preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena...

38
Corso CIGS - Preparativa TEM Modena 18-19 maggio 2009 Preparativa campioni TEM tramite Focused ion beam Claudia Menozzi Dip. Fisica - Università di Modena e Reggio Emilia [email protected]

Transcript of preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena...

Page 1: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Corso CIGS - Preparativa TEMModena 18-19 maggio 2009

Preparativa campioni TEM tramite Focused ion beam

Claudia MenozziDip. Fisica - Università di Modena e

Reggio Emilia

[email protected]

Page 2: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Outline

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

Descrizione del sistema FIB

Modi di utilizzo

Sistemi a doppio fascio (Two-Beam)

Nanomanipolatori

Preparazione di un campione TEM

[email protected]

Page 3: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

È la combinazione tra un microscopio ionico a scansione ed uno strumento per lavorazioni ad alta risoluzione

C’è analogia tra FIB e SEM: entrambi sono fasci focalizzati di particelle cariche

Gli ioni sono estratti da una sorgente a metallo liquido (LMIS), meglio delle FIS

Il metallo più utilizzato è il Gallio, perché: 1) liquido a Tamb; 2) riscaldamento solo per desorbire le impurezze; 3) lunga durata; 4) elevata efficienza di sputtering; 5) emissione prevalente di Ga+

Altri metalli utilizzati sono In, Al e leghe Co/Ni, Au/Si, Pd/As/B. Per quest’ultime è necessario un filtro per separare le diverse specie di ioni.

Focused Ion Beam system: an overview

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

[email protected]

Page 4: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Gli ioni estratti dalla sorgente sono accelerati, collimati e focalizzati da una serie di aperture e lenti elettrostatiche

Le lenti elettrostatiche sono preferite rispetto a quelle elettromagnetiche per la maggior efficienza di focalizzazione di particelle massive

La tensione di accelerazione degli ioni varia tra 5 e 30kV mentre la corrente del fascio varia da 1pA a 20nA

L’interazione ione-materia può essere elastica, nel qual caso si ha lo scavo della superficie del campione, od inelastica ed in questo caso si ha l’emissione di elettroni e ioni secondari

I segnali emessi vengono raccolti e consentono di ottenere un’immagine del campione. La risoluzione varia da 10nm a 100nm, a seconda della dimensione del fascio e del tipo di campione

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

[email protected]

Page 5: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

Lo scavo è il principale risultato nell’utilizzazione di un fascio di ioni relativamente pesanti.

Il sistema FIB può essere convertito in uno strumento per la deposizione, iniettando un gas precursore in prossimità della regione d’impatto del fascio ionico.

5

http://fibics.com/

[email protected]

Page 6: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Field of applications:

circuit and device modifications

repair of optical and x-rays masks

direct maskless implantation

TEM sample preparation

microscopy and SIMS

general nanotechnology applications

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

[email protected]

Page 7: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

FIB vs SEM

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

7

[ref.4]

[email protected]

Page 8: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

8

[ref.4]

[email protected]

Page 9: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Replace electron source with ion source: Liquid Metal Ion Source (Ga+)

Replace magnetic lenses with electrostatic lenses

Add beam limiting aperture for current selection

Add beam blanker for preventing unwanted milling

Add ion and electron detector

Optional extension with gas injectors to induce chemical reactions at the surface: selective etching and deposition

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

9

[ref.6]

[email protected]

Page 10: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Surface modification due to interaction of impinging ions with the sample:

damage (amorphization), erosion (sputtering, milling), implantation (doping)

secondary electrons and ions (imaging, beam induced deposition, SIMS), backscattered ions, photons

Ion-solid interaction

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

10

[ref.2]

[email protected]

Page 11: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

MillingWhen a relatively heavy and high-momentum ions collide with atoms on the sample surface, significant amounts of energy are transferred to the atoms, causing them to break bonds and leave their place in the atom matrix.It adds a third dimension to microscopy, allowing the creation of cross-sections.Sputter selectivity can be achieved through a Gas Assisted Etching (GAE) such as Iodine, XeF2 and selective Carbon Milling

11

[ref.4]

[email protected]

Page 12: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

Pattern scan strategy

D=beam diameterS=step sizeh=overlap

The step size is determined by the software by specifying the beam overlap OL and the magnification M

50% for sputtering and imaging

0% for etching and depositing

-50% for large gas pattern and damage reduction

12

[ref.2]

[email protected]

Page 13: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

[email protected]

Scavo per l’analisi in sezione del campione

Scavo per l’analisi in sezione dei campioni

Rimozione dello strato di passivazione da due contatti elettrici di un dispositivo elettronico

Page 14: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

BeamInducedDeposition

Material are deposited by directing a gaseous compound over the surface where the deposit is to be made.The molecular gas is decomposed by the ion beam, leaving behind metal, insulator or carbon.During BID there are competing processes of layer growth, desorption, dissociation and sputtering.BID is important for mask repair, repair and modification of ICs and maskless production of nanostructures.

