 9.9798 –(6*0.0103) =9.918 ; CRCm2= CRRm2 -Y m1 = 9.634

7) Lectura m1 = Plano comparación (13.50) - CRCm1 ⇒ Lectura m1 = 3.939

Lectura m2 = Plano comparación (13.50) - CRCm2 ⇒ Lectura m2 = 3.866

TS = (1052.779 ; 1042.599) TE = (1019.141 ; 957.401)

Ym1 = 0.2836

(9.508) Ts

45.799

V-0.0103

m2

-0.0225

(9.9798)

m1 (8.949)Te

Page 71: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

TR

AN

SIC

IÓN

AL

PE

RA

LT

E

TRANSICIÓN AL PERALTE

Page 72: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS TRANSICIÓN AL PERALTE Autores: Ricardo López Albiñana - Luis Blanch Puertes

72

PROBLEMA Nº 18. Transición al peralte

En un tramo de carretera, perteneciente al grupo 2 de la I.C., se pasa de una alineación recta a una curva circular con giro a izquierdas mediante una curva de transición de L=63m.

Datos conocidos:

- Cota de la rasante en el punto de comienzo de la curva de transición = 98.37m

- Pendiente longitudinal del tramo de la recta a la curva = -3%

- La calzada tiene una anchura de 7m y una pendiente transversal única del 2% con sentido contrario al peralte.

- Peralte máximo del 7%

- La transición al peralte se realiza girando alrededor del eje.

Calcular y dibujar:

- 1º) La transición al peralte.

- 2º) La sección transversal de un punto del eje que se encuentra en la curva de transición y dista 37m del punto de comienzo de dicha curva.

- 3º) Representar el diagrama de peraltes correspondiente.

RESOLUCIÓN:

Variación del peralte por metro = %1111.063%7

=

La variación del 2% de peralte desde la Te de la clotoide la alcanzo a los 18 m (X m *0.11% = 2%) por lo tanto si se cumple la exigencia de las carreteras del grupo 2 de la I.C. de alcanzar el 2% de peralte a una distancia máxima de 20 m desde el inicio de la transición en planta.

En consecuencia el desvanecimiento del bombeo también lo efectuaré en 18 m

La cota de la rasante en la TE es 98.37 m

Como la pendiente longitudinal es de un -3% en 18 m el incremento es - 0.54 m

(A) P-1

Cota de la rasante en el eje 98.91

Page 73: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS TRANSICIÓN AL PERALTE Autores: Ricardo López Albiñana - Luis Blanch Puertes

73

Cota B.I.= Cota eje + 2% *3.5

Cota B.D.= Cota eje - 2% *3.5

Cota B.I.= 98.98 m

Cota B.D.= 98.84 m

(TE) P-2 Comienzo de la transición

Cota de la rasante en el eje 98.37

Cota B.I.=Cota B.D.= 98.37 m

(B) P-3

Cota de la rasante en el eje 97.83

Cota B.I.= Cota eje - 2% *3.5

Cota B.D.= Cota eje + 2% *3.5

Cota B.I.= 97.76 m

Cota B.D.= 97.90 m

P-37

Cota de la rasante en el eje =98.37 –(0.03*37)= 97.26

Cota B.I.= Cota eje - 4.111% *3.5

Cota B.D.= Cota eje + 4.111% *3.5

Cota B.I.= 97.116 m

Cota B.D.= 97.404 m

(TS) P-4

Cota de la rasante en el eje =98.37 –(0.03*63) = 96.48 m

B.I.

B.I.

7 %B.D.

2 % B.D.

B.I.

B.D.

4.111 %B.D.

B.I.

B.I.

7 m

B.D.

Page 74: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS TRANSICIÓN AL PERALTE Autores: Ricardo López Albiñana - Luis Blanch Puertes

74

Cota B.I.= Cota eje - 7% *3.5

Cota B.D.= Cota eje + 7% *3.5

Cota B.I.= 96.235 m

Cota B.D.= 96.725 m

Page 75: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS TRANSICIÓN AL PERALTE Autores: Ricardo López Albiñana - Luis Blanch Puertes

75

PROBLEMA Nº 19. Transición al peralte

En un tramo de carretera perteneciente al grupo 2 de la I.C. se pasa de una alineación recta a una curva circular con giro a izquierdas mediante una curva de transición de R= 350 y A= 200.

Datos:

Ancho de la plataforma= 7m

Bombeo = 2%

Peralte máximo =l 7%

La pendiente longitudinales el eje es del 2.8% en sentido de avance

Longitud del tramo recto= 800

El inicio del tramo recto se corresponde con el PK 3+000 y su cota en el eje es igual a 100 m

Se pide:

- Calcular y dibujarla transición al peralte:

Calcular y dibujar las secciones transversales en los Pks P k 3+792, P k 3+814 y P k 3+850

CURVA CIRCULAR

CLOTOIDE

RECTA = 800 m

Averiguamos cuando se produce el peralte del 2% :

A= 200 → A partir de estos datos obtenemos estos valores L= 114.2857 ι= 1.3938

R= 350 →

Page 76: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS TRANSICIÓN AL PERALTE Autores: Ricardo López Albiñana - Luis Blanch Puertes

76

114.2857 → 7% X= 32.653 m

X → 2%

Según I.C. como máximo se ha de producir a los 20m, luego forzamos para que se produzca un incremento del 2% en los 20m ( puesto que es el grupo 2.).

2% 2% 780KP

2% 0% 800KP

820KP 2%

7%

7803 +KP

Zeje = 100+ Z∆ 2% 2%

0.02 * 3.5 = 0.07

BEBI ZZ = = Zeje -0.07 = 100 +21,84-0.07=121.77m

8003 +KP

Zeje = 100 + Z∆ 2% 0%

Z∆ = 800 * 0.028 = 122.4 m

BIZ = Zeje - 0.07 = 122.33 m

7923 +KP

Page 77: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS TRANSICIÓN AL PERALTE Autores: Ricardo López Albiñana - Luis Blanch Puertes

77

ZEJE = 100 + (792 * 0.028 ) = 122.176m

%8,08

%220=→

→→

xxm

m

0.02 – 0.012 = 0.08 = 0.8% = P %

0.08 * 3.5 = 0.028 m = ∆Z

ZBI = ZEJE -0.07 = 122.106 m

ZBD = ZEJE -0.028 = 122.148 m

8143 +KP

%4,114

%220=→

→→

xxm

m

ZEJE =ZPK3+800 + 0,028*14=122,792m

ZBI =ZEJE - 0,02 *3,5=122,722m

ZBD = ZEJE +0,014*3,5=122,841m

8503 +KP

114.2857 -20 = 94.2857

%59,130

%52857,94=→

→→

xxmm

En 8203 +KP → 2 %, luego : 0.02 +0.01591 = 0.0359 = 3.59 % = P %

Page 78: PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) · PROBLEMAS DE TOPOGRAFÍA DE OBRAS (Tomo I) Ricardo López Albiñana . Luis Blanch Puertes

PROBLEMAS TRANSICIÓN AL PERALTE Autores: Ricardo López Albiñana - Luis Blanch Puertes

78

Zeje = 100 + ( 850 * 0.028 ) = 125.8m

IBZ − = Zeje - ΔZ = 123.6744m

BEZ = Zeje + 0.1256 = 123.9256m

Recta

20 m 20 m 94,29 m

-2%-2%-2%

+2%

+7%

+7%

EJE

TE cl TE cc

M.D.

M.I.