PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …

134
1 PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE Facultad de Ciencias Biológicas Programa de Doctorado en Ciencias Biológicas Mención Ecología INFLUENCIA DE LOS CAMBIOS DE USO/COBERTURA DEL SUELO Y EL CLIMA EN EL CICLO DEL NITRÓGENO EN DOS LAGOS COSTEROS DE CHILE CENTRAL A PARTIR DE LA COLONIZACIÓN ESPAÑOLA Tesis entregada a la Pontificia Universidad Católica de Chile en cumplimiento parcial de los requisitos para optar al Grado de Doctor en Ciencias con mención en Ecología Por: MARÍA MAGDALENA FUENTEALBA LANDEROS Director de Tesis : Dr. Claudio Latorre Hidalgo Co-director : Dr. Blas Valero-Garcés Junio, 2019

Transcript of PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …

Page 1: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …

1

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

Facultad de Ciencias Bioloacutegicas

Programa de Doctorado en Ciencias Bioloacutegicas Mencioacuten Ecologiacutea

INFLUENCIA DE LOS CAMBIOS DE USOCOBERTURA DEL SUELO Y EL

CLIMA EN EL CICLO DEL NITROacuteGENO EN DOS LAGOS COSTEROS DE

CHILE CENTRAL A PARTIR DE LA COLONIZACIOacuteN ESPANtildeOLA

Tesis entregada a la Pontificia Universidad Catoacutelica de Chile en cumplimiento

parcial de los requisitos para optar al Grado de Doctor en Ciencias con mencioacuten

en Ecologiacutea

Por MARIacuteA MAGDALENA FUENTEALBA LANDEROS

Director de Tesis Dr Claudio Latorre Hidalgo

Co-director Dr Blas Valero-Garceacutes

Junio 2019

2

LA DEFENSA FINAL DE LA TESIS DOCTORAL TITULADA

ldquoINFLUENCIA DE LOS CAMBIOS DE USOCOBERTURA DEL SUELO Y EL CLIMA EN EL CICLO DEL NITROacuteGENO EN DOS LAGOS COSTEROS DE CHILE CENTRAL A

PARTIR DE LA COLONIZACIOacuteN ESPANtildeOLArdquo

Presentada por la Candidata a Doctor en Ciencias Bioloacutegicas Mencioacuten Ecologiacutea de la Pontificia Universidad Catoacutelica de Chile

SRA MARIacuteA MAGDALENA FUENTEALBA LANDEROS

Ha sido aprobada por el Tribunal Examinador constituido por los profesores

abajo firmantes calificaacutendose el trabajo realizado el manuscrito sometido

y la defensa oral con nota _________ (_______________________________)

DR JOSEacute MIGUEL FARINtildeA R Coordinador Comiteacute de Tesis

Facultad de Ciencias Bioloacutegicas-UC

DR JUAN A CORREA M Decano

Facultad de Ciencias Bioloacutegicas-UC

DR BLAS VALERO G Co-Director de Tesis

Consejo Superior de Investigaciones Cientiacuteficas

DR CLAUDIO LATORRE H Director de Tesis

Facultad de Ciencias Bioloacutegicas-UC

DR JUAN ARMESTO Z Miembro del Comiteacute de Tesis

Facultad de Ciencias Bioloacutegicas-UC

DR RICARDO DE POL H Profesor Invitado

Universidad de Magallanes

Santiago de Chile 30 de septiembre de 2019-

3

TABLA DE CONTENIDO

RESUMEN 9

ABSTRACT 11

INTRODUCCIOacuteN 13

Los ecosistemas mediterraacuteneos y el ciclo del N 15

Los lagos como sensores ambientales 16

El ciclo del N en lagos 18

Reconstruyendo el ciclo del N a partir de variaciones en δ15N 20

Referencias 25

CAPIacuteTULO 1 A COMBINED APPROACH TO ESTABLISHING THE TIMING AND MAGNITUDE OF ANTHROPOGENIC NUTRIENT ALTERATION IN A MEDITERRANEAN COASTAL LAKE- WATERSHED SYSTEM 29

Abstract 30 1 INTRODUCTION 31 2 STUDY SITE 35 3 RESULTS 38

31 Age Model 38 32 The sediment sequence 39 33 Sedimentary units 41 34 Isotopic signatures 42 35 Recent land use changes in the Laguna Matanzas watershed 44

4 DISCUSSION 45 41 N and C dynamics in Laguna Matanzas 45 42 Recent evolution of the Laguna Matanzas watershed 48

5 CONCLUSIONS 54 6 METHODS 55

References 58

CAPIacuteTULO 2 STABLE ISOTOPES TRACK LAND USE AND COVER CHANGES IN A MEDITERRANEAN LAKE IN CENTRAL CHILE OVER THE LAST 600 YEARS 71

Abstract 73 1 Introduction 73

4

2 Study Site 77 3 Methods 79 4 Results 84

41 Geochemistry and PCA analysis 84 42 Sedimentary units 86 43 Recent seasonal changes of particulate organic matter on water column 88 44 Stable isotope values across the Lake Vichuqueacuten watershed 89 45 Land use and cover change from 1975 to 2014 90

5 Discussion 93 51 Seasonal variability of POM in the water column 93 52 Stable isotope signatures in the Lake Vichuqueacuten watershed 95 53 Recently land use and cover change and its influences on N inputs to the lake 97 54 Nitrogen dynamics in Lago Vichuqueacuten over the last six hundred years 98

6 Conclusions 101

LITERATURE CITED 110

DISCUSION GENERAL 117

Isoacutetopos estables y la dinaacutemica de N en los lagos de Chile central 119

CONCLUSIONES GENERALES 130

Referencias 133

5

A mis padres Arturo y Malena

A mis hijos Xavi y Panchito

6

AGRADECIMIENTOS

Quiero agradecer a mi tutor y mentor Dr Claudio Latorre por brindarme su

apoyo sin el cual no habriacutea logrado concluir esta tesis de doctorado Claudio tu

apoyo constante incentivo y el fijarme metas que a veces me pareciacutean imposibles

de alcanzar no solo han dado forma a esta tesis sino tambieacuten me ha hecho maacutes

exigente como cientiacutefica Claudio destacas no solo por ser un gran cientiacutefico si no

tambieacuten por tu gran calidad humana eres un gran ejemplo

Quiero agradecer Dr Blas Valero-Garceacutes por nuestras numerosas

conversaciones viacutea Skype que incluiacutean vacaciones y fines de semana para discutir

los resultados de la tesis y que han dado forma a esta investigacioacuten principalmente

al primer capiacutetulo Ademaacutes por haberme acogido como un miembro maacutes en el

laboratorio de Paleoambientes Cuaternarios durante las estancias que he realizado

en el transcurso de estos antildeos Blas eres un ejemplo para miacute conjugas ciencia de

calidad calidez y dedicacioacuten por tus estudiantes

A quienes han financiado mi doctorado la Comisioacuten Nacional de

Investigacioacuten Cientiacutefica y Tecnoloacutegica (CONICYT) con sus becas de manutencioacuten

doctoral (2013) gastos operacionales pasantiacutea (2016) postnatal (2017) y termino

de tesis doctoralrdquo (2013) A FONDECYT a traveacutes del proyecto 1160744 de C

Santoro Al Departamento de InvestigacioacutenAl Instituto de Ecologiacutea y Biodiversidad

(IEB) a traveacutes de del PIA financiamiento basal 170008 la Pontificia Universidad

Catoacutelica de Chile por la beca incentivo para tesis interdisciplinaria para doctorandos

(2015)

Agradezco a mis compantildeeros del laboratorio de Paleoecologiacutea y

Paleoclimatologiacutea Karla Matias Dani Carolina Mauricio y Pancho que han hecho

grato mi tiempo en el laboratorio Agradecimientos especiales a Carolina Matiacuteas y

Leo por acompantildearme a terreno

7

Agradezco a los miembros del laboratorio de Paleoambientes Cuaternarios

(IPE) en especial a Raquel Elena Fernando Ana Penelope Graciela Miguel

Sevilla Mariacutea y Miguel Bartolomeacute

Agradezco a los miembros de la comisioacuten Dr Joseacute Miguel Farintildea Dr Juan

Armesto y Dr Ricardo De Pol-Holz por la gran ayuda durante el desarrollo de mi

doctorado en especial por las correcciones finales de la tesis

Al departamento de Ecologiacutea en especial a Rosario Galaz Edita Luengo

Daniela Mora y Valeria Cavallero por su apoyo

A mis compantildeeros de doctorado Beleacuten Gallardo Pancho Diacuteaz Bryan Bularz

Bian Latorre Renato Borras Juan Carlos Hernaacutendez y Paulina Troncoso con

quienes estudieacute aprendiacute y compartimos muy buenos momentos durante los

primeros antildeos del doctorado

A Pablo Sarricolea mi compantildeero de vida Gracias por tu constante e

incondicional apoyo Sin ti durante este proceso todo habriacutea sido cuesta arriba

A mis padres Arturo y Malena gracias por su carintildeo apoyo y compromiso

Papaacute aunque no esteacutes a mi lado siempre te recuerdo con mucho carintildeo A mi

madre que ha sido un constante apoyo sobre todo en el cuidado de mis hijos xavi

y panchito

A mis hermanos Rodrigo y David por estar presentes durante toda esta

etapa Siempre con carintildeo y hermandad

A Rodrigo David Matiacuteas Jany Paola y Julio por cuidar a mis hijos con carintildeo

siempre que estuve ausente por el doctorado

8

ABREVIATURAS

N Nitroacutegeno (Nitrogen)

DIN Nitroacutegeno Inorgaacutenico Disuelto (Dissolved Inorganic Nitrogen)

C Carbono (Carbon)

TOC Carbono Inorgaacutenico Total (Total Organic Carbon)

TIC Carbono Inorgaacutenico Total (Total inorganic Carbon)

TC Carbono Total (Total Carbon)

TS Azufre Total (Total Sulfur)

LUCC Cambios de UsoCobertura del Suelo (Land Use and Cover Change)

OM Materia Orgaacutenica (Organic Matter)

POM Particulate Organic Matter (materia orgaacutenica particulada)

CE Common Era

BCE Before Common Era

Cal BP Calibrado en antildeos radiocarbono antes de 1950

ie id est (esto es)

e g Exempli gratia (por ejemplo)

9

RESUMEN

El ldquoAntropocenordquo se caracteriza por pertubaciones de origen humano que

conllevan impactos globales Por ejemplo los cambios de usocobertura del suelo

(LUCC) son conocidos por perturbar el ciclo del N a partir de la Revolucioacuten Industrial

pero especialmente desde la Gran Aceleracioacuten (1950 CE) en adelante Sin

embargo existen incertezas asociadas a la magnitud del impacto y su efecto

acoplado con los cambios climaacuteticos actuales (ie megasequiacutea disminucioacuten de las

precipitaciones) y acoplamientos con otros ciclos biogeoquiacutemicos (eg ciclo del

Carbono) Este impacto ha cambiado la disponibilidad de N en los ecosistemas

terrestres y acuaacuteticos y sus enlaces Los sedimentos lacustres contienen

informacioacuten de las condiciones paleoambientales del lago y su cuenca en el

momento en que se depositaron y el anaacutelisis de los isoacutetopos estables de N (δ15N)

en los sedimentos permiten reconstruir los cambios en la disponibilidad de N a

traveacutes del tiempo En este trabajo usamos una aproximacioacuten multiproxy que incluye

10

anaacutelisis sedimentoloacutegicos geoquiacutemicos e isotoacutepicos (δ15N δ13C) de los sedimentos

lacustres columna de agua y suelo-vegetacioacuten de la cuenca y la reconstruccioacuten de

los LUCC entre 1975 y 2016 a partir de imaacutegenes satelitales El objetivo de esta

tesis fue evaluar el rol de LUCC como principal control del ciclo del N en el sistema

cuenca-lago durante las uacuteltimas centurias en Chile central Nuestros principales

resultados muestran que valores maacutes positivos de δ15N en los sedimentos lacustres

estaacuten relacionados con grandes aportes de N de la cuenca que a su vez son

mayores cuanto mayor la superficie agriacutecola yo los pastizales mientras que tanto

las plantaciones forestales como los bosques favorecen la retencioacuten de nutrientes

en la cuenca (lo que se ve reflejado en un δ15N maacutes negativo) Esta tesis plantea

un cambio de estado en la dinaacutemica del N asociado a la introduccioacuten y expansioacuten

de las plantaciones forestales o bosques los que retienen el Nitroacutegeno en las

cuencas mientras que el clima juega un rol secundario

11

ABSTRACT

The Anthropocene is characterized by human disturbances at the global

scale For example changes in land use are known to disturb the N cycle since the

industrial revolution but especially since the Great Acceleration (1950 CE) onwards

This impact has changed N availability in both terrestrial and aquatic ecosystems

However there are some important uncertainties associated with the extent of this

impact and how it is coupled to ongoing climate change (ie megadroughts rainfall

variability and shifting stationarity) or to other nutrient cycles (e g carbon cycle)

Lake sediments contain paleoenvironmental information regarding the conditions of

the watershed and associated lakes and which the respective sediments are

deposited Nitrogen stable isotope analysis (δ15N) on lake sediments allows us to

reconstruct the changes in N availability through time Here we used a multiproxy

approach that uses sedimentological geochemical and isotopic analyses on

lacustrine sediments water column and soilvegetation from the watershed as well

12

as land use and cover change (LUCC) from 1975 to 2016 obtained from satellite

images The goal of this thesis is to evaluate the role of LUCC as the main driver for

N cycling in a coastal watershed system of central Chile over the last centuries Our

main results show that more positive δ15N values in lake sediments are related to

higher N contributions from the watershed which in turn increase with increased

agricultural andor pasture cover whereas either forest plantations or native forests

can favor nutrient retention in the watershed (δ15N more negative) This thesis

proposes that N dynamics are mainly driven by the introduction and expansion of

forest or tree plantations that retain nitrogen in the watershed whereas climate plays

a secondary role

13

INTRODUCCIOacuteN

El N es un elemento esencial para la vida y limita la productividad en

ecosistemas tanto terrestres como acuaacuteticos (Vitousek et al 1997) Las actividades

humanas han tenido un profundo impacto sobre el ciclo del N global principalmente

a partir la revolucioacuten industrial (IPCC 2013 2007) Las concentraciones de N se

han incrementado por la fijacioacuten industrial de N atmosfeacuterico (viacutea el proceso Haber-

Bosch Erisman et al 2008) por el uso de fertilizantes sobre la base de N para

mejorar el rendimiento de los cultivos la produccioacuten ganadera y ademaacutes de los

cambios en el uso del suelo (abreviado en ingleacutes- LUCC) (Robertson y Vitousek

2009 Galloway et al 2008 Battye et al 2017 Xu et al 2019) Estas actividades

contribuyen significativamente al incremento de la disponibilidad bioloacutegica de N

cuyas consecuencias para los ecosistemas incluye la perdida de diversidad

modificacioacuten de la disponibilidad de nutrientes y acidificacioacuten de los suelos entre

otras Sin embargo se desconoce la cantidad destino y el alcance que ha tenido

14

el N movilizado entre los ecosistemas generado por la influencia de las actividades

humanas (Vitousek et al 1997)

La entrada natural de N en los ecosistemas terrestres y acuaacuteticos es viacutea

fijacioacuten atmosfeacuterica la que es llevada a cabo por microorganismos muchos de ellos

en relaciones simbioacuteticas (eg Rhizobium en leguminosas) y las algas (Vitousek et

al 1997 Battye et al 2017) Las principales salidas estaacuten relacionadas con la

desnitrificacioacuten volatilizacioacuten del amoniaco y por escurrimiento superficial y

subterraacuteneo (Galloway et al 2008 Diacuteaz et al 2016) En el caso de los sistemas

lacustres ademaacutes estaacuten la resuspencioacuten de N del fondo del lago los aportes desde

la cuenca (entradas de N) La depositacioacuten de MO en el fondo del lago que marca

la salida de N de la columna de agua Estas relaciones de intercambio de N tienen

un control geograacutefico (eg latitud exposicioacuten relieve etc) climaacutetico y biotico

(McLauchlan et al 2013) La alteracioacuten provocada por los LUCC no solo genera

las peacuterdidas de nutrientes del suelo por erosioacuten y escurrimiento superficial sino que

tambieacuten modifica la disponibilidad y transferencia de N entre los ecosistemas

terrestres y acuaacuteticos (Elbert et al 2012 McLauchlan et al 2013) Por ejemplo el

reemplazo de la vegetacioacuten nativa por la agricultura yo plantaciones forestales

altera el ciclo del N debido al despeje de los terrenos viacutea quema de la vegetacioacuten

pero tambieacuten debido al reemplazo de la vegetacioacuten preexistente por un

monocultivo (eg trigo pino) y el uso ineficiente de fertilizantes para mejorar el

rendimiento agriacutecola Estas actividades favorecen un incremento de los aportes de

N (y otros nutrientes) viacutea sistemas de drenajes a lagos los que actuacutean como

sumideros El incremento del N derivado de las actividades humanas tanto en los

ecosistemas terrestres como acuaacuteticos genera incertezas relacionados con la

trayectoria y la magnitud de la disponibilidad de N en ambos ecosistemas (Batye et

15

al 2017 Mclauchlan et al 2017) Por lo tanto se requiere de una liacutenea base de

largo plazo para saber coacutemo estas perturbaciones impactan la disponibilidad de N

en las uacuteltimas deacutecadassiglos en los ecosistemas lacustres y por lo tanto el alcance

real que los LUCC han tenido en el ciclo del N

Los ecosistemas mediterraacuteneos y el ciclo del N

Los ecosistemas mediterraacuteneos son especialmente sensibles a los LUCC

pues estos se encuentran sometidos a un estreacutes hiacutedrico durante largas temporadas

estivales y las precipitaciones se concentran en eventos puntuales y a veces con

altos montos pluviomeacutetricos Las precipitaciones tienen un alto potencial de arrastre

de sedimentos y nutrientes los que actuacutean como fertilizantes al llegar a los

ecosistemas lacustres A su vez un incremento en la disponibilidad de N puede

generar un desbalance con otros nutrientes (eg Fosforo) con efectos sobre la

productividad y diversidad de los lagos (Pentildeuelas et al 2012 Sardans et al 2012

McLauchlan 2013) En este sentido en Chile central se observa una disminucioacuten

de las precipitaciones especialmente fuerte en las uacuteltimas deacutecadas por lo que se ha

denoacuteminado como Megasequiacutea (Garreaud et al 2017) y el efecto de las

precipitaciones esporaacutedicas pueden generar un arrastre de nutrientes que no ha

sido evaluado

Los ecosistemas mediterraacuteneos concentran el 20 de la biodiversidad global

(Myers et al 2000) pero existe una escasez de conocimiento respecto a los

efectos del incremento de N en los cuerpos de agua como consecuencia de las

actividades humanas en el pasado histoacuterico (Ochoa-Hueso et al 2011) y coacutemo la

disponibilidad de N ha variado en el tiempo Los LUCC han aumentado el flujo de

N en las cuencas hidrograacuteficas viacutea escurrimiento superficial y lixiviacioacuten

16

favoreciendo la peacuterdida de sedimentos y nutrientes del suelo en el mundo entero

(Elser et al 2011 McLauchlan et al 2013 Xu et al 2017 y 2019) Ello ha

contribuido a la acidificacioacuten y eutrofizacioacuten generalizada de riacuteos y lagos

(McLauchlan et al 2013 Schindler et al 2008)

El ecosistema mediterraacuteneo de Chile central es una regioacuten ampliamente

intervenida desde al menos la colonizacioacuten espantildeola (1600-1800 CE) Los LUCC

han tenido efectos negativos en la disponibilidad de agua especialmente

observados con el desarrollo de las actividades minera (Prieto et al 2019) Aunque

se sabe de los impactos en los ecosistemas de bosque en teacuterminos de cobertura

debidos al desarrollo silvo-agropecuarias (Armesto et al 2010) se desconoce el

impacto de estas actividades sobre el ciclo del N en los cuerpos de agua o en queacute

momento cobran fuerza suficiente para alterar el flujo de N hacia los lagos de Chile

Central Por lo tanto en esta tesis nos centramos en entender coacutemo los LUCC han

afectado la disponibilidad de N en los lagos costeros de Laguna Matanzas y Lago

Vichuqueacuten desde la llegada de los espantildeoles a Chile hasta el presente

Los lagos como sensores ambientales

Los sedimentos lacustres son buenos sensores de cambios en los aportes

de nutrientes contaminacioacuten y eutroficacioacuten de los cuerpos de agua ya que son

capaces de preservar sentildeales quiacutemicas y fiacutesicas al momento de su formacioacuten y

ademaacutes con alta resolucioacuten y a largo plazo (Leng et al 2006) Por lo tanto

constituyen una herramienta uacutetil para reconstruir el flujo de N entre ecosistemas

terrestres y acuaacuteticos en el pasado sus consecuencias (eg incremento de la

productividad lacustre) y el rol del clima y los LUCC en el pasado (McLauchlan et

al 2013 von Gunten et al 2009) Por ejemplo el cultivo de maiacutez por parte de los

17

nativos iroqueses en Canadaacute provocoacute la eutrofizacioacuten del Lago Crawford (43degN)

durante los siglos XII y XV Entre las consecuencias registradas se documentoacute un

claro incremento de la productividad primaria y cambios en la estructura comunitaria

de diatomeas foacutesiles (incremento de Stephanodiscus complex y disminucioacuten de

Cyclotella bodanica en Ekdahl et al 2007) Otro ejemplo demuestra como las

actividades agriacutecolas en la cuenca del riacuteo Mississippi modificaron los patrones de

sedimentacioacuten y aporte de nutrientes al lago Pepin EE UU (44degN) a partir del

asentamiento europeo en 1840 CE y principalmente desde 1940 CE (Engstrom et

al 2009) Para Chile von Gunten et al (2009) a partir de indicadores

limnogeoloacutegicos evidencioacute la contaminacioacuten y eutroficacioacuten de cinco lagos cercanos

a la ciudad de Santiago (33ordmS) como consecuencia de la deposicioacuten atmosfeacuterica

de metales pesados (especialmente Cu) quema de combustible foacutesil y flujo de

nutrientes durante los uacuteltimos 200 antildeos

Caracteriacutesticas limnoloacutegicas de los lagos

Los procesos limnoloacutegicos afectan la distribucioacuten y abundancia de los

organismos en los lagos Estaacuten influenciados por forzamientos externos por

ejemplo la precipitacioacuten o la penetracioacuten de la luz y la morfometriacutea del lago En este

sentido el nivel del lago dependeraacute del balance entre las entradas y salidas de agua

(precipitaciones escurrimiento superficial y subterraacuteneo y la evaporacioacuten) y la forma

de la cuenca (profundidad pendiente aacuterea del espejo de agua)

En funcioacuten de la profundidad de penetracioacuten de la luz es posible diferenciar

dos aacutereas que determinan la distribucioacuten de los organismos la zona foacutetica (donde

penetra la luz y permite la fotosiacutentesis) y la zona afoacutetica (subyacente a la zona

foacutetica) Al depender de la radiacioacuten la zona foacutetica variacutea estacionalmente Ademaacutes

18

puede variar por el grado de turbidez la morfometriacutea del lago y la produccioacuten de

materia orgaacutenica en la columna de agua

Otro factor que influye en la productividad es el reacutegimen de mezcla de la

columna de agua pues favorece la oxigenacioacuten y el reciclado de nutrientes La

mezcla ocurre en condiciones de gran inestabilidad usualmente relacionado con el

reacutegimen de viento Por el contrario un lago estratificado resulta de grandes

diferencias en temperatura o salinidad entre la superficie (epilimnion) y el fondo del

lago (hipolimnion) que separa las masas de agua superficial y de fondo por una

termoclina (si la estratificacioacuten estaacute relacionada con diferencias de temperatura de

las masas de agua) o haloclina (diferencias de salinidad) En funcioacuten del reacutegimen

de mezcla los lagos se pueden clasificar en (Lewis 1983)

1 Amiacutecticos no hay mezcla vertical de la columna de agua

2 Monomiacutecticos friacuteos y caacutelidos se mezcla una vez al antildeo

3 Dimiacutecticos la columna de agua se mezcla dos veces al antildeo

4 Oligomiacutecticos Lagos estratificados la mayor parte del tiempo pero se mezclan a

intervalos irregulares mayores a 1 antildeo

5 Polimiacutecticos friacuteos y caacutelidos la columna de agua se mezcla varias veces al antildeo

El ciclo del N en lagos

Al estar presente en aacutecidos nucleicos aminoaacutecidos y proteiacutenas el N es un

nutriente esencial de los organismos Por lo tanto su disponibilidad en la columna

de agua es clave para la produccioacuten composicioacuten y acumulacioacuten de la MO a traveacutes

del tiempo (Olson 1998 Talbot 2002) Aunque el principal reservorio de N estaacute en

19

la atmosfera (N2) solo unos pocos organismos (eg cianobacterias) pueden fijarlo

directamente Asiacute el Nitroacutegeno Inorgaacutenico Disuelto (DIN) representa la principal

fuente de N disponible para la produccioacuten primaria en los ecosistemas acuaacuteticos

(Talbot et al 2002) El DIN estaacute compuesto por nitrato (NO3-) nitrito (N02

-) y amonio

(NH4+) y los cambios en su disponibilidad condicionan el tipo de produccioacuten primaria

(eg fijadores vs asimiladores de N ver Scott y Grant 2013 Scott 2008)

La Figura 1 resume los principales componentes en lagos del ciclo del N y

sus interacciones La principal entrada natural de N es viacutea fijacioacuten de N atmosfeacuterico

y es llevado a cabo principalmente por bacterias y algas verde-azules capaces de

romper el triple enlace entre los dos aacutetomos de N a un alto costo energeacutetico (Torres

et al 2012) El N fijado es reducido a NH3 Tras la muerte de los organismos el N

es liberado de sus tejidos por hongos y bacterias implicados en la descomposicioacuten

de la MO Una parte se deposita en el fondo del lago y la otra queda disponible para

ser asimilada por el fitoplancton como amonio mediante el proceso de

amonificacioacuten (Talbot 2002) La amonificacioacuten resulta de la reduccioacuten bacteriana

del amoniaco y se da preferentemente en condiciones anoacutexicas La volatizacioacuten del

amoniaco es un proceso por medio este se incorpora a la atmoacutesfera Este proceso

se da preferentemente en lagos aacutecidos (pH gt 85) El nitrato es otra forma de N

bioloacutegicamente disponible para el fitoplancton En los lagos el NO3 del DIN estaacute

compuesto por los aportes desde la cuenca hidrograacutefica en la que se circunscriben

por la resuspensioacuten desde el fondo del lago favorecido por procesos de mezcla

(descrito en seccioacuten anterior) y por los nitratos de la columna de agua Estos uacuteltimos

son el resultado de la nitrificacioacuten proceso realizado por bacterias aeroacutebicas

mediante el cual el amonio se oxida para formar nitrito y nitrato El ciclo se completa

20

con la desnitrificacioacuten que es la reduccioacuten bacteriana de nitrato al N atmosfeacuterico

Este proceso se da preferentemente en condiciones anoacutexicas

Figura 1 Materia Orgaacutenica sedimentaria y su relacioacuten con el ciclo del N y las

variaciones de δ15N (elaborado a partir de Talbot et al 2002) En la figura se

representan los factores clave en la acumulacioacuten de la MO sedimentaria y su

relacioacuten con el ciclo del N El δ15N de la MO es resultado de los aportes de MO

desde la cuenca MO de macroacutefitas y de la productividad bioloacutegica La productividad

en ecosistemas lacustres estaacute condicionada por DIN y la fijacioacuten de N atmosfeacuterico

El δ15N del pool del DIN disponible se va enriqueciendo por la asimilacioacuten

preferencial de 14N por parte del fitoplancton Ademaacutes el DIN remanente se va

enriqueciendo por accioacuten microbiana (amonificacioacuten nitrificacioacuten desnitrificacioacuten)

Reconstruyendo el ciclo del N a partir de variaciones en δ15N

La sentildeal isotoacutepica de N (δ15N) en los sedimentos lacustres puede ser usada

para reconstruir los cambios pasados del ciclo N la transferencia de N entre

ecosistemas terrestres y acuaacuteticos y el estado troacutefico del lago (Bruland y Mackenzie

2015 McLauchlan et al 2013 Woodward et al 2012 von Gunten et al 2009

Leng et al 2006 Meyers y Teranes 2001) La Figura 1 resume los principales

procesos y fuentes que afectan la sentildeal isotoacutepica δ15N (total o ldquobulkrdquo) en la MO de

21

los sedimentos lacustres Entre los que destacan las fuentes de MO (aloacutectona vs

autoacutectona) la bioproductividad lacustre y las entradas de N (ie fijacioacuten bioloacutegica

de N2) (Torres et al 2012) Estos procesos conducen a un fraccionamiento

isotoacutepico cineacutetico que favorece la disociacioacuten entre sus isotopos ldquopesadosrdquo (15N) y

ldquoligerosrdquo (14N) Asiacute por ejemplo los valores de δ15N de la MO se enriquecen en 15N

en la medida que los sedimentos lacustres estaacuten sometidos a perdidas de 14N viacutea

desnitrificacioacuten (Bruland y Mackenzie 2015 Diaz et al 2016 Talbot et al 2002)

Por otra parte el fitoplancton en la medida que aumenta su biomasa (eg

durante la estacioacuten caacutelida) puede llegar a asimilar el DIN hasta agotarse En este

caso el N remanente se va empobreciendo en 14N si no hay reposicioacuten de N (eg

aporte de NO3 de la cuenca) y la MO queda enriquecida en 15N Esta disminucioacuten

induce a una limitacioacuten de fitoplancton por N y los organismos diztroacuteficos pueden

verse estimulados por lo que se incrementa la entrada de N viacutea fijacioacuten de N2 (Scott

y Grantsz 2013) como resultado la MO oscila en valores maacutes bajos (en torno a 0permil)

La cantidad de MO que se deposita en el fondo del lago depende del

predominio de contribuciones provenientes desde la cuenca (aloacutectona) versus las

producidas dentro del mismo lago (autoacutectona) (Torres et al 2012) Aunque en

general los lagos reciben permanentemente aportes de sedimentos y MO desde

su cuenca los lagos pequentildeos tienden a reflejar maacutes los procesos que ocurren

solamente en su cuenca directa y reflejan los valores isotoacutepicos de la misma (Gu et

al 2006) Woodward et al (2012) realizaron un estudio en 50 lagos en Irlanda que

les permitioacute correlacionar diferentes patrones de LUCC (bosques de coniacuteferas

agricultura ganaderiacutea entre otros) con los valores de δ15N (y δ13C) en los

sedimentos superficiales de los lagos Encontraron que los valores de δ15N son maacutes

negativos en cuencas poco impactadas y maacutes positivos en aquellas con alto

22

impacto humano (eg usos de suelo agriacutecola y ganadero) McLauchlan et al (2007)

encontraron valores maacutes positivos de δ15N en los sedimentos del Mirror Lake New

Hampshire (29ordm N) a partir de la desforestacioacuten de su cuenca en 1790 CE (inicio

del asentamiento europeo en el lago) para el desarrollo de la actividad agriacutecola

Estos valores se volvieron maacutes negativos hacia valores similares al pre-

asentamiento europeo despueacutes del cese de la agricultura en la cuenca y la

recuperacioacuten del bosque a partir de 1929 CE

El anaacutelisis de δ15N en los sedimentos lacustres es una herramienta casi sin

explorar en Chile central Proponemos reconstruir la dinaacutemica de transferencia de

N cuenca-lago como consecuencia de los LUCC desde la colonizacioacuten espantildeola en

los lagos costeros de Laguna Matanzas (34ordmS) y Lago Vichuqueacuten (36ordmS) Como son

muacuteltiples los procesos que pueden afectar la sentildeal isotoacutepica de N (medido como

δ15N) en los sedimentos lacustres existen muchos problemas para su

interpretacioacuten paleoambiental (Leng et al 2006) Por ello en esta tesis utilizamos

un enfoque multiproxy que consiste en integrar el anaacutelisis limnoloacutegico y geoquiacutemico

de los sedimentos lacustres con los valores isotoacutepicos modernos de la columna de

agua (mediante monitoreo del POM) la relacioacuten vegetacioacuten-suelo de la cuenca y la

reconstruccioacuten de los principales usos de suelo de las cuencas desde 1975 CE

mediante el uso de imaacutegenes satelitales Considerando estas muacuteltiples liacuteneas de

evidencia nos planteamos utilizar las variaciones del δ15N para reconstruir los

cambios en la disponibilidad de N en los lagos costeros de Chile central y establecer

coacutemo y desde cuaacutendo las actividades humanas en la cuenca son lo suficientemente

importantes como para modificar el ciclo del N en los lagos desde la colonizacioacuten

espantildeola (siglo XVII)

23

Como hipoacutetesis planteamos que la dinaacutemica de transferencia de sedimentos

y nutrientes entre la cuenca y el lago tiene controles geoloacutegicos climaacuteticos y

bioloacutegicos que interactuacutean en el tiempo registraacutendose en la acumulacioacuten de MO de

los sedimentos lacustres (Fig1) Bajo este marco los LUCC modifican esta

dinaacutemica alterando la transferencia de N a los lagos ya que las actividades agriacutecolas

y ganaderas tienden a aportar maacutes N (aumentando δ15N) que la actividad forestal

(la que disminuye δ15N)

En el primer capiacutetulo titulado ldquoA combined approach to establishing the timing

and magnitude of anthropogenic nutrient alteration in a mediterranean coastal lake-

watershed systemrdquo se evaluoacute el rol de los LUCC en el control de la descarga de N

y sedimentos a Laguna Matanzas en un sistema cuenca-lago desde el siglo XVII

Para ello se realizoacute un anaacutelisis de la dinaacutemica sedimentaria lacustre mediante el

anaacutelisis de muacuteltiples proxys sedimentoloacutegicos (ie minerales y textura)

geoquiacutemicos (eg geoquiacutemica orgaacutenica e isotoacutepica) y bioloacutegicos (ie diatomeas) de

Laguna Matanzas que cubren los uacuteltimos 200 antildeos Ademaacutes se realizoacute una

reconstruccioacuten de los usos de suelo entre 1975 y 2016 a partir de imaacutegenes de

sateacutelites y se colectaron muestras de suelo de las principales coberturas de la

cuenca a los cuales se midioacute el δ15N

Entre los principales resultados obtenidos se destaca la influencia de la

ganaderiacutea y la denitrificacioacuten lo que explica los altos valores de δ15N evidenciados

por el registro lacustre durante la colonizacioacuten espantildeola e inicios de la repuacuteblica A

partir de la Gran Aceleracioacuten (1950 CE) la desforestacioacuten y el reemplazo de la

ganaderiacutea por plantaciones forestales tienen un correlato en el registro

sedimentario con valores de δ15N maacutes bajos Estos resultados demuestran que los

LUCC son el factor de primer orden para explicar los cambios observados en

24

nuestro registro de δ15N y a su vez implica un rol secundario del clima como posible

control de la disponibilidad de N en Laguna Matanzas Este capiacutetulo fue sometido

a la revista Scientific Reports y estaacute en revisioacuten desde el 26 de marzo de 2019 En

la elaboracioacuten del mauscrito han colaborado Claudio Latorre Blas Valero-Garceacutes

Matiacuteas Frugone Pablo Sarricolea Santiago Giralt Manuel Contreras-Lopez

Ricardo Prego y Patricia Bernardez

El segundo capiacutetulo se titula ldquoStable isotopes track land use and cover

changes in a mediterranean lake in central Chile over the last 600 yearsrdquo Aquiacute

evaluamos la dinaacutemica del N actual en el sistema cuenca-lago considerando los

valores isotoacutepicos modernos tanto de la vegetacioacuten como del suelo ademaacutes de los

cambios estacionales del POM de la columna de agua Esta informacioacuten se utiliza

como un anaacutelogo moderno para conocer el rol de los LUCC en la disponibilidad de

N en los uacuteltimos 600 antildeos Para ello se colectaron muestras filtradas de la columna

de agua a 2 5 y 20 m dos veces por antildeo entre noviembre de 2015 y julio de 2018

y se obtuvo el δsup1⁵N del POM Ademaacutes se colectoacute muestras de vegetacioacuten y suelo

de la cuenca diferenciando entre especies nativas plantaciones forestales y

vegetacioacuten herbaacutecea Esta informacioacuten se analizoacute en conjunto con la reconstruccioacuten

de los LUCC entre 1975 y 2014 y el anaacutelisis limnoloacutegico del lago Ello nos permitioacute

evaluar coacutemo el δ15N de los sedimentos lacustres refleja los valores δ15N de la

cuenca en el Lago Vichuqueacuten y el control que ejerce el clima en la sentildeal isotoacutepica

de POM Este capiacutetulo seraacute sometido a la revista Science of total environmet

proximamente En la elaboracioacuten del mauscrito han colaborado Claudio Latorre

Blas Valero-Garceacutes Matiacuteas Frugone Pablo Sarricolea Leonardo Villacis y M Laura

Carrevedo

25

Entre los principales resultados encontramos que el δ15N en los sedimentos

lacustres es maacutes positivo con presencia de agricultura en la cuenca y maacutes negativo

cuando esta es reemplazada por cobertura arboacuterea bien sea plantaciones

forestales bien sea bosque nativo A su vez durante la estacioacuten seca y caacutelida la

mayor entrada al lago es viacutea fijacioacuten de N atmosfeacuterico (bajos valores de δ15NPOM)

Durante la estacioacuten huacutemeda en cambio prevalecen los aportes de la cuenca con

altos valores de δ15NPOM Ello estariacutea evidenciando un cambio estacional en la

composicioacuten de especies en verano ligado a especies fijadoras de N y en invierno

las algas y microorganismos que consumen el DIN de la columna de agua

Referencias

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea AM Marquet PA 2010 From the Holocene to the Anthropocene A historical framework for land cover change in southwestern South America in the past 15000 years Land use policy 27 148ndash160 httpsdoiorg101016jlandusepol200907006

Battye W Aneja VP Schlesinger WH 2017 Earth rsquo s Future Is nitrogen the

next carbon  Earth rsquo s Future Global Biogeochem Cycles 30 1000ndash1014 httpsdoiorg101002eft2235

Bruland GL MacKenzie RA 2010 Nitrogen Source Tracking with δN Content

of Coastal Wetland Plants in Hawaii J Environ Qual 39 409 httpsdoiorg102134jeq20090005

Diacuteaz FP Frugone M Gutieacuterrez RA Latorre C 2016 Nitrogen cycling in an

extreme hyperarid environment inferred from δ15 N analyses of plants soils and herbivore diet Sci Rep 6 1ndash11 httpsdoiorg101038srep22226

Ekdahl EJ Teranes JL Wittkop CA Stoermer EF Reavie ED Smol JP

2007 Diatom assemblage response to Iroquoian and Euro-Canadian eutrophication of Crawford Lake Ontario Canada J Paleolimnol 37 233ndash246 httpsdoiorg101007s10933-006-9016-7

Elbert W Weber B Burrows S Steinkamp J Buumldel B Andreae MO

Poumlschl U 2012 Contribution of cryptogamic covers to the global cycles of carbon and nitrogen Nat Geosci 5 459ndash462

26

httpsdoiorg101038ngeo1486 Elser J 2011 A world awash with nitrogen Science 334 1504ndash1506

httpsdoiorg101126science1215567 ARTICLE Engstrom DR Almendinger JE Wolin JA 2009 Historical changes in

sediment and phosphorus loading to the upper Mississippi River Mass-balance reconstructions from the sediments of Lake Pepin J Paleolimnol 41 563ndash588 httpsdoiorg101007s10933-008-9292-5

Erisman J W Sutton M A Galloway J Klimont Z amp Winiwarter W (2008)

How a century of ammonia synthesis changed the world Nature Geoscience 1(10) 636

Galloway JN Townsend AR Erisman JW Bekunda M Cai Z Freney JR

Martinelli LA Seitzinger SP Sutton MA 2008 Transformation of the Nitrogen Cycle  Science (80- ) 320 889ndash892

httpsdoiorg101126science1136674 Garreaud RD Alvarez-Garreton C Barichivich J Pablo Boisier J Christie

D Galleguillos M LeQuesne C McPhee J Zambrano-Bigiarini M 2017 The 2010-2015 megadrought in central Chile Impacts on regional hydroclimate and vegetation Hydrol Earth Syst Sci 21 6307ndash6327 httpsdoiorg105194hess-21-6307-2017

Gruber N Galloway JN 2008 An Earth-system perspective of the global

nitrogen cycle Nature 451 293ndash296 httpsdoiorg101038nature06592 Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater eutrophic lake Limnol Oceanogr 51 2837ndash2848 httpsdoiorg104319lo20065162837

IPCC 2013 Climate Change 2013 The Physical Science BasisContribution of

Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press Cambridge United Kingdom and New York NY USA

httpsdoiorg101017CBO9781107415324 Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos Transactions

American Geophysical Union httpsdoiorg1010292007EO070007 Martel-Cea A Maldonado A Grosjean M Alvial I de Jong R Fritz SC von

Gunten L 2016 Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical Central Chile (32iumliquestfrac12S 3050iumliquestfrac12miumliquestfrac12asl) Palaeogeogr Palaeoclimatol Palaeoecol 461 44ndash54 httpsdoiorg101016jpalaeo201608003

McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE 2007

Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470

27

httpsdoiorg101073pnas0701779104 McLauchlan KK Gerhart LM Battles JJ Craine JM Elmore AJ Higuera

PE Mack MC McNeil BE Nelson DM Pederson N Perakis SS 2017 Centennial-scale reductions in nitrogen availability in temperate forests of the United States Sci Rep 7 1ndash7 httpsdoiorg101038s41598-017-08170-z

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash1643 httpsdoiorg1011770959683613496289

Meyers PA Teranes JL 2001 Sediment organic matter in Tracking

Environmental Change Using Lake Sediments Volume 2 Physical and Geochemical Methods httpsdoiorg1018971551-5028(1999)018lt0231SOMCAAgt23CO2

Myers N Mittermeler RA Mittermeler CG Da Fonseca GAB Kent J

2000 Biodiversity hotspots for conservation priorities Nature httpsdoiorg10103835002501

Pentildeuelas J Poulter B Sardans J Ciais P Van Der Velde M Bopp L

Boucher O Godderis Y Hinsinger P Llusia J Nardin E Vicca S Obersteiner M Janssens IA 2013 Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe Nat Commun 4 httpsdoiorg101038ncomms3934

Prieto M Salazar D Valenzuela MJ 2019 The dispossession of the San

Pedro de Inacaliri river Political Ecology extractivism and archaeology Extr Ind Soc httpsdoiorg101016jexis201902004

Robertson GP Vitousek P 2010 Nitrogen in Agriculture Balancing the Cost of

an Essential Resource Ssrn 34 97ndash125 httpsdoiorg101146annurevenviron032108105046

Sardans J Rivas-Ubach A Pentildeuelas J 2012 The CNP stoichiometry of

organisms and ecosystems in a changing world A review and perspectives Perspect Plant Ecol Evol Syst 14 33ndash47 httpsdoiorg101016jppees201108002

Schindler DW Howarth RW Vitousek PM Tilman DG Schlesinger WH

Matson PA Likens GE Aber JD 2007 Human Alteration of the Global Nitrogen Cycle Sources and Consequences Ecol Appl 7 737ndash750 httpsdoiorg1018901051-0761(1997)007[0737haotgn]20co2

Scott E and EM Grantzs 2013 N2 fixation exceeds internal nitrogen loading as

a phytoplankton nutrient source in perpetually nitrogen-limited reservoirs Freshwater Science 2013 32(3)849ndash861 10189912-1901

28

Stocker TF Dahe Q Plattner G-K Alexander L V Allen SK Bindoff NL Breacuteon F-M Church JA Cubash U Emori S Forster P Friedlingstein P Talley LD Vaughan DG Xie S-P 2013 Technical Summary in Climate Change 2013 The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change httpsdoiorg101017 CBO9781107415324005

Talbot M R (2002) Nitrogen isotopes in palaeolimnology In Tracking

environmental change using lake sediments (pp 401-439) Springer Dordrecht

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status J Paleolimnol 47 693ndash706 httpsdoiorg101007s10933-012-9593-6

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M Eggenberger U Grob P Urrutia R Morales A

2009 Pollution and eutrophication history AD 1800-2005 as recorded in sediments from five lakes in Central Chile Glob Planet Change 68 198ndash208 httpsdoiorg101016jgloplacha200904004

Woodward CA Potito AP Beilman DW 2012 Carbon and nitrogen stable

isotope ratios in surface sediments from lakes of western Ireland Implications for inferring past lake productivity and nitrogen loading J Paleolimnol 47 167ndash184 httpsdoiorg101007s10933-011-9568-z

Xu H Yu K Lan J Sheng E Liu B Ye Y Hong B Wu H Zhou K

Yeager KM 2016 Different responses of sedimentary δ15N to climatic changes and anthropogenic impacts in lakes across the Eastern margin of the Tibetan Plateau J Asian Earth Sci 123 111ndash118 httpsdoiorg101016jjseaes201603024

29

CAPIacuteTULO 1 A COMBINED APPROACH TO ESTABLISHING THE TIMING

AND MAGNITUDE OF ANTHROPOGENIC NUTRIENT ALTERATION IN A

MEDITERRANEAN COASTAL LAKE- WATERSHED SYSTEM

30

A combined approach to establishing the timing and magnitude of anthropogenic

nutrient alteration in a mediterranean coastal lake- watershed system

Magdalena Fuentealbaabc Claudio Latorreabc Matiacuteas Frugoneabc Pablo

Sarricolead Santiago Giralte Manuel Contreras-Lopezf Ricardo Prego g Patricia

Bernaacuterdez g Blas Valero-Garceacutesch

a Departamento de Ecologiacutea Pontificia Universidad Catoacutelica de Chile Alameda 340 Santiago Chile

b Institute of Ecology and Biodiversity (IEB) Las Palmeras 3425 Nuntildeoa Santiago Chile

c Laboratorio Internacional de Cambio Global LINCGlobal PUC-CSIC Spain

d Departamento de Geografiacutea Universidad de Chile Marcoleta 250 Santiago Chile

e Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) CLluis Solegrave Sabaris sn Barcelona E-

08028 Spain

f Facultad de Ingenieriacutea y Centro de Estudios Avanzados Universidad de Playa Ancha Traslavintildea

450 Vintildea del Mar Chile

g Instituto de Investigaciones Marinas (CSIC) CEduardo Cabello 6 36208 Vigo Spain

h Instituto Pirenaico de Ecologiacutea (IPE-CSIC) Avenida Montantildeana 1005 Zaragoza 50059 Spain

Corresponding author

E-mail address

clatorrebiopuccl magdalenafuentealbagmailcom

Abstract

Since the industrial revolution and especially during the Great Acceleration (1950

CE) human activities have profoundly altered the global nutrient cycle through land

use and cover changes (LUCC) However the timing and intensity of recent N

variability together with the extent of its impact in terrestrial and aquatic ecosystems

and coupled effects of regional LUCC and climate are not well understood Here

we used a multiproxy approach (sedimentological geochemical and isotopic

31

analyses historical records climate data and satellite images) to evaluate the role

of LUCC as the main control for N cycling in a coastal watershed system of central

Chile during the last few centuries The largest changes in N dynamics occurred in

the mid-1970s associated with the replacement of native forests and grasslands for

livestock grazing by plantations of introduced Monterey pine (Pinus radiata) and

eucalyptus (Eucalyptus globulus) Lake productivity increased and is evidenced by

an increase trend in δ15N values Our study shows that anthropogenic land

usecover changes are key in controlling nutrient supply and N availability in

Mediterranean watershed ndash lake systems and that large-scale forestry

developments during the mid-1970s likely caused the largest changes in central

Chile

Keywords Anthropocene Organic geochemistry watershedndashlake system Stable

Isotope Analyses Land usecover change Nitrogen cycle Mediterranean

ecosystems central Chile

1 INTRODUCTION

Human activities have become the most important driver of the nutrient cycles in

terrestrial and aquatic ecosystems since the industrial revolution (Gruber and

Galloway 2008 Galloway et al 2008 Holtgrieve et al 2011 Fowler et al 2013

Goyette et al 2016) Among these N is a common nutrient that limits productivity

in terrestrial and aquatic ecosystems (Vitousek and Howarth 1991 McLauchlan et

al 2013) With the advent of the Haber-Bosch industrial N fixation process in the

early 20th century total N fluxes have surpassed previous planetary boundaries

32

(Galloway et al 2008 Elser 2011) reaching unprecedented values (ie tipping

points) in the Earth system especially during what is now termed the Great

Acceleration (which began in the 1950s) which intensified in the 1970s (Howarth

2004 Steffen et al 2015) Yet dramatic changes in LUCC have occurred in the last

few centuries mainly linked to forestry and agro-pastoral activities (Poraj-Goacuterska et

al 2017 Ge et al 2019 Cheng et al 2019) These have had large impacts on N

(and Carbon -C-) availability in terrestrial and aquatic ecosystems but the synergic

effect with climate change and global N dynamics has not been established

(Vitousek et al 1997 Mclauchlan et al 2007 2013 Pongratz et al 2010

Woodward et al 2012 Mclauchlan et al 2017)

The onset of the Anthropocene poses significant challenges in mediterranean

regions that have a strong seasonality of hydrological regimes and an annual water

deficit (Stocker et al 2013) Mediterranean climates occur in all continents

(California central Chile Australia South Africa circum-Mediterranean regions)

providing a unique opportunity to investigate global change processes during the

Anthropocene in similar climate settings but with variable geographic and cultural

contexts The effects of global change in mediterranean watersheds have been

analyzed from different perspectives hydrology (Giorgi 2006 Arnell and Gosling

2013 Prudhomme et al 2014) vegetation dynamics (Lenihan et al 2003 Vicente-

Serrano et al 2013 Matesanz and Valladares 2014) sediment dynamics (Garciacutea-

Ruiz et al 2013 Garciacutea-Ruiz 2010 Syvitski et al 2005) changes in

biogeochemical cycles (Thomas et al 2013 Fowler et al 2013 Frank et al 2015)

carbon storage (Muntildeoz-Rojas et al 2015) and biodiversity (Hooper et al 2012) A

recent review showed an extraordinarily high variability of erosion rates in

mediterranean watersheds positive relationships with slope and annual

33

precipitation and the paramount effect of land use (Garciacutea-Ruiz et al 2015)

However the temporal context and effect of LUCC on nutrient supply to

mediterranean lakes has not been analyzed in much detail

Major LUCC in central Chile occurred during the Spanish Colonial period

(17th-18th centuries) (Armesto 1994 Gurnell et al 2001 Figueroa et al 2004

Martiacuten-Foreacutes et al 2012 Contreras-Loacutepez et al 2014) with the onset of

industrialization and mostly during the mid to late 20th century (von Gunten et al

2009 Gayo et al 2012) Recent copper pollution caused by 20th century mining

and industrial smelters has been documented in cores throughout the Andes

(Laguna el Ocho and Laguna Ensuentildeo von Gunten et al 2009) and also from our

surveys in the central valley (Batuco wetland) coastal range (Cordillera de Name)

and along the coast itself (Bucalemito and Colejuda) (Valero-Garceacutes et al 2010

unpublished data)

Paleolimnological studies have shown how these systems respond to

climate LUCC and anthropogenic impacts during the last millennia (Jenny et al

2002 2003 Villa Martiacutenez et al 2002 Frugone-Aacutelvarez et al 2017 Contreras et

al 2018) Furthermore changes in sediment and nutrient cycles have also been

identified in associated terrestrial ecosystems dating as far back as the Spanish

Conquest and related to fire clearance and wood extraction practices of the native

forests (Armesto 1994 Contreras-Loacutepez et al 2014) Nevertheless pollen and

limnological evidence argue for a more recent timing of the largest anthropogenic

impacts in central Chile For example paleo records show that during the mid-20th

century increased soil erosion followed replacement of native forest by Pinus

radiata and Eucalyptus globulus plantations at Laguna Matanzas Aculeo and

34

Vichuqueacuten lakes (Jenny et al 2002 Villa-Martiacutenez et al 2002 2003 Frugone-

Aacutelvarez et al 2017)

Lakes are a central component of the global carbon cycle Lakes act as a

sink of the carbon cycle both by mineralizing terrestrially derived organic matter and

by storing substantial amounts of organic carbon (OC) in their sediments (Anderson

et al 2009) Paleolimnological studies have shown a large increase in OC burial

rates during the last century (Heathcote et al 2015) however the rates and

controls on OC burial by lakes remain uncertain as do the possible effects of future

global change and the coupled effect with the N cycle LUCC intensification of

agriculture and associated nutrient loading together with atmospheric N-deposition

are expected to enhance OC sequestration by lakes Climate change has been

mainly responsible for the increased algal productivity since the end of the 19th

century and during the late 20th century in lakes from both the northern (Ruumlhland et

al2015) and southern hemispheres (Michelutti et al 2015 Carrevedo et al 2015)

but many studies suggest a complex interaction of global warming and

anthropogenic influences and it remains to be proven if climate is indeed the only

factor controlling these transitions (Catalaacuten et al 2013) Alternative causes for

recent N (Galloway et al 2008) increases in high altitude lakes such as catchment

mediated processes cannot be ruled out (Camarero and Catalan 2012 Fritz and

Anderson 2013) Few lake-watershed systems have robust enough chronologies of

recent changes to compare variations in C and N with regional and local processes

and even fewer of these are from the southern hemisphere (McLauchlan et al

2007 Holtgrieve et al 2011)

In this paper we present a multiproxy lake-watershed study including N and

C stable isotope analyses on a series of short cores from Laguna Matanzas in

35

central Chile focused in the last 200 years We complemented our record with land

use surveys satellite and aerial photograph studies Our major objectives are 1) to

reconstruct the dynamics among climate human activities and changes in the N

cycle over the last two centuries 2) to evaluate how human activities have altered

the N cycle during the Great Acceleration (since the mid-20th century)

2 STUDY SITE

Laguna Matanzas (33ordm45rsquoS 71ordm 40acuteW 7 m asl Fig 1) is a coastal lake located

in central Chile near to a large populated area (Santiago gt6106 inhabitants) The

lake has a surface area of 15 km2 with a max depth of 3 m and a watershed of 30

km2 The lake basin is emplaced over Pleistocene-Holocene aeolian and alluvial fan

deposits (SERNAGEOMIN 2003) A recent phase of dune activity occurred from the

mid to late Holocene which mostly sealed off the basin from the ocean (Villa-

Martinez 2002) Climate in Laguna Matanzas is characterized by cool-wet winters

and hot-dry summers with annual precipitation of ~510 mm and a mean annual

temperature of 12ordmC Central Chile is in the transition zone between the southern

hemisphere mid-latitude westerlies belt and the South Pacific Anticyclone (or SPA)

(Garreaud et al 2009) In winter precipitation is modulated by the north-west

displacement of the SPA the northward shift of the westerlies wind belt and an

increased frequency of storm fronts stemming off the Southern Hemisphere

Westerly Winds (SWW) (Frugone-Aacutelvarez et al 2017) Austral summers are

typically dry and warm as a strong SPA blocks the northward migration of storm

tracks stemming off the SWW

36

Historic land cover changes started after the Spanish conquest with a Jesuit

settlement in 1627 CE near El Convento village and the development of a livestock

ranch that included the Matanzas watershed After the Jesuits were expelled from

South America in 1778 CE the farm was bought by Pedro Balmaceda and had more

than 40000 head of cattle around 1800 CE (Contreras-Lopez et al 2014) The first

Pinus radiata and Eucalyptus globulus trees were planted during the second half of

the 19th century and were mostly used for dune stabilization (Albert 1900 Gibson

1972) However the main plantation phase occurred 60 years ago (Villa-Martinez

2002) as a response to the application of Chilean Forestry Laws promulgated in

1931 and 1974 and associated state subsidies

Major land cover changes occurred recently from 1975 to 2008 as shrublands

were replaced by more intensive land uses practices such as farmland and tree

plantations (Schulz et al 2010) Laguna Matanzas is part of the Reserva Nacional

Humedal El Yali protected area (Ramsar Ndeg 878) Despite this protected status the

lake and its watershed have been heavily affected by intense agricultural and

farming activities during the last decades The main inlet ldquoLas Rosasrdquo has been

diverted for crop irrigation causing a significant loss of water input to the lake

Consequently the flooded area of the lake has greatly decreased in the last couple

of decades (Fig 1b) Exotic tree species cover a large surface area of the

watershed Recently other activities such as farms for intensive chicken production

have been emplaced in the watershed

37

Figure 1 Laguna Matanzas a) Digital Elevation Model showing the watershed and

the surface hydrologic connection with Colejuda and Cabildo lakes b) Climograph

depicting the warm dry season in austral summer c) Annual precipitation from

1965-2015 (arrow shows start of the most recent ldquomega-droughtrdquo- see Garreaud et

al 2017) d) A decline of lake area occurs between 2007 and 2018 Lake surface

area decreased first along the western sector (in 2007) followed by more inland

areas (in 2018)

38

3 RESULTS

31 Age Model

The age model for the Matanzas sequence was developed using Bacon software

to establish the deposition rates and age uncertainty (Blaauw and Christen 2011)

It is based on 210Pb and 137Cs dates and two 14C dates (Table 2) According to this

age model the lake sequence spans the last 1000 years (Fig 2) A major breccia

layer (unit 3b) was deposited during the early 18th century which agrees with

historic documents indicating that a tsunami impacted Laguna Matanzas and its

watershed in 1730 CE (Contreras-Loacutepez et al 2014) Here we focus in the last 200

years were the most important changes occurred in terms of LUCC (after the

sedimentary hiatus caused by the tsunami) The Spanish colonial period (17th -18th

century) brought new forms of territorial management along with an intensification

of watershed use which remained relatively unchanged until the 1900s

39

Figure 2 a) Age-depth model obtained for the Laguna de Matanzas sedimentary

sequence A hiatus occurs at 80 cm depth (unit 3b) The section of core used for our

analysis is highlighted in a red rectangle b) Close up of the age model used for

analysis of recent anthropogenic influences on the N cycle c) Information regarding

the 14C dates used to construct age model

Lab code Sample ID

Depth (cm) Material Fraction of modern C

Radiocarbon age

Pmc Error BP Error

D-AMS 021579

MAT11-6A 104-105 Bulk Sediment

8843 041 988 37

D-AMS 001132

MAT11-6A 1345-1355

Bulk Sediment

8482 024 1268 21

POZ-57285

MAT13-12 DIC Water column 10454 035 Modern

Table 2 Laguna Matanzas radiocarbon dates

32 The sediment sequence

Laguna Matanzas sediments consist of massive to banded mud with some silt

intercalations They are composed of silicate minerals (plagioclase quartz and clay

minerals) with relatively high TOC content (Fig 3) Pyrite is a common mineral

indicating dominant anoxic conditions in the lake sediments whereas aragonite

occurs only in the uppermost section Mineralogical analyses visual descriptions

texture and geochemical composition were used to characterize five main facies

(Fig 3) F1 (organic-rich mud) represents baseline sedimentation in a shallow well-

mixed brackish highly productive lake and F1acute (dark orange) is a less organic facies

than F1 (more details see table in the supplementary material) F2 (massive to

banded silty mud) indicates periods of higher clastic input into the lake but finer

(mostly clay minerals) likely from suspension deposition associated with flooding

40

events Aragonite (up to 15 ) occurs in both facies but only in samples from the

uppermost 30 cm and it is interpreted as endogenic linked to higher MgFe waters

and elevated biologic productivity

Figure 3 Sedimentary facies and units mineralogy grain size elemental geochemical

and isotopic composition of Laguna Matanzas core Values highlighted in gray indicate

that these are above average

The banded to laminated fining upward silty clay layers (F3) reflect

deposition by high energy turbidity currents The presence of aragonite suggests

that littoral sediments were incorporated by these currents Non-graded laminated

coarse silt layers (F4) do not have aragonite indicating a dominant watershed

41

sediment source Both facies are interpreted as more energetic flood deposits but

with different sediment sources A unique breccia layer with coarse silt matrix and

cm-long soft clasts (F5) is interpreted as a high-energy event (ie a tsunami)

capable of eroding the littoral zone and depositing coarse clastic material in the

distal zone of the lake Similar coarse breccia layers have been found at several

coastal sites in Chile and interpreted as tsunami-related deposits (Vargas et al

2005 Le Roux et al 2008)

33 Sedimentary units

Three main units and six subunits have been defined (Fig 3) based on

sedimentary facies and sediment composition We use ZrTi as an indicator of the

mineral fraction transported from the watershed (Marzecoacuteva et al 2011) as higher

ZrTi (F3 and F4) is commonly associated with coarser sediments (Cuven et al

2010) A high correlation among Br BrTi and TOC (r = 046-087 p value=0)

supports the use of BrTi as an indicator of lake productivity (Marzecoacuteva et al 2011

Frugone-Aacutelvarez et al 2017) The MnFe ratio is indicative of lake bottom

oxygenation (Naecher et al 2013) as under reducing conditions Mn mobilizes more

than Fe leading to a decreased MnFe ratio (Marzecoacuteva et al 2011) SrTi indicates

periods of increased aragonite formation as Sr is preferentially included in the

aragonite mineral structure (Veizer et al 1971) (See supplementary material)

The basal unit (3c 129 to 99 cm) is relatively organic-rich (TOC mean=26

BioSi mean=5) and composed by F1 (without aragonite) with some coarser F4

flood layers (ZrTi mean=025) Unit 3b (98 to 80 cm) is interpreted as a tsunami or

storm surge deposit (breccia F5 grading into massive to banded silt F2) Unit 3a

(79 to 73 cm) is characterized by relatively low productivity (TOC=2 BrTi=002

42

BioSi=4) under anoxic conditions (MnFe=001) Unit 2a (72 to 31cm) has

relatively less organic content and more intercalated clastic facies F3 and F4 The

top of this unit (43-30 cm) has elevated TS values The Subunit 1b (30-20 cm)

shows increasing TOC BioSi and BrTi values (TOC mean = 29 BioSi mean =

54 BrTi mean=004) and the upper subunit 1a (19-0 cm) has the highest TOC

(mean = 64) and BioSi (mean = 56) high BrTi mean = 010 and the presence

of aragonite More frequent anoxic conditions (MnFe lower than 001) during units

3 and 2 shifted towards more oxic episodes (MnFe = 003) in unit 1 (Fig 3)

34 Isotopic signatures

Figure 4 shows the isotopic signature from soil samples of the major land

usescover present in the Laguna Matanzas used as an end member in comparison

with the lacustrine sedimentary units δ15N from cropland samples exhibit the

highest values whereas grassland and soil samples from lake shore areas have

intermediate values (Fig 4) Tree plantations and native forests have similarly low

δ15N values (+11 permil SD=24) All samples (except those from the lake shore)

exhibit low δ13C values (from ndash285permil to ndash298permil) CNmolar from agriculture land

lakeshore area and non-vegetation areas samples display the lowest values (about

18) CNmolar from tree plantations and native forest have the highest values (383

and 267 respectively)

43

Figure 4 C-N stable isotope plot showing a comparison of lake sediments grouped

by sedimentary units (MAT11-6A) with the soil end members of present-day (lake

shore and land usecover) from Laguna Matanzas

The δ15N values from sediment samples (MAT11-6A) range from ndash15 and

+53permil (mean= +35 SD=05) δ13C values range from ndash266permil to ndash202permil (mean=

ndash240 SD=14) In unit 3c δ15N and δ13C show relatively high values (mean=

+41permil and ndash233permil respectively) δ15N and δ13C from unit 3b and 3a fluctuate at

slightly lower values than in 3c (mean δ15N from 3a= +38permil and 3b mean= +39permil

mean δ13C from 3a= ndash242permil and 3b mean= ndash244permil) In unit 2a δ15N values are

relatively high (mean= +38permil) but show a slightly decreasing trend (from +52 to

+24permil at 66 cm and 36 cm respectively) δ13C also decreases (mean= ndash242permil)

reaching minimum values at 45 cm (ndash266permil) with a sharp increase towards the top

of this unit with maximum values ca ndash210permil Unit 1 exhibits the lowest δ15N values

(1a mean= +11permil 1b mean= +28permil) with negative values in the uppermost

44

sediments (ndash04permil at 14 cm) δ13C values show a decreasing trend over most of

subunit 1b and increase only near the very top of this unit

35 Recent land use changes in the Laguna Matanzas watershed

Major LUCC from 1975 (unit 1b) to 2016 CE in the Laguna Matanzasacutes

watershed is summarized in Figure 5 The watershed has a surface area of 30 km2

of which native forest (36) and grassland areas (44) represented 80 of the

total surface in 1975 The area occupied by agriculture was only 02 and tree

plantations were absent Isolated burned areas (33) were located mostly in the

northern part of the watershed By 1989 tree plantations surface area had increased

to 5 burned areas to 17 and agricultural fields to 9 (a 45-fold increase) and

native forest and grassland sectors decreased to 23 and 27 respectively By

2016 agricultural land and tree plantations have increased to 17 of the total area

whereas native forests decreased to 21

45

Figure 5 Land uses and cover changes from 1975 to 2016 in Laguna Matanzas

watershed from natural cover and areas for livestock grazing (grassland) to the

expansion of agriculture and forest plantation

4 DISCUSSION

41 N and C dynamics in Laguna Matanzas

Small lakes with relatively large watersheds such as Laguna Matanzas would

be expected to have relatively high contributions of allochthonous C to the sediment

OM (Gu et al 2006) Terrestrial C3 plants (δ13C =ndash26 to ndash28permil Meyers and Terranes

2001 Ku et al 2007) are dominant in the Laguna Matanzas watershed Likewise

our soil samples ranged across similar although slightly more negative values

46

(δ13C = ndash30 to ndash28permil Fig 4) to those proposed by Meyers and Terranes (2001)

and are used here as terrestrial end members oil samples were taken from the lake

shore (δ13C = ndash22permil) and POM from surface water (δ13C = ndash24permil) were more

positive than the terrestrial end member and are used as lacustrine end members

Thus more negative δ13C values in lake sediment samples are attributed to higher

OM inputs from terrestrial vegetation and more positive δ13C values have increased

aquatic OM (Gu et al 2006 Torres et al 2012) Phytoplankton preferentially uptake

12C leaving the DIC pool enriched in 13C (Gu et al 2006) especially when there are

no important external sources of C (eg decreased C input from the watershed)

Therefore during events of elevated primary productivity the phytoplankton uptakes

12C until its depletion and are then obligated to use the heavier isotope resulting in

an increase in δ13C Changes in lake productivity thus greatly affect the C isotope

signal (Torres et al 2012) with high productivity leading to elevated δ13C values

(Torres et al 2012 Gu et al 2006)

In a similar fashion the N isotope signatures in Laguna Matanzas reflect a

combination of factors including different N sources (autochthonousallochthonous)

and lake processes such as productivity isotope fractionation in the water column

and sediment denitrification Elevated δ15N values from a POM sample (+22permil) and

average values from the lake shore (mean=+34permil SD=028) are used as aquatic

end members whereas terrestrial samples have values from +10 +24 (tree species)

to +77permil +35 (agriculture) which we use as terrestrial end members (Fig 4)

Autochthonous OM in aquatic ecosystems typically displays low δ15N values

when the OM comes from N-fixing species Atmospheric fixation of N2 by

cyanobacteria ends in OM with δ15N values close to 0permil (Leng et al 2006)

Phytoplankton preferentially uptake 14N from Dissolved Inorganic Nitrogen (DIN) in

47

the water column and derived OM typically have δ15N values lower than DIN values

When productivity increases the remaining DIN becomes depleted in 14N which in

turn increases the δ15N values of phytoplankton over time especially if the N not

replenished (Torres et al 2012) Thus high POM δ15N values from Laguna

Matanzas reflect elevated phytoplankton productivity with a 14N- depleted DIN In

addition N-watershed inputs also contribute to high δ15N values Heavily impacted

watersheds by human activities are often reflected in isotope values due to land use

changes and associated modified N fluxes For example the input of N runoff

derived from the use of inorganic fertilizers leads to the presence of elevated δ15N

(between ndash4 to +4permil) values in the water bodies (Elliott and Brush 2006 Diebel and

Vander Zanden 2009) Widory et al (2004) reported a direct relationship between

elevated δ15N values and increased nitrate concentration from manure in the

groundwater of Brittany (France) Terranes and Bernasconi (2000) found a good

correlation between augmented nutrient loading and a progressive increase in δ15N

values of sedimentary OM related to agricultural land use

Post-depositional diagenetic processes can further affect C and N isotope

signatures Several studies have shown a decrease in δ13C values of OM in anoxic

environments particularly during the first years of burial related to the selective

preservation of OM depleted in 13C (Hollander and Smith 2001 Lehmann et al

2002 Gӓlman et al 2009 Torres et al 2012) Diagenetic processes can also lead

to post-burial N isotope enrichment of the sediments Indeed 14N is consumed more

rapidly than 15N by denitrifying bacteria which intensifies under anoxic conditions

(Diebel and Vander Zanden 2009) Thus the remaining OM pool will be enriched

in 15N leaving to elevated δ15N values (Granger et al 2008 Menzel et al 2013)

48

In summary the relatively high δ15N values in sediments of Laguna Matanzas

reflect N input from an agriculturegrassland watershed with positive synergetic

effects from increased lake productivity enrichment of DIN in the water column and

most likely denitrification The increase of algal productivity associated with

increased N terrestrial input andor recycling of lake nutrients (and lesser extent

fixing atmospheric N) and denitrification under anoxic conditions can all increase

δ15N values (Fig 3) In addition elevated lake productivity without C replenishing

(eg by terrestrial C input) produces shifts towards positive δ13C values whereas C

input from the watershed generates more negative δ13C values

42 Recent evolution of the Laguna Matanzas watershed

Sedimentological compositional and geochemical indicators show three

depositional phases in the lake evolution under the human influence in the Laguna

Matanzas over the last two hundred years Although the record is longer (around

1000 years) we analyzed the last two centuries (unit 2 and 1) to provide a recent

historical context for the large changes detected during the 20th century

The first phase lasted from the beginning of the 19th century until ca 1940

(unit 2a Fig 3 4) and was characterized by moderate productivity with elevated

sediment input from the watershed as indicated by our geochemical proxies (BrTi

= 004 AlTi gt 01 Fig 6) Higher lake levels and dominant anoxic bottom conditions

(MnFe = 001 Fig3) can be related to increased precipitation (mean= 557 mmyr)

and lower temperatures (summer annual temperature lt19ordmC) During the Spanish

colonial period the Laguna Matanzas watershed was used as a livestock farm

(Jesuits 1627-1780 unit 3 followed by the Pedro Balmaceda era 1780-1810- unit

2a) (Contreras-Loacutepez et al 2014) The main buildings and farm facilities at the El

49

Convento village During this period livestock grazing and lumber extraction for

mining would have involved extensive deforestation and loss of native vegetation

(eg Armesto et al 1994 2010) However the Matanzas pollen record does not

show any significant regional deforestation during this period (Villa Martiacutenez 2002)

suggesting that the impact may have been highly localized

Lake productivity sediment input and elevated precipitation (Fig 6) all

suggest that N availability was related to this increased input from the watershed

The N from cow manure and soil particles would have led to higher δ15N values

(Elliot and Brush 2016) In addition anoxic lake bottom conditions would lead to

even further enrichment of buried sediment N The δ13C values lend further support

to our interpretation of increased sediment input -and N- from the watershed

Decreased δ13C values reach their lowest values in the entire record (ndash270permil) at

ca 1910 CE (Fig 4 6)

During most of the 19th century human activities in Laguna Matanzas were

similar to those during the Spanish Colonial period However the appearance of

Pinus radiata and Eucalyptus globulus pollen ca 1890 CE (Gibson 1972) the dune

stabilization-afforestation program which began ca 1900 CE (Albert 1900) and the

application of the Chilean forestry law of 1931 (DFL nordm265) contributed to an

increased capacity of the surrounding vegetation to retain nutrients and sediments

The law subsidized forest plantations in areas devoid of vegetation and prohibited

the cutting of forest on slopes greater than 45ordm These land use changes were coeval

with decreased sediment inputs (AlTi trend) from the watershed slightly increased

lake productivity (BrTi from 001 to 003) and a decrease in annual precipitation

(Fig 6) N isotope values become more negative during this period although they

remained high (from +49permil to +37permil) whereas the δ13C trend towards more

50

positive values reflects changes in the N source from watershed to in-lake dynamics

(e g increased endogenic productivity)

The second phase started after 1940 and is clearly marked by an abrupt

change in the general trend of δ15N that oscillates around +41permil (SD = 04permil) during

the first phase to +24permil (SD = 14permil) during the second These δ15N trends reflect

the lowest watershed nutrient and sediment inputs (based on the AlTi record)

decreased precipitation (mean = 318 mm year) and a slight increase in lake

productivity (increased BrTI) Depositional dynamics in the lake likely crossed a

threshold as human activity intensified throughout the watershed and lake levels

decreased

During the Great Acceleration δ15N values shifted towards higher values to

ca 3permil with an increase in δ13C values that are not reflected either in lake

productivity or lake level As the sediment input from the watershed increased and

precipitation remained as low as the previous decade δ15N values during this period

are likely related to watershed clearance which would have increased both nutrient

and sediment input into the lake

The δ13C trend to more positive values reaching the peaks in the 1960s (ndash

212permil) at the same time as the peaks in temperature (196 ordmC mean annual) with a

downward trend in precipitation A shift in OM origin from macrophytes and

watershed input influences to increased lake productivity could explain this trend

(Fig 4 1b)

In the 1970s the Laguna Matanzasacute watershed was mostly covered by native

forest (36) and grassland areas were intended for livestock grazing (44 Fig 5)

Both soils have δ15NSoil lt 5permil (Fig 4) Farming fields occupied a very small area and

tree plantations were almost nonexistent The decreasing trend in δ15N values seen

51

in our record is interrupted by several large peaks that occurred between ca 1975

and ca 1989 when the native forest and grassland areas fell by 23 and 27

respectively largely due to fires affecting 17 of the forests Agriculture fields

increased by 4 and forest plantations increased by 9 (unit 1a) Concomitantly

sediment ndash and likely N - inputs from the watershed decreased (as indicated by the

trend in AlTi) the precipitation was still relatively low (Fig 6) These changes are

likely related to the increase of vegetation cover especially of tree plantations (which

have more negative δ15N values) The small increase in productivity in the lake could

have been favored by increased temperature (von Gunten et al 2009) After 1989

the increase in agriculture land (17 in 2016) correlates with increasing δ15N δ13C

and TOC trends in spite of declining rainfall The increase of forest plantations was

mostly in response to the implementation of the Law Decree of Forestry

Development (DL 701 of 1974) that subsidized forest plantation After 1989 the

increase in agricultural land (17 in 2016) is synchronous with increasing δ15N

δ13C TOC and MnFe trends despite the decline in rainfall and overall lower lake

levels as more water is used for irrigation

The third phase started c 1990 CE (unit 1a) when OM accumulation rates

increase and δ13C δ15N decreased reaching their lowest values in the sequence

around 2000 CE Afterward during the 21st century δ13C and δ15N values again

began to increase The onset of unit 1 is marked by increased lake productivity and

decreased sediment input (AlTi lt 02) synchronous with intensive farming replacing

forestry and extensive agriculture (Fig 5 6)

A change in the general trend of δ15N values which decreased until 1990

(unit 1a) as the native forest and grassland area fell to 23 and 27 respectively

is most likely due to deforestation and fires Agriculture surface increased to 4 and

52

forest plantations increased by 9 (Fig 5) Concomitantly sediment ndash and likely N

ndash inputs from the watershed decreased probably related to the low precipitation (Fig

1b) and the increase of vegetation cover in the watershed in particularly by tree

plantations (with more negative δ15N Fig 4)

At present agriculture and tree plantations occupy around 34 of the

watershed surface whereas native forests and grassland cover 21 and 25

respectively Lake productivity as indicated by BrTi (Fig6) is higher and generates

OM with lower δ15N and higher δ13C values (about +2permil and ndash20permil ca 2000 CE

respectively) due to in-lake processes (ie biological N fixation and nutrient

recycling) and driven by changes in the arboreal cover which diminishes nutrient

flux into the lake (Fig6)

53

Figure 6 Anthropogenic and climatic forcing and lake dynamics response

(productivity sediment input N and C cycles) at Matanzas Lake over the last two

54

centuries Mean annual precipitation reconstructed and temperatures (von Gunten

et al 2009) Vertical gray bars indicate mega-droughts

5 CONCLUSIONS

Human activities have been the main factor controlling the N and C cycle in

the Laguna Matanzas during the last two centuries The N isotope signature in the

lake sediments reflects changes in the watershed fluxes to the lake but also in-lake

processes such as productivity and post-depositional changes Denitrification could

have been a dominant process during periods of increased anoxic conditions which

were more frequent prior to Great Acceleration (1950 CE) Higher δ15N and lower

δ13C values are associated with increased nutrient input from the watershed due to

increased livestock grazing and agriculture pressure (phase 1 Fig 7a) whereas

lower isotope values occurred during periods of increased forest plantations (phase

3 Fig 7c) During periods of increased lake productivity - such as in the last few

decades - δ15N values increased significantly

The most important change in C and N dynamics in the lake occurred after the

1950s (Phase 2 and 3) as tree plantations dominated the watershed Recent

changes in N dynamics can be explained by the higher nutrient contribution

associated with intensive agriculture (i e fertilizers) since the 1990s Although the

replacement of livestock activities with forestry and farming seems to have reduced

nutrient and soil export from the watershed to the lake the inefficient use of fertilizer

(by agriculture) can be the ultimate responsible for lake productivity increase during

the last decades

55

Figure 7 Schematic diagrams illustrating the main factors controlling the

isotope N signal in sediment OM of Laguna Matanzas N input from watershed

depends on human activities and land cover type Agriculture practices and cattle

(grassland development) contribute more N to the lake than native forest and

plantations Periods of higher productivity tend to deplete the dissolved inorganic N

in 14N resulting in higher δ15N (OM) The denitrification processes are more effective

in anoxic conditions associated with higher lake levels

6 METHODS

Short sediment cores were recovered from Laguna Matanzas using an Uwitec

gravity piston corer in 2011 and 2013 (Fig 1a) Sediment cores (MAT11-6A 129 cm

MAT13-2A 149 cm MAT13-3A 33 cm MAT13-4A 99 cm) were split

photographed sub-sampled and stored at the Pyrenean Institute of Ecology (IPE-

CSIC Spain) Core MAT11-6A was obtained from the central sector of the lake and

56

was selected for detailed multiproxy analyses (including elemental geochemistry C

and N isotope analyses XRF and 14C dating)

The isotope analyses (δ13C and δ15N) were performed at the Laboratory of

Biogeochemistry and Applied Stable Isotopes (LABASI-PUC Chile) using a Delta

V Advantage IRMS coupled to a Thermo Flash 2000 Elemental Analyzer via a

Conflo IV interface Isotope results are expressed in standard delta notation (δ) in

per mil (permil) relative to the standards Pee Dee Belemnite (Vienna Pee Dee

Belemnite) for C and to atmospheric N2 for N (Leng et al 2006) Sediment samples

for δ13Corg were pre-treated with 50 ml of HCl and 50 ml of deionized water and

dried at 60ordmC for 4 hr to remove carbonates (Harris et al 2011)

Total Carbon (TC) Total Organic Carbon (TOC) Total Inorganic Carbon (TIC)

and Total Sulphur (TS) were measured every cm with a LECO SC 144 DR at IPE-

CSIC XRF measurements were carried out every 4 mm in MAT11-1A-1G core using

an AVAATECH X-ray Fluorescence II core scanner at the University of Barcelona

(Spain) Results are expressed as element intensities in counts per second (cps)

Tube voltage was operated at 30 kV and 10 kV to obtain the abundances of 15

elements (Al Si S Cl K Ca Ti V Mn Fe Br Rb Sr Y Zr) with an average at

least of 1600 cps (less for Br=1000)

Biogenic silica content mineralogy and grain size were measured every 4

cm Biogenic silica was measured following Mortlock and Froelich (1989) and

Bernaacuterdez et al (2005) using an Auto Analyzer Technicon AAII for dissolved silicate

analysis Mineralogy was analyzed with a Siemens D-500 X-ray diffractometer (Cu

kα 40 kV 30 mA graphite monochromator) at the ICTJA-CSIC (Spain) Grain size

analyses were performed in a Beckmann Coulter LS 13 320 Particle Size Analyzer

57

at the IPE-CSIC The samples were classified according to textural classes as

follows clay (lt2 μm) silt (20-2 microm) and sand (gt2 microm) fractions

The age-depth model for the Laguna Matanzas sedimentary sequence was

constructed using 210Pb and 137Cs dating techniques (MAT13-4A) as well as two 14C

AMS dates on bulk sediment samples (MAT11-6A fig 2) We dated the dissolved

inorganic carbon (DIC) in the water column and no significant reservoir effect is

present in the modern-day water column (10454 + 035 pcmc Table 2) An age-

depth model was obtained with the Bacon R package to estimate the deposition

rates and associated age uncertainties along the core (Blaauw and Christen 2011)

To estimate LUCC of Laguna Matanzasacutes watershed we use satellite images

Landsat MSS for 1975 Landsat TM for 1989 and Landsat OLI for 2016 all taken in

summer or autumn (Table 1) We performed supervised classification of land uses

(maximum likelihood algorithm) for each year (1975 1989 and 2016) and the results

were mapped using software ArcGIS 102 in 2017

Satellite Images Acquisition Date

Resolution

Landsat MSS 19750322 60 m

Landsat TM 19890217 30 m

Landsat OLI 20160404 30 m

Table 1 Landsat imagery

Surface water samples were filtered for obtained particulate organic matter In

addition soil samples from the main land usecover present in the Laguna Matanzas

watershed were collected Elemental C N and their corresponding isotopes from

POM and soil were obtained at the LABASI and used here as end members

Daily precipitation at Santo Domingo (33ordm39`S 71ordm3 6`W)- the nearest weather

station to Laguna Matanzasndash was compiled using the redPrec R package (Fig1 d

Serrano-Notivoli et al 2017 Sarricolea et al 2019) To extend our precipitation

58

reconstruction back to 1824 we correlated this dataset with that available for

Santiago The Santiago data was compiled from data published in the Anales of

Universidad of Chile (1850) for the years 1824 to 1849 Almeyda (1940) for the years

1849 to 1864 and the Quinta Normal series from 1866 to the present (Direccioacuten

Meteoroloacutegica de Chile) We generated a linear regression model between the

presentday Santo Domingo station and the compiled Santiago data with a Pearson

coefficient of 087 and p-valuelt 001

Acknowledgments This research was funded by grants CONICYT AFB170008

to the Institute of Ecology and Biodiversity (IEB) and FONDECYT 1150763 (to CL)

Doctoral grant Becas Chile 21150224 MEDLANT (Spanish Ministry of Economy

and Competitiveness grant CGL2016-76215-R) Additional funding was provided

by the Laboratorio Internacional de Cambio Global (LINCGlobal PUC-CSIC) We

thank R Lopez E Royo and M Gallegos for help with sample analyses We thank

the Laboratory of Biogeochemistry and Applied Stable Isotopes (LABASI) of the

Department of Ecology (PUC) for sample analyses

References

Albert F 1900 Las dunas o sean arenas volantes voladeros arenas muertas invasion de las arenas playas I meacutedanos del centro de Chile comprendiendo el litoral desde el liacutemite norte de la provincia de Aconcagua hasta el liacutemite sur de la de Arauco Memorias cientiacuteficas I Lit

Anderson NJ W D Fritz SC 2009 Holocene carbon burial by lakes in SW

Greenland Glob Chang Biol httpsdoiorg101111j1365-2486200901942x

Armesto J Villagraacuten C Donoso C 1994 La historia del bosque templado

chileno Ambient y Desarro 66 66ndash72 httpsdoiorg101007BF00385244

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea

AM Marquet PA 2010 From the Holocene to the Anthropocene A

59

historical framework for land cover change in southwestern South America in the past 15000 years Land use policy 27 148ndash160 httpsdoiorg101016jlandusepol200907006

Arnell NW Gosling SN 2013 The impacts of climate change on river flow

regimes at the global scale J Hydrol 486 351ndash364 httpsdoiorg101016JJHYDROL201302010

Bernaacuterdez P Prego R Franceacutes G Gonzaacutelez-Aacutelvarez R 2005 Opal content in

the Riacutea de Vigo and Galician continental shelf Biogenic silica in the muddy fraction as an accurate paleoproductivity proxy Cont Shelf Res httpsdoiorg101016jcsr200412009

Blaauw M Christen JA 2011 Flexible paleoclimate age-depth models using an

autoregressive gamma process Bayesian Anal 6 457ndash474 httpsdoiorg10121411-BA618

Brush GS 2009 Historical land use nitrogen and coastal eutrophication A

paleoecological perspective Estuaries and Coasts 32 18ndash28 httpsdoiorg101007s12237-008-9106-z

Camarero L Catalan J 2012 Atmospheric phosphorus deposition may cause

lakes to revert from phosphorus limitation back to nitrogen limitation Nat Commun httpsdoiorg101038ncomms2125

Carrevedo ML Frugone M Latorre C Maldonado A Bernaacuterdez P Prego

R Caacuterdenas D Valero-Garceacutes B 2015 A 700-year record of climate and environmental change from a high Andean lake Laguna del Maule central Chile (36degS) Holocene 25 956ndash972 httpsdoiorg1011770959683615574584

Catalan J Pla-Rabeacutes S Wolfe AP Smol JP Ruumlhland KM Anderson NJ

Kopaacuteček J Stuchliacutek E Schmidt R Koinig KA Camarero L Flower RJ Heiri O Kamenik C Korhola A Leavitt PR Psenner R Renberg I 2013 Global change revealed by palaeolimnological records from remote lakes A review J Paleolimnol httpsdoiorg101007s10933-013-9681-2

Chen Y Y Huang W Wang W H Juang J Y Hong J S Kato T amp

Luyssaert S (2019) Reconstructing Taiwanrsquos land cover changes between 1904 and 2015 from historical maps and satellite images Scientific Reports 9(1) 3643 httpsdoiorg101038s41598-019-40063-1

Contreras S Werne J P Araneda A Urrutia R amp Conejero C A (2018)

Organic matter geochemical signatures (TOC TN CN ratio δ 13 C and δ 15 N) of surface sediment from lakes distributed along a climatological gradient on the western side of the southern Andes Science of The Total Environment 630 878-888 httpsdoiorg101016jscitotenv201802225

Contreras-Loacutepez M (Playa AUHVC (Universidad de VRFS (Pontificia UC

60

de V 2014 ELEMENTOS DE LA HISTORIA NATURAL DEL An Mus Hist Natulas Vaplaraiso 27 51ndash67

Cuven S Francus P Lamoureux SF 2010 Estimation of grain size variability

with micro X-ray fluorescence in laminated lacustrine sediments Cape Bounty Canadian High Arctic J Paleolimnol 44 803ndash817 httpsdoiorg101007s10933-010-9453-1

Diebel M Vander Zanden MJ 201209 Nitrogen stable isotopes in streams

stable isotopes Nitrogen effects of agricultural sources and transformations Ecol Appl 19 1127ndash1134 httpsdoiorg10189008-03271

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in

freshwater wetlands record long-term changes in watershed nitrogen source and land use SO - Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash2916

Elser J 2011 A world awash with nitrogen Science 334 1504ndash1506 Espizua LE Pitte P 2009 The Little Ice Age glacier advance in the Central

Andes (35degS) Argentina Palaeogeogr Palaeoclimatol Palaeoecol 281 345ndash350 httpsdoiorg101016JPALAEO200810032

Figueroa JA Castro S A Marquet P A Jaksic FM 2004 Exotic plant

invasions to the mediterranean region of Chile  causes history and impacts Invasioacuten de plantas exoacuteticas en la regioacuten mediterraacutenea de Chile  causas historia e impactos Rev Chil Hist Nat 465ndash483 httpsdoiorg104067S0716-078X2004000300006

Fowler D Coyle M Skiba U Sutton MA Cape JN Reis S Sheppard

LJ Jenkins A Grizzetti B Galloway N Vitousek P Leach A Bouwman AF Butterbach-bahl K Dentener F Stevenson D Amann M Voss M 2013 The global nitrogen cycle in the twenty- first century Philisophical Trans R Soc B httpsdoiorghttpdxdoiorg101098rstb20130164

Frank D Reichstein M Bahn M Thonicke K Frank D Mahecha MD

Smith P van der Velde M Vicca S Babst F Beer C Buchmann N Canadell JG Ciais P Cramer W Ibrom A Miglietta F Poulter B Rammig A Seneviratne SI Walz A Wattenbach M Zavala MA Zscheischler J 2015 Effects of climate extremes on the terrestrial carbon cycle Concepts processes and potential future impacts Glob Chang Biol httpsdoiorg101111gcb12916

Fritz SC Anderson NJ 2013 The relative influences of climate and catchment

processes on Holocene lake development in glaciated regions J Paleolimnol httpsdoiorg101007s10933-013-9684-z

Frugone-Aacutelvarez M Latorre C Giralt S Polanco-Martiacutenez J Bernaacuterdez P

61

Oliva-Urcia B Maldonado A Carrevedo ML Moreno A Delgado Huertas A Prego R Barreiro-Lostres F Valero-Garceacutes B 2017 A 7000-year high-resolution lake sediment record from coastal central Chile (Lago Vichuqueacuten 34degS) implications for past sea level and environmental variability J Quat Sci 32 830ndash844 httpsdoiorg101002jqs2936

Galloway JN Townsend AR Erisman JW Bekunda M Cai Z Freney JR

Martinelli LA Seitzinger SP Sutton MA 2008 Transformation of the Nitrogen Cycle  Science (80- ) 320 889ndash892 httpsdoiorg101126science1136674

Gaumllman V Rydberg J Bigler C 2009 Decadal diagenetic effects on δ 13 C and

δ 15 N studied in varved lake sediment Limnol Oceanogr 54 917ndash924 httpsdoiorg104319lo20095430917