14

[ref.4]

[email protected]

Page 15: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

15

Free-space-wiring fabrication in nano-space by focused-ion-beam chemicalvapor deposition

Takahiko Morita,a) Reo Kometani, Keiichiro Watanabe, Kazuhiro Kanda,and Yuichi HaruyamaHimeji Institute of Technology, Graduate School of Science, LASTI, 3-1-2 Koto, Kamigori, Ako,Hyogo 678-1205, Japan and CREST JST, Japan Science and Technology Co., Kawaguchi Center Building,4-1-8, Hon-cho, Kawaguchi, Saitama 332-0012, Japan

Takayuki Hoshino and Kazushige KondoCREST JST, Japan Science and Technology Co., Kawaguchi Center Building, 4-1-8, Hon-cho, Kawaguchi,Saitama 332-0012, Japan

Takashi KaitoSeiko Instruments Inc. 36-1, Takenoshita, Oyama, Shizuoka 410-1393, Japan

Toshinari Ichihashi, Jun-ichi Fujita, Masahiko Ishida, and Yukinori OchiaiCREST JST, Japan Science and Technology Co., Kawaguchi Center Building, 4-1-8, Hon-cho, Kawaguchi,Saitama 332-0012, Japan and NEC Fundamental Research Laboratories 34, Miyukigaoka, Tsukuba,Ibaraki 305-8051, Japan

Tsutomu TajimaCrestec Co. 1-9-2, Owada-machi, Hachioji, Tokyo 192-0045, Japan

Shinji MatsuiHimeji Institute of Technology, Graduate School of Science, LASTI, 3-1-2 Koto, Kamigori, Ako,Hyogo 678-1205, Japan and CREST JST, Japan Science and Technology Co., Kawaguchi Center Building,4-1-8, Hon-cho, Kawaguchi, Saitama 332-0012, Japan

!Received 1 July 2003; accepted 6 October 2003; published 5 December 2003"

Focused-ion-beam chemical vapor deposition !FIB-CVD" is an excellent technology for formingthree-dimensional nanostructures. Various diamond-like-carbon !DLC" free-space-wirings havebeen demonstrated by FIB-CVD using a computer-controlled pattern generator, which is a

commercially available pattern generator for electron-beam !EB" lithography. The material

composition and crystal structure of DLC free-space-wiring were studied by transmission-electron

microscopy and energy-dispersive x-ray spectroscopy. As a result, it became clear that DLC

free-space-wiring is amorphous carbon containing a Ga core in the wire. Furthermore, the electrical

resistivity measurement of DLC free-space-wiring was carried out by two terminal electrodes. Au

electrodes were fabricated by EB lithography and a lift-off process. The electrical resistivity was

about 100 # cm at room temperature. © 2003 American Vacuum Society.

$DOI: 10.1116/1.1630329%

I. INTRODUCTION

Two-dimensional !2D" nanostructure fabrication using

electron-beam !EB" and focused-ion-beam !FIB" techniqueshas been achieved and applied to make various nanostructure

devices such as single-electron transistors and metal–oxide–

semiconductor transistors with nanometer gate length. 10 nm

structures can be formed by using a commercially available

EB or FIB system with 5–10 nm beam diameter and high-

resolution resist. In this way, the technique of two-

dimensional fabrication has been established. Beam-induced

chemical vapor deposition !CVD" is widely used in the elec-trical device industry for repairing chips and masks. We pre-

viously reported 3D plastic art such as wine glasses, bellows,

and coils that were fabricated using FIB-CVD.1 The key is-

sue in making such 3D work is the shallow penetration depth

of the ions !a few tens of nanometers" in the target materials,in which the penetration depth of the ions is much shallower

than that of the electrons !several hundreds of microns". Thisshallow penetration depth reduces the dispersion area of the

secondary electrons, and thus the deposition area is tightly

limited to within about several tens of nanometers. Usually, a

3D structure contains overhang and hollow structures.