Garciacutea-Ruiz JM 2010 The effects of land uses on soil erosion in Spain A

review Catena httpsdoiorg101016jcatena201001001

Garciacutea-Ruiz JM Loacutepez-Moreno JI Lasanta T Vicente-Serrano SM

Gonzaacutelez-Sampeacuteriz P Valero-Garceacutes BL Sanjuaacuten Y Begueriacutea S Nadal-Romero E Lana-Renault N Goacutemez-Villar A 2015 Los efectos geoecoloacutegicos del cambio global en el Pirineo Central espantildeol una revisioacuten a distintas escalas espaciales y temporales Pirineos httpsdoiorg103989Pirineos2015170005

Garciacutea-Ruiz JM Nadal-Romero E Lana-Renault N Begueriacutea S 2013

Erosion in Mediterranean landscapes Changes and future challenges Geomorphology 198 20ndash36 httpsdoiorg101016jgeomorph201305023

Garreaud RD Vuille M Compagnucci R Marengo J 2009 Present-day

South American climate Palaeogeogr Palaeoclimatol Palaeoecol httpsdoiorg101016jpalaeo200710032

Gayo EM Latorre C Jordan TE Nester PL Estay SA Ojeda KF

Santoro CM 2012 Late Quaternary hydrological and ecological changes in the hyperarid core of the northern Atacama Desert (~21degS) Earth-Science Rev httpsdoiorg101016jearscirev201204003

Ge Y Zhang K amp Yang X (2019) A 110-year pollen record of land use and land

cover changes in an anthropogenic watershed landscape eastern China Understanding past human-environment interactions Science of The Total Environment 650 2906-2918 httpsdoiorg101016jscitotenv201810058

Goyette J Bennett EM Howarth RW Maranger R 2016 Global

Biogeochemical Cycles 1000ndash1014 httpsdoiorg1010022016GB005384Received

Granger J Sigman DM Lehmann MF Tortell PD 2008 Nitrogen and

oxygen isotope fractionation during dissimilatory nitrate reduction by

62

denitrifying bacteria 53 2533ndash2545 httpsdoiorg10230740058342

Gruber N Galloway JN 2008 An Earth-system perspective of the global

nitrogen cycle Nature 451 293ndash296 httpsdoiorg101038nature06592

Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater eutrophic lake Limnol Oceanogr 51 2837ndash2848 httpsdoiorg104319lo20065162837

Gurnell AM Petts GE Hannah DM Smith BPG Edwards PJ Kollmann

J Ward J V Tockner K 2001 Effects of historical land use on sediment yield from a lacustrine watershed in central Chile Earth Surf Process Landforms 26 63ndash76 httpsdoiorg1010021096-9837(200101)261lt63AID-ESP157gt30CO2-J

Heathcote A J et al Large increases in carbon burial in northern lakes during the

Anthropocene Nat Commun 610016 doi 101038ncomms10016 (2015) Hollander DJ Smith MA 2001 Microbially mediated carbon cycling as a

control on the δ13C of sedimentary carbon in eutrophic Lake Mendota (USA) New models for interpreting isotopic excursions in the sedimentary record Geochim Cosmochim Acta httpsdoiorg101016S0016-7037(00)00506-8

Holtgrieve GW Schindler DE Hobbs WO Leavitt PR Ward EJ Bunting

L Chen G Finney BP Gregory-Eaves I Holmgren S Lisac MJ Lisi PJ Nydick K Rogers LA Saros JE Selbie DT Shapley MD Walsh PB Wolfe AP 2011 A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere Science (80) 334 1545ndash1548 httpsdoiorg101126science1212267

Hooper DU Adair EC Cardinale BJ Byrnes JEK Hungate BA Matulich

KL Gonzalez A Duffy JE Gamfeldt L Connor MI 2012 A global synthesis reveals biodiversity loss as a major driver of ecosystem change Nature httpsdoiorg101038nature11118

Horvatinčić N Sironić A Barešić J Sondi I Krajcar Bronić I Borković D

2016 Mineralogical organic and isotopic composition as palaeoenvironmental records in the lake sediments of two lakes the Plitvice Lakes Croatia Quat Int httpsdoiorg101016jquaint201701022

Howarth RW 2004 Human acceleration of the nitrogen cycle Drivers

consequences and steps toward solutions Water Sci Technol httpsdoiorg1010382Fscientificamerican0490-56

Jenny B Valero-Garceacutes BL Urrutia R Kelts K Veit H Appleby PG Geyh

M 2002 Moisture changes and fluctuations of the Westerlies in Mediterranean Central Chile during the last 2000 years The Laguna Aculeo record (33deg50primeS) Quat Int 87 3ndash18 httpsdoiorg101016S1040-

63

6182(01)00058-1

Jenny B Wilhelm D Valero-Garceacutes BL 2003 The Southern Westerlies in

Central Chile Holocene precipitation estimates based on a water balance model for Laguna Aculeo (33deg50primeS) Clim Dyn 20 269ndash280 httpsdoiorg101007s00382-002-0267-3

Leng M J Lamb A L Heaton T H Marshall J D Wolfe B B Jones M D

amp Arrowsmith C 2006 Isotopes in lake sediments In Isotopes in palaeoenvironmental research (pp 147-184) Springer Dordrecht

Le Roux JP Nielsen SN Kemnitz H Henriquez Aacute 2008 A Pliocene mega-

tsunami deposit and associated features in the Ranquil Formation southern Chile Sediment Geol 203 164ndash180 httpsdoiorg101016jsedgeo200712002

Lehmann M Bernasconi S Barbieri a McKenzie J 2002 Preservation of

organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis Geochim Cosmochim Acta 66 3573ndash3584 httpsdoiorg101016S0016-7037(02)00968-7

Lenihan JM Drapek R Bachelet D Neilson RP 2003 Climate change

effects on vegetation distribution carbon and fire in California Ecol Appl httpsdoiorg101890025295

McLauchlan K K Gerhart L M Battles J J Craine J M Elmore A J

Higuera P E amp Perakis S S (2017) Centennial-scale reductions in nitrogen availability in temperate forests of the United States Scientific reports 7(1) 7856 httpsdoi101038s41598-017-08170-z

Martel-Cea A Maldonado A Grosjean M Alvial I de Jong R Fritz SC von

Gunten L 2016 Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical Central Chile (32ordmS 3050 masl) Palaeogeogr Palaeoclimatol Palaeoecol 461 44ndash54 httpsdoiorg101016jpalaeo201608003

Martiacuten-Foreacutes I Casado MA Castro I Ovalle C Pozo A Del Acosta-Gallo

B Saacutenchez-Jardoacuten L Miguel JM De 2012 Flora of the mediterranean basin in the chilean ESPINALES Evidence of colonisation Pastos 42 137ndash160

Marzecovaacute A Mikomaumlgi a Koff T Martma T 2011 Sedimentary geochemical

response to human impact on Lake Notildemmejaumlrv Estonia Est J Ecol 60 54 httpsdoiorg103176eco2011105

Matesanz S Valladares F 2014 Ecological and evolutionary responses of

Mediterranean plants to global change Environ Exp Bot httpsdoiorg101016jenvexpbot201309004

64

McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE 2007

Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470 httpsdoiorg101073pnas0701779104

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash1643 httpsdoiorg1011770959683613496289

Menzel P Gaye B Wiesner MG Prasad S Stebich M Das BK Anoop A

Riedel N Basavaiah N 2013 Influence of bottom water anoxia on nitrogen isotopic ratios and amino acid contributions of recent sediments from small eutrophic Lonar Lake central India Limnol Oceanogr 58 1061ndash1074 httpsdoiorg104319lo20135831061

Meyers PA Teranes JL 2001 Sediment organic matter in Tracking

Environmental Change Using Lake Sediments Volume 2 Physical and Geochemical Methods httpsdoiorg1018971551-5028(1999)018lt0231SOMCAAgt23CO2

Michelutti N Wolfe AP Cooke CA Hobbs WO Vuille M Smol JP 2015

Climate change forces new ecological states in tropical Andean lakes PLoS One httpsdoiorg101371journalpone0115338

Muntildeoz-Rojas M De la Rosa D Zavala LM Jordaacuten A Anaya-Romero M

2011 Changes in land cover and vegetation carbon stocks in Andalusia Southern Spain (1956-2007) Sci Total Environ httpsdoiorg101016jscitotenv201104009

Naeher S Gilli A North RP Hamann Y Schubert CJ 2013 Tracing bottom

water oxygenation with sedimentary MnFe ratios in Lake Zurich Switzerland Chem Geol 352 125ndash133 httpsdoiorg101016jchemgeo201306006

Poraj-Goacuterska A I Żarczyński M J Ahrens A Enters D Weisbrodt D amp

Tylmann W (2017) Impact of historical land use changes on lacustrine sedimentation recorded in varved sediments of Lake Jaczno northeastern Poland Catena 153 182-193 httpdxdoiorg101016jcatena201702007

Pongratz J Reick CH Raddatz T Claussen M 2010 Biogeophysical versus

biogeochemical climate response to historical anthropogenic land cover change Geophys Res Lett 37 1ndash5 httpsdoiorg1010292010GL043010

Prudhomme C Giuntoli I Robinson EL Clark DB Arnell NW Dankers R

Fekete BM Franssen W Gerten D Gosling SN Hagemann S Hannah DM Kim H Masaki Y Satoh Y Stacke T Wada Y Wisser D 2014 Hydrological droughts in the 21st century hotspots and uncertainties from a global multimodel ensemble experiment Proc Natl Acad Sci httpsdoiorg101073pnas1222473110

65

Ruumlhland KM Paterson AM Smol JP 2015 Lake diatom responses to

warming reviewing the evidence J Paleolimnol httpsdoiorg101007s10933-

015-9837-3

Sarricolea P Meseguer-Ruiz Oacute Serrano-Notivoli R Soto M V amp Martin-Vide

J (2019) Trends of daily precipitation concentration in Central-Southern Chile Atmospheric research 215 85-98 httpsdoiorg101016jatmosres201809005

Sernageomin 2003 Mapa geologico de chile version digital Publ Geol Digit Serrano-Notivoli R de Luis M Begueriumlia S 2017 An R package for daily

precipitation climate series reconstruction Environ Model Softw httpsdoiorg101016jenvsoft201611005

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98 httpsdoiorg1011772053019614564785

Stine S 1994 Extreme and persistent drought in California and Patagonia during

mediaeval time Nature 369 546ndash549 httpsdoiorg101038369546a0

Stocker TF Dahe Q Plattner G-K Alexander L V Allen SK Bindoff NL

Breacuteon F-M Church JA Cubash U Emori S Forster P Friedlingstein P Talley LD Vaughan DG Xie S-P 2013 Technical Summary in Climate Change 2013 The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change httpsdoiorg101017 CBO9781107415324005

Syvitski JPM Voumlroumlsmarty CJ Kettner AJ Green P 2005 Impact of humans

on the flux of terrestrial sediment to the global coastal ocean Science 308(5720) 376-380 httpsdoiorg101126science1109454

Thomas RQ Zaehle S Templer PH Goodale CL 2013 Global patterns of

nitrogen limitation Confronting two global biogeochemical models with observations Glob Chang Biol httpsdoiorg101111gcb12281

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status J Paleolimnol 47 693ndash706 httpsdoiorg101007s10933-012-9593-6

Urbina Carrasco MX Gorigoitiacutea Abbott N Cisternas Vega M 2016 Aportes a

la historia siacutesmica de Chile el caso del gran terremoto de 1730 Anuario de Estudios Americanos httpsdoiorg103989aeamer2016211

Vargas G Ortlieb L Chapron E Valdes J Marquardt C 2005 Paleoseismic

inferences from a high-resolution marine sedimentary record in northern Chile

66

(23degS) Tectonophysics httpsdoiorg101016jtecto200412031 399(1-4) 381-398httpsdoiorg101016jtecto200412031

Valero-Garceacutes BL Latorre C Morelliacuten M Corella P Maldonado A Frugone M Moreno A 2010 Recent Climate variability and human impact from lacustrine cores in central Chile 2nd International LOTRED-South America Symposium Reconstructing Climate Variations in South America and the Antarctic Peninsula over the last 2000 years Valdivia p 76 (httpwwwpagesunibechproductsmeeting-products1024-2nd-international-lotred-south-america-symposium-reconstructing-climate-variations-in-south-america-and-the-antarctic-peninsula-over-the-last-2000-yearshttpwwwpagesunibechproductsmeeting-products1024-2nd-international-lotred-south-america-symposium-reconstructing-climate-variations-in-south-america-and-the-antarctic-peninsula-over-the-last-2000-years

Vicente-Serrano SM Gouveia C Camarero JJ Begueria S Trigo R

Lopez-Moreno JI Azorin-Molina C Pasho E Lorenzo-Lacruz J Revuelto J Moran-Tejeda E Sanchez-Lorenzo A 2013 Response of vegetation to drought time-scales across global land biomes Proc Natl Acad Sci httpsdoiorg101073pnas1207068110

Villa Martiacutenez R P 2002 Historia del clima y la vegetacioacuten de Chile Central

durante el Holoceno Una reconstruccioacuten basada en el anaacutelisis de polen sedimentos microalgas y carboacuten PhD

Villa-Martiacutenez R Villagraacuten C Jenny B 2003 Pollen evidence for late -

Holocene climatic variability at laguna de Aculeo Central Chile (lat 34o S) The Holocene 3 361ndash367

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Human alteration of the global nitrogen cycle sources and consequences Ecological applications 7(3) 737-750 httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M Rein B Urrutia R amp Appleby P (2009) A

quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo central Chile back to AD 850 The Holocene 19(6) 873-881 httpsdoiorg1011770959683609336573

von Gunten L Grosjean M Eggenberger U Grob P Urrutia R Morales A

2009 Pollution and eutrophication history AD 1800-2005 as recorded in sediments from five lakes in Central Chile Glob Planet Change 68 198ndash208 httpsdoiorg101016jgloplacha200904004

Widory D Kloppmann W Chery L Bonnin J Rochdi H Guinamant JL

2004 Nitrate in groundwater An isotopic multi-tracer approach J Contam Hydrol 72 165ndash188 httpsdoiorg101016jjconhyd200310010

67

Woodward CA Potito AP Beilman DW 2012 Carbon and nitrogen stable isotope ratios in surface sediments from lakes of western Ireland Implications for inferring past lake productivity and nitrogen loading J Paleolimnol 47 167ndash184 httpsdoiorg101007s10933-011-9568-z

68

Supplementary material

Facie Name Description Depositional Environment

F1 Organic-rich

mud

Massive to banded black

organic - rich (TOC up to 14 )

mud with aragonite in dm - thick

layers Slightly banded intervals

contain less OM (TOClt4) and

aragonite than massive

intervals High MnFe (oxic

bottom conditions) High CaTi

BrTi and BioSi (up to 5)

Distal low energy environment

high productivity well oxygenated

and brackish waters and relative

low lake level

F2 Massive to

banded silty clay

to fine silt

cm-thick layers mostly

composed by silicates

(plagioclase quartz cristobalite

up to 65 TOC mean=23)

Some layers have relatively high

pyrite content (up to 25) No

carbonates CaTi BrTi and

BioSi (mean=48) are lower

than F1 higher ZrTi (coarser

grain size)

Deposition during periods of

higher sediment input from the

watershed

69

F3 Banded to

laminated light

brown silty clay

cm-thick layers mostly

composed of clay minerals

quartz and plagioclase (up to

42) low organic matter

(TOC mean=13) low pyrite

and BioSi content

(mean=46) and some

aragonite

Flooding events reworking

coastal deposits

F4 Laminated

coarse silts

Thin massive layers (lt2mm)

dominated by silicates Low

TOC (mean=214 ) BrTi

(mean=002) MnFe (lt02)

TIC (lt034) BioSi

(mean=46) and TS values

(lt064) and high ZrTi

Rapid flooding events

transporting material mostly

from within the watershed

F5 Breccia with

coarse silt

matrix

A 17 cm thick (80-97 cm

depth) layer composed by

irregular mm to cm-long ldquosoft-

clastsrdquo of silty sediment

fragments in a coarse silt

matrix Low CaTi BrTi and

MnFe ratios and BioSi

Rapid high energy flood

events

70

(mean=43) and high ZrTi

(gt018)

Table Sedimentological and compositional characteristics of Laguna Matanzas

facies

71

CAPIacuteTULO 2 STABLE ISOTOPES TRACK LAND USE AND COVER

CHANGES IN A MEDITERRANEAN LAKE IN CENTRAL CHILE OVER THE

LAST 600 YEARS

72

Stable isotopes track land use and cover changes in a mediterranean lake in

central Chile over the last 600 years

Magdalena Fuentealbaabc Claudio Latorreabc Matiacuteas Frugone-Aacutelvarezabc Pablo

Sarricolead Leonardo Villaciacutese M Laura Carrevedob Blas Valero-Garceacutescg

a Departamento de Ecologiacutea Pontificia Universidad Catoacutelica de Chile Alameda 340 Santiago Chile

b Institute of Ecology and Biodiversity (IEB) Las Palmeras 3425 Nuntildeoa Santiago Chile

c Laboratorio Internacional de Cambio Global LINCGlobal PUC-CSIC Spain

d Departamento de Geografiacutea Universidad de Chile Marcoleta 250 Santiago Chile

e Departamento de Ecologiacutea Universidad de ChileLas Palmeras 3425 Nuntildeoa Santiago Chile

f Instituto Pirenaico de Ecologiacutea (IPE-CSIC) Avenida Montantildeana 1005 Zaragoza 50059 Spain

Corresponding authors E-mail addresses clatorrebiopuccl magdalenafuentealbagmailcom

Key words Anthropocene lake sediment δsup1⁵N δsup1sup3C Great Acceleration organic

geochemistry watershedndashlake system Stable Isotope Analyses land usecover

change Nitrogen cycle mediterranean ecosystems central Chile

73

Abstract

Nutrient fluxes in many aquatic ecosystems are currently being overridden by

anthropic controls especially since the industrial revolution (mid-1800s) and the

Great Acceleration (mid-1900s) Land use and cover changes (LUCC) alter the

availability and fluxes of nutrients such as nitrogen that are transferred via runoff

and groundwater into lakes By altering lake productivity and trophic status these

changes are often preserved in the sedimentary record Here we use

geolimnological proxies and stable isotope analyses (δsup1⁵N δsup13C) on lake sediments

to reconstruct the lake-watershed nutrient transfer in a central Chilean lake (Lago

Vichuqueacuten) over the past 600 years We compare our multiproxy record from recent

lake sediments to the soilvegetation relationship across the watershed as well as

land usecover changes from 1975 to 2014 derived from satellite images Our results

show that lake sediment δsup1⁵N values increased with meadow cover but decreased

with tree plantations suggesting increased nitrogen retention when trees dominate

the watershed Our δsup1⁵N record from central Chile can thus be interpreted as a proxy

for nutrient availability over the last 600 years mainly derived from land use changes

coupled with climate drivers Although variable sources of organic matter and in situ

fractionation often hinder straightforward environmental interpretations of stable N

isotope signatures our study shows that lake sediment δsup1⁵N can be a useful tool for

assessing the contribution of past human activities in nutrient and nitrogen cycling

1 Introduction

Nitrogen (N) is a limiting nutrient in terrestrial and aquatic ecosystems (Vitousek

et al 1997) Changes in its availability can drive eutrophication and increase

pollution in these ecosystems (McLauchlan et al 2013) Although recent human

74

impacts on the global N cycle have been significant the consequences of increased

anthropogenic N on these ecosystems are unclear (Gerhart and Mclauchlan 2014

Battye et al 2017) Isotopic signatures are key to understand N dynamics in lakes

nevertheless in situ andor diagenetic fractionation along with multiple sources of

organic matter (OM) often hinder straightforward environmental interpretations from

isotopes Monitoring δ15N and δ13C values as components of the N cycle

specifically those related to the link between terrestrial and aquatic ecosystems can

help differentiate between effects from processes versus sources in stable isotope

values (eg from Particulate Organic Matter -POM- soil and vegetation) and

improve how we interpret variations in δ15N (and δ13C) values at longer temporal

scales

The main processes controlling stable N isotopes in bulk lake OM are source

lake productivity diagenesis and denitrification (Talbot 2001 Leng et al 2006

Fariacuteas et al 2009 Torres et al 2012 Brahney et al 2014) N sources depend on

contributions from the watershed (ie soil and biomass) the transfer of atmospheric

N to the lake (ie atmospheric N2 fixation) and nutrient recycling (Leng et al 2006)

Atmospheric N2 (isotopically defined as δ15N =0) is fixed by cyanobacteria with

minimal fractionation resulting in δ15NOM values that fluctuate from -2 to +2permil (Fogel

and Cifuentes 1993 Talbot 2001 Elliot and Brush 2006) Besides N2 fixation by

cyanobacteria phytoplankton species assimilate dissolved inorganic nitrogen (DIN)

and values typically range from +7 to +10permil (Xu et al 2016 Meyers et al 2003) In

addition seasonal changes in POM occur in the lake water column Gu et al (2006)

sampled the water column of Lake Wauberg (Florida USA) during a hydrologic year

and found a higher development of N fixing species during the summer A major

factor behind this increase are human activities in the watershed which control the

75

inputs of the sediment and nutrients to the lake (Woodward et al 2011) Some

studies have shown higher δ15N values in lake sediments from watersheds that are

highly affected by human activities (Bruland and Mackenzie 2010 Woodward et al

2011) Syntenic fertilizers displayed δ15N values between -4 to +4permil cattle manure

around +8 to +22permil and surface and groundwater OM between 0 to +10permil (Elliott

and Brush 2006 Leng et al 2006) Although relatively low δ15N values from

fertilizers constitute major N input to human-altered watersheds the elevated loss

of 14N via volatilization of ammonia and denitrification leaves the remaining total N

input enriched in 15N (Bruland and Mackenzie 2010)

In addition to the different sources and variations in lake productivity early

diagenesis at the sedimentndashwater interface in the sediment can further alter

sediment OM isotope values (Brahney et al 2014 Galman et al 2009) During

diagenetic loss of N in lacustrine systems kinetic fractionation occurs and the

remaining N is enriched in 15N leading to higher δ15N values (Galman et al 2006

Talbot 2001) Denitrification tends to enrich lake sediments in 15N due to the

assimilation of nitrates by denitrifying bacteria (Granger et al 2008) and is more

prevalent in anoxic environments (Brahney et al 2016 Lehman et al 2002)

Carbon isotopes in lake sediments can also provide useful information about

paleoenvironmental changes OM origin and depositional processes (Meyers et al

2003) Allochthonous organic sources (high CN ratios) produce isotope values

similar to values from catchment vegetation Autochthonous organic matter (low CN

ratio) is influenced by fractionation both in the lake and the watershed leading up to

carbon assimilation by lacustrine biota (Woodward et al 2011) Changes in

productivity greatly affect δ13COM values (Torres et al 2012) as during C uptake

plankton preferentially assimilate 12C leaving the dissolved inorganic carbon (DIC)

76

pool enriched in 13C (Gu et al 2006) with phytoplankton averaging ca 20 permil lower

than the respective δ13CDIC values (Leng et al 2006) Under conditions of low to

moderate primary productivity plankton preferentially uptake the lighter 12C

resulting in low δ13C values displayed by the OM (Torres et al 2012) Conversely

during high primary productivity phytoplankton will uptake 12C until its depletion and

is then forced to assimilate the heavier isotope resulting in an increase in δ13C

values Higher productivity in C-limited lakes due to slow water-atmosphere

exchange of CO2 also results in high δ13C values (Galman et al 2009) In these

cases algae are forced to uptake dissolved bicarbonate with δ13C values between

7 to 10permil higher than those of the atmospheric CO2 dissolved in water (Sun et al

2016 Torres et al 2012 Galman et al 2009)

Stable isotope analyses from lake sediments are thus useful tools to

reconstruct shifts in lake-watershed dynamics caused by changes in limnological

parameters and LUCC Our knowledge of the current processes that can affect

stable isotope signals in a watershed-lake system is limited however as monitoring

studies are scarce Besides in order to use stable isotope signatures to reconstruct

past environmental changes we require a multiproxy approach to understand the

role of the different variables in controlling these values Hence in this study we

carried out a detailed survey of current N dynamics in a coastal central Chilean lake

(Lago Vichuqueacuten) and a multiproxy study of a sediment record spanning the last

600 years The characterization of the recent changes in the watershed since 1970s

is based on satellite images to compare recent changes in the lake and assess how

these are related with climate variability and an ever increasing human footprint

(Lara et al 2012 Gallardo et al 2015 Steffen et al 2015) Our main goal is to

investigate how stable isotope values from lake sediment reflect changes in the lake

77

ndash watershed system during periods of high watershed disruption (eg Spanish

Conquest late XIX century Great Acceleration) and recent climate change (eg

Little Ice Age and current global warming)

2 Study Site

Lago Vichuqueacuten (34ordm49`S 72ordm04W 4 m asl 30 m of depth Fig 1) is a

mesotrophic to eutrophic lake with dominant anoxic bottom conditions that is

stratified year around (Frugone-Aacutelvarez et al 2017) The main inlets are the

Vichuqueacuten and Huintildee rivers and the only outlet is the Llico estuary that drains into

the Pacific Ocean High tides can sporadically shift the flow direction of the Llico

estuary which increases the marine influence in the lake Dune accretion gradually

limited ocean-lake connectivity until the estuary was almost completely closed off

by ca 10 ky BP and the current lake regime formed (Frugone-Aacutelvarez et al 2017)

The area is characterized by a mediterranean climate with cold-wet winters and

hot-dry summers and an annual precipitation of ~650 mm and a mean annual

temperature of 15ordmC During the austral winter months (June - August) precipitation

is modulated by north-west shifts of the South Pacific Anticyclone (SPA) followed by

an increased frequency of storm fronts stemming off the South Westerly Winds

(SWW) A strengthened SPA during austral summers (December - March) which

are typically dry and warm blocks the northward migration of storm tracks stemming

off the SWW (Fig1 Frugone-Aacutelvarez et al 2017)

78

Figure 1 a) The location of the Lago Vichuqueacuten in central Chile b) Map of land

uses and cover in 2016 c) Ombrothermic diagram mediterranean climates are

characterized by cold-wet winters with surplus moisture from June to August and

hot-dry summers d) Lake bathymetry showing location of cores and water sampling

sites used in this study

Although major land cover changes in the area have occurred since 1975 to the

present as the native forests were replaced by tree (Monterey pine and eucalyptus)

plantations the region was settled before the Spanish conquest (Frugone-Alvarez

et al 2018) Historical documents indicate that Vichuqueacuten was occupied by a

Mitimaes colony as part of the Inka empire (Odone 1998) Unlike other Andean

areas during the Inka period the introduction of corn and quinoa in the Vichuqueacuten

watershed do not seem to have intensified land use The Spanish colonial period in

Chile lasted from 1542 CE to the independence in 1810 CE The first historical

document (1550 CE) shows that the areas around Vichuqueacuten were settled by the

Spanish early on as the Vichuqueacuten watershed was given as an ldquoencomiendardquo

system to Juan Cuevas The ldquoencomiendardquo system provided the owners with land

79

and indigenous people to work but also the introduction of wheat wine cattle

grazing and logging of native forests for lumber extraction and increasing land for

agricultural activities (Odone et al 1998 Armesto et al 2010) During the 19th

century (the Republic) the export of wheat to Australia and Canada generated

intensive changes in land cover use The town of Vichuqueacuten became the regional

capital and plans to build a maritime port in the bay of Vichuqueacuten were drawn

However the fall of international markets in 1880 paralyzed these plans During the

20th century the plantation of trees (Pinus radiata and Eucalyptus globulus) in areas

cleared of native forests was subsidized by two national laws DFL nordm265 (1931) and

DFL nordm 701 (1974) both of which provided funds for such plantations During the last

decades the urbanization with summer vacation homes along the shorelines of

Lago Vichuqueacuten has greatly increased Extensive lake eutrophication is currently a

large environmental problem (EULA 2008)

3 Methods

Coring campaigns were organized from 2011 to 2015 (Fig 1d) We recovered

12 short cores and 4 long cores (up to 14 m long) at several sites using a hammer-

modified UWITEC gravity corer Sediment cores (VIC11-2A 170 cm VIC13-2B 170

cm VIC13-2D 1200 cm and VIC15-1A 119 cm) were split photographed sub-

sampled and stored in the Pyrenean Institute of Ecology (IPE-CSIC Spain) Core

VIC13-2B was selected for detailed multiproxy analyses (including elemental

geochemistry C and N isotopes XRF and 14C dating) Stable isotope analyses

(δ13C δ15N) were performed at the Laboratory of Biogeochemistry and Applied

Stable Isotopes (LABASI-PUC Chile) Sediment samples for δ13Corg were pre-

treated with 50 ml of HCl and 50 ml of deionized water and dried at 60ordmC for 4 hr to

remove carbonates (Harris et al 2011) Isotope analyses were conducted using a

80

Delta V Advantage IRMS coupled to a Thermo Flash 2000 Elemental Analyzer via

a Conflo IV interface Isotope results are expressed in standard delta notation (δ)

and expressed in per mil (permil) relative to the Pee Dee Belemnite (Vienna Pee Dee

Belemnite) for C and to atmospheric N2 for N (Leng et al 2006) Total carbon (TC)

Total Organic Carbon (TOC) Total Inorganic Carbon (TIC) and Total Sulfur (TS)

were measured every 2 cm with a LECO SC 144 DR at the IPE-CSIC

An AVAATECH X-Ray Fluorescence II core scanner with a Rh X-ray tube from

the University of Barcelona was used to obtain XRF logs every 4 mm of resolution

Results are expressed as element intensities in counts per second (cps) Tube

voltage was operated at 30 kV and 10 kV to obtain the abundances of 18 elements

(Pb Al Si S Cl K Ca Ti V Mn Fe Co Zn Br Rb Sr Y Zr) with an average of

at least of 1800 cps (less for Pb=437 and Zn=934 cps) Pb was included due to

similar behavior with Co and Fe Element ratios were calculated to describe changes

in redox conditions (MnFe) endogenic productivity (BrTi) carbonate formation

(SrCa and CaTi) and sediment input (ZrTi) (Barreiro-Lostres et al 2014

Carrevedo et al 2015 Frugone-Aacutelvarez et al 2017 Kylander et al 2011 Moreno

et al 2007a)

Several campaigns were carried out to sample the POM from the water column

two per hydrologic year from November 2015 to August 2018 A liter of water was

recovered in three sites through to the lake two are from the shallower areas (with

samples taken at 2 and 5 m depth at each site) and one in the deeper central portion

(at 2 5 and 20 m depth) of the lake (Fig 1d) The samples were filtered using glass

fiber filters (25 m) and then frozen to obtain the stable carbon and nitrogen isotope

signal of lacustrine POM Additionally soil and vegetation samples from the

following communities native species meadow hydrophytic vegetation and

81

Monterrey pine (Pinus radiata) were taken for stable isotope analyses (see in

supplementary material)

The age model for the complete Lago Vichuqueacuten sedimentary sequence is

based on Frugone-Aacutelvarez et al (2017) with the last 1000 years based on

210Pb137Cs dating techniques in VIC15-1A and 14C AMS dates on bulk sediment

samples (Supplementary Table S1) The 14C measurements of lake water DIC show

a moderate reservoir effect of 180 plusmn 25 14C yr) The revised age-depth model used

here includes three more 14C AMS dates performed with the program Bacon to

establish the deposition rates along the core (Blaauw and Christen 2011 Fig 2)

The age-depth model indicates that average resolution between 0 to 87 cm is lt2

cm per year and from 88 to 170 cm it is lt47 cm per year

82

Figure 2 Chronological age-depth model for the Lago Vichuqueacuten sedimentary

sequence spanning the last 1000 yr (see also Frugone-Alvarez et al 2017)

To estimate land use changes in the watershed we use Landsat MSS images

for 1975 and Landsat TM for 1989 and 2014 all taken in either summer or autumn

(Table 1) We performed supervised classification of land uses (maximum likelihood

83

algorithm) for each year (1975 1989 and 2014) and results were mapped using

ArcGIS 102

Table 1 Images using for LUCC reconstruction

Source of LUCC

Acquisition

Date Resolution

Landsat MSS 19750322 60 m

Landsat TM 19890217 30 m

Landsat TM 19991226 30 m

CONAF 2009 30 m

Land cover Chile 2014 30 m

CONAF 2016 30 m

Previous Work on Lago Vichuqueacuten sedimentary sequence

The sediments are organic-poor dark brown to brown laminated silt with some

intercalated thin coarser clastic layers Lacustrine facies have been classified

according to elemental composition (TOC TS TIC and TN) grain size and

sedimentary textures (Frugone-Aacutelvarez et al 2017) Four main types of lacustrine

facies were identified in this short core Facies L1 is a laminated (1cm) black to dark

brown diatom-poor silt with relatively higher TOC percentages (TOC about 185)

TS (about of 18) and TOCTN (about 92) Facies L2 is characterized by a

homogeneous black organic-poor silty clay with low TOC (mean= 13) TS (mean=

13) TOCTN (mean= 88) values Facies L3 is a laminated (1cm) black organic-

poor (TOC mean 14) silts with higher TS (mean= 21) and TOCTN ratios

(mean= 88) Facies L3 is interpreted as ldquobaselinerdquo deposition on the distal areas

84

of Vichuqueacuten lake Mineralogy is dominated by mica (muscovite) clay minerals

(chlorite) and plagioclase (albite) Quartz and calcite occur at the top and pyrite

occurs in the lower part of the sequence Facies T is composed by massive banded

sediments 4 cm thick and coarse grain size It is interpreted as an instantaneous

depositional event (for more detail see Frugone-Aacutelvarez et al 2017) In this work

we identified four subunits based on geochemical and stable isotope signals

4 Results

41 Geochemistry and PCA analysis

High positive correlations exist between Al Si K and Ti (r = 078 ndash 096

supplementary Fig S1) and between Zn Zr Rb and Y (r = 072 - 096) which reflect

the silicate content of the watershed-derived sediments (Marzecoacuteva et al 2011) Zr

is commonly associated with minerals more abundant in coarser deposits Thus the

ZrTi profile could reflect grain size (Cuven et al 2010) showing higher variability

in the upper part of the Lake Vichuqueacuten sequence and in the alternation between

facies L1 and L2 Another group of elements made up of Co Fe and Pb displayed

positive correlations (r = 067ndash 097) and represents the input of heavy metals Br

Cl and Ca show a positive correlation (r = 049 ndash 06 p-value = 00001) BrTi ratio

is interpreted as a productivity indicator due to Br having a strong affinity with humic

and organic compounds (Marzecoacuteva et al 2011 Frugone-Aacutelvarez et al 2017) In

our Lago Vichuqueacuten sequence BrTi values are high from 170 to 132 cm and from

36 cm to the top of core where it shows several sharps peaks (Fig 3) The MnFe

ratio is indicative of lake bottom oxygenation (Naecher et al 2013) as under

reducing conditions Mn tends to become more mobile than Fe leading to a

decreased MnFe (Marzecoacuteva et al 2011) Several sharp peaks in MnFe occurred

85

from 127 to 120 cm and from 57 to 30 cm (MgFegt03) The silicate group and the

Br Cl Ca Mn group are negatively correlated (r= -012 and -066)

Principal Component Analysis (PCA) was undertaken on the XRF

geochemical data to investigate the main factors controlling sediment deposition in

Lago Vichuqueacuten (Fig 3) The four main eigenvectors explain 801 of the variance

(supplementary material Table S2) The principal component (PC1) explain 437

of the total of variance and grouped elements are associated with terrigenous input

to the lake Positive values of the biplot have been attributed to higher heavy metals

deposition (Pb Co and Fe) and negative values to higher silicate input (Al K Ti and

Si) in a high energy catchment environment (Zr) The PC2 explains 198 of the

total of variance and highlights the endogenic productivity in the lake The positive

loading is compound by Br Cl Ca and Sr and to a lesser extent by Y Zn Rb and

Mn The PC2 may explain both the precipitation of carbonates (Ca Sr) and biological

production (Br)

86

Figure 3 Principal Component Analysis of XRF geochemical measurements in

VIC13-2B Lago Vichuqueacuten lake sediments

42 Sedimentary units

Based on geochemical and stable isotope analysis we identified four

lithological subunits in the short core sedimentary sequence Our PCA analyses and

Pearson correlations pointed out which variables were better for characterizing the

subunits (Fig 4) in terms of endogenic productivity heavy metals and terrestrial

input The unit 2c (170-131 cm) is characterized by the occurrence of some clastic

layers (L2 from 160 and 150 cm) high δsup1⁵N values (mean= +59 plusmn 04permil) with

Magnetic Susceptibility (MS) BrTi ZrTi and SrCa values increase towards the top

Also it has relatively low δsup1sup3C values (mean= -265 plusmn 11permil) and CNmolar ratios

(mean=78 plusmn 04) The ZrTi show upwards increasing values reaching the highest

values of the sequence at the top of this unit suggesting a coarsening upward trend

and relatively higher depositional energy The MS trend also indicates higher

erosion in the watershed and enhanced delivery of ferromagnetic minerals likely

from soil particles particularly from 150 to 160 cm (Frugone-Aacutelvarez at al 2017)

The subunit 2b (130-118 cm) is also composed of black silts but it has the

lowest MS values of the whole sequence and its onset is marked by a sharp

decrease in ZrTi This subunit is marked by sharp peaks of MnFe (at 126 and 120

cmgt027) SrCa (at 125 and 120 cmgt033) CaTi (at 124 and 120 cmgt199) TOC

(about 26 at 130 124 122 and 118 cm) and δsup1⁵N (gt+67permil at 126 and 120 cm)

BrTi oscillates around low values (about 01) whereas the δsup1sup3C values range

between -262 and -282permil

87

The unit 2a (58-117 cm) shows increasing and then decreasing MS values

and displayed sharps peaks of δsup1⁵N (gt64 at 102 to 99 87 and 75 cm) and CN

(about 10 at 86 74 66 and 60 cm) SrCa (mean = 04 plusmn 013) BrTi (mean = 008

plusmn 002) MnFe (mean = 002 plusmn 001) and δsup1sup3C (mean = -260 plusmn 07permil) oscillate in

low values The upper part of this unit (72 ndash 57 cm) shows an increase of SrCa

(from 03 to 05)

The upper unit 1a (0 - 57 cm) starts with a fine clastic layer (T at 57 to 54

cm) interpreted as deposition during a high-energy event It is characterized by

lower BrTi (mean = 003 plusmn 002) TOC (mean = 12 plusmn 03) and δsup1sup3C (mean= -

266 plusmn 06permil) higher δsup1⁵N (mean = +55 plusmn 08 permil) This unit is made of alternating

fine (lt 1cm) black and dark brown laminae with carbonate (L1 facies) Recently

deposited sediments show decreasing MS values increasing TOC (mean= 15 plusmn

04 ) sharp peaks of BrTi (gt015 at 33 21 5 and 1 cm) and the lowest δsup1⁵N values

of the entire record (mean= 45 plusmn 06 permil) and δsup1sup3C values (mean= -277 plusmn 09 permil)

Heavy metal content increases abruptly in the upper section of the core (2 - 20 cm)

(peaks of FeTi CoTi and PbTi)

88

Figure 4 Sedimentary units of Lago Vichuqueacuten sedimentary sequence Selected

variables illustrate watershed input (Magnetic Susceptibility ZrTi CoTi and MnFe)

endogenic productivity (SrCa CaTi TS) organic matter source (BrTi TOC

CNmolar and stable isotope records (δ13Corg and δ15Nbulk)

43 Recent seasonal changes of particulate organic matter on water column

The average of δ15NPOM from the three sites across to the lake was +86 plusmn 58

permil oscillating widely from -14 to +193permil (Fig 5) Important seasonal differences

occur at 2 and 5 m depth with more negative values during summer (~53 plusmn 52 permil)

than winter (~122 plusmn 40permil) At 20 m depth δ15NPOM values exhibit small seasonal

ranges (mean = +10permil for winter and +87permil for summer) The δ13CPOM average was

-296 plusmn 33permil with slightly seasonal and water column depth differences However

more positive δ13CPOM values occurred during winter (mean=-290 plusmn 41permil) than in

summer (mean= -301 plusmn 19 permil) Like the δ15NPOM values CNPOM (mean= 83 plusmn 17)

displayed important seasonal and water depth differences Lower CNPOM ratios

89

occurred during summer at 2 and 5 m depth (mean= 95 plusmn 17) and higher and more

constant values during winter (mean = 73 plusmn 09) at the same depth At 20 m CNPOM

shows similar values in both winter (70) and summer (74)

Figure 5 Seasonal POM averages from samples taken of the Lago Vichuqueacuten

water column Samples were taken from 2015 to 2018 at 2 (n=16) 5 (n=14) and 20

(n=8) meters depth

44 Stable isotope values across the Lake Vichuqueacuten watershed

Figure 6 shows modern vegetation soil and sediment isotope values found for

the watershed Huintildee tributary and Vichuqueacuten lake The δsup1⁵NFoliar values from

meadow plantations and macrophytes have similar range values with a mean of

+89 plusmn50 permil (n=18) +74 plusmn 75 permil (n=5) +82 plusmn 36 permil (n=6) respectively Native

vegetation has overall lower δsup1⁵NFoliar values with a mean of 14 plusmn 21 permil (n=28 see

Table 2 in supplementary material) The δsup1sup3CFoliar from terrestrial samples exhibit

similar values across the different plant communities (tree plantation mean=-274 plusmn

13permil meadow mean = -275 plusmn 23 permil native species mean=-272 plusmn 14permil) whereas

macrophytes display slightly more negative values with a mean of -287 plusmn 23permil

Macrophytes substrate displayed the highest δsup1⁵N values with a mean of +60 plusmn

14permil (n=3) Similar and relatively high δsup1⁵N values for soil of plantation (mean= +54

plusmn 13permil n=4) meadow (mean= +49 plusmn 04permil n=8) and surface river sediment

90

(mean= +52 plusmn 17permil n=10) Native forest soils oscillate around slightly more

negative values with a mean of +45 plusmn 12permil (n=4) Slightly more positive soil δsup1sup3C

values occur both underneath native forests and in tree plantations with means of -

284 plusmn 23permil and -298 plusmn 13permil respectively compared to either meadow soils

(mean= -302 plusmn 11permil) aquatic sediments underneath macrophytes (-311 plusmn 10permil)

or from surface river sediments (mean= -312 plusmn 10permil)

Figure 6 Stable isotope content of modern soil river sediment and foliar vegetation

used as end members in the sedimentary sequence of Lago Vichuqueacuten a)

Scatterplot of foliar δsup1⁵N and δsup13C values for vegetation from Lago Vichuqueacuten

watershed (plantation meadow and native species) and macrophytes on Lake

Vichuqueacuten See supplementary material for more detail of vegetation types b)

Scatterplot of soil δsup1⁵N and δsup13C values across the watershed the sediments of the

Huintildee and Vichuqueacuten rivers and the fluvial sediment corresponding to the

macrophyte vegetation

45 Land use and cover change from 1975 to 2014

Major land use changes between 1975 CE and 2016 CE in the Lago

Vichuqueacuten watershed are summarized in Figure 7 The watershed has a surface

area of 535329 km2 of which native vegetation (26) and shrublands (53)

represent 79 of the total surface in 1975 Meadows are confined to the valley and

91

represent 17 of watershed surface Tree plantations initially occupied 1 of the

watershed and were first located along the lake periphery By 1989 the areas of

native forests shrublands and meadows had decreased to 22 31 and 14

respectively whereas tree plantations had expanded to 30 These trends

continued almost invariably until 2016 when shrublands and meadows reached 17

and 5 of the total areas while tree plantations increased to 66 Native forests

had practically disappeared by 1989 and then increased up to 7 of the total area

in 2016 (Fig 6) preferentially occupying the southeastern sector of the watershed

Figure 7 Changes in land use and cover between 1975 and 2016 in the Lago

Vichuqueacuten watershed as measured from satellite images The major change is

represented by the replacement of native forest shrubland and meadows by

plantations of Monterrey pine (Pinus radiata)

Figure 8 shows correlations between lake sediment stable isotope values and

changes in the soil cover from 1975 to 2013 Positive relationships occurred

between sediment δsup1⁵N and δsup13C values from core VIC13-2B (unit 1) and the

92

percentage of native forest (r=089 for δsup1⁵N 082 for δsup13C) shrublands (r = 071 for

δsup1⁵N 057 for δsup13C) and meadow cover (r = 088 for δsup1⁵N 081 for δsup13C) All of these

correlations are significant (p value lt 0001) In contrast significant negative

correlations (p lt0001) occurred between tree plantation cover and lake sediment

stable isotope values (δsup1⁵N r = -082 and δsup13C r = -067) native forest (r = -097)

meadows (r = -086) and shrubland (r =-093)

Figure 8 Correlation plots of land use and cover change versus lake sediment

stable isotope values The δsup1⁵N values are positively correlated with native forests

agricultural fields and meadow cover across the watershed Total Plantation area

increases are negatively correlated with native forest meadow and shrubland total

area Significance levels are indicated by the symbols p-values (0 0001 001

005 01 1) lt=gt symbols ( )

93

5 Discussion

51 Seasonal variability of POM in the water column

The stable isotope values of POM can vary during the annual cycle due to

climate and biologic controls namely temperature and length of the photoperiod

which affect phytoplankton growth rates and isotope fractionation in the water

column (Gu et al 2006 Leng et al 2006) POM from Lago Vichuqueacuten surface

samples (2 and 5 m depth) displayed lower δ13CPOM values during the summer than

in winter During C uptake phytoplankton preferentially utilize 12C leaving the

DICpool enriched in 13C Therefore as temperature increases during the summer

phytoplankton growth generates OM enriched in 12C until this becomes depleted

and then the biomas come to enriched u At the onset of winter the DICpool is now

enriched in 13C and despite an overall decrease in phytoplankton production the

OM produced will also be enriched in 13C In contrast δ13CPOM values at 20 m depth

did not reflect these seasonal differences probably due to water-column

stratification that maintains similar temperatures and biological activity throughout

the year

Lake N availability depends on N sources including inputs from the

watershed and the atmosphere (ie deposition of N compounds and fixation of

atmospheric N2) which varies during the hydrologic year The fixation of atmospheric

N2 is an important natural source of N to the lake occurring mainly during the

summer season associated with higher temperature and light (Gu et al 2006)

Because the δ15NPOM of N2 fixers is close to 0permil with almost no overall isotope

fractionation (Leng et al 2006) when N2 is the major N source δ15NPOM values are

typically low However when DIN concentrations are high or alternatively when little

94

N2 fixation occurs δ15NPOM values will be higher (Gu et al 2006) δ15NPOM values

from summer Lago Vichuqueacuten samples were lower than those from winter with large

differences between the seasons (~5permil Fig 5 and 9) Furthermore δ15NPOM values

were high when monthly average temperature was low and monthly precipitation

was high (Fig 9) This pattern is consistent with the dominance of high N2 fixation

by cyanobacteria associated with increased summer temperatures This correlation

of δ15NPOM values with temperature further suggests a functional group shift i e

from N fixers to phytoplankton that uptake DIN The correlation between wetter

months and higher δ15NPOM values could be caused by increased N input from the

watershed due to increased runoff during the winter season The lack of data of the

δ15NPOM between the 30 mm and the 160 mm of precipitation is due to the

mediterranean-type climate that concentrates precipitations in the winter months

Finally Lago Vichuqueacuten is characterized by pronounced seasonality leading to

higher phytoplankton biomass in summer characterized by low δ15NPOM In winter

low biomass production and increased input from watershed is associated to high

δ15NPOM

95

Figure 9 Seasonal changes can drive δ15NPOM values in Lago Vichuqueacuten Data

correspond to average monthly temperature and total monthly precipitation for the

months when the water samples were taken (years 2015 - 2018) P-valuelt005

52 Stable isotope signatures in the Lake Vichuqueacuten watershed

The natural abundance of 15N14N isotopes of soil and vegetation samples

from the Lago Vichuqueacuten watershed appear to result from a combination of factors

isotope fractionation different N sources for plants and soil microorganisms (eg N2

fixation Nitrates) depth in the soil where N uptake by vegetation occurs and N loss

mechanisms (ie denitrification leaching and ammonia volatilization Hogberg

1997) The lowest δsup1⁵Nfoliar values are associated with native species and are

probably due to the contribution of N-fixing species (eg Sophora) (Fig6 and for

more detail see Table S3 in supplementary material) The number native N-fixers

species present in the Chilean mediterranean vegetation are not well known

however so there could be other N-fixing species in this group Alternatively δsup1⁵Nfoliar

values reflect soil N uptake (Kahmen et al 2008) In environments limited by N

plants have δsup1⁵N values similar to the soil δsup1⁵N values however the denitrification

and volatilization of ammonia can lead to the remain N of soil to come enriched in

15N (Cifuentes et al 1989 Craine et al 2009 Bruland and Mckenzie 2010) Soil N

isotope samples from native species communities tends to display relatively high

δsup1⁵N values respect to foliar samples due to loss of N-soil

The higher foliar and soil δsup1⁵N values obtained from samples of meadows

aquatic macrophytes and tree plantations can be attributed to the presence of

greater amounts of nitrate available for plant uptake (Fig 6) Houmlgberg (1997)

suggests that the availability of different N sources in soils (ie nitrates versus

96

ammonia) with different residence times can also explain these δsup1⁵NFoliar values

Indeed Feigin et al (1974) described differences of up to 20permil between ammonia

and nitrates sources Denitrification and nitrification discriminate much more against

15N than N2 fixation does (Craine et al 2009) leading to soils (and plants after

uptake) enriched in 14N

In general multiple processes that affect the isotopic signal result in similar

δsup1⁵N values between the soil of the watershed and the sediments of the river

However POM isotope fluctuations allow to say that more negative δsup1⁵N values are

associated to lake productivity while more positive δsup1⁵N values are associated with

N input from the watershed

δ13C values in Lago Vichuqueacuten watershed reflect CO2 gas exchange between

C3 plants and algae with the atmosphere During photosynthesis plants

discriminate against the heavier stable isotope of carbon (13C) in favor of the lighter

isotope 12C which results in δ13CFoliar values between -220permil and -320permil (Browman

and Cook 2002 Liu et al 2007) Likewise the δ13CFoliar values from Lago Vichuqueacuten

oscillate around -27permil (Fig 6) Plants transform atmospheric CO2 into soil organic

carbon (C) which in turn reflects this initial discrimination against 13C during C

uptake and post photosynthetic fractionation (Farquhar et al 1982 1989 Badeck

et al 2005 Pausch and Kuzyakov 2017) Slightly more positive δ13CFoliar values

(about 15permil) were measured in comparison with their δ13CSoil values This may be

reflecting the C transference from plants to the soil but also a soil-atmosphere

interchange The preferential assimilation of the light isotopes (12C) during soil

respiration carried by the roots and the microbial biomass that is associated with the

decomposition of litter roots and soil organic matter explain this differential

(Berhardt et al 2006 Blagodatskaya et al 2010 Midwood and Millard 2011)

97

In general the δ13CSoil values from the Lago Vichuqueacuten watershed oscillated

around -290permil and did not vary with our plant classification types Here we use

these values as terrestrial-end members to track changes in source OM (Fig 6)

Thus more negative δ13C values in lake sediment samples are attributed to higher

OM inputs from the terrestrial watershed By the other hand more positive δ13C

values most likely reflect an increased aquatic OM component as indicated by POM

isotope fluctuations (Fig 9)

53 Recently land use and cover change and its influences on N inputs to the lake

Tree plantations in the Lago Vichuqueacuten watershed have increased greatly in

the last few decades (from 1 in 1975 to 66 in 2016 Fig 7) replacing previous

native forests (from 26 to 7) meadows (17 to 5) and shrublands (53 to

17) In 1975 tree plantations were confined to the lake perimeter with discrete

patches distributed throughout the watershed The ldquoForest Lawrdquo (DFL 701- passed

in 1974) allocated state funding to afforestation efforts and management of tree

plantations which greatly favored the replacement native forests by introduced trees

This increase is marked by a sharp and steady decrease in lake sediment δ15N and

δ13C values because tree plantations function as a nutrient sink whereas other land

uses such as meadows favor nutrient loss from the watershed (Fig8) Bruland and

Mackenzie (2014) noted a decrease in wetland δ15N values when watershed

forested cover increased and concluded that N inputs to the wetlands are lower from

the forested areas as they generally do not export as much N as agricultural lands

A positive correlation between native vegetation and δ15Ncore values can be

explained by the relatively scarce arboreal cover in the watershed in 1975 when

native forest occupied just 26 of the watershed surface whereas shrublands and

98

meadows occupied more than the 70 of the surface of the watershed with the

concomitant elevated loss of N (Fig 7 and Fig 8)

54 Nitrogen dynamics in Lago Vichuqueacuten over the last six hundred years

Sedimentological compositional and geochemical indicators all show changes in

the N cycle associated to LUCC lake dynamics and climate changes (Fig 10) From

the pre-Columbian indigenous settlement including the Spanish colonial period up

to the start of the Republic (1300 - 1800 CE) the introduction of crops such as

quinoa and wheat but also the clearing of land for extensive agriculture would have

favored the entry of N into the lake Conversely major changes observed during the

last century were characterized by a sharp decrease of N input that were coeval

with the increase of tree plantations

From 1365 until 1550 CE (unit 2c 2b and half of 2a Fig 3 and Fig 10) pre-

Columbian agricultural societies planted mostly crops of corn and quinoa (Ramirez

and Vidal 1985) This period is characterized by large peaks seen in the δsup1⁵N record

(eg 1403 1452 1476 and 1505) with overall high δsup1⁵N values (up to 5permil) indicating

that N input from watershed was elevated and oscillating to the beat of the NT These

positive δsup1⁵N peaks could be due to several causes including a) the clearing of land

for farming b) N loss via denitrification which would be generally augmented in

anoxic environments (Diebel et al 2009) such as Lago Vichuqueacuten (low MnFe

values about 0001 Fig 4) or c) climate especially cold-wet winters or hot-dry

summers can also exert control on the δsup1⁵N record Indeed tree-ring records and

summer temperature reconstructions show overall wetcold conditions during this

period (Christie et al 2009 Von Gunten et al 2009 Fig 10) Increased

precipitation would bring more sediment (and nutrients) from the watershed into the

99

lake and increase lake productivity which is also detected by the geochemical

proxies for productivity (peaks of BrTi SrCa and TOC Fig 4 and Fig 10) (see also

Frugone-Alvarez et al 2017)

Figure 10 Changes in the N availability during the last six centuries in Lago

Vichuqueacuten a) lake sediment δsup1⁵N values displayed more positive values during the

prehistoric period Spanish Colony and the starting 19th century which is associated

with enhanced N input from the watershed by extensive clearing and crop

plantations The inset shows this relationship between sediment δsup1⁵N and

100

percentage of meadow cover over the last 30 years b) Summer temperature

reconstruction from central Chile (von Gunten et al 2009) showing a

correspondence with cold phases and high δsup1⁵N values at Vichuqueacuten except for the

last 100 years c) Palmer Drought Severity Index (PDSI) is an interannual moisture

variability reconstruction for late springndashearly summer during the last six centuries

(Christie et al 2009) Grey shadow indicating higher precipitation periods

From 1550 and 1810 CE (unit 2a) and during the Colonial period several peaks

of δ15N could be further related not only to high precipitation (Fig 10 grey shadow)

but also pulses of enhanced N input from the watershed linked to human land use

In 1550 CE Juan Cuevas was granted lands and indigenous workers under the

encomienda system for agricultural and mining development of the Vichuqueacuten

village (Ramiacuterez and Vidal 1985) Historical documents show that around 1579 CE

the Vichuqueacuten watershed was occupied by indigenous communities dedicated to

wheat plantations and vineyards wood extraction and gold mining (Odone 1998)

The introduction of the Spanish agricultural system implied not just a change in the

types of crops used (from quinoa to vineyards and wheat) but also a clearing of

native species for the continuous increase of agricultural surface and wood

extraction During the Colonial period wheat from Vichuqueacuten was exported to Peru

(Ramiacuterez and Vidal 1985) Armesto et al (2009) indicate that during the XVIII and

XIX centuries the extraction of wood for mining operations was important enough to

cause extensive loss of native forests The independence and instauration of the

Chilean Republic did not change this prevailing system Increases in the

contributions of N to the lake during the second half of the XIX century (peaks in

δsup1⁵N ca 1870 CE) could be due to expanding farm land dedicated for wheat

101

production and increased commercial trade with California and Canada (Ramiacuterez

and Vidal 1985)

In contrast LUCC in the last century are clearly related to the development of

large-scale tree plantations (Fig 7) The δsup1⁵N record reaches the lowest values of

the entire sequence in the last few decades (Fig 10) A marked increase in lake

productivity NT concentration and decreasing sediment input is synchronous (unit

1 Fig 4) with trees replacing meadows shrublands and areas with native forests

(Fig 7 and 8) The implementation of the lsquoForest Lawrsquo in 1974 had a stronger impact

on the landscape and lake ecosystem dynamics than the impacts of ongoing climate

change in the region which is much more recent (Garreaud et al 2018) although

the prevalence of hot dry summers seen over the last decade would also be

associated with low δsup1⁵N values and increase of NT (Fig 10) Heavy metals ratios

(FeTi CoTi and PbTi) show notable increases in lake sediments from 1992 to 2011

CE (Fig 4) Although this could be related to mining in the El Maule region the

closest mines are 60 Km away (Pencahue and Romeral) so local factors related to

shoreline urbanization for the summer homes and an increase in tourist activity

could also be a major factor

6 Conclusions

The N isotope signal in the watershed depends on the rates of exchange

between vegetation and soil cover (Fig 11) Plants preferentially uptake 14N and the

underlying soils become enriched in 15N especially when the terrestrial ecosystem

is N-limited andor significant N loss occurs (ie denitrification andor ammonia

volatilization) LUCC in the Lago Vichuqueacuten watershed have heavily modified the

links between terrestrial and aquatic ecosystems with agriculture practices

102

contributing more N to the lake than tree plantations or native forests In situ lake

processes can also fractionate N isotopes An increase of N-fixing species results

in OM depleted in 15N which results in POM with lower δsup1⁵N values during these

periods During winter phytoplankton is typically enriched in 15N due to the

decreased abundance of N-fixing species and increased N input from the

watershed This in turn generates the highest δsup1⁵NPOM values in Lago Vichuqueacuten

Periods of elevated productivity tend to deplete the dissolved inorganic N of 14N

resulting in even higher δ15N values

Our study illustrates the usefulness of δsup1⁵N as a tool for reconstructing the past

influence of LUCC on N availability in lake ecosystems To constrain the relative

roles of the diverse forcing mechanisms that can alter N cycling in mediterranean

ecosystems all main components of the N cycle should be monitored seasonally

(or monthly) including the measurements of δ15N values in land samples

(vegetation-soil) as well as POM

103

Figure 11 Summary of human and environmental factors controlling the δ15N

values of lake sediments Particulate organic matter(POM) δ15N values in

mediterranean lakes are driven by N input from the watershed that in turn depend

on land use and cover changes (ie forest plantation agriculture) andor seasonal

changes in N sources andor lake ecosystem processes (ie bioproductivity redox

condition denitrification) Arrows indicate the direction of N fluxes (inputoutput from

the N cycle) N cycle processes that deplete lake sediments of 15N are shown in

blue whereas those that enrich sediments in 15N are shown in red

104

Supplementary material

Figure S1 Pearson correlate coefficient between geochemical variables in core

VIC13-2B Positive and large correlations are in blue whereas negative and small

correlations are in red (p valuelt0001)

Figure S2 Principal Component Analysis of geochemical elements from core

VIC13-2B

105

Table S1 Lago Vichuqueacuten radiocarbon samples

RADIOCARBON

LAB CODE

SAMPLE

CODE

DEPTH

(m)

MATERIAL

DATED

14C AGE ERROR

D-AMS 029287

VIC13-2B-

1 043 Bulk 1520 24

D-AMS 029285

VIC13-2B-

2 085 Bulk 1700 22

D-AMS 029286

VIC13-2B-

2 124 Bulk 1100 29

Poz-63883 Chill-2D-1 191 Bulk 945 30

D-AMS 001133

VIC11-2A-

2 201 Bulk 1150 44

Poz-63884

Chill-2D-

1U 299 Bulk 1935 30

Poz-64089

VIC13-2D-

2U 463 Bulk 1845 30

Poz-64090

VIC13-2A-

3U 469 Bulk 1830 35

D-AMS 010068

VIC13-2D-

4U 667 Bulk 2831 25

Poz-63886

VIC13-2D-

4U 719 Bulk 3375 35

106

D-AMS 010069

VIC13-2D-

5U 775 Bulk 3143 27

Poz-64088

VIC13-2D-

5U 807 Bulk 3835 35

D-AMS-010066

VIC13-2D-

7U 1075 Bulk 6174 31

Poz-63885

VIC13-2D-

7U 1197 Bulk 6440 40

Poz-5782 VIC13-15 DIC 180 25

Table S2 Loadings of the trace chemical elements used in the PCA

Elementos PC1 PC2 PC3 PC4

Zr 0922 0025 -0108 -0007

Zn 0913 -0124 -0212 0001

Rb 0898 -0057 -0228 0016

K 0843 0459 0108 0113

Ti 0827 0497 0060 -0029

Al 0806 0467 0080 0107

Si 0803 0474 0133 0136

Y 0784 -0293 -0174 0262

V 0766 0455 0090 -0057

Br 0422 -0716 -0045 0226

Ca 0316 -0429 0577 0489

Sr 0164 -0420 0342 -0182

Cl 0151 -0781 -0397 0162

107

Mn -0121 -0091 0859 0095

S -0174 -0179 -0051 0714

Pb -0349 0414 -0282 0500

Fe -0700 0584 -0023 0280

Co -0704 0564 -0107 0250

Table S3 Stable Isotope values from vegetation of Lago Vichuqueacutenacutes watershed

Taxa Classification δsup1⁵N δsup1sup3C CN

molar

Poaceae Meadow 1216 -2589 3602

Juncacea Meadow 1404 -2450 3855

Cyperaceae Meadow 1031 -2596 1711

Taraxacum

officinale Meadow 836 -2400 2035

Poaceae Meadow 660 -2779 1583

Poaceae Meadow 453 -2813 1401

Poaceae Meadow 966 -2908 4010

Juncus Meadow 1247 -2418 3892

Poaceae Meadow 747 -3177 6992

Poaceae Meadow 942 -2764 3147

Poaceae Meadow 1479 -2634 2895

Poaceae Meadow 1113 -2776 1795

Poaceae Meadow 2215 -2737 7971

Poaceae Meadow 1121 -2944 2934

Poaceae Meadow 638 -3206 1529

108

Macrophytes Macrophytes 886 -3044 2286

Macrophytes Macrophytes 1056 -2720 2673

Macrophytes Macrophytes 769 -3297 1249

Macrophytes Macrophytes 967 -2763 1442

Macrophytes Macrophytes 959 -2670 2105

Macrophytes Macrophytes 334 -2728 1038

Acacia dealbata

Introduced

species 656 -2696 1296

Acacia dealbata

Introduced

species 487 -2941 1782

Acacia dealbata

Introduced

species 220 -2611 3888

Luma apiculata Native species 433 -2542 4135

Luma apiculata Native species 171 -2664 7634

Luma apiculata Native species -001 -2736 6283

Luma apiculata Native species 029 -2764 6425

Azara sp Native species 159 -2868 8408

Azara sp Native species 101 -2606 2885

Baccharis concava Native species 104 -2699 5779

Baccharis concava Native species 265 -2488 4325

Baccharis concava Native species 287 -2562 7802

Baccharis concava Native species 427 -2781 5204

Baccharis linearis Native species 190 -2610 4414

Baccharis linearis Native species 023 -2825 5647

109

Peumus boldus Native species 042 -2969 6327

Peumus boldus Native species 205 -2746 4110

Peumus boldus Native species 183 -2743 6293

Chusquea quila Native species 482 -2801 4275

Poaceae meadow 217 -2629 7214

Lobelia sp Native species 224 -2645 3963

Lobelia sp Native species -091 -2565 4538

Aristotelia chilensis Native species -035 -2785 5247

Aristotelia chilensis Native species -305 -2889 2305

Aristotelia chilensis Native species 093 -2836 5457

Chusquea quila Native species 173 -2754 3534

Chusquea quila Native species 045 -2950 6739

Quillaja saponaria Native species 223 -2838 9385

Scirpus meadow 018 -2820 7115

Sophora sp Native species -184 -2481 2094

Sophora sp Native species -181 -2717 1721

Pinus radiata

Introduced

trees 1581 -2602 3679

Pinus radiata

Introduced

trees 1431 -2784 4852

Pinus radiata

Introduced

trees -091 -2708 9760

Pinus radiata

Introduced

trees 153 -2568 3470

110

Salix sp

Introduced

trees 632 -2878 1921

LITERATURE CITED

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea

AM Marquet PA 2010 From the Holocene to the Anthropocene A historical

framework for land cover change in southwestern South America in the past 15000

years Land use policy 27 148ndash160

httpsdoiorg101016jlandusepol200907006

Battye W Aneja VP Schlesinger WH 2017 Earth rsquo s Future Is nitrogen the next

carbon  Earthrsquos Future Global Biogeochem Cycles 30 1000ndash1014

httpsdoiorg101002eft2235

Blaauw M Christeny JA 2011 Flexible paleoclimate age-depth models using an

autoregressive gamma process Bayesian Anal 6 457ndash474

httpsdoiorg10121411-BA618

Bowman DMJS Cook GD 2002 Can stable carbon isotopes (δ13C) in soil

carbon be used to describe the dynamics of Eucalyptus savanna-rainforest

boundaries in the Australian monsoon tropics Austral Ecol

httpsdoiorg101046j1442-9993200201158x

Brahney J Ballantyne AP Turner BL Spaulding SA Otu M Neff JC 2014

Separating the influences of diagenesis productivity and anthropogenic nitrogen

deposition on sedimentary δ15N variations Org Geochem 75 140ndash150

httpsdoiorg101016jorggeochem201407003

111

Bruland GL MacKenzie RA 2010 Nitrogen Source Tracking with δN Content

of Coastal Wetland Plants in Hawaii J Environ Qual 39 409

httpsdoiorg102134jeq20090005

Carrevedo ML Frugone M Latorre C Maldonado A Bernaacuterdez P Prego R

Caacuterdenas D Valero-Garceacutes B 2015 A 700-year record of climate and

environmental change from a high Andean lake Laguna del Maule central Chile

(36degS) Holocene 25 956ndash972 httpsdoiorg1011770959683615574584

Christie DA Boninsegna JA Cleaveland MK Lara A Le Quesne C

Morales MS Mudelsee M Stahle DW Villalba R 2009 Aridity changes in the

Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from

tree-rings Clim Dyn 36 1505ndash1521 httpsdoiorg101007s00382-009-0723-4

Craine JM Elmore AJ Aidar MPM Dawson TE Hobbie EA Kahmen A

Mack MC Kendra K Michelsen A Nardoto GB Pardo LH Pentildeuelas J

Reich B Schuur EAG Stock WD Templer PH Virginia RA Welker JM

Wright IJ 2009 Global patterns of foliar nitrogen isotopes and their relationships

with cliamte mycorrhizal fungi foliar nutrient concentrations and nitrogen

availability New Phytol 183 980ndash992 httpsdoiorg101111j1469-

8137200902917x

Cuven S Francus P Lamoureux SF 2010 Estimation of grain size variability

with micro X-ray fluorescence in laminated lacustrine sediments Cape Bounty

Canadian High Arctic J Paleolimnol 44 803ndash817 httpsdoiorg101007s10933-

010-9453-1

Diebel M Vander Zanden MJ 2012 Nitrogen stable isotopes in streams  stable

isotopes Nitrogen effects of agricultural sources and transformations Ecol Appl 19

1127ndash1134 httpsdoiorg10189008-03271

112

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in freshwater

wetlands record long-term changes in watershed nitrogen source and land use SO

- Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash

2916

Fariacuteas L Castro-Gonzales M Cornejo M Charpentier J Faundez J

Boontanon N Yoshida N 2009 Denitrification and nitrous oxide cycling within the

upper oxycline of the oxygen minimum zone off the eastern tropical South Pacific

Limnol Oceanogr 54 132ndash144

Farquhar GD Ehleringer JR Hubick KT 1989 Carbon Isotope Discrimination

and Photosynthesis Annu Rev Plant Physiol Plant Mol Biol

httpsdoiorg101146annurevpp40060189002443

Farquhar GD OrsquoLeary MH Berry JA 1982 On the relationship between

carbon isotope discrimination and the intercellular carbon dioxide concentration in

leaves Aust J Plant Physiol httpsdoiorg101071PP9820121

Fogel ML Cifuentes LA 1993 Isotope fractionation during primary production

Org Geochem httpsdoiorg101007978-1-4615-2890-6_3

Frugone-Aacutelvarez M Latorre C Giralt S Polanco-Martiacutenez J Bernaacuterdez P

Oliva-Urcia B Maldonado A Carrevedo ML Moreno A Delgado Huertas A

Prego R Barreiro-Lostres F Valero-Garceacutes B 2017 A 7000-year high-

resolution lake sediment record from coastal central Chile (Lago Vichuqueacuten 34degS)

implications for past sea level and environmental variability J Quat Sci 32 830ndash

844 httpsdoiorg101002jqs2936

Gaumllman V Rydberg J Bigler C 2009 Decadal diagenetic effects on δ 13 C and

δ 15 N studied in varved lake sediment Limnol Oceanogr 54 917ndash924

httpsdoiorg104319lo20095430917

113

Gerhart LM McLauchlan KK 2014 Reconstructing terrestrial nutrient cycling

using stable nitrogen isotopes in wood Biogeochemistry 120 1ndash21

httpsdoiorg101007s10533-014-9988-8

Granger J Sigman DM Lehmann MF Tortell PD 2008 Nitrogen and oxygen

isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria 53

2533ndash2545 httpsdoiorg10230740058342

Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater

eutrophic lake Limnol Oceanogr 51 2837ndash2848

httpsdoiorg104319lo20065162837

Harris D Horwaacuteth WR van Kessel C 2001 Acid fumigation of soils to remove

carbonates prior to total organic carbon or CARBON-13 isotopic analysis Soil Sci

Soc Am J 65 1853 httpsdoiorg102136sssaj20011853

Houmlgberg P 1997 Tansley review no 95 natural abundance in soil-plant systems

New Phytol httpsdoiorg101046j1469-8137199700808x

Kylander ME Ampel L Wohlfarth B Veres D 2011 High-resolution X-ray

fluorescence core scanning analysis of Les Echets (France) sedimentary sequence

New insights from chemical proxies J Quat Sci 26 109ndash117

httpsdoiorg101002jqs1438

Lara A Solari ME Prieto MDR Pentildea MP 2012 Reconstruccioacuten de la

cobertura de la vegetacioacuten y uso del suelo hacia 1550 y sus cambios a 2007 en la

ecorregioacuten de los bosques valdivianos lluviosos de Chile (35o - 43o 30acute S) Bosque

(Valdivia) 33 03ndash04 httpsdoiorg104067s0717-92002012000100002

Lehmann M Bernasconi S Barbieri A McKenzie J 2002 Preservation of

organic matter and alteration of its carbon and nitrogen isotope composition during

114

simulated and in situ early sedimentary diagenesis Geochim Cosmochim Acta 66

3573ndash3584 httpsdoiorg101016S0016-7037(02)00968-7

Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos Transactions

American Geophysical Union httpsdoiorg1010292007EO070007

Liu G Li M An L 2007 The Environmental Significance Of Stable Carbon

Isotope Composition Of Modern Plant Leaves In The Northern Tibetan Plateau

China Arctic Antarct Alp Res httpsdoiorg1016571523-0430(07-505)[liu-

g]20co2

Marzecovaacute A Mikomaumlgi A Koff T Martma T 2011 Sedimentary geochemical

response to human impact on Lake Notildemmejaumlrv Estonia Est J Ecol 60 54

httpsdoiorg103176eco2011105

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash

1643 httpsdoiorg1011770959683613496289

Meyers PA 2003 Application of organic geochemistry to paleolimnological

reconstruction a summary of examples from the Laurention Great Lakes Org

Geochem 34 261ndash289 httpsdoiorg101016S0146-6380(02)00168-7

Naeher S Gilli A North RP Hamann Y Schubert CJ 2013 Tracing bottom

water oxygenation with sedimentary MnFe ratios in Lake Zurich Switzerland

Chem Geol 352 125ndash133 httpsdoiorg101016jchemgeo201306006

Odone C 1998 El Pueblo de Indios de Vichuqueacuten siglos XVI y XVII Rev Hist

Indiacutegena 3 19ndash67

Pausch J Kuzyakov Y 2018 Carbon input by roots into the soil Quantification of

rhizodeposition from root to ecosystem scale Glob Chang Biol

httpsdoiorg101111gcb13850

115

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98

httpsdoiorg1011772053019614564785

Sun W Zhang E Jones RT Liu E Shen J 2016 Biogeochemical processes

and response to climate change recorded in the isotopes of lacustrine organic

matter southeastern Qinghai-Tibetan Plateau China Palaeogeogr Palaeoclimatol

Palaeoecol httpsdoiorg101016jpalaeo201604013

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of

different trophic status J Paleolimnol 47 693ndash706

httpsdoiorg101007s10933-012-9593-6

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl

httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M 2009 High-resolution quantitative climate

reconstruction over the past 1000 years and pollution history derived from lake

sediments in Central Chile Philos Fak PhD 246

Woodward C Chang J Zawadzki A Shulmeister J Haworth R Collecutt S

Jacobsen G 2011 Evidence against early nineteenth century major European

induced environmental impacts by illegal settlers in the New England Tablelands

south eastern Australia Quat Sci Rev 30 3743ndash3747

httpsdoiorg101016jquascirev201110014

Xu H Yu K Lan J Sheng E Liu B Ye Y Hong B Wu H Zhou K Yeager

KM 2016 Different responses of sedimentary δ15N to climatic changes and

116

anthropogenic impacts in lakes across the Eastern margin of the Tibetan Plateau

J Asian Earth Sci 123 111ndash118 httpsdoiorg101016jjseaes201603024

117

DISCUSION GENERAL

El Nitroacutegeno (N) es un elemento clave que controla la dinaacutemica y

funcionamiento de ecosistemas tanto terrestres como acuaacuteticos (Vitousek et al

1997) Pese a que el N (N2) es muy abundante en la atmoacutesfera (78) es escaso

en los ecosistemas pues la mayoriacutea de la biota no puede acceder a su forma

molecular (Galloway et al 1995 Zaehle et al 2013) En este sentido la entrada

natural de N en los ecosistemas es viacutea fijacioacuten bioloacutegica del N2 por bacterias que lo

convierten en compuestos bioloacutegicamente disponibles (Battye et al 2017) Debido

a que la fijacioacuten es un proceso energeacuteticamente costoso los ecosistemas

comuacutenmente estaacuten limitados por N (Vitousek and Howarth 1991) Los LUCC

contribuyen al incremento del N disponible y son una de las principales causas de

eutroficacioacuten y contaminacioacuten de los cuerpos de agua (Woodward et al 2012)

En Chile central los LUCC principalmente relacionados con las actividades

agriacutecolas y forestales han causado grandes cambios en el ciclo del N debido al

118

reemplazo de la cobertura natural por un monocultivo y al uso de fertilizantes que

modifican los aportes de MO y N a los cuerpos de agua El programa de

estabilizacioacuten de laderas impulsada por el gobierno (Albert 1900) y la ley forestal

de 1974 han fomentado la forestacioacuten con plantaciones de Pinus radiata y

Eucalyptus globulus y en el caso de Lago Vichuqueacuten estas actualmente cubren maacutes

del 60 de su cuenca (Cap2 Fig 5) Ademaacutes en Laguna Matanzas la

sobreexplotacioacuten del agua en conjunto con el cambio climaacutetico actual el que ha

conducido a una de las megasequiacuteas maacutes severas en las uacuteltimas deacutecadas

(Garreaud et al 2017) generoacute una combinacioacuten letal que secoacute el lago en tan solo

10 antildeos (Cap1 Fig1) Las evidencias obtenidas a partir de estos dos lagos

permiten identificar las huellas del Antropoceno en Chile central basadas en el

registro sedimentario lacustre

La transferencia de N desde los ecosistemas terrestres a acuaacuteticos es un

proceso natural con controles bioacuteticos climaacuteticos y geoloacutegicos El enlace

hidroloacutegico entre los ecosistemas terrestres y acuaacuteticos hace que el estado troacutefico

de los lagos esteacute vinculado al de su cuenca (McLauchlan et al 2013) En Chile

central se sabe poco del impacto de los LUCC sobre el ciclo de nutrientes en los

ecosistemas lacustres aunque al menos desde la colonizacioacuten espantildeola se tienen

registros de influencia humana en las cuencas Durante la colonia espantildeola

Laguna Matanzas fue una hacienda ganadera que exportaba productos caacuternicos al

Peruacute (Contreras-Lopez et al 2014) A su vez en el Lago Vichuqueacuten se realizaban

extensas actividades agriacutecolas hasta comienzos del s XX como por ejemplo

cultivos de vid y trigo ademaacutes de extraccioacuten de madera y mineriacutea de oro (Odone

1997) En las uacuteltimas deacutecadas los LUCC han estado vinculados principalmente con

el desarrollo forestal al compaacutes de una estrategia gubernamental de fomentar con

119

incentivos financieros (Ley de Bosques DFL nordm265 de 1931 y DFL 701 de 1974)

esta actividad El incremento de la superficie forestal es especialmente fuerte en

ambos lagos a partir de la deacutecada de 1980 y hasta 2016 (Laguna de Matanzas 0-

17 Lago Vichuqueacuten 1-66) Este aumento habriacutea sido en detrimento del bosque

nativo y los pastizales (Cap 1 Fig 5 y Cap 2 Fig 8) El incremento de la superficie

forestal generariacutea una disminucioacuten de los aportes de sedimentos y nutrientes al lago

y en este sentido un cambio de estado en los flujos de N (e g tipping points) que

a su vez ha quedado registrado en la sentildeal isotoacutepica (δ15N) y la acumulacioacuten de

MO en los sedimentos lacustres

Isoacutetopos estables y la dinaacutemica de N en los lagos de Chile central

Los sedimentos lacustres son verdaderos ldquosumiderosrdquo que pueden llegar a

registrar lo que ocurre en cuanto a la historia ambiental de su cuenca En esta tesis

se utilizan los isoacutetopos estables de N (15N y 14N) en sedimentos lacustres para

reconstruir los cambios en la disponibilidad de N en el tiempo y establecer la

magnitud de impacto generado por actividades humanas El fraccionamiento

cineacutetico en los lagos es mediado por procesos bioloacutegicos que mediante la

asimilacioacuten de N genera un producto (eg fitoplancton) maacutes ldquoligerordquo (valores maacutes

bajos de 15N) que su remanente (eg DIN) (Fogel y Cifuentes 1993) Sin embargo

en periacuteodos en que los lagos estaacuten limitados por N el fitoplancton discrimina menos

y la MO resultante queda enriquecida en 15N (Fig 1 a y b) Ademaacutes la

desnitrificacioacuten acentuada en lagos de fondo anoacutexicos (eg Laguna Matanzas

entre 1800 y 1940 Cap1 Fig 6) conduce a un enriquecimiento en 15N de los

sedimentos y de la columna de agua Esta informacioacuten queda reflejada en la MO

120

de los sedimentos lacustres lo que permite conocer la disponibilidad del N en el

tiempo a partir de las variaciones de 15N

En esta tesis analizamos la MO de los sedimentos lacustres para reconstruir

la influencia de los LUCC en los aportes de sedimentos y N al lago En teacuterminos de

asimilacioacuten de N se puede distinguir entre dos grupos principales de productores

primarios que componen el POM (Fig1)

1 Los que asimilan el DIN compuesto por amonio nitratos y nitritos Aquiacute el

δ15N resultante fluctuaraacute en torno a valores maacutes positivos en la medida que

la productividad se incrementa o no hay reposicioacuten del DIN (Fig 1)

2 Los fijadores de N Dado que es un proceso energeacuteticamente costoso en

ambientes que no estaacuten limitados por N muchas veces son excluiacutedas

competitivamente por el resto del fitoplancton Si el DIN queda agotado por

el incremento de la productividad (o bien si el ambiente estaacute limitado ya sea

por N o por otros nutrientes) los fijadores de N pueden florecer y la MO que

se genera a partir de ello tendraacute un δ15N con valores en torno a 0permil

De este modo la MO en los sedimentos lacustres dependeraacute de la

composicioacuten de productores primarios (ie fijadores vs asimiladores del DIN)

ademaacutes de los aportes desde la cuenca tanto de MO como del N de la cuenca que

pasa a formar parte del DIN (eg fertilizantes estieacutercol) (Fig 1)

La MO de los lagos estudiados en esta tesis ha sido analizada a partir de

variables geoquiacutemicas isotoacutepicas frotis y estaacute compuesta principalmente por

diatomeas y MO amorfa A partir de los datos obtenidos en esta tesis los valores

de δ15N aumentan cuando hay una mayor cobertura agriacutecola o pastizales A su vez

tiende a disminuir cuando aumenta la cobertura arboacuterea independiente si esta es

por plantaciones forestales o por bosque nativo

121

Por otra parte la dinaacutemica del lago tambieacuten imprime caracteriacutesticas

especiales en el POM observaacutendose variaciones estacionales en los valores

δ15NPOM Durante la estacioacuten caacutelida y seca se observan valores maacutes bajos que

durante la estacioacuten friacutea y huacutemeda posiblemente relacionado con el incremento de

la contribucioacuten de especies fijadoras de N (Lago Vichuqueacuten Fig 9 Cap 2) durante

el verano En la estacioacuten friacutea y huacutemeda el DIN seriacutea la principal fuente de N Las

mayores entradas de MO y N terrestre debidos a un incremento del lavado de la

cuenca como consecuencia de las precipitaciones y la mineralizacioacuten de la MO

podriacutean estimular la produccioacuten de MO lacustre por crecimiento del fitoplancton

Como consecuencia se observan tendencias decrecientes de los valores de

δ15N en la MO sedimentaria cuando la productividad en el lago estaacute relacionada

con especies fijadoras de N mientras que el δ15N muestra aumentos cuando la

productividad del lago estaacute asociada principalmente al consumo del DIN pero

tambieacuten cuando predominan procesos de perdida de N (eg desnitrificacioacuten Fig

1)

Hemos identificado tres fases en la dinaacutemica del δ15N para ambos lagos

Entre 1800 y 1940 CE la cuenca de laguna de Matanzas estaba dominada por

actividades agriacutecolas y ganaderas (δ15Nsuelo gt 4permil Cap 1 Fig 4 y 6) Las entradas

de sedimentos y MO desde la cuenca son altas (δ13C lt -209permil ZrTi ~029 AlTi

~013) y coincide con un clima maacutes huacutemedo y friacuteo (Von Gunten et al 2009

Christiansen et al 2011) El lago teniacutea un nivel de agua maacutes profundo dominado

por condiciones anoacutexicas (MnFe ~0013) que contribuiriacutean a mayores valores de

δ15N en la columna de agua y por ende de los sedimentos acumulados en el fondo

debido a la peacuterdida diferencial de 14N viacutea desnitrificacioacuten (Fig 7 Cap1) La baja

122

produccioacuten de MO lacustre (BrTi ~002 TOC~17) coincide con un bajo contenido

de NT (~478 μg) y valores maacutes positivos de δ15N (gt 4permil)

La actividad agriacutecola tambieacuten dominaba en la cuenca del Lago Vichuqueacuten

durante este periacuteodo (δ15Nsuelo gt4permil Cap2 Fig 6) El aporte sedimentario desde la

cuenca es alto (AlTi ~029 ZrTi ~032) y fue favorecido por mayores

precipitaciones a las actuales (Christiansen et al 2011) El Lago Vichuqueacuten es un

lago estratificado anoacutexico (MnFe ~002) y profundo (~30 m) por lo que la

desnitrificacioacuten juega un rol importante en el enriquecimiento de la MO

sedimentaria La baja produccioacuten de MO (BrTi ~007 TOC ~12) de origen

lacustre (δ13C ~ -268permil) coincide con un bajo contenido de NT (~309μg +6) y

valores maacutes positivos de δ15N (56permil +03)

Durante esta fase en ambos lagos los aportes de N de la cuenca parecen

ser los principales responsables en las fluctuaciones del δ15N Esta sentildeal podriacutea

estar amplificada por bajas temperaturas (que afectan la productividad lacustre) y

altas precipitaciones que favorecen el lavado de la cuenca y aumentan el aporte de

sedimentos y MO desde la cuenca predominantemente agriacutecola

Entre 1940 y 1980 CE en Laguna Matanzas se observa un incremento en

la acumulacioacuten de MO algal (TOC ~2 +1 δ13C ~-230+09permil) El ambiente

deposicional es ligeramente menos turbulento que el anterior (AlTi ~011+001

ZrTi ~03+001) y el lago estaacute en una fase de transicioacuten hacia condiciones maacutes

oacutexicas (MnFe ~002+0004) y maacutes productivas (BrTi ~004+0007) A su vez δ15N

tiende hacia valores maacutes negativos (δ15N ~30permil+03) mientras que el NT aumenta

oscilando en antifase con el δ15N

En Lago Vichuqueacuten en cambio se observa un ligero incremento en la

acumulacioacuten de MO (TOC ~13 +02) de origen terrestre (δ13C ~-27permil +04) La

123

productividad es similar al periacuteodo anterior (BrTi ~007+003) y el ambiente

deposicional es menos turbulento (AlTi ~02 +009 Zrti ~033 +007) El δ15N y el

NT oscilan en torno a valores ligeramente maacutes bajos (δ15N ~51permil +04 NT ~292μg

+6) Este periacuteodo se caracteriza por ser maacutes caacutelido que el anterior lo que

posibilitariacutea un incremento en la productividad lacustre en Laguna Matanzas pero

que no es observada en el Lago Vichuqueacuten

Entre 1980 y la actualidad en Laguna Matanzas habriacutea un incremento de la

acumulacioacuten de MO (TOC ~59 + 3) asociada a un incremento en la productividad

del lago (BrTi ~009+005) y a los aportes de MO terrestres (δ13C ~-24 + 2permil) El

lago se vuelve maacutes oacutexico (Mn ~0003 +0006) y las entradas de sedimento

disminuyen (AlTi~ 009 +002) El δ15N tiende a valores maacutes negativos (δ15N ~13permil

+1) y el NT aumenta de 20 a 55 μg (NT ~346 + 9 μg) tomando valores sin

precedentes en todo el registro En los sedimentos lacustres del Lago Vichuqueacuten

tambieacuten se observa un incremento de la acumulacioacuten de MO (TOC ~17 + 05)

asociada a un incremento en la productividad del lago (BrTi ~01 + 003) y las

entradas de sedimento desde la cuenca disminuyen (AlTi ~005 + 005) El δ15N

(~43 + 05permil) tiende a valores maacutes negativos y el NT incrementa de 20 a 55 μg (NT

~346 + 9 μg) oscilando en antifase

Durante esta fase en ambos lagos se observa un aumento en la

acumulacioacuten de MO sedimentaria un incremento en el NT y valores maacutes negativos

de δ15N que coincide con el incremento de la superficie forestal de las cuencas

(Laguna Matanzas gt17 Lago Vichuqueacuten gt60)

124

Figura 2 Comparacioacuten de los cambios del ciclo del N entre Laguna Matanzas y

Lago Vichuqueacuten con los procesos biogeoquiacutemicos contrastantes en rojo En L

Matanzas las condiciones oacutexicas podriacutean estar favoreciendo la nitrificacioacuten del

amonio En Vichuqueacuten las condiciones anoacutexicas favorecen un aumento en δ15N de

la MO en los sedimentos por desnitrificacioacuten y mineralizacioacuten

Los ambientes mediterraacuteneos en el que los lagos del presente estudio se

encuentran insertos estaacuten caracterizados por una estacioacuten seca prolongada y las

precipitaciones ocurren en eventos puntuales alcanzando altos montos

pluviomeacutetricos en poco tiempo Las lluvias favorecen un lavado de la cuenca la

perdida de N y otros nutrientes Por lo que es esperable que los sedimentos del

lago reflejen mejor los valores isotoacutepicos de los suelos de la cuenca durante los

periacuteodos con altos montos pluviomeacutetricos En el Lago Vichuqueacuten por ejemplo el

125

POM superficial (2 y 5 m de profundidad) despliega valores isotoacutepicos maacutes

positivos en invierno presumiblemente como resultado de mayores aportes de MO

y N de su cuenca (Fig 1b) En ambos lagos los valores maacutes positivos en los

sedimentos lacustres ocurren durante periacuteodos con mayores montos pluviomeacutetricos

(Cap1 Fig 6 y Cap 2 Fig 12)

Ademaacutes del efecto de la precipitacioacuten en el aporte de nutrientes al lago en

esta tesis hemos encontrado que los mayores aportes de N desde la cuenca se dan

cuando la cobertura vegetal del suelo es menor En Laguna Matanzas el desarrollo

de la actividad ganadera desde la llegada de los espantildeoles a la cuenca habriacutea

incrementado los aportes de N al lago Los valores de δ15N en los sedimentos

lacustres depositados durante este periacuteodo son los maacutes positivos de todo el registro

(~4permil) A su vez en Lago Vichuqueacuten los valores isotoacutepicos maacutes positivos se

registran entre 1300 y 1900 CE que coinciden con el mayor desarrollo de

actividades agriacutecola y de extraccioacuten de maderas de la cuenca (Fig 10 Cap 2)

Los recientes LUCC (a partir de 1975) en las cuencas de Laguna Matanzas

y Lago Vichuqueacuten estaacuten caracterizados por un incremento de la superficie forestal

y agriacutecola en reemplazo de la cobertura de pastizal (Laguna Matanzas) y bosque

nativo (Lago Vichuqueacuten) Los valores de δ15N en los testigos sedimentarios fueron

maacutes positivos cuanto mayor la superficie agriacutecola de la cuenca y maacutes negativos

cuanto mayor la superficie forestal Aunque por los alcances de esta tesis no

podemos ser concluyentes respecto del origen del NT (aloacutectonoautoacutectono) parece

ser que esta maacutes ligado a los aportes de la cuenca pese a la disminucioacuten del aporte

sedimentario observado en ambos lagos Las plantaciones forestales a diferencia

del bosque nativo son fertilizadas con una mezcla de N P y K (Toral et al 2005)

Por lo que pese a la disminucioacuten del aporte sedimentario la concentracioacuten de

126

nutrientes en el aporte al lago puede verse incrementada por el tipo de manejo

forestal con respecto al bosque nativo

Los resultados del primer capiacutetulo demuestran que 1) las plantaciones

forestales yo bosque nativo retiene maacutes sedimentos y MO mientras que el uso de

suelo agriacutecola y los pastizales destinados al desarrollo de la actividad ganadera lo

libera 2) Al parecer la desnitrificacioacuten es el proceso natural maacutes importante de

perdida de N en lagos costeros y favorece el enriquecimiento de 15N tanto en la

columna de agua (ie 15N-DIN) como en los sedimentos una vez enterrados y 3) la

desnitrificacioacuten depende de los cambios en las condiciones REDOX en el lago La

oxigenacioacuten en lagos poco profundos -como Laguna Matanzas- es altamente

fluctuante a escalas decadal-centenal depende de la profundidad de la laacutemina de

agua y de la variabilidad de la precipitacioacuten En este sentido en Laguna Matanzas

habriacutea condiciones anoacutexicas en ambientes cuando el lago alcanza niveles maacutes

altos Estas condiciones se observan entre 1820 y 1940 CE y son coetaacuteneas con

episodios maacutes huacutemedos y friacuteos (von Gunten et al 2009 Christie et al 2009) pero

tambieacuten con una fuerte actividad ganadera en la cuenca

Las fuentes variables de N y su fluctuacioacuten en el tiempo hacen necesario

contar con un anaacutelogo moderno que permite usar al δ15N de los sedimentos

lacustres como un indicador indirecto de los cambios en la disponibilidad de N en

el tiempo Por ello en el segundo capiacutetulo integramos muestras de suelo-

vegetacioacuten y un monitoreo de POM de la columna de agua en verano e invierno La

composicioacuten isotoacutepica de POM estariacutea reflejando cambios de la fuente de N (fijacioacuten

vs consumo del DIN) que variacutea durante el antildeo hidroloacutegico Durante el verano la

mayor temperatura y horas-luz favoreceriacutean las entradas de N al lago viacutea fijacioacuten

bioloacutegica de N2 atmosfeacuterico resultando en un incremento de la MO con un valor

127

isotoacutepico bajo (POM verano~5permil Fig 1b) El N2 (δ15N = 0permil) es fijado praacutecticamente

sin fraccionamiento isotoacutepico generando un δ15N de la OM cercano a 0permil (Leng et

al 2006) En invierno las precipitaciones pueden estar favoreciendo un incremento

en la entrada de nutrientes al lago El DIN de la columna de agua llega a contener

valores de δ15N maacutes altos reflejando estos mayores aportes de la cuenca y el POM

del Lago Vichuqueacuten queda enriquecido en 15N (δ15N ~11permil Cap 2 Fig 9) Estas

variaciones estacionales pueden estar evidenciando un cambio en la composicioacuten

de especies de POM desde especies fijadoras a especies que consumen el N de la

columna de agua Sin embargo para corroborar esta informacioacuten seriacutea deseable

contar con el anaacutelisis de la composicioacuten de especies de las muestras de agua

extraidas

Entre los resultados maacutes importantes estaacuten los valores isotoacutepicos del suelo

y la biomasa representativa de la cuenca que incluye un listado de las especies

nativas de la zona que hasta ahora no se contaba (Cap 2 Tabla en material

suplementario) Las especies colectadas despliegan valores de δ15Nfoliar maacutes

positivos (plantaciones forestales y pastizal ~89permil) que el suelo (35permil) salvo por

las especies nativas las que oscilan en torno a valores cercanos al atmosfeacuterico

(~14permil) La razoacuten isotoacutepica 15N14N refleja la dinaacutemica de intercambio de N entre la

vegetacioacuten y el suelo (Koba et al 2002) La discriminacioacuten es positiva en la mayoriacutea

de los sistemas bioloacutegicos por lo que las plantas tienen valores de δ15N maacutes bajos

que el suelo (Evans et al 2001) como sucede con las especies nativas en Lago

Vichuqueacuten En consecuencia las plantas quedan empobrecidas en 15N y conducen

a un enriquecimiento en 15N del suelo sobretodo si no hay reposicioacuten de N por otras

viacuteas (eg fijacioacuten de N) Por lo tanto los valores maacutes negativos de δsup1⁵Nfoliar de las

especies nativas pueden estar relacionados con el consumo preferencial de 14N del

128

suelo donde la discriminacioacuten isotoacutepica de la vegetacioacuten contra el 15N conduce a

valores del δsup1⁵Nsuelo maacutes altos (Houmlgberg 1997) Por el contrario los valores maacutes

positivos de δsup1⁵Nfoliar de las plantaciones forestales y pastos con respecto al suelo

puede deberse por una parte que el suelo no cuenta con mecanismos naturales de

reposicioacuten de N salvo por la descomposicioacuten de la hojarasca que puede ser maacutes

lenta en Pinus radiata que en bosque nativo (Lusk et al 2001) y por otra por el alto

impacto de los aportes de N (y otros nutrientes) derivado de las actividades

humanas (eg uso de fertilizantes) en el suelo

El alcance maacutes significativo de esta tesis se relaciona con un cambio en la

tendencia maacutes negativa de δsup1⁵N y el incremento del NT a partir de 1940 y a partir

de 1970 CE en ambos lagos La causa maacutes probable de esta tendencia es el

reemplazo de la cobertura natural o preexistente a 1940 CE por plantaciones

forestales

En la figura 2 se observa una siacutentesis de los principales procesos que

afectan la sentildeal isotoacutepica de la MO en los sedimentos lacustres de L Matanzas y

L Vichuqueacuten La entrada de N y MO desde la cuenca depende del tipo de cobertura

Las plantaciones forestales y el bosque nativo retienen maacutes nutrientes y sedimentos

en la cuenca mientras que la agricultura los favorece Sin embargo las praacutecticas

de manejo que incluyen la aplicacioacuten de N (y otros nutrientes) pueden aportar maacutes

nutrientes al lago que la cobertra de bosque nativo Cuando las actividades

forestales cubren una mayor superficie de la cuenca (1940 en adelante) δsup1⁵N oscila

en valores maacutes negativos y el NT tiende a incrementarse en los sedimentos

lacustres Cabe destacar que los valores de δsup1⁵N observados en los testigos

sedimentarios a fines del s XX no tienen precedente durante la conquista y colonia

espantildeola o durante el resto del periodo de la Repuacuteblica

129

Figura 2 Modelo de transferencia de N entre los ecosistemas terrestres y

acuaacuteticos El δ15N de los sedimentos lacustres depende de la interaccioacuten entre los

aportes de la cuenca y porcesos ldquoin-lakerdquo Flechas indican la direccioacuten del flujo de

N En azul las salidasentradas de 14N en rojo las salidasentradas de 15N δ15N de

la interaccioacuten plantas-suelo depende del tipo de cobertura de suelo

130

CONCLUSIONES GENERALES

La transferencia de N entre cuencas y lagos es un factor de control del ciclo

del N en los lagos y queda reflejado en la sentildeal isotoacutepica de los sedimentos

lacustres (Leng et al 2006 McLauchlan et al 2007) En Laguna Matanzas el

suelo de las especies nativas y las plantaciones forestales despliegan valores de

δ15N maacutes bajos (~1permil) que los de Lago Vichuqueacuten (~35permil) Coincidentemente los

sedimentos lacustres de Laguna Matanzas oscilan con valores de δ15N maacutes bajos

(-15 a +45permil Fig 1) que los de Lago Vichuqueacuten (+3 a +8permil)

Por otra parte el estudio de la MO de los sedimentos lacustres ha permitido

reconstruir los cambios en los aportes de MO y N desde la cuenca Aunque no es

posible afirmar queacute tipo de N estaacute entrando al lago (eg Nitroacutegeno orgaacutenico e

inorganico) si podemos decir que los cambios en las fluctuaciones de δ15N son

coincentes con el crecimiento de la actividad forestal (1980 - hasta 2016 L

Matanzas 0-17 y L Vichuqueacuten 1-66) El δ15N fluctuacutea hacia valores maacutes

negativos Ademaacutes se observa un incremento del NT en los sedimentos lacustres

cuanto mayor es la superficie forestal

Entre 1800-1940 las cuencas eran fundamentalmente agriacutecolas y

ganaderas (Cap1 Fig 7 y Cap 2 Fig 12) el δ15N de los sedimentos lacustres

oscila con valores maacutes positivos (L Matanzas +40 plusmn 05permil y L Vichuqueacuten 56 plusmn

033permil Fig 1) hay una baja bioproductividad en el lago (BrTi ~002 TOC~17)

lo que coincide con un bajo contenido de NT (~478 μg) Este es un periacuteodo de altas

precipitaciones (Christie et al 2009) que tienden a favorecer el lavado de la cuenca

131

y con ello el aporte de MO sedimentos y nutrientes desde la cuenca tiende a verse

favorecido Aunque las principales actividades humanas en estas cuencas son

diferentes (ganaderiacutea en Laguna Matanzas Contreras-Lopez et al 2014

agricultura en Lago Vichuqueacuten Odone 1997) en ambos casos hubo un reemplazo

de la cobertura natural de bosques nativo que favorecioacute mayores aportes de N y

sedimentos desde la cuenca en un efecto sumado con el aumento de las

precipitaciones

A partir de 1980 CE en ambos lagos se observa una disminucioacuten en los

valores de δ15N y un incremento del NT que no tiene precedentes en todo el registro

y pese a que ambos lagos son limnologicamente muy diferentes En Lago

Vichuqueacuten el δ15N tiende a oscilar en antifase con el NT (Fig 1) En el caso de

Laguna Matanzas se observa una tendencia hacia valores maacutes negativos y a partir

de 1990s a valores maacutes positivos mientras que el NT tiende a incrementarse de

manera sostenida Ello podriacutea estar relacionado con el crecimiento de la actividad

forestal habriacutea una mayor retencioacuten de N y sedimentos en la cuenca ligado al

incremento de la superficie forestal Ademaacutes en el caso de L Matanzas el

incremento de la actividad agriacutecola (sumado al de las plantaciones forestales)

podriacutea expicar el cambio en la tendencia en la deacutecada de los 1990s

En el contexto de Antropoceno esta tesis nos permite identificar un gran

impacto de las actividades humanas en Chile central a partir de la deacutecada de 1940

y una Gran Aceleracoacuten a partir de la deacutecada de 1970s En el registro sedimentario

de los lagos en estudio se observa una gran acumulacioacuten de MO el δ15N oscila

hacia valores maacutes negativos y un gran incremento del NT y el crecimiento de la

actividad forestal parece ser la principal responsable Ademaacutes la sobreexplotacioacuten

132

del agua junto al cambio climaacutetico global ha generado una combinacioacuten letal para

los lagos costeros de Chile central

Figura 1 Comparacioacuten de las fluctuaciones de δ15N durante los uacuteltimos 300

antildeos en Laguna Matanzas y Lago Vichuqueacuten

133

Referencias

Battye W Aneja VP Schlesinger WH 2017 Earthrsquos Future Is nitrogen the next carbon Earthrsquos Future Global Biogeochem Cycles 30 1000ndash1014 httpsdoiorg101002eft2235

Christie DA Boninsegna JA Cleaveland MK Lara A Le Quesne C

Morales MS Mudelsee M Stahle DW Villalba R 2009 Aridity changes in the Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from tree-rings Clim Dyn 36 1505ndash1521 httpsdoiorg101007s00382-009-0723-4

Contreras-Loacutepez M (Playa AUHVC (Universidad de VRFS (Pontificia

UC de V 2014 Elementos de la historia natural del An Mus Hist Natulas Vaplaraiso 27 51ndash67

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in

freshwater wetlands record long-term changes in watershed nitrogen source and land use SO - Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash2916

Evans RD Evans RD 2001 Physiological mechanisms influencing

plant nitrogen isotope composition 6 121ndash126 Fogel ML Cifuentes LA 1993 Isotope fractionation during primary

production Org Geochem 73ndash98 httpsdoiorg101007978-1-4615-2890-6_3 Galloway JN Schlesinger WH Ii HL Schnoor L Tg N 1995

Nitrogen fixation Anthropogenic enhancement-environmental response reactive N Global Biogeochem Cycles 9 235ndash252

Garreaud RD Alvarez-Garreton C Barichivich J Pablo Boisier J

Christie D Galleguillos M LeQuesne C McPhee J Zambrano-Bigiarini M 2017 The 2010-2015 megadrought in central Chile Impacts on regional hydroclimate and vegetation Hydrol Earth Syst Sci 21 6307ndash6327 httpsdoiorg105194hess-21-6307-2017

Koba K Koyama LA Kohzu A Nadelhoffer KJ 2003 Natural 15 N

Abundance of Plants Coniferous Forest httpsdoiorg101007s10021-002-0132-6

Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos

Transactions American Geophysical Union httpsdoiorg1010292007EO070007 McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE

2007 Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470 httpsdoiorg101073pnas0701779104

134

Phytologist N Oct N 2006 Tansley Review No 95 15N Natural Abundance in Soil-Plant Systems Peter Hogberg 137 179ndash203

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98 httpsdoiorg1011772053019614564785

Turner BL Kasperson RE Matson PA McCarthy JJ Corell RW

Christensen L Eckley N Kasperson JX Luers A Martello ML Polsky C Pulsipher A Schiller A 2003 A framework for vulnerability analysis in sustainability science Proc Natl Acad Sci U S A httpsdoiorg101073pnas1231335100

Vitousek PM Aber JD Howarth RW Likens GE Matson PA

Schindler DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

Vitousek PM Howarth RW 1991 Nitrogen limitation on land and in the

sea How can it occur Biogeochemistry httpsdoiorg101007BF00002772 von Gunten L Grosjean M Rein B Urrutia R Appleby P 2009 A

quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo central Chile back to AD 850 Holocene 19 873ndash881 httpsdoiorg1011770959683609336573

Xu R Tian H Pan S Dangal SRS Chen J Chang J Lu Y Maria

Skiba U Tubiello FN Zhang B 2019 Increased nitrogen enrichment and shifted patterns in the worldrsquos grassland 1860-2016 Earth Syst Sci Data httpsdoiorg105194essd-11-175-2019

Zaehle S 2013 Terrestrial nitrogen-carbon cycle interactions at the global

scale Philos Trans R Soc B Biol Sci 368 httpsdoiorg101098rstb20130125

Page 2: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …

2

LA DEFENSA FINAL DE LA TESIS DOCTORAL TITULADA

ldquoINFLUENCIA DE LOS CAMBIOS DE USOCOBERTURA DEL SUELO Y EL CLIMA EN EL CICLO DEL NITROacuteGENO EN DOS LAGOS COSTEROS DE CHILE CENTRAL A

PARTIR DE LA COLONIZACIOacuteN ESPANtildeOLArdquo

Presentada por la Candidata a Doctor en Ciencias Bioloacutegicas Mencioacuten Ecologiacutea de la Pontificia Universidad Catoacutelica de Chile

SRA MARIacuteA MAGDALENA FUENTEALBA LANDEROS

Ha sido aprobada por el Tribunal Examinador constituido por los profesores

abajo firmantes calificaacutendose el trabajo realizado el manuscrito sometido

y la defensa oral con nota _________ (_______________________________)

DR JOSEacute MIGUEL FARINtildeA R Coordinador Comiteacute de Tesis

Facultad de Ciencias Bioloacutegicas-UC

DR JUAN A CORREA M Decano

Facultad de Ciencias Bioloacutegicas-UC

DR BLAS VALERO G Co-Director de Tesis

Consejo Superior de Investigaciones Cientiacuteficas

DR CLAUDIO LATORRE H Director de Tesis

Facultad de Ciencias Bioloacutegicas-UC

DR JUAN ARMESTO Z Miembro del Comiteacute de Tesis

Facultad de Ciencias Bioloacutegicas-UC

DR RICARDO DE POL H Profesor Invitado

Universidad de Magallanes

Santiago de Chile 30 de septiembre de 2019-

3

TABLA DE CONTENIDO

RESUMEN 9

ABSTRACT 11

INTRODUCCIOacuteN 13

Los ecosistemas mediterraacuteneos y el ciclo del N 15

Los lagos como sensores ambientales 16

El ciclo del N en lagos 18

Reconstruyendo el ciclo del N a partir de variaciones en δ15N 20

Referencias 25

CAPIacuteTULO 1 A COMBINED APPROACH TO ESTABLISHING THE TIMING AND MAGNITUDE OF ANTHROPOGENIC NUTRIENT ALTERATION IN A MEDITERRANEAN COASTAL LAKE- WATERSHED SYSTEM 29

Abstract 30 1 INTRODUCTION 31 2 STUDY SITE 35 3 RESULTS 38

31 Age Model 38 32 The sediment sequence 39 33 Sedimentary units 41 34 Isotopic signatures 42 35 Recent land use changes in the Laguna Matanzas watershed 44

4 DISCUSSION 45 41 N and C dynamics in Laguna Matanzas 45 42 Recent evolution of the Laguna Matanzas watershed 48

5 CONCLUSIONS 54 6 METHODS 55

References 58

CAPIacuteTULO 2 STABLE ISOTOPES TRACK LAND USE AND COVER CHANGES IN A MEDITERRANEAN LAKE IN CENTRAL CHILE OVER THE LAST 600 YEARS 71

Abstract 73 1 Introduction 73

4

2 Study Site 77 3 Methods 79 4 Results 84

41 Geochemistry and PCA analysis 84 42 Sedimentary units 86 43 Recent seasonal changes of particulate organic matter on water column 88 44 Stable isotope values across the Lake Vichuqueacuten watershed 89 45 Land use and cover change from 1975 to 2014 90

5 Discussion 93 51 Seasonal variability of POM in the water column 93 52 Stable isotope signatures in the Lake Vichuqueacuten watershed 95 53 Recently land use and cover change and its influences on N inputs to the lake 97 54 Nitrogen dynamics in Lago Vichuqueacuten over the last six hundred years 98

6 Conclusions 101

LITERATURE CITED 110

DISCUSION GENERAL 117

Isoacutetopos estables y la dinaacutemica de N en los lagos de Chile central 119

CONCLUSIONES GENERALES 130

Referencias 133

5

A mis padres Arturo y Malena

A mis hijos Xavi y Panchito

6

AGRADECIMIENTOS

Quiero agradecer a mi tutor y mentor Dr Claudio Latorre por brindarme su

apoyo sin el cual no habriacutea logrado concluir esta tesis de doctorado Claudio tu

apoyo constante incentivo y el fijarme metas que a veces me pareciacutean imposibles

de alcanzar no solo han dado forma a esta tesis sino tambieacuten me ha hecho maacutes

exigente como cientiacutefica Claudio destacas no solo por ser un gran cientiacutefico si no

tambieacuten por tu gran calidad humana eres un gran ejemplo

Quiero agradecer Dr Blas Valero-Garceacutes por nuestras numerosas

conversaciones viacutea Skype que incluiacutean vacaciones y fines de semana para discutir

los resultados de la tesis y que han dado forma a esta investigacioacuten principalmente

al primer capiacutetulo Ademaacutes por haberme acogido como un miembro maacutes en el

laboratorio de Paleoambientes Cuaternarios durante las estancias que he realizado

en el transcurso de estos antildeos Blas eres un ejemplo para miacute conjugas ciencia de

calidad calidez y dedicacioacuten por tus estudiantes

A quienes han financiado mi doctorado la Comisioacuten Nacional de

Investigacioacuten Cientiacutefica y Tecnoloacutegica (CONICYT) con sus becas de manutencioacuten

doctoral (2013) gastos operacionales pasantiacutea (2016) postnatal (2017) y termino

de tesis doctoralrdquo (2013) A FONDECYT a traveacutes del proyecto 1160744 de C

Santoro Al Departamento de InvestigacioacutenAl Instituto de Ecologiacutea y Biodiversidad

(IEB) a traveacutes de del PIA financiamiento basal 170008 la Pontificia Universidad

Catoacutelica de Chile por la beca incentivo para tesis interdisciplinaria para doctorandos

(2015)

Agradezco a mis compantildeeros del laboratorio de Paleoecologiacutea y

Paleoclimatologiacutea Karla Matias Dani Carolina Mauricio y Pancho que han hecho

grato mi tiempo en el laboratorio Agradecimientos especiales a Carolina Matiacuteas y

Leo por acompantildearme a terreno

7

Agradezco a los miembros del laboratorio de Paleoambientes Cuaternarios

(IPE) en especial a Raquel Elena Fernando Ana Penelope Graciela Miguel

Sevilla Mariacutea y Miguel Bartolomeacute

Agradezco a los miembros de la comisioacuten Dr Joseacute Miguel Farintildea Dr Juan

Armesto y Dr Ricardo De Pol-Holz por la gran ayuda durante el desarrollo de mi

doctorado en especial por las correcciones finales de la tesis

Al departamento de Ecologiacutea en especial a Rosario Galaz Edita Luengo

Daniela Mora y Valeria Cavallero por su apoyo

A mis compantildeeros de doctorado Beleacuten Gallardo Pancho Diacuteaz Bryan Bularz

Bian Latorre Renato Borras Juan Carlos Hernaacutendez y Paulina Troncoso con

quienes estudieacute aprendiacute y compartimos muy buenos momentos durante los

primeros antildeos del doctorado

A Pablo Sarricolea mi compantildeero de vida Gracias por tu constante e

incondicional apoyo Sin ti durante este proceso todo habriacutea sido cuesta arriba

A mis padres Arturo y Malena gracias por su carintildeo apoyo y compromiso

Papaacute aunque no esteacutes a mi lado siempre te recuerdo con mucho carintildeo A mi

madre que ha sido un constante apoyo sobre todo en el cuidado de mis hijos xavi

y panchito

A mis hermanos Rodrigo y David por estar presentes durante toda esta

etapa Siempre con carintildeo y hermandad

A Rodrigo David Matiacuteas Jany Paola y Julio por cuidar a mis hijos con carintildeo

siempre que estuve ausente por el doctorado

8

ABREVIATURAS

N Nitroacutegeno (Nitrogen)

DIN Nitroacutegeno Inorgaacutenico Disuelto (Dissolved Inorganic Nitrogen)

C Carbono (Carbon)

TOC Carbono Inorgaacutenico Total (Total Organic Carbon)

TIC Carbono Inorgaacutenico Total (Total inorganic Carbon)

TC Carbono Total (Total Carbon)

TS Azufre Total (Total Sulfur)

LUCC Cambios de UsoCobertura del Suelo (Land Use and Cover Change)

OM Materia Orgaacutenica (Organic Matter)

POM Particulate Organic Matter (materia orgaacutenica particulada)

CE Common Era

BCE Before Common Era

Cal BP Calibrado en antildeos radiocarbono antes de 1950

ie id est (esto es)

e g Exempli gratia (por ejemplo)

9

RESUMEN

El ldquoAntropocenordquo se caracteriza por pertubaciones de origen humano que

conllevan impactos globales Por ejemplo los cambios de usocobertura del suelo

(LUCC) son conocidos por perturbar el ciclo del N a partir de la Revolucioacuten Industrial

pero especialmente desde la Gran Aceleracioacuten (1950 CE) en adelante Sin

embargo existen incertezas asociadas a la magnitud del impacto y su efecto

acoplado con los cambios climaacuteticos actuales (ie megasequiacutea disminucioacuten de las

precipitaciones) y acoplamientos con otros ciclos biogeoquiacutemicos (eg ciclo del

Carbono) Este impacto ha cambiado la disponibilidad de N en los ecosistemas

terrestres y acuaacuteticos y sus enlaces Los sedimentos lacustres contienen

informacioacuten de las condiciones paleoambientales del lago y su cuenca en el

momento en que se depositaron y el anaacutelisis de los isoacutetopos estables de N (δ15N)

en los sedimentos permiten reconstruir los cambios en la disponibilidad de N a

traveacutes del tiempo En este trabajo usamos una aproximacioacuten multiproxy que incluye

10

anaacutelisis sedimentoloacutegicos geoquiacutemicos e isotoacutepicos (δ15N δ13C) de los sedimentos

lacustres columna de agua y suelo-vegetacioacuten de la cuenca y la reconstruccioacuten de

los LUCC entre 1975 y 2016 a partir de imaacutegenes satelitales El objetivo de esta

tesis fue evaluar el rol de LUCC como principal control del ciclo del N en el sistema

cuenca-lago durante las uacuteltimas centurias en Chile central Nuestros principales

resultados muestran que valores maacutes positivos de δ15N en los sedimentos lacustres

estaacuten relacionados con grandes aportes de N de la cuenca que a su vez son

mayores cuanto mayor la superficie agriacutecola yo los pastizales mientras que tanto

las plantaciones forestales como los bosques favorecen la retencioacuten de nutrientes

en la cuenca (lo que se ve reflejado en un δ15N maacutes negativo) Esta tesis plantea

un cambio de estado en la dinaacutemica del N asociado a la introduccioacuten y expansioacuten

de las plantaciones forestales o bosques los que retienen el Nitroacutegeno en las

cuencas mientras que el clima juega un rol secundario

11

ABSTRACT

The Anthropocene is characterized by human disturbances at the global

scale For example changes in land use are known to disturb the N cycle since the

industrial revolution but especially since the Great Acceleration (1950 CE) onwards

This impact has changed N availability in both terrestrial and aquatic ecosystems

However there are some important uncertainties associated with the extent of this

impact and how it is coupled to ongoing climate change (ie megadroughts rainfall

variability and shifting stationarity) or to other nutrient cycles (e g carbon cycle)

Lake sediments contain paleoenvironmental information regarding the conditions of

the watershed and associated lakes and which the respective sediments are

deposited Nitrogen stable isotope analysis (δ15N) on lake sediments allows us to

reconstruct the changes in N availability through time Here we used a multiproxy

approach that uses sedimentological geochemical and isotopic analyses on

lacustrine sediments water column and soilvegetation from the watershed as well

12

as land use and cover change (LUCC) from 1975 to 2016 obtained from satellite

images The goal of this thesis is to evaluate the role of LUCC as the main driver for

N cycling in a coastal watershed system of central Chile over the last centuries Our

main results show that more positive δ15N values in lake sediments are related to

higher N contributions from the watershed which in turn increase with increased

agricultural andor pasture cover whereas either forest plantations or native forests

can favor nutrient retention in the watershed (δ15N more negative) This thesis

proposes that N dynamics are mainly driven by the introduction and expansion of

forest or tree plantations that retain nitrogen in the watershed whereas climate plays

a secondary role

13

INTRODUCCIOacuteN

El N es un elemento esencial para la vida y limita la productividad en

ecosistemas tanto terrestres como acuaacuteticos (Vitousek et al 1997) Las actividades

humanas han tenido un profundo impacto sobre el ciclo del N global principalmente

a partir la revolucioacuten industrial (IPCC 2013 2007) Las concentraciones de N se

han incrementado por la fijacioacuten industrial de N atmosfeacuterico (viacutea el proceso Haber-

Bosch Erisman et al 2008) por el uso de fertilizantes sobre la base de N para

mejorar el rendimiento de los cultivos la produccioacuten ganadera y ademaacutes de los

cambios en el uso del suelo (abreviado en ingleacutes- LUCC) (Robertson y Vitousek

2009 Galloway et al 2008 Battye et al 2017 Xu et al 2019) Estas actividades

contribuyen significativamente al incremento de la disponibilidad bioloacutegica de N

cuyas consecuencias para los ecosistemas incluye la perdida de diversidad

modificacioacuten de la disponibilidad de nutrientes y acidificacioacuten de los suelos entre

otras Sin embargo se desconoce la cantidad destino y el alcance que ha tenido

14

el N movilizado entre los ecosistemas generado por la influencia de las actividades

humanas (Vitousek et al 1997)

La entrada natural de N en los ecosistemas terrestres y acuaacuteticos es viacutea

fijacioacuten atmosfeacuterica la que es llevada a cabo por microorganismos muchos de ellos

en relaciones simbioacuteticas (eg Rhizobium en leguminosas) y las algas (Vitousek et

al 1997 Battye et al 2017) Las principales salidas estaacuten relacionadas con la

desnitrificacioacuten volatilizacioacuten del amoniaco y por escurrimiento superficial y

subterraacuteneo (Galloway et al 2008 Diacuteaz et al 2016) En el caso de los sistemas

lacustres ademaacutes estaacuten la resuspencioacuten de N del fondo del lago los aportes desde

la cuenca (entradas de N) La depositacioacuten de MO en el fondo del lago que marca

la salida de N de la columna de agua Estas relaciones de intercambio de N tienen

un control geograacutefico (eg latitud exposicioacuten relieve etc) climaacutetico y biotico

(McLauchlan et al 2013) La alteracioacuten provocada por los LUCC no solo genera

las peacuterdidas de nutrientes del suelo por erosioacuten y escurrimiento superficial sino que

tambieacuten modifica la disponibilidad y transferencia de N entre los ecosistemas

terrestres y acuaacuteticos (Elbert et al 2012 McLauchlan et al 2013) Por ejemplo el

reemplazo de la vegetacioacuten nativa por la agricultura yo plantaciones forestales

altera el ciclo del N debido al despeje de los terrenos viacutea quema de la vegetacioacuten

pero tambieacuten debido al reemplazo de la vegetacioacuten preexistente por un

monocultivo (eg trigo pino) y el uso ineficiente de fertilizantes para mejorar el

rendimiento agriacutecola Estas actividades favorecen un incremento de los aportes de

N (y otros nutrientes) viacutea sistemas de drenajes a lagos los que actuacutean como

sumideros El incremento del N derivado de las actividades humanas tanto en los

ecosistemas terrestres como acuaacuteticos genera incertezas relacionados con la

trayectoria y la magnitud de la disponibilidad de N en ambos ecosistemas (Batye et

15

al 2017 Mclauchlan et al 2017) Por lo tanto se requiere de una liacutenea base de

largo plazo para saber coacutemo estas perturbaciones impactan la disponibilidad de N

en las uacuteltimas deacutecadassiglos en los ecosistemas lacustres y por lo tanto el alcance

real que los LUCC han tenido en el ciclo del N

Los ecosistemas mediterraacuteneos y el ciclo del N

Los ecosistemas mediterraacuteneos son especialmente sensibles a los LUCC

pues estos se encuentran sometidos a un estreacutes hiacutedrico durante largas temporadas

estivales y las precipitaciones se concentran en eventos puntuales y a veces con

altos montos pluviomeacutetricos Las precipitaciones tienen un alto potencial de arrastre

de sedimentos y nutrientes los que actuacutean como fertilizantes al llegar a los

ecosistemas lacustres A su vez un incremento en la disponibilidad de N puede

generar un desbalance con otros nutrientes (eg Fosforo) con efectos sobre la

productividad y diversidad de los lagos (Pentildeuelas et al 2012 Sardans et al 2012

McLauchlan 2013) En este sentido en Chile central se observa una disminucioacuten

de las precipitaciones especialmente fuerte en las uacuteltimas deacutecadas por lo que se ha

denoacuteminado como Megasequiacutea (Garreaud et al 2017) y el efecto de las

precipitaciones esporaacutedicas pueden generar un arrastre de nutrientes que no ha

sido evaluado

Los ecosistemas mediterraacuteneos concentran el 20 de la biodiversidad global

(Myers et al 2000) pero existe una escasez de conocimiento respecto a los

efectos del incremento de N en los cuerpos de agua como consecuencia de las

actividades humanas en el pasado histoacuterico (Ochoa-Hueso et al 2011) y coacutemo la

disponibilidad de N ha variado en el tiempo Los LUCC han aumentado el flujo de

N en las cuencas hidrograacuteficas viacutea escurrimiento superficial y lixiviacioacuten

16

favoreciendo la peacuterdida de sedimentos y nutrientes del suelo en el mundo entero

(Elser et al 2011 McLauchlan et al 2013 Xu et al 2017 y 2019) Ello ha

contribuido a la acidificacioacuten y eutrofizacioacuten generalizada de riacuteos y lagos

(McLauchlan et al 2013 Schindler et al 2008)

El ecosistema mediterraacuteneo de Chile central es una regioacuten ampliamente

intervenida desde al menos la colonizacioacuten espantildeola (1600-1800 CE) Los LUCC

han tenido efectos negativos en la disponibilidad de agua especialmente

observados con el desarrollo de las actividades minera (Prieto et al 2019) Aunque

se sabe de los impactos en los ecosistemas de bosque en teacuterminos de cobertura

debidos al desarrollo silvo-agropecuarias (Armesto et al 2010) se desconoce el

impacto de estas actividades sobre el ciclo del N en los cuerpos de agua o en queacute

momento cobran fuerza suficiente para alterar el flujo de N hacia los lagos de Chile

Central Por lo tanto en esta tesis nos centramos en entender coacutemo los LUCC han

afectado la disponibilidad de N en los lagos costeros de Laguna Matanzas y Lago

Vichuqueacuten desde la llegada de los espantildeoles a Chile hasta el presente

Los lagos como sensores ambientales

Los sedimentos lacustres son buenos sensores de cambios en los aportes

de nutrientes contaminacioacuten y eutroficacioacuten de los cuerpos de agua ya que son

capaces de preservar sentildeales quiacutemicas y fiacutesicas al momento de su formacioacuten y

ademaacutes con alta resolucioacuten y a largo plazo (Leng et al 2006) Por lo tanto

constituyen una herramienta uacutetil para reconstruir el flujo de N entre ecosistemas

terrestres y acuaacuteticos en el pasado sus consecuencias (eg incremento de la

productividad lacustre) y el rol del clima y los LUCC en el pasado (McLauchlan et

al 2013 von Gunten et al 2009) Por ejemplo el cultivo de maiacutez por parte de los

17

nativos iroqueses en Canadaacute provocoacute la eutrofizacioacuten del Lago Crawford (43degN)

durante los siglos XII y XV Entre las consecuencias registradas se documentoacute un

claro incremento de la productividad primaria y cambios en la estructura comunitaria

de diatomeas foacutesiles (incremento de Stephanodiscus complex y disminucioacuten de

Cyclotella bodanica en Ekdahl et al 2007) Otro ejemplo demuestra como las

actividades agriacutecolas en la cuenca del riacuteo Mississippi modificaron los patrones de

sedimentacioacuten y aporte de nutrientes al lago Pepin EE UU (44degN) a partir del

asentamiento europeo en 1840 CE y principalmente desde 1940 CE (Engstrom et

al 2009) Para Chile von Gunten et al (2009) a partir de indicadores

limnogeoloacutegicos evidencioacute la contaminacioacuten y eutroficacioacuten de cinco lagos cercanos

a la ciudad de Santiago (33ordmS) como consecuencia de la deposicioacuten atmosfeacuterica

de metales pesados (especialmente Cu) quema de combustible foacutesil y flujo de

nutrientes durante los uacuteltimos 200 antildeos

Caracteriacutesticas limnoloacutegicas de los lagos

Los procesos limnoloacutegicos afectan la distribucioacuten y abundancia de los

organismos en los lagos Estaacuten influenciados por forzamientos externos por

ejemplo la precipitacioacuten o la penetracioacuten de la luz y la morfometriacutea del lago En este

sentido el nivel del lago dependeraacute del balance entre las entradas y salidas de agua

(precipitaciones escurrimiento superficial y subterraacuteneo y la evaporacioacuten) y la forma

de la cuenca (profundidad pendiente aacuterea del espejo de agua)

En funcioacuten de la profundidad de penetracioacuten de la luz es posible diferenciar

dos aacutereas que determinan la distribucioacuten de los organismos la zona foacutetica (donde

penetra la luz y permite la fotosiacutentesis) y la zona afoacutetica (subyacente a la zona

foacutetica) Al depender de la radiacioacuten la zona foacutetica variacutea estacionalmente Ademaacutes

18

puede variar por el grado de turbidez la morfometriacutea del lago y la produccioacuten de

materia orgaacutenica en la columna de agua

Otro factor que influye en la productividad es el reacutegimen de mezcla de la

columna de agua pues favorece la oxigenacioacuten y el reciclado de nutrientes La

mezcla ocurre en condiciones de gran inestabilidad usualmente relacionado con el

reacutegimen de viento Por el contrario un lago estratificado resulta de grandes

diferencias en temperatura o salinidad entre la superficie (epilimnion) y el fondo del

lago (hipolimnion) que separa las masas de agua superficial y de fondo por una

termoclina (si la estratificacioacuten estaacute relacionada con diferencias de temperatura de

las masas de agua) o haloclina (diferencias de salinidad) En funcioacuten del reacutegimen

de mezcla los lagos se pueden clasificar en (Lewis 1983)

1 Amiacutecticos no hay mezcla vertical de la columna de agua

2 Monomiacutecticos friacuteos y caacutelidos se mezcla una vez al antildeo

3 Dimiacutecticos la columna de agua se mezcla dos veces al antildeo

4 Oligomiacutecticos Lagos estratificados la mayor parte del tiempo pero se mezclan a

intervalos irregulares mayores a 1 antildeo

5 Polimiacutecticos friacuteos y caacutelidos la columna de agua se mezcla varias veces al antildeo

El ciclo del N en lagos

Al estar presente en aacutecidos nucleicos aminoaacutecidos y proteiacutenas el N es un

nutriente esencial de los organismos Por lo tanto su disponibilidad en la columna

de agua es clave para la produccioacuten composicioacuten y acumulacioacuten de la MO a traveacutes

del tiempo (Olson 1998 Talbot 2002) Aunque el principal reservorio de N estaacute en

19

la atmosfera (N2) solo unos pocos organismos (eg cianobacterias) pueden fijarlo

directamente Asiacute el Nitroacutegeno Inorgaacutenico Disuelto (DIN) representa la principal

fuente de N disponible para la produccioacuten primaria en los ecosistemas acuaacuteticos

(Talbot et al 2002) El DIN estaacute compuesto por nitrato (NO3-) nitrito (N02

-) y amonio

(NH4+) y los cambios en su disponibilidad condicionan el tipo de produccioacuten primaria

(eg fijadores vs asimiladores de N ver Scott y Grant 2013 Scott 2008)

La Figura 1 resume los principales componentes en lagos del ciclo del N y

sus interacciones La principal entrada natural de N es viacutea fijacioacuten de N atmosfeacuterico

y es llevado a cabo principalmente por bacterias y algas verde-azules capaces de

romper el triple enlace entre los dos aacutetomos de N a un alto costo energeacutetico (Torres

et al 2012) El N fijado es reducido a NH3 Tras la muerte de los organismos el N

es liberado de sus tejidos por hongos y bacterias implicados en la descomposicioacuten

de la MO Una parte se deposita en el fondo del lago y la otra queda disponible para

ser asimilada por el fitoplancton como amonio mediante el proceso de

amonificacioacuten (Talbot 2002) La amonificacioacuten resulta de la reduccioacuten bacteriana

del amoniaco y se da preferentemente en condiciones anoacutexicas La volatizacioacuten del

amoniaco es un proceso por medio este se incorpora a la atmoacutesfera Este proceso

se da preferentemente en lagos aacutecidos (pH gt 85) El nitrato es otra forma de N

bioloacutegicamente disponible para el fitoplancton En los lagos el NO3 del DIN estaacute

compuesto por los aportes desde la cuenca hidrograacutefica en la que se circunscriben

por la resuspensioacuten desde el fondo del lago favorecido por procesos de mezcla

(descrito en seccioacuten anterior) y por los nitratos de la columna de agua Estos uacuteltimos

son el resultado de la nitrificacioacuten proceso realizado por bacterias aeroacutebicas

mediante el cual el amonio se oxida para formar nitrito y nitrato El ciclo se completa

20

con la desnitrificacioacuten que es la reduccioacuten bacteriana de nitrato al N atmosfeacuterico

Este proceso se da preferentemente en condiciones anoacutexicas

Figura 1 Materia Orgaacutenica sedimentaria y su relacioacuten con el ciclo del N y las

variaciones de δ15N (elaborado a partir de Talbot et al 2002) En la figura se

representan los factores clave en la acumulacioacuten de la MO sedimentaria y su

relacioacuten con el ciclo del N El δ15N de la MO es resultado de los aportes de MO

desde la cuenca MO de macroacutefitas y de la productividad bioloacutegica La productividad

en ecosistemas lacustres estaacute condicionada por DIN y la fijacioacuten de N atmosfeacuterico

El δ15N del pool del DIN disponible se va enriqueciendo por la asimilacioacuten

preferencial de 14N por parte del fitoplancton Ademaacutes el DIN remanente se va

enriqueciendo por accioacuten microbiana (amonificacioacuten nitrificacioacuten desnitrificacioacuten)

Reconstruyendo el ciclo del N a partir de variaciones en δ15N

La sentildeal isotoacutepica de N (δ15N) en los sedimentos lacustres puede ser usada

para reconstruir los cambios pasados del ciclo N la transferencia de N entre

ecosistemas terrestres y acuaacuteticos y el estado troacutefico del lago (Bruland y Mackenzie

2015 McLauchlan et al 2013 Woodward et al 2012 von Gunten et al 2009

Leng et al 2006 Meyers y Teranes 2001) La Figura 1 resume los principales

procesos y fuentes que afectan la sentildeal isotoacutepica δ15N (total o ldquobulkrdquo) en la MO de

21

los sedimentos lacustres Entre los que destacan las fuentes de MO (aloacutectona vs

autoacutectona) la bioproductividad lacustre y las entradas de N (ie fijacioacuten bioloacutegica

de N2) (Torres et al 2012) Estos procesos conducen a un fraccionamiento

isotoacutepico cineacutetico que favorece la disociacioacuten entre sus isotopos ldquopesadosrdquo (15N) y

ldquoligerosrdquo (14N) Asiacute por ejemplo los valores de δ15N de la MO se enriquecen en 15N

en la medida que los sedimentos lacustres estaacuten sometidos a perdidas de 14N viacutea

desnitrificacioacuten (Bruland y Mackenzie 2015 Diaz et al 2016 Talbot et al 2002)

Por otra parte el fitoplancton en la medida que aumenta su biomasa (eg

durante la estacioacuten caacutelida) puede llegar a asimilar el DIN hasta agotarse En este

caso el N remanente se va empobreciendo en 14N si no hay reposicioacuten de N (eg

aporte de NO3 de la cuenca) y la MO queda enriquecida en 15N Esta disminucioacuten

induce a una limitacioacuten de fitoplancton por N y los organismos diztroacuteficos pueden

verse estimulados por lo que se incrementa la entrada de N viacutea fijacioacuten de N2 (Scott

y Grantsz 2013) como resultado la MO oscila en valores maacutes bajos (en torno a 0permil)

La cantidad de MO que se deposita en el fondo del lago depende del

predominio de contribuciones provenientes desde la cuenca (aloacutectona) versus las

producidas dentro del mismo lago (autoacutectona) (Torres et al 2012) Aunque en

general los lagos reciben permanentemente aportes de sedimentos y MO desde

su cuenca los lagos pequentildeos tienden a reflejar maacutes los procesos que ocurren

solamente en su cuenca directa y reflejan los valores isotoacutepicos de la misma (Gu et

al 2006) Woodward et al (2012) realizaron un estudio en 50 lagos en Irlanda que

les permitioacute correlacionar diferentes patrones de LUCC (bosques de coniacuteferas

agricultura ganaderiacutea entre otros) con los valores de δ15N (y δ13C) en los

sedimentos superficiales de los lagos Encontraron que los valores de δ15N son maacutes

negativos en cuencas poco impactadas y maacutes positivos en aquellas con alto

22

impacto humano (eg usos de suelo agriacutecola y ganadero) McLauchlan et al (2007)

encontraron valores maacutes positivos de δ15N en los sedimentos del Mirror Lake New

Hampshire (29ordm N) a partir de la desforestacioacuten de su cuenca en 1790 CE (inicio

del asentamiento europeo en el lago) para el desarrollo de la actividad agriacutecola

Estos valores se volvieron maacutes negativos hacia valores similares al pre-

asentamiento europeo despueacutes del cese de la agricultura en la cuenca y la

recuperacioacuten del bosque a partir de 1929 CE

El anaacutelisis de δ15N en los sedimentos lacustres es una herramienta casi sin

explorar en Chile central Proponemos reconstruir la dinaacutemica de transferencia de

N cuenca-lago como consecuencia de los LUCC desde la colonizacioacuten espantildeola en

los lagos costeros de Laguna Matanzas (34ordmS) y Lago Vichuqueacuten (36ordmS) Como son

muacuteltiples los procesos que pueden afectar la sentildeal isotoacutepica de N (medido como

δ15N) en los sedimentos lacustres existen muchos problemas para su

interpretacioacuten paleoambiental (Leng et al 2006) Por ello en esta tesis utilizamos

un enfoque multiproxy que consiste en integrar el anaacutelisis limnoloacutegico y geoquiacutemico

de los sedimentos lacustres con los valores isotoacutepicos modernos de la columna de

agua (mediante monitoreo del POM) la relacioacuten vegetacioacuten-suelo de la cuenca y la

reconstruccioacuten de los principales usos de suelo de las cuencas desde 1975 CE

mediante el uso de imaacutegenes satelitales Considerando estas muacuteltiples liacuteneas de

evidencia nos planteamos utilizar las variaciones del δ15N para reconstruir los

cambios en la disponibilidad de N en los lagos costeros de Chile central y establecer

coacutemo y desde cuaacutendo las actividades humanas en la cuenca son lo suficientemente

importantes como para modificar el ciclo del N en los lagos desde la colonizacioacuten

espantildeola (siglo XVII)

23

Como hipoacutetesis planteamos que la dinaacutemica de transferencia de sedimentos

y nutrientes entre la cuenca y el lago tiene controles geoloacutegicos climaacuteticos y

bioloacutegicos que interactuacutean en el tiempo registraacutendose en la acumulacioacuten de MO de

los sedimentos lacustres (Fig1) Bajo este marco los LUCC modifican esta

dinaacutemica alterando la transferencia de N a los lagos ya que las actividades agriacutecolas

y ganaderas tienden a aportar maacutes N (aumentando δ15N) que la actividad forestal

(la que disminuye δ15N)

En el primer capiacutetulo titulado ldquoA combined approach to establishing the timing

and magnitude of anthropogenic nutrient alteration in a mediterranean coastal lake-

watershed systemrdquo se evaluoacute el rol de los LUCC en el control de la descarga de N

y sedimentos a Laguna Matanzas en un sistema cuenca-lago desde el siglo XVII

Para ello se realizoacute un anaacutelisis de la dinaacutemica sedimentaria lacustre mediante el

anaacutelisis de muacuteltiples proxys sedimentoloacutegicos (ie minerales y textura)

geoquiacutemicos (eg geoquiacutemica orgaacutenica e isotoacutepica) y bioloacutegicos (ie diatomeas) de

Laguna Matanzas que cubren los uacuteltimos 200 antildeos Ademaacutes se realizoacute una

reconstruccioacuten de los usos de suelo entre 1975 y 2016 a partir de imaacutegenes de

sateacutelites y se colectaron muestras de suelo de las principales coberturas de la

cuenca a los cuales se midioacute el δ15N

Entre los principales resultados obtenidos se destaca la influencia de la

ganaderiacutea y la denitrificacioacuten lo que explica los altos valores de δ15N evidenciados

por el registro lacustre durante la colonizacioacuten espantildeola e inicios de la repuacuteblica A

partir de la Gran Aceleracioacuten (1950 CE) la desforestacioacuten y el reemplazo de la

ganaderiacutea por plantaciones forestales tienen un correlato en el registro

sedimentario con valores de δ15N maacutes bajos Estos resultados demuestran que los

LUCC son el factor de primer orden para explicar los cambios observados en

24

nuestro registro de δ15N y a su vez implica un rol secundario del clima como posible

control de la disponibilidad de N en Laguna Matanzas Este capiacutetulo fue sometido

a la revista Scientific Reports y estaacute en revisioacuten desde el 26 de marzo de 2019 En

la elaboracioacuten del mauscrito han colaborado Claudio Latorre Blas Valero-Garceacutes

Matiacuteas Frugone Pablo Sarricolea Santiago Giralt Manuel Contreras-Lopez

Ricardo Prego y Patricia Bernardez

El segundo capiacutetulo se titula ldquoStable isotopes track land use and cover

changes in a mediterranean lake in central Chile over the last 600 yearsrdquo Aquiacute

evaluamos la dinaacutemica del N actual en el sistema cuenca-lago considerando los

valores isotoacutepicos modernos tanto de la vegetacioacuten como del suelo ademaacutes de los

cambios estacionales del POM de la columna de agua Esta informacioacuten se utiliza

como un anaacutelogo moderno para conocer el rol de los LUCC en la disponibilidad de

N en los uacuteltimos 600 antildeos Para ello se colectaron muestras filtradas de la columna

de agua a 2 5 y 20 m dos veces por antildeo entre noviembre de 2015 y julio de 2018

y se obtuvo el δsup1⁵N del POM Ademaacutes se colectoacute muestras de vegetacioacuten y suelo

de la cuenca diferenciando entre especies nativas plantaciones forestales y

vegetacioacuten herbaacutecea Esta informacioacuten se analizoacute en conjunto con la reconstruccioacuten

de los LUCC entre 1975 y 2014 y el anaacutelisis limnoloacutegico del lago Ello nos permitioacute

evaluar coacutemo el δ15N de los sedimentos lacustres refleja los valores δ15N de la

cuenca en el Lago Vichuqueacuten y el control que ejerce el clima en la sentildeal isotoacutepica

de POM Este capiacutetulo seraacute sometido a la revista Science of total environmet

proximamente En la elaboracioacuten del mauscrito han colaborado Claudio Latorre

Blas Valero-Garceacutes Matiacuteas Frugone Pablo Sarricolea Leonardo Villacis y M Laura

Carrevedo

25

Entre los principales resultados encontramos que el δ15N en los sedimentos

lacustres es maacutes positivo con presencia de agricultura en la cuenca y maacutes negativo

cuando esta es reemplazada por cobertura arboacuterea bien sea plantaciones

forestales bien sea bosque nativo A su vez durante la estacioacuten seca y caacutelida la

mayor entrada al lago es viacutea fijacioacuten de N atmosfeacuterico (bajos valores de δ15NPOM)

Durante la estacioacuten huacutemeda en cambio prevalecen los aportes de la cuenca con

altos valores de δ15NPOM Ello estariacutea evidenciando un cambio estacional en la

composicioacuten de especies en verano ligado a especies fijadoras de N y en invierno

las algas y microorganismos que consumen el DIN de la columna de agua

Referencias

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea AM Marquet PA 2010 From the Holocene to the Anthropocene A historical framework for land cover change in southwestern South America in the past 15000 years Land use policy 27 148ndash160 httpsdoiorg101016jlandusepol200907006

Battye W Aneja VP Schlesinger WH 2017 Earth rsquo s Future Is nitrogen the

next carbon  Earth rsquo s Future Global Biogeochem Cycles 30 1000ndash1014 httpsdoiorg101002eft2235

Bruland GL MacKenzie RA 2010 Nitrogen Source Tracking with δN Content

of Coastal Wetland Plants in Hawaii J Environ Qual 39 409 httpsdoiorg102134jeq20090005

Diacuteaz FP Frugone M Gutieacuterrez RA Latorre C 2016 Nitrogen cycling in an

extreme hyperarid environment inferred from δ15 N analyses of plants soils and herbivore diet Sci Rep 6 1ndash11 httpsdoiorg101038srep22226

Ekdahl EJ Teranes JL Wittkop CA Stoermer EF Reavie ED Smol JP

2007 Diatom assemblage response to Iroquoian and Euro-Canadian eutrophication of Crawford Lake Ontario Canada J Paleolimnol 37 233ndash246 httpsdoiorg101007s10933-006-9016-7

Elbert W Weber B Burrows S Steinkamp J Buumldel B Andreae MO

Poumlschl U 2012 Contribution of cryptogamic covers to the global cycles of carbon and nitrogen Nat Geosci 5 459ndash462

26

httpsdoiorg101038ngeo1486 Elser J 2011 A world awash with nitrogen Science 334 1504ndash1506

httpsdoiorg101126science1215567 ARTICLE Engstrom DR Almendinger JE Wolin JA 2009 Historical changes in

sediment and phosphorus loading to the upper Mississippi River Mass-balance reconstructions from the sediments of Lake Pepin J Paleolimnol 41 563ndash588 httpsdoiorg101007s10933-008-9292-5

Erisman J W Sutton M A Galloway J Klimont Z amp Winiwarter W (2008)

How a century of ammonia synthesis changed the world Nature Geoscience 1(10) 636

Galloway JN Townsend AR Erisman JW Bekunda M Cai Z Freney JR

Martinelli LA Seitzinger SP Sutton MA 2008 Transformation of the Nitrogen Cycle  Science (80- ) 320 889ndash892

httpsdoiorg101126science1136674 Garreaud RD Alvarez-Garreton C Barichivich J Pablo Boisier J Christie

D Galleguillos M LeQuesne C McPhee J Zambrano-Bigiarini M 2017 The 2010-2015 megadrought in central Chile Impacts on regional hydroclimate and vegetation Hydrol Earth Syst Sci 21 6307ndash6327 httpsdoiorg105194hess-21-6307-2017

Gruber N Galloway JN 2008 An Earth-system perspective of the global

nitrogen cycle Nature 451 293ndash296 httpsdoiorg101038nature06592 Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater eutrophic lake Limnol Oceanogr 51 2837ndash2848 httpsdoiorg104319lo20065162837

IPCC 2013 Climate Change 2013 The Physical Science BasisContribution of

Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press Cambridge United Kingdom and New York NY USA

httpsdoiorg101017CBO9781107415324 Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos Transactions

American Geophysical Union httpsdoiorg1010292007EO070007 Martel-Cea A Maldonado A Grosjean M Alvial I de Jong R Fritz SC von

Gunten L 2016 Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical Central Chile (32iumliquestfrac12S 3050iumliquestfrac12miumliquestfrac12asl) Palaeogeogr Palaeoclimatol Palaeoecol 461 44ndash54 httpsdoiorg101016jpalaeo201608003

McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE 2007

Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470

27

httpsdoiorg101073pnas0701779104 McLauchlan KK Gerhart LM Battles JJ Craine JM Elmore AJ Higuera

PE Mack MC McNeil BE Nelson DM Pederson N Perakis SS 2017 Centennial-scale reductions in nitrogen availability in temperate forests of the United States Sci Rep 7 1ndash7 httpsdoiorg101038s41598-017-08170-z

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash1643 httpsdoiorg1011770959683613496289

Meyers PA Teranes JL 2001 Sediment organic matter in Tracking

Environmental Change Using Lake Sediments Volume 2 Physical and Geochemical Methods httpsdoiorg1018971551-5028(1999)018lt0231SOMCAAgt23CO2

Myers N Mittermeler RA Mittermeler CG Da Fonseca GAB Kent J

2000 Biodiversity hotspots for conservation priorities Nature httpsdoiorg10103835002501

Pentildeuelas J Poulter B Sardans J Ciais P Van Der Velde M Bopp L

Boucher O Godderis Y Hinsinger P Llusia J Nardin E Vicca S Obersteiner M Janssens IA 2013 Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe Nat Commun 4 httpsdoiorg101038ncomms3934

Prieto M Salazar D Valenzuela MJ 2019 The dispossession of the San

Pedro de Inacaliri river Political Ecology extractivism and archaeology Extr Ind Soc httpsdoiorg101016jexis201902004

Robertson GP Vitousek P 2010 Nitrogen in Agriculture Balancing the Cost of

an Essential Resource Ssrn 34 97ndash125 httpsdoiorg101146annurevenviron032108105046

Sardans J Rivas-Ubach A Pentildeuelas J 2012 The CNP stoichiometry of

organisms and ecosystems in a changing world A review and perspectives Perspect Plant Ecol Evol Syst 14 33ndash47 httpsdoiorg101016jppees201108002

Schindler DW Howarth RW Vitousek PM Tilman DG Schlesinger WH

Matson PA Likens GE Aber JD 2007 Human Alteration of the Global Nitrogen Cycle Sources and Consequences Ecol Appl 7 737ndash750 httpsdoiorg1018901051-0761(1997)007[0737haotgn]20co2

Scott E and EM Grantzs 2013 N2 fixation exceeds internal nitrogen loading as

a phytoplankton nutrient source in perpetually nitrogen-limited reservoirs Freshwater Science 2013 32(3)849ndash861 10189912-1901

28

Stocker TF Dahe Q Plattner G-K Alexander L V Allen SK Bindoff NL Breacuteon F-M Church JA Cubash U Emori S Forster P Friedlingstein P Talley LD Vaughan DG Xie S-P 2013 Technical Summary in Climate Change 2013 The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change httpsdoiorg101017 CBO9781107415324005

Talbot M R (2002) Nitrogen isotopes in palaeolimnology In Tracking

environmental change using lake sediments (pp 401-439) Springer Dordrecht

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status J Paleolimnol 47 693ndash706 httpsdoiorg101007s10933-012-9593-6

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M Eggenberger U Grob P Urrutia R Morales A

2009 Pollution and eutrophication history AD 1800-2005 as recorded in sediments from five lakes in Central Chile Glob Planet Change 68 198ndash208 httpsdoiorg101016jgloplacha200904004

Woodward CA Potito AP Beilman DW 2012 Carbon and nitrogen stable

isotope ratios in surface sediments from lakes of western Ireland Implications for inferring past lake productivity and nitrogen loading J Paleolimnol 47 167ndash184 httpsdoiorg101007s10933-011-9568-z

Xu H Yu K Lan J Sheng E Liu B Ye Y Hong B Wu H Zhou K

Yeager KM 2016 Different responses of sedimentary δ15N to climatic changes and anthropogenic impacts in lakes across the Eastern margin of the Tibetan Plateau J Asian Earth Sci 123 111ndash118 httpsdoiorg101016jjseaes201603024

29

CAPIacuteTULO 1 A COMBINED APPROACH TO ESTABLISHING THE TIMING

AND MAGNITUDE OF ANTHROPOGENIC NUTRIENT ALTERATION IN A

MEDITERRANEAN COASTAL LAKE- WATERSHED SYSTEM

30

A combined approach to establishing the timing and magnitude of anthropogenic

nutrient alteration in a mediterranean coastal lake- watershed system

Magdalena Fuentealbaabc Claudio Latorreabc Matiacuteas Frugoneabc Pablo

Sarricolead Santiago Giralte Manuel Contreras-Lopezf Ricardo Prego g Patricia

Bernaacuterdez g Blas Valero-Garceacutesch

a Departamento de Ecologiacutea Pontificia Universidad Catoacutelica de Chile Alameda 340 Santiago Chile

b Institute of Ecology and Biodiversity (IEB) Las Palmeras 3425 Nuntildeoa Santiago Chile

c Laboratorio Internacional de Cambio Global LINCGlobal PUC-CSIC Spain

d Departamento de Geografiacutea Universidad de Chile Marcoleta 250 Santiago Chile

e Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) CLluis Solegrave Sabaris sn Barcelona E-

08028 Spain

f Facultad de Ingenieriacutea y Centro de Estudios Avanzados Universidad de Playa Ancha Traslavintildea

450 Vintildea del Mar Chile

g Instituto de Investigaciones Marinas (CSIC) CEduardo Cabello 6 36208 Vigo Spain

h Instituto Pirenaico de Ecologiacutea (IPE-CSIC) Avenida Montantildeana 1005 Zaragoza 50059 Spain

Corresponding author

E-mail address

clatorrebiopuccl magdalenafuentealbagmailcom

Abstract

Since the industrial revolution and especially during the Great Acceleration (1950

CE) human activities have profoundly altered the global nutrient cycle through land

use and cover changes (LUCC) However the timing and intensity of recent N

variability together with the extent of its impact in terrestrial and aquatic ecosystems

and coupled effects of regional LUCC and climate are not well understood Here

we used a multiproxy approach (sedimentological geochemical and isotopic

31

analyses historical records climate data and satellite images) to evaluate the role

of LUCC as the main control for N cycling in a coastal watershed system of central

Chile during the last few centuries The largest changes in N dynamics occurred in

the mid-1970s associated with the replacement of native forests and grasslands for

livestock grazing by plantations of introduced Monterey pine (Pinus radiata) and

eucalyptus (Eucalyptus globulus) Lake productivity increased and is evidenced by

an increase trend in δ15N values Our study shows that anthropogenic land

usecover changes are key in controlling nutrient supply and N availability in

Mediterranean watershed ndash lake systems and that large-scale forestry

developments during the mid-1970s likely caused the largest changes in central

Chile

Keywords Anthropocene Organic geochemistry watershedndashlake system Stable

Isotope Analyses Land usecover change Nitrogen cycle Mediterranean

ecosystems central Chile

1 INTRODUCTION

Human activities have become the most important driver of the nutrient cycles in

terrestrial and aquatic ecosystems since the industrial revolution (Gruber and

Galloway 2008 Galloway et al 2008 Holtgrieve et al 2011 Fowler et al 2013

Goyette et al 2016) Among these N is a common nutrient that limits productivity

in terrestrial and aquatic ecosystems (Vitousek and Howarth 1991 McLauchlan et

al 2013) With the advent of the Haber-Bosch industrial N fixation process in the

early 20th century total N fluxes have surpassed previous planetary boundaries

32

(Galloway et al 2008 Elser 2011) reaching unprecedented values (ie tipping

points) in the Earth system especially during what is now termed the Great

Acceleration (which began in the 1950s) which intensified in the 1970s (Howarth

2004 Steffen et al 2015) Yet dramatic changes in LUCC have occurred in the last

few centuries mainly linked to forestry and agro-pastoral activities (Poraj-Goacuterska et

al 2017 Ge et al 2019 Cheng et al 2019) These have had large impacts on N

(and Carbon -C-) availability in terrestrial and aquatic ecosystems but the synergic

effect with climate change and global N dynamics has not been established

(Vitousek et al 1997 Mclauchlan et al 2007 2013 Pongratz et al 2010

Woodward et al 2012 Mclauchlan et al 2017)

The onset of the Anthropocene poses significant challenges in mediterranean

regions that have a strong seasonality of hydrological regimes and an annual water

deficit (Stocker et al 2013) Mediterranean climates occur in all continents

(California central Chile Australia South Africa circum-Mediterranean regions)

providing a unique opportunity to investigate global change processes during the

Anthropocene in similar climate settings but with variable geographic and cultural

contexts The effects of global change in mediterranean watersheds have been

analyzed from different perspectives hydrology (Giorgi 2006 Arnell and Gosling

2013 Prudhomme et al 2014) vegetation dynamics (Lenihan et al 2003 Vicente-

Serrano et al 2013 Matesanz and Valladares 2014) sediment dynamics (Garciacutea-

Ruiz et al 2013 Garciacutea-Ruiz 2010 Syvitski et al 2005) changes in

biogeochemical cycles (Thomas et al 2013 Fowler et al 2013 Frank et al 2015)

carbon storage (Muntildeoz-Rojas et al 2015) and biodiversity (Hooper et al 2012) A

recent review showed an extraordinarily high variability of erosion rates in

mediterranean watersheds positive relationships with slope and annual

33

precipitation and the paramount effect of land use (Garciacutea-Ruiz et al 2015)

However the temporal context and effect of LUCC on nutrient supply to

mediterranean lakes has not been analyzed in much detail

Major LUCC in central Chile occurred during the Spanish Colonial period

(17th-18th centuries) (Armesto 1994 Gurnell et al 2001 Figueroa et al 2004

Martiacuten-Foreacutes et al 2012 Contreras-Loacutepez et al 2014) with the onset of

industrialization and mostly during the mid to late 20th century (von Gunten et al

2009 Gayo et al 2012) Recent copper pollution caused by 20th century mining

and industrial smelters has been documented in cores throughout the Andes

(Laguna el Ocho and Laguna Ensuentildeo von Gunten et al 2009) and also from our

surveys in the central valley (Batuco wetland) coastal range (Cordillera de Name)

and along the coast itself (Bucalemito and Colejuda) (Valero-Garceacutes et al 2010

unpublished data)

Paleolimnological studies have shown how these systems respond to

climate LUCC and anthropogenic impacts during the last millennia (Jenny et al

2002 2003 Villa Martiacutenez et al 2002 Frugone-Aacutelvarez et al 2017 Contreras et

al 2018) Furthermore changes in sediment and nutrient cycles have also been

identified in associated terrestrial ecosystems dating as far back as the Spanish

Conquest and related to fire clearance and wood extraction practices of the native

forests (Armesto 1994 Contreras-Loacutepez et al 2014) Nevertheless pollen and

limnological evidence argue for a more recent timing of the largest anthropogenic

impacts in central Chile For example paleo records show that during the mid-20th

century increased soil erosion followed replacement of native forest by Pinus

radiata and Eucalyptus globulus plantations at Laguna Matanzas Aculeo and

34

Vichuqueacuten lakes (Jenny et al 2002 Villa-Martiacutenez et al 2002 2003 Frugone-

Aacutelvarez et al 2017)

Lakes are a central component of the global carbon cycle Lakes act as a

sink of the carbon cycle both by mineralizing terrestrially derived organic matter and

by storing substantial amounts of organic carbon (OC) in their sediments (Anderson

et al 2009) Paleolimnological studies have shown a large increase in OC burial

rates during the last century (Heathcote et al 2015) however the rates and

controls on OC burial by lakes remain uncertain as do the possible effects of future

global change and the coupled effect with the N cycle LUCC intensification of

agriculture and associated nutrient loading together with atmospheric N-deposition

are expected to enhance OC sequestration by lakes Climate change has been

mainly responsible for the increased algal productivity since the end of the 19th

century and during the late 20th century in lakes from both the northern (Ruumlhland et

al2015) and southern hemispheres (Michelutti et al 2015 Carrevedo et al 2015)

but many studies suggest a complex interaction of global warming and

anthropogenic influences and it remains to be proven if climate is indeed the only

factor controlling these transitions (Catalaacuten et al 2013) Alternative causes for

recent N (Galloway et al 2008) increases in high altitude lakes such as catchment

mediated processes cannot be ruled out (Camarero and Catalan 2012 Fritz and

Anderson 2013) Few lake-watershed systems have robust enough chronologies of

recent changes to compare variations in C and N with regional and local processes

and even fewer of these are from the southern hemisphere (McLauchlan et al

2007 Holtgrieve et al 2011)

In this paper we present a multiproxy lake-watershed study including N and

C stable isotope analyses on a series of short cores from Laguna Matanzas in

35

central Chile focused in the last 200 years We complemented our record with land

use surveys satellite and aerial photograph studies Our major objectives are 1) to

reconstruct the dynamics among climate human activities and changes in the N

cycle over the last two centuries 2) to evaluate how human activities have altered

the N cycle during the Great Acceleration (since the mid-20th century)

2 STUDY SITE

Laguna Matanzas (33ordm45rsquoS 71ordm 40acuteW 7 m asl Fig 1) is a coastal lake located

in central Chile near to a large populated area (Santiago gt6106 inhabitants) The

lake has a surface area of 15 km2 with a max depth of 3 m and a watershed of 30

km2 The lake basin is emplaced over Pleistocene-Holocene aeolian and alluvial fan

deposits (SERNAGEOMIN 2003) A recent phase of dune activity occurred from the

mid to late Holocene which mostly sealed off the basin from the ocean (Villa-

Martinez 2002) Climate in Laguna Matanzas is characterized by cool-wet winters

and hot-dry summers with annual precipitation of ~510 mm and a mean annual

temperature of 12ordmC Central Chile is in the transition zone between the southern

hemisphere mid-latitude westerlies belt and the South Pacific Anticyclone (or SPA)

(Garreaud et al 2009) In winter precipitation is modulated by the north-west

displacement of the SPA the northward shift of the westerlies wind belt and an

increased frequency of storm fronts stemming off the Southern Hemisphere

Westerly Winds (SWW) (Frugone-Aacutelvarez et al 2017) Austral summers are

typically dry and warm as a strong SPA blocks the northward migration of storm

tracks stemming off the SWW

36

Historic land cover changes started after the Spanish conquest with a Jesuit

settlement in 1627 CE near El Convento village and the development of a livestock

ranch that included the Matanzas watershed After the Jesuits were expelled from

South America in 1778 CE the farm was bought by Pedro Balmaceda and had more

than 40000 head of cattle around 1800 CE (Contreras-Lopez et al 2014) The first

Pinus radiata and Eucalyptus globulus trees were planted during the second half of

the 19th century and were mostly used for dune stabilization (Albert 1900 Gibson

1972) However the main plantation phase occurred 60 years ago (Villa-Martinez

2002) as a response to the application of Chilean Forestry Laws promulgated in

1931 and 1974 and associated state subsidies

Major land cover changes occurred recently from 1975 to 2008 as shrublands

were replaced by more intensive land uses practices such as farmland and tree

plantations (Schulz et al 2010) Laguna Matanzas is part of the Reserva Nacional

Humedal El Yali protected area (Ramsar Ndeg 878) Despite this protected status the

lake and its watershed have been heavily affected by intense agricultural and

farming activities during the last decades The main inlet ldquoLas Rosasrdquo has been

diverted for crop irrigation causing a significant loss of water input to the lake

Consequently the flooded area of the lake has greatly decreased in the last couple

of decades (Fig 1b) Exotic tree species cover a large surface area of the

watershed Recently other activities such as farms for intensive chicken production

have been emplaced in the watershed

37

Figure 1 Laguna Matanzas a) Digital Elevation Model showing the watershed and

the surface hydrologic connection with Colejuda and Cabildo lakes b) Climograph

depicting the warm dry season in austral summer c) Annual precipitation from

1965-2015 (arrow shows start of the most recent ldquomega-droughtrdquo- see Garreaud et

al 2017) d) A decline of lake area occurs between 2007 and 2018 Lake surface

area decreased first along the western sector (in 2007) followed by more inland

areas (in 2018)

38

3 RESULTS

31 Age Model

The age model for the Matanzas sequence was developed using Bacon software

to establish the deposition rates and age uncertainty (Blaauw and Christen 2011)

It is based on 210Pb and 137Cs dates and two 14C dates (Table 2) According to this

age model the lake sequence spans the last 1000 years (Fig 2) A major breccia

layer (unit 3b) was deposited during the early 18th century which agrees with

historic documents indicating that a tsunami impacted Laguna Matanzas and its

watershed in 1730 CE (Contreras-Loacutepez et al 2014) Here we focus in the last 200

years were the most important changes occurred in terms of LUCC (after the

sedimentary hiatus caused by the tsunami) The Spanish colonial period (17th -18th

century) brought new forms of territorial management along with an intensification

of watershed use which remained relatively unchanged until the 1900s

39

Figure 2 a) Age-depth model obtained for the Laguna de Matanzas sedimentary

sequence A hiatus occurs at 80 cm depth (unit 3b) The section of core used for our

analysis is highlighted in a red rectangle b) Close up of the age model used for

analysis of recent anthropogenic influences on the N cycle c) Information regarding

the 14C dates used to construct age model

Lab code Sample ID

Depth (cm) Material Fraction of modern C

Radiocarbon age

Pmc Error BP Error

D-AMS 021579

MAT11-6A 104-105 Bulk Sediment

8843 041 988 37

D-AMS 001132

MAT11-6A 1345-1355

Bulk Sediment

8482 024 1268 21

POZ-57285

MAT13-12 DIC Water column 10454 035 Modern

Table 2 Laguna Matanzas radiocarbon dates

32 The sediment sequence

Laguna Matanzas sediments consist of massive to banded mud with some silt

intercalations They are composed of silicate minerals (plagioclase quartz and clay

minerals) with relatively high TOC content (Fig 3) Pyrite is a common mineral

indicating dominant anoxic conditions in the lake sediments whereas aragonite

occurs only in the uppermost section Mineralogical analyses visual descriptions

texture and geochemical composition were used to characterize five main facies

(Fig 3) F1 (organic-rich mud) represents baseline sedimentation in a shallow well-

mixed brackish highly productive lake and F1acute (dark orange) is a less organic facies

than F1 (more details see table in the supplementary material) F2 (massive to

banded silty mud) indicates periods of higher clastic input into the lake but finer

(mostly clay minerals) likely from suspension deposition associated with flooding

40

events Aragonite (up to 15 ) occurs in both facies but only in samples from the

uppermost 30 cm and it is interpreted as endogenic linked to higher MgFe waters

and elevated biologic productivity

Figure 3 Sedimentary facies and units mineralogy grain size elemental geochemical

and isotopic composition of Laguna Matanzas core Values highlighted in gray indicate

that these are above average

The banded to laminated fining upward silty clay layers (F3) reflect

deposition by high energy turbidity currents The presence of aragonite suggests

that littoral sediments were incorporated by these currents Non-graded laminated

coarse silt layers (F4) do not have aragonite indicating a dominant watershed

41

sediment source Both facies are interpreted as more energetic flood deposits but

with different sediment sources A unique breccia layer with coarse silt matrix and

cm-long soft clasts (F5) is interpreted as a high-energy event (ie a tsunami)

capable of eroding the littoral zone and depositing coarse clastic material in the

distal zone of the lake Similar coarse breccia layers have been found at several

coastal sites in Chile and interpreted as tsunami-related deposits (Vargas et al

2005 Le Roux et al 2008)

33 Sedimentary units

Three main units and six subunits have been defined (Fig 3) based on

sedimentary facies and sediment composition We use ZrTi as an indicator of the

mineral fraction transported from the watershed (Marzecoacuteva et al 2011) as higher

ZrTi (F3 and F4) is commonly associated with coarser sediments (Cuven et al

2010) A high correlation among Br BrTi and TOC (r = 046-087 p value=0)

supports the use of BrTi as an indicator of lake productivity (Marzecoacuteva et al 2011

Frugone-Aacutelvarez et al 2017) The MnFe ratio is indicative of lake bottom

oxygenation (Naecher et al 2013) as under reducing conditions Mn mobilizes more

than Fe leading to a decreased MnFe ratio (Marzecoacuteva et al 2011) SrTi indicates

periods of increased aragonite formation as Sr is preferentially included in the

aragonite mineral structure (Veizer et al 1971) (See supplementary material)

The basal unit (3c 129 to 99 cm) is relatively organic-rich (TOC mean=26

BioSi mean=5) and composed by F1 (without aragonite) with some coarser F4

flood layers (ZrTi mean=025) Unit 3b (98 to 80 cm) is interpreted as a tsunami or

storm surge deposit (breccia F5 grading into massive to banded silt F2) Unit 3a

(79 to 73 cm) is characterized by relatively low productivity (TOC=2 BrTi=002

42

BioSi=4) under anoxic conditions (MnFe=001) Unit 2a (72 to 31cm) has

relatively less organic content and more intercalated clastic facies F3 and F4 The

top of this unit (43-30 cm) has elevated TS values The Subunit 1b (30-20 cm)

shows increasing TOC BioSi and BrTi values (TOC mean = 29 BioSi mean =

54 BrTi mean=004) and the upper subunit 1a (19-0 cm) has the highest TOC

(mean = 64) and BioSi (mean = 56) high BrTi mean = 010 and the presence

of aragonite More frequent anoxic conditions (MnFe lower than 001) during units

3 and 2 shifted towards more oxic episodes (MnFe = 003) in unit 1 (Fig 3)

34 Isotopic signatures

Figure 4 shows the isotopic signature from soil samples of the major land

usescover present in the Laguna Matanzas used as an end member in comparison

with the lacustrine sedimentary units δ15N from cropland samples exhibit the

highest values whereas grassland and soil samples from lake shore areas have

intermediate values (Fig 4) Tree plantations and native forests have similarly low

δ15N values (+11 permil SD=24) All samples (except those from the lake shore)

exhibit low δ13C values (from ndash285permil to ndash298permil) CNmolar from agriculture land

lakeshore area and non-vegetation areas samples display the lowest values (about

18) CNmolar from tree plantations and native forest have the highest values (383

and 267 respectively)

43

Figure 4 C-N stable isotope plot showing a comparison of lake sediments grouped

by sedimentary units (MAT11-6A) with the soil end members of present-day (lake

shore and land usecover) from Laguna Matanzas

The δ15N values from sediment samples (MAT11-6A) range from ndash15 and

+53permil (mean= +35 SD=05) δ13C values range from ndash266permil to ndash202permil (mean=

ndash240 SD=14) In unit 3c δ15N and δ13C show relatively high values (mean=

+41permil and ndash233permil respectively) δ15N and δ13C from unit 3b and 3a fluctuate at

slightly lower values than in 3c (mean δ15N from 3a= +38permil and 3b mean= +39permil

mean δ13C from 3a= ndash242permil and 3b mean= ndash244permil) In unit 2a δ15N values are

relatively high (mean= +38permil) but show a slightly decreasing trend (from +52 to

+24permil at 66 cm and 36 cm respectively) δ13C also decreases (mean= ndash242permil)

reaching minimum values at 45 cm (ndash266permil) with a sharp increase towards the top

of this unit with maximum values ca ndash210permil Unit 1 exhibits the lowest δ15N values

(1a mean= +11permil 1b mean= +28permil) with negative values in the uppermost

44

sediments (ndash04permil at 14 cm) δ13C values show a decreasing trend over most of

subunit 1b and increase only near the very top of this unit

35 Recent land use changes in the Laguna Matanzas watershed

Major LUCC from 1975 (unit 1b) to 2016 CE in the Laguna Matanzasacutes

watershed is summarized in Figure 5 The watershed has a surface area of 30 km2

of which native forest (36) and grassland areas (44) represented 80 of the

total surface in 1975 The area occupied by agriculture was only 02 and tree

plantations were absent Isolated burned areas (33) were located mostly in the

northern part of the watershed By 1989 tree plantations surface area had increased

to 5 burned areas to 17 and agricultural fields to 9 (a 45-fold increase) and

native forest and grassland sectors decreased to 23 and 27 respectively By

2016 agricultural land and tree plantations have increased to 17 of the total area

whereas native forests decreased to 21

45

Figure 5 Land uses and cover changes from 1975 to 2016 in Laguna Matanzas

watershed from natural cover and areas for livestock grazing (grassland) to the

expansion of agriculture and forest plantation

4 DISCUSSION

41 N and C dynamics in Laguna Matanzas

Small lakes with relatively large watersheds such as Laguna Matanzas would

be expected to have relatively high contributions of allochthonous C to the sediment

OM (Gu et al 2006) Terrestrial C3 plants (δ13C =ndash26 to ndash28permil Meyers and Terranes

2001 Ku et al 2007) are dominant in the Laguna Matanzas watershed Likewise

our soil samples ranged across similar although slightly more negative values

46

(δ13C = ndash30 to ndash28permil Fig 4) to those proposed by Meyers and Terranes (2001)

and are used here as terrestrial end members oil samples were taken from the lake

shore (δ13C = ndash22permil) and POM from surface water (δ13C = ndash24permil) were more

positive than the terrestrial end member and are used as lacustrine end members

Thus more negative δ13C values in lake sediment samples are attributed to higher

OM inputs from terrestrial vegetation and more positive δ13C values have increased

aquatic OM (Gu et al 2006 Torres et al 2012) Phytoplankton preferentially uptake

12C leaving the DIC pool enriched in 13C (Gu et al 2006) especially when there are

no important external sources of C (eg decreased C input from the watershed)

Therefore during events of elevated primary productivity the phytoplankton uptakes

12C until its depletion and are then obligated to use the heavier isotope resulting in

an increase in δ13C Changes in lake productivity thus greatly affect the C isotope

signal (Torres et al 2012) with high productivity leading to elevated δ13C values

(Torres et al 2012 Gu et al 2006)

In a similar fashion the N isotope signatures in Laguna Matanzas reflect a

combination of factors including different N sources (autochthonousallochthonous)

and lake processes such as productivity isotope fractionation in the water column

and sediment denitrification Elevated δ15N values from a POM sample (+22permil) and

average values from the lake shore (mean=+34permil SD=028) are used as aquatic

end members whereas terrestrial samples have values from +10 +24 (tree species)

to +77permil +35 (agriculture) which we use as terrestrial end members (Fig 4)

Autochthonous OM in aquatic ecosystems typically displays low δ15N values

when the OM comes from N-fixing species Atmospheric fixation of N2 by

cyanobacteria ends in OM with δ15N values close to 0permil (Leng et al 2006)

Phytoplankton preferentially uptake 14N from Dissolved Inorganic Nitrogen (DIN) in

47

the water column and derived OM typically have δ15N values lower than DIN values

When productivity increases the remaining DIN becomes depleted in 14N which in

turn increases the δ15N values of phytoplankton over time especially if the N not

replenished (Torres et al 2012) Thus high POM δ15N values from Laguna

Matanzas reflect elevated phytoplankton productivity with a 14N- depleted DIN In

addition N-watershed inputs also contribute to high δ15N values Heavily impacted

watersheds by human activities are often reflected in isotope values due to land use

changes and associated modified N fluxes For example the input of N runoff

derived from the use of inorganic fertilizers leads to the presence of elevated δ15N

(between ndash4 to +4permil) values in the water bodies (Elliott and Brush 2006 Diebel and

Vander Zanden 2009) Widory et al (2004) reported a direct relationship between

elevated δ15N values and increased nitrate concentration from manure in the

groundwater of Brittany (France) Terranes and Bernasconi (2000) found a good

correlation between augmented nutrient loading and a progressive increase in δ15N

values of sedimentary OM related to agricultural land use

Post-depositional diagenetic processes can further affect C and N isotope

signatures Several studies have shown a decrease in δ13C values of OM in anoxic

environments particularly during the first years of burial related to the selective

preservation of OM depleted in 13C (Hollander and Smith 2001 Lehmann et al

2002 Gӓlman et al 2009 Torres et al 2012) Diagenetic processes can also lead

to post-burial N isotope enrichment of the sediments Indeed 14N is consumed more

rapidly than 15N by denitrifying bacteria which intensifies under anoxic conditions

(Diebel and Vander Zanden 2009) Thus the remaining OM pool will be enriched

in 15N leaving to elevated δ15N values (Granger et al 2008 Menzel et al 2013)

48

In summary the relatively high δ15N values in sediments of Laguna Matanzas

reflect N input from an agriculturegrassland watershed with positive synergetic

effects from increased lake productivity enrichment of DIN in the water column and

most likely denitrification The increase of algal productivity associated with

increased N terrestrial input andor recycling of lake nutrients (and lesser extent

fixing atmospheric N) and denitrification under anoxic conditions can all increase

δ15N values (Fig 3) In addition elevated lake productivity without C replenishing

(eg by terrestrial C input) produces shifts towards positive δ13C values whereas C

input from the watershed generates more negative δ13C values

42 Recent evolution of the Laguna Matanzas watershed

Sedimentological compositional and geochemical indicators show three

depositional phases in the lake evolution under the human influence in the Laguna

Matanzas over the last two hundred years Although the record is longer (around

1000 years) we analyzed the last two centuries (unit 2 and 1) to provide a recent

historical context for the large changes detected during the 20th century

The first phase lasted from the beginning of the 19th century until ca 1940

(unit 2a Fig 3 4) and was characterized by moderate productivity with elevated

sediment input from the watershed as indicated by our geochemical proxies (BrTi

= 004 AlTi gt 01 Fig 6) Higher lake levels and dominant anoxic bottom conditions

(MnFe = 001 Fig3) can be related to increased precipitation (mean= 557 mmyr)

and lower temperatures (summer annual temperature lt19ordmC) During the Spanish

colonial period the Laguna Matanzas watershed was used as a livestock farm

(Jesuits 1627-1780 unit 3 followed by the Pedro Balmaceda era 1780-1810- unit

2a) (Contreras-Loacutepez et al 2014) The main buildings and farm facilities at the El

49

Convento village During this period livestock grazing and lumber extraction for

mining would have involved extensive deforestation and loss of native vegetation

(eg Armesto et al 1994 2010) However the Matanzas pollen record does not

show any significant regional deforestation during this period (Villa Martiacutenez 2002)

suggesting that the impact may have been highly localized

Lake productivity sediment input and elevated precipitation (Fig 6) all

suggest that N availability was related to this increased input from the watershed

The N from cow manure and soil particles would have led to higher δ15N values

(Elliot and Brush 2016) In addition anoxic lake bottom conditions would lead to

even further enrichment of buried sediment N The δ13C values lend further support

to our interpretation of increased sediment input -and N- from the watershed

Decreased δ13C values reach their lowest values in the entire record (ndash270permil) at

ca 1910 CE (Fig 4 6)

During most of the 19th century human activities in Laguna Matanzas were

similar to those during the Spanish Colonial period However the appearance of

Pinus radiata and Eucalyptus globulus pollen ca 1890 CE (Gibson 1972) the dune

stabilization-afforestation program which began ca 1900 CE (Albert 1900) and the

application of the Chilean forestry law of 1931 (DFL nordm265) contributed to an

increased capacity of the surrounding vegetation to retain nutrients and sediments

The law subsidized forest plantations in areas devoid of vegetation and prohibited

the cutting of forest on slopes greater than 45ordm These land use changes were coeval

with decreased sediment inputs (AlTi trend) from the watershed slightly increased

lake productivity (BrTi from 001 to 003) and a decrease in annual precipitation

(Fig 6) N isotope values become more negative during this period although they

remained high (from +49permil to +37permil) whereas the δ13C trend towards more

50

positive values reflects changes in the N source from watershed to in-lake dynamics

(e g increased endogenic productivity)

The second phase started after 1940 and is clearly marked by an abrupt

change in the general trend of δ15N that oscillates around +41permil (SD = 04permil) during

the first phase to +24permil (SD = 14permil) during the second These δ15N trends reflect

the lowest watershed nutrient and sediment inputs (based on the AlTi record)

decreased precipitation (mean = 318 mm year) and a slight increase in lake

productivity (increased BrTI) Depositional dynamics in the lake likely crossed a

threshold as human activity intensified throughout the watershed and lake levels

decreased

During the Great Acceleration δ15N values shifted towards higher values to

ca 3permil with an increase in δ13C values that are not reflected either in lake

productivity or lake level As the sediment input from the watershed increased and

precipitation remained as low as the previous decade δ15N values during this period

are likely related to watershed clearance which would have increased both nutrient

and sediment input into the lake

The δ13C trend to more positive values reaching the peaks in the 1960s (ndash

212permil) at the same time as the peaks in temperature (196 ordmC mean annual) with a

downward trend in precipitation A shift in OM origin from macrophytes and

watershed input influences to increased lake productivity could explain this trend

(Fig 4 1b)

In the 1970s the Laguna Matanzasacute watershed was mostly covered by native

forest (36) and grassland areas were intended for livestock grazing (44 Fig 5)

Both soils have δ15NSoil lt 5permil (Fig 4) Farming fields occupied a very small area and

tree plantations were almost nonexistent The decreasing trend in δ15N values seen

51

in our record is interrupted by several large peaks that occurred between ca 1975

and ca 1989 when the native forest and grassland areas fell by 23 and 27

respectively largely due to fires affecting 17 of the forests Agriculture fields

increased by 4 and forest plantations increased by 9 (unit 1a) Concomitantly

sediment ndash and likely N - inputs from the watershed decreased (as indicated by the

trend in AlTi) the precipitation was still relatively low (Fig 6) These changes are

likely related to the increase of vegetation cover especially of tree plantations (which

have more negative δ15N values) The small increase in productivity in the lake could

have been favored by increased temperature (von Gunten et al 2009) After 1989

the increase in agriculture land (17 in 2016) correlates with increasing δ15N δ13C

and TOC trends in spite of declining rainfall The increase of forest plantations was

mostly in response to the implementation of the Law Decree of Forestry

Development (DL 701 of 1974) that subsidized forest plantation After 1989 the

increase in agricultural land (17 in 2016) is synchronous with increasing δ15N

δ13C TOC and MnFe trends despite the decline in rainfall and overall lower lake

levels as more water is used for irrigation

The third phase started c 1990 CE (unit 1a) when OM accumulation rates

increase and δ13C δ15N decreased reaching their lowest values in the sequence

around 2000 CE Afterward during the 21st century δ13C and δ15N values again

began to increase The onset of unit 1 is marked by increased lake productivity and

decreased sediment input (AlTi lt 02) synchronous with intensive farming replacing

forestry and extensive agriculture (Fig 5 6)

A change in the general trend of δ15N values which decreased until 1990

(unit 1a) as the native forest and grassland area fell to 23 and 27 respectively

is most likely due to deforestation and fires Agriculture surface increased to 4 and

52

forest plantations increased by 9 (Fig 5) Concomitantly sediment ndash and likely N

ndash inputs from the watershed decreased probably related to the low precipitation (Fig

1b) and the increase of vegetation cover in the watershed in particularly by tree

plantations (with more negative δ15N Fig 4)

At present agriculture and tree plantations occupy around 34 of the

watershed surface whereas native forests and grassland cover 21 and 25

respectively Lake productivity as indicated by BrTi (Fig6) is higher and generates

OM with lower δ15N and higher δ13C values (about +2permil and ndash20permil ca 2000 CE

respectively) due to in-lake processes (ie biological N fixation and nutrient

recycling) and driven by changes in the arboreal cover which diminishes nutrient

flux into the lake (Fig6)

53

Figure 6 Anthropogenic and climatic forcing and lake dynamics response

(productivity sediment input N and C cycles) at Matanzas Lake over the last two

54

centuries Mean annual precipitation reconstructed and temperatures (von Gunten

et al 2009) Vertical gray bars indicate mega-droughts

5 CONCLUSIONS

Human activities have been the main factor controlling the N and C cycle in

the Laguna Matanzas during the last two centuries The N isotope signature in the

lake sediments reflects changes in the watershed fluxes to the lake but also in-lake

processes such as productivity and post-depositional changes Denitrification could

have been a dominant process during periods of increased anoxic conditions which

were more frequent prior to Great Acceleration (1950 CE) Higher δ15N and lower

δ13C values are associated with increased nutrient input from the watershed due to

increased livestock grazing and agriculture pressure (phase 1 Fig 7a) whereas

lower isotope values occurred during periods of increased forest plantations (phase