Gradual position scanning of the ion beam during the CVD

process caused the position of the preferential growth region

around the beam point to shift. When the beam point reaches

the edge of the structure, secondary electrons appear at the

side of the structure and just below the top surface. After

that, the deposition starts to grow laterally.

The present electronic devices are made by 2D processing

using photo- and EB lithography. Therefore signal transfer

and processing are basically operated through a 2D wiring on

a plane. It was reported that 2D free-space-wiring across a

slot in a Si membrane was produced by FIB-CVD.2 The aim

of this work is to develop 3D device processes to realize a

highly functional 3D information network. For this purpose,

it is necessary to achieve the interconnection between nano-a"Electronic mail: [email protected]

2737 2737J. Vac. Sci. Technol. B 21„6…, NovÕDec 2003 1071-1023Õ2003Õ21„6…Õ2737Õ5Õ$19.00 ©2003 American Vacuum Society

[email protected]

Strutture 3D ottenute per IBID (ion beam induced deposition)

Creazione del contatto elettrico tra le due piste metalliche precedentemente esposte

Page 16: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

Imaging

SE

SI

When ions impinge on the surface, Secondary Electrons and Ions are created very near to the surface.Due to the shorter escape depth, SIM is more sensitive to the surface topography.SE are five orders of magnitude higher than SI, therefore SE are more useful for imaging.In some case, SE are responsible for the majority of sample charging, because it charges positively due to both the impinging positive ions and the expelled negative secondary electrons.

[email protected]

Page 17: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

ChannelingChanneling condition

Random-incidence condition

The emission of ion-induced secondary electrons depends on the relative orientation of the incident beam to the lattice.When channeling occurs, there is reduced sputtering along the channeled axes.

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

[email protected]

Page 18: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

E-beam

I-beam@0 deg

I-beam@22 deg

[email protected]

Page 19: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

Two-Beam systemCombination of FIB’s imaging and sample interaction abilities with the SEM’s high resolution, non-destructive imaging.The two beams are co-focused @ coincidence-point, allowing SEM imaging and FIB sample modification without moving the sample.

FIB SEM

Source type

Energy range

Current range

Resolution@coincidence

Ga+ LMIS SFEG

5-30keV 200eV-30keV

1pA-20nA 1pA-50nA

7nm@30kV2nm@5kV3nm@30kV

19

[courtesy by FEI]

[courtesy by FEI]

[email protected]

Page 20: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

NanomanipulatorsThe incorporation of robotic nanomanipulators in FIB/SEM allows the characterization of nanostructures.FIB system coupled with nanomanipulators form the tool of choice for nanotechnology applications in physical characterization of nanostructures and nanomaterials.Sharpened metal wires are the most common and the most useful nanomanipulation end effector for both electrical and mechanical operations.

20

[ref.5]

[email protected]

Page 21: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

21

[ref.5]

Electrical measurements

Mechanical measurements

TEM sample lift-out

[email protected]

Page 22: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

TEM sample preparationConventional ion-beam thinning is useful in case of homogeneous large samples but is not ideal when the region of interest is smaller than the ion beam.

In FIB system the beam is very small and can be very accurately positioned on the sample.

Moreover, FIB TEM sample preparation requires short preparation time and high success rate.

Two methods:

conventional “H” pattern method, where an initial specimen preparation must be performed before FIB operations;

Lift-Out method, where little or no initial specimen preparation is required.

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

[email protected]

Page 23: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

1. An area of interest is located and cut.2. The sample is then mechanically

polished as thin as possible in order to reduce FIB time.

3. Than the sample is mounted on a TEM grid that has been partially cut.

4. The TEM grid is positioned into the FIB specimen chamber.

5. A metal line is deposited over the area of interest to prevent damage and spurious sputtering of the surface of the sample.

6. Milling is performed on alternate sides of the specimen until the membrane is thinned to 100nm or less.

Conventional “H”method

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

23

prepare thin sections of brittle materials for FIB thinning.

Samples may also be cut to size using a wire saw. The

sample is mounted on a slotted (e.g., 1 mm ! 2 mm) TEMCu grid that has been partially cut away (see Fig. 2). The

sample is then positioned into the FIB so that sputtering may

begin.