3 Fig 7c) During periods of increased lake productivity - such as in the last few

decades - δ15N values increased significantly

The most important change in C and N dynamics in the lake occurred after the

1950s (Phase 2 and 3) as tree plantations dominated the watershed Recent

changes in N dynamics can be explained by the higher nutrient contribution

associated with intensive agriculture (i e fertilizers) since the 1990s Although the

replacement of livestock activities with forestry and farming seems to have reduced

nutrient and soil export from the watershed to the lake the inefficient use of fertilizer

(by agriculture) can be the ultimate responsible for lake productivity increase during

the last decades

55

Figure 7 Schematic diagrams illustrating the main factors controlling the

isotope N signal in sediment OM of Laguna Matanzas N input from watershed

depends on human activities and land cover type Agriculture practices and cattle

(grassland development) contribute more N to the lake than native forest and

plantations Periods of higher productivity tend to deplete the dissolved inorganic N

in 14N resulting in higher δ15N (OM) The denitrification processes are more effective

in anoxic conditions associated with higher lake levels

6 METHODS

Short sediment cores were recovered from Laguna Matanzas using an Uwitec

gravity piston corer in 2011 and 2013 (Fig 1a) Sediment cores (MAT11-6A 129 cm

MAT13-2A 149 cm MAT13-3A 33 cm MAT13-4A 99 cm) were split

photographed sub-sampled and stored at the Pyrenean Institute of Ecology (IPE-

CSIC Spain) Core MAT11-6A was obtained from the central sector of the lake and

56

was selected for detailed multiproxy analyses (including elemental geochemistry C

and N isotope analyses XRF and 14C dating)

The isotope analyses (δ13C and δ15N) were performed at the Laboratory of

Biogeochemistry and Applied Stable Isotopes (LABASI-PUC Chile) using a Delta

V Advantage IRMS coupled to a Thermo Flash 2000 Elemental Analyzer via a

Conflo IV interface Isotope results are expressed in standard delta notation (δ) in

per mil (permil) relative to the standards Pee Dee Belemnite (Vienna Pee Dee

Belemnite) for C and to atmospheric N2 for N (Leng et al 2006) Sediment samples

for δ13Corg were pre-treated with 50 ml of HCl and 50 ml of deionized water and

dried at 60ordmC for 4 hr to remove carbonates (Harris et al 2011)

Total Carbon (TC) Total Organic Carbon (TOC) Total Inorganic Carbon (TIC)

and Total Sulphur (TS) were measured every cm with a LECO SC 144 DR at IPE-

CSIC XRF measurements were carried out every 4 mm in MAT11-1A-1G core using

an AVAATECH X-ray Fluorescence II core scanner at the University of Barcelona

(Spain) Results are expressed as element intensities in counts per second (cps)

Tube voltage was operated at 30 kV and 10 kV to obtain the abundances of 15

elements (Al Si S Cl K Ca Ti V Mn Fe Br Rb Sr Y Zr) with an average at

least of 1600 cps (less for Br=1000)

Biogenic silica content mineralogy and grain size were measured every 4

cm Biogenic silica was measured following Mortlock and Froelich (1989) and

Bernaacuterdez et al (2005) using an Auto Analyzer Technicon AAII for dissolved silicate

analysis Mineralogy was analyzed with a Siemens D-500 X-ray diffractometer (Cu

kα 40 kV 30 mA graphite monochromator) at the ICTJA-CSIC (Spain) Grain size

analyses were performed in a Beckmann Coulter LS 13 320 Particle Size Analyzer

57

at the IPE-CSIC The samples were classified according to textural classes as

follows clay (lt2 μm) silt (20-2 microm) and sand (gt2 microm) fractions

The age-depth model for the Laguna Matanzas sedimentary sequence was

constructed using 210Pb and 137Cs dating techniques (MAT13-4A) as well as two 14C

AMS dates on bulk sediment samples (MAT11-6A fig 2) We dated the dissolved

inorganic carbon (DIC) in the water column and no significant reservoir effect is

present in the modern-day water column (10454 + 035 pcmc Table 2) An age-

depth model was obtained with the Bacon R package to estimate the deposition

rates and associated age uncertainties along the core (Blaauw and Christen 2011)

To estimate LUCC of Laguna Matanzasacutes watershed we use satellite images

Landsat MSS for 1975 Landsat TM for 1989 and Landsat OLI for 2016 all taken in

summer or autumn (Table 1) We performed supervised classification of land uses

(maximum likelihood algorithm) for each year (1975 1989 and 2016) and the results

were mapped using software ArcGIS 102 in 2017

Satellite Images Acquisition Date

Resolution

Landsat MSS 19750322 60 m

Landsat TM 19890217 30 m

Landsat OLI 20160404 30 m

Table 1 Landsat imagery

Surface water samples were filtered for obtained particulate organic matter In

addition soil samples from the main land usecover present in the Laguna Matanzas

watershed were collected Elemental C N and their corresponding isotopes from

POM and soil were obtained at the LABASI and used here as end members

Daily precipitation at Santo Domingo (33ordm39`S 71ordm3 6`W)- the nearest weather

station to Laguna Matanzasndash was compiled using the redPrec R package (Fig1 d

Serrano-Notivoli et al 2017 Sarricolea et al 2019) To extend our precipitation

58

reconstruction back to 1824 we correlated this dataset with that available for

Santiago The Santiago data was compiled from data published in the Anales of

Universidad of Chile (1850) for the years 1824 to 1849 Almeyda (1940) for the years

1849 to 1864 and the Quinta Normal series from 1866 to the present (Direccioacuten

Meteoroloacutegica de Chile) We generated a linear regression model between the

presentday Santo Domingo station and the compiled Santiago data with a Pearson

coefficient of 087 and p-valuelt 001

Acknowledgments This research was funded by grants CONICYT AFB170008

to the Institute of Ecology and Biodiversity (IEB) and FONDECYT 1150763 (to CL)

Doctoral grant Becas Chile 21150224 MEDLANT (Spanish Ministry of Economy

and Competitiveness grant CGL2016-76215-R) Additional funding was provided

by the Laboratorio Internacional de Cambio Global (LINCGlobal PUC-CSIC) We

thank R Lopez E Royo and M Gallegos for help with sample analyses We thank

the Laboratory of Biogeochemistry and Applied Stable Isotopes (LABASI) of the

Department of Ecology (PUC) for sample analyses

References

Albert F 1900 Las dunas o sean arenas volantes voladeros arenas muertas invasion de las arenas playas I meacutedanos del centro de Chile comprendiendo el litoral desde el liacutemite norte de la provincia de Aconcagua hasta el liacutemite sur de la de Arauco Memorias cientiacuteficas I Lit

Anderson NJ W D Fritz SC 2009 Holocene carbon burial by lakes in SW

Greenland Glob Chang Biol httpsdoiorg101111j1365-2486200901942x

Armesto J Villagraacuten C Donoso C 1994 La historia del bosque templado

chileno Ambient y Desarro 66 66ndash72 httpsdoiorg101007BF00385244

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea

AM Marquet PA 2010 From the Holocene to the Anthropocene A

59

historical framework for land cover change in southwestern South America in the past 15000 years Land use policy 27 148ndash160 httpsdoiorg101016jlandusepol200907006

Arnell NW Gosling SN 2013 The impacts of climate change on river flow

regimes at the global scale J Hydrol 486 351ndash364 httpsdoiorg101016JJHYDROL201302010

Bernaacuterdez P Prego R Franceacutes G Gonzaacutelez-Aacutelvarez R 2005 Opal content in

the Riacutea de Vigo and Galician continental shelf Biogenic silica in the muddy fraction as an accurate paleoproductivity proxy Cont Shelf Res httpsdoiorg101016jcsr200412009

Blaauw M Christen JA 2011 Flexible paleoclimate age-depth models using an

autoregressive gamma process Bayesian Anal 6 457ndash474 httpsdoiorg10121411-BA618

Brush GS 2009 Historical land use nitrogen and coastal eutrophication A

paleoecological perspective Estuaries and Coasts 32 18ndash28 httpsdoiorg101007s12237-008-9106-z

Camarero L Catalan J 2012 Atmospheric phosphorus deposition may cause

lakes to revert from phosphorus limitation back to nitrogen limitation Nat Commun httpsdoiorg101038ncomms2125

Carrevedo ML Frugone M Latorre C Maldonado A Bernaacuterdez P Prego

R Caacuterdenas D Valero-Garceacutes B 2015 A 700-year record of climate and environmental change from a high Andean lake Laguna del Maule central Chile (36degS) Holocene 25 956ndash972 httpsdoiorg1011770959683615574584

Catalan J Pla-Rabeacutes S Wolfe AP Smol JP Ruumlhland KM Anderson NJ

Kopaacuteček J Stuchliacutek E Schmidt R Koinig KA Camarero L Flower RJ Heiri O Kamenik C Korhola A Leavitt PR Psenner R Renberg I 2013 Global change revealed by palaeolimnological records from remote lakes A review J Paleolimnol httpsdoiorg101007s10933-013-9681-2

Chen Y Y Huang W Wang W H Juang J Y Hong J S Kato T amp

Luyssaert S (2019) Reconstructing Taiwanrsquos land cover changes between 1904 and 2015 from historical maps and satellite images Scientific Reports 9(1) 3643 httpsdoiorg101038s41598-019-40063-1

Contreras S Werne J P Araneda A Urrutia R amp Conejero C A (2018)

Organic matter geochemical signatures (TOC TN CN ratio δ 13 C and δ 15 N) of surface sediment from lakes distributed along a climatological gradient on the western side of the southern Andes Science of The Total Environment 630 878-888 httpsdoiorg101016jscitotenv201802225

Contreras-Loacutepez M (Playa AUHVC (Universidad de VRFS (Pontificia UC

60

de V 2014 ELEMENTOS DE LA HISTORIA NATURAL DEL An Mus Hist Natulas Vaplaraiso 27 51ndash67

Cuven S Francus P Lamoureux SF 2010 Estimation of grain size variability

with micro X-ray fluorescence in laminated lacustrine sediments Cape Bounty Canadian High Arctic J Paleolimnol 44 803ndash817 httpsdoiorg101007s10933-010-9453-1

Diebel M Vander Zanden MJ 201209 Nitrogen stable isotopes in streams

stable isotopes Nitrogen effects of agricultural sources and transformations Ecol Appl 19 1127ndash1134 httpsdoiorg10189008-03271

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in

freshwater wetlands record long-term changes in watershed nitrogen source and land use SO - Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash2916

Elser J 2011 A world awash with nitrogen Science 334 1504ndash1506 Espizua LE Pitte P 2009 The Little Ice Age glacier advance in the Central

Andes (35degS) Argentina Palaeogeogr Palaeoclimatol Palaeoecol 281 345ndash350 httpsdoiorg101016JPALAEO200810032

Figueroa JA Castro S A Marquet P A Jaksic FM 2004 Exotic plant

invasions to the mediterranean region of Chile  causes history and impacts Invasioacuten de plantas exoacuteticas en la regioacuten mediterraacutenea de Chile  causas historia e impactos Rev Chil Hist Nat 465ndash483 httpsdoiorg104067S0716-078X2004000300006

Fowler D Coyle M Skiba U Sutton MA Cape JN Reis S Sheppard

LJ Jenkins A Grizzetti B Galloway N Vitousek P Leach A Bouwman AF Butterbach-bahl K Dentener F Stevenson D Amann M Voss M 2013 The global nitrogen cycle in the twenty- first century Philisophical Trans R Soc B httpsdoiorghttpdxdoiorg101098rstb20130164

Frank D Reichstein M Bahn M Thonicke K Frank D Mahecha MD

Smith P van der Velde M Vicca S Babst F Beer C Buchmann N Canadell JG Ciais P Cramer W Ibrom A Miglietta F Poulter B Rammig A Seneviratne SI Walz A Wattenbach M Zavala MA Zscheischler J 2015 Effects of climate extremes on the terrestrial carbon cycle Concepts processes and potential future impacts Glob Chang Biol httpsdoiorg101111gcb12916

Fritz SC Anderson NJ 2013 The relative influences of climate and catchment

processes on Holocene lake development in glaciated regions J Paleolimnol httpsdoiorg101007s10933-013-9684-z

Frugone-Aacutelvarez M Latorre C Giralt S Polanco-Martiacutenez J Bernaacuterdez P

61

Oliva-Urcia B Maldonado A Carrevedo ML Moreno A Delgado Huertas A Prego R Barreiro-Lostres F Valero-Garceacutes B 2017 A 7000-year high-resolution lake sediment record from coastal central Chile (Lago Vichuqueacuten 34degS) implications for past sea level and environmental variability J Quat Sci 32 830ndash844 httpsdoiorg101002jqs2936

Galloway JN Townsend AR Erisman JW Bekunda M Cai Z Freney JR

Martinelli LA Seitzinger SP Sutton MA 2008 Transformation of the Nitrogen Cycle  Science (80- ) 320 889ndash892 httpsdoiorg101126science1136674

Gaumllman V Rydberg J Bigler C 2009 Decadal diagenetic effects on δ 13 C and

δ 15 N studied in varved lake sediment Limnol Oceanogr 54 917ndash924 httpsdoiorg104319lo20095430917

Garciacutea-Ruiz JM 2010 The effects of land uses on soil erosion in Spain A

review Catena httpsdoiorg101016jcatena201001001

Garciacutea-Ruiz JM Loacutepez-Moreno JI Lasanta T Vicente-Serrano SM

Gonzaacutelez-Sampeacuteriz P Valero-Garceacutes BL Sanjuaacuten Y Begueriacutea S Nadal-Romero E Lana-Renault N Goacutemez-Villar A 2015 Los efectos geoecoloacutegicos del cambio global en el Pirineo Central espantildeol una revisioacuten a distintas escalas espaciales y temporales Pirineos httpsdoiorg103989Pirineos2015170005

Garciacutea-Ruiz JM Nadal-Romero E Lana-Renault N Begueriacutea S 2013

Erosion in Mediterranean landscapes Changes and future challenges Geomorphology 198 20ndash36 httpsdoiorg101016jgeomorph201305023

Garreaud RD Vuille M Compagnucci R Marengo J 2009 Present-day

South American climate Palaeogeogr Palaeoclimatol Palaeoecol httpsdoiorg101016jpalaeo200710032

Gayo EM Latorre C Jordan TE Nester PL Estay SA Ojeda KF

Santoro CM 2012 Late Quaternary hydrological and ecological changes in the hyperarid core of the northern Atacama Desert (~21degS) Earth-Science Rev httpsdoiorg101016jearscirev201204003

Ge Y Zhang K amp Yang X (2019) A 110-year pollen record of land use and land

cover changes in an anthropogenic watershed landscape eastern China Understanding past human-environment interactions Science of The Total Environment 650 2906-2918 httpsdoiorg101016jscitotenv201810058

Goyette J Bennett EM Howarth RW Maranger R 2016 Global

Biogeochemical Cycles 1000ndash1014 httpsdoiorg1010022016GB005384Received

Granger J Sigman DM Lehmann MF Tortell PD 2008 Nitrogen and

oxygen isotope fractionation during dissimilatory nitrate reduction by

62

denitrifying bacteria 53 2533ndash2545 httpsdoiorg10230740058342

Gruber N Galloway JN 2008 An Earth-system perspective of the global

nitrogen cycle Nature 451 293ndash296 httpsdoiorg101038nature06592

Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater eutrophic lake Limnol Oceanogr 51 2837ndash2848 httpsdoiorg104319lo20065162837

Gurnell AM Petts GE Hannah DM Smith BPG Edwards PJ Kollmann

J Ward J V Tockner K 2001 Effects of historical land use on sediment yield from a lacustrine watershed in central Chile Earth Surf Process Landforms 26 63ndash76 httpsdoiorg1010021096-9837(200101)261lt63AID-ESP157gt30CO2-J

Heathcote A J et al Large increases in carbon burial in northern lakes during the

Anthropocene Nat Commun 610016 doi 101038ncomms10016 (2015) Hollander DJ Smith MA 2001 Microbially mediated carbon cycling as a

control on the δ13C of sedimentary carbon in eutrophic Lake Mendota (USA) New models for interpreting isotopic excursions in the sedimentary record Geochim Cosmochim Acta httpsdoiorg101016S0016-7037(00)00506-8

Holtgrieve GW Schindler DE Hobbs WO Leavitt PR Ward EJ Bunting

L Chen G Finney BP Gregory-Eaves I Holmgren S Lisac MJ Lisi PJ Nydick K Rogers LA Saros JE Selbie DT Shapley MD Walsh PB Wolfe AP 2011 A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere Science (80) 334 1545ndash1548 httpsdoiorg101126science1212267

Hooper DU Adair EC Cardinale BJ Byrnes JEK Hungate BA Matulich

KL Gonzalez A Duffy JE Gamfeldt L Connor MI 2012 A global synthesis reveals biodiversity loss as a major driver of ecosystem change Nature httpsdoiorg101038nature11118

Horvatinčić N Sironić A Barešić J Sondi I Krajcar Bronić I Borković D

2016 Mineralogical organic and isotopic composition as palaeoenvironmental records in the lake sediments of two lakes the Plitvice Lakes Croatia Quat Int httpsdoiorg101016jquaint201701022

Howarth RW 2004 Human acceleration of the nitrogen cycle Drivers

consequences and steps toward solutions Water Sci Technol httpsdoiorg1010382Fscientificamerican0490-56

Jenny B Valero-Garceacutes BL Urrutia R Kelts K Veit H Appleby PG Geyh

M 2002 Moisture changes and fluctuations of the Westerlies in Mediterranean Central Chile during the last 2000 years The Laguna Aculeo record (33deg50primeS) Quat Int 87 3ndash18 httpsdoiorg101016S1040-

63

6182(01)00058-1

Jenny B Wilhelm D Valero-Garceacutes BL 2003 The Southern Westerlies in

Central Chile Holocene precipitation estimates based on a water balance model for Laguna Aculeo (33deg50primeS) Clim Dyn 20 269ndash280 httpsdoiorg101007s00382-002-0267-3

Leng M J Lamb A L Heaton T H Marshall J D Wolfe B B Jones M D

amp Arrowsmith C 2006 Isotopes in lake sediments In Isotopes in palaeoenvironmental research (pp 147-184) Springer Dordrecht

Le Roux JP Nielsen SN Kemnitz H Henriquez Aacute 2008 A Pliocene mega-

tsunami deposit and associated features in the Ranquil Formation southern Chile Sediment Geol 203 164ndash180 httpsdoiorg101016jsedgeo200712002

Lehmann M Bernasconi S Barbieri a McKenzie J 2002 Preservation of

organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis Geochim Cosmochim Acta 66 3573ndash3584 httpsdoiorg101016S0016-7037(02)00968-7

Lenihan JM Drapek R Bachelet D Neilson RP 2003 Climate change

effects on vegetation distribution carbon and fire in California Ecol Appl httpsdoiorg101890025295

McLauchlan K K Gerhart L M Battles J J Craine J M Elmore A J

Higuera P E amp Perakis S S (2017) Centennial-scale reductions in nitrogen availability in temperate forests of the United States Scientific reports 7(1) 7856 httpsdoi101038s41598-017-08170-z

Martel-Cea A Maldonado A Grosjean M Alvial I de Jong R Fritz SC von

Gunten L 2016 Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical Central Chile (32ordmS 3050 masl) Palaeogeogr Palaeoclimatol Palaeoecol 461 44ndash54 httpsdoiorg101016jpalaeo201608003

Martiacuten-Foreacutes I Casado MA Castro I Ovalle C Pozo A Del Acosta-Gallo

B Saacutenchez-Jardoacuten L Miguel JM De 2012 Flora of the mediterranean basin in the chilean ESPINALES Evidence of colonisation Pastos 42 137ndash160

Marzecovaacute A Mikomaumlgi a Koff T Martma T 2011 Sedimentary geochemical

response to human impact on Lake Notildemmejaumlrv Estonia Est J Ecol 60 54 httpsdoiorg103176eco2011105

Matesanz S Valladares F 2014 Ecological and evolutionary responses of

Mediterranean plants to global change Environ Exp Bot httpsdoiorg101016jenvexpbot201309004

64

McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE 2007

Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470 httpsdoiorg101073pnas0701779104

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash1643 httpsdoiorg1011770959683613496289

Menzel P Gaye B Wiesner MG Prasad S Stebich M Das BK Anoop A

Riedel N Basavaiah N 2013 Influence of bottom water anoxia on nitrogen isotopic ratios and amino acid contributions of recent sediments from small eutrophic Lonar Lake central India Limnol Oceanogr 58 1061ndash1074 httpsdoiorg104319lo20135831061

Meyers PA Teranes JL 2001 Sediment organic matter in Tracking

Environmental Change Using Lake Sediments Volume 2 Physical and Geochemical Methods httpsdoiorg1018971551-5028(1999)018lt0231SOMCAAgt23CO2

Michelutti N Wolfe AP Cooke CA Hobbs WO Vuille M Smol JP 2015

Climate change forces new ecological states in tropical Andean lakes PLoS One httpsdoiorg101371journalpone0115338

Muntildeoz-Rojas M De la Rosa D Zavala LM Jordaacuten A Anaya-Romero M

2011 Changes in land cover and vegetation carbon stocks in Andalusia Southern Spain (1956-2007) Sci Total Environ httpsdoiorg101016jscitotenv201104009

Naeher S Gilli A North RP Hamann Y Schubert CJ 2013 Tracing bottom

water oxygenation with sedimentary MnFe ratios in Lake Zurich Switzerland Chem Geol 352 125ndash133 httpsdoiorg101016jchemgeo201306006

Poraj-Goacuterska A I Żarczyński M J Ahrens A Enters D Weisbrodt D amp

Tylmann W (2017) Impact of historical land use changes on lacustrine sedimentation recorded in varved sediments of Lake Jaczno northeastern Poland Catena 153 182-193 httpdxdoiorg101016jcatena201702007

Pongratz J Reick CH Raddatz T Claussen M 2010 Biogeophysical versus

biogeochemical climate response to historical anthropogenic land cover change Geophys Res Lett 37 1ndash5 httpsdoiorg1010292010GL043010

Prudhomme C Giuntoli I Robinson EL Clark DB Arnell NW Dankers R

Fekete BM Franssen W Gerten D Gosling SN Hagemann S Hannah DM Kim H Masaki Y Satoh Y Stacke T Wada Y Wisser D 2014 Hydrological droughts in the 21st century hotspots and uncertainties from a global multimodel ensemble experiment Proc Natl Acad Sci httpsdoiorg101073pnas1222473110

65

Ruumlhland KM Paterson AM Smol JP 2015 Lake diatom responses to

warming reviewing the evidence J Paleolimnol httpsdoiorg101007s10933-

015-9837-3

Sarricolea P Meseguer-Ruiz Oacute Serrano-Notivoli R Soto M V amp Martin-Vide

J (2019) Trends of daily precipitation concentration in Central-Southern Chile Atmospheric research 215 85-98 httpsdoiorg101016jatmosres201809005

Sernageomin 2003 Mapa geologico de chile version digital Publ Geol Digit Serrano-Notivoli R de Luis M Begueriumlia S 2017 An R package for daily

precipitation climate series reconstruction Environ Model Softw httpsdoiorg101016jenvsoft201611005

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98 httpsdoiorg1011772053019614564785

Stine S 1994 Extreme and persistent drought in California and Patagonia during

mediaeval time Nature 369 546ndash549 httpsdoiorg101038369546a0

Stocker TF Dahe Q Plattner G-K Alexander L V Allen SK Bindoff NL

Breacuteon F-M Church JA Cubash U Emori S Forster P Friedlingstein P Talley LD Vaughan DG Xie S-P 2013 Technical Summary in Climate Change 2013 The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change httpsdoiorg101017 CBO9781107415324005

Syvitski JPM Voumlroumlsmarty CJ Kettner AJ Green P 2005 Impact of humans

on the flux of terrestrial sediment to the global coastal ocean Science 308(5720) 376-380 httpsdoiorg101126science1109454

Thomas RQ Zaehle S Templer PH Goodale CL 2013 Global patterns of

nitrogen limitation Confronting two global biogeochemical models with observations Glob Chang Biol httpsdoiorg101111gcb12281

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status J Paleolimnol 47 693ndash706 httpsdoiorg101007s10933-012-9593-6

Urbina Carrasco MX Gorigoitiacutea Abbott N Cisternas Vega M 2016 Aportes a

la historia siacutesmica de Chile el caso del gran terremoto de 1730 Anuario de Estudios Americanos httpsdoiorg103989aeamer2016211

Vargas G Ortlieb L Chapron E Valdes J Marquardt C 2005 Paleoseismic

inferences from a high-resolution marine sedimentary record in northern Chile

66

(23degS) Tectonophysics httpsdoiorg101016jtecto200412031 399(1-4) 381-398httpsdoiorg101016jtecto200412031

Valero-Garceacutes BL Latorre C Morelliacuten M Corella P Maldonado A Frugone M Moreno A 2010 Recent Climate variability and human impact from lacustrine cores in central Chile 2nd International LOTRED-South America Symposium Reconstructing Climate Variations in South America and the Antarctic Peninsula over the last 2000 years Valdivia p 76 (httpwwwpagesunibechproductsmeeting-products1024-2nd-international-lotred-south-america-symposium-reconstructing-climate-variations-in-south-america-and-the-antarctic-peninsula-over-the-last-2000-yearshttpwwwpagesunibechproductsmeeting-products1024-2nd-international-lotred-south-america-symposium-reconstructing-climate-variations-in-south-america-and-the-antarctic-peninsula-over-the-last-2000-years

Vicente-Serrano SM Gouveia C Camarero JJ Begueria S Trigo R

Lopez-Moreno JI Azorin-Molina C Pasho E Lorenzo-Lacruz J Revuelto J Moran-Tejeda E Sanchez-Lorenzo A 2013 Response of vegetation to drought time-scales across global land biomes Proc Natl Acad Sci httpsdoiorg101073pnas1207068110

Villa Martiacutenez R P 2002 Historia del clima y la vegetacioacuten de Chile Central

durante el Holoceno Una reconstruccioacuten basada en el anaacutelisis de polen sedimentos microalgas y carboacuten PhD

Villa-Martiacutenez R Villagraacuten C Jenny B 2003 Pollen evidence for late -

Holocene climatic variability at laguna de Aculeo Central Chile (lat 34o S) The Holocene 3 361ndash367

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Human alteration of the global nitrogen cycle sources and consequences Ecological applications 7(3) 737-750 httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M Rein B Urrutia R amp Appleby P (2009) A

quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo central Chile back to AD 850 The Holocene 19(6) 873-881 httpsdoiorg1011770959683609336573

von Gunten L Grosjean M Eggenberger U Grob P Urrutia R Morales A

2009 Pollution and eutrophication history AD 1800-2005 as recorded in sediments from five lakes in Central Chile Glob Planet Change 68 198ndash208 httpsdoiorg101016jgloplacha200904004

Widory D Kloppmann W Chery L Bonnin J Rochdi H Guinamant JL

2004 Nitrate in groundwater An isotopic multi-tracer approach J Contam Hydrol 72 165ndash188 httpsdoiorg101016jjconhyd200310010

67

Woodward CA Potito AP Beilman DW 2012 Carbon and nitrogen stable isotope ratios in surface sediments from lakes of western Ireland Implications for inferring past lake productivity and nitrogen loading J Paleolimnol 47 167ndash184 httpsdoiorg101007s10933-011-9568-z

68

Supplementary material

Facie Name Description Depositional Environment

F1 Organic-rich

mud

Massive to banded black

organic - rich (TOC up to 14 )

mud with aragonite in dm - thick

layers Slightly banded intervals

contain less OM (TOClt4) and

aragonite than massive

intervals High MnFe (oxic

bottom conditions) High CaTi

BrTi and BioSi (up to 5)

Distal low energy environment

high productivity well oxygenated

and brackish waters and relative

low lake level

F2 Massive to

banded silty clay

to fine silt

cm-thick layers mostly

composed by silicates

(plagioclase quartz cristobalite

up to 65 TOC mean=23)

Some layers have relatively high

pyrite content (up to 25) No

carbonates CaTi BrTi and

BioSi (mean=48) are lower

than F1 higher ZrTi (coarser

grain size)

Deposition during periods of

higher sediment input from the

watershed

69

F3 Banded to

laminated light

brown silty clay

cm-thick layers mostly

composed of clay minerals

quartz and plagioclase (up to

42) low organic matter

(TOC mean=13) low pyrite

and BioSi content

(mean=46) and some

aragonite

Flooding events reworking

coastal deposits

F4 Laminated

coarse silts

Thin massive layers (lt2mm)

dominated by silicates Low

TOC (mean=214 ) BrTi

(mean=002) MnFe (lt02)

TIC (lt034) BioSi

(mean=46) and TS values

(lt064) and high ZrTi

Rapid flooding events

transporting material mostly

from within the watershed

F5 Breccia with

coarse silt

matrix

A 17 cm thick (80-97 cm

depth) layer composed by

irregular mm to cm-long ldquosoft-

clastsrdquo of silty sediment

fragments in a coarse silt

matrix Low CaTi BrTi and

MnFe ratios and BioSi

Rapid high energy flood

events

70

(mean=43) and high ZrTi

(gt018)

Table Sedimentological and compositional characteristics of Laguna Matanzas

facies

71

CAPIacuteTULO 2 STABLE ISOTOPES TRACK LAND USE AND COVER

CHANGES IN A MEDITERRANEAN LAKE IN CENTRAL CHILE OVER THE

LAST 600 YEARS

72

Stable isotopes track land use and cover changes in a mediterranean lake in

central Chile over the last 600 years

Magdalena Fuentealbaabc Claudio Latorreabc Matiacuteas Frugone-Aacutelvarezabc Pablo

Sarricolead Leonardo Villaciacutese M Laura Carrevedob Blas Valero-Garceacutescg

a Departamento de Ecologiacutea Pontificia Universidad Catoacutelica de Chile Alameda 340 Santiago Chile

b Institute of Ecology and Biodiversity (IEB) Las Palmeras 3425 Nuntildeoa Santiago Chile

c Laboratorio Internacional de Cambio Global LINCGlobal PUC-CSIC Spain

d Departamento de Geografiacutea Universidad de Chile Marcoleta 250 Santiago Chile

e Departamento de Ecologiacutea Universidad de ChileLas Palmeras 3425 Nuntildeoa Santiago Chile

f Instituto Pirenaico de Ecologiacutea (IPE-CSIC) Avenida Montantildeana 1005 Zaragoza 50059 Spain

Corresponding authors E-mail addresses clatorrebiopuccl magdalenafuentealbagmailcom

Key words Anthropocene lake sediment δsup1⁵N δsup1sup3C Great Acceleration organic

geochemistry watershedndashlake system Stable Isotope Analyses land usecover

change Nitrogen cycle mediterranean ecosystems central Chile

73

Abstract

Nutrient fluxes in many aquatic ecosystems are currently being overridden by

anthropic controls especially since the industrial revolution (mid-1800s) and the

Great Acceleration (mid-1900s) Land use and cover changes (LUCC) alter the

availability and fluxes of nutrients such as nitrogen that are transferred via runoff

and groundwater into lakes By altering lake productivity and trophic status these

changes are often preserved in the sedimentary record Here we use

geolimnological proxies and stable isotope analyses (δsup1⁵N δsup13C) on lake sediments

to reconstruct the lake-watershed nutrient transfer in a central Chilean lake (Lago

Vichuqueacuten) over the past 600 years We compare our multiproxy record from recent

lake sediments to the soilvegetation relationship across the watershed as well as

land usecover changes from 1975 to 2014 derived from satellite images Our results

show that lake sediment δsup1⁵N values increased with meadow cover but decreased

with tree plantations suggesting increased nitrogen retention when trees dominate

the watershed Our δsup1⁵N record from central Chile can thus be interpreted as a proxy

for nutrient availability over the last 600 years mainly derived from land use changes

coupled with climate drivers Although variable sources of organic matter and in situ

fractionation often hinder straightforward environmental interpretations of stable N

isotope signatures our study shows that lake sediment δsup1⁵N can be a useful tool for

assessing the contribution of past human activities in nutrient and nitrogen cycling

1 Introduction

Nitrogen (N) is a limiting nutrient in terrestrial and aquatic ecosystems (Vitousek

et al 1997) Changes in its availability can drive eutrophication and increase

pollution in these ecosystems (McLauchlan et al 2013) Although recent human

74

impacts on the global N cycle have been significant the consequences of increased

anthropogenic N on these ecosystems are unclear (Gerhart and Mclauchlan 2014

Battye et al 2017) Isotopic signatures are key to understand N dynamics in lakes

nevertheless in situ andor diagenetic fractionation along with multiple sources of

organic matter (OM) often hinder straightforward environmental interpretations from

isotopes Monitoring δ15N and δ13C values as components of the N cycle

specifically those related to the link between terrestrial and aquatic ecosystems can

help differentiate between effects from processes versus sources in stable isotope

values (eg from Particulate Organic Matter -POM- soil and vegetation) and

improve how we interpret variations in δ15N (and δ13C) values at longer temporal

scales

The main processes controlling stable N isotopes in bulk lake OM are source

lake productivity diagenesis and denitrification (Talbot 2001 Leng et al 2006

Fariacuteas et al 2009 Torres et al 2012 Brahney et al 2014) N sources depend on

contributions from the watershed (ie soil and biomass) the transfer of atmospheric

N to the lake (ie atmospheric N2 fixation) and nutrient recycling (Leng et al 2006)

Atmospheric N2 (isotopically defined as δ15N =0) is fixed by cyanobacteria with

minimal fractionation resulting in δ15NOM values that fluctuate from -2 to +2permil (Fogel

and Cifuentes 1993 Talbot 2001 Elliot and Brush 2006) Besides N2 fixation by

cyanobacteria phytoplankton species assimilate dissolved inorganic nitrogen (DIN)

and values typically range from +7 to +10permil (Xu et al 2016 Meyers et al 2003) In

addition seasonal changes in POM occur in the lake water column Gu et al (2006)

sampled the water column of Lake Wauberg (Florida USA) during a hydrologic year

and found a higher development of N fixing species during the summer A major

factor behind this increase are human activities in the watershed which control the

75

inputs of the sediment and nutrients to the lake (Woodward et al 2011) Some

studies have shown higher δ15N values in lake sediments from watersheds that are

highly affected by human activities (Bruland and Mackenzie 2010 Woodward et al

2011) Syntenic fertilizers displayed δ15N values between -4 to +4permil cattle manure

around +8 to +22permil and surface and groundwater OM between 0 to +10permil (Elliott

and Brush 2006 Leng et al 2006) Although relatively low δ15N values from

fertilizers constitute major N input to human-altered watersheds the elevated loss

of 14N via volatilization of ammonia and denitrification leaves the remaining total N

input enriched in 15N (Bruland and Mackenzie 2010)

In addition to the different sources and variations in lake productivity early

diagenesis at the sedimentndashwater interface in the sediment can further alter

sediment OM isotope values (Brahney et al 2014 Galman et al 2009) During

diagenetic loss of N in lacustrine systems kinetic fractionation occurs and the

remaining N is enriched in 15N leading to higher δ15N values (Galman et al 2006

Talbot 2001) Denitrification tends to enrich lake sediments in 15N due to the

assimilation of nitrates by denitrifying bacteria (Granger et al 2008) and is more

prevalent in anoxic environments (Brahney et al 2016 Lehman et al 2002)

Carbon isotopes in lake sediments can also provide useful information about

paleoenvironmental changes OM origin and depositional processes (Meyers et al

2003) Allochthonous organic sources (high CN ratios) produce isotope values

similar to values from catchment vegetation Autochthonous organic matter (low CN

ratio) is influenced by fractionation both in the lake and the watershed leading up to

carbon assimilation by lacustrine biota (Woodward et al 2011) Changes in

productivity greatly affect δ13COM values (Torres et al 2012) as during C uptake

plankton preferentially assimilate 12C leaving the dissolved inorganic carbon (DIC)

76

pool enriched in 13C (Gu et al 2006) with phytoplankton averaging ca 20 permil lower

than the respective δ13CDIC values (Leng et al 2006) Under conditions of low to

moderate primary productivity plankton preferentially uptake the lighter 12C

resulting in low δ13C values displayed by the OM (Torres et al 2012) Conversely

during high primary productivity phytoplankton will uptake 12C until its depletion and

is then forced to assimilate the heavier isotope resulting in an increase in δ13C

values Higher productivity in C-limited lakes due to slow water-atmosphere

exchange of CO2 also results in high δ13C values (Galman et al 2009) In these

cases algae are forced to uptake dissolved bicarbonate with δ13C values between

7 to 10permil higher than those of the atmospheric CO2 dissolved in water (Sun et al

2016 Torres et al 2012 Galman et al 2009)

Stable isotope analyses from lake sediments are thus useful tools to

reconstruct shifts in lake-watershed dynamics caused by changes in limnological

parameters and LUCC Our knowledge of the current processes that can affect

stable isotope signals in a watershed-lake system is limited however as monitoring

studies are scarce Besides in order to use stable isotope signatures to reconstruct

past environmental changes we require a multiproxy approach to understand the

role of the different variables in controlling these values Hence in this study we

carried out a detailed survey of current N dynamics in a coastal central Chilean lake

(Lago Vichuqueacuten) and a multiproxy study of a sediment record spanning the last

600 years The characterization of the recent changes in the watershed since 1970s

is based on satellite images to compare recent changes in the lake and assess how

these are related with climate variability and an ever increasing human footprint

(Lara et al 2012 Gallardo et al 2015 Steffen et al 2015) Our main goal is to

investigate how stable isotope values from lake sediment reflect changes in the lake

77

ndash watershed system during periods of high watershed disruption (eg Spanish

Conquest late XIX century Great Acceleration) and recent climate change (eg

Little Ice Age and current global warming)

2 Study Site

Lago Vichuqueacuten (34ordm49`S 72ordm04W 4 m asl 30 m of depth Fig 1) is a

mesotrophic to eutrophic lake with dominant anoxic bottom conditions that is

stratified year around (Frugone-Aacutelvarez et al 2017) The main inlets are the

Vichuqueacuten and Huintildee rivers and the only outlet is the Llico estuary that drains into

the Pacific Ocean High tides can sporadically shift the flow direction of the Llico

estuary which increases the marine influence in the lake Dune accretion gradually

limited ocean-lake connectivity until the estuary was almost completely closed off

by ca 10 ky BP and the current lake regime formed (Frugone-Aacutelvarez et al 2017)

The area is characterized by a mediterranean climate with cold-wet winters and

hot-dry summers and an annual precipitation of ~650 mm and a mean annual

temperature of 15ordmC During the austral winter months (June - August) precipitation

is modulated by north-west shifts of the South Pacific Anticyclone (SPA) followed by

an increased frequency of storm fronts stemming off the South Westerly Winds

(SWW) A strengthened SPA during austral summers (December - March) which

are typically dry and warm blocks the northward migration of storm tracks stemming

off the SWW (Fig1 Frugone-Aacutelvarez et al 2017)

78

Figure 1 a) The location of the Lago Vichuqueacuten in central Chile b) Map of land

uses and cover in 2016 c) Ombrothermic diagram mediterranean climates are

characterized by cold-wet winters with surplus moisture from June to August and

hot-dry summers d) Lake bathymetry showing location of cores and water sampling

sites used in this study

Although major land cover changes in the area have occurred since 1975 to the

present as the native forests were replaced by tree (Monterey pine and eucalyptus)

plantations the region was settled before the Spanish conquest (Frugone-Alvarez

et al 2018) Historical documents indicate that Vichuqueacuten was occupied by a

Mitimaes colony as part of the Inka empire (Odone 1998) Unlike other Andean

areas during the Inka period the introduction of corn and quinoa in the Vichuqueacuten

watershed do not seem to have intensified land use The Spanish colonial period in

Chile lasted from 1542 CE to the independence in 1810 CE The first historical

document (1550 CE) shows that the areas around Vichuqueacuten were settled by the

Spanish early on as the Vichuqueacuten watershed was given as an ldquoencomiendardquo

system to Juan Cuevas The ldquoencomiendardquo system provided the owners with land

79

and indigenous people to work but also the introduction of wheat wine cattle

grazing and logging of native forests for lumber extraction and increasing land for

agricultural activities (Odone et al 1998 Armesto et al 2010) During the 19th

century (the Republic) the export of wheat to Australia and Canada generated

intensive changes in land cover use The town of Vichuqueacuten became the regional

capital and plans to build a maritime port in the bay of Vichuqueacuten were drawn

However the fall of international markets in 1880 paralyzed these plans During the

20th century the plantation of trees (Pinus radiata and Eucalyptus globulus) in areas

cleared of native forests was subsidized by two national laws DFL nordm265 (1931) and

DFL nordm 701 (1974) both of which provided funds for such plantations During the last

decades the urbanization with summer vacation homes along the shorelines of

Lago Vichuqueacuten has greatly increased Extensive lake eutrophication is currently a

large environmental problem (EULA 2008)

3 Methods

Coring campaigns were organized from 2011 to 2015 (Fig 1d) We recovered

12 short cores and 4 long cores (up to 14 m long) at several sites using a hammer-

modified UWITEC gravity corer Sediment cores (VIC11-2A 170 cm VIC13-2B 170

cm VIC13-2D 1200 cm and VIC15-1A 119 cm) were split photographed sub-

sampled and stored in the Pyrenean Institute of Ecology (IPE-CSIC Spain) Core

VIC13-2B was selected for detailed multiproxy analyses (including elemental

geochemistry C and N isotopes XRF and 14C dating) Stable isotope analyses

(δ13C δ15N) were performed at the Laboratory of Biogeochemistry and Applied

Stable Isotopes (LABASI-PUC Chile) Sediment samples for δ13Corg were pre-

treated with 50 ml of HCl and 50 ml of deionized water and dried at 60ordmC for 4 hr to

remove carbonates (Harris et al 2011) Isotope analyses were conducted using a

80

Delta V Advantage IRMS coupled to a Thermo Flash 2000 Elemental Analyzer via

a Conflo IV interface Isotope results are expressed in standard delta notation (δ)

and expressed in per mil (permil) relative to the Pee Dee Belemnite (Vienna Pee Dee

Belemnite) for C and to atmospheric N2 for N (Leng et al 2006) Total carbon (TC)

Total Organic Carbon (TOC) Total Inorganic Carbon (TIC) and Total Sulfur (TS)

were measured every 2 cm with a LECO SC 144 DR at the IPE-CSIC

An AVAATECH X-Ray Fluorescence II core scanner with a Rh X-ray tube from

the University of Barcelona was used to obtain XRF logs every 4 mm of resolution

Results are expressed as element intensities in counts per second (cps) Tube

voltage was operated at 30 kV and 10 kV to obtain the abundances of 18 elements

(Pb Al Si S Cl K Ca Ti V Mn Fe Co Zn Br Rb Sr Y Zr) with an average of

at least of 1800 cps (less for Pb=437 and Zn=934 cps) Pb was included due to

similar behavior with Co and Fe Element ratios were calculated to describe changes

in redox conditions (MnFe) endogenic productivity (BrTi) carbonate formation

(SrCa and CaTi) and sediment input (ZrTi) (Barreiro-Lostres et al 2014

Carrevedo et al 2015 Frugone-Aacutelvarez et al 2017 Kylander et al 2011 Moreno

et al 2007a)

Several campaigns were carried out to sample the POM from the water column

two per hydrologic year from November 2015 to August 2018 A liter of water was

recovered in three sites through to the lake two are from the shallower areas (with

samples taken at 2 and 5 m depth at each site) and one in the deeper central portion

(at 2 5 and 20 m depth) of the lake (Fig 1d) The samples were filtered using glass

fiber filters (25 m) and then frozen to obtain the stable carbon and nitrogen isotope

signal of lacustrine POM Additionally soil and vegetation samples from the

following communities native species meadow hydrophytic vegetation and

81

Monterrey pine (Pinus radiata) were taken for stable isotope analyses (see in

supplementary material)

The age model for the complete Lago Vichuqueacuten sedimentary sequence is

based on Frugone-Aacutelvarez et al (2017) with the last 1000 years based on

210Pb137Cs dating techniques in VIC15-1A and 14C AMS dates on bulk sediment

samples (Supplementary Table S1) The 14C measurements of lake water DIC show

a moderate reservoir effect of 180 plusmn 25 14C yr) The revised age-depth model used

here includes three more 14C AMS dates performed with the program Bacon to

establish the deposition rates along the core (Blaauw and Christen 2011 Fig 2)

The age-depth model indicates that average resolution between 0 to 87 cm is lt2

cm per year and from 88 to 170 cm it is lt47 cm per year

82

Figure 2 Chronological age-depth model for the Lago Vichuqueacuten sedimentary

sequence spanning the last 1000 yr (see also Frugone-Alvarez et al 2017)

To estimate land use changes in the watershed we use Landsat MSS images

for 1975 and Landsat TM for 1989 and 2014 all taken in either summer or autumn

(Table 1) We performed supervised classification of land uses (maximum likelihood

83

algorithm) for each year (1975 1989 and 2014) and results were mapped using

ArcGIS 102

Table 1 Images using for LUCC reconstruction

Source of LUCC

Acquisition

Date Resolution

Landsat MSS 19750322 60 m

Landsat TM 19890217 30 m

Landsat TM 19991226 30 m

CONAF 2009 30 m

Land cover Chile 2014 30 m

CONAF 2016 30 m

Previous Work on Lago Vichuqueacuten sedimentary sequence

The sediments are organic-poor dark brown to brown laminated silt with some

intercalated thin coarser clastic layers Lacustrine facies have been classified

according to elemental composition (TOC TS TIC and TN) grain size and

sedimentary textures (Frugone-Aacutelvarez et al 2017) Four main types of lacustrine

facies were identified in this short core Facies L1 is a laminated (1cm) black to dark

brown diatom-poor silt with relatively higher TOC percentages (TOC about 185)

TS (about of 18) and TOCTN (about 92) Facies L2 is characterized by a

homogeneous black organic-poor silty clay with low TOC (mean= 13) TS (mean=

13) TOCTN (mean= 88) values Facies L3 is a laminated (1cm) black organic-

poor (TOC mean 14) silts with higher TS (mean= 21) and TOCTN ratios

(mean= 88) Facies L3 is interpreted as ldquobaselinerdquo deposition on the distal areas

84

of Vichuqueacuten lake Mineralogy is dominated by mica (muscovite) clay minerals

(chlorite) and plagioclase (albite) Quartz and calcite occur at the top and pyrite

occurs in the lower part of the sequence Facies T is composed by massive banded

sediments 4 cm thick and coarse grain size It is interpreted as an instantaneous

depositional event (for more detail see Frugone-Aacutelvarez et al 2017) In this work

we identified four subunits based on geochemical and stable isotope signals

4 Results

41 Geochemistry and PCA analysis

High positive correlations exist between Al Si K and Ti (r = 078 ndash 096

supplementary Fig S1) and between Zn Zr Rb and Y (r = 072 - 096) which reflect

the silicate content of the watershed-derived sediments (Marzecoacuteva et al 2011) Zr

is commonly associated with minerals more abundant in coarser deposits Thus the

ZrTi profile could reflect grain size (Cuven et al 2010) showing higher variability

in the upper part of the Lake Vichuqueacuten sequence and in the alternation between

facies L1 and L2 Another group of elements made up of Co Fe and Pb displayed

positive correlations (r = 067ndash 097) and represents the input of heavy metals Br

Cl and Ca show a positive correlation (r = 049 ndash 06 p-value = 00001) BrTi ratio

is interpreted as a productivity indicator due to Br having a strong affinity with humic

and organic compounds (Marzecoacuteva et al 2011 Frugone-Aacutelvarez et al 2017) In

our Lago Vichuqueacuten sequence BrTi values are high from 170 to 132 cm and from

36 cm to the top of core where it shows several sharps peaks (Fig 3) The MnFe

ratio is indicative of lake bottom oxygenation (Naecher et al 2013) as under

reducing conditions Mn tends to become more mobile than Fe leading to a

decreased MnFe (Marzecoacuteva et al 2011) Several sharp peaks in MnFe occurred

85

from 127 to 120 cm and from 57 to 30 cm (MgFegt03) The silicate group and the

Br Cl Ca Mn group are negatively correlated (r= -012 and -066)

Principal Component Analysis (PCA) was undertaken on the XRF

geochemical data to investigate the main factors controlling sediment deposition in

Lago Vichuqueacuten (Fig 3) The four main eigenvectors explain 801 of the variance

(supplementary material Table S2) The principal component (PC1) explain 437

of the total of variance and grouped elements are associated with terrigenous input

to the lake Positive values of the biplot have been attributed to higher heavy metals

deposition (Pb Co and Fe) and negative values to higher silicate input (Al K Ti and

Si) in a high energy catchment environment (Zr) The PC2 explains 198 of the

total of variance and highlights the endogenic productivity in the lake The positive

loading is compound by Br Cl Ca and Sr and to a lesser extent by Y Zn Rb and

Mn The PC2 may explain both the precipitation of carbonates (Ca Sr) and biological

production (Br)

86

Figure 3 Principal Component Analysis of XRF geochemical measurements in

VIC13-2B Lago Vichuqueacuten lake sediments

42 Sedimentary units

Based on geochemical and stable isotope analysis we identified four

lithological subunits in the short core sedimentary sequence Our PCA analyses and

Pearson correlations pointed out which variables were better for characterizing the

subunits (Fig 4) in terms of endogenic productivity heavy metals and terrestrial

input The unit 2c (170-131 cm) is characterized by the occurrence of some clastic

layers (L2 from 160 and 150 cm) high δsup1⁵N values (mean= +59 plusmn 04permil) with

Magnetic Susceptibility (MS) BrTi ZrTi and SrCa values increase towards the top

Also it has relatively low δsup1sup3C values (mean= -265 plusmn 11permil) and CNmolar ratios

(mean=78 plusmn 04) The ZrTi show upwards increasing values reaching the highest

values of the sequence at the top of this unit suggesting a coarsening upward trend

and relatively higher depositional energy The MS trend also indicates higher

erosion in the watershed and enhanced delivery of ferromagnetic minerals likely

from soil particles particularly from 150 to 160 cm (Frugone-Aacutelvarez at al 2017)

The subunit 2b (130-118 cm) is also composed of black silts but it has the

lowest MS values of the whole sequence and its onset is marked by a sharp

decrease in ZrTi This subunit is marked by sharp peaks of MnFe (at 126 and 120

cmgt027) SrCa (at 125 and 120 cmgt033) CaTi (at 124 and 120 cmgt199) TOC

(about 26 at 130 124 122 and 118 cm) and δsup1⁵N (gt+67permil at 126 and 120 cm)

BrTi oscillates around low values (about 01) whereas the δsup1sup3C values range

between -262 and -282permil

87

The unit 2a (58-117 cm) shows increasing and then decreasing MS values

and displayed sharps peaks of δsup1⁵N (gt64 at 102 to 99 87 and 75 cm) and CN

(about 10 at 86 74 66 and 60 cm) SrCa (mean = 04 plusmn 013) BrTi (mean = 008

plusmn 002) MnFe (mean = 002 plusmn 001) and δsup1sup3C (mean = -260 plusmn 07permil) oscillate in

low values The upper part of this unit (72 ndash 57 cm) shows an increase of SrCa

(from 03 to 05)

The upper unit 1a (0 - 57 cm) starts with a fine clastic layer (T at 57 to 54

cm) interpreted as deposition during a high-energy event It is characterized by

lower BrTi (mean = 003 plusmn 002) TOC (mean = 12 plusmn 03) and δsup1sup3C (mean= -

266 plusmn 06permil) higher δsup1⁵N (mean = +55 plusmn 08 permil) This unit is made of alternating

fine (lt 1cm) black and dark brown laminae with carbonate (L1 facies) Recently

deposited sediments show decreasing MS values increasing TOC (mean= 15 plusmn

04 ) sharp peaks of BrTi (gt015 at 33 21 5 and 1 cm) and the lowest δsup1⁵N values

of the entire record (mean= 45 plusmn 06 permil) and δsup1sup3C values (mean= -277 plusmn 09 permil)

Heavy metal content increases abruptly in the upper section of the core (2 - 20 cm)

(peaks of FeTi CoTi and PbTi)

88

Figure 4 Sedimentary units of Lago Vichuqueacuten sedimentary sequence Selected

variables illustrate watershed input (Magnetic Susceptibility ZrTi CoTi and MnFe)

endogenic productivity (SrCa CaTi TS) organic matter source (BrTi TOC

CNmolar and stable isotope records (δ13Corg and δ15Nbulk)

43 Recent seasonal changes of particulate organic matter on water column

The average of δ15NPOM from the three sites across to the lake was +86 plusmn 58

permil oscillating widely from -14 to +193permil (Fig 5) Important seasonal differences

occur at 2 and 5 m depth with more negative values during summer (~53 plusmn 52 permil)

than winter (~122 plusmn 40permil) At 20 m depth δ15NPOM values exhibit small seasonal

ranges (mean = +10permil for winter and +87permil for summer) The δ13CPOM average was

-296 plusmn 33permil with slightly seasonal and water column depth differences However

more positive δ13CPOM values occurred during winter (mean=-290 plusmn 41permil) than in

summer (mean= -301 plusmn 19 permil) Like the δ15NPOM values CNPOM (mean= 83 plusmn 17)

displayed important seasonal and water depth differences Lower CNPOM ratios

89

occurred during summer at 2 and 5 m depth (mean= 95 plusmn 17) and higher and more

constant values during winter (mean = 73 plusmn 09) at the same depth At 20 m CNPOM

shows similar values in both winter (70) and summer (74)

Figure 5 Seasonal POM averages from samples taken of the Lago Vichuqueacuten

water column Samples were taken from 2015 to 2018 at 2 (n=16) 5 (n=14) and 20

(n=8) meters depth

44 Stable isotope values across the Lake Vichuqueacuten watershed

Figure 6 shows modern vegetation soil and sediment isotope values found for

the watershed Huintildee tributary and Vichuqueacuten lake The δsup1⁵NFoliar values from

meadow plantations and macrophytes have similar range values with a mean of

+89 plusmn50 permil (n=18) +74 plusmn 75 permil (n=5) +82 plusmn 36 permil (n=6) respectively Native

vegetation has overall lower δsup1⁵NFoliar values with a mean of 14 plusmn 21 permil (n=28 see

Table 2 in supplementary material) The δsup1sup3CFoliar from terrestrial samples exhibit

similar values across the different plant communities (tree plantation mean=-274 plusmn

13permil meadow mean = -275 plusmn 23 permil native species mean=-272 plusmn 14permil) whereas

macrophytes display slightly more negative values with a mean of -287 plusmn 23permil

Macrophytes substrate displayed the highest δsup1⁵N values with a mean of +60 plusmn

14permil (n=3) Similar and relatively high δsup1⁵N values for soil of plantation (mean= +54

plusmn 13permil n=4) meadow (mean= +49 plusmn 04permil n=8) and surface river sediment

90

(mean= +52 plusmn 17permil n=10) Native forest soils oscillate around slightly more

negative values with a mean of +45 plusmn 12permil (n=4) Slightly more positive soil δsup1sup3C

values occur both underneath native forests and in tree plantations with means of -

284 plusmn 23permil and -298 plusmn 13permil respectively compared to either meadow soils

(mean= -302 plusmn 11permil) aquatic sediments underneath macrophytes (-311 plusmn 10permil)

or from surface river sediments (mean= -312 plusmn 10permil)

Figure 6 Stable isotope content of modern soil river sediment and foliar vegetation

used as end members in the sedimentary sequence of Lago Vichuqueacuten a)

Scatterplot of foliar δsup1⁵N and δsup13C values for vegetation from Lago Vichuqueacuten

watershed (plantation meadow and native species) and macrophytes on Lake

Vichuqueacuten See supplementary material for more detail of vegetation types b)

Scatterplot of soil δsup1⁵N and δsup13C values across the watershed the sediments of the

Huintildee and Vichuqueacuten rivers and the fluvial sediment corresponding to the

macrophyte vegetation

45 Land use and cover change from 1975 to 2014

Major land use changes between 1975 CE and 2016 CE in the Lago

Vichuqueacuten watershed are summarized in Figure 7 The watershed has a surface

area of 535329 km2 of which native vegetation (26) and shrublands (53)

represent 79 of the total surface in 1975 Meadows are confined to the valley and

91

represent 17 of watershed surface Tree plantations initially occupied 1 of the

watershed and were first located along the lake periphery By 1989 the areas of

native forests shrublands and meadows had decreased to 22 31 and 14

respectively whereas tree plantations had expanded to 30 These trends

continued almost invariably until 2016 when shrublands and meadows reached 17

and 5 of the total areas while tree plantations increased to 66 Native forests

had practically disappeared by 1989 and then increased up to 7 of the total area

in 2016 (Fig 6) preferentially occupying the southeastern sector of the watershed

Figure 7 Changes in land use and cover between 1975 and 2016 in the Lago

Vichuqueacuten watershed as measured from satellite images The major change is

represented by the replacement of native forest shrubland and meadows by

plantations of Monterrey pine (Pinus radiata)

Figure 8 shows correlations between lake sediment stable isotope values and

changes in the soil cover from 1975 to 2013 Positive relationships occurred

between sediment δsup1⁵N and δsup13C values from core VIC13-2B (unit 1) and the

92

percentage of native forest (r=089 for δsup1⁵N 082 for δsup13C) shrublands (r = 071 for

δsup1⁵N 057 for δsup13C) and meadow cover (r = 088 for δsup1⁵N 081 for δsup13C) All of these

correlations are significant (p value lt 0001) In contrast significant negative

correlations (p lt0001) occurred between tree plantation cover and lake sediment

stable isotope values (δsup1⁵N r = -082 and δsup13C r = -067) native forest (r = -097)

meadows (r = -086) and shrubland (r =-093)

Figure 8 Correlation plots of land use and cover change versus lake sediment

stable isotope values The δsup1⁵N values are positively correlated with native forests

agricultural fields and meadow cover across the watershed Total Plantation area

increases are negatively correlated with native forest meadow and shrubland total

area Significance levels are indicated by the symbols p-values (0 0001 001

005 01 1) lt=gt symbols ( )

93

5 Discussion

51 Seasonal variability of POM in the water column

The stable isotope values of POM can vary during the annual cycle due to

climate and biologic controls namely temperature and length of the photoperiod

which affect phytoplankton growth rates and isotope fractionation in the water

column (Gu et al 2006 Leng et al 2006) POM from Lago Vichuqueacuten surface

samples (2 and 5 m depth) displayed lower δ13CPOM values during the summer than

in winter During C uptake phytoplankton preferentially utilize 12C leaving the

DICpool enriched in 13C Therefore as temperature increases during the summer

phytoplankton growth generates OM enriched in 12C until this becomes depleted

and then the biomas come to enriched u At the onset of winter the DICpool is now

enriched in 13C and despite an overall decrease in phytoplankton production the

OM produced will also be enriched in 13C In contrast δ13CPOM values at 20 m depth

did not reflect these seasonal differences probably due to water-column

stratification that maintains similar temperatures and biological activity throughout

the year

Lake N availability depends on N sources including inputs from the

watershed and the atmosphere (ie deposition of N compounds and fixation of

atmospheric N2) which varies during the hydrologic year The fixation of atmospheric

N2 is an important natural source of N to the lake occurring mainly during the

summer season associated with higher temperature and light (Gu et al 2006)

Because the δ15NPOM of N2 fixers is close to 0permil with almost no overall isotope

fractionation (Leng et al 2006) when N2 is the major N source δ15NPOM values are

typically low However when DIN concentrations are high or alternatively when little

94

N2 fixation occurs δ15NPOM values will be higher (Gu et al 2006) δ15NPOM values

from summer Lago Vichuqueacuten samples were lower than those from winter with large

differences between the seasons (~5permil Fig 5 and 9) Furthermore δ15NPOM values

were high when monthly average temperature was low and monthly precipitation

was high (Fig 9) This pattern is consistent with the dominance of high N2 fixation

by cyanobacteria associated with increased summer temperatures This correlation

of δ15NPOM values with temperature further suggests a functional group shift i e

from N fixers to phytoplankton that uptake DIN The correlation between wetter

months and higher δ15NPOM values could be caused by increased N input from the

watershed due to increased runoff during the winter season The lack of data of the

δ15NPOM between the 30 mm and the 160 mm of precipitation is due to the

mediterranean-type climate that concentrates precipitations in the winter months

Finally Lago Vichuqueacuten is characterized by pronounced seasonality leading to

higher phytoplankton biomass in summer characterized by low δ15NPOM In winter

low biomass production and increased input from watershed is associated to high

δ15NPOM

95

Figure 9 Seasonal changes can drive δ15NPOM values in Lago Vichuqueacuten Data

correspond to average monthly temperature and total monthly precipitation for the

months when the water samples were taken (years 2015 - 2018) P-valuelt005

52 Stable isotope signatures in the Lake Vichuqueacuten watershed

The natural abundance of 15N14N isotopes of soil and vegetation samples

from the Lago Vichuqueacuten watershed appear to result from a combination of factors

isotope fractionation different N sources for plants and soil microorganisms (eg N2

fixation Nitrates) depth in the soil where N uptake by vegetation occurs and N loss

mechanisms (ie denitrification leaching and ammonia volatilization Hogberg

1997) The lowest δsup1⁵Nfoliar values are associated with native species and are

probably due to the contribution of N-fixing species (eg Sophora) (Fig6 and for

more detail see Table S3 in supplementary material) The number native N-fixers

species present in the Chilean mediterranean vegetation are not well known

however so there could be other N-fixing species in this group Alternatively δsup1⁵Nfoliar

values reflect soil N uptake (Kahmen et al 2008) In environments limited by N

plants have δsup1⁵N values similar to the soil δsup1⁵N values however the denitrification

and volatilization of ammonia can lead to the remain N of soil to come enriched in

15N (Cifuentes et al 1989 Craine et al 2009 Bruland and Mckenzie 2010) Soil N

isotope samples from native species communities tends to display relatively high

δsup1⁵N values respect to foliar samples due to loss of N-soil

The higher foliar and soil δsup1⁵N values obtained from samples of meadows

aquatic macrophytes and tree plantations can be attributed to the presence of

greater amounts of nitrate available for plant uptake (Fig 6) Houmlgberg (1997)

suggests that the availability of different N sources in soils (ie nitrates versus

96

ammonia) with different residence times can also explain these δsup1⁵NFoliar values

Indeed Feigin et al (1974) described differences of up to 20permil between ammonia

and nitrates sources Denitrification and nitrification discriminate much more against

15N than N2 fixation does (Craine et al 2009) leading to soils (and plants after

uptake) enriched in 14N

In general multiple processes that affect the isotopic signal result in similar

δsup1⁵N values between the soil of the watershed and the sediments of the river

However POM isotope fluctuations allow to say that more negative δsup1⁵N values are

associated to lake productivity while more positive δsup1⁵N values are associated with

N input from the watershed

δ13C values in Lago Vichuqueacuten watershed reflect CO2 gas exchange between

C3 plants and algae with the atmosphere During photosynthesis plants

discriminate against the heavier stable isotope of carbon (13C) in favor of the lighter

isotope 12C which results in δ13CFoliar values between -220permil and -320permil (Browman

and Cook 2002 Liu et al 2007) Likewise the δ13CFoliar values from Lago Vichuqueacuten

oscillate around -27permil (Fig 6) Plants transform atmospheric CO2 into soil organic

carbon (C) which in turn reflects this initial discrimination against 13C during C

uptake and post photosynthetic fractionation (Farquhar et al 1982 1989 Badeck

et al 2005 Pausch and Kuzyakov 2017) Slightly more positive δ13CFoliar values

(about 15permil) were measured in comparison with their δ13CSoil values This may be

reflecting the C transference from plants to the soil but also a soil-atmosphere

interchange The preferential assimilation of the light isotopes (12C) during soil

respiration carried by the roots and the microbial biomass that is associated with the

decomposition of litter roots and soil organic matter explain this differential

(Berhardt et al 2006 Blagodatskaya et al 2010 Midwood and Millard 2011)

97

In general the δ13CSoil values from the Lago Vichuqueacuten watershed oscillated

around -290permil and did not vary with our plant classification types Here we use

these values as terrestrial-end members to track changes in source OM (Fig 6)

Thus more negative δ13C values in lake sediment samples are attributed to higher

OM inputs from the terrestrial watershed By the other hand more positive δ13C

values most likely reflect an increased aquatic OM component as indicated by POM

isotope fluctuations (Fig 9)

53 Recently land use and cover change and its influences on N inputs to the lake

Tree plantations in the Lago Vichuqueacuten watershed have increased greatly in

the last few decades (from 1 in 1975 to 66 in 2016 Fig 7) replacing previous

native forests (from 26 to 7) meadows (17 to 5) and shrublands (53 to

17) In 1975 tree plantations were confined to the lake perimeter with discrete

patches distributed throughout the watershed The ldquoForest Lawrdquo (DFL 701- passed

in 1974) allocated state funding to afforestation efforts and management of tree

plantations which greatly favored the replacement native forests by introduced trees

This increase is marked by a sharp and steady decrease in lake sediment δ15N and

δ13C values because tree plantations function as a nutrient sink whereas other land

uses such as meadows favor nutrient loss from the watershed (Fig8) Bruland and

Mackenzie (2014) noted a decrease in wetland δ15N values when watershed

forested cover increased and concluded that N inputs to the wetlands are lower from

the forested areas as they generally do not export as much N as agricultural lands

A positive correlation between native vegetation and δ15Ncore values can be

explained by the relatively scarce arboreal cover in the watershed in 1975 when

native forest occupied just 26 of the watershed surface whereas shrublands and

98

meadows occupied more than the 70 of the surface of the watershed with the

concomitant elevated loss of N (Fig 7 and Fig 8)

54 Nitrogen dynamics in Lago Vichuqueacuten over the last six hundred years

Sedimentological compositional and geochemical indicators all show changes in

the N cycle associated to LUCC lake dynamics and climate changes (Fig 10) From

the pre-Columbian indigenous settlement including the Spanish colonial period up

to the start of the Republic (1300 - 1800 CE) the introduction of crops such as

quinoa and wheat but also the clearing of land for extensive agriculture would have

favored the entry of N into the lake Conversely major changes observed during the

last century were characterized by a sharp decrease of N input that were coeval

with the increase of tree plantations

From 1365 until 1550 CE (unit 2c 2b and half of 2a Fig 3 and Fig 10) pre-

Columbian agricultural societies planted mostly crops of corn and quinoa (Ramirez

and Vidal 1985) This period is characterized by large peaks seen in the δsup1⁵N record

(eg 1403 1452 1476 and 1505) with overall high δsup1⁵N values (up to 5permil) indicating

that N input from watershed was elevated and oscillating to the beat of the NT These

positive δsup1⁵N peaks could be due to several causes including a) the clearing of land

for farming b) N loss via denitrification which would be generally augmented in

anoxic environments (Diebel et al 2009) such as Lago Vichuqueacuten (low MnFe

values about 0001 Fig 4) or c) climate especially cold-wet winters or hot-dry

summers can also exert control on the δsup1⁵N record Indeed tree-ring records and

summer temperature reconstructions show overall wetcold conditions during this

period (Christie et al 2009 Von Gunten et al 2009 Fig 10) Increased

precipitation would bring more sediment (and nutrients) from the watershed into the

99

lake and increase lake productivity which is also detected by the geochemical

proxies for productivity (peaks of BrTi SrCa and TOC Fig 4 and Fig 10) (see also

Frugone-Alvarez et al 2017)

Figure 10 Changes in the N availability during the last six centuries in Lago

Vichuqueacuten a) lake sediment δsup1⁵N values displayed more positive values during the

prehistoric period Spanish Colony and the starting 19th century which is associated

with enhanced N input from the watershed by extensive clearing and crop

plantations The inset shows this relationship between sediment δsup1⁵N and

100

percentage of meadow cover over the last 30 years b) Summer temperature

reconstruction from central Chile (von Gunten et al 2009) showing a

correspondence with cold phases and high δsup1⁵N values at Vichuqueacuten except for the

last 100 years c) Palmer Drought Severity Index (PDSI) is an interannual moisture

variability reconstruction for late springndashearly summer during the last six centuries

(Christie et al 2009) Grey shadow indicating higher precipitation periods

From 1550 and 1810 CE (unit 2a) and during the Colonial period several peaks

of δ15N could be further related not only to high precipitation (Fig 10 grey shadow)

but also pulses of enhanced N input from the watershed linked to human land use

In 1550 CE Juan Cuevas was granted lands and indigenous workers under the

encomienda system for agricultural and mining development of the Vichuqueacuten

village (Ramiacuterez and Vidal 1985) Historical documents show that around 1579 CE

the Vichuqueacuten watershed was occupied by indigenous communities dedicated to

wheat plantations and vineyards wood extraction and gold mining (Odone 1998)

The introduction of the Spanish agricultural system implied not just a change in the

types of crops used (from quinoa to vineyards and wheat) but also a clearing of

native species for the continuous increase of agricultural surface and wood

extraction During the Colonial period wheat from Vichuqueacuten was exported to Peru

(Ramiacuterez and Vidal 1985) Armesto et al (2009) indicate that during the XVIII and

XIX centuries the extraction of wood for mining operations was important enough to

cause extensive loss of native forests The independence and instauration of the

Chilean Republic did not change this prevailing system Increases in the

contributions of N to the lake during the second half of the XIX century (peaks in

δsup1⁵N ca 1870 CE) could be due to expanding farm land dedicated for wheat

101

production and increased commercial trade with California and Canada (Ramiacuterez

and Vidal 1985)

In contrast LUCC in the last century are clearly related to the development of

large-scale tree plantations (Fig 7) The δsup1⁵N record reaches the lowest values of

the entire sequence in the last few decades (Fig 10) A marked increase in lake

productivity NT concentration and decreasing sediment input is synchronous (unit

1 Fig 4) with trees replacing meadows shrublands and areas with native forests

(Fig 7 and 8) The implementation of the lsquoForest Lawrsquo in 1974 had a stronger impact

on the landscape and lake ecosystem dynamics than the impacts of ongoing climate

change in the region which is much more recent (Garreaud et al 2018) although

the prevalence of hot dry summers seen over the last decade would also be

associated with low δsup1⁵N values and increase of NT (Fig 10) Heavy metals ratios

(FeTi CoTi and PbTi) show notable increases in lake sediments from 1992 to 2011

CE (Fig 4) Although this could be related to mining in the El Maule region the

closest mines are 60 Km away (Pencahue and Romeral) so local factors related to

shoreline urbanization for the summer homes and an increase in tourist activity

could also be a major factor

6 Conclusions

The N isotope signal in the watershed depends on the rates of exchange

between vegetation and soil cover (Fig 11) Plants preferentially uptake 14N and the

underlying soils become enriched in 15N especially when the terrestrial ecosystem

is N-limited andor significant N loss occurs (ie denitrification andor ammonia

volatilization) LUCC in the Lago Vichuqueacuten watershed have heavily modified the

links between terrestrial and aquatic ecosystems with agriculture practices

102

contributing more N to the lake than tree plantations or native forests In situ lake

processes can also fractionate N isotopes An increase of N-fixing species results

in OM depleted in 15N which results in POM with lower δsup1⁵N values during these

periods During winter phytoplankton is typically enriched in 15N due to the

decreased abundance of N-fixing species and increased N input from the

watershed This in turn generates the highest δsup1⁵NPOM values in Lago Vichuqueacuten

Periods of elevated productivity tend to deplete the dissolved inorganic N of 14N

resulting in even higher δ15N values

Our study illustrates the usefulness of δsup1⁵N as a tool for reconstructing the past

influence of LUCC on N availability in lake ecosystems To constrain the relative

roles of the diverse forcing mechanisms that can alter N cycling in mediterranean

ecosystems all main components of the N cycle should be monitored seasonally

(or monthly) including the measurements of δ15N values in land samples

(vegetation-soil) as well as POM

103

Figure 11 Summary of human and environmental factors controlling the δ15N

values of lake sediments Particulate organic matter(POM) δ15N values in

mediterranean lakes are driven by N input from the watershed that in turn depend

on land use and cover changes (ie forest plantation agriculture) andor seasonal

changes in N sources andor lake ecosystem processes (ie bioproductivity redox

condition denitrification) Arrows indicate the direction of N fluxes (inputoutput from

the N cycle) N cycle processes that deplete lake sediments of 15N are shown in

blue whereas those that enrich sediments in 15N are shown in red

104

Supplementary material

Figure S1 Pearson correlate coefficient between geochemical variables in core

VIC13-2B Positive and large correlations are in blue whereas negative and small

correlations are in red (p valuelt0001)

Figure S2 Principal Component Analysis of geochemical elements from core

VIC13-2B

105

Table S1 Lago Vichuqueacuten radiocarbon samples

RADIOCARBON

LAB CODE

SAMPLE

CODE

DEPTH

(m)

MATERIAL

DATED

14C AGE ERROR

D-AMS 029287

VIC13-2B-

1 043 Bulk 1520 24

D-AMS 029285

VIC13-2B-

2 085 Bulk 1700 22

D-AMS 029286

VIC13-2B-

2 124 Bulk 1100 29

Poz-63883 Chill-2D-1 191 Bulk 945 30

D-AMS 001133

VIC11-2A-

2 201 Bulk 1150 44

Poz-63884

Chill-2D-

1U 299 Bulk 1935 30

Poz-64089

VIC13-2D-

2U 463 Bulk 1845 30

Poz-64090

VIC13-2A-

3U 469 Bulk 1830 35

D-AMS 010068

VIC13-2D-

4U 667 Bulk 2831 25

Poz-63886

VIC13-2D-

4U 719 Bulk 3375 35

106

D-AMS 010069

VIC13-2D-

5U 775 Bulk 3143 27

Poz-64088

VIC13-2D-

5U 807 Bulk 3835 35

D-AMS-010066

VIC13-2D-

7U 1075 Bulk 6174 31

Poz-63885

VIC13-2D-

7U 1197 Bulk 6440 40

Poz-5782 VIC13-15 DIC 180 25

Table S2 Loadings of the trace chemical elements used in the PCA

Elementos PC1 PC2 PC3 PC4

Zr 0922 0025 -0108 -0007

Zn 0913 -0124 -0212 0001

Rb 0898 -0057 -0228 0016

K 0843 0459 0108 0113

Ti 0827 0497 0060 -0029

Al 0806 0467 0080 0107

Si 0803 0474 0133 0136

Y 0784 -0293 -0174 0262

V 0766 0455 0090 -0057

Br 0422 -0716 -0045 0226

Ca 0316 -0429 0577 0489

Sr 0164 -0420 0342 -0182

Cl 0151 -0781 -0397 0162

107

Mn -0121 -0091 0859 0095

S -0174 -0179 -0051 0714

Pb -0349 0414 -0282 0500

Fe -0700 0584 -0023 0280

Co -0704 0564 -0107 0250

Table S3 Stable Isotope values from vegetation of Lago Vichuqueacutenacutes watershed

Taxa Classification δsup1⁵N δsup1sup3C CN

molar

Poaceae Meadow 1216 -2589 3602

Juncacea Meadow 1404 -2450 3855

Cyperaceae Meadow 1031 -2596 1711

Taraxacum

officinale Meadow 836 -2400 2035

Poaceae Meadow 660 -2779 1583

Poaceae Meadow 453 -2813 1401

Poaceae Meadow 966 -2908 4010

Juncus Meadow 1247 -2418 3892

Poaceae Meadow 747 -3177 6992

Poaceae Meadow 942 -2764 3147

Poaceae Meadow 1479 -2634 2895

Poaceae Meadow 1113 -2776 1795

Poaceae Meadow 2215 -2737 7971

Poaceae Meadow 1121 -2944 2934

Poaceae Meadow 638 -3206 1529

108

Macrophytes Macrophytes 886 -3044 2286

Macrophytes Macrophytes 1056 -2720 2673

Macrophytes Macrophytes 769 -3297 1249

Macrophytes Macrophytes 967 -2763 1442

Macrophytes Macrophytes 959 -2670 2105

Macrophytes Macrophytes 334 -2728 1038

Acacia dealbata

Introduced

species 656 -2696 1296

Acacia dealbata

Introduced

species 487 -2941 1782

Acacia dealbata

Introduced

species 220 -2611 3888

Luma apiculata Native species 433 -2542 4135

Luma apiculata Native species 171 -2664 7634

Luma apiculata Native species -001 -2736 6283

Luma apiculata Native species 029 -2764 6425

Azara sp Native species 159 -2868 8408

Azara sp Native species 101 -2606 2885

Baccharis concava Native species 104 -2699 5779

Baccharis concava Native species 265 -2488 4325

Baccharis concava Native species 287 -2562 7802

Baccharis concava Native species 427 -2781 5204

Baccharis linearis Native species 190 -2610 4414

Baccharis linearis Native species 023 -2825 5647

109

Peumus boldus Native species 042 -2969 6327

Peumus boldus Native species 205 -2746 4110

Peumus boldus Native species 183 -2743 6293

Chusquea quila Native species 482 -2801 4275

Poaceae meadow 217 -2629 7214

Lobelia sp Native species 224 -2645 3963

Lobelia sp Native species -091 -2565 4538

Aristotelia chilensis Native species -035 -2785 5247

Aristotelia chilensis Native species -305 -2889 2305

Aristotelia chilensis Native species 093 -2836 5457

Chusquea quila Native species 173 -2754 3534

Chusquea quila Native species 045 -2950 6739

Quillaja saponaria Native species 223 -2838 9385

Scirpus meadow 018 -2820 7115

Sophora sp Native species -184 -2481 2094

Sophora sp Native species -181 -2717 1721

Pinus radiata

Introduced

trees 1581 -2602 3679

Pinus radiata

Introduced

trees 1431 -2784 4852

Pinus radiata

Introduced

trees -091 -2708 9760

Pinus radiata

Introduced

trees 153 -2568 3470

110

Salix sp

Introduced

trees 632 -2878 1921

LITERATURE CITED

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea

AM Marquet PA 2010 From the Holocene to the Anthropocene A historical

framework for land cover change in southwestern South America in the past 15000

years Land use policy 27 148ndash160

httpsdoiorg101016jlandusepol200907006

Battye W Aneja VP Schlesinger WH 2017 Earth rsquo s Future Is nitrogen the next

carbon  Earthrsquos Future Global Biogeochem Cycles 30 1000ndash1014

httpsdoiorg101002eft2235

Blaauw M Christeny JA 2011 Flexible paleoclimate age-depth models using an

autoregressive gamma process Bayesian Anal 6 457ndash474

httpsdoiorg10121411-BA618

Bowman DMJS Cook GD 2002 Can stable carbon isotopes (δ13C) in soil

carbon be used to describe the dynamics of Eucalyptus savanna-rainforest

boundaries in the Australian monsoon tropics Austral Ecol

httpsdoiorg101046j1442-9993200201158x

Brahney J Ballantyne AP Turner BL Spaulding SA Otu M Neff JC 2014

Separating the influences of diagenesis productivity and anthropogenic nitrogen

deposition on sedimentary δ15N variations Org Geochem 75 140ndash150

httpsdoiorg101016jorggeochem201407003

111

Bruland GL MacKenzie RA 2010 Nitrogen Source Tracking with δN Content

of Coastal Wetland Plants in Hawaii J Environ Qual 39 409

httpsdoiorg102134jeq20090005

Carrevedo ML Frugone M Latorre C Maldonado A Bernaacuterdez P Prego R

Caacuterdenas D Valero-Garceacutes B 2015 A 700-year record of climate and

environmental change from a high Andean lake Laguna del Maule central Chile

(36degS) Holocene 25 956ndash972 httpsdoiorg1011770959683615574584

Christie DA Boninsegna JA Cleaveland MK Lara A Le Quesne C

Morales MS Mudelsee M Stahle DW Villalba R 2009 Aridity changes in the

Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from

tree-rings Clim Dyn 36 1505ndash1521 httpsdoiorg101007s00382-009-0723-4

Craine JM Elmore AJ Aidar MPM Dawson TE Hobbie EA Kahmen A

Mack MC Kendra K Michelsen A Nardoto GB Pardo LH Pentildeuelas J

Reich B Schuur EAG Stock WD Templer PH Virginia RA Welker JM

Wright IJ 2009 Global patterns of foliar nitrogen isotopes and their relationships

with cliamte mycorrhizal fungi foliar nutrient concentrations and nitrogen

availability New Phytol 183 980ndash992 httpsdoiorg101111j1469-

8137200902917x

Cuven S Francus P Lamoureux SF 2010 Estimation of grain size variability

with micro X-ray fluorescence in laminated lacustrine sediments Cape Bounty

Canadian High Arctic J Paleolimnol 44 803ndash817 httpsdoiorg101007s10933-

010-9453-1

Diebel M Vander Zanden MJ 2012 Nitrogen stable isotopes in streams  stable

isotopes Nitrogen effects of agricultural sources and transformations Ecol Appl 19

1127ndash1134 httpsdoiorg10189008-03271

112

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in freshwater

wetlands record long-term changes in watershed nitrogen source and land use SO

- Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash

2916

Fariacuteas L Castro-Gonzales M Cornejo M Charpentier J Faundez J

Boontanon N Yoshida N 2009 Denitrification and nitrous oxide cycling within the

upper oxycline of the oxygen minimum zone off the eastern tropical South Pacific

Limnol Oceanogr 54 132ndash144

Farquhar GD Ehleringer JR Hubick KT 1989 Carbon Isotope Discrimination

and Photosynthesis Annu Rev Plant Physiol Plant Mol Biol

httpsdoiorg101146annurevpp40060189002443

Farquhar GD OrsquoLeary MH Berry JA 1982 On the relationship between

carbon isotope discrimination and the intercellular carbon dioxide concentration in

leaves Aust J Plant Physiol httpsdoiorg101071PP9820121

Fogel ML Cifuentes LA 1993 Isotope fractionation during primary production

Org Geochem httpsdoiorg101007978-1-4615-2890-6_3

Frugone-Aacutelvarez M Latorre C Giralt S Polanco-Martiacutenez J Bernaacuterdez P

Oliva-Urcia B Maldonado A Carrevedo ML Moreno A Delgado Huertas A

Prego R Barreiro-Lostres F Valero-Garceacutes B 2017 A 7000-year high-

resolution lake sediment record from coastal central Chile (Lago Vichuqueacuten 34degS)

implications for past sea level and environmental variability J Quat Sci 32 830ndash

844 httpsdoiorg101002jqs2936

Gaumllman V Rydberg J Bigler C 2009 Decadal diagenetic effects on δ 13 C and

δ 15 N studied in varved lake sediment Limnol Oceanogr 54 917ndash924

httpsdoiorg104319lo20095430917

113

Gerhart LM McLauchlan KK 2014 Reconstructing terrestrial nutrient cycling

using stable nitrogen isotopes in wood Biogeochemistry 120 1ndash21

httpsdoiorg101007s10533-014-9988-8

Granger J Sigman DM Lehmann MF Tortell PD 2008 Nitrogen and oxygen

isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria 53

2533ndash2545 httpsdoiorg10230740058342

Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater

eutrophic lake Limnol Oceanogr 51 2837ndash2848

httpsdoiorg104319lo20065162837

Harris D Horwaacuteth WR van Kessel C 2001 Acid fumigation of soils to remove

carbonates prior to total organic carbon or CARBON-13 isotopic analysis Soil Sci

Soc Am J 65 1853 httpsdoiorg102136sssaj20011853

Houmlgberg P 1997 Tansley review no 95 natural abundance in soil-plant systems

New Phytol httpsdoiorg101046j1469-8137199700808x

Kylander ME Ampel L Wohlfarth B Veres D 2011 High-resolution X-ray

fluorescence core scanning analysis of Les Echets (France) sedimentary sequence

New insights from chemical proxies J Quat Sci 26 109ndash117

httpsdoiorg101002jqs1438

Lara A Solari ME Prieto MDR Pentildea MP 2012 Reconstruccioacuten de la

cobertura de la vegetacioacuten y uso del suelo hacia 1550 y sus cambios a 2007 en la

ecorregioacuten de los bosques valdivianos lluviosos de Chile (35o - 43o 30acute S) Bosque

(Valdivia) 33 03ndash04 httpsdoiorg104067s0717-92002012000100002

Lehmann M Bernasconi S Barbieri A McKenzie J 2002 Preservation of

organic matter and alteration of its carbon and nitrogen isotope composition during

114

simulated and in situ early sedimentary diagenesis Geochim Cosmochim Acta 66

3573ndash3584 httpsdoiorg101016S0016-7037(02)00968-7

Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos Transactions

American Geophysical Union httpsdoiorg1010292007EO070007

Liu G Li M An L 2007 The Environmental Significance Of Stable Carbon

Isotope Composition Of Modern Plant Leaves In The Northern Tibetan Plateau

China Arctic Antarct Alp Res httpsdoiorg1016571523-0430(07-505)[liu-

g]20co2

Marzecovaacute A Mikomaumlgi A Koff T Martma T 2011 Sedimentary geochemical

response to human impact on Lake Notildemmejaumlrv Estonia Est J Ecol 60 54

httpsdoiorg103176eco2011105

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash

1643 httpsdoiorg1011770959683613496289

Meyers PA 2003 Application of organic geochemistry to paleolimnological

reconstruction a summary of examples from the Laurention Great Lakes Org

Geochem 34 261ndash289 httpsdoiorg101016S0146-6380(02)00168-7

Naeher S Gilli A North RP Hamann Y Schubert CJ 2013 Tracing bottom

water oxygenation with sedimentary MnFe ratios in Lake Zurich Switzerland

Chem Geol 352 125ndash133 httpsdoiorg101016jchemgeo201306006

Odone C 1998 El Pueblo de Indios de Vichuqueacuten siglos XVI y XVII Rev Hist

Indiacutegena 3 19ndash67

Pausch J Kuzyakov Y 2018 Carbon input by roots into the soil Quantification of

rhizodeposition from root to ecosystem scale Glob Chang Biol

httpsdoiorg101111gcb13850

115

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98

httpsdoiorg1011772053019614564785

Sun W Zhang E Jones RT Liu E Shen J 2016 Biogeochemical processes

and response to climate change recorded in the isotopes of lacustrine organic

matter southeastern Qinghai-Tibetan Plateau China Palaeogeogr Palaeoclimatol

Palaeoecol httpsdoiorg101016jpalaeo201604013

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of

different trophic status J Paleolimnol 47 693ndash706

httpsdoiorg101007s10933-012-9593-6

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl

httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M 2009 High-resolution quantitative climate

reconstruction over the past 1000 years and pollution history derived from lake

sediments in Central Chile Philos Fak PhD 246

Woodward C Chang J Zawadzki A Shulmeister J Haworth R Collecutt S

Jacobsen G 2011 Evidence against early nineteenth century major European

induced environmental impacts by illegal settlers in the New England Tablelands

south eastern Australia Quat Sci Rev 30 3743ndash3747

httpsdoiorg101016jquascirev201110014

Xu H Yu K Lan J Sheng E Liu B Ye Y Hong B Wu H Zhou K Yeager

KM 2016 Different responses of sedimentary δ15N to climatic changes and

116

anthropogenic impacts in lakes across the Eastern margin of the Tibetan Plateau

J Asian Earth Sci 123 111ndash118 httpsdoiorg101016jjseaes201603024

117

DISCUSION GENERAL

El Nitroacutegeno (N) es un elemento clave que controla la dinaacutemica y

funcionamiento de ecosistemas tanto terrestres como acuaacuteticos (Vitousek et al

1997) Pese a que el N (N2) es muy abundante en la atmoacutesfera (78) es escaso

en los ecosistemas pues la mayoriacutea de la biota no puede acceder a su forma

molecular (Galloway et al 1995 Zaehle et al 2013) En este sentido la entrada

natural de N en los ecosistemas es viacutea fijacioacuten bioloacutegica del N2 por bacterias que lo

convierten en compuestos bioloacutegicamente disponibles (Battye et al 2017) Debido

a que la fijacioacuten es un proceso energeacuteticamente costoso los ecosistemas

comuacutenmente estaacuten limitados por N (Vitousek and Howarth 1991) Los LUCC

contribuyen al incremento del N disponible y son una de las principales causas de

eutroficacioacuten y contaminacioacuten de los cuerpos de agua (Woodward et al 2012)

En Chile central los LUCC principalmente relacionados con las actividades

agriacutecolas y forestales han causado grandes cambios en el ciclo del N debido al

118

reemplazo de la cobertura natural por un monocultivo y al uso de fertilizantes que

modifican los aportes de MO y N a los cuerpos de agua El programa de

estabilizacioacuten de laderas impulsada por el gobierno (Albert 1900) y la ley forestal

de 1974 han fomentado la forestacioacuten con plantaciones de Pinus radiata y

Eucalyptus globulus y en el caso de Lago Vichuqueacuten estas actualmente cubren maacutes

del 60 de su cuenca (Cap2 Fig 5) Ademaacutes en Laguna Matanzas la

sobreexplotacioacuten del agua en conjunto con el cambio climaacutetico actual el que ha

conducido a una de las megasequiacuteas maacutes severas en las uacuteltimas deacutecadas

(Garreaud et al 2017) generoacute una combinacioacuten letal que secoacute el lago en tan solo

10 antildeos (Cap1 Fig1) Las evidencias obtenidas a partir de estos dos lagos

permiten identificar las huellas del Antropoceno en Chile central basadas en el

registro sedimentario lacustre

La transferencia de N desde los ecosistemas terrestres a acuaacuteticos es un

proceso natural con controles bioacuteticos climaacuteticos y geoloacutegicos El enlace

hidroloacutegico entre los ecosistemas terrestres y acuaacuteticos hace que el estado troacutefico

de los lagos esteacute vinculado al de su cuenca (McLauchlan et al 2013) En Chile

central se sabe poco del impacto de los LUCC sobre el ciclo de nutrientes en los

ecosistemas lacustres aunque al menos desde la colonizacioacuten espantildeola se tienen

registros de influencia humana en las cuencas Durante la colonia espantildeola

Laguna Matanzas fue una hacienda ganadera que exportaba productos caacuternicos al