A metal line is usually deposited on the area of interest to

prevent damage and spurious sputtering of the top portion of

the specimen and to also delineate the location of the area of

interest. Typical dimensions of the metal line are t 1 !mwide ! 2 !m high ! 30 !m long. Large trenches are sput-

tered on either side of the area of interest using a high Ga!

beam current. To reduce stress in the thin membrane, a

spring may be micromachined into the sample at this time

(Walker, 1998). The beam current is reduced and milling is

performed on alternate sides of the specimen to reduce rede-

position of sputtered material onto the surface of the speci-

men. Milling is continued until the membrane is thinned to

t 100 nm or less (the final thickness of the specimen will

depend on the information sought and the density of the

material(s)). A finished electron transparent portion of the

sample is usually !5 !m ! 20 !m. An example of a TEMspecimen prepared by the conventional FIB technique is

shown in Fig. 3. The dark contrast on the left, bottom, and

right portion of Fig. 3(a) are the trench walls. The “curtains”

or vertical stripes which appear as light and dark contrast in

the micrograph of Fig. 3(a) form due to changes in sputter-

ing rates due to differences in specimen topography. Fig.

3(b) is an enlarged area of Fig. 3(a) which shows Ti/TiN

layers on both the top and bottom of an Al line surrounded

by SiO2. A TEM specimen of a Si-based integrated circuit

may be prepared in less than 1 hour. Multiple TEM speci-

mens may be milled into the same piece of “bulk” material.

This is very useful for analysis of serial sectioning or multi-

ple plan view analyses (Saka et al., 1996; Anderson and

Klepeis, 1997).

L.A. Giannuzzi, F.A. Stevie / Micron 30 (1999) 197–204 199

Fig. 3. Low magnification and high magnification cross-section TEM images of a semiconductor specimen prepared by the conventional FIB method.

(courtesy of R.B. Irwin and J.L. Drown-MacDonald).

[email protected]

Page 24: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

24

http://fibics.com/

[email protected]

Page 25: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

The bulk sample must be small enough to fit within the FIB specimen chamber.Two different techniques: ex-situ LO and in-situ LO.Ex-situ LO: the thin membrane is prepared using FIB, then the entire sample is removed from the FIB and the thin membrane is micromanipulated from the bulk sample to a carbon coated TEM grid.

In this case the micromanipulator system is located under a light optical microscope.

In-situ LO: in this technique the thin membrane is removed from the bulk sample entirely within the FIB instrument.

Lift-Out technique

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

25

[courtesy by FEI]

[email protected]

Page 26: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

1.Pt deposition by ion beam @ 97pA

In-situ Lift-Out

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

[email protected]

Page 27: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

2.Milling of material from the front and back portion of the region of interest (I-beam @6,7nA)

2.bis Schematic of stair-step milling

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

27

www.ifw-dresden.de

[email protected]

Page 28: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

3.Further thinning of the specimen on either side of the Pt strip (I-beam@915pA)

4.Released of the membrane from the bulk by cutting on the bottom and on one side (I-beam@915pA)

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

[email protected]

Page 29: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

6.Final releasing cut of the membrane from the underlying bulk (I-beam@915pA)

5.Approach and weld of nanomanipulator to the sample by IBID (I-beam@97pA)

GAS INJECTOR SYSTEM

NANO-MANIPULATOR

LAMELLA

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

[email protected]

Page 30: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

7.Transfer of the membrane from the bulk to the TEM grid

8.Weld of the membrane to the TEM grid and release of the nanomanipulator

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

[email protected]

Page 31: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

9.Final thinning to 100nm or less (I-beam@30/50pA)

10.Membrane ready for transfered to TEM

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

[email protected]

Page 32: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Copyright : D

.Laub, EP

FL-Lausanne

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

32

Ex-situ Lift-out

[Kleindiek Nanotechnik]

[email protected]

Page 33: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

No TEM sample preparation method is without induction of artifacts.

It is crucial a full understands of the nature and control of the artifacts associated with the method used.

Artifacts induced by ion beam:

Amorphous layer: the degree of ion implantation depends on ion energy, angle of incidence, ion species and target material;

“Waterfall” effect: sputtering yield is sensitive to hardness, atomic number and topology of the surface;

Ga contamination: a fraction of primary ions will be implanted in the specimen.

Artifacts induced by FIB

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

[email protected]

Page 34: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Amorphous layerThere are two kinds of amorphization induced by high-energy ion beam:

1. On the original surface during depositing the protective layer by ion beam

2. On the sidewall of the TEM sample during thinning the membrane

crystalline bulk

amorphous layer

protective layer

FIB

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

34

This is a LIMIT on the minimum thickness that we can reach by preparing sample with FIB.

[email protected]

Page 35: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

35

Amorphization on the original surface can be avoid by depositin a protective layer by electron beam instead ion beam.