Peruacute (Contreras-Lopez et al 2014) A su vez en el Lago Vichuqueacuten se realizaban

extensas actividades agriacutecolas hasta comienzos del s XX como por ejemplo

cultivos de vid y trigo ademaacutes de extraccioacuten de madera y mineriacutea de oro (Odone

1997) En las uacuteltimas deacutecadas los LUCC han estado vinculados principalmente con

el desarrollo forestal al compaacutes de una estrategia gubernamental de fomentar con

119

incentivos financieros (Ley de Bosques DFL nordm265 de 1931 y DFL 701 de 1974)

esta actividad El incremento de la superficie forestal es especialmente fuerte en

ambos lagos a partir de la deacutecada de 1980 y hasta 2016 (Laguna de Matanzas 0-

17 Lago Vichuqueacuten 1-66) Este aumento habriacutea sido en detrimento del bosque

nativo y los pastizales (Cap 1 Fig 5 y Cap 2 Fig 8) El incremento de la superficie

forestal generariacutea una disminucioacuten de los aportes de sedimentos y nutrientes al lago

y en este sentido un cambio de estado en los flujos de N (e g tipping points) que

a su vez ha quedado registrado en la sentildeal isotoacutepica (δ15N) y la acumulacioacuten de

MO en los sedimentos lacustres

Isoacutetopos estables y la dinaacutemica de N en los lagos de Chile central

Los sedimentos lacustres son verdaderos ldquosumiderosrdquo que pueden llegar a

registrar lo que ocurre en cuanto a la historia ambiental de su cuenca En esta tesis

se utilizan los isoacutetopos estables de N (15N y 14N) en sedimentos lacustres para

reconstruir los cambios en la disponibilidad de N en el tiempo y establecer la

magnitud de impacto generado por actividades humanas El fraccionamiento

cineacutetico en los lagos es mediado por procesos bioloacutegicos que mediante la

asimilacioacuten de N genera un producto (eg fitoplancton) maacutes ldquoligerordquo (valores maacutes

bajos de 15N) que su remanente (eg DIN) (Fogel y Cifuentes 1993) Sin embargo

en periacuteodos en que los lagos estaacuten limitados por N el fitoplancton discrimina menos

y la MO resultante queda enriquecida en 15N (Fig 1 a y b) Ademaacutes la

desnitrificacioacuten acentuada en lagos de fondo anoacutexicos (eg Laguna Matanzas

entre 1800 y 1940 Cap1 Fig 6) conduce a un enriquecimiento en 15N de los

sedimentos y de la columna de agua Esta informacioacuten queda reflejada en la MO

120

de los sedimentos lacustres lo que permite conocer la disponibilidad del N en el

tiempo a partir de las variaciones de 15N

En esta tesis analizamos la MO de los sedimentos lacustres para reconstruir

la influencia de los LUCC en los aportes de sedimentos y N al lago En teacuterminos de

asimilacioacuten de N se puede distinguir entre dos grupos principales de productores

primarios que componen el POM (Fig1)

1 Los que asimilan el DIN compuesto por amonio nitratos y nitritos Aquiacute el

δ15N resultante fluctuaraacute en torno a valores maacutes positivos en la medida que

la productividad se incrementa o no hay reposicioacuten del DIN (Fig 1)

2 Los fijadores de N Dado que es un proceso energeacuteticamente costoso en

ambientes que no estaacuten limitados por N muchas veces son excluiacutedas

competitivamente por el resto del fitoplancton Si el DIN queda agotado por

el incremento de la productividad (o bien si el ambiente estaacute limitado ya sea

por N o por otros nutrientes) los fijadores de N pueden florecer y la MO que

se genera a partir de ello tendraacute un δ15N con valores en torno a 0permil

De este modo la MO en los sedimentos lacustres dependeraacute de la

composicioacuten de productores primarios (ie fijadores vs asimiladores del DIN)

ademaacutes de los aportes desde la cuenca tanto de MO como del N de la cuenca que

pasa a formar parte del DIN (eg fertilizantes estieacutercol) (Fig 1)

La MO de los lagos estudiados en esta tesis ha sido analizada a partir de

variables geoquiacutemicas isotoacutepicas frotis y estaacute compuesta principalmente por

diatomeas y MO amorfa A partir de los datos obtenidos en esta tesis los valores

de δ15N aumentan cuando hay una mayor cobertura agriacutecola o pastizales A su vez

tiende a disminuir cuando aumenta la cobertura arboacuterea independiente si esta es

por plantaciones forestales o por bosque nativo

121

Por otra parte la dinaacutemica del lago tambieacuten imprime caracteriacutesticas

especiales en el POM observaacutendose variaciones estacionales en los valores

δ15NPOM Durante la estacioacuten caacutelida y seca se observan valores maacutes bajos que

durante la estacioacuten friacutea y huacutemeda posiblemente relacionado con el incremento de

la contribucioacuten de especies fijadoras de N (Lago Vichuqueacuten Fig 9 Cap 2) durante

el verano En la estacioacuten friacutea y huacutemeda el DIN seriacutea la principal fuente de N Las

mayores entradas de MO y N terrestre debidos a un incremento del lavado de la

cuenca como consecuencia de las precipitaciones y la mineralizacioacuten de la MO

podriacutean estimular la produccioacuten de MO lacustre por crecimiento del fitoplancton

Como consecuencia se observan tendencias decrecientes de los valores de

δ15N en la MO sedimentaria cuando la productividad en el lago estaacute relacionada

con especies fijadoras de N mientras que el δ15N muestra aumentos cuando la

productividad del lago estaacute asociada principalmente al consumo del DIN pero

tambieacuten cuando predominan procesos de perdida de N (eg desnitrificacioacuten Fig

1)

Hemos identificado tres fases en la dinaacutemica del δ15N para ambos lagos

Entre 1800 y 1940 CE la cuenca de laguna de Matanzas estaba dominada por

actividades agriacutecolas y ganaderas (δ15Nsuelo gt 4permil Cap 1 Fig 4 y 6) Las entradas

de sedimentos y MO desde la cuenca son altas (δ13C lt -209permil ZrTi ~029 AlTi

~013) y coincide con un clima maacutes huacutemedo y friacuteo (Von Gunten et al 2009

Christiansen et al 2011) El lago teniacutea un nivel de agua maacutes profundo dominado

por condiciones anoacutexicas (MnFe ~0013) que contribuiriacutean a mayores valores de

δ15N en la columna de agua y por ende de los sedimentos acumulados en el fondo

debido a la peacuterdida diferencial de 14N viacutea desnitrificacioacuten (Fig 7 Cap1) La baja

122

produccioacuten de MO lacustre (BrTi ~002 TOC~17) coincide con un bajo contenido

de NT (~478 μg) y valores maacutes positivos de δ15N (gt 4permil)

La actividad agriacutecola tambieacuten dominaba en la cuenca del Lago Vichuqueacuten

durante este periacuteodo (δ15Nsuelo gt4permil Cap2 Fig 6) El aporte sedimentario desde la

cuenca es alto (AlTi ~029 ZrTi ~032) y fue favorecido por mayores

precipitaciones a las actuales (Christiansen et al 2011) El Lago Vichuqueacuten es un

lago estratificado anoacutexico (MnFe ~002) y profundo (~30 m) por lo que la

desnitrificacioacuten juega un rol importante en el enriquecimiento de la MO

sedimentaria La baja produccioacuten de MO (BrTi ~007 TOC ~12) de origen

lacustre (δ13C ~ -268permil) coincide con un bajo contenido de NT (~309μg +6) y

valores maacutes positivos de δ15N (56permil +03)

Durante esta fase en ambos lagos los aportes de N de la cuenca parecen

ser los principales responsables en las fluctuaciones del δ15N Esta sentildeal podriacutea

estar amplificada por bajas temperaturas (que afectan la productividad lacustre) y

altas precipitaciones que favorecen el lavado de la cuenca y aumentan el aporte de

sedimentos y MO desde la cuenca predominantemente agriacutecola

Entre 1940 y 1980 CE en Laguna Matanzas se observa un incremento en

la acumulacioacuten de MO algal (TOC ~2 +1 δ13C ~-230+09permil) El ambiente

deposicional es ligeramente menos turbulento que el anterior (AlTi ~011+001

ZrTi ~03+001) y el lago estaacute en una fase de transicioacuten hacia condiciones maacutes

oacutexicas (MnFe ~002+0004) y maacutes productivas (BrTi ~004+0007) A su vez δ15N

tiende hacia valores maacutes negativos (δ15N ~30permil+03) mientras que el NT aumenta

oscilando en antifase con el δ15N

En Lago Vichuqueacuten en cambio se observa un ligero incremento en la

acumulacioacuten de MO (TOC ~13 +02) de origen terrestre (δ13C ~-27permil +04) La

123

productividad es similar al periacuteodo anterior (BrTi ~007+003) y el ambiente

deposicional es menos turbulento (AlTi ~02 +009 Zrti ~033 +007) El δ15N y el

NT oscilan en torno a valores ligeramente maacutes bajos (δ15N ~51permil +04 NT ~292μg

+6) Este periacuteodo se caracteriza por ser maacutes caacutelido que el anterior lo que

posibilitariacutea un incremento en la productividad lacustre en Laguna Matanzas pero

que no es observada en el Lago Vichuqueacuten

Entre 1980 y la actualidad en Laguna Matanzas habriacutea un incremento de la

acumulacioacuten de MO (TOC ~59 + 3) asociada a un incremento en la productividad

del lago (BrTi ~009+005) y a los aportes de MO terrestres (δ13C ~-24 + 2permil) El

lago se vuelve maacutes oacutexico (Mn ~0003 +0006) y las entradas de sedimento

disminuyen (AlTi~ 009 +002) El δ15N tiende a valores maacutes negativos (δ15N ~13permil

+1) y el NT aumenta de 20 a 55 μg (NT ~346 + 9 μg) tomando valores sin

precedentes en todo el registro En los sedimentos lacustres del Lago Vichuqueacuten

tambieacuten se observa un incremento de la acumulacioacuten de MO (TOC ~17 + 05)

asociada a un incremento en la productividad del lago (BrTi ~01 + 003) y las

entradas de sedimento desde la cuenca disminuyen (AlTi ~005 + 005) El δ15N

(~43 + 05permil) tiende a valores maacutes negativos y el NT incrementa de 20 a 55 μg (NT

~346 + 9 μg) oscilando en antifase

Durante esta fase en ambos lagos se observa un aumento en la

acumulacioacuten de MO sedimentaria un incremento en el NT y valores maacutes negativos

de δ15N que coincide con el incremento de la superficie forestal de las cuencas

(Laguna Matanzas gt17 Lago Vichuqueacuten gt60)

124

Figura 2 Comparacioacuten de los cambios del ciclo del N entre Laguna Matanzas y

Lago Vichuqueacuten con los procesos biogeoquiacutemicos contrastantes en rojo En L

Matanzas las condiciones oacutexicas podriacutean estar favoreciendo la nitrificacioacuten del

amonio En Vichuqueacuten las condiciones anoacutexicas favorecen un aumento en δ15N de

la MO en los sedimentos por desnitrificacioacuten y mineralizacioacuten

Los ambientes mediterraacuteneos en el que los lagos del presente estudio se

encuentran insertos estaacuten caracterizados por una estacioacuten seca prolongada y las

precipitaciones ocurren en eventos puntuales alcanzando altos montos

pluviomeacutetricos en poco tiempo Las lluvias favorecen un lavado de la cuenca la

perdida de N y otros nutrientes Por lo que es esperable que los sedimentos del

lago reflejen mejor los valores isotoacutepicos de los suelos de la cuenca durante los

periacuteodos con altos montos pluviomeacutetricos En el Lago Vichuqueacuten por ejemplo el

125

POM superficial (2 y 5 m de profundidad) despliega valores isotoacutepicos maacutes

positivos en invierno presumiblemente como resultado de mayores aportes de MO

y N de su cuenca (Fig 1b) En ambos lagos los valores maacutes positivos en los

sedimentos lacustres ocurren durante periacuteodos con mayores montos pluviomeacutetricos

(Cap1 Fig 6 y Cap 2 Fig 12)

Ademaacutes del efecto de la precipitacioacuten en el aporte de nutrientes al lago en

esta tesis hemos encontrado que los mayores aportes de N desde la cuenca se dan

cuando la cobertura vegetal del suelo es menor En Laguna Matanzas el desarrollo

de la actividad ganadera desde la llegada de los espantildeoles a la cuenca habriacutea

incrementado los aportes de N al lago Los valores de δ15N en los sedimentos

lacustres depositados durante este periacuteodo son los maacutes positivos de todo el registro

(~4permil) A su vez en Lago Vichuqueacuten los valores isotoacutepicos maacutes positivos se

registran entre 1300 y 1900 CE que coinciden con el mayor desarrollo de

actividades agriacutecola y de extraccioacuten de maderas de la cuenca (Fig 10 Cap 2)

Los recientes LUCC (a partir de 1975) en las cuencas de Laguna Matanzas

y Lago Vichuqueacuten estaacuten caracterizados por un incremento de la superficie forestal

y agriacutecola en reemplazo de la cobertura de pastizal (Laguna Matanzas) y bosque

nativo (Lago Vichuqueacuten) Los valores de δ15N en los testigos sedimentarios fueron

maacutes positivos cuanto mayor la superficie agriacutecola de la cuenca y maacutes negativos

cuanto mayor la superficie forestal Aunque por los alcances de esta tesis no

podemos ser concluyentes respecto del origen del NT (aloacutectonoautoacutectono) parece

ser que esta maacutes ligado a los aportes de la cuenca pese a la disminucioacuten del aporte

sedimentario observado en ambos lagos Las plantaciones forestales a diferencia

del bosque nativo son fertilizadas con una mezcla de N P y K (Toral et al 2005)

Por lo que pese a la disminucioacuten del aporte sedimentario la concentracioacuten de

126

nutrientes en el aporte al lago puede verse incrementada por el tipo de manejo

forestal con respecto al bosque nativo

Los resultados del primer capiacutetulo demuestran que 1) las plantaciones

forestales yo bosque nativo retiene maacutes sedimentos y MO mientras que el uso de

suelo agriacutecola y los pastizales destinados al desarrollo de la actividad ganadera lo

libera 2) Al parecer la desnitrificacioacuten es el proceso natural maacutes importante de

perdida de N en lagos costeros y favorece el enriquecimiento de 15N tanto en la

columna de agua (ie 15N-DIN) como en los sedimentos una vez enterrados y 3) la

desnitrificacioacuten depende de los cambios en las condiciones REDOX en el lago La

oxigenacioacuten en lagos poco profundos -como Laguna Matanzas- es altamente

fluctuante a escalas decadal-centenal depende de la profundidad de la laacutemina de

agua y de la variabilidad de la precipitacioacuten En este sentido en Laguna Matanzas

habriacutea condiciones anoacutexicas en ambientes cuando el lago alcanza niveles maacutes

altos Estas condiciones se observan entre 1820 y 1940 CE y son coetaacuteneas con

episodios maacutes huacutemedos y friacuteos (von Gunten et al 2009 Christie et al 2009) pero

tambieacuten con una fuerte actividad ganadera en la cuenca

Las fuentes variables de N y su fluctuacioacuten en el tiempo hacen necesario

contar con un anaacutelogo moderno que permite usar al δ15N de los sedimentos

lacustres como un indicador indirecto de los cambios en la disponibilidad de N en

el tiempo Por ello en el segundo capiacutetulo integramos muestras de suelo-

vegetacioacuten y un monitoreo de POM de la columna de agua en verano e invierno La

composicioacuten isotoacutepica de POM estariacutea reflejando cambios de la fuente de N (fijacioacuten

vs consumo del DIN) que variacutea durante el antildeo hidroloacutegico Durante el verano la

mayor temperatura y horas-luz favoreceriacutean las entradas de N al lago viacutea fijacioacuten

bioloacutegica de N2 atmosfeacuterico resultando en un incremento de la MO con un valor

127

isotoacutepico bajo (POM verano~5permil Fig 1b) El N2 (δ15N = 0permil) es fijado praacutecticamente

sin fraccionamiento isotoacutepico generando un δ15N de la OM cercano a 0permil (Leng et

al 2006) En invierno las precipitaciones pueden estar favoreciendo un incremento

en la entrada de nutrientes al lago El DIN de la columna de agua llega a contener

valores de δ15N maacutes altos reflejando estos mayores aportes de la cuenca y el POM

del Lago Vichuqueacuten queda enriquecido en 15N (δ15N ~11permil Cap 2 Fig 9) Estas

variaciones estacionales pueden estar evidenciando un cambio en la composicioacuten

de especies de POM desde especies fijadoras a especies que consumen el N de la

columna de agua Sin embargo para corroborar esta informacioacuten seriacutea deseable

contar con el anaacutelisis de la composicioacuten de especies de las muestras de agua

extraidas

Entre los resultados maacutes importantes estaacuten los valores isotoacutepicos del suelo

y la biomasa representativa de la cuenca que incluye un listado de las especies

nativas de la zona que hasta ahora no se contaba (Cap 2 Tabla en material

suplementario) Las especies colectadas despliegan valores de δ15Nfoliar maacutes

positivos (plantaciones forestales y pastizal ~89permil) que el suelo (35permil) salvo por

las especies nativas las que oscilan en torno a valores cercanos al atmosfeacuterico

(~14permil) La razoacuten isotoacutepica 15N14N refleja la dinaacutemica de intercambio de N entre la

vegetacioacuten y el suelo (Koba et al 2002) La discriminacioacuten es positiva en la mayoriacutea

de los sistemas bioloacutegicos por lo que las plantas tienen valores de δ15N maacutes bajos

que el suelo (Evans et al 2001) como sucede con las especies nativas en Lago

Vichuqueacuten En consecuencia las plantas quedan empobrecidas en 15N y conducen

a un enriquecimiento en 15N del suelo sobretodo si no hay reposicioacuten de N por otras

viacuteas (eg fijacioacuten de N) Por lo tanto los valores maacutes negativos de δsup1⁵Nfoliar de las

especies nativas pueden estar relacionados con el consumo preferencial de 14N del

128

suelo donde la discriminacioacuten isotoacutepica de la vegetacioacuten contra el 15N conduce a

valores del δsup1⁵Nsuelo maacutes altos (Houmlgberg 1997) Por el contrario los valores maacutes

positivos de δsup1⁵Nfoliar de las plantaciones forestales y pastos con respecto al suelo

puede deberse por una parte que el suelo no cuenta con mecanismos naturales de

reposicioacuten de N salvo por la descomposicioacuten de la hojarasca que puede ser maacutes

lenta en Pinus radiata que en bosque nativo (Lusk et al 2001) y por otra por el alto

impacto de los aportes de N (y otros nutrientes) derivado de las actividades

humanas (eg uso de fertilizantes) en el suelo

El alcance maacutes significativo de esta tesis se relaciona con un cambio en la

tendencia maacutes negativa de δsup1⁵N y el incremento del NT a partir de 1940 y a partir

de 1970 CE en ambos lagos La causa maacutes probable de esta tendencia es el

reemplazo de la cobertura natural o preexistente a 1940 CE por plantaciones

forestales

En la figura 2 se observa una siacutentesis de los principales procesos que

afectan la sentildeal isotoacutepica de la MO en los sedimentos lacustres de L Matanzas y

L Vichuqueacuten La entrada de N y MO desde la cuenca depende del tipo de cobertura

Las plantaciones forestales y el bosque nativo retienen maacutes nutrientes y sedimentos

en la cuenca mientras que la agricultura los favorece Sin embargo las praacutecticas

de manejo que incluyen la aplicacioacuten de N (y otros nutrientes) pueden aportar maacutes

nutrientes al lago que la cobertra de bosque nativo Cuando las actividades

forestales cubren una mayor superficie de la cuenca (1940 en adelante) δsup1⁵N oscila

en valores maacutes negativos y el NT tiende a incrementarse en los sedimentos

lacustres Cabe destacar que los valores de δsup1⁵N observados en los testigos

sedimentarios a fines del s XX no tienen precedente durante la conquista y colonia

espantildeola o durante el resto del periodo de la Repuacuteblica

129

Figura 2 Modelo de transferencia de N entre los ecosistemas terrestres y

acuaacuteticos El δ15N de los sedimentos lacustres depende de la interaccioacuten entre los

aportes de la cuenca y porcesos ldquoin-lakerdquo Flechas indican la direccioacuten del flujo de

N En azul las salidasentradas de 14N en rojo las salidasentradas de 15N δ15N de

la interaccioacuten plantas-suelo depende del tipo de cobertura de suelo

130

CONCLUSIONES GENERALES

La transferencia de N entre cuencas y lagos es un factor de control del ciclo

del N en los lagos y queda reflejado en la sentildeal isotoacutepica de los sedimentos

lacustres (Leng et al 2006 McLauchlan et al 2007) En Laguna Matanzas el

suelo de las especies nativas y las plantaciones forestales despliegan valores de

δ15N maacutes bajos (~1permil) que los de Lago Vichuqueacuten (~35permil) Coincidentemente los

sedimentos lacustres de Laguna Matanzas oscilan con valores de δ15N maacutes bajos

(-15 a +45permil Fig 1) que los de Lago Vichuqueacuten (+3 a +8permil)

Por otra parte el estudio de la MO de los sedimentos lacustres ha permitido

reconstruir los cambios en los aportes de MO y N desde la cuenca Aunque no es

posible afirmar queacute tipo de N estaacute entrando al lago (eg Nitroacutegeno orgaacutenico e

inorganico) si podemos decir que los cambios en las fluctuaciones de δ15N son

coincentes con el crecimiento de la actividad forestal (1980 - hasta 2016 L

Matanzas 0-17 y L Vichuqueacuten 1-66) El δ15N fluctuacutea hacia valores maacutes

negativos Ademaacutes se observa un incremento del NT en los sedimentos lacustres

cuanto mayor es la superficie forestal

Entre 1800-1940 las cuencas eran fundamentalmente agriacutecolas y

ganaderas (Cap1 Fig 7 y Cap 2 Fig 12) el δ15N de los sedimentos lacustres

oscila con valores maacutes positivos (L Matanzas +40 plusmn 05permil y L Vichuqueacuten 56 plusmn

033permil Fig 1) hay una baja bioproductividad en el lago (BrTi ~002 TOC~17)

lo que coincide con un bajo contenido de NT (~478 μg) Este es un periacuteodo de altas

precipitaciones (Christie et al 2009) que tienden a favorecer el lavado de la cuenca

131

y con ello el aporte de MO sedimentos y nutrientes desde la cuenca tiende a verse

favorecido Aunque las principales actividades humanas en estas cuencas son

diferentes (ganaderiacutea en Laguna Matanzas Contreras-Lopez et al 2014

agricultura en Lago Vichuqueacuten Odone 1997) en ambos casos hubo un reemplazo

de la cobertura natural de bosques nativo que favorecioacute mayores aportes de N y

sedimentos desde la cuenca en un efecto sumado con el aumento de las

precipitaciones

A partir de 1980 CE en ambos lagos se observa una disminucioacuten en los

valores de δ15N y un incremento del NT que no tiene precedentes en todo el registro

y pese a que ambos lagos son limnologicamente muy diferentes En Lago

Vichuqueacuten el δ15N tiende a oscilar en antifase con el NT (Fig 1) En el caso de

Laguna Matanzas se observa una tendencia hacia valores maacutes negativos y a partir

de 1990s a valores maacutes positivos mientras que el NT tiende a incrementarse de

manera sostenida Ello podriacutea estar relacionado con el crecimiento de la actividad

forestal habriacutea una mayor retencioacuten de N y sedimentos en la cuenca ligado al

incremento de la superficie forestal Ademaacutes en el caso de L Matanzas el

incremento de la actividad agriacutecola (sumado al de las plantaciones forestales)

podriacutea expicar el cambio en la tendencia en la deacutecada de los 1990s

En el contexto de Antropoceno esta tesis nos permite identificar un gran

impacto de las actividades humanas en Chile central a partir de la deacutecada de 1940

y una Gran Aceleracoacuten a partir de la deacutecada de 1970s En el registro sedimentario

de los lagos en estudio se observa una gran acumulacioacuten de MO el δ15N oscila

hacia valores maacutes negativos y un gran incremento del NT y el crecimiento de la

actividad forestal parece ser la principal responsable Ademaacutes la sobreexplotacioacuten

132

del agua junto al cambio climaacutetico global ha generado una combinacioacuten letal para

los lagos costeros de Chile central

Figura 1 Comparacioacuten de las fluctuaciones de δ15N durante los uacuteltimos 300

antildeos en Laguna Matanzas y Lago Vichuqueacuten

133

Referencias

Battye W Aneja VP Schlesinger WH 2017 Earthrsquos Future Is nitrogen the next carbon Earthrsquos Future Global Biogeochem Cycles 30 1000ndash1014 httpsdoiorg101002eft2235

Christie DA Boninsegna JA Cleaveland MK Lara A Le Quesne C

Morales MS Mudelsee M Stahle DW Villalba R 2009 Aridity changes in the Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from tree-rings Clim Dyn 36 1505ndash1521 httpsdoiorg101007s00382-009-0723-4

Contreras-Loacutepez M (Playa AUHVC (Universidad de VRFS (Pontificia

UC de V 2014 Elementos de la historia natural del An Mus Hist Natulas Vaplaraiso 27 51ndash67

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in

freshwater wetlands record long-term changes in watershed nitrogen source and land use SO - Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash2916

Evans RD Evans RD 2001 Physiological mechanisms influencing

plant nitrogen isotope composition 6 121ndash126 Fogel ML Cifuentes LA 1993 Isotope fractionation during primary

production Org Geochem 73ndash98 httpsdoiorg101007978-1-4615-2890-6_3 Galloway JN Schlesinger WH Ii HL Schnoor L Tg N 1995

Nitrogen fixation Anthropogenic enhancement-environmental response reactive N Global Biogeochem Cycles 9 235ndash252

Garreaud RD Alvarez-Garreton C Barichivich J Pablo Boisier J

Christie D Galleguillos M LeQuesne C McPhee J Zambrano-Bigiarini M 2017 The 2010-2015 megadrought in central Chile Impacts on regional hydroclimate and vegetation Hydrol Earth Syst Sci 21 6307ndash6327 httpsdoiorg105194hess-21-6307-2017

Koba K Koyama LA Kohzu A Nadelhoffer KJ 2003 Natural 15 N

Abundance of Plants Coniferous Forest httpsdoiorg101007s10021-002-0132-6

Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos

Transactions American Geophysical Union httpsdoiorg1010292007EO070007 McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE

2007 Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470 httpsdoiorg101073pnas0701779104

134

Phytologist N Oct N 2006 Tansley Review No 95 15N Natural Abundance in Soil-Plant Systems Peter Hogberg 137 179ndash203

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98 httpsdoiorg1011772053019614564785

Turner BL Kasperson RE Matson PA McCarthy JJ Corell RW

Christensen L Eckley N Kasperson JX Luers A Martello ML Polsky C Pulsipher A Schiller A 2003 A framework for vulnerability analysis in sustainability science Proc Natl Acad Sci U S A httpsdoiorg101073pnas1231335100

Vitousek PM Aber JD Howarth RW Likens GE Matson PA

Schindler DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

Vitousek PM Howarth RW 1991 Nitrogen limitation on land and in the

sea How can it occur Biogeochemistry httpsdoiorg101007BF00002772 von Gunten L Grosjean M Rein B Urrutia R Appleby P 2009 A

quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo central Chile back to AD 850 Holocene 19 873ndash881 httpsdoiorg1011770959683609336573

Xu R Tian H Pan S Dangal SRS Chen J Chang J Lu Y Maria

Skiba U Tubiello FN Zhang B 2019 Increased nitrogen enrichment and shifted patterns in the worldrsquos grassland 1860-2016 Earth Syst Sci Data httpsdoiorg105194essd-11-175-2019

Zaehle S 2013 Terrestrial nitrogen-carbon cycle interactions at the global

scale Philos Trans R Soc B Biol Sci 368 httpsdoiorg101098rstb20130125

Page 3: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …

3

TABLA DE CONTENIDO

RESUMEN 9

ABSTRACT 11

INTRODUCCIOacuteN 13

Los ecosistemas mediterraacuteneos y el ciclo del N 15

Los lagos como sensores ambientales 16

El ciclo del N en lagos 18

Reconstruyendo el ciclo del N a partir de variaciones en δ15N 20

Referencias 25

CAPIacuteTULO 1 A COMBINED APPROACH TO ESTABLISHING THE TIMING AND MAGNITUDE OF ANTHROPOGENIC NUTRIENT ALTERATION IN A MEDITERRANEAN COASTAL LAKE- WATERSHED SYSTEM 29

Abstract 30 1 INTRODUCTION 31 2 STUDY SITE 35 3 RESULTS 38

31 Age Model 38 32 The sediment sequence 39 33 Sedimentary units 41 34 Isotopic signatures 42 35 Recent land use changes in the Laguna Matanzas watershed 44

4 DISCUSSION 45 41 N and C dynamics in Laguna Matanzas 45 42 Recent evolution of the Laguna Matanzas watershed 48

5 CONCLUSIONS 54 6 METHODS 55

References 58

CAPIacuteTULO 2 STABLE ISOTOPES TRACK LAND USE AND COVER CHANGES IN A MEDITERRANEAN LAKE IN CENTRAL CHILE OVER THE LAST 600 YEARS 71

Abstract 73 1 Introduction 73

4

2 Study Site 77 3 Methods 79 4 Results 84

41 Geochemistry and PCA analysis 84 42 Sedimentary units 86 43 Recent seasonal changes of particulate organic matter on water column 88 44 Stable isotope values across the Lake Vichuqueacuten watershed 89 45 Land use and cover change from 1975 to 2014 90

5 Discussion 93 51 Seasonal variability of POM in the water column 93 52 Stable isotope signatures in the Lake Vichuqueacuten watershed 95 53 Recently land use and cover change and its influences on N inputs to the lake 97 54 Nitrogen dynamics in Lago Vichuqueacuten over the last six hundred years 98

6 Conclusions 101

LITERATURE CITED 110

DISCUSION GENERAL 117

Isoacutetopos estables y la dinaacutemica de N en los lagos de Chile central 119

CONCLUSIONES GENERALES 130

Referencias 133

5

A mis padres Arturo y Malena

A mis hijos Xavi y Panchito

6

AGRADECIMIENTOS

Quiero agradecer a mi tutor y mentor Dr Claudio Latorre por brindarme su

apoyo sin el cual no habriacutea logrado concluir esta tesis de doctorado Claudio tu

apoyo constante incentivo y el fijarme metas que a veces me pareciacutean imposibles

de alcanzar no solo han dado forma a esta tesis sino tambieacuten me ha hecho maacutes

exigente como cientiacutefica Claudio destacas no solo por ser un gran cientiacutefico si no

tambieacuten por tu gran calidad humana eres un gran ejemplo

Quiero agradecer Dr Blas Valero-Garceacutes por nuestras numerosas

conversaciones viacutea Skype que incluiacutean vacaciones y fines de semana para discutir

los resultados de la tesis y que han dado forma a esta investigacioacuten principalmente

al primer capiacutetulo Ademaacutes por haberme acogido como un miembro maacutes en el

laboratorio de Paleoambientes Cuaternarios durante las estancias que he realizado

en el transcurso de estos antildeos Blas eres un ejemplo para miacute conjugas ciencia de

calidad calidez y dedicacioacuten por tus estudiantes

A quienes han financiado mi doctorado la Comisioacuten Nacional de

Investigacioacuten Cientiacutefica y Tecnoloacutegica (CONICYT) con sus becas de manutencioacuten

doctoral (2013) gastos operacionales pasantiacutea (2016) postnatal (2017) y termino

de tesis doctoralrdquo (2013) A FONDECYT a traveacutes del proyecto 1160744 de C

Santoro Al Departamento de InvestigacioacutenAl Instituto de Ecologiacutea y Biodiversidad

(IEB) a traveacutes de del PIA financiamiento basal 170008 la Pontificia Universidad

Catoacutelica de Chile por la beca incentivo para tesis interdisciplinaria para doctorandos

(2015)

Agradezco a mis compantildeeros del laboratorio de Paleoecologiacutea y

Paleoclimatologiacutea Karla Matias Dani Carolina Mauricio y Pancho que han hecho

grato mi tiempo en el laboratorio Agradecimientos especiales a Carolina Matiacuteas y

Leo por acompantildearme a terreno

7

Agradezco a los miembros del laboratorio de Paleoambientes Cuaternarios

(IPE) en especial a Raquel Elena Fernando Ana Penelope Graciela Miguel

Sevilla Mariacutea y Miguel Bartolomeacute

Agradezco a los miembros de la comisioacuten Dr Joseacute Miguel Farintildea Dr Juan

Armesto y Dr Ricardo De Pol-Holz por la gran ayuda durante el desarrollo de mi

doctorado en especial por las correcciones finales de la tesis

Al departamento de Ecologiacutea en especial a Rosario Galaz Edita Luengo

Daniela Mora y Valeria Cavallero por su apoyo

A mis compantildeeros de doctorado Beleacuten Gallardo Pancho Diacuteaz Bryan Bularz

Bian Latorre Renato Borras Juan Carlos Hernaacutendez y Paulina Troncoso con

quienes estudieacute aprendiacute y compartimos muy buenos momentos durante los

primeros antildeos del doctorado

A Pablo Sarricolea mi compantildeero de vida Gracias por tu constante e

incondicional apoyo Sin ti durante este proceso todo habriacutea sido cuesta arriba

A mis padres Arturo y Malena gracias por su carintildeo apoyo y compromiso

Papaacute aunque no esteacutes a mi lado siempre te recuerdo con mucho carintildeo A mi

madre que ha sido un constante apoyo sobre todo en el cuidado de mis hijos xavi

y panchito

A mis hermanos Rodrigo y David por estar presentes durante toda esta

etapa Siempre con carintildeo y hermandad

A Rodrigo David Matiacuteas Jany Paola y Julio por cuidar a mis hijos con carintildeo

siempre que estuve ausente por el doctorado

8

ABREVIATURAS

N Nitroacutegeno (Nitrogen)

DIN Nitroacutegeno Inorgaacutenico Disuelto (Dissolved Inorganic Nitrogen)

C Carbono (Carbon)

TOC Carbono Inorgaacutenico Total (Total Organic Carbon)

TIC Carbono Inorgaacutenico Total (Total inorganic Carbon)

TC Carbono Total (Total Carbon)

TS Azufre Total (Total Sulfur)

LUCC Cambios de UsoCobertura del Suelo (Land Use and Cover Change)

OM Materia Orgaacutenica (Organic Matter)

POM Particulate Organic Matter (materia orgaacutenica particulada)

CE Common Era

BCE Before Common Era

Cal BP Calibrado en antildeos radiocarbono antes de 1950

ie id est (esto es)

e g Exempli gratia (por ejemplo)

9

RESUMEN

El ldquoAntropocenordquo se caracteriza por pertubaciones de origen humano que

conllevan impactos globales Por ejemplo los cambios de usocobertura del suelo

(LUCC) son conocidos por perturbar el ciclo del N a partir de la Revolucioacuten Industrial

pero especialmente desde la Gran Aceleracioacuten (1950 CE) en adelante Sin

embargo existen incertezas asociadas a la magnitud del impacto y su efecto

acoplado con los cambios climaacuteticos actuales (ie megasequiacutea disminucioacuten de las

precipitaciones) y acoplamientos con otros ciclos biogeoquiacutemicos (eg ciclo del

Carbono) Este impacto ha cambiado la disponibilidad de N en los ecosistemas

terrestres y acuaacuteticos y sus enlaces Los sedimentos lacustres contienen

informacioacuten de las condiciones paleoambientales del lago y su cuenca en el

momento en que se depositaron y el anaacutelisis de los isoacutetopos estables de N (δ15N)

en los sedimentos permiten reconstruir los cambios en la disponibilidad de N a

traveacutes del tiempo En este trabajo usamos una aproximacioacuten multiproxy que incluye

10

anaacutelisis sedimentoloacutegicos geoquiacutemicos e isotoacutepicos (δ15N δ13C) de los sedimentos

lacustres columna de agua y suelo-vegetacioacuten de la cuenca y la reconstruccioacuten de

los LUCC entre 1975 y 2016 a partir de imaacutegenes satelitales El objetivo de esta

tesis fue evaluar el rol de LUCC como principal control del ciclo del N en el sistema

cuenca-lago durante las uacuteltimas centurias en Chile central Nuestros principales

resultados muestran que valores maacutes positivos de δ15N en los sedimentos lacustres

estaacuten relacionados con grandes aportes de N de la cuenca que a su vez son

mayores cuanto mayor la superficie agriacutecola yo los pastizales mientras que tanto

las plantaciones forestales como los bosques favorecen la retencioacuten de nutrientes

en la cuenca (lo que se ve reflejado en un δ15N maacutes negativo) Esta tesis plantea

un cambio de estado en la dinaacutemica del N asociado a la introduccioacuten y expansioacuten

de las plantaciones forestales o bosques los que retienen el Nitroacutegeno en las

cuencas mientras que el clima juega un rol secundario

11

ABSTRACT

The Anthropocene is characterized by human disturbances at the global

scale For example changes in land use are known to disturb the N cycle since the

industrial revolution but especially since the Great Acceleration (1950 CE) onwards

This impact has changed N availability in both terrestrial and aquatic ecosystems

However there are some important uncertainties associated with the extent of this

impact and how it is coupled to ongoing climate change (ie megadroughts rainfall

variability and shifting stationarity) or to other nutrient cycles (e g carbon cycle)

Lake sediments contain paleoenvironmental information regarding the conditions of

the watershed and associated lakes and which the respective sediments are

deposited Nitrogen stable isotope analysis (δ15N) on lake sediments allows us to

reconstruct the changes in N availability through time Here we used a multiproxy

approach that uses sedimentological geochemical and isotopic analyses on

lacustrine sediments water column and soilvegetation from the watershed as well

12

as land use and cover change (LUCC) from 1975 to 2016 obtained from satellite

images The goal of this thesis is to evaluate the role of LUCC as the main driver for

N cycling in a coastal watershed system of central Chile over the last centuries Our

main results show that more positive δ15N values in lake sediments are related to

higher N contributions from the watershed which in turn increase with increased

agricultural andor pasture cover whereas either forest plantations or native forests

can favor nutrient retention in the watershed (δ15N more negative) This thesis

proposes that N dynamics are mainly driven by the introduction and expansion of

forest or tree plantations that retain nitrogen in the watershed whereas climate plays

a secondary role

13

INTRODUCCIOacuteN

El N es un elemento esencial para la vida y limita la productividad en

ecosistemas tanto terrestres como acuaacuteticos (Vitousek et al 1997) Las actividades

humanas han tenido un profundo impacto sobre el ciclo del N global principalmente

a partir la revolucioacuten industrial (IPCC 2013 2007) Las concentraciones de N se

han incrementado por la fijacioacuten industrial de N atmosfeacuterico (viacutea el proceso Haber-

Bosch Erisman et al 2008) por el uso de fertilizantes sobre la base de N para

mejorar el rendimiento de los cultivos la produccioacuten ganadera y ademaacutes de los

cambios en el uso del suelo (abreviado en ingleacutes- LUCC) (Robertson y Vitousek

2009 Galloway et al 2008 Battye et al 2017 Xu et al 2019) Estas actividades

contribuyen significativamente al incremento de la disponibilidad bioloacutegica de N

cuyas consecuencias para los ecosistemas incluye la perdida de diversidad

modificacioacuten de la disponibilidad de nutrientes y acidificacioacuten de los suelos entre

otras Sin embargo se desconoce la cantidad destino y el alcance que ha tenido

14

el N movilizado entre los ecosistemas generado por la influencia de las actividades

humanas (Vitousek et al 1997)

La entrada natural de N en los ecosistemas terrestres y acuaacuteticos es viacutea

fijacioacuten atmosfeacuterica la que es llevada a cabo por microorganismos muchos de ellos

en relaciones simbioacuteticas (eg Rhizobium en leguminosas) y las algas (Vitousek et

al 1997 Battye et al 2017) Las principales salidas estaacuten relacionadas con la

desnitrificacioacuten volatilizacioacuten del amoniaco y por escurrimiento superficial y

subterraacuteneo (Galloway et al 2008 Diacuteaz et al 2016) En el caso de los sistemas

lacustres ademaacutes estaacuten la resuspencioacuten de N del fondo del lago los aportes desde

la cuenca (entradas de N) La depositacioacuten de MO en el fondo del lago que marca

la salida de N de la columna de agua Estas relaciones de intercambio de N tienen

un control geograacutefico (eg latitud exposicioacuten relieve etc) climaacutetico y biotico

(McLauchlan et al 2013) La alteracioacuten provocada por los LUCC no solo genera

las peacuterdidas de nutrientes del suelo por erosioacuten y escurrimiento superficial sino que

tambieacuten modifica la disponibilidad y transferencia de N entre los ecosistemas

terrestres y acuaacuteticos (Elbert et al 2012 McLauchlan et al 2013) Por ejemplo el

reemplazo de la vegetacioacuten nativa por la agricultura yo plantaciones forestales

altera el ciclo del N debido al despeje de los terrenos viacutea quema de la vegetacioacuten

pero tambieacuten debido al reemplazo de la vegetacioacuten preexistente por un

monocultivo (eg trigo pino) y el uso ineficiente de fertilizantes para mejorar el

rendimiento agriacutecola Estas actividades favorecen un incremento de los aportes de

N (y otros nutrientes) viacutea sistemas de drenajes a lagos los que actuacutean como

sumideros El incremento del N derivado de las actividades humanas tanto en los

ecosistemas terrestres como acuaacuteticos genera incertezas relacionados con la

trayectoria y la magnitud de la disponibilidad de N en ambos ecosistemas (Batye et

15

al 2017 Mclauchlan et al 2017) Por lo tanto se requiere de una liacutenea base de

largo plazo para saber coacutemo estas perturbaciones impactan la disponibilidad de N

en las uacuteltimas deacutecadassiglos en los ecosistemas lacustres y por lo tanto el alcance

real que los LUCC han tenido en el ciclo del N

Los ecosistemas mediterraacuteneos y el ciclo del N

Los ecosistemas mediterraacuteneos son especialmente sensibles a los LUCC

pues estos se encuentran sometidos a un estreacutes hiacutedrico durante largas temporadas

estivales y las precipitaciones se concentran en eventos puntuales y a veces con

altos montos pluviomeacutetricos Las precipitaciones tienen un alto potencial de arrastre

de sedimentos y nutrientes los que actuacutean como fertilizantes al llegar a los

ecosistemas lacustres A su vez un incremento en la disponibilidad de N puede

generar un desbalance con otros nutrientes (eg Fosforo) con efectos sobre la

productividad y diversidad de los lagos (Pentildeuelas et al 2012 Sardans et al 2012

McLauchlan 2013) En este sentido en Chile central se observa una disminucioacuten

de las precipitaciones especialmente fuerte en las uacuteltimas deacutecadas por lo que se ha

denoacuteminado como Megasequiacutea (Garreaud et al 2017) y el efecto de las

precipitaciones esporaacutedicas pueden generar un arrastre de nutrientes que no ha

sido evaluado

Los ecosistemas mediterraacuteneos concentran el 20 de la biodiversidad global

(Myers et al 2000) pero existe una escasez de conocimiento respecto a los

efectos del incremento de N en los cuerpos de agua como consecuencia de las

actividades humanas en el pasado histoacuterico (Ochoa-Hueso et al 2011) y coacutemo la

disponibilidad de N ha variado en el tiempo Los LUCC han aumentado el flujo de

N en las cuencas hidrograacuteficas viacutea escurrimiento superficial y lixiviacioacuten

16

favoreciendo la peacuterdida de sedimentos y nutrientes del suelo en el mundo entero

(Elser et al 2011 McLauchlan et al 2013 Xu et al 2017 y 2019) Ello ha

contribuido a la acidificacioacuten y eutrofizacioacuten generalizada de riacuteos y lagos

(McLauchlan et al 2013 Schindler et al 2008)

El ecosistema mediterraacuteneo de Chile central es una regioacuten ampliamente

intervenida desde al menos la colonizacioacuten espantildeola (1600-1800 CE) Los LUCC

han tenido efectos negativos en la disponibilidad de agua especialmente

observados con el desarrollo de las actividades minera (Prieto et al 2019) Aunque

se sabe de los impactos en los ecosistemas de bosque en teacuterminos de cobertura

debidos al desarrollo silvo-agropecuarias (Armesto et al 2010) se desconoce el

impacto de estas actividades sobre el ciclo del N en los cuerpos de agua o en queacute

momento cobran fuerza suficiente para alterar el flujo de N hacia los lagos de Chile

Central Por lo tanto en esta tesis nos centramos en entender coacutemo los LUCC han

afectado la disponibilidad de N en los lagos costeros de Laguna Matanzas y Lago

Vichuqueacuten desde la llegada de los espantildeoles a Chile hasta el presente

Los lagos como sensores ambientales

Los sedimentos lacustres son buenos sensores de cambios en los aportes

de nutrientes contaminacioacuten y eutroficacioacuten de los cuerpos de agua ya que son

capaces de preservar sentildeales quiacutemicas y fiacutesicas al momento de su formacioacuten y

ademaacutes con alta resolucioacuten y a largo plazo (Leng et al 2006) Por lo tanto

constituyen una herramienta uacutetil para reconstruir el flujo de N entre ecosistemas

terrestres y acuaacuteticos en el pasado sus consecuencias (eg incremento de la

productividad lacustre) y el rol del clima y los LUCC en el pasado (McLauchlan et

al 2013 von Gunten et al 2009) Por ejemplo el cultivo de maiacutez por parte de los

17

nativos iroqueses en Canadaacute provocoacute la eutrofizacioacuten del Lago Crawford (43degN)

durante los siglos XII y XV Entre las consecuencias registradas se documentoacute un

claro incremento de la productividad primaria y cambios en la estructura comunitaria

de diatomeas foacutesiles (incremento de Stephanodiscus complex y disminucioacuten de

Cyclotella bodanica en Ekdahl et al 2007) Otro ejemplo demuestra como las

actividades agriacutecolas en la cuenca del riacuteo Mississippi modificaron los patrones de

sedimentacioacuten y aporte de nutrientes al lago Pepin EE UU (44degN) a partir del

asentamiento europeo en 1840 CE y principalmente desde 1940 CE (Engstrom et

al 2009) Para Chile von Gunten et al (2009) a partir de indicadores

limnogeoloacutegicos evidencioacute la contaminacioacuten y eutroficacioacuten de cinco lagos cercanos

a la ciudad de Santiago (33ordmS) como consecuencia de la deposicioacuten atmosfeacuterica

de metales pesados (especialmente Cu) quema de combustible foacutesil y flujo de

nutrientes durante los uacuteltimos 200 antildeos

Caracteriacutesticas limnoloacutegicas de los lagos

Los procesos limnoloacutegicos afectan la distribucioacuten y abundancia de los

organismos en los lagos Estaacuten influenciados por forzamientos externos por

ejemplo la precipitacioacuten o la penetracioacuten de la luz y la morfometriacutea del lago En este

sentido el nivel del lago dependeraacute del balance entre las entradas y salidas de agua

(precipitaciones escurrimiento superficial y subterraacuteneo y la evaporacioacuten) y la forma

de la cuenca (profundidad pendiente aacuterea del espejo de agua)

En funcioacuten de la profundidad de penetracioacuten de la luz es posible diferenciar

dos aacutereas que determinan la distribucioacuten de los organismos la zona foacutetica (donde

penetra la luz y permite la fotosiacutentesis) y la zona afoacutetica (subyacente a la zona

foacutetica) Al depender de la radiacioacuten la zona foacutetica variacutea estacionalmente Ademaacutes

18

puede variar por el grado de turbidez la morfometriacutea del lago y la produccioacuten de

materia orgaacutenica en la columna de agua

Otro factor que influye en la productividad es el reacutegimen de mezcla de la

columna de agua pues favorece la oxigenacioacuten y el reciclado de nutrientes La

mezcla ocurre en condiciones de gran inestabilidad usualmente relacionado con el

reacutegimen de viento Por el contrario un lago estratificado resulta de grandes

diferencias en temperatura o salinidad entre la superficie (epilimnion) y el fondo del

lago (hipolimnion) que separa las masas de agua superficial y de fondo por una

termoclina (si la estratificacioacuten estaacute relacionada con diferencias de temperatura de

las masas de agua) o haloclina (diferencias de salinidad) En funcioacuten del reacutegimen

de mezcla los lagos se pueden clasificar en (Lewis 1983)

1 Amiacutecticos no hay mezcla vertical de la columna de agua

2 Monomiacutecticos friacuteos y caacutelidos se mezcla una vez al antildeo

3 Dimiacutecticos la columna de agua se mezcla dos veces al antildeo

4 Oligomiacutecticos Lagos estratificados la mayor parte del tiempo pero se mezclan a

intervalos irregulares mayores a 1 antildeo

5 Polimiacutecticos friacuteos y caacutelidos la columna de agua se mezcla varias veces al antildeo

El ciclo del N en lagos

Al estar presente en aacutecidos nucleicos aminoaacutecidos y proteiacutenas el N es un

nutriente esencial de los organismos Por lo tanto su disponibilidad en la columna

de agua es clave para la produccioacuten composicioacuten y acumulacioacuten de la MO a traveacutes

del tiempo (Olson 1998 Talbot 2002) Aunque el principal reservorio de N estaacute en

19

la atmosfera (N2) solo unos pocos organismos (eg cianobacterias) pueden fijarlo

directamente Asiacute el Nitroacutegeno Inorgaacutenico Disuelto (DIN) representa la principal

fuente de N disponible para la produccioacuten primaria en los ecosistemas acuaacuteticos

(Talbot et al 2002) El DIN estaacute compuesto por nitrato (NO3-) nitrito (N02

-) y amonio

(NH4+) y los cambios en su disponibilidad condicionan el tipo de produccioacuten primaria

(eg fijadores vs asimiladores de N ver Scott y Grant 2013 Scott 2008)

La Figura 1 resume los principales componentes en lagos del ciclo del N y

sus interacciones La principal entrada natural de N es viacutea fijacioacuten de N atmosfeacuterico

y es llevado a cabo principalmente por bacterias y algas verde-azules capaces de

romper el triple enlace entre los dos aacutetomos de N a un alto costo energeacutetico (Torres

et al 2012) El N fijado es reducido a NH3 Tras la muerte de los organismos el N

es liberado de sus tejidos por hongos y bacterias implicados en la descomposicioacuten

de la MO Una parte se deposita en el fondo del lago y la otra queda disponible para

ser asimilada por el fitoplancton como amonio mediante el proceso de

amonificacioacuten (Talbot 2002) La amonificacioacuten resulta de la reduccioacuten bacteriana

del amoniaco y se da preferentemente en condiciones anoacutexicas La volatizacioacuten del

amoniaco es un proceso por medio este se incorpora a la atmoacutesfera Este proceso

se da preferentemente en lagos aacutecidos (pH gt 85) El nitrato es otra forma de N

bioloacutegicamente disponible para el fitoplancton En los lagos el NO3 del DIN estaacute

compuesto por los aportes desde la cuenca hidrograacutefica en la que se circunscriben

por la resuspensioacuten desde el fondo del lago favorecido por procesos de mezcla

(descrito en seccioacuten anterior) y por los nitratos de la columna de agua Estos uacuteltimos

son el resultado de la nitrificacioacuten proceso realizado por bacterias aeroacutebicas

mediante el cual el amonio se oxida para formar nitrito y nitrato El ciclo se completa

20

con la desnitrificacioacuten que es la reduccioacuten bacteriana de nitrato al N atmosfeacuterico

Este proceso se da preferentemente en condiciones anoacutexicas

Figura 1 Materia Orgaacutenica sedimentaria y su relacioacuten con el ciclo del N y las

variaciones de δ15N (elaborado a partir de Talbot et al 2002) En la figura se

representan los factores clave en la acumulacioacuten de la MO sedimentaria y su

relacioacuten con el ciclo del N El δ15N de la MO es resultado de los aportes de MO

desde la cuenca MO de macroacutefitas y de la productividad bioloacutegica La productividad

en ecosistemas lacustres estaacute condicionada por DIN y la fijacioacuten de N atmosfeacuterico

El δ15N del pool del DIN disponible se va enriqueciendo por la asimilacioacuten

preferencial de 14N por parte del fitoplancton Ademaacutes el DIN remanente se va

enriqueciendo por accioacuten microbiana (amonificacioacuten nitrificacioacuten desnitrificacioacuten)

Reconstruyendo el ciclo del N a partir de variaciones en δ15N

La sentildeal isotoacutepica de N (δ15N) en los sedimentos lacustres puede ser usada

para reconstruir los cambios pasados del ciclo N la transferencia de N entre

ecosistemas terrestres y acuaacuteticos y el estado troacutefico del lago (Bruland y Mackenzie

2015 McLauchlan et al 2013 Woodward et al 2012 von Gunten et al 2009

Leng et al 2006 Meyers y Teranes 2001) La Figura 1 resume los principales

procesos y fuentes que afectan la sentildeal isotoacutepica δ15N (total o ldquobulkrdquo) en la MO de

21

los sedimentos lacustres Entre los que destacan las fuentes de MO (aloacutectona vs

autoacutectona) la bioproductividad lacustre y las entradas de N (ie fijacioacuten bioloacutegica

de N2) (Torres et al 2012) Estos procesos conducen a un fraccionamiento

isotoacutepico cineacutetico que favorece la disociacioacuten entre sus isotopos ldquopesadosrdquo (15N) y

ldquoligerosrdquo (14N) Asiacute por ejemplo los valores de δ15N de la MO se enriquecen en 15N

en la medida que los sedimentos lacustres estaacuten sometidos a perdidas de 14N viacutea

desnitrificacioacuten (Bruland y Mackenzie 2015 Diaz et al 2016 Talbot et al 2002)

Por otra parte el fitoplancton en la medida que aumenta su biomasa (eg

durante la estacioacuten caacutelida) puede llegar a asimilar el DIN hasta agotarse En este

caso el N remanente se va empobreciendo en 14N si no hay reposicioacuten de N (eg

aporte de NO3 de la cuenca) y la MO queda enriquecida en 15N Esta disminucioacuten

induce a una limitacioacuten de fitoplancton por N y los organismos diztroacuteficos pueden

verse estimulados por lo que se incrementa la entrada de N viacutea fijacioacuten de N2 (Scott

y Grantsz 2013) como resultado la MO oscila en valores maacutes bajos (en torno a 0permil)

La cantidad de MO que se deposita en el fondo del lago depende del

predominio de contribuciones provenientes desde la cuenca (aloacutectona) versus las

producidas dentro del mismo lago (autoacutectona) (Torres et al 2012) Aunque en

general los lagos reciben permanentemente aportes de sedimentos y MO desde

su cuenca los lagos pequentildeos tienden a reflejar maacutes los procesos que ocurren

solamente en su cuenca directa y reflejan los valores isotoacutepicos de la misma (Gu et

al 2006) Woodward et al (2012) realizaron un estudio en 50 lagos en Irlanda que

les permitioacute correlacionar diferentes patrones de LUCC (bosques de coniacuteferas

agricultura ganaderiacutea entre otros) con los valores de δ15N (y δ13C) en los

sedimentos superficiales de los lagos Encontraron que los valores de δ15N son maacutes

negativos en cuencas poco impactadas y maacutes positivos en aquellas con alto

22

impacto humano (eg usos de suelo agriacutecola y ganadero) McLauchlan et al (2007)

encontraron valores maacutes positivos de δ15N en los sedimentos del Mirror Lake New

Hampshire (29ordm N) a partir de la desforestacioacuten de su cuenca en 1790 CE (inicio

del asentamiento europeo en el lago) para el desarrollo de la actividad agriacutecola

Estos valores se volvieron maacutes negativos hacia valores similares al pre-

asentamiento europeo despueacutes del cese de la agricultura en la cuenca y la

recuperacioacuten del bosque a partir de 1929 CE

El anaacutelisis de δ15N en los sedimentos lacustres es una herramienta casi sin

explorar en Chile central Proponemos reconstruir la dinaacutemica de transferencia de

N cuenca-lago como consecuencia de los LUCC desde la colonizacioacuten espantildeola en

los lagos costeros de Laguna Matanzas (34ordmS) y Lago Vichuqueacuten (36ordmS) Como son

muacuteltiples los procesos que pueden afectar la sentildeal isotoacutepica de N (medido como

δ15N) en los sedimentos lacustres existen muchos problemas para su

interpretacioacuten paleoambiental (Leng et al 2006) Por ello en esta tesis utilizamos

un enfoque multiproxy que consiste en integrar el anaacutelisis limnoloacutegico y geoquiacutemico

de los sedimentos lacustres con los valores isotoacutepicos modernos de la columna de

agua (mediante monitoreo del POM) la relacioacuten vegetacioacuten-suelo de la cuenca y la

reconstruccioacuten de los principales usos de suelo de las cuencas desde 1975 CE

mediante el uso de imaacutegenes satelitales Considerando estas muacuteltiples liacuteneas de

evidencia nos planteamos utilizar las variaciones del δ15N para reconstruir los

cambios en la disponibilidad de N en los lagos costeros de Chile central y establecer

coacutemo y desde cuaacutendo las actividades humanas en la cuenca son lo suficientemente

importantes como para modificar el ciclo del N en los lagos desde la colonizacioacuten

espantildeola (siglo XVII)

23

Como hipoacutetesis planteamos que la dinaacutemica de transferencia de sedimentos

y nutrientes entre la cuenca y el lago tiene controles geoloacutegicos climaacuteticos y

bioloacutegicos que interactuacutean en el tiempo registraacutendose en la acumulacioacuten de MO de

los sedimentos lacustres (Fig1) Bajo este marco los LUCC modifican esta

dinaacutemica alterando la transferencia de N a los lagos ya que las actividades agriacutecolas

y ganaderas tienden a aportar maacutes N (aumentando δ15N) que la actividad forestal

(la que disminuye δ15N)

En el primer capiacutetulo titulado ldquoA combined approach to establishing the timing

and magnitude of anthropogenic nutrient alteration in a mediterranean coastal lake-

watershed systemrdquo se evaluoacute el rol de los LUCC en el control de la descarga de N

y sedimentos a Laguna Matanzas en un sistema cuenca-lago desde el siglo XVII

Para ello se realizoacute un anaacutelisis de la dinaacutemica sedimentaria lacustre mediante el

anaacutelisis de muacuteltiples proxys sedimentoloacutegicos (ie minerales y textura)

geoquiacutemicos (eg geoquiacutemica orgaacutenica e isotoacutepica) y bioloacutegicos (ie diatomeas) de

Laguna Matanzas que cubren los uacuteltimos 200 antildeos Ademaacutes se realizoacute una

reconstruccioacuten de los usos de suelo entre 1975 y 2016 a partir de imaacutegenes de

sateacutelites y se colectaron muestras de suelo de las principales coberturas de la

cuenca a los cuales se midioacute el δ15N

Entre los principales resultados obtenidos se destaca la influencia de la

ganaderiacutea y la denitrificacioacuten lo que explica los altos valores de δ15N evidenciados

por el registro lacustre durante la colonizacioacuten espantildeola e inicios de la repuacuteblica A

partir de la Gran Aceleracioacuten (1950 CE) la desforestacioacuten y el reemplazo de la

ganaderiacutea por plantaciones forestales tienen un correlato en el registro

sedimentario con valores de δ15N maacutes bajos Estos resultados demuestran que los

LUCC son el factor de primer orden para explicar los cambios observados en

24

nuestro registro de δ15N y a su vez implica un rol secundario del clima como posible

control de la disponibilidad de N en Laguna Matanzas Este capiacutetulo fue sometido

a la revista Scientific Reports y estaacute en revisioacuten desde el 26 de marzo de 2019 En

la elaboracioacuten del mauscrito han colaborado Claudio Latorre Blas Valero-Garceacutes

Matiacuteas Frugone Pablo Sarricolea Santiago Giralt Manuel Contreras-Lopez

Ricardo Prego y Patricia Bernardez

El segundo capiacutetulo se titula ldquoStable isotopes track land use and cover

changes in a mediterranean lake in central Chile over the last 600 yearsrdquo Aquiacute

evaluamos la dinaacutemica del N actual en el sistema cuenca-lago considerando los

valores isotoacutepicos modernos tanto de la vegetacioacuten como del suelo ademaacutes de los

cambios estacionales del POM de la columna de agua Esta informacioacuten se utiliza

como un anaacutelogo moderno para conocer el rol de los LUCC en la disponibilidad de

N en los uacuteltimos 600 antildeos Para ello se colectaron muestras filtradas de la columna

de agua a 2 5 y 20 m dos veces por antildeo entre noviembre de 2015 y julio de 2018

y se obtuvo el δsup1⁵N del POM Ademaacutes se colectoacute muestras de vegetacioacuten y suelo

de la cuenca diferenciando entre especies nativas plantaciones forestales y

vegetacioacuten herbaacutecea Esta informacioacuten se analizoacute en conjunto con la reconstruccioacuten

de los LUCC entre 1975 y 2014 y el anaacutelisis limnoloacutegico del lago Ello nos permitioacute

evaluar coacutemo el δ15N de los sedimentos lacustres refleja los valores δ15N de la

cuenca en el Lago Vichuqueacuten y el control que ejerce el clima en la sentildeal isotoacutepica

de POM Este capiacutetulo seraacute sometido a la revista Science of total environmet

proximamente En la elaboracioacuten del mauscrito han colaborado Claudio Latorre

Blas Valero-Garceacutes Matiacuteas Frugone Pablo Sarricolea Leonardo Villacis y M Laura

Carrevedo

25

Entre los principales resultados encontramos que el δ15N en los sedimentos

lacustres es maacutes positivo con presencia de agricultura en la cuenca y maacutes negativo

cuando esta es reemplazada por cobertura arboacuterea bien sea plantaciones

forestales bien sea bosque nativo A su vez durante la estacioacuten seca y caacutelida la

mayor entrada al lago es viacutea fijacioacuten de N atmosfeacuterico (bajos valores de δ15NPOM)

Durante la estacioacuten huacutemeda en cambio prevalecen los aportes de la cuenca con

altos valores de δ15NPOM Ello estariacutea evidenciando un cambio estacional en la

composicioacuten de especies en verano ligado a especies fijadoras de N y en invierno

las algas y microorganismos que consumen el DIN de la columna de agua

Referencias

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea AM Marquet PA 2010 From the Holocene to the Anthropocene A historical framework for land cover change in southwestern South America in the past 15000 years Land use policy 27 148ndash160 httpsdoiorg101016jlandusepol200907006

Battye W Aneja VP Schlesinger WH 2017 Earth rsquo s Future Is nitrogen the

next carbon  Earth rsquo s Future Global Biogeochem Cycles 30 1000ndash1014 httpsdoiorg101002eft2235

Bruland GL MacKenzie RA 2010 Nitrogen Source Tracking with δN Content

of Coastal Wetland Plants in Hawaii J Environ Qual 39 409 httpsdoiorg102134jeq20090005

Diacuteaz FP Frugone M Gutieacuterrez RA Latorre C 2016 Nitrogen cycling in an

extreme hyperarid environment inferred from δ15 N analyses of plants soils and herbivore diet Sci Rep 6 1ndash11 httpsdoiorg101038srep22226

Ekdahl EJ Teranes JL Wittkop CA Stoermer EF Reavie ED Smol JP

2007 Diatom assemblage response to Iroquoian and Euro-Canadian eutrophication of Crawford Lake Ontario Canada J Paleolimnol 37 233ndash246 httpsdoiorg101007s10933-006-9016-7

Elbert W Weber B Burrows S Steinkamp J Buumldel B Andreae MO

Poumlschl U 2012 Contribution of cryptogamic covers to the global cycles of carbon and nitrogen Nat Geosci 5 459ndash462

26

httpsdoiorg101038ngeo1486 Elser J 2011 A world awash with nitrogen Science 334 1504ndash1506

httpsdoiorg101126science1215567 ARTICLE Engstrom DR Almendinger JE Wolin JA 2009 Historical changes in

sediment and phosphorus loading to the upper Mississippi River Mass-balance reconstructions from the sediments of Lake Pepin J Paleolimnol 41 563ndash588 httpsdoiorg101007s10933-008-9292-5

Erisman J W Sutton M A Galloway J Klimont Z amp Winiwarter W (2008)

How a century of ammonia synthesis changed the world Nature Geoscience 1(10) 636

Galloway JN Townsend AR Erisman JW Bekunda M Cai Z Freney JR

Martinelli LA Seitzinger SP Sutton MA 2008 Transformation of the Nitrogen Cycle  Science (80- ) 320 889ndash892

httpsdoiorg101126science1136674 Garreaud RD Alvarez-Garreton C Barichivich J Pablo Boisier J Christie

D Galleguillos M LeQuesne C McPhee J Zambrano-Bigiarini M 2017 The 2010-2015 megadrought in central Chile Impacts on regional hydroclimate and vegetation Hydrol Earth Syst Sci 21 6307ndash6327 httpsdoiorg105194hess-21-6307-2017

Gruber N Galloway JN 2008 An Earth-system perspective of the global

nitrogen cycle Nature 451 293ndash296 httpsdoiorg101038nature06592 Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater eutrophic lake Limnol Oceanogr 51 2837ndash2848 httpsdoiorg104319lo20065162837

IPCC 2013 Climate Change 2013 The Physical Science BasisContribution of

Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press Cambridge United Kingdom and New York NY USA

httpsdoiorg101017CBO9781107415324 Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos Transactions

American Geophysical Union httpsdoiorg1010292007EO070007 Martel-Cea A Maldonado A Grosjean M Alvial I de Jong R Fritz SC von

Gunten L 2016 Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical Central Chile (32iumliquestfrac12S 3050iumliquestfrac12miumliquestfrac12asl) Palaeogeogr Palaeoclimatol Palaeoecol 461 44ndash54 httpsdoiorg101016jpalaeo201608003

McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE 2007

Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470

27

httpsdoiorg101073pnas0701779104 McLauchlan KK Gerhart LM Battles JJ Craine JM Elmore AJ Higuera

PE Mack MC McNeil BE Nelson DM Pederson N Perakis SS 2017 Centennial-scale reductions in nitrogen availability in temperate forests of the United States Sci Rep 7 1ndash7 httpsdoiorg101038s41598-017-08170-z

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash1643 httpsdoiorg1011770959683613496289

Meyers PA Teranes JL 2001 Sediment organic matter in Tracking

Environmental Change Using Lake Sediments Volume 2 Physical and Geochemical Methods httpsdoiorg1018971551-5028(1999)018lt0231SOMCAAgt23CO2

Myers N Mittermeler RA Mittermeler CG Da Fonseca GAB Kent J

2000 Biodiversity hotspots for conservation priorities Nature httpsdoiorg10103835002501

Pentildeuelas J Poulter B Sardans J Ciais P Van Der Velde M Bopp L

Boucher O Godderis Y Hinsinger P Llusia J Nardin E Vicca S Obersteiner M Janssens IA 2013 Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe Nat Commun 4 httpsdoiorg101038ncomms3934

Prieto M Salazar D Valenzuela MJ 2019 The dispossession of the San

Pedro de Inacaliri river Political Ecology extractivism and archaeology Extr Ind Soc httpsdoiorg101016jexis201902004

Robertson GP Vitousek P 2010 Nitrogen in Agriculture Balancing the Cost of

an Essential Resource Ssrn 34 97ndash125 httpsdoiorg101146annurevenviron032108105046

Sardans J Rivas-Ubach A Pentildeuelas J 2012 The CNP stoichiometry of

organisms and ecosystems in a changing world A review and perspectives Perspect Plant Ecol Evol Syst 14 33ndash47 httpsdoiorg101016jppees201108002

Schindler DW Howarth RW Vitousek PM Tilman DG Schlesinger WH

Matson PA Likens GE Aber JD 2007 Human Alteration of the Global Nitrogen Cycle Sources and Consequences Ecol Appl 7 737ndash750 httpsdoiorg1018901051-0761(1997)007[0737haotgn]20co2

Scott E and EM Grantzs 2013 N2 fixation exceeds internal nitrogen loading as

a phytoplankton nutrient source in perpetually nitrogen-limited reservoirs Freshwater Science 2013 32(3)849ndash861 10189912-1901

28

Stocker TF Dahe Q Plattner G-K Alexander L V Allen SK Bindoff NL Breacuteon F-M Church JA Cubash U Emori S Forster P Friedlingstein P Talley LD Vaughan DG Xie S-P 2013 Technical Summary in Climate Change 2013 The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change httpsdoiorg101017 CBO9781107415324005

Talbot M R (2002) Nitrogen isotopes in palaeolimnology In Tracking

environmental change using lake sediments (pp 401-439) Springer Dordrecht

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status J Paleolimnol 47 693ndash706 httpsdoiorg101007s10933-012-9593-6

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M Eggenberger U Grob P Urrutia R Morales A

2009 Pollution and eutrophication history AD 1800-2005 as recorded in sediments from five lakes in Central Chile Glob Planet Change 68 198ndash208 httpsdoiorg101016jgloplacha200904004

Woodward CA Potito AP Beilman DW 2012 Carbon and nitrogen stable

isotope ratios in surface sediments from lakes of western Ireland Implications for inferring past lake productivity and nitrogen loading J Paleolimnol 47 167ndash184 httpsdoiorg101007s10933-011-9568-z

Xu H Yu K Lan J Sheng E Liu B Ye Y Hong B Wu H Zhou K

Yeager KM 2016 Different responses of sedimentary δ15N to climatic changes and anthropogenic impacts in lakes across the Eastern margin of the Tibetan Plateau J Asian Earth Sci 123 111ndash118 httpsdoiorg101016jjseaes201603024

29

CAPIacuteTULO 1 A COMBINED APPROACH TO ESTABLISHING THE TIMING

AND MAGNITUDE OF ANTHROPOGENIC NUTRIENT ALTERATION IN A

MEDITERRANEAN COASTAL LAKE- WATERSHED SYSTEM

30

A combined approach to establishing the timing and magnitude of anthropogenic

nutrient alteration in a mediterranean coastal lake- watershed system

Magdalena Fuentealbaabc Claudio Latorreabc Matiacuteas Frugoneabc Pablo

Sarricolead Santiago Giralte Manuel Contreras-Lopezf Ricardo Prego g Patricia

Bernaacuterdez g Blas Valero-Garceacutesch

a Departamento de Ecologiacutea Pontificia Universidad Catoacutelica de Chile Alameda 340 Santiago Chile

b Institute of Ecology and Biodiversity (IEB) Las Palmeras 3425 Nuntildeoa Santiago Chile

c Laboratorio Internacional de Cambio Global LINCGlobal PUC-CSIC Spain

d Departamento de Geografiacutea Universidad de Chile Marcoleta 250 Santiago Chile

e Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) CLluis Solegrave Sabaris sn Barcelona E-

08028 Spain

f Facultad de Ingenieriacutea y Centro de Estudios Avanzados Universidad de Playa Ancha Traslavintildea

450 Vintildea del Mar Chile

g Instituto de Investigaciones Marinas (CSIC) CEduardo Cabello 6 36208 Vigo Spain

h Instituto Pirenaico de Ecologiacutea (IPE-CSIC) Avenida Montantildeana 1005 Zaragoza 50059 Spain

Corresponding author

E-mail address

clatorrebiopuccl magdalenafuentealbagmailcom

Abstract

Since the industrial revolution and especially during the Great Acceleration (1950

CE) human activities have profoundly altered the global nutrient cycle through land

use and cover changes (LUCC) However the timing and intensity of recent N

variability together with the extent of its impact in terrestrial and aquatic ecosystems

and coupled effects of regional LUCC and climate are not well understood Here

we used a multiproxy approach (sedimentological geochemical and isotopic

31

analyses historical records climate data and satellite images) to evaluate the role

of LUCC as the main control for N cycling in a coastal watershed system of central

Chile during the last few centuries The largest changes in N dynamics occurred in

the mid-1970s associated with the replacement of native forests and grasslands for

livestock grazing by plantations of introduced Monterey pine (Pinus radiata) and

eucalyptus (Eucalyptus globulus) Lake productivity increased and is evidenced by

an increase trend in δ15N values Our study shows that anthropogenic land

usecover changes are key in controlling nutrient supply and N availability in

Mediterranean watershed ndash lake systems and that large-scale forestry

developments during the mid-1970s likely caused the largest changes in central

Chile

Keywords Anthropocene Organic geochemistry watershedndashlake system Stable

Isotope Analyses Land usecover change Nitrogen cycle Mediterranean

ecosystems central Chile

1 INTRODUCTION

Human activities have become the most important driver of the nutrient cycles in

terrestrial and aquatic ecosystems since the industrial revolution (Gruber and

Galloway 2008 Galloway et al 2008 Holtgrieve et al 2011 Fowler et al 2013

Goyette et al 2016) Among these N is a common nutrient that limits productivity

in terrestrial and aquatic ecosystems (Vitousek and Howarth 1991 McLauchlan et

al 2013) With the advent of the Haber-Bosch industrial N fixation process in the

early 20th century total N fluxes have surpassed previous planetary boundaries

32

(Galloway et al 2008 Elser 2011) reaching unprecedented values (ie tipping

points) in the Earth system especially during what is now termed the Great

Acceleration (which began in the 1950s) which intensified in the 1970s (Howarth

2004 Steffen et al 2015) Yet dramatic changes in LUCC have occurred in the last

few centuries mainly linked to forestry and agro-pastoral activities (Poraj-Goacuterska et

al 2017 Ge et al 2019 Cheng et al 2019) These have had large impacts on N

(and Carbon -C-) availability in terrestrial and aquatic ecosystems but the synergic

effect with climate change and global N dynamics has not been established

(Vitousek et al 1997 Mclauchlan et al 2007 2013 Pongratz et al 2010

Woodward et al 2012 Mclauchlan et al 2017)

The onset of the Anthropocene poses significant challenges in mediterranean

regions that have a strong seasonality of hydrological regimes and an annual water

deficit (Stocker et al 2013) Mediterranean climates occur in all continents

(California central Chile Australia South Africa circum-Mediterranean regions)

providing a unique opportunity to investigate global change processes during the

Anthropocene in similar climate settings but with variable geographic and cultural

contexts The effects of global change in mediterranean watersheds have been

analyzed from different perspectives hydrology (Giorgi 2006 Arnell and Gosling

2013 Prudhomme et al 2014) vegetation dynamics (Lenihan et al 2003 Vicente-

Serrano et al 2013 Matesanz and Valladares 2014) sediment dynamics (Garciacutea-

Ruiz et al 2013 Garciacutea-Ruiz 2010 Syvitski et al 2005) changes in

biogeochemical cycles (Thomas et al 2013 Fowler et al 2013 Frank et al 2015)

carbon storage (Muntildeoz-Rojas et al 2015) and biodiversity (Hooper et al 2012) A

recent review showed an extraordinarily high variability of erosion rates in

mediterranean watersheds positive relationships with slope and annual

33

precipitation and the paramount effect of land use (Garciacutea-Ruiz et al 2015)

However the temporal context and effect of LUCC on nutrient supply to

mediterranean lakes has not been analyzed in much detail

Major LUCC in central Chile occurred during the Spanish Colonial period

(17th-18th centuries) (Armesto 1994 Gurnell et al 2001 Figueroa et al 2004

Martiacuten-Foreacutes et al 2012 Contreras-Loacutepez et al 2014) with the onset of

industrialization and mostly during the mid to late 20th century (von Gunten et al

2009 Gayo et al 2012) Recent copper pollution caused by 20th century mining

and industrial smelters has been documented in cores throughout the Andes

(Laguna el Ocho and Laguna Ensuentildeo von Gunten et al 2009) and also from our

surveys in the central valley (Batuco wetland) coastal range (Cordillera de Name)

and along the coast itself (Bucalemito and Colejuda) (Valero-Garceacutes et al 2010

unpublished data)

Paleolimnological studies have shown how these systems respond to

climate LUCC and anthropogenic impacts during the last millennia (Jenny et al

2002 2003 Villa Martiacutenez et al 2002 Frugone-Aacutelvarez et al 2017 Contreras et

al 2018) Furthermore changes in sediment and nutrient cycles have also been

identified in associated terrestrial ecosystems dating as far back as the Spanish

Conquest and related to fire clearance and wood extraction practices of the native

forests (Armesto 1994 Contreras-Loacutepez et al 2014) Nevertheless pollen and

limnological evidence argue for a more recent timing of the largest anthropogenic

impacts in central Chile For example paleo records show that during the mid-20th

century increased soil erosion followed replacement of native forest by Pinus

radiata and Eucalyptus globulus plantations at Laguna Matanzas Aculeo and

34

Vichuqueacuten lakes (Jenny et al 2002 Villa-Martiacutenez et al 2002 2003 Frugone-

Aacutelvarez et al 2017)

Lakes are a central component of the global carbon cycle Lakes act as a

sink of the carbon cycle both by mineralizing terrestrially derived organic matter and

by storing substantial amounts of organic carbon (OC) in their sediments (Anderson

et al 2009) Paleolimnological studies have shown a large increase in OC burial

rates during the last century (Heathcote et al 2015) however the rates and

controls on OC burial by lakes remain uncertain as do the possible effects of future

global change and the coupled effect with the N cycle LUCC intensification of

agriculture and associated nutrient loading together with atmospheric N-deposition

are expected to enhance OC sequestration by lakes Climate change has been

mainly responsible for the increased algal productivity since the end of the 19th

century and during the late 20th century in lakes from both the northern (Ruumlhland et

al2015) and southern hemispheres (Michelutti et al 2015 Carrevedo et al 2015)

but many studies suggest a complex interaction of global warming and

anthropogenic influences and it remains to be proven if climate is indeed the only

factor controlling these transitions (Catalaacuten et al 2013) Alternative causes for

recent N (Galloway et al 2008) increases in high altitude lakes such as catchment

mediated processes cannot be ruled out (Camarero and Catalan 2012 Fritz and

Anderson 2013) Few lake-watershed systems have robust enough chronologies of

recent changes to compare variations in C and N with regional and local processes

and even fewer of these are from the southern hemisphere (McLauchlan et al

2007 Holtgrieve et al 2011)

In this paper we present a multiproxy lake-watershed study including N and

C stable isotope analyses on a series of short cores from Laguna Matanzas in

35

central Chile focused in the last 200 years We complemented our record with land

use surveys satellite and aerial photograph studies Our major objectives are 1) to

reconstruct the dynamics among climate human activities and changes in the N

cycle over the last two centuries 2) to evaluate how human activities have altered

the N cycle during the Great Acceleration (since the mid-20th century)

2 STUDY SITE

Laguna Matanzas (33ordm45rsquoS 71ordm 40acuteW 7 m asl Fig 1) is a coastal lake located

in central Chile near to a large populated area (Santiago gt6106 inhabitants) The

lake has a surface area of 15 km2 with a max depth of 3 m and a watershed of 30

km2 The lake basin is emplaced over Pleistocene-Holocene aeolian and alluvial fan

deposits (SERNAGEOMIN 2003) A recent phase of dune activity occurred from the

mid to late Holocene which mostly sealed off the basin from the ocean (Villa-

Martinez 2002) Climate in Laguna Matanzas is characterized by cool-wet winters

and hot-dry summers with annual precipitation of ~510 mm and a mean annual

temperature of 12ordmC Central Chile is in the transition zone between the southern

hemisphere mid-latitude westerlies belt and the South Pacific Anticyclone (or SPA)

(Garreaud et al 2009) In winter precipitation is modulated by the north-west

displacement of the SPA the northward shift of the westerlies wind belt and an

increased frequency of storm fronts stemming off the Southern Hemisphere

Westerly Winds (SWW) (Frugone-Aacutelvarez et al 2017) Austral summers are

typically dry and warm as a strong SPA blocks the northward migration of storm

tracks stemming off the SWW

36

Historic land cover changes started after the Spanish conquest with a Jesuit

settlement in 1627 CE near El Convento village and the development of a livestock

ranch that included the Matanzas watershed After the Jesuits were expelled from

South America in 1778 CE the farm was bought by Pedro Balmaceda and had more

than 40000 head of cattle around 1800 CE (Contreras-Lopez et al 2014) The first

Pinus radiata and Eucalyptus globulus trees were planted during the second half of

the 19th century and were mostly used for dune stabilization (Albert 1900 Gibson

1972) However the main plantation phase occurred 60 years ago (Villa-Martinez

2002) as a response to the application of Chilean Forestry Laws promulgated in

1931 and 1974 and associated state subsidies

Major land cover changes occurred recently from 1975 to 2008 as shrublands

were replaced by more intensive land uses practices such as farmland and tree

plantations (Schulz et al 2010) Laguna Matanzas is part of the Reserva Nacional

Humedal El Yali protected area (Ramsar Ndeg 878) Despite this protected status the

lake and its watershed have been heavily affected by intense agricultural and

farming activities during the last decades The main inlet ldquoLas Rosasrdquo has been

diverted for crop irrigation causing a significant loss of water input to the lake

Consequently the flooded area of the lake has greatly decreased in the last couple

of decades (Fig 1b) Exotic tree species cover a large surface area of the

watershed Recently other activities such as farms for intensive chicken production

have been emplaced in the watershed

37

Figure 1 Laguna Matanzas a) Digital Elevation Model showing the watershed and

the surface hydrologic connection with Colejuda and Cabildo lakes b) Climograph

depicting the warm dry season in austral summer c) Annual precipitation from

1965-2015 (arrow shows start of the most recent ldquomega-droughtrdquo- see Garreaud et

al 2017) d) A decline of lake area occurs between 2007 and 2018 Lake surface

area decreased first along the western sector (in 2007) followed by more inland

areas (in 2018)

38

3 RESULTS

31 Age Model

The age model for the Matanzas sequence was developed using Bacon software

to establish the deposition rates and age uncertainty (Blaauw and Christen 2011)

It is based on 210Pb and 137Cs dates and two 14C dates (Table 2) According to this

age model the lake sequence spans the last 1000 years (Fig 2) A major breccia

layer (unit 3b) was deposited during the early 18th century which agrees with

historic documents indicating that a tsunami impacted Laguna Matanzas and its

watershed in 1730 CE (Contreras-Loacutepez et al 2014) Here we focus in the last 200

years were the most important changes occurred in terms of LUCC (after the

sedimentary hiatus caused by the tsunami) The Spanish colonial period (17th -18th

century) brought new forms of territorial management along with an intensification

of watershed use which remained relatively unchanged until the 1900s

39

Figure 2 a) Age-depth model obtained for the Laguna de Matanzas sedimentary

sequence A hiatus occurs at 80 cm depth (unit 3b) The section of core used for our

analysis is highlighted in a red rectangle b) Close up of the age model used for

analysis of recent anthropogenic influences on the N cycle c) Information regarding

the 14C dates used to construct age model

Lab code Sample ID

Depth (cm) Material Fraction of modern C

Radiocarbon age

Pmc Error BP Error

D-AMS 021579

MAT11-6A 104-105 Bulk Sediment

8843 041 988 37

D-AMS 001132

MAT11-6A 1345-1355

Bulk Sediment

8482 024 1268 21

POZ-57285

MAT13-12 DIC Water column 10454 035 Modern

Table 2 Laguna Matanzas radiocarbon dates

32 The sediment sequence

Laguna Matanzas sediments consist of massive to banded mud with some silt

intercalations They are composed of silicate minerals (plagioclase quartz and clay

minerals) with relatively high TOC content (Fig 3) Pyrite is a common mineral

indicating dominant anoxic conditions in the lake sediments whereas aragonite

occurs only in the uppermost section Mineralogical analyses visual descriptions

texture and geochemical composition were used to characterize five main facies

(Fig 3) F1 (organic-rich mud) represents baseline sedimentation in a shallow well-

mixed brackish highly productive lake and F1acute (dark orange) is a less organic facies

than F1 (more details see table in the supplementary material) F2 (massive to

banded silty mud) indicates periods of higher clastic input into the lake but finer

(mostly clay minerals) likely from suspension deposition associated with flooding

40

events Aragonite (up to 15 ) occurs in both facies but only in samples from the

uppermost 30 cm and it is interpreted as endogenic linked to higher MgFe waters

and elevated biologic productivity

Figure 3 Sedimentary facies and units mineralogy grain size elemental geochemical

and isotopic composition of Laguna Matanzas core Values highlighted in gray indicate

that these are above average

The banded to laminated fining upward silty clay layers (F3) reflect

deposition by high energy turbidity currents The presence of aragonite suggests

that littoral sediments were incorporated by these currents Non-graded laminated

coarse silt layers (F4) do not have aragonite indicating a dominant watershed

41

sediment source Both facies are interpreted as more energetic flood deposits but

with different sediment sources A unique breccia layer with coarse silt matrix and

cm-long soft clasts (F5) is interpreted as a high-energy event (ie a tsunami)

capable of eroding the littoral zone and depositing coarse clastic material in the

distal zone of the lake Similar coarse breccia layers have been found at several

coastal sites in Chile and interpreted as tsunami-related deposits (Vargas et al

2005 Le Roux et al 2008)

33 Sedimentary units

Three main units and six subunits have been defined (Fig 3) based on

sedimentary facies and sediment composition We use ZrTi as an indicator of the

mineral fraction transported from the watershed (Marzecoacuteva et al 2011) as higher

ZrTi (F3 and F4) is commonly associated with coarser sediments (Cuven et al

2010) A high correlation among Br BrTi and TOC (r = 046-087 p value=0)

supports the use of BrTi as an indicator of lake productivity (Marzecoacuteva et al 2011

Frugone-Aacutelvarez et al 2017) The MnFe ratio is indicative of lake bottom

oxygenation (Naecher et al 2013) as under reducing conditions Mn mobilizes more

than Fe leading to a decreased MnFe ratio (Marzecoacuteva et al 2011) SrTi indicates

periods of increased aragonite formation as Sr is preferentially included in the

aragonite mineral structure (Veizer et al 1971) (See supplementary material)

The basal unit (3c 129 to 99 cm) is relatively organic-rich (TOC mean=26

BioSi mean=5) and composed by F1 (without aragonite) with some coarser F4

flood layers (ZrTi mean=025) Unit 3b (98 to 80 cm) is interpreted as a tsunami or

storm surge deposit (breccia F5 grading into massive to banded silt F2) Unit 3a

(79 to 73 cm) is characterized by relatively low productivity (TOC=2 BrTi=002

42

BioSi=4) under anoxic conditions (MnFe=001) Unit 2a (72 to 31cm) has

relatively less organic content and more intercalated clastic facies F3 and F4 The

top of this unit (43-30 cm) has elevated TS values The Subunit 1b (30-20 cm)

shows increasing TOC BioSi and BrTi values (TOC mean = 29 BioSi mean =

54 BrTi mean=004) and the upper subunit 1a (19-0 cm) has the highest TOC

(mean = 64) and BioSi (mean = 56) high BrTi mean = 010 and the presence

of aragonite More frequent anoxic conditions (MnFe lower than 001) during units

3 and 2 shifted towards more oxic episodes (MnFe = 003) in unit 1 (Fig 3)

34 Isotopic signatures

Figure 4 shows the isotopic signature from soil samples of the major land

usescover present in the Laguna Matanzas used as an end member in comparison

with the lacustrine sedimentary units δ15N from cropland samples exhibit the

highest values whereas grassland and soil samples from lake shore areas have

intermediate values (Fig 4) Tree plantations and native forests have similarly low

δ15N values (+11 permil SD=24) All samples (except those from the lake shore)

exhibit low δ13C values (from ndash285permil to ndash298permil) CNmolar from agriculture land

lakeshore area and non-vegetation areas samples display the lowest values (about

18) CNmolar from tree plantations and native forest have the highest values (383

and 267 respectively)

43

Figure 4 C-N stable isotope plot showing a comparison of lake sediments grouped

by sedimentary units (MAT11-6A) with the soil end members of present-day (lake

shore and land usecover) from Laguna Matanzas

The δ15N values from sediment samples (MAT11-6A) range from ndash15 and

+53permil (mean= +35 SD=05) δ13C values range from ndash266permil to ndash202permil (mean=

ndash240 SD=14) In unit 3c δ15N and δ13C show relatively high values (mean=

+41permil and ndash233permil respectively) δ15N and δ13C from unit 3b and 3a fluctuate at

slightly lower values than in 3c (mean δ15N from 3a= +38permil and 3b mean= +39permil

mean δ13C from 3a= ndash242permil and 3b mean= ndash244permil) In unit 2a δ15N values are

relatively high (mean= +38permil) but show a slightly decreasing trend (from +52 to

+24permil at 66 cm and 36 cm respectively) δ13C also decreases (mean= ndash242permil)

reaching minimum values at 45 cm (ndash266permil) with a sharp increase towards the top

of this unit with maximum values ca ndash210permil Unit 1 exhibits the lowest δ15N values

(1a mean= +11permil 1b mean= +28permil) with negative values in the uppermost

44

sediments (ndash04permil at 14 cm) δ13C values show a decreasing trend over most of

subunit 1b and increase only near the very top of this unit

35 Recent land use changes in the Laguna Matanzas watershed

Major LUCC from 1975 (unit 1b) to 2016 CE in the Laguna Matanzasacutes

watershed is summarized in Figure 5 The watershed has a surface area of 30 km2

of which native forest (36) and grassland areas (44) represented 80 of the

total surface in 1975 The area occupied by agriculture was only 02 and tree

plantations were absent Isolated burned areas (33) were located mostly in the

northern part of the watershed By 1989 tree plantations surface area had increased

to 5 burned areas to 17 and agricultural fields to 9 (a 45-fold increase) and

native forest and grassland sectors decreased to 23 and 27 respectively By

2016 agricultural land and tree plantations have increased to 17 of the total area

whereas native forests decreased to 21

45

Figure 5 Land uses and cover changes from 1975 to 2016 in Laguna Matanzas

watershed from natural cover and areas for livestock grazing (grassland) to the

expansion of agriculture and forest plantation

4 DISCUSSION

41 N and C dynamics in Laguna Matanzas

Small lakes with relatively large watersheds such as Laguna Matanzas would

be expected to have relatively high contributions of allochthonous C to the sediment