[email protected]

amorphous layer

amorphous layer

Page 36: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Amorphization on the sidewall can be reduced by milling with low-energy ion beam.

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

36

30kV 5kV

2kV

TEM SamplePreparation and FIB-Induced Damage

Joachim Mayer, Lucille A. Giannuzzi,Takeo Kamino, and Joseph Michael

preparation can be applied to almost anymaterial type—hard, soft, or combinationsthereof. The number of materials forwhich successful TEM sample prepara-tion with FIBs has been documented cer-tainly reaches several hundred and spansfrom hard matter such as metals, ceram-ics, and composites to soft matter includ-ing polymers, biological materials, andeven frozen liquids.

The main disadvantage of FIBs, how-ever, is caused by the nature of themilling process: the ion collisions initiat-ing sputter removal can also lead to ionimplantation and cause severe damageto the remaining bulk of the material. Asthe FIB lamellae method spreads to moreadvanced TEM techniques, various pro-cedures have been developed to reduceor repair this damage.

In this article, the major specimen prepa-ration techniques are reviewed; the conse-quences of FIB-induced damage arediscussed, along with strategies to reducethe damage; and an overview on applica-tions in materials science and in relatedinstrumental fields is presented.

Specimen Preparation TechniquesSince the first-generation FIBs were

mainly used as semiconductor tools, earlyattempts to prepare TEM specimens in anFIB also focused on semiconductor mate-rials. The initial methods were based onmechanically polishing the sample downto an approximately 50-mm lamella andthen using the FIB to cut two trenches,one from each side, leaving behind a thinelectron-transparent lamella supported bybulk material on two opposite sides(Figure 1).2 Referring to the geometryseen in Figure 1, this method is frequentlycalled the H-bar technique. This methodwas subsequently refined by employing atripod polisher for the initial thinning ofthe thin slab,3 which is particularly valu-able in the case of complex semiconductordevices.

In parallel, techniques were developedthat make it possible to directly removean electron-transparent lamella from abulk specimen without mechanical pol-ishing (see Figure 2). These so-called lift-out techniques were first proposed byOverwijk et al.4 and further developedto a routinely and reliably applicabletechnique for a broad materials rangeby Giannuzzi et al.5 Whereas the firstattempts were based on an ex situ lift-outof the lamella using a micromanipulatorunder an optical microscope, techniquesbased on an in situ lift-out of the lamellaare gaining increasing importance.6Specimens extracted by in situ lift-out canbe shaped in a number of different and

400 MRS BULLETIN • VOLUME 32 • MAY 2007 • www/mrs.org/bulletin

AbstractOne of the most important applications of a focused ion beam (FIB) workstation

is preparing samples for transmission electron microscope (TEM) investigation.Samples must be uniformly thin to enable the analyzing beam of electrons topenetrate. The FIB enables not only the preparation of large, uniformly thick, site-specific samples, but also the fabrication of lamellae used for TEM samples fromcomposite samples consisting of inorganic and organic materials with very differentproperties. This article gives an overview of the variety of techniques that have beendeveloped to prepare the final TEM specimen. The strengths of these methods aswell as the problems, such as FIB-induced damage and Ga contamination, areillustrated with examples. Most recently, FIB-thinned lamellae were used to improvethe spatial resolution of electron backscatter diffraction and energy-dispersive x-raymapping. Examples are presented to illustrate the capabilities, difficulties, and futurepotential of FIB.

IntroductionWhereas the initial development of

focused ion beam (FIB) instruments wasdriven by their unique capabilities forcomputer chip repair and circuit modifi-cation in semiconductor technology, pres-ent FIB applications support a muchbroader range of scientific and technolog-ical disciplines (for an overview, seeReference 1). However, despite their hugepotential in many different areas, rangingfrom top-down structuring in nanotech-nology to tomographic characterization incomplex microstructures, many FIBs arelargely used to prepare transmission elec-tron microscope (TEM) cross-section sam-ple lamellae. This article explores why FIBpreparation of TEM samples in many lab-oratories has largely displaced ion millersdespite the enormous financial invest-ment and the artifacts created by FIB-induced damage.

The main advantages of using an FIBfor TEM specimen preparation are

! No other technique can select the targetarea as precisely as FIB; that is, with care,lamellae can be prepared with a spatialaccuracy of within ~20 nm.! FIB preparation is fast and reliable; in aslittle as 20 minutes and within a maxi-mum of 2–4 hours, specimens of an almostunlimited range of materials can be pre-pared.! FIB preparation techniques are virtuallyindependent of the nature of the material.Owing to the special geometry and thespecific properties of the protective coveron the surface, the milling proceduresrequire only minor adjustments, if at all,that are dependent on the bulk propertiesof the material.