OM (Gu et al 2006) Terrestrial C3 plants (δ13C =ndash26 to ndash28permil Meyers and Terranes

2001 Ku et al 2007) are dominant in the Laguna Matanzas watershed Likewise

our soil samples ranged across similar although slightly more negative values

46

(δ13C = ndash30 to ndash28permil Fig 4) to those proposed by Meyers and Terranes (2001)

and are used here as terrestrial end members oil samples were taken from the lake

shore (δ13C = ndash22permil) and POM from surface water (δ13C = ndash24permil) were more

positive than the terrestrial end member and are used as lacustrine end members

Thus more negative δ13C values in lake sediment samples are attributed to higher

OM inputs from terrestrial vegetation and more positive δ13C values have increased

aquatic OM (Gu et al 2006 Torres et al 2012) Phytoplankton preferentially uptake

12C leaving the DIC pool enriched in 13C (Gu et al 2006) especially when there are

no important external sources of C (eg decreased C input from the watershed)

Therefore during events of elevated primary productivity the phytoplankton uptakes

12C until its depletion and are then obligated to use the heavier isotope resulting in

an increase in δ13C Changes in lake productivity thus greatly affect the C isotope

signal (Torres et al 2012) with high productivity leading to elevated δ13C values

(Torres et al 2012 Gu et al 2006)

In a similar fashion the N isotope signatures in Laguna Matanzas reflect a

combination of factors including different N sources (autochthonousallochthonous)

and lake processes such as productivity isotope fractionation in the water column

and sediment denitrification Elevated δ15N values from a POM sample (+22permil) and

average values from the lake shore (mean=+34permil SD=028) are used as aquatic

end members whereas terrestrial samples have values from +10 +24 (tree species)

to +77permil +35 (agriculture) which we use as terrestrial end members (Fig 4)

Autochthonous OM in aquatic ecosystems typically displays low δ15N values

when the OM comes from N-fixing species Atmospheric fixation of N2 by

cyanobacteria ends in OM with δ15N values close to 0permil (Leng et al 2006)

Phytoplankton preferentially uptake 14N from Dissolved Inorganic Nitrogen (DIN) in

47

the water column and derived OM typically have δ15N values lower than DIN values

When productivity increases the remaining DIN becomes depleted in 14N which in

turn increases the δ15N values of phytoplankton over time especially if the N not

replenished (Torres et al 2012) Thus high POM δ15N values from Laguna

Matanzas reflect elevated phytoplankton productivity with a 14N- depleted DIN In

addition N-watershed inputs also contribute to high δ15N values Heavily impacted

watersheds by human activities are often reflected in isotope values due to land use

changes and associated modified N fluxes For example the input of N runoff

derived from the use of inorganic fertilizers leads to the presence of elevated δ15N

(between ndash4 to +4permil) values in the water bodies (Elliott and Brush 2006 Diebel and

Vander Zanden 2009) Widory et al (2004) reported a direct relationship between

elevated δ15N values and increased nitrate concentration from manure in the

groundwater of Brittany (France) Terranes and Bernasconi (2000) found a good

correlation between augmented nutrient loading and a progressive increase in δ15N

values of sedimentary OM related to agricultural land use

Post-depositional diagenetic processes can further affect C and N isotope

signatures Several studies have shown a decrease in δ13C values of OM in anoxic

environments particularly during the first years of burial related to the selective

preservation of OM depleted in 13C (Hollander and Smith 2001 Lehmann et al

2002 Gӓlman et al 2009 Torres et al 2012) Diagenetic processes can also lead

to post-burial N isotope enrichment of the sediments Indeed 14N is consumed more

rapidly than 15N by denitrifying bacteria which intensifies under anoxic conditions

(Diebel and Vander Zanden 2009) Thus the remaining OM pool will be enriched

in 15N leaving to elevated δ15N values (Granger et al 2008 Menzel et al 2013)

48

In summary the relatively high δ15N values in sediments of Laguna Matanzas

reflect N input from an agriculturegrassland watershed with positive synergetic

effects from increased lake productivity enrichment of DIN in the water column and

most likely denitrification The increase of algal productivity associated with

increased N terrestrial input andor recycling of lake nutrients (and lesser extent

fixing atmospheric N) and denitrification under anoxic conditions can all increase

δ15N values (Fig 3) In addition elevated lake productivity without C replenishing

(eg by terrestrial C input) produces shifts towards positive δ13C values whereas C

input from the watershed generates more negative δ13C values

42 Recent evolution of the Laguna Matanzas watershed

Sedimentological compositional and geochemical indicators show three

depositional phases in the lake evolution under the human influence in the Laguna

Matanzas over the last two hundred years Although the record is longer (around

1000 years) we analyzed the last two centuries (unit 2 and 1) to provide a recent

historical context for the large changes detected during the 20th century

The first phase lasted from the beginning of the 19th century until ca 1940

(unit 2a Fig 3 4) and was characterized by moderate productivity with elevated

sediment input from the watershed as indicated by our geochemical proxies (BrTi

= 004 AlTi gt 01 Fig 6) Higher lake levels and dominant anoxic bottom conditions

(MnFe = 001 Fig3) can be related to increased precipitation (mean= 557 mmyr)

and lower temperatures (summer annual temperature lt19ordmC) During the Spanish

colonial period the Laguna Matanzas watershed was used as a livestock farm

(Jesuits 1627-1780 unit 3 followed by the Pedro Balmaceda era 1780-1810- unit

2a) (Contreras-Loacutepez et al 2014) The main buildings and farm facilities at the El

49

Convento village During this period livestock grazing and lumber extraction for

mining would have involved extensive deforestation and loss of native vegetation

(eg Armesto et al 1994 2010) However the Matanzas pollen record does not

show any significant regional deforestation during this period (Villa Martiacutenez 2002)

suggesting that the impact may have been highly localized

Lake productivity sediment input and elevated precipitation (Fig 6) all

suggest that N availability was related to this increased input from the watershed

The N from cow manure and soil particles would have led to higher δ15N values

(Elliot and Brush 2016) In addition anoxic lake bottom conditions would lead to

even further enrichment of buried sediment N The δ13C values lend further support

to our interpretation of increased sediment input -and N- from the watershed

Decreased δ13C values reach their lowest values in the entire record (ndash270permil) at

ca 1910 CE (Fig 4 6)

During most of the 19th century human activities in Laguna Matanzas were

similar to those during the Spanish Colonial period However the appearance of

Pinus radiata and Eucalyptus globulus pollen ca 1890 CE (Gibson 1972) the dune

stabilization-afforestation program which began ca 1900 CE (Albert 1900) and the

application of the Chilean forestry law of 1931 (DFL nordm265) contributed to an

increased capacity of the surrounding vegetation to retain nutrients and sediments

The law subsidized forest plantations in areas devoid of vegetation and prohibited

the cutting of forest on slopes greater than 45ordm These land use changes were coeval

with decreased sediment inputs (AlTi trend) from the watershed slightly increased

lake productivity (BrTi from 001 to 003) and a decrease in annual precipitation

(Fig 6) N isotope values become more negative during this period although they

remained high (from +49permil to +37permil) whereas the δ13C trend towards more

50

positive values reflects changes in the N source from watershed to in-lake dynamics

(e g increased endogenic productivity)

The second phase started after 1940 and is clearly marked by an abrupt

change in the general trend of δ15N that oscillates around +41permil (SD = 04permil) during

the first phase to +24permil (SD = 14permil) during the second These δ15N trends reflect

the lowest watershed nutrient and sediment inputs (based on the AlTi record)

decreased precipitation (mean = 318 mm year) and a slight increase in lake

productivity (increased BrTI) Depositional dynamics in the lake likely crossed a

threshold as human activity intensified throughout the watershed and lake levels

decreased

During the Great Acceleration δ15N values shifted towards higher values to

ca 3permil with an increase in δ13C values that are not reflected either in lake

productivity or lake level As the sediment input from the watershed increased and

precipitation remained as low as the previous decade δ15N values during this period

are likely related to watershed clearance which would have increased both nutrient

and sediment input into the lake

The δ13C trend to more positive values reaching the peaks in the 1960s (ndash

212permil) at the same time as the peaks in temperature (196 ordmC mean annual) with a

downward trend in precipitation A shift in OM origin from macrophytes and

watershed input influences to increased lake productivity could explain this trend

(Fig 4 1b)

In the 1970s the Laguna Matanzasacute watershed was mostly covered by native

forest (36) and grassland areas were intended for livestock grazing (44 Fig 5)

Both soils have δ15NSoil lt 5permil (Fig 4) Farming fields occupied a very small area and

tree plantations were almost nonexistent The decreasing trend in δ15N values seen

51

in our record is interrupted by several large peaks that occurred between ca 1975

and ca 1989 when the native forest and grassland areas fell by 23 and 27

respectively largely due to fires affecting 17 of the forests Agriculture fields

increased by 4 and forest plantations increased by 9 (unit 1a) Concomitantly

sediment ndash and likely N - inputs from the watershed decreased (as indicated by the

trend in AlTi) the precipitation was still relatively low (Fig 6) These changes are

likely related to the increase of vegetation cover especially of tree plantations (which

have more negative δ15N values) The small increase in productivity in the lake could

have been favored by increased temperature (von Gunten et al 2009) After 1989

the increase in agriculture land (17 in 2016) correlates with increasing δ15N δ13C

and TOC trends in spite of declining rainfall The increase of forest plantations was

mostly in response to the implementation of the Law Decree of Forestry

Development (DL 701 of 1974) that subsidized forest plantation After 1989 the

increase in agricultural land (17 in 2016) is synchronous with increasing δ15N

δ13C TOC and MnFe trends despite the decline in rainfall and overall lower lake

levels as more water is used for irrigation

The third phase started c 1990 CE (unit 1a) when OM accumulation rates

increase and δ13C δ15N decreased reaching their lowest values in the sequence

around 2000 CE Afterward during the 21st century δ13C and δ15N values again

began to increase The onset of unit 1 is marked by increased lake productivity and

decreased sediment input (AlTi lt 02) synchronous with intensive farming replacing

forestry and extensive agriculture (Fig 5 6)

A change in the general trend of δ15N values which decreased until 1990

(unit 1a) as the native forest and grassland area fell to 23 and 27 respectively

is most likely due to deforestation and fires Agriculture surface increased to 4 and

52

forest plantations increased by 9 (Fig 5) Concomitantly sediment ndash and likely N

ndash inputs from the watershed decreased probably related to the low precipitation (Fig

1b) and the increase of vegetation cover in the watershed in particularly by tree

plantations (with more negative δ15N Fig 4)

At present agriculture and tree plantations occupy around 34 of the

watershed surface whereas native forests and grassland cover 21 and 25

respectively Lake productivity as indicated by BrTi (Fig6) is higher and generates

OM with lower δ15N and higher δ13C values (about +2permil and ndash20permil ca 2000 CE

respectively) due to in-lake processes (ie biological N fixation and nutrient

recycling) and driven by changes in the arboreal cover which diminishes nutrient

flux into the lake (Fig6)

53

Figure 6 Anthropogenic and climatic forcing and lake dynamics response

(productivity sediment input N and C cycles) at Matanzas Lake over the last two

54

centuries Mean annual precipitation reconstructed and temperatures (von Gunten

et al 2009) Vertical gray bars indicate mega-droughts

5 CONCLUSIONS

Human activities have been the main factor controlling the N and C cycle in

the Laguna Matanzas during the last two centuries The N isotope signature in the

lake sediments reflects changes in the watershed fluxes to the lake but also in-lake

processes such as productivity and post-depositional changes Denitrification could

have been a dominant process during periods of increased anoxic conditions which

were more frequent prior to Great Acceleration (1950 CE) Higher δ15N and lower

δ13C values are associated with increased nutrient input from the watershed due to

increased livestock grazing and agriculture pressure (phase 1 Fig 7a) whereas

lower isotope values occurred during periods of increased forest plantations (phase

3 Fig 7c) During periods of increased lake productivity - such as in the last few

decades - δ15N values increased significantly

The most important change in C and N dynamics in the lake occurred after the

1950s (Phase 2 and 3) as tree plantations dominated the watershed Recent

changes in N dynamics can be explained by the higher nutrient contribution

associated with intensive agriculture (i e fertilizers) since the 1990s Although the

replacement of livestock activities with forestry and farming seems to have reduced

nutrient and soil export from the watershed to the lake the inefficient use of fertilizer

(by agriculture) can be the ultimate responsible for lake productivity increase during

the last decades

55

Figure 7 Schematic diagrams illustrating the main factors controlling the

isotope N signal in sediment OM of Laguna Matanzas N input from watershed

depends on human activities and land cover type Agriculture practices and cattle

(grassland development) contribute more N to the lake than native forest and

plantations Periods of higher productivity tend to deplete the dissolved inorganic N

in 14N resulting in higher δ15N (OM) The denitrification processes are more effective

in anoxic conditions associated with higher lake levels

6 METHODS

Short sediment cores were recovered from Laguna Matanzas using an Uwitec

gravity piston corer in 2011 and 2013 (Fig 1a) Sediment cores (MAT11-6A 129 cm

MAT13-2A 149 cm MAT13-3A 33 cm MAT13-4A 99 cm) were split

photographed sub-sampled and stored at the Pyrenean Institute of Ecology (IPE-

CSIC Spain) Core MAT11-6A was obtained from the central sector of the lake and

56

was selected for detailed multiproxy analyses (including elemental geochemistry C

and N isotope analyses XRF and 14C dating)

The isotope analyses (δ13C and δ15N) were performed at the Laboratory of

Biogeochemistry and Applied Stable Isotopes (LABASI-PUC Chile) using a Delta

V Advantage IRMS coupled to a Thermo Flash 2000 Elemental Analyzer via a

Conflo IV interface Isotope results are expressed in standard delta notation (δ) in

per mil (permil) relative to the standards Pee Dee Belemnite (Vienna Pee Dee

Belemnite) for C and to atmospheric N2 for N (Leng et al 2006) Sediment samples

for δ13Corg were pre-treated with 50 ml of HCl and 50 ml of deionized water and

dried at 60ordmC for 4 hr to remove carbonates (Harris et al 2011)

Total Carbon (TC) Total Organic Carbon (TOC) Total Inorganic Carbon (TIC)

and Total Sulphur (TS) were measured every cm with a LECO SC 144 DR at IPE-

CSIC XRF measurements were carried out every 4 mm in MAT11-1A-1G core using

an AVAATECH X-ray Fluorescence II core scanner at the University of Barcelona

(Spain) Results are expressed as element intensities in counts per second (cps)

Tube voltage was operated at 30 kV and 10 kV to obtain the abundances of 15

elements (Al Si S Cl K Ca Ti V Mn Fe Br Rb Sr Y Zr) with an average at

least of 1600 cps (less for Br=1000)

Biogenic silica content mineralogy and grain size were measured every 4

cm Biogenic silica was measured following Mortlock and Froelich (1989) and

Bernaacuterdez et al (2005) using an Auto Analyzer Technicon AAII for dissolved silicate

analysis Mineralogy was analyzed with a Siemens D-500 X-ray diffractometer (Cu

kα 40 kV 30 mA graphite monochromator) at the ICTJA-CSIC (Spain) Grain size

analyses were performed in a Beckmann Coulter LS 13 320 Particle Size Analyzer

57

at the IPE-CSIC The samples were classified according to textural classes as

follows clay (lt2 μm) silt (20-2 microm) and sand (gt2 microm) fractions

The age-depth model for the Laguna Matanzas sedimentary sequence was

constructed using 210Pb and 137Cs dating techniques (MAT13-4A) as well as two 14C

AMS dates on bulk sediment samples (MAT11-6A fig 2) We dated the dissolved

inorganic carbon (DIC) in the water column and no significant reservoir effect is

present in the modern-day water column (10454 + 035 pcmc Table 2) An age-

depth model was obtained with the Bacon R package to estimate the deposition

rates and associated age uncertainties along the core (Blaauw and Christen 2011)

To estimate LUCC of Laguna Matanzasacutes watershed we use satellite images

Landsat MSS for 1975 Landsat TM for 1989 and Landsat OLI for 2016 all taken in

summer or autumn (Table 1) We performed supervised classification of land uses

(maximum likelihood algorithm) for each year (1975 1989 and 2016) and the results

were mapped using software ArcGIS 102 in 2017

Satellite Images Acquisition Date

Resolution

Landsat MSS 19750322 60 m

Landsat TM 19890217 30 m

Landsat OLI 20160404 30 m

Table 1 Landsat imagery

Surface water samples were filtered for obtained particulate organic matter In

addition soil samples from the main land usecover present in the Laguna Matanzas

watershed were collected Elemental C N and their corresponding isotopes from

POM and soil were obtained at the LABASI and used here as end members

Daily precipitation at Santo Domingo (33ordm39`S 71ordm3 6`W)- the nearest weather

station to Laguna Matanzasndash was compiled using the redPrec R package (Fig1 d

Serrano-Notivoli et al 2017 Sarricolea et al 2019) To extend our precipitation

58

reconstruction back to 1824 we correlated this dataset with that available for

Santiago The Santiago data was compiled from data published in the Anales of

Universidad of Chile (1850) for the years 1824 to 1849 Almeyda (1940) for the years

1849 to 1864 and the Quinta Normal series from 1866 to the present (Direccioacuten

Meteoroloacutegica de Chile) We generated a linear regression model between the

presentday Santo Domingo station and the compiled Santiago data with a Pearson

coefficient of 087 and p-valuelt 001

Acknowledgments This research was funded by grants CONICYT AFB170008

to the Institute of Ecology and Biodiversity (IEB) and FONDECYT 1150763 (to CL)

Doctoral grant Becas Chile 21150224 MEDLANT (Spanish Ministry of Economy

and Competitiveness grant CGL2016-76215-R) Additional funding was provided

by the Laboratorio Internacional de Cambio Global (LINCGlobal PUC-CSIC) We

thank R Lopez E Royo and M Gallegos for help with sample analyses We thank

the Laboratory of Biogeochemistry and Applied Stable Isotopes (LABASI) of the

Department of Ecology (PUC) for sample analyses

References

Albert F 1900 Las dunas o sean arenas volantes voladeros arenas muertas invasion de las arenas playas I meacutedanos del centro de Chile comprendiendo el litoral desde el liacutemite norte de la provincia de Aconcagua hasta el liacutemite sur de la de Arauco Memorias cientiacuteficas I Lit

Anderson NJ W D Fritz SC 2009 Holocene carbon burial by lakes in SW

Greenland Glob Chang Biol httpsdoiorg101111j1365-2486200901942x

Armesto J Villagraacuten C Donoso C 1994 La historia del bosque templado

chileno Ambient y Desarro 66 66ndash72 httpsdoiorg101007BF00385244

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea

AM Marquet PA 2010 From the Holocene to the Anthropocene A

59

historical framework for land cover change in southwestern South America in the past 15000 years Land use policy 27 148ndash160 httpsdoiorg101016jlandusepol200907006

Arnell NW Gosling SN 2013 The impacts of climate change on river flow

regimes at the global scale J Hydrol 486 351ndash364 httpsdoiorg101016JJHYDROL201302010

Bernaacuterdez P Prego R Franceacutes G Gonzaacutelez-Aacutelvarez R 2005 Opal content in

the Riacutea de Vigo and Galician continental shelf Biogenic silica in the muddy fraction as an accurate paleoproductivity proxy Cont Shelf Res httpsdoiorg101016jcsr200412009

Blaauw M Christen JA 2011 Flexible paleoclimate age-depth models using an

autoregressive gamma process Bayesian Anal 6 457ndash474 httpsdoiorg10121411-BA618

Brush GS 2009 Historical land use nitrogen and coastal eutrophication A

paleoecological perspective Estuaries and Coasts 32 18ndash28 httpsdoiorg101007s12237-008-9106-z

Camarero L Catalan J 2012 Atmospheric phosphorus deposition may cause

lakes to revert from phosphorus limitation back to nitrogen limitation Nat Commun httpsdoiorg101038ncomms2125

Carrevedo ML Frugone M Latorre C Maldonado A Bernaacuterdez P Prego

R Caacuterdenas D Valero-Garceacutes B 2015 A 700-year record of climate and environmental change from a high Andean lake Laguna del Maule central Chile (36degS) Holocene 25 956ndash972 httpsdoiorg1011770959683615574584

Catalan J Pla-Rabeacutes S Wolfe AP Smol JP Ruumlhland KM Anderson NJ

Kopaacuteček J Stuchliacutek E Schmidt R Koinig KA Camarero L Flower RJ Heiri O Kamenik C Korhola A Leavitt PR Psenner R Renberg I 2013 Global change revealed by palaeolimnological records from remote lakes A review J Paleolimnol httpsdoiorg101007s10933-013-9681-2

Chen Y Y Huang W Wang W H Juang J Y Hong J S Kato T amp

Luyssaert S (2019) Reconstructing Taiwanrsquos land cover changes between 1904 and 2015 from historical maps and satellite images Scientific Reports 9(1) 3643 httpsdoiorg101038s41598-019-40063-1

Contreras S Werne J P Araneda A Urrutia R amp Conejero C A (2018)

Organic matter geochemical signatures (TOC TN CN ratio δ 13 C and δ 15 N) of surface sediment from lakes distributed along a climatological gradient on the western side of the southern Andes Science of The Total Environment 630 878-888 httpsdoiorg101016jscitotenv201802225

Contreras-Loacutepez M (Playa AUHVC (Universidad de VRFS (Pontificia UC

60

de V 2014 ELEMENTOS DE LA HISTORIA NATURAL DEL An Mus Hist Natulas Vaplaraiso 27 51ndash67

Cuven S Francus P Lamoureux SF 2010 Estimation of grain size variability

with micro X-ray fluorescence in laminated lacustrine sediments Cape Bounty Canadian High Arctic J Paleolimnol 44 803ndash817 httpsdoiorg101007s10933-010-9453-1

Diebel M Vander Zanden MJ 201209 Nitrogen stable isotopes in streams

stable isotopes Nitrogen effects of agricultural sources and transformations Ecol Appl 19 1127ndash1134 httpsdoiorg10189008-03271

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in

freshwater wetlands record long-term changes in watershed nitrogen source and land use SO - Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash2916

Elser J 2011 A world awash with nitrogen Science 334 1504ndash1506 Espizua LE Pitte P 2009 The Little Ice Age glacier advance in the Central

Andes (35degS) Argentina Palaeogeogr Palaeoclimatol Palaeoecol 281 345ndash350 httpsdoiorg101016JPALAEO200810032

Figueroa JA Castro S A Marquet P A Jaksic FM 2004 Exotic plant

invasions to the mediterranean region of Chile  causes history and impacts Invasioacuten de plantas exoacuteticas en la regioacuten mediterraacutenea de Chile  causas historia e impactos Rev Chil Hist Nat 465ndash483 httpsdoiorg104067S0716-078X2004000300006

Fowler D Coyle M Skiba U Sutton MA Cape JN Reis S Sheppard

LJ Jenkins A Grizzetti B Galloway N Vitousek P Leach A Bouwman AF Butterbach-bahl K Dentener F Stevenson D Amann M Voss M 2013 The global nitrogen cycle in the twenty- first century Philisophical Trans R Soc B httpsdoiorghttpdxdoiorg101098rstb20130164

Frank D Reichstein M Bahn M Thonicke K Frank D Mahecha MD

Smith P van der Velde M Vicca S Babst F Beer C Buchmann N Canadell JG Ciais P Cramer W Ibrom A Miglietta F Poulter B Rammig A Seneviratne SI Walz A Wattenbach M Zavala MA Zscheischler J 2015 Effects of climate extremes on the terrestrial carbon cycle Concepts processes and potential future impacts Glob Chang Biol httpsdoiorg101111gcb12916

Fritz SC Anderson NJ 2013 The relative influences of climate and catchment

processes on Holocene lake development in glaciated regions J Paleolimnol httpsdoiorg101007s10933-013-9684-z

Frugone-Aacutelvarez M Latorre C Giralt S Polanco-Martiacutenez J Bernaacuterdez P

61

Oliva-Urcia B Maldonado A Carrevedo ML Moreno A Delgado Huertas A Prego R Barreiro-Lostres F Valero-Garceacutes B 2017 A 7000-year high-resolution lake sediment record from coastal central Chile (Lago Vichuqueacuten 34degS) implications for past sea level and environmental variability J Quat Sci 32 830ndash844 httpsdoiorg101002jqs2936

Galloway JN Townsend AR Erisman JW Bekunda M Cai Z Freney JR

Martinelli LA Seitzinger SP Sutton MA 2008 Transformation of the Nitrogen Cycle  Science (80- ) 320 889ndash892 httpsdoiorg101126science1136674

Gaumllman V Rydberg J Bigler C 2009 Decadal diagenetic effects on δ 13 C and

δ 15 N studied in varved lake sediment Limnol Oceanogr 54 917ndash924 httpsdoiorg104319lo20095430917

Garciacutea-Ruiz JM 2010 The effects of land uses on soil erosion in Spain A

review Catena httpsdoiorg101016jcatena201001001

Garciacutea-Ruiz JM Loacutepez-Moreno JI Lasanta T Vicente-Serrano SM

Gonzaacutelez-Sampeacuteriz P Valero-Garceacutes BL Sanjuaacuten Y Begueriacutea S Nadal-Romero E Lana-Renault N Goacutemez-Villar A 2015 Los efectos geoecoloacutegicos del cambio global en el Pirineo Central espantildeol una revisioacuten a distintas escalas espaciales y temporales Pirineos httpsdoiorg103989Pirineos2015170005

Garciacutea-Ruiz JM Nadal-Romero E Lana-Renault N Begueriacutea S 2013

Erosion in Mediterranean landscapes Changes and future challenges Geomorphology 198 20ndash36 httpsdoiorg101016jgeomorph201305023

Garreaud RD Vuille M Compagnucci R Marengo J 2009 Present-day

South American climate Palaeogeogr Palaeoclimatol Palaeoecol httpsdoiorg101016jpalaeo200710032

Gayo EM Latorre C Jordan TE Nester PL Estay SA Ojeda KF

Santoro CM 2012 Late Quaternary hydrological and ecological changes in the hyperarid core of the northern Atacama Desert (~21degS) Earth-Science Rev httpsdoiorg101016jearscirev201204003

Ge Y Zhang K amp Yang X (2019) A 110-year pollen record of land use and land

cover changes in an anthropogenic watershed landscape eastern China Understanding past human-environment interactions Science of The Total Environment 650 2906-2918 httpsdoiorg101016jscitotenv201810058

Goyette J Bennett EM Howarth RW Maranger R 2016 Global

Biogeochemical Cycles 1000ndash1014 httpsdoiorg1010022016GB005384Received

Granger J Sigman DM Lehmann MF Tortell PD 2008 Nitrogen and

oxygen isotope fractionation during dissimilatory nitrate reduction by

62

denitrifying bacteria 53 2533ndash2545 httpsdoiorg10230740058342

Gruber N Galloway JN 2008 An Earth-system perspective of the global

nitrogen cycle Nature 451 293ndash296 httpsdoiorg101038nature06592

Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater eutrophic lake Limnol Oceanogr 51 2837ndash2848 httpsdoiorg104319lo20065162837

Gurnell AM Petts GE Hannah DM Smith BPG Edwards PJ Kollmann

J Ward J V Tockner K 2001 Effects of historical land use on sediment yield from a lacustrine watershed in central Chile Earth Surf Process Landforms 26 63ndash76 httpsdoiorg1010021096-9837(200101)261lt63AID-ESP157gt30CO2-J

Heathcote A J et al Large increases in carbon burial in northern lakes during the

Anthropocene Nat Commun 610016 doi 101038ncomms10016 (2015) Hollander DJ Smith MA 2001 Microbially mediated carbon cycling as a

control on the δ13C of sedimentary carbon in eutrophic Lake Mendota (USA) New models for interpreting isotopic excursions in the sedimentary record Geochim Cosmochim Acta httpsdoiorg101016S0016-7037(00)00506-8

Holtgrieve GW Schindler DE Hobbs WO Leavitt PR Ward EJ Bunting

L Chen G Finney BP Gregory-Eaves I Holmgren S Lisac MJ Lisi PJ Nydick K Rogers LA Saros JE Selbie DT Shapley MD Walsh PB Wolfe AP 2011 A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere Science (80) 334 1545ndash1548 httpsdoiorg101126science1212267

Hooper DU Adair EC Cardinale BJ Byrnes JEK Hungate BA Matulich

KL Gonzalez A Duffy JE Gamfeldt L Connor MI 2012 A global synthesis reveals biodiversity loss as a major driver of ecosystem change Nature httpsdoiorg101038nature11118

Horvatinčić N Sironić A Barešić J Sondi I Krajcar Bronić I Borković D

2016 Mineralogical organic and isotopic composition as palaeoenvironmental records in the lake sediments of two lakes the Plitvice Lakes Croatia Quat Int httpsdoiorg101016jquaint201701022

Howarth RW 2004 Human acceleration of the nitrogen cycle Drivers

consequences and steps toward solutions Water Sci Technol httpsdoiorg1010382Fscientificamerican0490-56

Jenny B Valero-Garceacutes BL Urrutia R Kelts K Veit H Appleby PG Geyh

M 2002 Moisture changes and fluctuations of the Westerlies in Mediterranean Central Chile during the last 2000 years The Laguna Aculeo record (33deg50primeS) Quat Int 87 3ndash18 httpsdoiorg101016S1040-

63

6182(01)00058-1

Jenny B Wilhelm D Valero-Garceacutes BL 2003 The Southern Westerlies in

Central Chile Holocene precipitation estimates based on a water balance model for Laguna Aculeo (33deg50primeS) Clim Dyn 20 269ndash280 httpsdoiorg101007s00382-002-0267-3

Leng M J Lamb A L Heaton T H Marshall J D Wolfe B B Jones M D

amp Arrowsmith C 2006 Isotopes in lake sediments In Isotopes in palaeoenvironmental research (pp 147-184) Springer Dordrecht

Le Roux JP Nielsen SN Kemnitz H Henriquez Aacute 2008 A Pliocene mega-

tsunami deposit and associated features in the Ranquil Formation southern Chile Sediment Geol 203 164ndash180 httpsdoiorg101016jsedgeo200712002

Lehmann M Bernasconi S Barbieri a McKenzie J 2002 Preservation of

organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis Geochim Cosmochim Acta 66 3573ndash3584 httpsdoiorg101016S0016-7037(02)00968-7

Lenihan JM Drapek R Bachelet D Neilson RP 2003 Climate change

effects on vegetation distribution carbon and fire in California Ecol Appl httpsdoiorg101890025295

McLauchlan K K Gerhart L M Battles J J Craine J M Elmore A J

Higuera P E amp Perakis S S (2017) Centennial-scale reductions in nitrogen availability in temperate forests of the United States Scientific reports 7(1) 7856 httpsdoi101038s41598-017-08170-z

Martel-Cea A Maldonado A Grosjean M Alvial I de Jong R Fritz SC von

Gunten L 2016 Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical Central Chile (32ordmS 3050 masl) Palaeogeogr Palaeoclimatol Palaeoecol 461 44ndash54 httpsdoiorg101016jpalaeo201608003

Martiacuten-Foreacutes I Casado MA Castro I Ovalle C Pozo A Del Acosta-Gallo

B Saacutenchez-Jardoacuten L Miguel JM De 2012 Flora of the mediterranean basin in the chilean ESPINALES Evidence of colonisation Pastos 42 137ndash160

Marzecovaacute A Mikomaumlgi a Koff T Martma T 2011 Sedimentary geochemical

response to human impact on Lake Notildemmejaumlrv Estonia Est J Ecol 60 54 httpsdoiorg103176eco2011105

Matesanz S Valladares F 2014 Ecological and evolutionary responses of

Mediterranean plants to global change Environ Exp Bot httpsdoiorg101016jenvexpbot201309004

64

McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE 2007

Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470 httpsdoiorg101073pnas0701779104

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash1643 httpsdoiorg1011770959683613496289

Menzel P Gaye B Wiesner MG Prasad S Stebich M Das BK Anoop A

Riedel N Basavaiah N 2013 Influence of bottom water anoxia on nitrogen isotopic ratios and amino acid contributions of recent sediments from small eutrophic Lonar Lake central India Limnol Oceanogr 58 1061ndash1074 httpsdoiorg104319lo20135831061

Meyers PA Teranes JL 2001 Sediment organic matter in Tracking

Environmental Change Using Lake Sediments Volume 2 Physical and Geochemical Methods httpsdoiorg1018971551-5028(1999)018lt0231SOMCAAgt23CO2

Michelutti N Wolfe AP Cooke CA Hobbs WO Vuille M Smol JP 2015

Climate change forces new ecological states in tropical Andean lakes PLoS One httpsdoiorg101371journalpone0115338

Muntildeoz-Rojas M De la Rosa D Zavala LM Jordaacuten A Anaya-Romero M

2011 Changes in land cover and vegetation carbon stocks in Andalusia Southern Spain (1956-2007) Sci Total Environ httpsdoiorg101016jscitotenv201104009

Naeher S Gilli A North RP Hamann Y Schubert CJ 2013 Tracing bottom

water oxygenation with sedimentary MnFe ratios in Lake Zurich Switzerland Chem Geol 352 125ndash133 httpsdoiorg101016jchemgeo201306006

Poraj-Goacuterska A I Żarczyński M J Ahrens A Enters D Weisbrodt D amp

Tylmann W (2017) Impact of historical land use changes on lacustrine sedimentation recorded in varved sediments of Lake Jaczno northeastern Poland Catena 153 182-193 httpdxdoiorg101016jcatena201702007

Pongratz J Reick CH Raddatz T Claussen M 2010 Biogeophysical versus

biogeochemical climate response to historical anthropogenic land cover change Geophys Res Lett 37 1ndash5 httpsdoiorg1010292010GL043010

Prudhomme C Giuntoli I Robinson EL Clark DB Arnell NW Dankers R

Fekete BM Franssen W Gerten D Gosling SN Hagemann S Hannah DM Kim H Masaki Y Satoh Y Stacke T Wada Y Wisser D 2014 Hydrological droughts in the 21st century hotspots and uncertainties from a global multimodel ensemble experiment Proc Natl Acad Sci httpsdoiorg101073pnas1222473110

65

Ruumlhland KM Paterson AM Smol JP 2015 Lake diatom responses to

warming reviewing the evidence J Paleolimnol httpsdoiorg101007s10933-

015-9837-3

Sarricolea P Meseguer-Ruiz Oacute Serrano-Notivoli R Soto M V amp Martin-Vide

J (2019) Trends of daily precipitation concentration in Central-Southern Chile Atmospheric research 215 85-98 httpsdoiorg101016jatmosres201809005

Sernageomin 2003 Mapa geologico de chile version digital Publ Geol Digit Serrano-Notivoli R de Luis M Begueriumlia S 2017 An R package for daily

precipitation climate series reconstruction Environ Model Softw httpsdoiorg101016jenvsoft201611005

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98 httpsdoiorg1011772053019614564785

Stine S 1994 Extreme and persistent drought in California and Patagonia during

mediaeval time Nature 369 546ndash549 httpsdoiorg101038369546a0

Stocker TF Dahe Q Plattner G-K Alexander L V Allen SK Bindoff NL

Breacuteon F-M Church JA Cubash U Emori S Forster P Friedlingstein P Talley LD Vaughan DG Xie S-P 2013 Technical Summary in Climate Change 2013 The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change httpsdoiorg101017 CBO9781107415324005

Syvitski JPM Voumlroumlsmarty CJ Kettner AJ Green P 2005 Impact of humans

on the flux of terrestrial sediment to the global coastal ocean Science 308(5720) 376-380 httpsdoiorg101126science1109454

Thomas RQ Zaehle S Templer PH Goodale CL 2013 Global patterns of

nitrogen limitation Confronting two global biogeochemical models with observations Glob Chang Biol httpsdoiorg101111gcb12281

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status J Paleolimnol 47 693ndash706 httpsdoiorg101007s10933-012-9593-6

Urbina Carrasco MX Gorigoitiacutea Abbott N Cisternas Vega M 2016 Aportes a

la historia siacutesmica de Chile el caso del gran terremoto de 1730 Anuario de Estudios Americanos httpsdoiorg103989aeamer2016211

Vargas G Ortlieb L Chapron E Valdes J Marquardt C 2005 Paleoseismic

inferences from a high-resolution marine sedimentary record in northern Chile

66

(23degS) Tectonophysics httpsdoiorg101016jtecto200412031 399(1-4) 381-398httpsdoiorg101016jtecto200412031

Valero-Garceacutes BL Latorre C Morelliacuten M Corella P Maldonado A Frugone M Moreno A 2010 Recent Climate variability and human impact from lacustrine cores in central Chile 2nd International LOTRED-South America Symposium Reconstructing Climate Variations in South America and the Antarctic Peninsula over the last 2000 years Valdivia p 76 (httpwwwpagesunibechproductsmeeting-products1024-2nd-international-lotred-south-america-symposium-reconstructing-climate-variations-in-south-america-and-the-antarctic-peninsula-over-the-last-2000-yearshttpwwwpagesunibechproductsmeeting-products1024-2nd-international-lotred-south-america-symposium-reconstructing-climate-variations-in-south-america-and-the-antarctic-peninsula-over-the-last-2000-years

Vicente-Serrano SM Gouveia C Camarero JJ Begueria S Trigo R

Lopez-Moreno JI Azorin-Molina C Pasho E Lorenzo-Lacruz J Revuelto J Moran-Tejeda E Sanchez-Lorenzo A 2013 Response of vegetation to drought time-scales across global land biomes Proc Natl Acad Sci httpsdoiorg101073pnas1207068110

Villa Martiacutenez R P 2002 Historia del clima y la vegetacioacuten de Chile Central

durante el Holoceno Una reconstruccioacuten basada en el anaacutelisis de polen sedimentos microalgas y carboacuten PhD

Villa-Martiacutenez R Villagraacuten C Jenny B 2003 Pollen evidence for late -

Holocene climatic variability at laguna de Aculeo Central Chile (lat 34o S) The Holocene 3 361ndash367

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Human alteration of the global nitrogen cycle sources and consequences Ecological applications 7(3) 737-750 httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M Rein B Urrutia R amp Appleby P (2009) A

quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo central Chile back to AD 850 The Holocene 19(6) 873-881 httpsdoiorg1011770959683609336573

von Gunten L Grosjean M Eggenberger U Grob P Urrutia R Morales A

2009 Pollution and eutrophication history AD 1800-2005 as recorded in sediments from five lakes in Central Chile Glob Planet Change 68 198ndash208 httpsdoiorg101016jgloplacha200904004

Widory D Kloppmann W Chery L Bonnin J Rochdi H Guinamant JL

2004 Nitrate in groundwater An isotopic multi-tracer approach J Contam Hydrol 72 165ndash188 httpsdoiorg101016jjconhyd200310010

67

Woodward CA Potito AP Beilman DW 2012 Carbon and nitrogen stable isotope ratios in surface sediments from lakes of western Ireland Implications for inferring past lake productivity and nitrogen loading J Paleolimnol 47 167ndash184 httpsdoiorg101007s10933-011-9568-z

68

Supplementary material

Facie Name Description Depositional Environment

F1 Organic-rich

mud

Massive to banded black

organic - rich (TOC up to 14 )

mud with aragonite in dm - thick

layers Slightly banded intervals

contain less OM (TOClt4) and

aragonite than massive

intervals High MnFe (oxic

bottom conditions) High CaTi

BrTi and BioSi (up to 5)

Distal low energy environment

high productivity well oxygenated

and brackish waters and relative

low lake level

F2 Massive to

banded silty clay

to fine silt

cm-thick layers mostly

composed by silicates

(plagioclase quartz cristobalite

up to 65 TOC mean=23)

Some layers have relatively high

pyrite content (up to 25) No

carbonates CaTi BrTi and

BioSi (mean=48) are lower

than F1 higher ZrTi (coarser

grain size)

Deposition during periods of

higher sediment input from the

watershed

69

F3 Banded to

laminated light

brown silty clay

cm-thick layers mostly

composed of clay minerals

quartz and plagioclase (up to

42) low organic matter

(TOC mean=13) low pyrite

and BioSi content

(mean=46) and some

aragonite

Flooding events reworking

coastal deposits

F4 Laminated

coarse silts

Thin massive layers (lt2mm)

dominated by silicates Low

TOC (mean=214 ) BrTi

(mean=002) MnFe (lt02)

TIC (lt034) BioSi

(mean=46) and TS values

(lt064) and high ZrTi

Rapid flooding events

transporting material mostly

from within the watershed

F5 Breccia with

coarse silt

matrix

A 17 cm thick (80-97 cm

depth) layer composed by

irregular mm to cm-long ldquosoft-

clastsrdquo of silty sediment

fragments in a coarse silt

matrix Low CaTi BrTi and

MnFe ratios and BioSi

Rapid high energy flood

events

70

(mean=43) and high ZrTi

(gt018)

Table Sedimentological and compositional characteristics of Laguna Matanzas

facies

71

CAPIacuteTULO 2 STABLE ISOTOPES TRACK LAND USE AND COVER

CHANGES IN A MEDITERRANEAN LAKE IN CENTRAL CHILE OVER THE

LAST 600 YEARS

72

Stable isotopes track land use and cover changes in a mediterranean lake in

central Chile over the last 600 years

Magdalena Fuentealbaabc Claudio Latorreabc Matiacuteas Frugone-Aacutelvarezabc Pablo

Sarricolead Leonardo Villaciacutese M Laura Carrevedob Blas Valero-Garceacutescg

a Departamento de Ecologiacutea Pontificia Universidad Catoacutelica de Chile Alameda 340 Santiago Chile

b Institute of Ecology and Biodiversity (IEB) Las Palmeras 3425 Nuntildeoa Santiago Chile

c Laboratorio Internacional de Cambio Global LINCGlobal PUC-CSIC Spain

d Departamento de Geografiacutea Universidad de Chile Marcoleta 250 Santiago Chile

e Departamento de Ecologiacutea Universidad de ChileLas Palmeras 3425 Nuntildeoa Santiago Chile

f Instituto Pirenaico de Ecologiacutea (IPE-CSIC) Avenida Montantildeana 1005 Zaragoza 50059 Spain

Corresponding authors E-mail addresses clatorrebiopuccl magdalenafuentealbagmailcom

Key words Anthropocene lake sediment δsup1⁵N δsup1sup3C Great Acceleration organic

geochemistry watershedndashlake system Stable Isotope Analyses land usecover

change Nitrogen cycle mediterranean ecosystems central Chile

73

Abstract

Nutrient fluxes in many aquatic ecosystems are currently being overridden by

anthropic controls especially since the industrial revolution (mid-1800s) and the

Great Acceleration (mid-1900s) Land use and cover changes (LUCC) alter the

availability and fluxes of nutrients such as nitrogen that are transferred via runoff

and groundwater into lakes By altering lake productivity and trophic status these

changes are often preserved in the sedimentary record Here we use

geolimnological proxies and stable isotope analyses (δsup1⁵N δsup13C) on lake sediments

to reconstruct the lake-watershed nutrient transfer in a central Chilean lake (Lago

Vichuqueacuten) over the past 600 years We compare our multiproxy record from recent

lake sediments to the soilvegetation relationship across the watershed as well as

land usecover changes from 1975 to 2014 derived from satellite images Our results

show that lake sediment δsup1⁵N values increased with meadow cover but decreased

with tree plantations suggesting increased nitrogen retention when trees dominate

the watershed Our δsup1⁵N record from central Chile can thus be interpreted as a proxy

for nutrient availability over the last 600 years mainly derived from land use changes

coupled with climate drivers Although variable sources of organic matter and in situ

fractionation often hinder straightforward environmental interpretations of stable N

isotope signatures our study shows that lake sediment δsup1⁵N can be a useful tool for

assessing the contribution of past human activities in nutrient and nitrogen cycling

1 Introduction

Nitrogen (N) is a limiting nutrient in terrestrial and aquatic ecosystems (Vitousek

et al 1997) Changes in its availability can drive eutrophication and increase

pollution in these ecosystems (McLauchlan et al 2013) Although recent human

74

impacts on the global N cycle have been significant the consequences of increased

anthropogenic N on these ecosystems are unclear (Gerhart and Mclauchlan 2014

Battye et al 2017) Isotopic signatures are key to understand N dynamics in lakes

nevertheless in situ andor diagenetic fractionation along with multiple sources of

organic matter (OM) often hinder straightforward environmental interpretations from

isotopes Monitoring δ15N and δ13C values as components of the N cycle

specifically those related to the link between terrestrial and aquatic ecosystems can

help differentiate between effects from processes versus sources in stable isotope

values (eg from Particulate Organic Matter -POM- soil and vegetation) and

improve how we interpret variations in δ15N (and δ13C) values at longer temporal

scales

The main processes controlling stable N isotopes in bulk lake OM are source

lake productivity diagenesis and denitrification (Talbot 2001 Leng et al 2006

Fariacuteas et al 2009 Torres et al 2012 Brahney et al 2014) N sources depend on

contributions from the watershed (ie soil and biomass) the transfer of atmospheric

N to the lake (ie atmospheric N2 fixation) and nutrient recycling (Leng et al 2006)

Atmospheric N2 (isotopically defined as δ15N =0) is fixed by cyanobacteria with

minimal fractionation resulting in δ15NOM values that fluctuate from -2 to +2permil (Fogel

and Cifuentes 1993 Talbot 2001 Elliot and Brush 2006) Besides N2 fixation by

cyanobacteria phytoplankton species assimilate dissolved inorganic nitrogen (DIN)

and values typically range from +7 to +10permil (Xu et al 2016 Meyers et al 2003) In

addition seasonal changes in POM occur in the lake water column Gu et al (2006)

sampled the water column of Lake Wauberg (Florida USA) during a hydrologic year

and found a higher development of N fixing species during the summer A major

factor behind this increase are human activities in the watershed which control the

75

inputs of the sediment and nutrients to the lake (Woodward et al 2011) Some

studies have shown higher δ15N values in lake sediments from watersheds that are

highly affected by human activities (Bruland and Mackenzie 2010 Woodward et al

2011) Syntenic fertilizers displayed δ15N values between -4 to +4permil cattle manure

around +8 to +22permil and surface and groundwater OM between 0 to +10permil (Elliott

and Brush 2006 Leng et al 2006) Although relatively low δ15N values from

fertilizers constitute major N input to human-altered watersheds the elevated loss

of 14N via volatilization of ammonia and denitrification leaves the remaining total N

input enriched in 15N (Bruland and Mackenzie 2010)

In addition to the different sources and variations in lake productivity early

diagenesis at the sedimentndashwater interface in the sediment can further alter

sediment OM isotope values (Brahney et al 2014 Galman et al 2009) During

diagenetic loss of N in lacustrine systems kinetic fractionation occurs and the

remaining N is enriched in 15N leading to higher δ15N values (Galman et al 2006

Talbot 2001) Denitrification tends to enrich lake sediments in 15N due to the

assimilation of nitrates by denitrifying bacteria (Granger et al 2008) and is more

prevalent in anoxic environments (Brahney et al 2016 Lehman et al 2002)

Carbon isotopes in lake sediments can also provide useful information about

paleoenvironmental changes OM origin and depositional processes (Meyers et al

2003) Allochthonous organic sources (high CN ratios) produce isotope values

similar to values from catchment vegetation Autochthonous organic matter (low CN

ratio) is influenced by fractionation both in the lake and the watershed leading up to

carbon assimilation by lacustrine biota (Woodward et al 2011) Changes in

productivity greatly affect δ13COM values (Torres et al 2012) as during C uptake

plankton preferentially assimilate 12C leaving the dissolved inorganic carbon (DIC)

76

pool enriched in 13C (Gu et al 2006) with phytoplankton averaging ca 20 permil lower

than the respective δ13CDIC values (Leng et al 2006) Under conditions of low to

moderate primary productivity plankton preferentially uptake the lighter 12C

resulting in low δ13C values displayed by the OM (Torres et al 2012) Conversely

during high primary productivity phytoplankton will uptake 12C until its depletion and

is then forced to assimilate the heavier isotope resulting in an increase in δ13C

values Higher productivity in C-limited lakes due to slow water-atmosphere

exchange of CO2 also results in high δ13C values (Galman et al 2009) In these

cases algae are forced to uptake dissolved bicarbonate with δ13C values between

7 to 10permil higher than those of the atmospheric CO2 dissolved in water (Sun et al

2016 Torres et al 2012 Galman et al 2009)

Stable isotope analyses from lake sediments are thus useful tools to

reconstruct shifts in lake-watershed dynamics caused by changes in limnological

parameters and LUCC Our knowledge of the current processes that can affect

stable isotope signals in a watershed-lake system is limited however as monitoring

studies are scarce Besides in order to use stable isotope signatures to reconstruct

past environmental changes we require a multiproxy approach to understand the

role of the different variables in controlling these values Hence in this study we

carried out a detailed survey of current N dynamics in a coastal central Chilean lake

(Lago Vichuqueacuten) and a multiproxy study of a sediment record spanning the last

600 years The characterization of the recent changes in the watershed since 1970s

is based on satellite images to compare recent changes in the lake and assess how

these are related with climate variability and an ever increasing human footprint

(Lara et al 2012 Gallardo et al 2015 Steffen et al 2015) Our main goal is to

investigate how stable isotope values from lake sediment reflect changes in the lake

77

ndash watershed system during periods of high watershed disruption (eg Spanish

Conquest late XIX century Great Acceleration) and recent climate change (eg

Little Ice Age and current global warming)

2 Study Site

Lago Vichuqueacuten (34ordm49`S 72ordm04W 4 m asl 30 m of depth Fig 1) is a

mesotrophic to eutrophic lake with dominant anoxic bottom conditions that is

stratified year around (Frugone-Aacutelvarez et al 2017) The main inlets are the

Vichuqueacuten and Huintildee rivers and the only outlet is the Llico estuary that drains into

the Pacific Ocean High tides can sporadically shift the flow direction of the Llico

estuary which increases the marine influence in the lake Dune accretion gradually

limited ocean-lake connectivity until the estuary was almost completely closed off

by ca 10 ky BP and the current lake regime formed (Frugone-Aacutelvarez et al 2017)

The area is characterized by a mediterranean climate with cold-wet winters and

hot-dry summers and an annual precipitation of ~650 mm and a mean annual

temperature of 15ordmC During the austral winter months (June - August) precipitation

is modulated by north-west shifts of the South Pacific Anticyclone (SPA) followed by

an increased frequency of storm fronts stemming off the South Westerly Winds

(SWW) A strengthened SPA during austral summers (December - March) which

are typically dry and warm blocks the northward migration of storm tracks stemming

off the SWW (Fig1 Frugone-Aacutelvarez et al 2017)

78

Figure 1 a) The location of the Lago Vichuqueacuten in central Chile b) Map of land

uses and cover in 2016 c) Ombrothermic diagram mediterranean climates are

characterized by cold-wet winters with surplus moisture from June to August and

hot-dry summers d) Lake bathymetry showing location of cores and water sampling

sites used in this study

Although major land cover changes in the area have occurred since 1975 to the

present as the native forests were replaced by tree (Monterey pine and eucalyptus)

plantations the region was settled before the Spanish conquest (Frugone-Alvarez

et al 2018) Historical documents indicate that Vichuqueacuten was occupied by a

Mitimaes colony as part of the Inka empire (Odone 1998) Unlike other Andean

areas during the Inka period the introduction of corn and quinoa in the Vichuqueacuten

watershed do not seem to have intensified land use The Spanish colonial period in

Chile lasted from 1542 CE to the independence in 1810 CE The first historical

document (1550 CE) shows that the areas around Vichuqueacuten were settled by the

Spanish early on as the Vichuqueacuten watershed was given as an ldquoencomiendardquo

system to Juan Cuevas The ldquoencomiendardquo system provided the owners with land

79

and indigenous people to work but also the introduction of wheat wine cattle

grazing and logging of native forests for lumber extraction and increasing land for

agricultural activities (Odone et al 1998 Armesto et al 2010) During the 19th

century (the Republic) the export of wheat to Australia and Canada generated

intensive changes in land cover use The town of Vichuqueacuten became the regional

capital and plans to build a maritime port in the bay of Vichuqueacuten were drawn

However the fall of international markets in 1880 paralyzed these plans During the

20th century the plantation of trees (Pinus radiata and Eucalyptus globulus) in areas

cleared of native forests was subsidized by two national laws DFL nordm265 (1931) and

DFL nordm 701 (1974) both of which provided funds for such plantations During the last

decades the urbanization with summer vacation homes along the shorelines of

Lago Vichuqueacuten has greatly increased Extensive lake eutrophication is currently a

large environmental problem (EULA 2008)

3 Methods

Coring campaigns were organized from 2011 to 2015 (Fig 1d) We recovered

12 short cores and 4 long cores (up to 14 m long) at several sites using a hammer-

modified UWITEC gravity corer Sediment cores (VIC11-2A 170 cm VIC13-2B 170

cm VIC13-2D 1200 cm and VIC15-1A 119 cm) were split photographed sub-

sampled and stored in the Pyrenean Institute of Ecology (IPE-CSIC Spain) Core

VIC13-2B was selected for detailed multiproxy analyses (including elemental

geochemistry C and N isotopes XRF and 14C dating) Stable isotope analyses

(δ13C δ15N) were performed at the Laboratory of Biogeochemistry and Applied

Stable Isotopes (LABASI-PUC Chile) Sediment samples for δ13Corg were pre-

treated with 50 ml of HCl and 50 ml of deionized water and dried at 60ordmC for 4 hr to

remove carbonates (Harris et al 2011) Isotope analyses were conducted using a

80

Delta V Advantage IRMS coupled to a Thermo Flash 2000 Elemental Analyzer via

a Conflo IV interface Isotope results are expressed in standard delta notation (δ)

and expressed in per mil (permil) relative to the Pee Dee Belemnite (Vienna Pee Dee

Belemnite) for C and to atmospheric N2 for N (Leng et al 2006) Total carbon (TC)

Total Organic Carbon (TOC) Total Inorganic Carbon (TIC) and Total Sulfur (TS)

were measured every 2 cm with a LECO SC 144 DR at the IPE-CSIC

An AVAATECH X-Ray Fluorescence II core scanner with a Rh X-ray tube from

the University of Barcelona was used to obtain XRF logs every 4 mm of resolution

Results are expressed as element intensities in counts per second (cps) Tube

voltage was operated at 30 kV and 10 kV to obtain the abundances of 18 elements

(Pb Al Si S Cl K Ca Ti V Mn Fe Co Zn Br Rb Sr Y Zr) with an average of

at least of 1800 cps (less for Pb=437 and Zn=934 cps) Pb was included due to

similar behavior with Co and Fe Element ratios were calculated to describe changes

in redox conditions (MnFe) endogenic productivity (BrTi) carbonate formation

(SrCa and CaTi) and sediment input (ZrTi) (Barreiro-Lostres et al 2014

Carrevedo et al 2015 Frugone-Aacutelvarez et al 2017 Kylander et al 2011 Moreno

et al 2007a)

Several campaigns were carried out to sample the POM from the water column

two per hydrologic year from November 2015 to August 2018 A liter of water was

recovered in three sites through to the lake two are from the shallower areas (with

samples taken at 2 and 5 m depth at each site) and one in the deeper central portion

(at 2 5 and 20 m depth) of the lake (Fig 1d) The samples were filtered using glass

fiber filters (25 m) and then frozen to obtain the stable carbon and nitrogen isotope

signal of lacustrine POM Additionally soil and vegetation samples from the

following communities native species meadow hydrophytic vegetation and

81

Monterrey pine (Pinus radiata) were taken for stable isotope analyses (see in

supplementary material)

The age model for the complete Lago Vichuqueacuten sedimentary sequence is

based on Frugone-Aacutelvarez et al (2017) with the last 1000 years based on

210Pb137Cs dating techniques in VIC15-1A and 14C AMS dates on bulk sediment

samples (Supplementary Table S1) The 14C measurements of lake water DIC show

a moderate reservoir effect of 180 plusmn 25 14C yr) The revised age-depth model used

here includes three more 14C AMS dates performed with the program Bacon to

establish the deposition rates along the core (Blaauw and Christen 2011 Fig 2)

The age-depth model indicates that average resolution between 0 to 87 cm is lt2

cm per year and from 88 to 170 cm it is lt47 cm per year

82

Figure 2 Chronological age-depth model for the Lago Vichuqueacuten sedimentary

sequence spanning the last 1000 yr (see also Frugone-Alvarez et al 2017)

To estimate land use changes in the watershed we use Landsat MSS images

for 1975 and Landsat TM for 1989 and 2014 all taken in either summer or autumn

(Table 1) We performed supervised classification of land uses (maximum likelihood

83

algorithm) for each year (1975 1989 and 2014) and results were mapped using

ArcGIS 102

Table 1 Images using for LUCC reconstruction

Source of LUCC

Acquisition

Date Resolution

Landsat MSS 19750322 60 m

Landsat TM 19890217 30 m

Landsat TM 19991226 30 m

CONAF 2009 30 m

Land cover Chile 2014 30 m

CONAF 2016 30 m

Previous Work on Lago Vichuqueacuten sedimentary sequence

The sediments are organic-poor dark brown to brown laminated silt with some

intercalated thin coarser clastic layers Lacustrine facies have been classified

according to elemental composition (TOC TS TIC and TN) grain size and

sedimentary textures (Frugone-Aacutelvarez et al 2017) Four main types of lacustrine

facies were identified in this short core Facies L1 is a laminated (1cm) black to dark

brown diatom-poor silt with relatively higher TOC percentages (TOC about 185)

TS (about of 18) and TOCTN (about 92) Facies L2 is characterized by a

homogeneous black organic-poor silty clay with low TOC (mean= 13) TS (mean=

13) TOCTN (mean= 88) values Facies L3 is a laminated (1cm) black organic-

poor (TOC mean 14) silts with higher TS (mean= 21) and TOCTN ratios

(mean= 88) Facies L3 is interpreted as ldquobaselinerdquo deposition on the distal areas

84

of Vichuqueacuten lake Mineralogy is dominated by mica (muscovite) clay minerals

(chlorite) and plagioclase (albite) Quartz and calcite occur at the top and pyrite

occurs in the lower part of the sequence Facies T is composed by massive banded

sediments 4 cm thick and coarse grain size It is interpreted as an instantaneous

depositional event (for more detail see Frugone-Aacutelvarez et al 2017) In this work

we identified four subunits based on geochemical and stable isotope signals

4 Results

41 Geochemistry and PCA analysis

High positive correlations exist between Al Si K and Ti (r = 078 ndash 096

supplementary Fig S1) and between Zn Zr Rb and Y (r = 072 - 096) which reflect

the silicate content of the watershed-derived sediments (Marzecoacuteva et al 2011) Zr

is commonly associated with minerals more abundant in coarser deposits Thus the

ZrTi profile could reflect grain size (Cuven et al 2010) showing higher variability

in the upper part of the Lake Vichuqueacuten sequence and in the alternation between

facies L1 and L2 Another group of elements made up of Co Fe and Pb displayed

positive correlations (r = 067ndash 097) and represents the input of heavy metals Br

Cl and Ca show a positive correlation (r = 049 ndash 06 p-value = 00001) BrTi ratio

is interpreted as a productivity indicator due to Br having a strong affinity with humic

and organic compounds (Marzecoacuteva et al 2011 Frugone-Aacutelvarez et al 2017) In

our Lago Vichuqueacuten sequence BrTi values are high from 170 to 132 cm and from

36 cm to the top of core where it shows several sharps peaks (Fig 3) The MnFe

ratio is indicative of lake bottom oxygenation (Naecher et al 2013) as under

reducing conditions Mn tends to become more mobile than Fe leading to a

decreased MnFe (Marzecoacuteva et al 2011) Several sharp peaks in MnFe occurred

85

from 127 to 120 cm and from 57 to 30 cm (MgFegt03) The silicate group and the

Br Cl Ca Mn group are negatively correlated (r= -012 and -066)

Principal Component Analysis (PCA) was undertaken on the XRF

geochemical data to investigate the main factors controlling sediment deposition in

Lago Vichuqueacuten (Fig 3) The four main eigenvectors explain 801 of the variance

(supplementary material Table S2) The principal component (PC1) explain 437

of the total of variance and grouped elements are associated with terrigenous input

to the lake Positive values of the biplot have been attributed to higher heavy metals

deposition (Pb Co and Fe) and negative values to higher silicate input (Al K Ti and

Si) in a high energy catchment environment (Zr) The PC2 explains 198 of the

total of variance and highlights the endogenic productivity in the lake The positive

loading is compound by Br Cl Ca and Sr and to a lesser extent by Y Zn Rb and

Mn The PC2 may explain both the precipitation of carbonates (Ca Sr) and biological

production (Br)

86

Figure 3 Principal Component Analysis of XRF geochemical measurements in

VIC13-2B Lago Vichuqueacuten lake sediments

42 Sedimentary units

Based on geochemical and stable isotope analysis we identified four

lithological subunits in the short core sedimentary sequence Our PCA analyses and

Pearson correlations pointed out which variables were better for characterizing the

subunits (Fig 4) in terms of endogenic productivity heavy metals and terrestrial

input The unit 2c (170-131 cm) is characterized by the occurrence of some clastic

layers (L2 from 160 and 150 cm) high δsup1⁵N values (mean= +59 plusmn 04permil) with

Magnetic Susceptibility (MS) BrTi ZrTi and SrCa values increase towards the top

Also it has relatively low δsup1sup3C values (mean= -265 plusmn 11permil) and CNmolar ratios

(mean=78 plusmn 04) The ZrTi show upwards increasing values reaching the highest

values of the sequence at the top of this unit suggesting a coarsening upward trend

and relatively higher depositional energy The MS trend also indicates higher

erosion in the watershed and enhanced delivery of ferromagnetic minerals likely

from soil particles particularly from 150 to 160 cm (Frugone-Aacutelvarez at al 2017)

The subunit 2b (130-118 cm) is also composed of black silts but it has the

lowest MS values of the whole sequence and its onset is marked by a sharp

decrease in ZrTi This subunit is marked by sharp peaks of MnFe (at 126 and 120

cmgt027) SrCa (at 125 and 120 cmgt033) CaTi (at 124 and 120 cmgt199) TOC

(about 26 at 130 124 122 and 118 cm) and δsup1⁵N (gt+67permil at 126 and 120 cm)

BrTi oscillates around low values (about 01) whereas the δsup1sup3C values range

between -262 and -282permil

87

The unit 2a (58-117 cm) shows increasing and then decreasing MS values

and displayed sharps peaks of δsup1⁵N (gt64 at 102 to 99 87 and 75 cm) and CN

(about 10 at 86 74 66 and 60 cm) SrCa (mean = 04 plusmn 013) BrTi (mean = 008

plusmn 002) MnFe (mean = 002 plusmn 001) and δsup1sup3C (mean = -260 plusmn 07permil) oscillate in

low values The upper part of this unit (72 ndash 57 cm) shows an increase of SrCa

(from 03 to 05)

The upper unit 1a (0 - 57 cm) starts with a fine clastic layer (T at 57 to 54

cm) interpreted as deposition during a high-energy event It is characterized by

lower BrTi (mean = 003 plusmn 002) TOC (mean = 12 plusmn 03) and δsup1sup3C (mean= -

266 plusmn 06permil) higher δsup1⁵N (mean = +55 plusmn 08 permil) This unit is made of alternating

fine (lt 1cm) black and dark brown laminae with carbonate (L1 facies) Recently

deposited sediments show decreasing MS values increasing TOC (mean= 15 plusmn

04 ) sharp peaks of BrTi (gt015 at 33 21 5 and 1 cm) and the lowest δsup1⁵N values

of the entire record (mean= 45 plusmn 06 permil) and δsup1sup3C values (mean= -277 plusmn 09 permil)

Heavy metal content increases abruptly in the upper section of the core (2 - 20 cm)

(peaks of FeTi CoTi and PbTi)

88

Figure 4 Sedimentary units of Lago Vichuqueacuten sedimentary sequence Selected

variables illustrate watershed input (Magnetic Susceptibility ZrTi CoTi and MnFe)

endogenic productivity (SrCa CaTi TS) organic matter source (BrTi TOC

CNmolar and stable isotope records (δ13Corg and δ15Nbulk)

43 Recent seasonal changes of particulate organic matter on water column

The average of δ15NPOM from the three sites across to the lake was +86 plusmn 58

permil oscillating widely from -14 to +193permil (Fig 5) Important seasonal differences

occur at 2 and 5 m depth with more negative values during summer (~53 plusmn 52 permil)

than winter (~122 plusmn 40permil) At 20 m depth δ15NPOM values exhibit small seasonal

ranges (mean = +10permil for winter and +87permil for summer) The δ13CPOM average was

-296 plusmn 33permil with slightly seasonal and water column depth differences However

more positive δ13CPOM values occurred during winter (mean=-290 plusmn 41permil) than in

summer (mean= -301 plusmn 19 permil) Like the δ15NPOM values CNPOM (mean= 83 plusmn 17)

displayed important seasonal and water depth differences Lower CNPOM ratios

89

occurred during summer at 2 and 5 m depth (mean= 95 plusmn 17) and higher and more

constant values during winter (mean = 73 plusmn 09) at the same depth At 20 m CNPOM

shows similar values in both winter (70) and summer (74)

Figure 5 Seasonal POM averages from samples taken of the Lago Vichuqueacuten

water column Samples were taken from 2015 to 2018 at 2 (n=16) 5 (n=14) and 20

(n=8) meters depth

44 Stable isotope values across the Lake Vichuqueacuten watershed

Figure 6 shows modern vegetation soil and sediment isotope values found for

the watershed Huintildee tributary and Vichuqueacuten lake The δsup1⁵NFoliar values from

meadow plantations and macrophytes have similar range values with a mean of

+89 plusmn50 permil (n=18) +74 plusmn 75 permil (n=5) +82 plusmn 36 permil (n=6) respectively Native

vegetation has overall lower δsup1⁵NFoliar values with a mean of 14 plusmn 21 permil (n=28 see

Table 2 in supplementary material) The δsup1sup3CFoliar from terrestrial samples exhibit

similar values across the different plant communities (tree plantation mean=-274 plusmn

13permil meadow mean = -275 plusmn 23 permil native species mean=-272 plusmn 14permil) whereas

macrophytes display slightly more negative values with a mean of -287 plusmn 23permil

Macrophytes substrate displayed the highest δsup1⁵N values with a mean of +60 plusmn

14permil (n=3) Similar and relatively high δsup1⁵N values for soil of plantation (mean= +54

plusmn 13permil n=4) meadow (mean= +49 plusmn 04permil n=8) and surface river sediment

90

(mean= +52 plusmn 17permil n=10) Native forest soils oscillate around slightly more

negative values with a mean of +45 plusmn 12permil (n=4) Slightly more positive soil δsup1sup3C

values occur both underneath native forests and in tree plantations with means of -

284 plusmn 23permil and -298 plusmn 13permil respectively compared to either meadow soils

(mean= -302 plusmn 11permil) aquatic sediments underneath macrophytes (-311 plusmn 10permil)

or from surface river sediments (mean= -312 plusmn 10permil)

Figure 6 Stable isotope content of modern soil river sediment and foliar vegetation

used as end members in the sedimentary sequence of Lago Vichuqueacuten a)

Scatterplot of foliar δsup1⁵N and δsup13C values for vegetation from Lago Vichuqueacuten

watershed (plantation meadow and native species) and macrophytes on Lake

Vichuqueacuten See supplementary material for more detail of vegetation types b)

Scatterplot of soil δsup1⁵N and δsup13C values across the watershed the sediments of the

Huintildee and Vichuqueacuten rivers and the fluvial sediment corresponding to the

macrophyte vegetation

45 Land use and cover change from 1975 to 2014

Major land use changes between 1975 CE and 2016 CE in the Lago

Vichuqueacuten watershed are summarized in Figure 7 The watershed has a surface

area of 535329 km2 of which native vegetation (26) and shrublands (53)

represent 79 of the total surface in 1975 Meadows are confined to the valley and

91

represent 17 of watershed surface Tree plantations initially occupied 1 of the

watershed and were first located along the lake periphery By 1989 the areas of

native forests shrublands and meadows had decreased to 22 31 and 14

respectively whereas tree plantations had expanded to 30 These trends

continued almost invariably until 2016 when shrublands and meadows reached 17

and 5 of the total areas while tree plantations increased to 66 Native forests

had practically disappeared by 1989 and then increased up to 7 of the total area

in 2016 (Fig 6) preferentially occupying the southeastern sector of the watershed

Figure 7 Changes in land use and cover between 1975 and 2016 in the Lago

Vichuqueacuten watershed as measured from satellite images The major change is

represented by the replacement of native forest shrubland and meadows by

plantations of Monterrey pine (Pinus radiata)

Figure 8 shows correlations between lake sediment stable isotope values and

changes in the soil cover from 1975 to 2013 Positive relationships occurred

between sediment δsup1⁵N and δsup13C values from core VIC13-2B (unit 1) and the

92

percentage of native forest (r=089 for δsup1⁵N 082 for δsup13C) shrublands (r = 071 for

δsup1⁵N 057 for δsup13C) and meadow cover (r = 088 for δsup1⁵N 081 for δsup13C) All of these

correlations are significant (p value lt 0001) In contrast significant negative

correlations (p lt0001) occurred between tree plantation cover and lake sediment

stable isotope values (δsup1⁵N r = -082 and δsup13C r = -067) native forest (r = -097)

meadows (r = -086) and shrubland (r =-093)

Figure 8 Correlation plots of land use and cover change versus lake sediment

stable isotope values The δsup1⁵N values are positively correlated with native forests

agricultural fields and meadow cover across the watershed Total Plantation area

increases are negatively correlated with native forest meadow and shrubland total

area Significance levels are indicated by the symbols p-values (0 0001 001

005 01 1) lt=gt symbols ( )

93

5 Discussion

51 Seasonal variability of POM in the water column

The stable isotope values of POM can vary during the annual cycle due to

climate and biologic controls namely temperature and length of the photoperiod

which affect phytoplankton growth rates and isotope fractionation in the water

column (Gu et al 2006 Leng et al 2006) POM from Lago Vichuqueacuten surface

samples (2 and 5 m depth) displayed lower δ13CPOM values during the summer than

in winter During C uptake phytoplankton preferentially utilize 12C leaving the

DICpool enriched in 13C Therefore as temperature increases during the summer

phytoplankton growth generates OM enriched in 12C until this becomes depleted

and then the biomas come to enriched u At the onset of winter the DICpool is now

enriched in 13C and despite an overall decrease in phytoplankton production the

OM produced will also be enriched in 13C In contrast δ13CPOM values at 20 m depth

did not reflect these seasonal differences probably due to water-column

stratification that maintains similar temperatures and biological activity throughout

the year

Lake N availability depends on N sources including inputs from the

watershed and the atmosphere (ie deposition of N compounds and fixation of

atmospheric N2) which varies during the hydrologic year The fixation of atmospheric

N2 is an important natural source of N to the lake occurring mainly during the

summer season associated with higher temperature and light (Gu et al 2006)

Because the δ15NPOM of N2 fixers is close to 0permil with almost no overall isotope

fractionation (Leng et al 2006) when N2 is the major N source δ15NPOM values are

typically low However when DIN concentrations are high or alternatively when little

94

N2 fixation occurs δ15NPOM values will be higher (Gu et al 2006) δ15NPOM values

from summer Lago Vichuqueacuten samples were lower than those from winter with large

differences between the seasons (~5permil Fig 5 and 9) Furthermore δ15NPOM values

were high when monthly average temperature was low and monthly precipitation

was high (Fig 9) This pattern is consistent with the dominance of high N2 fixation

by cyanobacteria associated with increased summer temperatures This correlation

of δ15NPOM values with temperature further suggests a functional group shift i e

from N fixers to phytoplankton that uptake DIN The correlation between wetter

months and higher δ15NPOM values could be caused by increased N input from the

watershed due to increased runoff during the winter season The lack of data of the

δ15NPOM between the 30 mm and the 160 mm of precipitation is due to the

mediterranean-type climate that concentrates precipitations in the winter months

Finally Lago Vichuqueacuten is characterized by pronounced seasonality leading to

higher phytoplankton biomass in summer characterized by low δ15NPOM In winter

low biomass production and increased input from watershed is associated to high

δ15NPOM

95

Figure 9 Seasonal changes can drive δ15NPOM values in Lago Vichuqueacuten Data

correspond to average monthly temperature and total monthly precipitation for the

months when the water samples were taken (years 2015 - 2018) P-valuelt005

52 Stable isotope signatures in the Lake Vichuqueacuten watershed

The natural abundance of 15N14N isotopes of soil and vegetation samples

from the Lago Vichuqueacuten watershed appear to result from a combination of factors

isotope fractionation different N sources for plants and soil microorganisms (eg N2

fixation Nitrates) depth in the soil where N uptake by vegetation occurs and N loss

mechanisms (ie denitrification leaching and ammonia volatilization Hogberg

1997) The lowest δsup1⁵Nfoliar values are associated with native species and are

probably due to the contribution of N-fixing species (eg Sophora) (Fig6 and for

more detail see Table S3 in supplementary material) The number native N-fixers

species present in the Chilean mediterranean vegetation are not well known

however so there could be other N-fixing species in this group Alternatively δsup1⁵Nfoliar

values reflect soil N uptake (Kahmen et al 2008) In environments limited by N

plants have δsup1⁵N values similar to the soil δsup1⁵N values however the denitrification

and volatilization of ammonia can lead to the remain N of soil to come enriched in

15N (Cifuentes et al 1989 Craine et al 2009 Bruland and Mckenzie 2010) Soil N

isotope samples from native species communities tends to display relatively high

δsup1⁵N values respect to foliar samples due to loss of N-soil

The higher foliar and soil δsup1⁵N values obtained from samples of meadows

aquatic macrophytes and tree plantations can be attributed to the presence of

greater amounts of nitrate available for plant uptake (Fig 6) Houmlgberg (1997)

suggests that the availability of different N sources in soils (ie nitrates versus

96

ammonia) with different residence times can also explain these δsup1⁵NFoliar values

Indeed Feigin et al (1974) described differences of up to 20permil between ammonia

and nitrates sources Denitrification and nitrification discriminate much more against

15N than N2 fixation does (Craine et al 2009) leading to soils (and plants after

uptake) enriched in 14N

In general multiple processes that affect the isotopic signal result in similar

δsup1⁵N values between the soil of the watershed and the sediments of the river

However POM isotope fluctuations allow to say that more negative δsup1⁵N values are

associated to lake productivity while more positive δsup1⁵N values are associated with

N input from the watershed

δ13C values in Lago Vichuqueacuten watershed reflect CO2 gas exchange between

C3 plants and algae with the atmosphere During photosynthesis plants

discriminate against the heavier stable isotope of carbon (13C) in favor of the lighter

isotope 12C which results in δ13CFoliar values between -220permil and -320permil (Browman

and Cook 2002 Liu et al 2007) Likewise the δ13CFoliar values from Lago Vichuqueacuten

oscillate around -27permil (Fig 6) Plants transform atmospheric CO2 into soil organic

carbon (C) which in turn reflects this initial discrimination against 13C during C

uptake and post photosynthetic fractionation (Farquhar et al 1982 1989 Badeck

et al 2005 Pausch and Kuzyakov 2017) Slightly more positive δ13CFoliar values

(about 15permil) were measured in comparison with their δ13CSoil values This may be

reflecting the C transference from plants to the soil but also a soil-atmosphere

interchange The preferential assimilation of the light isotopes (12C) during soil

respiration carried by the roots and the microbial biomass that is associated with the

decomposition of litter roots and soil organic matter explain this differential

(Berhardt et al 2006 Blagodatskaya et al 2010 Midwood and Millard 2011)

97

In general the δ13CSoil values from the Lago Vichuqueacuten watershed oscillated

around -290permil and did not vary with our plant classification types Here we use

these values as terrestrial-end members to track changes in source OM (Fig 6)

Thus more negative δ13C values in lake sediment samples are attributed to higher

OM inputs from the terrestrial watershed By the other hand more positive δ13C

values most likely reflect an increased aquatic OM component as indicated by POM

isotope fluctuations (Fig 9)

53 Recently land use and cover change and its influences on N inputs to the lake

Tree plantations in the Lago Vichuqueacuten watershed have increased greatly in

the last few decades (from 1 in 1975 to 66 in 2016 Fig 7) replacing previous

native forests (from 26 to 7) meadows (17 to 5) and shrublands (53 to

17) In 1975 tree plantations were confined to the lake perimeter with discrete

patches distributed throughout the watershed The ldquoForest Lawrdquo (DFL 701- passed

in 1974) allocated state funding to afforestation efforts and management of tree

plantations which greatly favored the replacement native forests by introduced trees

This increase is marked by a sharp and steady decrease in lake sediment δ15N and

δ13C values because tree plantations function as a nutrient sink whereas other land

uses such as meadows favor nutrient loss from the watershed (Fig8) Bruland and

Mackenzie (2014) noted a decrease in wetland δ15N values when watershed

forested cover increased and concluded that N inputs to the wetlands are lower from

the forested areas as they generally do not export as much N as agricultural lands

A positive correlation between native vegetation and δ15Ncore values can be

explained by the relatively scarce arboreal cover in the watershed in 1975 when

native forest occupied just 26 of the watershed surface whereas shrublands and

98

meadows occupied more than the 70 of the surface of the watershed with the

concomitant elevated loss of N (Fig 7 and Fig 8)

54 Nitrogen dynamics in Lago Vichuqueacuten over the last six hundred years

Sedimentological compositional and geochemical indicators all show changes in

the N cycle associated to LUCC lake dynamics and climate changes (Fig 10) From

the pre-Columbian indigenous settlement including the Spanish colonial period up

to the start of the Republic (1300 - 1800 CE) the introduction of crops such as

quinoa and wheat but also the clearing of land for extensive agriculture would have

favored the entry of N into the lake Conversely major changes observed during the

last century were characterized by a sharp decrease of N input that were coeval

with the increase of tree plantations

From 1365 until 1550 CE (unit 2c 2b and half of 2a Fig 3 and Fig 10) pre-

Columbian agricultural societies planted mostly crops of corn and quinoa (Ramirez

and Vidal 1985) This period is characterized by large peaks seen in the δsup1⁵N record

(eg 1403 1452 1476 and 1505) with overall high δsup1⁵N values (up to 5permil) indicating

that N input from watershed was elevated and oscillating to the beat of the NT These

positive δsup1⁵N peaks could be due to several causes including a) the clearing of land

for farming b) N loss via denitrification which would be generally augmented in

anoxic environments (Diebel et al 2009) such as Lago Vichuqueacuten (low MnFe

values about 0001 Fig 4) or c) climate especially cold-wet winters or hot-dry

summers can also exert control on the δsup1⁵N record Indeed tree-ring records and

summer temperature reconstructions show overall wetcold conditions during this

period (Christie et al 2009 Von Gunten et al 2009 Fig 10) Increased

precipitation would bring more sediment (and nutrients) from the watershed into the

99

lake and increase lake productivity which is also detected by the geochemical

proxies for productivity (peaks of BrTi SrCa and TOC Fig 4 and Fig 10) (see also

Frugone-Alvarez et al 2017)

Figure 10 Changes in the N availability during the last six centuries in Lago

Vichuqueacuten a) lake sediment δsup1⁵N values displayed more positive values during the

prehistoric period Spanish Colony and the starting 19th century which is associated

with enhanced N input from the watershed by extensive clearing and crop

plantations The inset shows this relationship between sediment δsup1⁵N and

100

percentage of meadow cover over the last 30 years b) Summer temperature

reconstruction from central Chile (von Gunten et al 2009) showing a

correspondence with cold phases and high δsup1⁵N values at Vichuqueacuten except for the

last 100 years c) Palmer Drought Severity Index (PDSI) is an interannual moisture

variability reconstruction for late springndashearly summer during the last six centuries

(Christie et al 2009) Grey shadow indicating higher precipitation periods

From 1550 and 1810 CE (unit 2a) and during the Colonial period several peaks

of δ15N could be further related not only to high precipitation (Fig 10 grey shadow)

but also pulses of enhanced N input from the watershed linked to human land use

In 1550 CE Juan Cuevas was granted lands and indigenous workers under the

encomienda system for agricultural and mining development of the Vichuqueacuten

village (Ramiacuterez and Vidal 1985) Historical documents show that around 1579 CE

the Vichuqueacuten watershed was occupied by indigenous communities dedicated to

wheat plantations and vineyards wood extraction and gold mining (Odone 1998)

The introduction of the Spanish agricultural system implied not just a change in the

types of crops used (from quinoa to vineyards and wheat) but also a clearing of

native species for the continuous increase of agricultural surface and wood

extraction During the Colonial period wheat from Vichuqueacuten was exported to Peru

(Ramiacuterez and Vidal 1985) Armesto et al (2009) indicate that during the XVIII and

XIX centuries the extraction of wood for mining operations was important enough to

cause extensive loss of native forests The independence and instauration of the

Chilean Republic did not change this prevailing system Increases in the

contributions of N to the lake during the second half of the XIX century (peaks in

δsup1⁵N ca 1870 CE) could be due to expanding farm land dedicated for wheat

101

production and increased commercial trade with California and Canada (Ramiacuterez

and Vidal 1985)

In contrast LUCC in the last century are clearly related to the development of

large-scale tree plantations (Fig 7) The δsup1⁵N record reaches the lowest values of

the entire sequence in the last few decades (Fig 10) A marked increase in lake

productivity NT concentration and decreasing sediment input is synchronous (unit

1 Fig 4) with trees replacing meadows shrublands and areas with native forests

(Fig 7 and 8) The implementation of the lsquoForest Lawrsquo in 1974 had a stronger impact

on the landscape and lake ecosystem dynamics than the impacts of ongoing climate

change in the region which is much more recent (Garreaud et al 2018) although

the prevalence of hot dry summers seen over the last decade would also be

associated with low δsup1⁵N values and increase of NT (Fig 10) Heavy metals ratios

(FeTi CoTi and PbTi) show notable increases in lake sediments from 1992 to 2011

CE (Fig 4) Although this could be related to mining in the El Maule region the

closest mines are 60 Km away (Pencahue and Romeral) so local factors related to

shoreline urbanization for the summer homes and an increase in tourist activity

could also be a major factor

6 Conclusions

The N isotope signal in the watershed depends on the rates of exchange

between vegetation and soil cover (Fig 11) Plants preferentially uptake 14N and the

underlying soils become enriched in 15N especially when the terrestrial ecosystem

is N-limited andor significant N loss occurs (ie denitrification andor ammonia

volatilization) LUCC in the Lago Vichuqueacuten watershed have heavily modified the

links between terrestrial and aquatic ecosystems with agriculture practices

102

contributing more N to the lake than tree plantations or native forests In situ lake

processes can also fractionate N isotopes An increase of N-fixing species results

in OM depleted in 15N which results in POM with lower δsup1⁵N values during these

periods During winter phytoplankton is typically enriched in 15N due to the

decreased abundance of N-fixing species and increased N input from the

watershed This in turn generates the highest δsup1⁵NPOM values in Lago Vichuqueacuten

Periods of elevated productivity tend to deplete the dissolved inorganic N of 14N

resulting in even higher δ15N values

Our study illustrates the usefulness of δsup1⁵N as a tool for reconstructing the past

influence of LUCC on N availability in lake ecosystems To constrain the relative

roles of the diverse forcing mechanisms that can alter N cycling in mediterranean

ecosystems all main components of the N cycle should be monitored seasonally

(or monthly) including the measurements of δ15N values in land samples

(vegetation-soil) as well as POM

103

Figure 11 Summary of human and environmental factors controlling the δ15N

values of lake sediments Particulate organic matter(POM) δ15N values in

mediterranean lakes are driven by N input from the watershed that in turn depend

on land use and cover changes (ie forest plantation agriculture) andor seasonal

changes in N sources andor lake ecosystem processes (ie bioproductivity redox

condition denitrification) Arrows indicate the direction of N fluxes (inputoutput from

the N cycle) N cycle processes that deplete lake sediments of 15N are shown in

blue whereas those that enrich sediments in 15N are shown in red

104

Supplementary material

Figure S1 Pearson correlate coefficient between geochemical variables in core

VIC13-2B Positive and large correlations are in blue whereas negative and small

correlations are in red (p valuelt0001)

Figure S2 Principal Component Analysis of geochemical elements from core

VIC13-2B

105

Table S1 Lago Vichuqueacuten radiocarbon samples

RADIOCARBON

LAB CODE

SAMPLE

CODE

DEPTH

(m)

MATERIAL

DATED

14C AGE ERROR

D-AMS 029287

VIC13-2B-

1 043 Bulk 1520 24

D-AMS 029285

VIC13-2B-

2 085 Bulk 1700 22

D-AMS 029286

VIC13-2B-

2 124 Bulk 1100 29

Poz-63883 Chill-2D-1 191 Bulk 945 30

D-AMS 001133

VIC11-2A-

2 201 Bulk 1150 44

Poz-63884

Chill-2D-

1U 299 Bulk 1935 30

Poz-64089

VIC13-2D-

2U 463 Bulk 1845 30

Poz-64090

VIC13-2A-

3U 469 Bulk 1830 35

D-AMS 010068

VIC13-2D-

4U 667 Bulk 2831 25

Poz-63886

VIC13-2D-

4U 719 Bulk 3375 35

106

D-AMS 010069

VIC13-2D-

5U 775 Bulk 3143 27

Poz-64088

VIC13-2D-

5U 807 Bulk 3835 35

D-AMS-010066

VIC13-2D-

7U 1075 Bulk 6174 31

Poz-63885

VIC13-2D-

7U 1197 Bulk 6440 40

Poz-5782 VIC13-15 DIC 180 25

Table S2 Loadings of the trace chemical elements used in the PCA

Elementos PC1 PC2 PC3 PC4

Zr 0922 0025 -0108 -0007

Zn 0913 -0124 -0212 0001

Rb 0898 -0057 -0228 0016

K 0843 0459 0108 0113

Ti 0827 0497 0060 -0029

Al 0806 0467 0080 0107

Si 0803 0474 0133 0136

Y 0784 -0293 -0174 0262

V 0766 0455 0090 -0057

Br 0422 -0716 -0045 0226

Ca 0316 -0429 0577 0489

Sr 0164 -0420 0342 -0182

Cl 0151 -0781 -0397 0162

107

Mn -0121 -0091 0859 0095

S -0174 -0179 -0051 0714

Pb -0349 0414 -0282 0500

Fe -0700 0584 -0023 0280

Co -0704 0564 -0107 0250

Table S3 Stable Isotope values from vegetation of Lago Vichuqueacutenacutes watershed

Taxa Classification δsup1⁵N δsup1sup3C CN

molar

Poaceae Meadow 1216 -2589 3602

Juncacea Meadow 1404 -2450 3855

Cyperaceae Meadow 1031 -2596 1711

Taraxacum

officinale Meadow 836 -2400 2035

Poaceae Meadow 660 -2779 1583

Poaceae Meadow 453 -2813 1401

Poaceae Meadow 966 -2908 4010

Juncus Meadow 1247 -2418 3892

Poaceae Meadow 747 -3177 6992

Poaceae Meadow 942 -2764 3147

Poaceae Meadow 1479 -2634 2895

Poaceae Meadow 1113 -2776 1795

Poaceae Meadow 2215 -2737 7971

Poaceae Meadow 1121 -2944 2934

Poaceae Meadow 638 -3206 1529

108

Macrophytes Macrophytes 886 -3044 2286

Macrophytes Macrophytes 1056 -2720 2673

Macrophytes Macrophytes 769 -3297 1249

Macrophytes Macrophytes 967 -2763 1442

Macrophytes Macrophytes 959 -2670 2105

Macrophytes Macrophytes 334 -2728 1038

Acacia dealbata

Introduced

species 656 -2696 1296

Acacia dealbata

Introduced

species 487 -2941 1782

Acacia dealbata

Introduced

species 220 -2611 3888

Luma apiculata Native species 433 -2542 4135

Luma apiculata Native species 171 -2664 7634

Luma apiculata Native species -001 -2736 6283

Luma apiculata Native species 029 -2764 6425

Azara sp Native species 159 -2868 8408

Azara sp Native species 101 -2606 2885

Baccharis concava Native species 104 -2699 5779

Baccharis concava Native species 265 -2488 4325

Baccharis concava Native species 287 -2562 7802

Baccharis concava Native species 427 -2781 5204

Baccharis linearis Native species 190 -2610 4414

Baccharis linearis Native species 023 -2825 5647

109

Peumus boldus Native species 042 -2969 6327

Peumus boldus Native species 205 -2746 4110

Peumus boldus Native species 183 -2743 6293

Chusquea quila Native species 482 -2801 4275

Poaceae meadow 217 -2629 7214

Lobelia sp Native species 224 -2645 3963

Lobelia sp Native species -091 -2565 4538

Aristotelia chilensis Native species -035 -2785 5247

Aristotelia chilensis Native species -305 -2889 2305

Aristotelia chilensis Native species 093 -2836 5457

Chusquea quila Native species 173 -2754 3534

Chusquea quila Native species 045 -2950 6739

Quillaja saponaria Native species 223 -2838 9385

Scirpus meadow 018 -2820 7115

Sophora sp Native species -184 -2481 2094

Sophora sp Native species -181 -2717 1721

Pinus radiata

Introduced

trees 1581 -2602 3679

Pinus radiata

Introduced

trees 1431 -2784 4852

Pinus radiata

Introduced

trees -091 -2708 9760

Pinus radiata

Introduced

trees 153 -2568 3470

110

Salix sp

Introduced

trees 632 -2878 1921

LITERATURE CITED

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea

AM Marquet PA 2010 From the Holocene to the Anthropocene A historical

framework for land cover change in southwestern South America in the past 15000

years Land use policy 27 148ndash160

httpsdoiorg101016jlandusepol200907006

Battye W Aneja VP Schlesinger WH 2017 Earth rsquo s Future Is nitrogen the next

carbon  Earthrsquos Future Global Biogeochem Cycles 30 1000ndash1014

httpsdoiorg101002eft2235

Blaauw M Christeny JA 2011 Flexible paleoclimate age-depth models using an

autoregressive gamma process Bayesian Anal 6 457ndash474

httpsdoiorg10121411-BA618

Bowman DMJS Cook GD 2002 Can stable carbon isotopes (δ13C) in soil

carbon be used to describe the dynamics of Eucalyptus savanna-rainforest

boundaries in the Australian monsoon tropics Austral Ecol

httpsdoiorg101046j1442-9993200201158x

Brahney J Ballantyne AP Turner BL Spaulding SA Otu M Neff JC 2014

Separating the influences of diagenesis productivity and anthropogenic nitrogen

deposition on sedimentary δ15N variations Org Geochem 75 140ndash150

httpsdoiorg101016jorggeochem201407003

111

Bruland GL MacKenzie RA 2010 Nitrogen Source Tracking with δN Content

of Coastal Wetland Plants in Hawaii J Environ Qual 39 409

httpsdoiorg102134jeq20090005

Carrevedo ML Frugone M Latorre C Maldonado A Bernaacuterdez P Prego R

Caacuterdenas D Valero-Garceacutes B 2015 A 700-year record of climate and

environmental change from a high Andean lake Laguna del Maule central Chile

(36degS) Holocene 25 956ndash972 httpsdoiorg1011770959683615574584

Christie DA Boninsegna JA Cleaveland MK Lara A Le Quesne C

Morales MS Mudelsee M Stahle DW Villalba R 2009 Aridity changes in the

Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from

tree-rings Clim Dyn 36 1505ndash1521 httpsdoiorg101007s00382-009-0723-4

Craine JM Elmore AJ Aidar MPM Dawson TE Hobbie EA Kahmen A

Mack MC Kendra K Michelsen A Nardoto GB Pardo LH Pentildeuelas J

Reich B Schuur EAG Stock WD Templer PH Virginia RA Welker JM

Wright IJ 2009 Global patterns of foliar nitrogen isotopes and their relationships

with cliamte mycorrhizal fungi foliar nutrient concentrations and nitrogen

availability New Phytol 183 980ndash992 httpsdoiorg101111j1469-

8137200902917x

Cuven S Francus P Lamoureux SF 2010 Estimation of grain size variability

with micro X-ray fluorescence in laminated lacustrine sediments Cape Bounty

Canadian High Arctic J Paleolimnol 44 803ndash817 httpsdoiorg101007s10933-

010-9453-1

Diebel M Vander Zanden MJ 2012 Nitrogen stable isotopes in streams  stable

isotopes Nitrogen effects of agricultural sources and transformations Ecol Appl 19

1127ndash1134 httpsdoiorg10189008-03271

112

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in freshwater

wetlands record long-term changes in watershed nitrogen source and land use SO

- Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash

2916

Fariacuteas L Castro-Gonzales M Cornejo M Charpentier J Faundez J

Boontanon N Yoshida N 2009 Denitrification and nitrous oxide cycling within the

upper oxycline of the oxygen minimum zone off the eastern tropical South Pacific

Limnol Oceanogr 54 132ndash144

Farquhar GD Ehleringer JR Hubick KT 1989 Carbon Isotope Discrimination

and Photosynthesis Annu Rev Plant Physiol Plant Mol Biol

httpsdoiorg101146annurevpp40060189002443

Farquhar GD OrsquoLeary MH Berry JA 1982 On the relationship between

carbon isotope discrimination and the intercellular carbon dioxide concentration in

leaves Aust J Plant Physiol httpsdoiorg101071PP9820121

Fogel ML Cifuentes LA 1993 Isotope fractionation during primary production

Org Geochem httpsdoiorg101007978-1-4615-2890-6_3

Frugone-Aacutelvarez M Latorre C Giralt S Polanco-Martiacutenez J Bernaacuterdez P

Oliva-Urcia B Maldonado A Carrevedo ML Moreno A Delgado Huertas A

Prego R Barreiro-Lostres F Valero-Garceacutes B 2017 A 7000-year high-

resolution lake sediment record from coastal central Chile (Lago Vichuqueacuten 34degS)

implications for past sea level and environmental variability J Quat Sci 32 830ndash

844 httpsdoiorg101002jqs2936

Gaumllman V Rydberg J Bigler C 2009 Decadal diagenetic effects on δ 13 C and

δ 15 N studied in varved lake sediment Limnol Oceanogr 54 917ndash924

httpsdoiorg104319lo20095430917

113

Gerhart LM McLauchlan KK 2014 Reconstructing terrestrial nutrient cycling

using stable nitrogen isotopes in wood Biogeochemistry 120 1ndash21

httpsdoiorg101007s10533-014-9988-8

Granger J Sigman DM Lehmann MF Tortell PD 2008 Nitrogen and oxygen

isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria 53

2533ndash2545 httpsdoiorg10230740058342

Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater

eutrophic lake Limnol Oceanogr 51 2837ndash2848

httpsdoiorg104319lo20065162837

Harris D Horwaacuteth WR van Kessel C 2001 Acid fumigation of soils to remove

carbonates prior to total organic carbon or CARBON-13 isotopic analysis Soil Sci

Soc Am J 65 1853 httpsdoiorg102136sssaj20011853

Houmlgberg P 1997 Tansley review no 95 natural abundance in soil-plant systems

New Phytol httpsdoiorg101046j1469-8137199700808x

Kylander ME Ampel L Wohlfarth B Veres D 2011 High-resolution X-ray

fluorescence core scanning analysis of Les Echets (France) sedimentary sequence

New insights from chemical proxies J Quat Sci 26 109ndash117

httpsdoiorg101002jqs1438

Lara A Solari ME Prieto MDR Pentildea MP 2012 Reconstruccioacuten de la

cobertura de la vegetacioacuten y uso del suelo hacia 1550 y sus cambios a 2007 en la

ecorregioacuten de los bosques valdivianos lluviosos de Chile (35o - 43o 30acute S) Bosque

(Valdivia) 33 03ndash04 httpsdoiorg104067s0717-92002012000100002

Lehmann M Bernasconi S Barbieri A McKenzie J 2002 Preservation of

organic matter and alteration of its carbon and nitrogen isotope composition during

114

simulated and in situ early sedimentary diagenesis Geochim Cosmochim Acta 66

3573ndash3584 httpsdoiorg101016S0016-7037(02)00968-7

Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos Transactions

American Geophysical Union httpsdoiorg1010292007EO070007

Liu G Li M An L 2007 The Environmental Significance Of Stable Carbon

Isotope Composition Of Modern Plant Leaves In The Northern Tibetan Plateau

China Arctic Antarct Alp Res httpsdoiorg1016571523-0430(07-505)[liu-

g]20co2

Marzecovaacute A Mikomaumlgi A Koff T Martma T 2011 Sedimentary geochemical

response to human impact on Lake Notildemmejaumlrv Estonia Est J Ecol 60 54

httpsdoiorg103176eco2011105

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash

1643 httpsdoiorg1011770959683613496289

Meyers PA 2003 Application of organic geochemistry to paleolimnological

reconstruction a summary of examples from the Laurention Great Lakes Org

Geochem 34 261ndash289 httpsdoiorg101016S0146-6380(02)00168-7

Naeher S Gilli A North RP Hamann Y Schubert CJ 2013 Tracing bottom

water oxygenation with sedimentary MnFe ratios in Lake Zurich Switzerland

Chem Geol 352 125ndash133 httpsdoiorg101016jchemgeo201306006

Odone C 1998 El Pueblo de Indios de Vichuqueacuten siglos XVI y XVII Rev Hist

Indiacutegena 3 19ndash67

Pausch J Kuzyakov Y 2018 Carbon input by roots into the soil Quantification of

rhizodeposition from root to ecosystem scale Glob Chang Biol

httpsdoiorg101111gcb13850

115

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98

httpsdoiorg1011772053019614564785

Sun W Zhang E Jones RT Liu E Shen J 2016 Biogeochemical processes

and response to climate change recorded in the isotopes of lacustrine organic

matter southeastern Qinghai-Tibetan Plateau China Palaeogeogr Palaeoclimatol

Palaeoecol httpsdoiorg101016jpalaeo201604013

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of

different trophic status J Paleolimnol 47 693ndash706

httpsdoiorg101007s10933-012-9593-6

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl

httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M 2009 High-resolution quantitative climate

reconstruction over the past 1000 years and pollution history derived from lake

sediments in Central Chile Philos Fak PhD 246

Woodward C Chang J Zawadzki A Shulmeister J Haworth R Collecutt S

Jacobsen G 2011 Evidence against early nineteenth century major European

induced environmental impacts by illegal settlers in the New England Tablelands

south eastern Australia Quat Sci Rev 30 3743ndash3747

httpsdoiorg101016jquascirev201110014

Xu H Yu K Lan J Sheng E Liu B Ye Y Hong B Wu H Zhou K Yeager

KM 2016 Different responses of sedimentary δ15N to climatic changes and

116

anthropogenic impacts in lakes across the Eastern margin of the Tibetan Plateau

J Asian Earth Sci 123 111ndash118 httpsdoiorg101016jjseaes201603024

117

DISCUSION GENERAL

El Nitroacutegeno (N) es un elemento clave que controla la dinaacutemica y

funcionamiento de ecosistemas tanto terrestres como acuaacuteticos (Vitousek et al

1997) Pese a que el N (N2) es muy abundante en la atmoacutesfera (78) es escaso

en los ecosistemas pues la mayoriacutea de la biota no puede acceder a su forma

molecular (Galloway et al 1995 Zaehle et al 2013) En este sentido la entrada

natural de N en los ecosistemas es viacutea fijacioacuten bioloacutegica del N2 por bacterias que lo

convierten en compuestos bioloacutegicamente disponibles (Battye et al 2017) Debido

a que la fijacioacuten es un proceso energeacuteticamente costoso los ecosistemas

comuacutenmente estaacuten limitados por N (Vitousek and Howarth 1991) Los LUCC

contribuyen al incremento del N disponible y son una de las principales causas de

eutroficacioacuten y contaminacioacuten de los cuerpos de agua (Woodward et al 2012)

En Chile central los LUCC principalmente relacionados con las actividades

agriacutecolas y forestales han causado grandes cambios en el ciclo del N debido al

118

reemplazo de la cobertura natural por un monocultivo y al uso de fertilizantes que

modifican los aportes de MO y N a los cuerpos de agua El programa de

estabilizacioacuten de laderas impulsada por el gobierno (Albert 1900) y la ley forestal

de 1974 han fomentado la forestacioacuten con plantaciones de Pinus radiata y

Eucalyptus globulus y en el caso de Lago Vichuqueacuten estas actualmente cubren maacutes

del 60 de su cuenca (Cap2 Fig 5) Ademaacutes en Laguna Matanzas la

sobreexplotacioacuten del agua en conjunto con el cambio climaacutetico actual el que ha

conducido a una de las megasequiacuteas maacutes severas en las uacuteltimas deacutecadas

(Garreaud et al 2017) generoacute una combinacioacuten letal que secoacute el lago en tan solo

10 antildeos (Cap1 Fig1) Las evidencias obtenidas a partir de estos dos lagos

permiten identificar las huellas del Antropoceno en Chile central basadas en el

registro sedimentario lacustre

La transferencia de N desde los ecosistemas terrestres a acuaacuteticos es un

proceso natural con controles bioacuteticos climaacuteticos y geoloacutegicos El enlace

hidroloacutegico entre los ecosistemas terrestres y acuaacuteticos hace que el estado troacutefico

de los lagos esteacute vinculado al de su cuenca (McLauchlan et al 2013) En Chile

central se sabe poco del impacto de los LUCC sobre el ciclo de nutrientes en los

ecosistemas lacustres aunque al menos desde la colonizacioacuten espantildeola se tienen

registros de influencia humana en las cuencas Durante la colonia espantildeola

Laguna Matanzas fue una hacienda ganadera que exportaba productos caacuternicos al

Peruacute (Contreras-Lopez et al 2014) A su vez en el Lago Vichuqueacuten se realizaban

extensas actividades agriacutecolas hasta comienzos del s XX como por ejemplo

cultivos de vid y trigo ademaacutes de extraccioacuten de madera y mineriacutea de oro (Odone

1997) En las uacuteltimas deacutecadas los LUCC han estado vinculados principalmente con

el desarrollo forestal al compaacutes de una estrategia gubernamental de fomentar con

119

incentivos financieros (Ley de Bosques DFL nordm265 de 1931 y DFL 701 de 1974)

esta actividad El incremento de la superficie forestal es especialmente fuerte en

ambos lagos a partir de la deacutecada de 1980 y hasta 2016 (Laguna de Matanzas 0-

17 Lago Vichuqueacuten 1-66) Este aumento habriacutea sido en detrimento del bosque

nativo y los pastizales (Cap 1 Fig 5 y Cap 2 Fig 8) El incremento de la superficie

forestal generariacutea una disminucioacuten de los aportes de sedimentos y nutrientes al lago

y en este sentido un cambio de estado en los flujos de N (e g tipping points) que

a su vez ha quedado registrado en la sentildeal isotoacutepica (δ15N) y la acumulacioacuten de

MO en los sedimentos lacustres

Isoacutetopos estables y la dinaacutemica de N en los lagos de Chile central

Los sedimentos lacustres son verdaderos ldquosumiderosrdquo que pueden llegar a

registrar lo que ocurre en cuanto a la historia ambiental de su cuenca En esta tesis

se utilizan los isoacutetopos estables de N (15N y 14N) en sedimentos lacustres para

reconstruir los cambios en la disponibilidad de N en el tiempo y establecer la

magnitud de impacto generado por actividades humanas El fraccionamiento

cineacutetico en los lagos es mediado por procesos bioloacutegicos que mediante la

asimilacioacuten de N genera un producto (eg fitoplancton) maacutes ldquoligerordquo (valores maacutes

bajos de 15N) que su remanente (eg DIN) (Fogel y Cifuentes 1993) Sin embargo

en periacuteodos en que los lagos estaacuten limitados por N el fitoplancton discrimina menos

y la MO resultante queda enriquecida en 15N (Fig 1 a y b) Ademaacutes la

desnitrificacioacuten acentuada en lagos de fondo anoacutexicos (eg Laguna Matanzas

entre 1800 y 1940 Cap1 Fig 6) conduce a un enriquecimiento en 15N de los

sedimentos y de la columna de agua Esta informacioacuten queda reflejada en la MO

120

de los sedimentos lacustres lo que permite conocer la disponibilidad del N en el

tiempo a partir de las variaciones de 15N

En esta tesis analizamos la MO de los sedimentos lacustres para reconstruir

la influencia de los LUCC en los aportes de sedimentos y N al lago En teacuterminos de

asimilacioacuten de N se puede distinguir entre dos grupos principales de productores

primarios que componen el POM (Fig1)

1 Los que asimilan el DIN compuesto por amonio nitratos y nitritos Aquiacute el

δ15N resultante fluctuaraacute en torno a valores maacutes positivos en la medida que

la productividad se incrementa o no hay reposicioacuten del DIN (Fig 1)

2 Los fijadores de N Dado que es un proceso energeacuteticamente costoso en

ambientes que no estaacuten limitados por N muchas veces son excluiacutedas

competitivamente por el resto del fitoplancton Si el DIN queda agotado por

el incremento de la productividad (o bien si el ambiente estaacute limitado ya sea

por N o por otros nutrientes) los fijadores de N pueden florecer y la MO que

se genera a partir de ello tendraacute un δ15N con valores en torno a 0permil

De este modo la MO en los sedimentos lacustres dependeraacute de la

composicioacuten de productores primarios (ie fijadores vs asimiladores del DIN)

ademaacutes de los aportes desde la cuenca tanto de MO como del N de la cuenca que

pasa a formar parte del DIN (eg fertilizantes estieacutercol) (Fig 1)

La MO de los lagos estudiados en esta tesis ha sido analizada a partir de

variables geoquiacutemicas isotoacutepicas frotis y estaacute compuesta principalmente por

diatomeas y MO amorfa A partir de los datos obtenidos en esta tesis los valores

de δ15N aumentan cuando hay una mayor cobertura agriacutecola o pastizales A su vez

tiende a disminuir cuando aumenta la cobertura arboacuterea independiente si esta es

por plantaciones forestales o por bosque nativo

121

Por otra parte la dinaacutemica del lago tambieacuten imprime caracteriacutesticas

especiales en el POM observaacutendose variaciones estacionales en los valores

δ15NPOM Durante la estacioacuten caacutelida y seca se observan valores maacutes bajos que

durante la estacioacuten friacutea y huacutemeda posiblemente relacionado con el incremento de

la contribucioacuten de especies fijadoras de N (Lago Vichuqueacuten Fig 9 Cap 2) durante

el verano En la estacioacuten friacutea y huacutemeda el DIN seriacutea la principal fuente de N Las

mayores entradas de MO y N terrestre debidos a un incremento del lavado de la

cuenca como consecuencia de las precipitaciones y la mineralizacioacuten de la MO

podriacutean estimular la produccioacuten de MO lacustre por crecimiento del fitoplancton

Como consecuencia se observan tendencias decrecientes de los valores de

δ15N en la MO sedimentaria cuando la productividad en el lago estaacute relacionada

con especies fijadoras de N mientras que el δ15N muestra aumentos cuando la

productividad del lago estaacute asociada principalmente al consumo del DIN pero

tambieacuten cuando predominan procesos de perdida de N (eg desnitrificacioacuten Fig

1)

Hemos identificado tres fases en la dinaacutemica del δ15N para ambos lagos

Entre 1800 y 1940 CE la cuenca de laguna de Matanzas estaba dominada por

actividades agriacutecolas y ganaderas (δ15Nsuelo gt 4permil Cap 1 Fig 4 y 6) Las entradas

de sedimentos y MO desde la cuenca son altas (δ13C lt -209permil ZrTi ~029 AlTi

~013) y coincide con un clima maacutes huacutemedo y friacuteo (Von Gunten et al 2009

Christiansen et al 2011) El lago teniacutea un nivel de agua maacutes profundo dominado

por condiciones anoacutexicas (MnFe ~0013) que contribuiriacutean a mayores valores de

δ15N en la columna de agua y por ende de los sedimentos acumulados en el fondo

debido a la peacuterdida diferencial de 14N viacutea desnitrificacioacuten (Fig 7 Cap1) La baja

122

produccioacuten de MO lacustre (BrTi ~002 TOC~17) coincide con un bajo contenido

de NT (~478 μg) y valores maacutes positivos de δ15N (gt 4permil)

La actividad agriacutecola tambieacuten dominaba en la cuenca del Lago Vichuqueacuten

durante este periacuteodo (δ15Nsuelo gt4permil Cap2 Fig 6) El aporte sedimentario desde la

cuenca es alto (AlTi ~029 ZrTi ~032) y fue favorecido por mayores

precipitaciones a las actuales (Christiansen et al 2011) El Lago Vichuqueacuten es un

lago estratificado anoacutexico (MnFe ~002) y profundo (~30 m) por lo que la

desnitrificacioacuten juega un rol importante en el enriquecimiento de la MO

sedimentaria La baja produccioacuten de MO (BrTi ~007 TOC ~12) de origen

lacustre (δ13C ~ -268permil) coincide con un bajo contenido de NT (~309μg +6) y

valores maacutes positivos de δ15N (56permil +03)

Durante esta fase en ambos lagos los aportes de N de la cuenca parecen

ser los principales responsables en las fluctuaciones del δ15N Esta sentildeal podriacutea

estar amplificada por bajas temperaturas (que afectan la productividad lacustre) y

altas precipitaciones que favorecen el lavado de la cuenca y aumentan el aporte de

sedimentos y MO desde la cuenca predominantemente agriacutecola

Entre 1940 y 1980 CE en Laguna Matanzas se observa un incremento en

la acumulacioacuten de MO algal (TOC ~2 +1 δ13C ~-230+09permil) El ambiente

deposicional es ligeramente menos turbulento que el anterior (AlTi ~011+001

ZrTi ~03+001) y el lago estaacute en una fase de transicioacuten hacia condiciones maacutes

oacutexicas (MnFe ~002+0004) y maacutes productivas (BrTi ~004+0007) A su vez δ15N

tiende hacia valores maacutes negativos (δ15N ~30permil+03) mientras que el NT aumenta

oscilando en antifase con el δ15N

En Lago Vichuqueacuten en cambio se observa un ligero incremento en la

acumulacioacuten de MO (TOC ~13 +02) de origen terrestre (δ13C ~-27permil +04) La

123

productividad es similar al periacuteodo anterior (BrTi ~007+003) y el ambiente

deposicional es menos turbulento (AlTi ~02 +009 Zrti ~033 +007) El δ15N y el

NT oscilan en torno a valores ligeramente maacutes bajos (δ15N ~51permil +04 NT ~292μg

+6) Este periacuteodo se caracteriza por ser maacutes caacutelido que el anterior lo que

posibilitariacutea un incremento en la productividad lacustre en Laguna Matanzas pero

que no es observada en el Lago Vichuqueacuten

Entre 1980 y la actualidad en Laguna Matanzas habriacutea un incremento de la

acumulacioacuten de MO (TOC ~59 + 3) asociada a un incremento en la productividad

del lago (BrTi ~009+005) y a los aportes de MO terrestres (δ13C ~-24 + 2permil) El

lago se vuelve maacutes oacutexico (Mn ~0003 +0006) y las entradas de sedimento

disminuyen (AlTi~ 009 +002) El δ15N tiende a valores maacutes negativos (δ15N ~13permil

+1) y el NT aumenta de 20 a 55 μg (NT ~346 + 9 μg) tomando valores sin

precedentes en todo el registro En los sedimentos lacustres del Lago Vichuqueacuten

tambieacuten se observa un incremento de la acumulacioacuten de MO (TOC ~17 + 05)

asociada a un incremento en la productividad del lago (BrTi ~01 + 003) y las

entradas de sedimento desde la cuenca disminuyen (AlTi ~005 + 005) El δ15N

(~43 + 05permil) tiende a valores maacutes negativos y el NT incrementa de 20 a 55 μg (NT

~346 + 9 μg) oscilando en antifase

Durante esta fase en ambos lagos se observa un aumento en la

acumulacioacuten de MO sedimentaria un incremento en el NT y valores maacutes negativos

de δ15N que coincide con el incremento de la superficie forestal de las cuencas

(Laguna Matanzas gt17 Lago Vichuqueacuten gt60)

124

Figura 2 Comparacioacuten de los cambios del ciclo del N entre Laguna Matanzas y

Lago Vichuqueacuten con los procesos biogeoquiacutemicos contrastantes en rojo En L

Matanzas las condiciones oacutexicas podriacutean estar favoreciendo la nitrificacioacuten del

amonio En Vichuqueacuten las condiciones anoacutexicas favorecen un aumento en δ15N de

la MO en los sedimentos por desnitrificacioacuten y mineralizacioacuten

Los ambientes mediterraacuteneos en el que los lagos del presente estudio se

encuentran insertos estaacuten caracterizados por una estacioacuten seca prolongada y las

precipitaciones ocurren en eventos puntuales alcanzando altos montos

pluviomeacutetricos en poco tiempo Las lluvias favorecen un lavado de la cuenca la

perdida de N y otros nutrientes Por lo que es esperable que los sedimentos del

lago reflejen mejor los valores isotoacutepicos de los suelos de la cuenca durante los

periacuteodos con altos montos pluviomeacutetricos En el Lago Vichuqueacuten por ejemplo el

125

POM superficial (2 y 5 m de profundidad) despliega valores isotoacutepicos maacutes

positivos en invierno presumiblemente como resultado de mayores aportes de MO

y N de su cuenca (Fig 1b) En ambos lagos los valores maacutes positivos en los

sedimentos lacustres ocurren durante periacuteodos con mayores montos pluviomeacutetricos

(Cap1 Fig 6 y Cap 2 Fig 12)

Ademaacutes del efecto de la precipitacioacuten en el aporte de nutrientes al lago en

esta tesis hemos encontrado que los mayores aportes de N desde la cuenca se dan

cuando la cobertura vegetal del suelo es menor En Laguna Matanzas el desarrollo

de la actividad ganadera desde la llegada de los espantildeoles a la cuenca habriacutea

incrementado los aportes de N al lago Los valores de δ15N en los sedimentos

lacustres depositados durante este periacuteodo son los maacutes positivos de todo el registro

(~4permil) A su vez en Lago Vichuqueacuten los valores isotoacutepicos maacutes positivos se

registran entre 1300 y 1900 CE que coinciden con el mayor desarrollo de

actividades agriacutecola y de extraccioacuten de maderas de la cuenca (Fig 10 Cap 2)

Los recientes LUCC (a partir de 1975) en las cuencas de Laguna Matanzas

y Lago Vichuqueacuten estaacuten caracterizados por un incremento de la superficie forestal

y agriacutecola en reemplazo de la cobertura de pastizal (Laguna Matanzas) y bosque

nativo (Lago Vichuqueacuten) Los valores de δ15N en los testigos sedimentarios fueron

maacutes positivos cuanto mayor la superficie agriacutecola de la cuenca y maacutes negativos

cuanto mayor la superficie forestal Aunque por los alcances de esta tesis no

podemos ser concluyentes respecto del origen del NT (aloacutectonoautoacutectono) parece

ser que esta maacutes ligado a los aportes de la cuenca pese a la disminucioacuten del aporte

sedimentario observado en ambos lagos Las plantaciones forestales a diferencia

del bosque nativo son fertilizadas con una mezcla de N P y K (Toral et al 2005)

Por lo que pese a la disminucioacuten del aporte sedimentario la concentracioacuten de

126

nutrientes en el aporte al lago puede verse incrementada por el tipo de manejo

forestal con respecto al bosque nativo

Los resultados del primer capiacutetulo demuestran que 1) las plantaciones

forestales yo bosque nativo retiene maacutes sedimentos y MO mientras que el uso de

suelo agriacutecola y los pastizales destinados al desarrollo de la actividad ganadera lo

libera 2) Al parecer la desnitrificacioacuten es el proceso natural maacutes importante de

perdida de N en lagos costeros y favorece el enriquecimiento de 15N tanto en la

columna de agua (ie 15N-DIN) como en los sedimentos una vez enterrados y 3) la

desnitrificacioacuten depende de los cambios en las condiciones REDOX en el lago La

oxigenacioacuten en lagos poco profundos -como Laguna Matanzas- es altamente

fluctuante a escalas decadal-centenal depende de la profundidad de la laacutemina de

agua y de la variabilidad de la precipitacioacuten En este sentido en Laguna Matanzas

habriacutea condiciones anoacutexicas en ambientes cuando el lago alcanza niveles maacutes

altos Estas condiciones se observan entre 1820 y 1940 CE y son coetaacuteneas con

episodios maacutes huacutemedos y friacuteos (von Gunten et al 2009 Christie et al 2009) pero

tambieacuten con una fuerte actividad ganadera en la cuenca

Las fuentes variables de N y su fluctuacioacuten en el tiempo hacen necesario

contar con un anaacutelogo moderno que permite usar al δ15N de los sedimentos

lacustres como un indicador indirecto de los cambios en la disponibilidad de N en

el tiempo Por ello en el segundo capiacutetulo integramos muestras de suelo-

vegetacioacuten y un monitoreo de POM de la columna de agua en verano e invierno La

composicioacuten isotoacutepica de POM estariacutea reflejando cambios de la fuente de N (fijacioacuten

vs consumo del DIN) que variacutea durante el antildeo hidroloacutegico Durante el verano la

mayor temperatura y horas-luz favoreceriacutean las entradas de N al lago viacutea fijacioacuten

bioloacutegica de N2 atmosfeacuterico resultando en un incremento de la MO con un valor

127

isotoacutepico bajo (POM verano~5permil Fig 1b) El N2 (δ15N = 0permil) es fijado praacutecticamente

sin fraccionamiento isotoacutepico generando un δ15N de la OM cercano a 0permil (Leng et

al 2006) En invierno las precipitaciones pueden estar favoreciendo un incremento

en la entrada de nutrientes al lago El DIN de la columna de agua llega a contener

valores de δ15N maacutes altos reflejando estos mayores aportes de la cuenca y el POM

del Lago Vichuqueacuten queda enriquecido en 15N (δ15N ~11permil Cap 2 Fig 9) Estas

variaciones estacionales pueden estar evidenciando un cambio en la composicioacuten

de especies de POM desde especies fijadoras a especies que consumen el N de la

columna de agua Sin embargo para corroborar esta informacioacuten seriacutea deseable

contar con el anaacutelisis de la composicioacuten de especies de las muestras de agua

extraidas

Entre los resultados maacutes importantes estaacuten los valores isotoacutepicos del suelo

y la biomasa representativa de la cuenca que incluye un listado de las especies

nativas de la zona que hasta ahora no se contaba (Cap 2 Tabla en material

suplementario) Las especies colectadas despliegan valores de δ15Nfoliar maacutes

positivos (plantaciones forestales y pastizal ~89permil) que el suelo (35permil) salvo por

las especies nativas las que oscilan en torno a valores cercanos al atmosfeacuterico

(~14permil) La razoacuten isotoacutepica 15N14N refleja la dinaacutemica de intercambio de N entre la

vegetacioacuten y el suelo (Koba et al 2002) La discriminacioacuten es positiva en la mayoriacutea

de los sistemas bioloacutegicos por lo que las plantas tienen valores de δ15N maacutes bajos

que el suelo (Evans et al 2001) como sucede con las especies nativas en Lago

Vichuqueacuten En consecuencia las plantas quedan empobrecidas en 15N y conducen

a un enriquecimiento en 15N del suelo sobretodo si no hay reposicioacuten de N por otras

viacuteas (eg fijacioacuten de N) Por lo tanto los valores maacutes negativos de δsup1⁵Nfoliar de las

especies nativas pueden estar relacionados con el consumo preferencial de 14N del

128

suelo donde la discriminacioacuten isotoacutepica de la vegetacioacuten contra el 15N conduce a

valores del δsup1⁵Nsuelo maacutes altos (Houmlgberg 1997) Por el contrario los valores maacutes

positivos de δsup1⁵Nfoliar de las plantaciones forestales y pastos con respecto al suelo

puede deberse por una parte que el suelo no cuenta con mecanismos naturales de

reposicioacuten de N salvo por la descomposicioacuten de la hojarasca que puede ser maacutes

lenta en Pinus radiata que en bosque nativo (Lusk et al 2001) y por otra por el alto

impacto de los aportes de N (y otros nutrientes) derivado de las actividades

humanas (eg uso de fertilizantes) en el suelo

El alcance maacutes significativo de esta tesis se relaciona con un cambio en la

tendencia maacutes negativa de δsup1⁵N y el incremento del NT a partir de 1940 y a partir

de 1970 CE en ambos lagos La causa maacutes probable de esta tendencia es el

reemplazo de la cobertura natural o preexistente a 1940 CE por plantaciones

forestales

En la figura 2 se observa una siacutentesis de los principales procesos que

afectan la sentildeal isotoacutepica de la MO en los sedimentos lacustres de L Matanzas y

L Vichuqueacuten La entrada de N y MO desde la cuenca depende del tipo de cobertura

Las plantaciones forestales y el bosque nativo retienen maacutes nutrientes y sedimentos

en la cuenca mientras que la agricultura los favorece Sin embargo las praacutecticas

de manejo que incluyen la aplicacioacuten de N (y otros nutrientes) pueden aportar maacutes

nutrientes al lago que la cobertra de bosque nativo Cuando las actividades

forestales cubren una mayor superficie de la cuenca (1940 en adelante) δsup1⁵N oscila

en valores maacutes negativos y el NT tiende a incrementarse en los sedimentos

lacustres Cabe destacar que los valores de δsup1⁵N observados en los testigos

sedimentarios a fines del s XX no tienen precedente durante la conquista y colonia

espantildeola o durante el resto del periodo de la Repuacuteblica

129

Figura 2 Modelo de transferencia de N entre los ecosistemas terrestres y

acuaacuteticos El δ15N de los sedimentos lacustres depende de la interaccioacuten entre los

aportes de la cuenca y porcesos ldquoin-lakerdquo Flechas indican la direccioacuten del flujo de

N En azul las salidasentradas de 14N en rojo las salidasentradas de 15N δ15N de

la interaccioacuten plantas-suelo depende del tipo de cobertura de suelo

130

CONCLUSIONES GENERALES

La transferencia de N entre cuencas y lagos es un factor de control del ciclo

del N en los lagos y queda reflejado en la sentildeal isotoacutepica de los sedimentos

lacustres (Leng et al 2006 McLauchlan et al 2007) En Laguna Matanzas el

suelo de las especies nativas y las plantaciones forestales despliegan valores de

δ15N maacutes bajos (~1permil) que los de Lago Vichuqueacuten (~35permil) Coincidentemente los

sedimentos lacustres de Laguna Matanzas oscilan con valores de δ15N maacutes bajos

(-15 a +45permil Fig 1) que los de Lago Vichuqueacuten (+3 a +8permil)

Por otra parte el estudio de la MO de los sedimentos lacustres ha permitido

reconstruir los cambios en los aportes de MO y N desde la cuenca Aunque no es

posible afirmar queacute tipo de N estaacute entrando al lago (eg Nitroacutegeno orgaacutenico e

inorganico) si podemos decir que los cambios en las fluctuaciones de δ15N son

coincentes con el crecimiento de la actividad forestal (1980 - hasta 2016 L

Matanzas 0-17 y L Vichuqueacuten 1-66) El δ15N fluctuacutea hacia valores maacutes

negativos Ademaacutes se observa un incremento del NT en los sedimentos lacustres

cuanto mayor es la superficie forestal

Entre 1800-1940 las cuencas eran fundamentalmente agriacutecolas y

ganaderas (Cap1 Fig 7 y Cap 2 Fig 12) el δ15N de los sedimentos lacustres

oscila con valores maacutes positivos (L Matanzas +40 plusmn 05permil y L Vichuqueacuten 56 plusmn

033permil Fig 1) hay una baja bioproductividad en el lago (BrTi ~002 TOC~17)

lo que coincide con un bajo contenido de NT (~478 μg) Este es un periacuteodo de altas

precipitaciones (Christie et al 2009) que tienden a favorecer el lavado de la cuenca

131

y con ello el aporte de MO sedimentos y nutrientes desde la cuenca tiende a verse

favorecido Aunque las principales actividades humanas en estas cuencas son

diferentes (ganaderiacutea en Laguna Matanzas Contreras-Lopez et al 2014

agricultura en Lago Vichuqueacuten Odone 1997) en ambos casos hubo un reemplazo

de la cobertura natural de bosques nativo que favorecioacute mayores aportes de N y

sedimentos desde la cuenca en un efecto sumado con el aumento de las

precipitaciones

A partir de 1980 CE en ambos lagos se observa una disminucioacuten en los

valores de δ15N y un incremento del NT que no tiene precedentes en todo el registro

y pese a que ambos lagos son limnologicamente muy diferentes En Lago

Vichuqueacuten el δ15N tiende a oscilar en antifase con el NT (Fig 1) En el caso de

Laguna Matanzas se observa una tendencia hacia valores maacutes negativos y a partir

de 1990s a valores maacutes positivos mientras que el NT tiende a incrementarse de

manera sostenida Ello podriacutea estar relacionado con el crecimiento de la actividad

forestal habriacutea una mayor retencioacuten de N y sedimentos en la cuenca ligado al

incremento de la superficie forestal Ademaacutes en el caso de L Matanzas el

incremento de la actividad agriacutecola (sumado al de las plantaciones forestales)

podriacutea expicar el cambio en la tendencia en la deacutecada de los 1990s

En el contexto de Antropoceno esta tesis nos permite identificar un gran

impacto de las actividades humanas en Chile central a partir de la deacutecada de 1940

y una Gran Aceleracoacuten a partir de la deacutecada de 1970s En el registro sedimentario

de los lagos en estudio se observa una gran acumulacioacuten de MO el δ15N oscila

hacia valores maacutes negativos y un gran incremento del NT y el crecimiento de la

actividad forestal parece ser la principal responsable Ademaacutes la sobreexplotacioacuten

132

del agua junto al cambio climaacutetico global ha generado una combinacioacuten letal para

los lagos costeros de Chile central

Figura 1 Comparacioacuten de las fluctuaciones de δ15N durante los uacuteltimos 300

antildeos en Laguna Matanzas y Lago Vichuqueacuten

133

Referencias

Battye W Aneja VP Schlesinger WH 2017 Earthrsquos Future Is nitrogen the next carbon Earthrsquos Future Global Biogeochem Cycles 30 1000ndash1014 httpsdoiorg101002eft2235

Christie DA Boninsegna JA Cleaveland MK Lara A Le Quesne C

Morales MS Mudelsee M Stahle DW Villalba R 2009 Aridity changes in the Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from tree-rings Clim Dyn 36 1505ndash1521 httpsdoiorg101007s00382-009-0723-4

Contreras-Loacutepez M (Playa AUHVC (Universidad de VRFS (Pontificia

UC de V 2014 Elementos de la historia natural del An Mus Hist Natulas Vaplaraiso 27 51ndash67

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in

freshwater wetlands record long-term changes in watershed nitrogen source and land use SO - Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash2916

Evans RD Evans RD 2001 Physiological mechanisms influencing

plant nitrogen isotope composition 6 121ndash126 Fogel ML Cifuentes LA 1993 Isotope fractionation during primary

production Org Geochem 73ndash98 httpsdoiorg101007978-1-4615-2890-6_3 Galloway JN Schlesinger WH Ii HL Schnoor L Tg N 1995

Nitrogen fixation Anthropogenic enhancement-environmental response reactive N Global Biogeochem Cycles 9 235ndash252

Garreaud RD Alvarez-Garreton C Barichivich J Pablo Boisier J

Christie D Galleguillos M LeQuesne C McPhee J Zambrano-Bigiarini M 2017 The 2010-2015 megadrought in central Chile Impacts on regional hydroclimate and vegetation Hydrol Earth Syst Sci 21 6307ndash6327 httpsdoiorg105194hess-21-6307-2017

Koba K Koyama LA Kohzu A Nadelhoffer KJ 2003 Natural 15 N

Abundance of Plants Coniferous Forest httpsdoiorg101007s10021-002-0132-6

Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos

Transactions American Geophysical Union httpsdoiorg1010292007EO070007 McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE

2007 Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470 httpsdoiorg101073pnas0701779104

134

Phytologist N Oct N 2006 Tansley Review No 95 15N Natural Abundance in Soil-Plant Systems Peter Hogberg 137 179ndash203

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98 httpsdoiorg1011772053019614564785

Turner BL Kasperson RE Matson PA McCarthy JJ Corell RW

Christensen L Eckley N Kasperson JX Luers A Martello ML Polsky C Pulsipher A Schiller A 2003 A framework for vulnerability analysis in sustainability science Proc Natl Acad Sci U S A httpsdoiorg101073pnas1231335100

Vitousek PM Aber JD Howarth RW Likens GE Matson PA

Schindler DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

Vitousek PM Howarth RW 1991 Nitrogen limitation on land and in the

sea How can it occur Biogeochemistry httpsdoiorg101007BF00002772 von Gunten L Grosjean M Rein B Urrutia R Appleby P 2009 A

quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo central Chile back to AD 850 Holocene 19 873ndash881 httpsdoiorg1011770959683609336573

Xu R Tian H Pan S Dangal SRS Chen J Chang J Lu Y Maria

Skiba U Tubiello FN Zhang B 2019 Increased nitrogen enrichment and shifted patterns in the worldrsquos grassland 1860-2016 Earth Syst Sci Data httpsdoiorg105194essd-11-175-2019

Zaehle S 2013 Terrestrial nitrogen-carbon cycle interactions at the global

scale Philos Trans R Soc B Biol Sci 368 httpsdoiorg101098rstb20130125

Page 4: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …

4

2 Study Site 77 3 Methods 79 4 Results 84

41 Geochemistry and PCA analysis 84 42 Sedimentary units 86 43 Recent seasonal changes of particulate organic matter on water column 88 44 Stable isotope values across the Lake Vichuqueacuten watershed 89 45 Land use and cover change from 1975 to 2014 90

5 Discussion 93 51 Seasonal variability of POM in the water column 93 52 Stable isotope signatures in the Lake Vichuqueacuten watershed 95 53 Recently land use and cover change and its influences on N inputs to the lake 97 54 Nitrogen dynamics in Lago Vichuqueacuten over the last six hundred years 98

6 Conclusions 101

LITERATURE CITED 110

DISCUSION GENERAL 117

Isoacutetopos estables y la dinaacutemica de N en los lagos de Chile central 119

CONCLUSIONES GENERALES 130

Referencias 133

5

A mis padres Arturo y Malena

A mis hijos Xavi y Panchito

6

AGRADECIMIENTOS

Quiero agradecer a mi tutor y mentor Dr Claudio Latorre por brindarme su

apoyo sin el cual no habriacutea logrado concluir esta tesis de doctorado Claudio tu

apoyo constante incentivo y el fijarme metas que a veces me pareciacutean imposibles

de alcanzar no solo han dado forma a esta tesis sino tambieacuten me ha hecho maacutes

exigente como cientiacutefica Claudio destacas no solo por ser un gran cientiacutefico si no

tambieacuten por tu gran calidad humana eres un gran ejemplo

Quiero agradecer Dr Blas Valero-Garceacutes por nuestras numerosas

conversaciones viacutea Skype que incluiacutean vacaciones y fines de semana para discutir

los resultados de la tesis y que han dado forma a esta investigacioacuten principalmente

al primer capiacutetulo Ademaacutes por haberme acogido como un miembro maacutes en el

laboratorio de Paleoambientes Cuaternarios durante las estancias que he realizado

en el transcurso de estos antildeos Blas eres un ejemplo para miacute conjugas ciencia de

calidad calidez y dedicacioacuten por tus estudiantes

A quienes han financiado mi doctorado la Comisioacuten Nacional de

Investigacioacuten Cientiacutefica y Tecnoloacutegica (CONICYT) con sus becas de manutencioacuten

doctoral (2013) gastos operacionales pasantiacutea (2016) postnatal (2017) y termino

de tesis doctoralrdquo (2013) A FONDECYT a traveacutes del proyecto 1160744 de C

Santoro Al Departamento de InvestigacioacutenAl Instituto de Ecologiacutea y Biodiversidad

(IEB) a traveacutes de del PIA financiamiento basal 170008 la Pontificia Universidad

Catoacutelica de Chile por la beca incentivo para tesis interdisciplinaria para doctorandos

(2015)

Agradezco a mis compantildeeros del laboratorio de Paleoecologiacutea y

Paleoclimatologiacutea Karla Matias Dani Carolina Mauricio y Pancho que han hecho

grato mi tiempo en el laboratorio Agradecimientos especiales a Carolina Matiacuteas y

Leo por acompantildearme a terreno

7

Agradezco a los miembros del laboratorio de Paleoambientes Cuaternarios

(IPE) en especial a Raquel Elena Fernando Ana Penelope Graciela Miguel

Sevilla Mariacutea y Miguel Bartolomeacute

Agradezco a los miembros de la comisioacuten Dr Joseacute Miguel Farintildea Dr Juan

Armesto y Dr Ricardo De Pol-Holz por la gran ayuda durante el desarrollo de mi

doctorado en especial por las correcciones finales de la tesis

Al departamento de Ecologiacutea en especial a Rosario Galaz Edita Luengo

Daniela Mora y Valeria Cavallero por su apoyo

A mis compantildeeros de doctorado Beleacuten Gallardo Pancho Diacuteaz Bryan Bularz

Bian Latorre Renato Borras Juan Carlos Hernaacutendez y Paulina Troncoso con

quienes estudieacute aprendiacute y compartimos muy buenos momentos durante los

primeros antildeos del doctorado

A Pablo Sarricolea mi compantildeero de vida Gracias por tu constante e

incondicional apoyo Sin ti durante este proceso todo habriacutea sido cuesta arriba

A mis padres Arturo y Malena gracias por su carintildeo apoyo y compromiso

Papaacute aunque no esteacutes a mi lado siempre te recuerdo con mucho carintildeo A mi

madre que ha sido un constante apoyo sobre todo en el cuidado de mis hijos xavi

y panchito

A mis hermanos Rodrigo y David por estar presentes durante toda esta

etapa Siempre con carintildeo y hermandad

A Rodrigo David Matiacuteas Jany Paola y Julio por cuidar a mis hijos con carintildeo

siempre que estuve ausente por el doctorado

8

ABREVIATURAS

N Nitroacutegeno (Nitrogen)

DIN Nitroacutegeno Inorgaacutenico Disuelto (Dissolved Inorganic Nitrogen)

C Carbono (Carbon)

TOC Carbono Inorgaacutenico Total (Total Organic Carbon)

TIC Carbono Inorgaacutenico Total (Total inorganic Carbon)

TC Carbono Total (Total Carbon)

TS Azufre Total (Total Sulfur)

LUCC Cambios de UsoCobertura del Suelo (Land Use and Cover Change)

OM Materia Orgaacutenica (Organic Matter)

POM Particulate Organic Matter (materia orgaacutenica particulada)

CE Common Era

BCE Before Common Era

Cal BP Calibrado en antildeos radiocarbono antes de 1950

ie id est (esto es)

e g Exempli gratia (por ejemplo)

9

RESUMEN

El ldquoAntropocenordquo se caracteriza por pertubaciones de origen humano que

conllevan impactos globales Por ejemplo los cambios de usocobertura del suelo

(LUCC) son conocidos por perturbar el ciclo del N a partir de la Revolucioacuten Industrial

pero especialmente desde la Gran Aceleracioacuten (1950 CE) en adelante Sin

embargo existen incertezas asociadas a la magnitud del impacto y su efecto

acoplado con los cambios climaacuteticos actuales (ie megasequiacutea disminucioacuten de las

precipitaciones) y acoplamientos con otros ciclos biogeoquiacutemicos (eg ciclo del

Carbono) Este impacto ha cambiado la disponibilidad de N en los ecosistemas

terrestres y acuaacuteticos y sus enlaces Los sedimentos lacustres contienen

informacioacuten de las condiciones paleoambientales del lago y su cuenca en el

momento en que se depositaron y el anaacutelisis de los isoacutetopos estables de N (δ15N)

en los sedimentos permiten reconstruir los cambios en la disponibilidad de N a

traveacutes del tiempo En este trabajo usamos una aproximacioacuten multiproxy que incluye

10

anaacutelisis sedimentoloacutegicos geoquiacutemicos e isotoacutepicos (δ15N δ13C) de los sedimentos

lacustres columna de agua y suelo-vegetacioacuten de la cuenca y la reconstruccioacuten de

los LUCC entre 1975 y 2016 a partir de imaacutegenes satelitales El objetivo de esta

tesis fue evaluar el rol de LUCC como principal control del ciclo del N en el sistema

cuenca-lago durante las uacuteltimas centurias en Chile central Nuestros principales

resultados muestran que valores maacutes positivos de δ15N en los sedimentos lacustres

estaacuten relacionados con grandes aportes de N de la cuenca que a su vez son

mayores cuanto mayor la superficie agriacutecola yo los pastizales mientras que tanto

las plantaciones forestales como los bosques favorecen la retencioacuten de nutrientes

en la cuenca (lo que se ve reflejado en un δ15N maacutes negativo) Esta tesis plantea

un cambio de estado en la dinaacutemica del N asociado a la introduccioacuten y expansioacuten

de las plantaciones forestales o bosques los que retienen el Nitroacutegeno en las

cuencas mientras que el clima juega un rol secundario

11

ABSTRACT

The Anthropocene is characterized by human disturbances at the global

scale For example changes in land use are known to disturb the N cycle since the

industrial revolution but especially since the Great Acceleration (1950 CE) onwards

This impact has changed N availability in both terrestrial and aquatic ecosystems

However there are some important uncertainties associated with the extent of this

impact and how it is coupled to ongoing climate change (ie megadroughts rainfall

variability and shifting stationarity) or to other nutrient cycles (e g carbon cycle)

Lake sediments contain paleoenvironmental information regarding the conditions of

the watershed and associated lakes and which the respective sediments are

deposited Nitrogen stable isotope analysis (δ15N) on lake sediments allows us to

reconstruct the changes in N availability through time Here we used a multiproxy

approach that uses sedimentological geochemical and isotopic analyses on

lacustrine sediments water column and soilvegetation from the watershed as well

12

as land use and cover change (LUCC) from 1975 to 2016 obtained from satellite

images The goal of this thesis is to evaluate the role of LUCC as the main driver for

N cycling in a coastal watershed system of central Chile over the last centuries Our

main results show that more positive δ15N values in lake sediments are related to

higher N contributions from the watershed which in turn increase with increased

agricultural andor pasture cover whereas either forest plantations or native forests

can favor nutrient retention in the watershed (δ15N more negative) This thesis

proposes that N dynamics are mainly driven by the introduction and expansion of

forest or tree plantations that retain nitrogen in the watershed whereas climate plays

a secondary role

13

INTRODUCCIOacuteN

El N es un elemento esencial para la vida y limita la productividad en

ecosistemas tanto terrestres como acuaacuteticos (Vitousek et al 1997) Las actividades

humanas han tenido un profundo impacto sobre el ciclo del N global principalmente

a partir la revolucioacuten industrial (IPCC 2013 2007) Las concentraciones de N se

han incrementado por la fijacioacuten industrial de N atmosfeacuterico (viacutea el proceso Haber-

Bosch Erisman et al 2008) por el uso de fertilizantes sobre la base de N para

mejorar el rendimiento de los cultivos la produccioacuten ganadera y ademaacutes de los

cambios en el uso del suelo (abreviado en ingleacutes- LUCC) (Robertson y Vitousek

2009 Galloway et al 2008 Battye et al 2017 Xu et al 2019) Estas actividades

contribuyen significativamente al incremento de la disponibilidad bioloacutegica de N

cuyas consecuencias para los ecosistemas incluye la perdida de diversidad

modificacioacuten de la disponibilidad de nutrientes y acidificacioacuten de los suelos entre

otras Sin embargo se desconoce la cantidad destino y el alcance que ha tenido

14

el N movilizado entre los ecosistemas generado por la influencia de las actividades

humanas (Vitousek et al 1997)

La entrada natural de N en los ecosistemas terrestres y acuaacuteticos es viacutea

fijacioacuten atmosfeacuterica la que es llevada a cabo por microorganismos muchos de ellos

en relaciones simbioacuteticas (eg Rhizobium en leguminosas) y las algas (Vitousek et

al 1997 Battye et al 2017) Las principales salidas estaacuten relacionadas con la

desnitrificacioacuten volatilizacioacuten del amoniaco y por escurrimiento superficial y

subterraacuteneo (Galloway et al 2008 Diacuteaz et al 2016) En el caso de los sistemas

lacustres ademaacutes estaacuten la resuspencioacuten de N del fondo del lago los aportes desde

la cuenca (entradas de N) La depositacioacuten de MO en el fondo del lago que marca

la salida de N de la columna de agua Estas relaciones de intercambio de N tienen

un control geograacutefico (eg latitud exposicioacuten relieve etc) climaacutetico y biotico

(McLauchlan et al 2013) La alteracioacuten provocada por los LUCC no solo genera

las peacuterdidas de nutrientes del suelo por erosioacuten y escurrimiento superficial sino que

tambieacuten modifica la disponibilidad y transferencia de N entre los ecosistemas

terrestres y acuaacuteticos (Elbert et al 2012 McLauchlan et al 2013) Por ejemplo el

reemplazo de la vegetacioacuten nativa por la agricultura yo plantaciones forestales

altera el ciclo del N debido al despeje de los terrenos viacutea quema de la vegetacioacuten

pero tambieacuten debido al reemplazo de la vegetacioacuten preexistente por un

monocultivo (eg trigo pino) y el uso ineficiente de fertilizantes para mejorar el

rendimiento agriacutecola Estas actividades favorecen un incremento de los aportes de

N (y otros nutrientes) viacutea sistemas de drenajes a lagos los que actuacutean como

sumideros El incremento del N derivado de las actividades humanas tanto en los

ecosistemas terrestres como acuaacuteticos genera incertezas relacionados con la

trayectoria y la magnitud de la disponibilidad de N en ambos ecosistemas (Batye et

15

al 2017 Mclauchlan et al 2017) Por lo tanto se requiere de una liacutenea base de

largo plazo para saber coacutemo estas perturbaciones impactan la disponibilidad de N

en las uacuteltimas deacutecadassiglos en los ecosistemas lacustres y por lo tanto el alcance

real que los LUCC han tenido en el ciclo del N

Los ecosistemas mediterraacuteneos y el ciclo del N

Los ecosistemas mediterraacuteneos son especialmente sensibles a los LUCC

pues estos se encuentran sometidos a un estreacutes hiacutedrico durante largas temporadas

estivales y las precipitaciones se concentran en eventos puntuales y a veces con

altos montos pluviomeacutetricos Las precipitaciones tienen un alto potencial de arrastre

de sedimentos y nutrientes los que actuacutean como fertilizantes al llegar a los

ecosistemas lacustres A su vez un incremento en la disponibilidad de N puede

generar un desbalance con otros nutrientes (eg Fosforo) con efectos sobre la

productividad y diversidad de los lagos (Pentildeuelas et al 2012 Sardans et al 2012

McLauchlan 2013) En este sentido en Chile central se observa una disminucioacuten

de las precipitaciones especialmente fuerte en las uacuteltimas deacutecadas por lo que se ha

denoacuteminado como Megasequiacutea (Garreaud et al 2017) y el efecto de las

precipitaciones esporaacutedicas pueden generar un arrastre de nutrientes que no ha

sido evaluado

Los ecosistemas mediterraacuteneos concentran el 20 de la biodiversidad global

(Myers et al 2000) pero existe una escasez de conocimiento respecto a los

efectos del incremento de N en los cuerpos de agua como consecuencia de las

actividades humanas en el pasado histoacuterico (Ochoa-Hueso et al 2011) y coacutemo la

disponibilidad de N ha variado en el tiempo Los LUCC han aumentado el flujo de

N en las cuencas hidrograacuteficas viacutea escurrimiento superficial y lixiviacioacuten

16

favoreciendo la peacuterdida de sedimentos y nutrientes del suelo en el mundo entero

(Elser et al 2011 McLauchlan et al 2013 Xu et al 2017 y 2019) Ello ha

contribuido a la acidificacioacuten y eutrofizacioacuten generalizada de riacuteos y lagos

(McLauchlan et al 2013 Schindler et al 2008)

El ecosistema mediterraacuteneo de Chile central es una regioacuten ampliamente

intervenida desde al menos la colonizacioacuten espantildeola (1600-1800 CE) Los LUCC

han tenido efectos negativos en la disponibilidad de agua especialmente

observados con el desarrollo de las actividades minera (Prieto et al 2019) Aunque

se sabe de los impactos en los ecosistemas de bosque en teacuterminos de cobertura

debidos al desarrollo silvo-agropecuarias (Armesto et al 2010) se desconoce el

impacto de estas actividades sobre el ciclo del N en los cuerpos de agua o en queacute

momento cobran fuerza suficiente para alterar el flujo de N hacia los lagos de Chile

Central Por lo tanto en esta tesis nos centramos en entender coacutemo los LUCC han

afectado la disponibilidad de N en los lagos costeros de Laguna Matanzas y Lago

Vichuqueacuten desde la llegada de los espantildeoles a Chile hasta el presente

Los lagos como sensores ambientales

Los sedimentos lacustres son buenos sensores de cambios en los aportes

de nutrientes contaminacioacuten y eutroficacioacuten de los cuerpos de agua ya que son

capaces de preservar sentildeales quiacutemicas y fiacutesicas al momento de su formacioacuten y

ademaacutes con alta resolucioacuten y a largo plazo (Leng et al 2006) Por lo tanto

constituyen una herramienta uacutetil para reconstruir el flujo de N entre ecosistemas

terrestres y acuaacuteticos en el pasado sus consecuencias (eg incremento de la

productividad lacustre) y el rol del clima y los LUCC en el pasado (McLauchlan et

al 2013 von Gunten et al 2009) Por ejemplo el cultivo de maiacutez por parte de los

17

nativos iroqueses en Canadaacute provocoacute la eutrofizacioacuten del Lago Crawford (43degN)

durante los siglos XII y XV Entre las consecuencias registradas se documentoacute un

claro incremento de la productividad primaria y cambios en la estructura comunitaria

de diatomeas foacutesiles (incremento de Stephanodiscus complex y disminucioacuten de

Cyclotella bodanica en Ekdahl et al 2007) Otro ejemplo demuestra como las

actividades agriacutecolas en la cuenca del riacuteo Mississippi modificaron los patrones de

sedimentacioacuten y aporte de nutrientes al lago Pepin EE UU (44degN) a partir del

asentamiento europeo en 1840 CE y principalmente desde 1940 CE (Engstrom et

al 2009) Para Chile von Gunten et al (2009) a partir de indicadores

limnogeoloacutegicos evidencioacute la contaminacioacuten y eutroficacioacuten de cinco lagos cercanos

a la ciudad de Santiago (33ordmS) como consecuencia de la deposicioacuten atmosfeacuterica

de metales pesados (especialmente Cu) quema de combustible foacutesil y flujo de

nutrientes durante los uacuteltimos 200 antildeos

Caracteriacutesticas limnoloacutegicas de los lagos

Los procesos limnoloacutegicos afectan la distribucioacuten y abundancia de los

organismos en los lagos Estaacuten influenciados por forzamientos externos por

ejemplo la precipitacioacuten o la penetracioacuten de la luz y la morfometriacutea del lago En este

sentido el nivel del lago dependeraacute del balance entre las entradas y salidas de agua

(precipitaciones escurrimiento superficial y subterraacuteneo y la evaporacioacuten) y la forma

de la cuenca (profundidad pendiente aacuterea del espejo de agua)

En funcioacuten de la profundidad de penetracioacuten de la luz es posible diferenciar

dos aacutereas que determinan la distribucioacuten de los organismos la zona foacutetica (donde

penetra la luz y permite la fotosiacutentesis) y la zona afoacutetica (subyacente a la zona

foacutetica) Al depender de la radiacioacuten la zona foacutetica variacutea estacionalmente Ademaacutes

18

puede variar por el grado de turbidez la morfometriacutea del lago y la produccioacuten de

materia orgaacutenica en la columna de agua

Otro factor que influye en la productividad es el reacutegimen de mezcla de la

columna de agua pues favorece la oxigenacioacuten y el reciclado de nutrientes La

mezcla ocurre en condiciones de gran inestabilidad usualmente relacionado con el

reacutegimen de viento Por el contrario un lago estratificado resulta de grandes

diferencias en temperatura o salinidad entre la superficie (epilimnion) y el fondo del

lago (hipolimnion) que separa las masas de agua superficial y de fondo por una

termoclina (si la estratificacioacuten estaacute relacionada con diferencias de temperatura de

las masas de agua) o haloclina (diferencias de salinidad) En funcioacuten del reacutegimen

de mezcla los lagos se pueden clasificar en (Lewis 1983)

1 Amiacutecticos no hay mezcla vertical de la columna de agua

2 Monomiacutecticos friacuteos y caacutelidos se mezcla una vez al antildeo

3 Dimiacutecticos la columna de agua se mezcla dos veces al antildeo

4 Oligomiacutecticos Lagos estratificados la mayor parte del tiempo pero se mezclan a

intervalos irregulares mayores a 1 antildeo

5 Polimiacutecticos friacuteos y caacutelidos la columna de agua se mezcla varias veces al antildeo

El ciclo del N en lagos

Al estar presente en aacutecidos nucleicos aminoaacutecidos y proteiacutenas el N es un

nutriente esencial de los organismos Por lo tanto su disponibilidad en la columna

de agua es clave para la produccioacuten composicioacuten y acumulacioacuten de la MO a traveacutes

del tiempo (Olson 1998 Talbot 2002) Aunque el principal reservorio de N estaacute en

19

la atmosfera (N2) solo unos pocos organismos (eg cianobacterias) pueden fijarlo

directamente Asiacute el Nitroacutegeno Inorgaacutenico Disuelto (DIN) representa la principal

fuente de N disponible para la produccioacuten primaria en los ecosistemas acuaacuteticos

(Talbot et al 2002) El DIN estaacute compuesto por nitrato (NO3-) nitrito (N02

-) y amonio

(NH4+) y los cambios en su disponibilidad condicionan el tipo de produccioacuten primaria

(eg fijadores vs asimiladores de N ver Scott y Grant 2013 Scott 2008)

La Figura 1 resume los principales componentes en lagos del ciclo del N y

sus interacciones La principal entrada natural de N es viacutea fijacioacuten de N atmosfeacuterico

y es llevado a cabo principalmente por bacterias y algas verde-azules capaces de

romper el triple enlace entre los dos aacutetomos de N a un alto costo energeacutetico (Torres

et al 2012) El N fijado es reducido a NH3 Tras la muerte de los organismos el N

es liberado de sus tejidos por hongos y bacterias implicados en la descomposicioacuten

de la MO Una parte se deposita en el fondo del lago y la otra queda disponible para

ser asimilada por el fitoplancton como amonio mediante el proceso de

amonificacioacuten (Talbot 2002) La amonificacioacuten resulta de la reduccioacuten bacteriana

del amoniaco y se da preferentemente en condiciones anoacutexicas La volatizacioacuten del

amoniaco es un proceso por medio este se incorpora a la atmoacutesfera Este proceso

se da preferentemente en lagos aacutecidos (pH gt 85) El nitrato es otra forma de N

bioloacutegicamente disponible para el fitoplancton En los lagos el NO3 del DIN estaacute

compuesto por los aportes desde la cuenca hidrograacutefica en la que se circunscriben

por la resuspensioacuten desde el fondo del lago favorecido por procesos de mezcla

(descrito en seccioacuten anterior) y por los nitratos de la columna de agua Estos uacuteltimos

son el resultado de la nitrificacioacuten proceso realizado por bacterias aeroacutebicas

mediante el cual el amonio se oxida para formar nitrito y nitrato El ciclo se completa

20

con la desnitrificacioacuten que es la reduccioacuten bacteriana de nitrato al N atmosfeacuterico

Este proceso se da preferentemente en condiciones anoacutexicas

Figura 1 Materia Orgaacutenica sedimentaria y su relacioacuten con el ciclo del N y las

variaciones de δ15N (elaborado a partir de Talbot et al 2002) En la figura se

representan los factores clave en la acumulacioacuten de la MO sedimentaria y su

relacioacuten con el ciclo del N El δ15N de la MO es resultado de los aportes de MO

desde la cuenca MO de macroacutefitas y de la productividad bioloacutegica La productividad

en ecosistemas lacustres estaacute condicionada por DIN y la fijacioacuten de N atmosfeacuterico

El δ15N del pool del DIN disponible se va enriqueciendo por la asimilacioacuten

preferencial de 14N por parte del fitoplancton Ademaacutes el DIN remanente se va

enriqueciendo por accioacuten microbiana (amonificacioacuten nitrificacioacuten desnitrificacioacuten)

Reconstruyendo el ciclo del N a partir de variaciones en δ15N

La sentildeal isotoacutepica de N (δ15N) en los sedimentos lacustres puede ser usada

para reconstruir los cambios pasados del ciclo N la transferencia de N entre

ecosistemas terrestres y acuaacuteticos y el estado troacutefico del lago (Bruland y Mackenzie

2015 McLauchlan et al 2013 Woodward et al 2012 von Gunten et al 2009

Leng et al 2006 Meyers y Teranes 2001) La Figura 1 resume los principales

procesos y fuentes que afectan la sentildeal isotoacutepica δ15N (total o ldquobulkrdquo) en la MO de

21

los sedimentos lacustres Entre los que destacan las fuentes de MO (aloacutectona vs

autoacutectona) la bioproductividad lacustre y las entradas de N (ie fijacioacuten bioloacutegica

de N2) (Torres et al 2012) Estos procesos conducen a un fraccionamiento

isotoacutepico cineacutetico que favorece la disociacioacuten entre sus isotopos ldquopesadosrdquo (15N) y

ldquoligerosrdquo (14N) Asiacute por ejemplo los valores de δ15N de la MO se enriquecen en 15N

en la medida que los sedimentos lacustres estaacuten sometidos a perdidas de 14N viacutea

desnitrificacioacuten (Bruland y Mackenzie 2015 Diaz et al 2016 Talbot et al 2002)

Por otra parte el fitoplancton en la medida que aumenta su biomasa (eg

durante la estacioacuten caacutelida) puede llegar a asimilar el DIN hasta agotarse En este

caso el N remanente se va empobreciendo en 14N si no hay reposicioacuten de N (eg

aporte de NO3 de la cuenca) y la MO queda enriquecida en 15N Esta disminucioacuten

induce a una limitacioacuten de fitoplancton por N y los organismos diztroacuteficos pueden

verse estimulados por lo que se incrementa la entrada de N viacutea fijacioacuten de N2 (Scott

y Grantsz 2013) como resultado la MO oscila en valores maacutes bajos (en torno a 0permil)

La cantidad de MO que se deposita en el fondo del lago depende del

predominio de contribuciones provenientes desde la cuenca (aloacutectona) versus las

producidas dentro del mismo lago (autoacutectona) (Torres et al 2012) Aunque en

general los lagos reciben permanentemente aportes de sedimentos y MO desde

su cuenca los lagos pequentildeos tienden a reflejar maacutes los procesos que ocurren

solamente en su cuenca directa y reflejan los valores isotoacutepicos de la misma (Gu et

al 2006) Woodward et al (2012) realizaron un estudio en 50 lagos en Irlanda que

les permitioacute correlacionar diferentes patrones de LUCC (bosques de coniacuteferas

agricultura ganaderiacutea entre otros) con los valores de δ15N (y δ13C) en los

sedimentos superficiales de los lagos Encontraron que los valores de δ15N son maacutes

negativos en cuencas poco impactadas y maacutes positivos en aquellas con alto

22

impacto humano (eg usos de suelo agriacutecola y ganadero) McLauchlan et al (2007)

encontraron valores maacutes positivos de δ15N en los sedimentos del Mirror Lake New

Hampshire (29ordm N) a partir de la desforestacioacuten de su cuenca en 1790 CE (inicio

del asentamiento europeo en el lago) para el desarrollo de la actividad agriacutecola

Estos valores se volvieron maacutes negativos hacia valores similares al pre-

asentamiento europeo despueacutes del cese de la agricultura en la cuenca y la

recuperacioacuten del bosque a partir de 1929 CE

El anaacutelisis de δ15N en los sedimentos lacustres es una herramienta casi sin

explorar en Chile central Proponemos reconstruir la dinaacutemica de transferencia de

N cuenca-lago como consecuencia de los LUCC desde la colonizacioacuten espantildeola en

los lagos costeros de Laguna Matanzas (34ordmS) y Lago Vichuqueacuten (36ordmS) Como son

muacuteltiples los procesos que pueden afectar la sentildeal isotoacutepica de N (medido como

δ15N) en los sedimentos lacustres existen muchos problemas para su

interpretacioacuten paleoambiental (Leng et al 2006) Por ello en esta tesis utilizamos

un enfoque multiproxy que consiste en integrar el anaacutelisis limnoloacutegico y geoquiacutemico

de los sedimentos lacustres con los valores isotoacutepicos modernos de la columna de

agua (mediante monitoreo del POM) la relacioacuten vegetacioacuten-suelo de la cuenca y la

reconstruccioacuten de los principales usos de suelo de las cuencas desde 1975 CE

mediante el uso de imaacutegenes satelitales Considerando estas muacuteltiples liacuteneas de

evidencia nos planteamos utilizar las variaciones del δ15N para reconstruir los

cambios en la disponibilidad de N en los lagos costeros de Chile central y establecer

coacutemo y desde cuaacutendo las actividades humanas en la cuenca son lo suficientemente

importantes como para modificar el ciclo del N en los lagos desde la colonizacioacuten

espantildeola (siglo XVII)

23

Como hipoacutetesis planteamos que la dinaacutemica de transferencia de sedimentos

y nutrientes entre la cuenca y el lago tiene controles geoloacutegicos climaacuteticos y

bioloacutegicos que interactuacutean en el tiempo registraacutendose en la acumulacioacuten de MO de

los sedimentos lacustres (Fig1) Bajo este marco los LUCC modifican esta

dinaacutemica alterando la transferencia de N a los lagos ya que las actividades agriacutecolas

y ganaderas tienden a aportar maacutes N (aumentando δ15N) que la actividad forestal

(la que disminuye δ15N)

En el primer capiacutetulo titulado ldquoA combined approach to establishing the timing

and magnitude of anthropogenic nutrient alteration in a mediterranean coastal lake-

watershed systemrdquo se evaluoacute el rol de los LUCC en el control de la descarga de N

y sedimentos a Laguna Matanzas en un sistema cuenca-lago desde el siglo XVII

Para ello se realizoacute un anaacutelisis de la dinaacutemica sedimentaria lacustre mediante el

anaacutelisis de muacuteltiples proxys sedimentoloacutegicos (ie minerales y textura)

geoquiacutemicos (eg geoquiacutemica orgaacutenica e isotoacutepica) y bioloacutegicos (ie diatomeas) de

Laguna Matanzas que cubren los uacuteltimos 200 antildeos Ademaacutes se realizoacute una

reconstruccioacuten de los usos de suelo entre 1975 y 2016 a partir de imaacutegenes de

sateacutelites y se colectaron muestras de suelo de las principales coberturas de la

cuenca a los cuales se midioacute el δ15N

Entre los principales resultados obtenidos se destaca la influencia de la

ganaderiacutea y la denitrificacioacuten lo que explica los altos valores de δ15N evidenciados

por el registro lacustre durante la colonizacioacuten espantildeola e inicios de la repuacuteblica A

partir de la Gran Aceleracioacuten (1950 CE) la desforestacioacuten y el reemplazo de la

ganaderiacutea por plantaciones forestales tienen un correlato en el registro

sedimentario con valores de δ15N maacutes bajos Estos resultados demuestran que los

LUCC son el factor de primer orden para explicar los cambios observados en

24

nuestro registro de δ15N y a su vez implica un rol secundario del clima como posible

control de la disponibilidad de N en Laguna Matanzas Este capiacutetulo fue sometido

a la revista Scientific Reports y estaacute en revisioacuten desde el 26 de marzo de 2019 En

la elaboracioacuten del mauscrito han colaborado Claudio Latorre Blas Valero-Garceacutes

Matiacuteas Frugone Pablo Sarricolea Santiago Giralt Manuel Contreras-Lopez

Ricardo Prego y Patricia Bernardez

El segundo capiacutetulo se titula ldquoStable isotopes track land use and cover

changes in a mediterranean lake in central Chile over the last 600 yearsrdquo Aquiacute

evaluamos la dinaacutemica del N actual en el sistema cuenca-lago considerando los

valores isotoacutepicos modernos tanto de la vegetacioacuten como del suelo ademaacutes de los

cambios estacionales del POM de la columna de agua Esta informacioacuten se utiliza

como un anaacutelogo moderno para conocer el rol de los LUCC en la disponibilidad de

N en los uacuteltimos 600 antildeos Para ello se colectaron muestras filtradas de la columna

de agua a 2 5 y 20 m dos veces por antildeo entre noviembre de 2015 y julio de 2018

y se obtuvo el δsup1⁵N del POM Ademaacutes se colectoacute muestras de vegetacioacuten y suelo

de la cuenca diferenciando entre especies nativas plantaciones forestales y

vegetacioacuten herbaacutecea Esta informacioacuten se analizoacute en conjunto con la reconstruccioacuten

de los LUCC entre 1975 y 2014 y el anaacutelisis limnoloacutegico del lago Ello nos permitioacute

evaluar coacutemo el δ15N de los sedimentos lacustres refleja los valores δ15N de la

cuenca en el Lago Vichuqueacuten y el control que ejerce el clima en la sentildeal isotoacutepica

de POM Este capiacutetulo seraacute sometido a la revista Science of total environmet

proximamente En la elaboracioacuten del mauscrito han colaborado Claudio Latorre

Blas Valero-Garceacutes Matiacuteas Frugone Pablo Sarricolea Leonardo Villacis y M Laura

Carrevedo

25

Entre los principales resultados encontramos que el δ15N en los sedimentos

lacustres es maacutes positivo con presencia de agricultura en la cuenca y maacutes negativo

cuando esta es reemplazada por cobertura arboacuterea bien sea plantaciones

forestales bien sea bosque nativo A su vez durante la estacioacuten seca y caacutelida la

mayor entrada al lago es viacutea fijacioacuten de N atmosfeacuterico (bajos valores de δ15NPOM)

Durante la estacioacuten huacutemeda en cambio prevalecen los aportes de la cuenca con

altos valores de δ15NPOM Ello estariacutea evidenciando un cambio estacional en la

composicioacuten de especies en verano ligado a especies fijadoras de N y en invierno

las algas y microorganismos que consumen el DIN de la columna de agua

Referencias

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea AM Marquet PA 2010 From the Holocene to the Anthropocene A historical framework for land cover change in southwestern South America in the past 15000 years Land use policy 27 148ndash160 httpsdoiorg101016jlandusepol200907006

Battye W Aneja VP Schlesinger WH 2017 Earth rsquo s Future Is nitrogen the

next carbon  Earth rsquo s Future Global Biogeochem Cycles 30 1000ndash1014 httpsdoiorg101002eft2235

Bruland GL MacKenzie RA 2010 Nitrogen Source Tracking with δN Content

of Coastal Wetland Plants in Hawaii J Environ Qual 39 409 httpsdoiorg102134jeq20090005

Diacuteaz FP Frugone M Gutieacuterrez RA Latorre C 2016 Nitrogen cycling in an

extreme hyperarid environment inferred from δ15 N analyses of plants soils and herbivore diet Sci Rep 6 1ndash11 httpsdoiorg101038srep22226

Ekdahl EJ Teranes JL Wittkop CA Stoermer EF Reavie ED Smol JP

2007 Diatom assemblage response to Iroquoian and Euro-Canadian eutrophication of Crawford Lake Ontario Canada J Paleolimnol 37 233ndash246 httpsdoiorg101007s10933-006-9016-7

Elbert W Weber B Burrows S Steinkamp J Buumldel B Andreae MO

Poumlschl U 2012 Contribution of cryptogamic covers to the global cycles of carbon and nitrogen Nat Geosci 5 459ndash462

26

httpsdoiorg101038ngeo1486 Elser J 2011 A world awash with nitrogen Science 334 1504ndash1506

httpsdoiorg101126science1215567 ARTICLE Engstrom DR Almendinger JE Wolin JA 2009 Historical changes in

sediment and phosphorus loading to the upper Mississippi River Mass-balance reconstructions from the sediments of Lake Pepin J Paleolimnol 41 563ndash588 httpsdoiorg101007s10933-008-9292-5

Erisman J W Sutton M A Galloway J Klimont Z amp Winiwarter W (2008)

How a century of ammonia synthesis changed the world Nature Geoscience 1(10) 636

Galloway JN Townsend AR Erisman JW Bekunda M Cai Z Freney JR

Martinelli LA Seitzinger SP Sutton MA 2008 Transformation of the Nitrogen Cycle  Science (80- ) 320 889ndash892

httpsdoiorg101126science1136674 Garreaud RD Alvarez-Garreton C Barichivich J Pablo Boisier J Christie

D Galleguillos M LeQuesne C McPhee J Zambrano-Bigiarini M 2017 The 2010-2015 megadrought in central Chile Impacts on regional hydroclimate and vegetation Hydrol Earth Syst Sci 21 6307ndash6327 httpsdoiorg105194hess-21-6307-2017

Gruber N Galloway JN 2008 An Earth-system perspective of the global

nitrogen cycle Nature 451 293ndash296 httpsdoiorg101038nature06592 Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater eutrophic lake Limnol Oceanogr 51 2837ndash2848 httpsdoiorg104319lo20065162837

IPCC 2013 Climate Change 2013 The Physical Science BasisContribution of

Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press Cambridge United Kingdom and New York NY USA

httpsdoiorg101017CBO9781107415324 Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos Transactions

American Geophysical Union httpsdoiorg1010292007EO070007 Martel-Cea A Maldonado A Grosjean M Alvial I de Jong R Fritz SC von

Gunten L 2016 Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical Central Chile (32iumliquestfrac12S 3050iumliquestfrac12miumliquestfrac12asl) Palaeogeogr Palaeoclimatol Palaeoecol 461 44ndash54 httpsdoiorg101016jpalaeo201608003

McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE 2007

Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470

27

httpsdoiorg101073pnas0701779104 McLauchlan KK Gerhart LM Battles JJ Craine JM Elmore AJ Higuera

PE Mack MC McNeil BE Nelson DM Pederson N Perakis SS 2017 Centennial-scale reductions in nitrogen availability in temperate forests of the United States Sci Rep 7 1ndash7 httpsdoiorg101038s41598-017-08170-z

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash1643 httpsdoiorg1011770959683613496289

Meyers PA Teranes JL 2001 Sediment organic matter in Tracking

Environmental Change Using Lake Sediments Volume 2 Physical and Geochemical Methods httpsdoiorg1018971551-5028(1999)018lt0231SOMCAAgt23CO2

Myers N Mittermeler RA Mittermeler CG Da Fonseca GAB Kent J

2000 Biodiversity hotspots for conservation priorities Nature httpsdoiorg10103835002501

Pentildeuelas J Poulter B Sardans J Ciais P Van Der Velde M Bopp L

Boucher O Godderis Y Hinsinger P Llusia J Nardin E Vicca S Obersteiner M Janssens IA 2013 Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe Nat Commun 4 httpsdoiorg101038ncomms3934

Prieto M Salazar D Valenzuela MJ 2019 The dispossession of the San

Pedro de Inacaliri river Political Ecology extractivism and archaeology Extr Ind Soc httpsdoiorg101016jexis201902004

Robertson GP Vitousek P 2010 Nitrogen in Agriculture Balancing the Cost of

an Essential Resource Ssrn 34 97ndash125 httpsdoiorg101146annurevenviron032108105046

Sardans J Rivas-Ubach A Pentildeuelas J 2012 The CNP stoichiometry of

organisms and ecosystems in a changing world A review and perspectives Perspect Plant Ecol Evol Syst 14 33ndash47 httpsdoiorg101016jppees201108002

Schindler DW Howarth RW Vitousek PM Tilman DG Schlesinger WH

Matson PA Likens GE Aber JD 2007 Human Alteration of the Global Nitrogen Cycle Sources and Consequences Ecol Appl 7 737ndash750 httpsdoiorg1018901051-0761(1997)007[0737haotgn]20co2

Scott E and EM Grantzs 2013 N2 fixation exceeds internal nitrogen loading as

a phytoplankton nutrient source in perpetually nitrogen-limited reservoirs Freshwater Science 2013 32(3)849ndash861 10189912-1901

28

Stocker TF Dahe Q Plattner G-K Alexander L V Allen SK Bindoff NL Breacuteon F-M Church JA Cubash U Emori S Forster P Friedlingstein P Talley LD Vaughan DG Xie S-P 2013 Technical Summary in Climate Change 2013 The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change httpsdoiorg101017 CBO9781107415324005

Talbot M R (2002) Nitrogen isotopes in palaeolimnology In Tracking

environmental change using lake sediments (pp 401-439) Springer Dordrecht

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status J Paleolimnol 47 693ndash706 httpsdoiorg101007s10933-012-9593-6

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M Eggenberger U Grob P Urrutia R Morales A

2009 Pollution and eutrophication history AD 1800-2005 as recorded in sediments from five lakes in Central Chile Glob Planet Change 68 198ndash208 httpsdoiorg101016jgloplacha200904004

Woodward CA Potito AP Beilman DW 2012 Carbon and nitrogen stable

isotope ratios in surface sediments from lakes of western Ireland Implications for inferring past lake productivity and nitrogen loading J Paleolimnol 47 167ndash184 httpsdoiorg101007s10933-011-9568-z

Xu H Yu K Lan J Sheng E Liu B Ye Y Hong B Wu H Zhou K

Yeager KM 2016 Different responses of sedimentary δ15N to climatic changes and anthropogenic impacts in lakes across the Eastern margin of the Tibetan Plateau J Asian Earth Sci 123 111ndash118 httpsdoiorg101016jjseaes201603024

29

CAPIacuteTULO 1 A COMBINED APPROACH TO ESTABLISHING THE TIMING

AND MAGNITUDE OF ANTHROPOGENIC NUTRIENT ALTERATION IN A

MEDITERRANEAN COASTAL LAKE- WATERSHED SYSTEM

30

A combined approach to establishing the timing and magnitude of anthropogenic

nutrient alteration in a mediterranean coastal lake- watershed system

Magdalena Fuentealbaabc Claudio Latorreabc Matiacuteas Frugoneabc Pablo

Sarricolead Santiago Giralte Manuel Contreras-Lopezf Ricardo Prego g Patricia

Bernaacuterdez g Blas Valero-Garceacutesch

a Departamento de Ecologiacutea Pontificia Universidad Catoacutelica de Chile Alameda 340 Santiago Chile

b Institute of Ecology and Biodiversity (IEB) Las Palmeras 3425 Nuntildeoa Santiago Chile

c Laboratorio Internacional de Cambio Global LINCGlobal PUC-CSIC Spain

d Departamento de Geografiacutea Universidad de Chile Marcoleta 250 Santiago Chile

e Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) CLluis Solegrave Sabaris sn Barcelona E-

08028 Spain

f Facultad de Ingenieriacutea y Centro de Estudios Avanzados Universidad de Playa Ancha Traslavintildea

450 Vintildea del Mar Chile

g Instituto de Investigaciones Marinas (CSIC) CEduardo Cabello 6 36208 Vigo Spain

h Instituto Pirenaico de Ecologiacutea (IPE-CSIC) Avenida Montantildeana 1005 Zaragoza 50059 Spain

Corresponding author

E-mail address

clatorrebiopuccl magdalenafuentealbagmailcom

Abstract

Since the industrial revolution and especially during the Great Acceleration (1950

CE) human activities have profoundly altered the global nutrient cycle through land

use and cover changes (LUCC) However the timing and intensity of recent N

variability together with the extent of its impact in terrestrial and aquatic ecosystems

and coupled effects of regional LUCC and climate are not well understood Here

we used a multiproxy approach (sedimentological geochemical and isotopic

31

analyses historical records climate data and satellite images) to evaluate the role

of LUCC as the main control for N cycling in a coastal watershed system of central

Chile during the last few centuries The largest changes in N dynamics occurred in

the mid-1970s associated with the replacement of native forests and grasslands for

livestock grazing by plantations of introduced Monterey pine (Pinus radiata) and

eucalyptus (Eucalyptus globulus) Lake productivity increased and is evidenced by

an increase trend in δ15N values Our study shows that anthropogenic land

usecover changes are key in controlling nutrient supply and N availability in

Mediterranean watershed ndash lake systems and that large-scale forestry

developments during the mid-1970s likely caused the largest changes in central

Chile

Keywords Anthropocene Organic geochemistry watershedndashlake system Stable

Isotope Analyses Land usecover change Nitrogen cycle Mediterranean

ecosystems central Chile

1 INTRODUCTION

Human activities have become the most important driver of the nutrient cycles in

terrestrial and aquatic ecosystems since the industrial revolution (Gruber and

Galloway 2008 Galloway et al 2008 Holtgrieve et al 2011 Fowler et al 2013

Goyette et al 2016) Among these N is a common nutrient that limits productivity

in terrestrial and aquatic ecosystems (Vitousek and Howarth 1991 McLauchlan et

al 2013) With the advent of the Haber-Bosch industrial N fixation process in the

early 20th century total N fluxes have surpassed previous planetary boundaries

32

(Galloway et al 2008 Elser 2011) reaching unprecedented values (ie tipping

points) in the Earth system especially during what is now termed the Great

Acceleration (which began in the 1950s) which intensified in the 1970s (Howarth

2004 Steffen et al 2015) Yet dramatic changes in LUCC have occurred in the last

few centuries mainly linked to forestry and agro-pastoral activities (Poraj-Goacuterska et

al 2017 Ge et al 2019 Cheng et al 2019) These have had large impacts on N

(and Carbon -C-) availability in terrestrial and aquatic ecosystems but the synergic

effect with climate change and global N dynamics has not been established

(Vitousek et al 1997 Mclauchlan et al 2007 2013 Pongratz et al 2010

Woodward et al 2012 Mclauchlan et al 2017)

The onset of the Anthropocene poses significant challenges in mediterranean

regions that have a strong seasonality of hydrological regimes and an annual water

deficit (Stocker et al 2013) Mediterranean climates occur in all continents

(California central Chile Australia South Africa circum-Mediterranean regions)

providing a unique opportunity to investigate global change processes during the

Anthropocene in similar climate settings but with variable geographic and cultural

contexts The effects of global change in mediterranean watersheds have been

analyzed from different perspectives hydrology (Giorgi 2006 Arnell and Gosling

2013 Prudhomme et al 2014) vegetation dynamics (Lenihan et al 2003 Vicente-

Serrano et al 2013 Matesanz and Valladares 2014) sediment dynamics (Garciacutea-

Ruiz et al 2013 Garciacutea-Ruiz 2010 Syvitski et al 2005) changes in

biogeochemical cycles (Thomas et al 2013 Fowler et al 2013 Frank et al 2015)

carbon storage (Muntildeoz-Rojas et al 2015) and biodiversity (Hooper et al 2012) A

recent review showed an extraordinarily high variability of erosion rates in

mediterranean watersheds positive relationships with slope and annual

33

precipitation and the paramount effect of land use (Garciacutea-Ruiz et al 2015)

However the temporal context and effect of LUCC on nutrient supply to

mediterranean lakes has not been analyzed in much detail

Major LUCC in central Chile occurred during the Spanish Colonial period

(17th-18th centuries) (Armesto 1994 Gurnell et al 2001 Figueroa et al 2004

Martiacuten-Foreacutes et al 2012 Contreras-Loacutepez et al 2014) with the onset of

industrialization and mostly during the mid to late 20th century (von Gunten et al

2009 Gayo et al 2012) Recent copper pollution caused by 20th century mining

and industrial smelters has been documented in cores throughout the Andes

(Laguna el Ocho and Laguna Ensuentildeo von Gunten et al 2009) and also from our

surveys in the central valley (Batuco wetland) coastal range (Cordillera de Name)

and along the coast itself (Bucalemito and Colejuda) (Valero-Garceacutes et al 2010

unpublished data)

Paleolimnological studies have shown how these systems respond to

climate LUCC and anthropogenic impacts during the last millennia (Jenny et al

2002 2003 Villa Martiacutenez et al 2002 Frugone-Aacutelvarez et al 2017 Contreras et

al 2018) Furthermore changes in sediment and nutrient cycles have also been

identified in associated terrestrial ecosystems dating as far back as the Spanish

Conquest and related to fire clearance and wood extraction practices of the native

forests (Armesto 1994 Contreras-Loacutepez et al 2014) Nevertheless pollen and

limnological evidence argue for a more recent timing of the largest anthropogenic

impacts in central Chile For example paleo records show that during the mid-20th

century increased soil erosion followed replacement of native forest by Pinus

radiata and Eucalyptus globulus plantations at Laguna Matanzas Aculeo and

34

Vichuqueacuten lakes (Jenny et al 2002 Villa-Martiacutenez et al 2002 2003 Frugone-

Aacutelvarez et al 2017)

Lakes are a central component of the global carbon cycle Lakes act as a

sink of the carbon cycle both by mineralizing terrestrially derived organic matter and

by storing substantial amounts of organic carbon (OC) in their sediments (Anderson

et al 2009) Paleolimnological studies have shown a large increase in OC burial

rates during the last century (Heathcote et al 2015) however the rates and

controls on OC burial by lakes remain uncertain as do the possible effects of future

global change and the coupled effect with the N cycle LUCC intensification of

agriculture and associated nutrient loading together with atmospheric N-deposition

are expected to enhance OC sequestration by lakes Climate change has been

mainly responsible for the increased algal productivity since the end of the 19th

century and during the late 20th century in lakes from both the northern (Ruumlhland et

al2015) and southern hemispheres (Michelutti et al 2015 Carrevedo et al 2015)

but many studies suggest a complex interaction of global warming and

anthropogenic influences and it remains to be proven if climate is indeed the only

factor controlling these transitions (Catalaacuten et al 2013) Alternative causes for

recent N (Galloway et al 2008) increases in high altitude lakes such as catchment

mediated processes cannot be ruled out (Camarero and Catalan 2012 Fritz and

Anderson 2013) Few lake-watershed systems have robust enough chronologies of

recent changes to compare variations in C and N with regional and local processes

and even fewer of these are from the southern hemisphere (McLauchlan et al

2007 Holtgrieve et al 2011)

In this paper we present a multiproxy lake-watershed study including N and

C stable isotope analyses on a series of short cores from Laguna Matanzas in

35

central Chile focused in the last 200 years We complemented our record with land

use surveys satellite and aerial photograph studies Our major objectives are 1) to

reconstruct the dynamics among climate human activities and changes in the N

cycle over the last two centuries 2) to evaluate how human activities have altered

the N cycle during the Great Acceleration (since the mid-20th century)

2 STUDY SITE

Laguna Matanzas (33ordm45rsquoS 71ordm 40acuteW 7 m asl Fig 1) is a coastal lake located

in central Chile near to a large populated area (Santiago gt6106 inhabitants) The

lake has a surface area of 15 km2 with a max depth of 3 m and a watershed of 30

km2 The lake basin is emplaced over Pleistocene-Holocene aeolian and alluvial fan

deposits (SERNAGEOMIN 2003) A recent phase of dune activity occurred from the

mid to late Holocene which mostly sealed off the basin from the ocean (Villa-

Martinez 2002) Climate in Laguna Matanzas is characterized by cool-wet winters

and hot-dry summers with annual precipitation of ~510 mm and a mean annual

temperature of 12ordmC Central Chile is in the transition zone between the southern

hemisphere mid-latitude westerlies belt and the South Pacific Anticyclone (or SPA)