Special techniques for semiconductorshave been developed that offer optimizedsolutions in terms of speed, reliability,damage removal, or total electron trans-parent area. On the other hand, it iswidely recognized that FIB specimen

MRSBull_May07_Mayer_Final.qxd 5/7/07 6:17 PM Page 400

[email protected]

Page 37: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

Waterfall effect

Ga implantation

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

37

induced by depositing the protective layer should beavoided. This can be done by coating a heavy metallayer on the sample surface before FIB fabrication.Fig. 4(c) shows an example of the specimen coatedwith a Pt–Pd alloy layer !50 nm thick beforedepositing W protective layer, where no damagedamorphous is observed in the top surface of the Si.

3.2. The sidewall damage during thinning thespecimen surface

Fig. 7 shows a series of cross-sectional images ofthe sidewall amorphous layers induced by the Ga+

FIBs at different energies. The thicknesses of theamorphous layers were measured to be 9.4, 14.5, 20.0and 25.3 nm, respectively, for the 10, 20, 30 and

40 keV Ga+ beams. We find that the amorphousthickness is no different in the n- and p-type side of thep–n junction at all the energies. The relationship of theamorphous thickness versus the beam energy isplotted in Fig. 8.

We have also noted the relation between thethickness (depth) of the sidewall-damaged amorphouslayer and the lateral straggle DRt of the incident Ga+

ions. The SRIM calculation gives the DRt values of3.4, 5.2, 6.7 and 8.1 nm, respectively, for 10, 20, 30and 40 keV Ga+ ions incident into the Si. The 3"DRt

values are 10.2, 15.6, 20.1 and 24.3 nm, respectively.Marking these values in Fig. 8, we can see they agreevery well with our measuring values. That means thatthe thickness of the sidewall-damaged amorphouslayer can be estimated simply by 3"DRt. Here theinteger 3 is the same with that obtained above for thetop-surface damage during depositing the protectivelayer. These agreements may be explained as follow.During depositing protective layer, the ion beamimpinges the Si sample normal to the surface; thedamaged amorphous depth is mainly dominated by thelongitudinal traveling distance related to the Rp andDRp of the implanted ions in the Si. But during millingthe specimen by Ga+ FIB, the ion beam sputters thespecimen surface at very small grazing angle; thesidewall damage is mainly dependent on thetransverse distribution DRt of the implanted ions inthe specimen. These have also been well demonstratedby the images presented by Monte Carlo simulations[4,5]. When the same order of the Ga+ ion dose isimplanted into the specimen in the above twoprocesses, the same integer 3 appears in the aboveformulae for estimating the thickness of the damagedamorphous layer.

The sidewall damage is unavoidable in the FIBpreparation of the TEM specimen. The amorphouslayer and Ga implantation may bring some artifacts inthe specimen. For example, the amorphous layerreduces the quality of high-resolution imaging, and theGa contamination leads to some errors in the micro-chemical analysis. Especially for the electron holo-graphy characterization of the dopant distribution insemiconductor device specimen, the surface damageintroduces an electrically dead layer. This dead layerreduces the effective thickness of the specimen andaffects the accurate measurement of the electrostaticpotential distributions in devices because the phase

Z. Wang et al. / Applied Surface Science 241 (2005) 80–8684

Fig. 6. EDX mappings showing the Ga distribution in a specimen

prepared by FIB.

Fig. 5. High-resolution image showing the interface between

damaged amorphous and crystalline Si.

[email protected]

Other artifacts induced by FIB

Page 38: preparativa TEM mediante FIBClaudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009 Milling When a relatively heavy and high-momentum ions collide

References:1. J. Orloff, L. Swanson and M. Utlaut “High Resolution Focused Ion

Beam: FIB and Applications”

2. J. Orloff “Handbook of charged particle optics” CRC Press

3. L.A. Giannuzzi and F.A. Stevie “Introduction to Focused Ion Beam” SPRINGER

4. N. Yao and Z.L. Wang “Handbook of Microscopy for Nanotechnology” KLUWER ACADEMIC PUBLISHERS

5. W. Zhou and Z.L. Wang “Scanning Microscopy for Nanotechnology - Techniques and Applications” SPRINGER

6. FEI DualBeam Workstation Guide

Claudia Menozzi - Corso CIGS “Preparazione di campioni TEM” - Modena 18-19 maggio 2009

[email protected]