(Garreaud et al 2009) In winter precipitation is modulated by the north-west

displacement of the SPA the northward shift of the westerlies wind belt and an

increased frequency of storm fronts stemming off the Southern Hemisphere

Westerly Winds (SWW) (Frugone-Aacutelvarez et al 2017) Austral summers are

typically dry and warm as a strong SPA blocks the northward migration of storm

tracks stemming off the SWW

36

Historic land cover changes started after the Spanish conquest with a Jesuit

settlement in 1627 CE near El Convento village and the development of a livestock

ranch that included the Matanzas watershed After the Jesuits were expelled from

South America in 1778 CE the farm was bought by Pedro Balmaceda and had more

than 40000 head of cattle around 1800 CE (Contreras-Lopez et al 2014) The first

Pinus radiata and Eucalyptus globulus trees were planted during the second half of

the 19th century and were mostly used for dune stabilization (Albert 1900 Gibson

1972) However the main plantation phase occurred 60 years ago (Villa-Martinez

2002) as a response to the application of Chilean Forestry Laws promulgated in

1931 and 1974 and associated state subsidies

Major land cover changes occurred recently from 1975 to 2008 as shrublands

were replaced by more intensive land uses practices such as farmland and tree

plantations (Schulz et al 2010) Laguna Matanzas is part of the Reserva Nacional

Humedal El Yali protected area (Ramsar Ndeg 878) Despite this protected status the

lake and its watershed have been heavily affected by intense agricultural and

farming activities during the last decades The main inlet ldquoLas Rosasrdquo has been

diverted for crop irrigation causing a significant loss of water input to the lake

Consequently the flooded area of the lake has greatly decreased in the last couple

of decades (Fig 1b) Exotic tree species cover a large surface area of the

watershed Recently other activities such as farms for intensive chicken production

have been emplaced in the watershed

37

Figure 1 Laguna Matanzas a) Digital Elevation Model showing the watershed and

the surface hydrologic connection with Colejuda and Cabildo lakes b) Climograph

depicting the warm dry season in austral summer c) Annual precipitation from

1965-2015 (arrow shows start of the most recent ldquomega-droughtrdquo- see Garreaud et

al 2017) d) A decline of lake area occurs between 2007 and 2018 Lake surface

area decreased first along the western sector (in 2007) followed by more inland

areas (in 2018)

38

3 RESULTS

31 Age Model

The age model for the Matanzas sequence was developed using Bacon software

to establish the deposition rates and age uncertainty (Blaauw and Christen 2011)

It is based on 210Pb and 137Cs dates and two 14C dates (Table 2) According to this

age model the lake sequence spans the last 1000 years (Fig 2) A major breccia

layer (unit 3b) was deposited during the early 18th century which agrees with

historic documents indicating that a tsunami impacted Laguna Matanzas and its

watershed in 1730 CE (Contreras-Loacutepez et al 2014) Here we focus in the last 200

years were the most important changes occurred in terms of LUCC (after the

sedimentary hiatus caused by the tsunami) The Spanish colonial period (17th -18th

century) brought new forms of territorial management along with an intensification

of watershed use which remained relatively unchanged until the 1900s

39

Figure 2 a) Age-depth model obtained for the Laguna de Matanzas sedimentary

sequence A hiatus occurs at 80 cm depth (unit 3b) The section of core used for our

analysis is highlighted in a red rectangle b) Close up of the age model used for

analysis of recent anthropogenic influences on the N cycle c) Information regarding

the 14C dates used to construct age model

Lab code Sample ID

Depth (cm) Material Fraction of modern C

Radiocarbon age

Pmc Error BP Error

D-AMS 021579

MAT11-6A 104-105 Bulk Sediment

8843 041 988 37

D-AMS 001132

MAT11-6A 1345-1355

Bulk Sediment

8482 024 1268 21

POZ-57285

MAT13-12 DIC Water column 10454 035 Modern

Table 2 Laguna Matanzas radiocarbon dates

32 The sediment sequence

Laguna Matanzas sediments consist of massive to banded mud with some silt

intercalations They are composed of silicate minerals (plagioclase quartz and clay

minerals) with relatively high TOC content (Fig 3) Pyrite is a common mineral

indicating dominant anoxic conditions in the lake sediments whereas aragonite

occurs only in the uppermost section Mineralogical analyses visual descriptions

texture and geochemical composition were used to characterize five main facies

(Fig 3) F1 (organic-rich mud) represents baseline sedimentation in a shallow well-

mixed brackish highly productive lake and F1acute (dark orange) is a less organic facies

than F1 (more details see table in the supplementary material) F2 (massive to

banded silty mud) indicates periods of higher clastic input into the lake but finer

(mostly clay minerals) likely from suspension deposition associated with flooding

40

events Aragonite (up to 15 ) occurs in both facies but only in samples from the

uppermost 30 cm and it is interpreted as endogenic linked to higher MgFe waters

and elevated biologic productivity

Figure 3 Sedimentary facies and units mineralogy grain size elemental geochemical

and isotopic composition of Laguna Matanzas core Values highlighted in gray indicate

that these are above average

The banded to laminated fining upward silty clay layers (F3) reflect

deposition by high energy turbidity currents The presence of aragonite suggests

that littoral sediments were incorporated by these currents Non-graded laminated

coarse silt layers (F4) do not have aragonite indicating a dominant watershed

41

sediment source Both facies are interpreted as more energetic flood deposits but

with different sediment sources A unique breccia layer with coarse silt matrix and

cm-long soft clasts (F5) is interpreted as a high-energy event (ie a tsunami)

capable of eroding the littoral zone and depositing coarse clastic material in the

distal zone of the lake Similar coarse breccia layers have been found at several

coastal sites in Chile and interpreted as tsunami-related deposits (Vargas et al

2005 Le Roux et al 2008)

33 Sedimentary units

Three main units and six subunits have been defined (Fig 3) based on

sedimentary facies and sediment composition We use ZrTi as an indicator of the

mineral fraction transported from the watershed (Marzecoacuteva et al 2011) as higher

ZrTi (F3 and F4) is commonly associated with coarser sediments (Cuven et al

2010) A high correlation among Br BrTi and TOC (r = 046-087 p value=0)

supports the use of BrTi as an indicator of lake productivity (Marzecoacuteva et al 2011

Frugone-Aacutelvarez et al 2017) The MnFe ratio is indicative of lake bottom

oxygenation (Naecher et al 2013) as under reducing conditions Mn mobilizes more

than Fe leading to a decreased MnFe ratio (Marzecoacuteva et al 2011) SrTi indicates

periods of increased aragonite formation as Sr is preferentially included in the

aragonite mineral structure (Veizer et al 1971) (See supplementary material)

The basal unit (3c 129 to 99 cm) is relatively organic-rich (TOC mean=26

BioSi mean=5) and composed by F1 (without aragonite) with some coarser F4

flood layers (ZrTi mean=025) Unit 3b (98 to 80 cm) is interpreted as a tsunami or

storm surge deposit (breccia F5 grading into massive to banded silt F2) Unit 3a

(79 to 73 cm) is characterized by relatively low productivity (TOC=2 BrTi=002

42

BioSi=4) under anoxic conditions (MnFe=001) Unit 2a (72 to 31cm) has

relatively less organic content and more intercalated clastic facies F3 and F4 The

top of this unit (43-30 cm) has elevated TS values The Subunit 1b (30-20 cm)

shows increasing TOC BioSi and BrTi values (TOC mean = 29 BioSi mean =

54 BrTi mean=004) and the upper subunit 1a (19-0 cm) has the highest TOC

(mean = 64) and BioSi (mean = 56) high BrTi mean = 010 and the presence

of aragonite More frequent anoxic conditions (MnFe lower than 001) during units

3 and 2 shifted towards more oxic episodes (MnFe = 003) in unit 1 (Fig 3)

34 Isotopic signatures

Figure 4 shows the isotopic signature from soil samples of the major land

usescover present in the Laguna Matanzas used as an end member in comparison

with the lacustrine sedimentary units δ15N from cropland samples exhibit the

highest values whereas grassland and soil samples from lake shore areas have

intermediate values (Fig 4) Tree plantations and native forests have similarly low

δ15N values (+11 permil SD=24) All samples (except those from the lake shore)

exhibit low δ13C values (from ndash285permil to ndash298permil) CNmolar from agriculture land

lakeshore area and non-vegetation areas samples display the lowest values (about

18) CNmolar from tree plantations and native forest have the highest values (383

and 267 respectively)

43

Figure 4 C-N stable isotope plot showing a comparison of lake sediments grouped

by sedimentary units (MAT11-6A) with the soil end members of present-day (lake

shore and land usecover) from Laguna Matanzas

The δ15N values from sediment samples (MAT11-6A) range from ndash15 and

+53permil (mean= +35 SD=05) δ13C values range from ndash266permil to ndash202permil (mean=

ndash240 SD=14) In unit 3c δ15N and δ13C show relatively high values (mean=

+41permil and ndash233permil respectively) δ15N and δ13C from unit 3b and 3a fluctuate at

slightly lower values than in 3c (mean δ15N from 3a= +38permil and 3b mean= +39permil

mean δ13C from 3a= ndash242permil and 3b mean= ndash244permil) In unit 2a δ15N values are

relatively high (mean= +38permil) but show a slightly decreasing trend (from +52 to

+24permil at 66 cm and 36 cm respectively) δ13C also decreases (mean= ndash242permil)

reaching minimum values at 45 cm (ndash266permil) with a sharp increase towards the top

of this unit with maximum values ca ndash210permil Unit 1 exhibits the lowest δ15N values

(1a mean= +11permil 1b mean= +28permil) with negative values in the uppermost

44

sediments (ndash04permil at 14 cm) δ13C values show a decreasing trend over most of

subunit 1b and increase only near the very top of this unit

35 Recent land use changes in the Laguna Matanzas watershed

Major LUCC from 1975 (unit 1b) to 2016 CE in the Laguna Matanzasacutes

watershed is summarized in Figure 5 The watershed has a surface area of 30 km2

of which native forest (36) and grassland areas (44) represented 80 of the

total surface in 1975 The area occupied by agriculture was only 02 and tree

plantations were absent Isolated burned areas (33) were located mostly in the

northern part of the watershed By 1989 tree plantations surface area had increased

to 5 burned areas to 17 and agricultural fields to 9 (a 45-fold increase) and

native forest and grassland sectors decreased to 23 and 27 respectively By

2016 agricultural land and tree plantations have increased to 17 of the total area

whereas native forests decreased to 21

45

Figure 5 Land uses and cover changes from 1975 to 2016 in Laguna Matanzas

watershed from natural cover and areas for livestock grazing (grassland) to the

expansion of agriculture and forest plantation

4 DISCUSSION

41 N and C dynamics in Laguna Matanzas

Small lakes with relatively large watersheds such as Laguna Matanzas would

be expected to have relatively high contributions of allochthonous C to the sediment

OM (Gu et al 2006) Terrestrial C3 plants (δ13C =ndash26 to ndash28permil Meyers and Terranes

2001 Ku et al 2007) are dominant in the Laguna Matanzas watershed Likewise

our soil samples ranged across similar although slightly more negative values

46

(δ13C = ndash30 to ndash28permil Fig 4) to those proposed by Meyers and Terranes (2001)

and are used here as terrestrial end members oil samples were taken from the lake

shore (δ13C = ndash22permil) and POM from surface water (δ13C = ndash24permil) were more

positive than the terrestrial end member and are used as lacustrine end members

Thus more negative δ13C values in lake sediment samples are attributed to higher

OM inputs from terrestrial vegetation and more positive δ13C values have increased

aquatic OM (Gu et al 2006 Torres et al 2012) Phytoplankton preferentially uptake

12C leaving the DIC pool enriched in 13C (Gu et al 2006) especially when there are

no important external sources of C (eg decreased C input from the watershed)

Therefore during events of elevated primary productivity the phytoplankton uptakes

12C until its depletion and are then obligated to use the heavier isotope resulting in

an increase in δ13C Changes in lake productivity thus greatly affect the C isotope

signal (Torres et al 2012) with high productivity leading to elevated δ13C values

(Torres et al 2012 Gu et al 2006)

In a similar fashion the N isotope signatures in Laguna Matanzas reflect a

combination of factors including different N sources (autochthonousallochthonous)

and lake processes such as productivity isotope fractionation in the water column

and sediment denitrification Elevated δ15N values from a POM sample (+22permil) and

average values from the lake shore (mean=+34permil SD=028) are used as aquatic

end members whereas terrestrial samples have values from +10 +24 (tree species)

to +77permil +35 (agriculture) which we use as terrestrial end members (Fig 4)

Autochthonous OM in aquatic ecosystems typically displays low δ15N values

when the OM comes from N-fixing species Atmospheric fixation of N2 by

cyanobacteria ends in OM with δ15N values close to 0permil (Leng et al 2006)

Phytoplankton preferentially uptake 14N from Dissolved Inorganic Nitrogen (DIN) in

47

the water column and derived OM typically have δ15N values lower than DIN values

When productivity increases the remaining DIN becomes depleted in 14N which in

turn increases the δ15N values of phytoplankton over time especially if the N not

replenished (Torres et al 2012) Thus high POM δ15N values from Laguna

Matanzas reflect elevated phytoplankton productivity with a 14N- depleted DIN In

addition N-watershed inputs also contribute to high δ15N values Heavily impacted

watersheds by human activities are often reflected in isotope values due to land use

changes and associated modified N fluxes For example the input of N runoff

derived from the use of inorganic fertilizers leads to the presence of elevated δ15N

(between ndash4 to +4permil) values in the water bodies (Elliott and Brush 2006 Diebel and

Vander Zanden 2009) Widory et al (2004) reported a direct relationship between

elevated δ15N values and increased nitrate concentration from manure in the

groundwater of Brittany (France) Terranes and Bernasconi (2000) found a good

correlation between augmented nutrient loading and a progressive increase in δ15N

values of sedimentary OM related to agricultural land use

Post-depositional diagenetic processes can further affect C and N isotope

signatures Several studies have shown a decrease in δ13C values of OM in anoxic

environments particularly during the first years of burial related to the selective

preservation of OM depleted in 13C (Hollander and Smith 2001 Lehmann et al

2002 Gӓlman et al 2009 Torres et al 2012) Diagenetic processes can also lead

to post-burial N isotope enrichment of the sediments Indeed 14N is consumed more

rapidly than 15N by denitrifying bacteria which intensifies under anoxic conditions

(Diebel and Vander Zanden 2009) Thus the remaining OM pool will be enriched

in 15N leaving to elevated δ15N values (Granger et al 2008 Menzel et al 2013)

48

In summary the relatively high δ15N values in sediments of Laguna Matanzas

reflect N input from an agriculturegrassland watershed with positive synergetic

effects from increased lake productivity enrichment of DIN in the water column and

most likely denitrification The increase of algal productivity associated with

increased N terrestrial input andor recycling of lake nutrients (and lesser extent

fixing atmospheric N) and denitrification under anoxic conditions can all increase

δ15N values (Fig 3) In addition elevated lake productivity without C replenishing

(eg by terrestrial C input) produces shifts towards positive δ13C values whereas C

input from the watershed generates more negative δ13C values

42 Recent evolution of the Laguna Matanzas watershed

Sedimentological compositional and geochemical indicators show three

depositional phases in the lake evolution under the human influence in the Laguna

Matanzas over the last two hundred years Although the record is longer (around

1000 years) we analyzed the last two centuries (unit 2 and 1) to provide a recent

historical context for the large changes detected during the 20th century

The first phase lasted from the beginning of the 19th century until ca 1940

(unit 2a Fig 3 4) and was characterized by moderate productivity with elevated

sediment input from the watershed as indicated by our geochemical proxies (BrTi

= 004 AlTi gt 01 Fig 6) Higher lake levels and dominant anoxic bottom conditions

(MnFe = 001 Fig3) can be related to increased precipitation (mean= 557 mmyr)

and lower temperatures (summer annual temperature lt19ordmC) During the Spanish

colonial period the Laguna Matanzas watershed was used as a livestock farm

(Jesuits 1627-1780 unit 3 followed by the Pedro Balmaceda era 1780-1810- unit

2a) (Contreras-Loacutepez et al 2014) The main buildings and farm facilities at the El

49

Convento village During this period livestock grazing and lumber extraction for

mining would have involved extensive deforestation and loss of native vegetation

(eg Armesto et al 1994 2010) However the Matanzas pollen record does not

show any significant regional deforestation during this period (Villa Martiacutenez 2002)

suggesting that the impact may have been highly localized

Lake productivity sediment input and elevated precipitation (Fig 6) all

suggest that N availability was related to this increased input from the watershed

The N from cow manure and soil particles would have led to higher δ15N values

(Elliot and Brush 2016) In addition anoxic lake bottom conditions would lead to

even further enrichment of buried sediment N The δ13C values lend further support

to our interpretation of increased sediment input -and N- from the watershed

Decreased δ13C values reach their lowest values in the entire record (ndash270permil) at

ca 1910 CE (Fig 4 6)

During most of the 19th century human activities in Laguna Matanzas were

similar to those during the Spanish Colonial period However the appearance of

Pinus radiata and Eucalyptus globulus pollen ca 1890 CE (Gibson 1972) the dune

stabilization-afforestation program which began ca 1900 CE (Albert 1900) and the

application of the Chilean forestry law of 1931 (DFL nordm265) contributed to an

increased capacity of the surrounding vegetation to retain nutrients and sediments

The law subsidized forest plantations in areas devoid of vegetation and prohibited

the cutting of forest on slopes greater than 45ordm These land use changes were coeval

with decreased sediment inputs (AlTi trend) from the watershed slightly increased

lake productivity (BrTi from 001 to 003) and a decrease in annual precipitation

(Fig 6) N isotope values become more negative during this period although they

remained high (from +49permil to +37permil) whereas the δ13C trend towards more

50

positive values reflects changes in the N source from watershed to in-lake dynamics

(e g increased endogenic productivity)

The second phase started after 1940 and is clearly marked by an abrupt

change in the general trend of δ15N that oscillates around +41permil (SD = 04permil) during

the first phase to +24permil (SD = 14permil) during the second These δ15N trends reflect

the lowest watershed nutrient and sediment inputs (based on the AlTi record)

decreased precipitation (mean = 318 mm year) and a slight increase in lake

productivity (increased BrTI) Depositional dynamics in the lake likely crossed a

threshold as human activity intensified throughout the watershed and lake levels

decreased

During the Great Acceleration δ15N values shifted towards higher values to

ca 3permil with an increase in δ13C values that are not reflected either in lake

productivity or lake level As the sediment input from the watershed increased and

precipitation remained as low as the previous decade δ15N values during this period

are likely related to watershed clearance which would have increased both nutrient

and sediment input into the lake

The δ13C trend to more positive values reaching the peaks in the 1960s (ndash

212permil) at the same time as the peaks in temperature (196 ordmC mean annual) with a

downward trend in precipitation A shift in OM origin from macrophytes and

watershed input influences to increased lake productivity could explain this trend

(Fig 4 1b)

In the 1970s the Laguna Matanzasacute watershed was mostly covered by native

forest (36) and grassland areas were intended for livestock grazing (44 Fig 5)

Both soils have δ15NSoil lt 5permil (Fig 4) Farming fields occupied a very small area and

tree plantations were almost nonexistent The decreasing trend in δ15N values seen

51

in our record is interrupted by several large peaks that occurred between ca 1975

and ca 1989 when the native forest and grassland areas fell by 23 and 27

respectively largely due to fires affecting 17 of the forests Agriculture fields

increased by 4 and forest plantations increased by 9 (unit 1a) Concomitantly

sediment ndash and likely N - inputs from the watershed decreased (as indicated by the

trend in AlTi) the precipitation was still relatively low (Fig 6) These changes are

likely related to the increase of vegetation cover especially of tree plantations (which

have more negative δ15N values) The small increase in productivity in the lake could

have been favored by increased temperature (von Gunten et al 2009) After 1989

the increase in agriculture land (17 in 2016) correlates with increasing δ15N δ13C

and TOC trends in spite of declining rainfall The increase of forest plantations was

mostly in response to the implementation of the Law Decree of Forestry

Development (DL 701 of 1974) that subsidized forest plantation After 1989 the

increase in agricultural land (17 in 2016) is synchronous with increasing δ15N

δ13C TOC and MnFe trends despite the decline in rainfall and overall lower lake

levels as more water is used for irrigation

The third phase started c 1990 CE (unit 1a) when OM accumulation rates

increase and δ13C δ15N decreased reaching their lowest values in the sequence

around 2000 CE Afterward during the 21st century δ13C and δ15N values again

began to increase The onset of unit 1 is marked by increased lake productivity and

decreased sediment input (AlTi lt 02) synchronous with intensive farming replacing

forestry and extensive agriculture (Fig 5 6)

A change in the general trend of δ15N values which decreased until 1990

(unit 1a) as the native forest and grassland area fell to 23 and 27 respectively

is most likely due to deforestation and fires Agriculture surface increased to 4 and

52

forest plantations increased by 9 (Fig 5) Concomitantly sediment ndash and likely N

ndash inputs from the watershed decreased probably related to the low precipitation (Fig

1b) and the increase of vegetation cover in the watershed in particularly by tree

plantations (with more negative δ15N Fig 4)

At present agriculture and tree plantations occupy around 34 of the

watershed surface whereas native forests and grassland cover 21 and 25

respectively Lake productivity as indicated by BrTi (Fig6) is higher and generates

OM with lower δ15N and higher δ13C values (about +2permil and ndash20permil ca 2000 CE

respectively) due to in-lake processes (ie biological N fixation and nutrient

recycling) and driven by changes in the arboreal cover which diminishes nutrient

flux into the lake (Fig6)

53

Figure 6 Anthropogenic and climatic forcing and lake dynamics response

(productivity sediment input N and C cycles) at Matanzas Lake over the last two

54

centuries Mean annual precipitation reconstructed and temperatures (von Gunten

et al 2009) Vertical gray bars indicate mega-droughts

5 CONCLUSIONS

Human activities have been the main factor controlling the N and C cycle in

the Laguna Matanzas during the last two centuries The N isotope signature in the

lake sediments reflects changes in the watershed fluxes to the lake but also in-lake

processes such as productivity and post-depositional changes Denitrification could

have been a dominant process during periods of increased anoxic conditions which

were more frequent prior to Great Acceleration (1950 CE) Higher δ15N and lower

δ13C values are associated with increased nutrient input from the watershed due to

increased livestock grazing and agriculture pressure (phase 1 Fig 7a) whereas

lower isotope values occurred during periods of increased forest plantations (phase

3 Fig 7c) During periods of increased lake productivity - such as in the last few

decades - δ15N values increased significantly

The most important change in C and N dynamics in the lake occurred after the

1950s (Phase 2 and 3) as tree plantations dominated the watershed Recent

changes in N dynamics can be explained by the higher nutrient contribution

associated with intensive agriculture (i e fertilizers) since the 1990s Although the

replacement of livestock activities with forestry and farming seems to have reduced

nutrient and soil export from the watershed to the lake the inefficient use of fertilizer

(by agriculture) can be the ultimate responsible for lake productivity increase during

the last decades

55

Figure 7 Schematic diagrams illustrating the main factors controlling the

isotope N signal in sediment OM of Laguna Matanzas N input from watershed

depends on human activities and land cover type Agriculture practices and cattle

(grassland development) contribute more N to the lake than native forest and

plantations Periods of higher productivity tend to deplete the dissolved inorganic N

in 14N resulting in higher δ15N (OM) The denitrification processes are more effective

in anoxic conditions associated with higher lake levels

6 METHODS

Short sediment cores were recovered from Laguna Matanzas using an Uwitec

gravity piston corer in 2011 and 2013 (Fig 1a) Sediment cores (MAT11-6A 129 cm

MAT13-2A 149 cm MAT13-3A 33 cm MAT13-4A 99 cm) were split

photographed sub-sampled and stored at the Pyrenean Institute of Ecology (IPE-

CSIC Spain) Core MAT11-6A was obtained from the central sector of the lake and

56

was selected for detailed multiproxy analyses (including elemental geochemistry C

and N isotope analyses XRF and 14C dating)

The isotope analyses (δ13C and δ15N) were performed at the Laboratory of

Biogeochemistry and Applied Stable Isotopes (LABASI-PUC Chile) using a Delta

V Advantage IRMS coupled to a Thermo Flash 2000 Elemental Analyzer via a

Conflo IV interface Isotope results are expressed in standard delta notation (δ) in

per mil (permil) relative to the standards Pee Dee Belemnite (Vienna Pee Dee

Belemnite) for C and to atmospheric N2 for N (Leng et al 2006) Sediment samples

for δ13Corg were pre-treated with 50 ml of HCl and 50 ml of deionized water and

dried at 60ordmC for 4 hr to remove carbonates (Harris et al 2011)

Total Carbon (TC) Total Organic Carbon (TOC) Total Inorganic Carbon (TIC)

and Total Sulphur (TS) were measured every cm with a LECO SC 144 DR at IPE-

CSIC XRF measurements were carried out every 4 mm in MAT11-1A-1G core using

an AVAATECH X-ray Fluorescence II core scanner at the University of Barcelona

(Spain) Results are expressed as element intensities in counts per second (cps)

Tube voltage was operated at 30 kV and 10 kV to obtain the abundances of 15

elements (Al Si S Cl K Ca Ti V Mn Fe Br Rb Sr Y Zr) with an average at

least of 1600 cps (less for Br=1000)

Biogenic silica content mineralogy and grain size were measured every 4

cm Biogenic silica was measured following Mortlock and Froelich (1989) and

Bernaacuterdez et al (2005) using an Auto Analyzer Technicon AAII for dissolved silicate

analysis Mineralogy was analyzed with a Siemens D-500 X-ray diffractometer (Cu

kα 40 kV 30 mA graphite monochromator) at the ICTJA-CSIC (Spain) Grain size

analyses were performed in a Beckmann Coulter LS 13 320 Particle Size Analyzer

57

at the IPE-CSIC The samples were classified according to textural classes as

follows clay (lt2 μm) silt (20-2 microm) and sand (gt2 microm) fractions

The age-depth model for the Laguna Matanzas sedimentary sequence was

constructed using 210Pb and 137Cs dating techniques (MAT13-4A) as well as two 14C

AMS dates on bulk sediment samples (MAT11-6A fig 2) We dated the dissolved

inorganic carbon (DIC) in the water column and no significant reservoir effect is

present in the modern-day water column (10454 + 035 pcmc Table 2) An age-

depth model was obtained with the Bacon R package to estimate the deposition

rates and associated age uncertainties along the core (Blaauw and Christen 2011)

To estimate LUCC of Laguna Matanzasacutes watershed we use satellite images

Landsat MSS for 1975 Landsat TM for 1989 and Landsat OLI for 2016 all taken in

summer or autumn (Table 1) We performed supervised classification of land uses

(maximum likelihood algorithm) for each year (1975 1989 and 2016) and the results

were mapped using software ArcGIS 102 in 2017

Satellite Images Acquisition Date

Resolution

Landsat MSS 19750322 60 m

Landsat TM 19890217 30 m

Landsat OLI 20160404 30 m

Table 1 Landsat imagery

Surface water samples were filtered for obtained particulate organic matter In

addition soil samples from the main land usecover present in the Laguna Matanzas

watershed were collected Elemental C N and their corresponding isotopes from

POM and soil were obtained at the LABASI and used here as end members

Daily precipitation at Santo Domingo (33ordm39`S 71ordm3 6`W)- the nearest weather

station to Laguna Matanzasndash was compiled using the redPrec R package (Fig1 d

Serrano-Notivoli et al 2017 Sarricolea et al 2019) To extend our precipitation

58

reconstruction back to 1824 we correlated this dataset with that available for

Santiago The Santiago data was compiled from data published in the Anales of

Universidad of Chile (1850) for the years 1824 to 1849 Almeyda (1940) for the years

1849 to 1864 and the Quinta Normal series from 1866 to the present (Direccioacuten

Meteoroloacutegica de Chile) We generated a linear regression model between the

presentday Santo Domingo station and the compiled Santiago data with a Pearson

coefficient of 087 and p-valuelt 001

Acknowledgments This research was funded by grants CONICYT AFB170008

to the Institute of Ecology and Biodiversity (IEB) and FONDECYT 1150763 (to CL)

Doctoral grant Becas Chile 21150224 MEDLANT (Spanish Ministry of Economy

and Competitiveness grant CGL2016-76215-R) Additional funding was provided

by the Laboratorio Internacional de Cambio Global (LINCGlobal PUC-CSIC) We

thank R Lopez E Royo and M Gallegos for help with sample analyses We thank

the Laboratory of Biogeochemistry and Applied Stable Isotopes (LABASI) of the

Department of Ecology (PUC) for sample analyses

References

Albert F 1900 Las dunas o sean arenas volantes voladeros arenas muertas invasion de las arenas playas I meacutedanos del centro de Chile comprendiendo el litoral desde el liacutemite norte de la provincia de Aconcagua hasta el liacutemite sur de la de Arauco Memorias cientiacuteficas I Lit

Anderson NJ W D Fritz SC 2009 Holocene carbon burial by lakes in SW

Greenland Glob Chang Biol httpsdoiorg101111j1365-2486200901942x

Armesto J Villagraacuten C Donoso C 1994 La historia del bosque templado

chileno Ambient y Desarro 66 66ndash72 httpsdoiorg101007BF00385244

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea

AM Marquet PA 2010 From the Holocene to the Anthropocene A

59

historical framework for land cover change in southwestern South America in the past 15000 years Land use policy 27 148ndash160 httpsdoiorg101016jlandusepol200907006

Arnell NW Gosling SN 2013 The impacts of climate change on river flow

regimes at the global scale J Hydrol 486 351ndash364 httpsdoiorg101016JJHYDROL201302010

Bernaacuterdez P Prego R Franceacutes G Gonzaacutelez-Aacutelvarez R 2005 Opal content in

the Riacutea de Vigo and Galician continental shelf Biogenic silica in the muddy fraction as an accurate paleoproductivity proxy Cont Shelf Res httpsdoiorg101016jcsr200412009

Blaauw M Christen JA 2011 Flexible paleoclimate age-depth models using an

autoregressive gamma process Bayesian Anal 6 457ndash474 httpsdoiorg10121411-BA618

Brush GS 2009 Historical land use nitrogen and coastal eutrophication A

paleoecological perspective Estuaries and Coasts 32 18ndash28 httpsdoiorg101007s12237-008-9106-z

Camarero L Catalan J 2012 Atmospheric phosphorus deposition may cause

lakes to revert from phosphorus limitation back to nitrogen limitation Nat Commun httpsdoiorg101038ncomms2125

Carrevedo ML Frugone M Latorre C Maldonado A Bernaacuterdez P Prego

R Caacuterdenas D Valero-Garceacutes B 2015 A 700-year record of climate and environmental change from a high Andean lake Laguna del Maule central Chile (36degS) Holocene 25 956ndash972 httpsdoiorg1011770959683615574584

Catalan J Pla-Rabeacutes S Wolfe AP Smol JP Ruumlhland KM Anderson NJ

Kopaacuteček J Stuchliacutek E Schmidt R Koinig KA Camarero L Flower RJ Heiri O Kamenik C Korhola A Leavitt PR Psenner R Renberg I 2013 Global change revealed by palaeolimnological records from remote lakes A review J Paleolimnol httpsdoiorg101007s10933-013-9681-2

Chen Y Y Huang W Wang W H Juang J Y Hong J S Kato T amp

Luyssaert S (2019) Reconstructing Taiwanrsquos land cover changes between 1904 and 2015 from historical maps and satellite images Scientific Reports 9(1) 3643 httpsdoiorg101038s41598-019-40063-1

Contreras S Werne J P Araneda A Urrutia R amp Conejero C A (2018)

Organic matter geochemical signatures (TOC TN CN ratio δ 13 C and δ 15 N) of surface sediment from lakes distributed along a climatological gradient on the western side of the southern Andes Science of The Total Environment 630 878-888 httpsdoiorg101016jscitotenv201802225

Contreras-Loacutepez M (Playa AUHVC (Universidad de VRFS (Pontificia UC

60

de V 2014 ELEMENTOS DE LA HISTORIA NATURAL DEL An Mus Hist Natulas Vaplaraiso 27 51ndash67

Cuven S Francus P Lamoureux SF 2010 Estimation of grain size variability

with micro X-ray fluorescence in laminated lacustrine sediments Cape Bounty Canadian High Arctic J Paleolimnol 44 803ndash817 httpsdoiorg101007s10933-010-9453-1

Diebel M Vander Zanden MJ 201209 Nitrogen stable isotopes in streams

stable isotopes Nitrogen effects of agricultural sources and transformations Ecol Appl 19 1127ndash1134 httpsdoiorg10189008-03271

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in

freshwater wetlands record long-term changes in watershed nitrogen source and land use SO - Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash2916

Elser J 2011 A world awash with nitrogen Science 334 1504ndash1506 Espizua LE Pitte P 2009 The Little Ice Age glacier advance in the Central

Andes (35degS) Argentina Palaeogeogr Palaeoclimatol Palaeoecol 281 345ndash350 httpsdoiorg101016JPALAEO200810032

Figueroa JA Castro S A Marquet P A Jaksic FM 2004 Exotic plant

invasions to the mediterranean region of Chile  causes history and impacts Invasioacuten de plantas exoacuteticas en la regioacuten mediterraacutenea de Chile  causas historia e impactos Rev Chil Hist Nat 465ndash483 httpsdoiorg104067S0716-078X2004000300006

Fowler D Coyle M Skiba U Sutton MA Cape JN Reis S Sheppard

LJ Jenkins A Grizzetti B Galloway N Vitousek P Leach A Bouwman AF Butterbach-bahl K Dentener F Stevenson D Amann M Voss M 2013 The global nitrogen cycle in the twenty- first century Philisophical Trans R Soc B httpsdoiorghttpdxdoiorg101098rstb20130164

Frank D Reichstein M Bahn M Thonicke K Frank D Mahecha MD

Smith P van der Velde M Vicca S Babst F Beer C Buchmann N Canadell JG Ciais P Cramer W Ibrom A Miglietta F Poulter B Rammig A Seneviratne SI Walz A Wattenbach M Zavala MA Zscheischler J 2015 Effects of climate extremes on the terrestrial carbon cycle Concepts processes and potential future impacts Glob Chang Biol httpsdoiorg101111gcb12916

Fritz SC Anderson NJ 2013 The relative influences of climate and catchment

processes on Holocene lake development in glaciated regions J Paleolimnol httpsdoiorg101007s10933-013-9684-z

Frugone-Aacutelvarez M Latorre C Giralt S Polanco-Martiacutenez J Bernaacuterdez P

61

Oliva-Urcia B Maldonado A Carrevedo ML Moreno A Delgado Huertas A Prego R Barreiro-Lostres F Valero-Garceacutes B 2017 A 7000-year high-resolution lake sediment record from coastal central Chile (Lago Vichuqueacuten 34degS) implications for past sea level and environmental variability J Quat Sci 32 830ndash844 httpsdoiorg101002jqs2936

Galloway JN Townsend AR Erisman JW Bekunda M Cai Z Freney JR

Martinelli LA Seitzinger SP Sutton MA 2008 Transformation of the Nitrogen Cycle  Science (80- ) 320 889ndash892 httpsdoiorg101126science1136674

Gaumllman V Rydberg J Bigler C 2009 Decadal diagenetic effects on δ 13 C and

δ 15 N studied in varved lake sediment Limnol Oceanogr 54 917ndash924 httpsdoiorg104319lo20095430917

Garciacutea-Ruiz JM 2010 The effects of land uses on soil erosion in Spain A

review Catena httpsdoiorg101016jcatena201001001

Garciacutea-Ruiz JM Loacutepez-Moreno JI Lasanta T Vicente-Serrano SM

Gonzaacutelez-Sampeacuteriz P Valero-Garceacutes BL Sanjuaacuten Y Begueriacutea S Nadal-Romero E Lana-Renault N Goacutemez-Villar A 2015 Los efectos geoecoloacutegicos del cambio global en el Pirineo Central espantildeol una revisioacuten a distintas escalas espaciales y temporales Pirineos httpsdoiorg103989Pirineos2015170005

Garciacutea-Ruiz JM Nadal-Romero E Lana-Renault N Begueriacutea S 2013

Erosion in Mediterranean landscapes Changes and future challenges Geomorphology 198 20ndash36 httpsdoiorg101016jgeomorph201305023

Garreaud RD Vuille M Compagnucci R Marengo J 2009 Present-day

South American climate Palaeogeogr Palaeoclimatol Palaeoecol httpsdoiorg101016jpalaeo200710032

Gayo EM Latorre C Jordan TE Nester PL Estay SA Ojeda KF

Santoro CM 2012 Late Quaternary hydrological and ecological changes in the hyperarid core of the northern Atacama Desert (~21degS) Earth-Science Rev httpsdoiorg101016jearscirev201204003

Ge Y Zhang K amp Yang X (2019) A 110-year pollen record of land use and land

cover changes in an anthropogenic watershed landscape eastern China Understanding past human-environment interactions Science of The Total Environment 650 2906-2918 httpsdoiorg101016jscitotenv201810058

Goyette J Bennett EM Howarth RW Maranger R 2016 Global

Biogeochemical Cycles 1000ndash1014 httpsdoiorg1010022016GB005384Received

Granger J Sigman DM Lehmann MF Tortell PD 2008 Nitrogen and

oxygen isotope fractionation during dissimilatory nitrate reduction by

62

denitrifying bacteria 53 2533ndash2545 httpsdoiorg10230740058342

Gruber N Galloway JN 2008 An Earth-system perspective of the global

nitrogen cycle Nature 451 293ndash296 httpsdoiorg101038nature06592

Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater eutrophic lake Limnol Oceanogr 51 2837ndash2848 httpsdoiorg104319lo20065162837

Gurnell AM Petts GE Hannah DM Smith BPG Edwards PJ Kollmann

J Ward J V Tockner K 2001 Effects of historical land use on sediment yield from a lacustrine watershed in central Chile Earth Surf Process Landforms 26 63ndash76 httpsdoiorg1010021096-9837(200101)261lt63AID-ESP157gt30CO2-J

Heathcote A J et al Large increases in carbon burial in northern lakes during the

Anthropocene Nat Commun 610016 doi 101038ncomms10016 (2015) Hollander DJ Smith MA 2001 Microbially mediated carbon cycling as a

control on the δ13C of sedimentary carbon in eutrophic Lake Mendota (USA) New models for interpreting isotopic excursions in the sedimentary record Geochim Cosmochim Acta httpsdoiorg101016S0016-7037(00)00506-8

Holtgrieve GW Schindler DE Hobbs WO Leavitt PR Ward EJ Bunting

L Chen G Finney BP Gregory-Eaves I Holmgren S Lisac MJ Lisi PJ Nydick K Rogers LA Saros JE Selbie DT Shapley MD Walsh PB Wolfe AP 2011 A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere Science (80) 334 1545ndash1548 httpsdoiorg101126science1212267

Hooper DU Adair EC Cardinale BJ Byrnes JEK Hungate BA Matulich

KL Gonzalez A Duffy JE Gamfeldt L Connor MI 2012 A global synthesis reveals biodiversity loss as a major driver of ecosystem change Nature httpsdoiorg101038nature11118

Horvatinčić N Sironić A Barešić J Sondi I Krajcar Bronić I Borković D

2016 Mineralogical organic and isotopic composition as palaeoenvironmental records in the lake sediments of two lakes the Plitvice Lakes Croatia Quat Int httpsdoiorg101016jquaint201701022

Howarth RW 2004 Human acceleration of the nitrogen cycle Drivers

consequences and steps toward solutions Water Sci Technol httpsdoiorg1010382Fscientificamerican0490-56

Jenny B Valero-Garceacutes BL Urrutia R Kelts K Veit H Appleby PG Geyh

M 2002 Moisture changes and fluctuations of the Westerlies in Mediterranean Central Chile during the last 2000 years The Laguna Aculeo record (33deg50primeS) Quat Int 87 3ndash18 httpsdoiorg101016S1040-

63

6182(01)00058-1

Jenny B Wilhelm D Valero-Garceacutes BL 2003 The Southern Westerlies in

Central Chile Holocene precipitation estimates based on a water balance model for Laguna Aculeo (33deg50primeS) Clim Dyn 20 269ndash280 httpsdoiorg101007s00382-002-0267-3

Leng M J Lamb A L Heaton T H Marshall J D Wolfe B B Jones M D

amp Arrowsmith C 2006 Isotopes in lake sediments In Isotopes in palaeoenvironmental research (pp 147-184) Springer Dordrecht

Le Roux JP Nielsen SN Kemnitz H Henriquez Aacute 2008 A Pliocene mega-

tsunami deposit and associated features in the Ranquil Formation southern Chile Sediment Geol 203 164ndash180 httpsdoiorg101016jsedgeo200712002

Lehmann M Bernasconi S Barbieri a McKenzie J 2002 Preservation of

organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis Geochim Cosmochim Acta 66 3573ndash3584 httpsdoiorg101016S0016-7037(02)00968-7

Lenihan JM Drapek R Bachelet D Neilson RP 2003 Climate change

effects on vegetation distribution carbon and fire in California Ecol Appl httpsdoiorg101890025295

McLauchlan K K Gerhart L M Battles J J Craine J M Elmore A J

Higuera P E amp Perakis S S (2017) Centennial-scale reductions in nitrogen availability in temperate forests of the United States Scientific reports 7(1) 7856 httpsdoi101038s41598-017-08170-z

Martel-Cea A Maldonado A Grosjean M Alvial I de Jong R Fritz SC von

Gunten L 2016 Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical Central Chile (32ordmS 3050 masl) Palaeogeogr Palaeoclimatol Palaeoecol 461 44ndash54 httpsdoiorg101016jpalaeo201608003

Martiacuten-Foreacutes I Casado MA Castro I Ovalle C Pozo A Del Acosta-Gallo

B Saacutenchez-Jardoacuten L Miguel JM De 2012 Flora of the mediterranean basin in the chilean ESPINALES Evidence of colonisation Pastos 42 137ndash160

Marzecovaacute A Mikomaumlgi a Koff T Martma T 2011 Sedimentary geochemical

response to human impact on Lake Notildemmejaumlrv Estonia Est J Ecol 60 54 httpsdoiorg103176eco2011105

Matesanz S Valladares F 2014 Ecological and evolutionary responses of

Mediterranean plants to global change Environ Exp Bot httpsdoiorg101016jenvexpbot201309004

64

McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE 2007

Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470 httpsdoiorg101073pnas0701779104

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash1643 httpsdoiorg1011770959683613496289

Menzel P Gaye B Wiesner MG Prasad S Stebich M Das BK Anoop A

Riedel N Basavaiah N 2013 Influence of bottom water anoxia on nitrogen isotopic ratios and amino acid contributions of recent sediments from small eutrophic Lonar Lake central India Limnol Oceanogr 58 1061ndash1074 httpsdoiorg104319lo20135831061

Meyers PA Teranes JL 2001 Sediment organic matter in Tracking

Environmental Change Using Lake Sediments Volume 2 Physical and Geochemical Methods httpsdoiorg1018971551-5028(1999)018lt0231SOMCAAgt23CO2

Michelutti N Wolfe AP Cooke CA Hobbs WO Vuille M Smol JP 2015

Climate change forces new ecological states in tropical Andean lakes PLoS One httpsdoiorg101371journalpone0115338

Muntildeoz-Rojas M De la Rosa D Zavala LM Jordaacuten A Anaya-Romero M

2011 Changes in land cover and vegetation carbon stocks in Andalusia Southern Spain (1956-2007) Sci Total Environ httpsdoiorg101016jscitotenv201104009

Naeher S Gilli A North RP Hamann Y Schubert CJ 2013 Tracing bottom

water oxygenation with sedimentary MnFe ratios in Lake Zurich Switzerland Chem Geol 352 125ndash133 httpsdoiorg101016jchemgeo201306006

Poraj-Goacuterska A I Żarczyński M J Ahrens A Enters D Weisbrodt D amp

Tylmann W (2017) Impact of historical land use changes on lacustrine sedimentation recorded in varved sediments of Lake Jaczno northeastern Poland Catena 153 182-193 httpdxdoiorg101016jcatena201702007

Pongratz J Reick CH Raddatz T Claussen M 2010 Biogeophysical versus

biogeochemical climate response to historical anthropogenic land cover change Geophys Res Lett 37 1ndash5 httpsdoiorg1010292010GL043010

Prudhomme C Giuntoli I Robinson EL Clark DB Arnell NW Dankers R

Fekete BM Franssen W Gerten D Gosling SN Hagemann S Hannah DM Kim H Masaki Y Satoh Y Stacke T Wada Y Wisser D 2014 Hydrological droughts in the 21st century hotspots and uncertainties from a global multimodel ensemble experiment Proc Natl Acad Sci httpsdoiorg101073pnas1222473110

65

Ruumlhland KM Paterson AM Smol JP 2015 Lake diatom responses to

warming reviewing the evidence J Paleolimnol httpsdoiorg101007s10933-

015-9837-3

Sarricolea P Meseguer-Ruiz Oacute Serrano-Notivoli R Soto M V amp Martin-Vide

J (2019) Trends of daily precipitation concentration in Central-Southern Chile Atmospheric research 215 85-98 httpsdoiorg101016jatmosres201809005

Sernageomin 2003 Mapa geologico de chile version digital Publ Geol Digit Serrano-Notivoli R de Luis M Begueriumlia S 2017 An R package for daily

precipitation climate series reconstruction Environ Model Softw httpsdoiorg101016jenvsoft201611005

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98 httpsdoiorg1011772053019614564785

Stine S 1994 Extreme and persistent drought in California and Patagonia during

mediaeval time Nature 369 546ndash549 httpsdoiorg101038369546a0

Stocker TF Dahe Q Plattner G-K Alexander L V Allen SK Bindoff NL

Breacuteon F-M Church JA Cubash U Emori S Forster P Friedlingstein P Talley LD Vaughan DG Xie S-P 2013 Technical Summary in Climate Change 2013 The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change httpsdoiorg101017 CBO9781107415324005

Syvitski JPM Voumlroumlsmarty CJ Kettner AJ Green P 2005 Impact of humans

on the flux of terrestrial sediment to the global coastal ocean Science 308(5720) 376-380 httpsdoiorg101126science1109454

Thomas RQ Zaehle S Templer PH Goodale CL 2013 Global patterns of

nitrogen limitation Confronting two global biogeochemical models with observations Glob Chang Biol httpsdoiorg101111gcb12281

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status J Paleolimnol 47 693ndash706 httpsdoiorg101007s10933-012-9593-6

Urbina Carrasco MX Gorigoitiacutea Abbott N Cisternas Vega M 2016 Aportes a

la historia siacutesmica de Chile el caso del gran terremoto de 1730 Anuario de Estudios Americanos httpsdoiorg103989aeamer2016211

Vargas G Ortlieb L Chapron E Valdes J Marquardt C 2005 Paleoseismic

inferences from a high-resolution marine sedimentary record in northern Chile

66

(23degS) Tectonophysics httpsdoiorg101016jtecto200412031 399(1-4) 381-398httpsdoiorg101016jtecto200412031

Valero-Garceacutes BL Latorre C Morelliacuten M Corella P Maldonado A Frugone M Moreno A 2010 Recent Climate variability and human impact from lacustrine cores in central Chile 2nd International LOTRED-South America Symposium Reconstructing Climate Variations in South America and the Antarctic Peninsula over the last 2000 years Valdivia p 76 (httpwwwpagesunibechproductsmeeting-products1024-2nd-international-lotred-south-america-symposium-reconstructing-climate-variations-in-south-america-and-the-antarctic-peninsula-over-the-last-2000-yearshttpwwwpagesunibechproductsmeeting-products1024-2nd-international-lotred-south-america-symposium-reconstructing-climate-variations-in-south-america-and-the-antarctic-peninsula-over-the-last-2000-years

Vicente-Serrano SM Gouveia C Camarero JJ Begueria S Trigo R

Lopez-Moreno JI Azorin-Molina C Pasho E Lorenzo-Lacruz J Revuelto J Moran-Tejeda E Sanchez-Lorenzo A 2013 Response of vegetation to drought time-scales across global land biomes Proc Natl Acad Sci httpsdoiorg101073pnas1207068110

Villa Martiacutenez R P 2002 Historia del clima y la vegetacioacuten de Chile Central

durante el Holoceno Una reconstruccioacuten basada en el anaacutelisis de polen sedimentos microalgas y carboacuten PhD

Villa-Martiacutenez R Villagraacuten C Jenny B 2003 Pollen evidence for late -

Holocene climatic variability at laguna de Aculeo Central Chile (lat 34o S) The Holocene 3 361ndash367

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Human alteration of the global nitrogen cycle sources and consequences Ecological applications 7(3) 737-750 httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M Rein B Urrutia R amp Appleby P (2009) A

quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo central Chile back to AD 850 The Holocene 19(6) 873-881 httpsdoiorg1011770959683609336573

von Gunten L Grosjean M Eggenberger U Grob P Urrutia R Morales A

2009 Pollution and eutrophication history AD 1800-2005 as recorded in sediments from five lakes in Central Chile Glob Planet Change 68 198ndash208 httpsdoiorg101016jgloplacha200904004

Widory D Kloppmann W Chery L Bonnin J Rochdi H Guinamant JL

2004 Nitrate in groundwater An isotopic multi-tracer approach J Contam Hydrol 72 165ndash188 httpsdoiorg101016jjconhyd200310010

67

Woodward CA Potito AP Beilman DW 2012 Carbon and nitrogen stable isotope ratios in surface sediments from lakes of western Ireland Implications for inferring past lake productivity and nitrogen loading J Paleolimnol 47 167ndash184 httpsdoiorg101007s10933-011-9568-z

68

Supplementary material

Facie Name Description Depositional Environment

F1 Organic-rich

mud

Massive to banded black

organic - rich (TOC up to 14 )

mud with aragonite in dm - thick

layers Slightly banded intervals

contain less OM (TOClt4) and

aragonite than massive

intervals High MnFe (oxic

bottom conditions) High CaTi

BrTi and BioSi (up to 5)

Distal low energy environment

high productivity well oxygenated

and brackish waters and relative

low lake level

F2 Massive to

banded silty clay

to fine silt

cm-thick layers mostly

composed by silicates

(plagioclase quartz cristobalite

up to 65 TOC mean=23)

Some layers have relatively high

pyrite content (up to 25) No

carbonates CaTi BrTi and

BioSi (mean=48) are lower

than F1 higher ZrTi (coarser

grain size)

Deposition during periods of

higher sediment input from the

watershed

69

F3 Banded to

laminated light

brown silty clay

cm-thick layers mostly

composed of clay minerals

quartz and plagioclase (up to

42) low organic matter

(TOC mean=13) low pyrite

and BioSi content

(mean=46) and some

aragonite

Flooding events reworking

coastal deposits

F4 Laminated

coarse silts

Thin massive layers (lt2mm)

dominated by silicates Low

TOC (mean=214 ) BrTi

(mean=002) MnFe (lt02)

TIC (lt034) BioSi

(mean=46) and TS values

(lt064) and high ZrTi

Rapid flooding events

transporting material mostly

from within the watershed

F5 Breccia with

coarse silt

matrix

A 17 cm thick (80-97 cm

depth) layer composed by

irregular mm to cm-long ldquosoft-

clastsrdquo of silty sediment

fragments in a coarse silt

matrix Low CaTi BrTi and

MnFe ratios and BioSi

Rapid high energy flood

events

70

(mean=43) and high ZrTi

(gt018)

Table Sedimentological and compositional characteristics of Laguna Matanzas

facies

71

CAPIacuteTULO 2 STABLE ISOTOPES TRACK LAND USE AND COVER

CHANGES IN A MEDITERRANEAN LAKE IN CENTRAL CHILE OVER THE

LAST 600 YEARS

72

Stable isotopes track land use and cover changes in a mediterranean lake in

central Chile over the last 600 years

Magdalena Fuentealbaabc Claudio Latorreabc Matiacuteas Frugone-Aacutelvarezabc Pablo

Sarricolead Leonardo Villaciacutese M Laura Carrevedob Blas Valero-Garceacutescg

a Departamento de Ecologiacutea Pontificia Universidad Catoacutelica de Chile Alameda 340 Santiago Chile

b Institute of Ecology and Biodiversity (IEB) Las Palmeras 3425 Nuntildeoa Santiago Chile

c Laboratorio Internacional de Cambio Global LINCGlobal PUC-CSIC Spain

d Departamento de Geografiacutea Universidad de Chile Marcoleta 250 Santiago Chile

e Departamento de Ecologiacutea Universidad de ChileLas Palmeras 3425 Nuntildeoa Santiago Chile

f Instituto Pirenaico de Ecologiacutea (IPE-CSIC) Avenida Montantildeana 1005 Zaragoza 50059 Spain

Corresponding authors E-mail addresses clatorrebiopuccl magdalenafuentealbagmailcom

Key words Anthropocene lake sediment δsup1⁵N δsup1sup3C Great Acceleration organic

geochemistry watershedndashlake system Stable Isotope Analyses land usecover

change Nitrogen cycle mediterranean ecosystems central Chile

73

Abstract

Nutrient fluxes in many aquatic ecosystems are currently being overridden by

anthropic controls especially since the industrial revolution (mid-1800s) and the

Great Acceleration (mid-1900s) Land use and cover changes (LUCC) alter the

availability and fluxes of nutrients such as nitrogen that are transferred via runoff

and groundwater into lakes By altering lake productivity and trophic status these

changes are often preserved in the sedimentary record Here we use

geolimnological proxies and stable isotope analyses (δsup1⁵N δsup13C) on lake sediments

to reconstruct the lake-watershed nutrient transfer in a central Chilean lake (Lago

Vichuqueacuten) over the past 600 years We compare our multiproxy record from recent

lake sediments to the soilvegetation relationship across the watershed as well as

land usecover changes from 1975 to 2014 derived from satellite images Our results

show that lake sediment δsup1⁵N values increased with meadow cover but decreased

with tree plantations suggesting increased nitrogen retention when trees dominate

the watershed Our δsup1⁵N record from central Chile can thus be interpreted as a proxy

for nutrient availability over the last 600 years mainly derived from land use changes

coupled with climate drivers Although variable sources of organic matter and in situ

fractionation often hinder straightforward environmental interpretations of stable N

isotope signatures our study shows that lake sediment δsup1⁵N can be a useful tool for

assessing the contribution of past human activities in nutrient and nitrogen cycling

1 Introduction

Nitrogen (N) is a limiting nutrient in terrestrial and aquatic ecosystems (Vitousek

et al 1997) Changes in its availability can drive eutrophication and increase

pollution in these ecosystems (McLauchlan et al 2013) Although recent human

74

impacts on the global N cycle have been significant the consequences of increased

anthropogenic N on these ecosystems are unclear (Gerhart and Mclauchlan 2014

Battye et al 2017) Isotopic signatures are key to understand N dynamics in lakes

nevertheless in situ andor diagenetic fractionation along with multiple sources of

organic matter (OM) often hinder straightforward environmental interpretations from

isotopes Monitoring δ15N and δ13C values as components of the N cycle

specifically those related to the link between terrestrial and aquatic ecosystems can

help differentiate between effects from processes versus sources in stable isotope

values (eg from Particulate Organic Matter -POM- soil and vegetation) and

improve how we interpret variations in δ15N (and δ13C) values at longer temporal

scales

The main processes controlling stable N isotopes in bulk lake OM are source

lake productivity diagenesis and denitrification (Talbot 2001 Leng et al 2006

Fariacuteas et al 2009 Torres et al 2012 Brahney et al 2014) N sources depend on

contributions from the watershed (ie soil and biomass) the transfer of atmospheric

N to the lake (ie atmospheric N2 fixation) and nutrient recycling (Leng et al 2006)

Atmospheric N2 (isotopically defined as δ15N =0) is fixed by cyanobacteria with

minimal fractionation resulting in δ15NOM values that fluctuate from -2 to +2permil (Fogel

and Cifuentes 1993 Talbot 2001 Elliot and Brush 2006) Besides N2 fixation by

cyanobacteria phytoplankton species assimilate dissolved inorganic nitrogen (DIN)

and values typically range from +7 to +10permil (Xu et al 2016 Meyers et al 2003) In

addition seasonal changes in POM occur in the lake water column Gu et al (2006)

sampled the water column of Lake Wauberg (Florida USA) during a hydrologic year

and found a higher development of N fixing species during the summer A major

factor behind this increase are human activities in the watershed which control the

75

inputs of the sediment and nutrients to the lake (Woodward et al 2011) Some

studies have shown higher δ15N values in lake sediments from watersheds that are

highly affected by human activities (Bruland and Mackenzie 2010 Woodward et al

2011) Syntenic fertilizers displayed δ15N values between -4 to +4permil cattle manure

around +8 to +22permil and surface and groundwater OM between 0 to +10permil (Elliott

and Brush 2006 Leng et al 2006) Although relatively low δ15N values from

fertilizers constitute major N input to human-altered watersheds the elevated loss

of 14N via volatilization of ammonia and denitrification leaves the remaining total N

input enriched in 15N (Bruland and Mackenzie 2010)

In addition to the different sources and variations in lake productivity early

diagenesis at the sedimentndashwater interface in the sediment can further alter

sediment OM isotope values (Brahney et al 2014 Galman et al 2009) During

diagenetic loss of N in lacustrine systems kinetic fractionation occurs and the

remaining N is enriched in 15N leading to higher δ15N values (Galman et al 2006

Talbot 2001) Denitrification tends to enrich lake sediments in 15N due to the

assimilation of nitrates by denitrifying bacteria (Granger et al 2008) and is more

prevalent in anoxic environments (Brahney et al 2016 Lehman et al 2002)

Carbon isotopes in lake sediments can also provide useful information about

paleoenvironmental changes OM origin and depositional processes (Meyers et al

2003) Allochthonous organic sources (high CN ratios) produce isotope values

similar to values from catchment vegetation Autochthonous organic matter (low CN

ratio) is influenced by fractionation both in the lake and the watershed leading up to

carbon assimilation by lacustrine biota (Woodward et al 2011) Changes in

productivity greatly affect δ13COM values (Torres et al 2012) as during C uptake

plankton preferentially assimilate 12C leaving the dissolved inorganic carbon (DIC)

76

pool enriched in 13C (Gu et al 2006) with phytoplankton averaging ca 20 permil lower

than the respective δ13CDIC values (Leng et al 2006) Under conditions of low to

moderate primary productivity plankton preferentially uptake the lighter 12C

resulting in low δ13C values displayed by the OM (Torres et al 2012) Conversely

during high primary productivity phytoplankton will uptake 12C until its depletion and

is then forced to assimilate the heavier isotope resulting in an increase in δ13C

values Higher productivity in C-limited lakes due to slow water-atmosphere

exchange of CO2 also results in high δ13C values (Galman et al 2009) In these

cases algae are forced to uptake dissolved bicarbonate with δ13C values between

7 to 10permil higher than those of the atmospheric CO2 dissolved in water (Sun et al

2016 Torres et al 2012 Galman et al 2009)

Stable isotope analyses from lake sediments are thus useful tools to

reconstruct shifts in lake-watershed dynamics caused by changes in limnological

parameters and LUCC Our knowledge of the current processes that can affect

stable isotope signals in a watershed-lake system is limited however as monitoring

studies are scarce Besides in order to use stable isotope signatures to reconstruct

past environmental changes we require a multiproxy approach to understand the

role of the different variables in controlling these values Hence in this study we

carried out a detailed survey of current N dynamics in a coastal central Chilean lake

(Lago Vichuqueacuten) and a multiproxy study of a sediment record spanning the last

600 years The characterization of the recent changes in the watershed since 1970s

is based on satellite images to compare recent changes in the lake and assess how

these are related with climate variability and an ever increasing human footprint

(Lara et al 2012 Gallardo et al 2015 Steffen et al 2015) Our main goal is to

investigate how stable isotope values from lake sediment reflect changes in the lake

77

ndash watershed system during periods of high watershed disruption (eg Spanish

Conquest late XIX century Great Acceleration) and recent climate change (eg

Little Ice Age and current global warming)

2 Study Site

Lago Vichuqueacuten (34ordm49`S 72ordm04W 4 m asl 30 m of depth Fig 1) is a

mesotrophic to eutrophic lake with dominant anoxic bottom conditions that is

stratified year around (Frugone-Aacutelvarez et al 2017) The main inlets are the

Vichuqueacuten and Huintildee rivers and the only outlet is the Llico estuary that drains into

the Pacific Ocean High tides can sporadically shift the flow direction of the Llico

estuary which increases the marine influence in the lake Dune accretion gradually

limited ocean-lake connectivity until the estuary was almost completely closed off

by ca 10 ky BP and the current lake regime formed (Frugone-Aacutelvarez et al 2017)

The area is characterized by a mediterranean climate with cold-wet winters and

hot-dry summers and an annual precipitation of ~650 mm and a mean annual

temperature of 15ordmC During the austral winter months (June - August) precipitation

is modulated by north-west shifts of the South Pacific Anticyclone (SPA) followed by

an increased frequency of storm fronts stemming off the South Westerly Winds

(SWW) A strengthened SPA during austral summers (December - March) which

are typically dry and warm blocks the northward migration of storm tracks stemming

off the SWW (Fig1 Frugone-Aacutelvarez et al 2017)

78

Figure 1 a) The location of the Lago Vichuqueacuten in central Chile b) Map of land

uses and cover in 2016 c) Ombrothermic diagram mediterranean climates are

characterized by cold-wet winters with surplus moisture from June to August and

hot-dry summers d) Lake bathymetry showing location of cores and water sampling

sites used in this study

Although major land cover changes in the area have occurred since 1975 to the

present as the native forests were replaced by tree (Monterey pine and eucalyptus)

plantations the region was settled before the Spanish conquest (Frugone-Alvarez

et al 2018) Historical documents indicate that Vichuqueacuten was occupied by a

Mitimaes colony as part of the Inka empire (Odone 1998) Unlike other Andean

areas during the Inka period the introduction of corn and quinoa in the Vichuqueacuten

watershed do not seem to have intensified land use The Spanish colonial period in

Chile lasted from 1542 CE to the independence in 1810 CE The first historical

document (1550 CE) shows that the areas around Vichuqueacuten were settled by the

Spanish early on as the Vichuqueacuten watershed was given as an ldquoencomiendardquo

system to Juan Cuevas The ldquoencomiendardquo system provided the owners with land

79

and indigenous people to work but also the introduction of wheat wine cattle

grazing and logging of native forests for lumber extraction and increasing land for

agricultural activities (Odone et al 1998 Armesto et al 2010) During the 19th

century (the Republic) the export of wheat to Australia and Canada generated

intensive changes in land cover use The town of Vichuqueacuten became the regional

capital and plans to build a maritime port in the bay of Vichuqueacuten were drawn

However the fall of international markets in 1880 paralyzed these plans During the

20th century the plantation of trees (Pinus radiata and Eucalyptus globulus) in areas

cleared of native forests was subsidized by two national laws DFL nordm265 (1931) and

DFL nordm 701 (1974) both of which provided funds for such plantations During the last

decades the urbanization with summer vacation homes along the shorelines of

Lago Vichuqueacuten has greatly increased Extensive lake eutrophication is currently a

large environmental problem (EULA 2008)

3 Methods

Coring campaigns were organized from 2011 to 2015 (Fig 1d) We recovered

12 short cores and 4 long cores (up to 14 m long) at several sites using a hammer-

modified UWITEC gravity corer Sediment cores (VIC11-2A 170 cm VIC13-2B 170

cm VIC13-2D 1200 cm and VIC15-1A 119 cm) were split photographed sub-

sampled and stored in the Pyrenean Institute of Ecology (IPE-CSIC Spain) Core

VIC13-2B was selected for detailed multiproxy analyses (including elemental

geochemistry C and N isotopes XRF and 14C dating) Stable isotope analyses

(δ13C δ15N) were performed at the Laboratory of Biogeochemistry and Applied

Stable Isotopes (LABASI-PUC Chile) Sediment samples for δ13Corg were pre-

treated with 50 ml of HCl and 50 ml of deionized water and dried at 60ordmC for 4 hr to

remove carbonates (Harris et al 2011) Isotope analyses were conducted using a

80

Delta V Advantage IRMS coupled to a Thermo Flash 2000 Elemental Analyzer via

a Conflo IV interface Isotope results are expressed in standard delta notation (δ)

and expressed in per mil (permil) relative to the Pee Dee Belemnite (Vienna Pee Dee

Belemnite) for C and to atmospheric N2 for N (Leng et al 2006) Total carbon (TC)

Total Organic Carbon (TOC) Total Inorganic Carbon (TIC) and Total Sulfur (TS)

were measured every 2 cm with a LECO SC 144 DR at the IPE-CSIC

An AVAATECH X-Ray Fluorescence II core scanner with a Rh X-ray tube from

the University of Barcelona was used to obtain XRF logs every 4 mm of resolution

Results are expressed as element intensities in counts per second (cps) Tube

voltage was operated at 30 kV and 10 kV to obtain the abundances of 18 elements

(Pb Al Si S Cl K Ca Ti V Mn Fe Co Zn Br Rb Sr Y Zr) with an average of

at least of 1800 cps (less for Pb=437 and Zn=934 cps) Pb was included due to

similar behavior with Co and Fe Element ratios were calculated to describe changes

in redox conditions (MnFe) endogenic productivity (BrTi) carbonate formation

(SrCa and CaTi) and sediment input (ZrTi) (Barreiro-Lostres et al 2014

Carrevedo et al 2015 Frugone-Aacutelvarez et al 2017 Kylander et al 2011 Moreno

et al 2007a)

Several campaigns were carried out to sample the POM from the water column

two per hydrologic year from November 2015 to August 2018 A liter of water was

recovered in three sites through to the lake two are from the shallower areas (with

samples taken at 2 and 5 m depth at each site) and one in the deeper central portion

(at 2 5 and 20 m depth) of the lake (Fig 1d) The samples were filtered using glass

fiber filters (25 m) and then frozen to obtain the stable carbon and nitrogen isotope

signal of lacustrine POM Additionally soil and vegetation samples from the

following communities native species meadow hydrophytic vegetation and

81

Monterrey pine (Pinus radiata) were taken for stable isotope analyses (see in

supplementary material)

The age model for the complete Lago Vichuqueacuten sedimentary sequence is

based on Frugone-Aacutelvarez et al (2017) with the last 1000 years based on

210Pb137Cs dating techniques in VIC15-1A and 14C AMS dates on bulk sediment

samples (Supplementary Table S1) The 14C measurements of lake water DIC show

a moderate reservoir effect of 180 plusmn 25 14C yr) The revised age-depth model used

here includes three more 14C AMS dates performed with the program Bacon to

establish the deposition rates along the core (Blaauw and Christen 2011 Fig 2)

The age-depth model indicates that average resolution between 0 to 87 cm is lt2

cm per year and from 88 to 170 cm it is lt47 cm per year

82

Figure 2 Chronological age-depth model for the Lago Vichuqueacuten sedimentary

sequence spanning the last 1000 yr (see also Frugone-Alvarez et al 2017)

To estimate land use changes in the watershed we use Landsat MSS images

for 1975 and Landsat TM for 1989 and 2014 all taken in either summer or autumn

(Table 1) We performed supervised classification of land uses (maximum likelihood

83

algorithm) for each year (1975 1989 and 2014) and results were mapped using

ArcGIS 102

Table 1 Images using for LUCC reconstruction

Source of LUCC

Acquisition

Date Resolution

Landsat MSS 19750322 60 m

Landsat TM 19890217 30 m

Landsat TM 19991226 30 m

CONAF 2009 30 m

Land cover Chile 2014 30 m

CONAF 2016 30 m

Previous Work on Lago Vichuqueacuten sedimentary sequence

The sediments are organic-poor dark brown to brown laminated silt with some

intercalated thin coarser clastic layers Lacustrine facies have been classified

according to elemental composition (TOC TS TIC and TN) grain size and

sedimentary textures (Frugone-Aacutelvarez et al 2017) Four main types of lacustrine

facies were identified in this short core Facies L1 is a laminated (1cm) black to dark

brown diatom-poor silt with relatively higher TOC percentages (TOC about 185)

TS (about of 18) and TOCTN (about 92) Facies L2 is characterized by a

homogeneous black organic-poor silty clay with low TOC (mean= 13) TS (mean=

13) TOCTN (mean= 88) values Facies L3 is a laminated (1cm) black organic-

poor (TOC mean 14) silts with higher TS (mean= 21) and TOCTN ratios

(mean= 88) Facies L3 is interpreted as ldquobaselinerdquo deposition on the distal areas

84

of Vichuqueacuten lake Mineralogy is dominated by mica (muscovite) clay minerals

(chlorite) and plagioclase (albite) Quartz and calcite occur at the top and pyrite

occurs in the lower part of the sequence Facies T is composed by massive banded

sediments 4 cm thick and coarse grain size It is interpreted as an instantaneous

depositional event (for more detail see Frugone-Aacutelvarez et al 2017) In this work

we identified four subunits based on geochemical and stable isotope signals

4 Results

41 Geochemistry and PCA analysis

High positive correlations exist between Al Si K and Ti (r = 078 ndash 096

supplementary Fig S1) and between Zn Zr Rb and Y (r = 072 - 096) which reflect

the silicate content of the watershed-derived sediments (Marzecoacuteva et al 2011) Zr

is commonly associated with minerals more abundant in coarser deposits Thus the

ZrTi profile could reflect grain size (Cuven et al 2010) showing higher variability

in the upper part of the Lake Vichuqueacuten sequence and in the alternation between

facies L1 and L2 Another group of elements made up of Co Fe and Pb displayed

positive correlations (r = 067ndash 097) and represents the input of heavy metals Br

Cl and Ca show a positive correlation (r = 049 ndash 06 p-value = 00001) BrTi ratio

is interpreted as a productivity indicator due to Br having a strong affinity with humic

and organic compounds (Marzecoacuteva et al 2011 Frugone-Aacutelvarez et al 2017) In

our Lago Vichuqueacuten sequence BrTi values are high from 170 to 132 cm and from

36 cm to the top of core where it shows several sharps peaks (Fig 3) The MnFe

ratio is indicative of lake bottom oxygenation (Naecher et al 2013) as under

reducing conditions Mn tends to become more mobile than Fe leading to a

decreased MnFe (Marzecoacuteva et al 2011) Several sharp peaks in MnFe occurred

85

from 127 to 120 cm and from 57 to 30 cm (MgFegt03) The silicate group and the

Br Cl Ca Mn group are negatively correlated (r= -012 and -066)

Principal Component Analysis (PCA) was undertaken on the XRF

geochemical data to investigate the main factors controlling sediment deposition in

Lago Vichuqueacuten (Fig 3) The four main eigenvectors explain 801 of the variance

(supplementary material Table S2) The principal component (PC1) explain 437

of the total of variance and grouped elements are associated with terrigenous input

to the lake Positive values of the biplot have been attributed to higher heavy metals

deposition (Pb Co and Fe) and negative values to higher silicate input (Al K Ti and

Si) in a high energy catchment environment (Zr) The PC2 explains 198 of the

total of variance and highlights the endogenic productivity in the lake The positive

loading is compound by Br Cl Ca and Sr and to a lesser extent by Y Zn Rb and

Mn The PC2 may explain both the precipitation of carbonates (Ca Sr) and biological

production (Br)

86

Figure 3 Principal Component Analysis of XRF geochemical measurements in

VIC13-2B Lago Vichuqueacuten lake sediments

42 Sedimentary units

Based on geochemical and stable isotope analysis we identified four

lithological subunits in the short core sedimentary sequence Our PCA analyses and

Pearson correlations pointed out which variables were better for characterizing the

subunits (Fig 4) in terms of endogenic productivity heavy metals and terrestrial

input The unit 2c (170-131 cm) is characterized by the occurrence of some clastic

layers (L2 from 160 and 150 cm) high δsup1⁵N values (mean= +59 plusmn 04permil) with

Magnetic Susceptibility (MS) BrTi ZrTi and SrCa values increase towards the top

Also it has relatively low δsup1sup3C values (mean= -265 plusmn 11permil) and CNmolar ratios

(mean=78 plusmn 04) The ZrTi show upwards increasing values reaching the highest

values of the sequence at the top of this unit suggesting a coarsening upward trend

and relatively higher depositional energy The MS trend also indicates higher

erosion in the watershed and enhanced delivery of ferromagnetic minerals likely

from soil particles particularly from 150 to 160 cm (Frugone-Aacutelvarez at al 2017)

The subunit 2b (130-118 cm) is also composed of black silts but it has the

lowest MS values of the whole sequence and its onset is marked by a sharp

decrease in ZrTi This subunit is marked by sharp peaks of MnFe (at 126 and 120

cmgt027) SrCa (at 125 and 120 cmgt033) CaTi (at 124 and 120 cmgt199) TOC

(about 26 at 130 124 122 and 118 cm) and δsup1⁵N (gt+67permil at 126 and 120 cm)

BrTi oscillates around low values (about 01) whereas the δsup1sup3C values range

between -262 and -282permil

87

The unit 2a (58-117 cm) shows increasing and then decreasing MS values

and displayed sharps peaks of δsup1⁵N (gt64 at 102 to 99 87 and 75 cm) and CN

(about 10 at 86 74 66 and 60 cm) SrCa (mean = 04 plusmn 013) BrTi (mean = 008

plusmn 002) MnFe (mean = 002 plusmn 001) and δsup1sup3C (mean = -260 plusmn 07permil) oscillate in

low values The upper part of this unit (72 ndash 57 cm) shows an increase of SrCa

(from 03 to 05)

The upper unit 1a (0 - 57 cm) starts with a fine clastic layer (T at 57 to 54

cm) interpreted as deposition during a high-energy event It is characterized by

lower BrTi (mean = 003 plusmn 002) TOC (mean = 12 plusmn 03) and δsup1sup3C (mean= -

266 plusmn 06permil) higher δsup1⁵N (mean = +55 plusmn 08 permil) This unit is made of alternating

fine (lt 1cm) black and dark brown laminae with carbonate (L1 facies) Recently

deposited sediments show decreasing MS values increasing TOC (mean= 15 plusmn

04 ) sharp peaks of BrTi (gt015 at 33 21 5 and 1 cm) and the lowest δsup1⁵N values

of the entire record (mean= 45 plusmn 06 permil) and δsup1sup3C values (mean= -277 plusmn 09 permil)

Heavy metal content increases abruptly in the upper section of the core (2 - 20 cm)

(peaks of FeTi CoTi and PbTi)

88

Figure 4 Sedimentary units of Lago Vichuqueacuten sedimentary sequence Selected

variables illustrate watershed input (Magnetic Susceptibility ZrTi CoTi and MnFe)

endogenic productivity (SrCa CaTi TS) organic matter source (BrTi TOC

CNmolar and stable isotope records (δ13Corg and δ15Nbulk)

43 Recent seasonal changes of particulate organic matter on water column

The average of δ15NPOM from the three sites across to the lake was +86 plusmn 58

permil oscillating widely from -14 to +193permil (Fig 5) Important seasonal differences

occur at 2 and 5 m depth with more negative values during summer (~53 plusmn 52 permil)

than winter (~122 plusmn 40permil) At 20 m depth δ15NPOM values exhibit small seasonal

ranges (mean = +10permil for winter and +87permil for summer) The δ13CPOM average was

-296 plusmn 33permil with slightly seasonal and water column depth differences However

more positive δ13CPOM values occurred during winter (mean=-290 plusmn 41permil) than in

summer (mean= -301 plusmn 19 permil) Like the δ15NPOM values CNPOM (mean= 83 plusmn 17)

displayed important seasonal and water depth differences Lower CNPOM ratios

89

occurred during summer at 2 and 5 m depth (mean= 95 plusmn 17) and higher and more

constant values during winter (mean = 73 plusmn 09) at the same depth At 20 m CNPOM

shows similar values in both winter (70) and summer (74)

Figure 5 Seasonal POM averages from samples taken of the Lago Vichuqueacuten

water column Samples were taken from 2015 to 2018 at 2 (n=16) 5 (n=14) and 20

(n=8) meters depth

44 Stable isotope values across the Lake Vichuqueacuten watershed

Figure 6 shows modern vegetation soil and sediment isotope values found for

the watershed Huintildee tributary and Vichuqueacuten lake The δsup1⁵NFoliar values from

meadow plantations and macrophytes have similar range values with a mean of

+89 plusmn50 permil (n=18) +74 plusmn 75 permil (n=5) +82 plusmn 36 permil (n=6) respectively Native

vegetation has overall lower δsup1⁵NFoliar values with a mean of 14 plusmn 21 permil (n=28 see

Table 2 in supplementary material) The δsup1sup3CFoliar from terrestrial samples exhibit

similar values across the different plant communities (tree plantation mean=-274 plusmn

13permil meadow mean = -275 plusmn 23 permil native species mean=-272 plusmn 14permil) whereas

macrophytes display slightly more negative values with a mean of -287 plusmn 23permil

Macrophytes substrate displayed the highest δsup1⁵N values with a mean of +60 plusmn

14permil (n=3) Similar and relatively high δsup1⁵N values for soil of plantation (mean= +54

plusmn 13permil n=4) meadow (mean= +49 plusmn 04permil n=8) and surface river sediment

90

(mean= +52 plusmn 17permil n=10) Native forest soils oscillate around slightly more

negative values with a mean of +45 plusmn 12permil (n=4) Slightly more positive soil δsup1sup3C

values occur both underneath native forests and in tree plantations with means of -

284 plusmn 23permil and -298 plusmn 13permil respectively compared to either meadow soils

(mean= -302 plusmn 11permil) aquatic sediments underneath macrophytes (-311 plusmn 10permil)

or from surface river sediments (mean= -312 plusmn 10permil)

Figure 6 Stable isotope content of modern soil river sediment and foliar vegetation

used as end members in the sedimentary sequence of Lago Vichuqueacuten a)

Scatterplot of foliar δsup1⁵N and δsup13C values for vegetation from Lago Vichuqueacuten

watershed (plantation meadow and native species) and macrophytes on Lake

Vichuqueacuten See supplementary material for more detail of vegetation types b)

Scatterplot of soil δsup1⁵N and δsup13C values across the watershed the sediments of the

Huintildee and Vichuqueacuten rivers and the fluvial sediment corresponding to the

macrophyte vegetation

45 Land use and cover change from 1975 to 2014

Major land use changes between 1975 CE and 2016 CE in the Lago

Vichuqueacuten watershed are summarized in Figure 7 The watershed has a surface

area of 535329 km2 of which native vegetation (26) and shrublands (53)

represent 79 of the total surface in 1975 Meadows are confined to the valley and

91

represent 17 of watershed surface Tree plantations initially occupied 1 of the

watershed and were first located along the lake periphery By 1989 the areas of

native forests shrublands and meadows had decreased to 22 31 and 14

respectively whereas tree plantations had expanded to 30 These trends

continued almost invariably until 2016 when shrublands and meadows reached 17

and 5 of the total areas while tree plantations increased to 66 Native forests

had practically disappeared by 1989 and then increased up to 7 of the total area

in 2016 (Fig 6) preferentially occupying the southeastern sector of the watershed

Figure 7 Changes in land use and cover between 1975 and 2016 in the Lago

Vichuqueacuten watershed as measured from satellite images The major change is

represented by the replacement of native forest shrubland and meadows by

plantations of Monterrey pine (Pinus radiata)

Figure 8 shows correlations between lake sediment stable isotope values and

changes in the soil cover from 1975 to 2013 Positive relationships occurred

between sediment δsup1⁵N and δsup13C values from core VIC13-2B (unit 1) and the

92

percentage of native forest (r=089 for δsup1⁵N 082 for δsup13C) shrublands (r = 071 for

δsup1⁵N 057 for δsup13C) and meadow cover (r = 088 for δsup1⁵N 081 for δsup13C) All of these

correlations are significant (p value lt 0001) In contrast significant negative

correlations (p lt0001) occurred between tree plantation cover and lake sediment

stable isotope values (δsup1⁵N r = -082 and δsup13C r = -067) native forest (r = -097)

meadows (r = -086) and shrubland (r =-093)

Figure 8 Correlation plots of land use and cover change versus lake sediment

stable isotope values The δsup1⁵N values are positively correlated with native forests

agricultural fields and meadow cover across the watershed Total Plantation area

increases are negatively correlated with native forest meadow and shrubland total

area Significance levels are indicated by the symbols p-values (0 0001 001

005 01 1) lt=gt symbols ( )

93

5 Discussion

51 Seasonal variability of POM in the water column

The stable isotope values of POM can vary during the annual cycle due to

climate and biologic controls namely temperature and length of the photoperiod

which affect phytoplankton growth rates and isotope fractionation in the water

column (Gu et al 2006 Leng et al 2006) POM from Lago Vichuqueacuten surface

samples (2 and 5 m depth) displayed lower δ13CPOM values during the summer than

in winter During C uptake phytoplankton preferentially utilize 12C leaving the

DICpool enriched in 13C Therefore as temperature increases during the summer

phytoplankton growth generates OM enriched in 12C until this becomes depleted

and then the biomas come to enriched u At the onset of winter the DICpool is now

enriched in 13C and despite an overall decrease in phytoplankton production the

OM produced will also be enriched in 13C In contrast δ13CPOM values at 20 m depth

did not reflect these seasonal differences probably due to water-column

stratification that maintains similar temperatures and biological activity throughout

the year

Lake N availability depends on N sources including inputs from the

watershed and the atmosphere (ie deposition of N compounds and fixation of

atmospheric N2) which varies during the hydrologic year The fixation of atmospheric

N2 is an important natural source of N to the lake occurring mainly during the

summer season associated with higher temperature and light (Gu et al 2006)

Because the δ15NPOM of N2 fixers is close to 0permil with almost no overall isotope

fractionation (Leng et al 2006) when N2 is the major N source δ15NPOM values are

typically low However when DIN concentrations are high or alternatively when little

94

N2 fixation occurs δ15NPOM values will be higher (Gu et al 2006) δ15NPOM values

from summer Lago Vichuqueacuten samples were lower than those from winter with large

differences between the seasons (~5permil Fig 5 and 9) Furthermore δ15NPOM values

were high when monthly average temperature was low and monthly precipitation

was high (Fig 9) This pattern is consistent with the dominance of high N2 fixation

by cyanobacteria associated with increased summer temperatures This correlation

of δ15NPOM values with temperature further suggests a functional group shift i e

from N fixers to phytoplankton that uptake DIN The correlation between wetter

months and higher δ15NPOM values could be caused by increased N input from the

watershed due to increased runoff during the winter season The lack of data of the

δ15NPOM between the 30 mm and the 160 mm of precipitation is due to the

mediterranean-type climate that concentrates precipitations in the winter months

Finally Lago Vichuqueacuten is characterized by pronounced seasonality leading to

higher phytoplankton biomass in summer characterized by low δ15NPOM In winter

low biomass production and increased input from watershed is associated to high

δ15NPOM

95

Figure 9 Seasonal changes can drive δ15NPOM values in Lago Vichuqueacuten Data

correspond to average monthly temperature and total monthly precipitation for the

months when the water samples were taken (years 2015 - 2018) P-valuelt005

52 Stable isotope signatures in the Lake Vichuqueacuten watershed

The natural abundance of 15N14N isotopes of soil and vegetation samples

from the Lago Vichuqueacuten watershed appear to result from a combination of factors

isotope fractionation different N sources for plants and soil microorganisms (eg N2

fixation Nitrates) depth in the soil where N uptake by vegetation occurs and N loss

mechanisms (ie denitrification leaching and ammonia volatilization Hogberg

1997) The lowest δsup1⁵Nfoliar values are associated with native species and are

probably due to the contribution of N-fixing species (eg Sophora) (Fig6 and for

more detail see Table S3 in supplementary material) The number native N-fixers

species present in the Chilean mediterranean vegetation are not well known

however so there could be other N-fixing species in this group Alternatively δsup1⁵Nfoliar

values reflect soil N uptake (Kahmen et al 2008) In environments limited by N

plants have δsup1⁵N values similar to the soil δsup1⁵N values however the denitrification

and volatilization of ammonia can lead to the remain N of soil to come enriched in

15N (Cifuentes et al 1989 Craine et al 2009 Bruland and Mckenzie 2010) Soil N

isotope samples from native species communities tends to display relatively high

δsup1⁵N values respect to foliar samples due to loss of N-soil

The higher foliar and soil δsup1⁵N values obtained from samples of meadows

aquatic macrophytes and tree plantations can be attributed to the presence of

greater amounts of nitrate available for plant uptake (Fig 6) Houmlgberg (1997)

suggests that the availability of different N sources in soils (ie nitrates versus

96

ammonia) with different residence times can also explain these δsup1⁵NFoliar values

Indeed Feigin et al (1974) described differences of up to 20permil between ammonia

and nitrates sources Denitrification and nitrification discriminate much more against

15N than N2 fixation does (Craine et al 2009) leading to soils (and plants after

uptake) enriched in 14N

In general multiple processes that affect the isotopic signal result in similar

δsup1⁵N values between the soil of the watershed and the sediments of the river

However POM isotope fluctuations allow to say that more negative δsup1⁵N values are

associated to lake productivity while more positive δsup1⁵N values are associated with

N input from the watershed

δ13C values in Lago Vichuqueacuten watershed reflect CO2 gas exchange between

C3 plants and algae with the atmosphere During photosynthesis plants

discriminate against the heavier stable isotope of carbon (13C) in favor of the lighter

isotope 12C which results in δ13CFoliar values between -220permil and -320permil (Browman

and Cook 2002 Liu et al 2007) Likewise the δ13CFoliar values from Lago Vichuqueacuten

oscillate around -27permil (Fig 6) Plants transform atmospheric CO2 into soil organic

carbon (C) which in turn reflects this initial discrimination against 13C during C

uptake and post photosynthetic fractionation (Farquhar et al 1982 1989 Badeck

et al 2005 Pausch and Kuzyakov 2017) Slightly more positive δ13CFoliar values

(about 15permil) were measured in comparison with their δ13CSoil values This may be

reflecting the C transference from plants to the soil but also a soil-atmosphere

interchange The preferential assimilation of the light isotopes (12C) during soil

respiration carried by the roots and the microbial biomass that is associated with the

decomposition of litter roots and soil organic matter explain this differential

(Berhardt et al 2006 Blagodatskaya et al 2010 Midwood and Millard 2011)

97

In general the δ13CSoil values from the Lago Vichuqueacuten watershed oscillated

around -290permil and did not vary with our plant classification types Here we use

these values as terrestrial-end members to track changes in source OM (Fig 6)

Thus more negative δ13C values in lake sediment samples are attributed to higher

OM inputs from the terrestrial watershed By the other hand more positive δ13C

values most likely reflect an increased aquatic OM component as indicated by POM

isotope fluctuations (Fig 9)

53 Recently land use and cover change and its influences on N inputs to the lake

Tree plantations in the Lago Vichuqueacuten watershed have increased greatly in

the last few decades (from 1 in 1975 to 66 in 2016 Fig 7) replacing previous

native forests (from 26 to 7) meadows (17 to 5) and shrublands (53 to

17) In 1975 tree plantations were confined to the lake perimeter with discrete

patches distributed throughout the watershed The ldquoForest Lawrdquo (DFL 701- passed

in 1974) allocated state funding to afforestation efforts and management of tree

plantations which greatly favored the replacement native forests by introduced trees

This increase is marked by a sharp and steady decrease in lake sediment δ15N and

δ13C values because tree plantations function as a nutrient sink whereas other land

uses such as meadows favor nutrient loss from the watershed (Fig8) Bruland and

Mackenzie (2014) noted a decrease in wetland δ15N values when watershed

forested cover increased and concluded that N inputs to the wetlands are lower from

the forested areas as they generally do not export as much N as agricultural lands

A positive correlation between native vegetation and δ15Ncore values can be

explained by the relatively scarce arboreal cover in the watershed in 1975 when

native forest occupied just 26 of the watershed surface whereas shrublands and

98

meadows occupied more than the 70 of the surface of the watershed with the

concomitant elevated loss of N (Fig 7 and Fig 8)

54 Nitrogen dynamics in Lago Vichuqueacuten over the last six hundred years

Sedimentological compositional and geochemical indicators all show changes in

the N cycle associated to LUCC lake dynamics and climate changes (Fig 10) From

the pre-Columbian indigenous settlement including the Spanish colonial period up

to the start of the Republic (1300 - 1800 CE) the introduction of crops such as

quinoa and wheat but also the clearing of land for extensive agriculture would have

favored the entry of N into the lake Conversely major changes observed during the

last century were characterized by a sharp decrease of N input that were coeval

with the increase of tree plantations

From 1365 until 1550 CE (unit 2c 2b and half of 2a Fig 3 and Fig 10) pre-

Columbian agricultural societies planted mostly crops of corn and quinoa (Ramirez

and Vidal 1985) This period is characterized by large peaks seen in the δsup1⁵N record

(eg 1403 1452 1476 and 1505) with overall high δsup1⁵N values (up to 5permil) indicating

that N input from watershed was elevated and oscillating to the beat of the NT These

positive δsup1⁵N peaks could be due to several causes including a) the clearing of land

for farming b) N loss via denitrification which would be generally augmented in

anoxic environments (Diebel et al 2009) such as Lago Vichuqueacuten (low MnFe

values about 0001 Fig 4) or c) climate especially cold-wet winters or hot-dry

summers can also exert control on the δsup1⁵N record Indeed tree-ring records and

summer temperature reconstructions show overall wetcold conditions during this

period (Christie et al 2009 Von Gunten et al 2009 Fig 10) Increased

precipitation would bring more sediment (and nutrients) from the watershed into the

99

lake and increase lake productivity which is also detected by the geochemical

proxies for productivity (peaks of BrTi SrCa and TOC Fig 4 and Fig 10) (see also

Frugone-Alvarez et al 2017)

Figure 10 Changes in the N availability during the last six centuries in Lago

Vichuqueacuten a) lake sediment δsup1⁵N values displayed more positive values during the

prehistoric period Spanish Colony and the starting 19th century which is associated

with enhanced N input from the watershed by extensive clearing and crop

plantations The inset shows this relationship between sediment δsup1⁵N and

100

percentage of meadow cover over the last 30 years b) Summer temperature

reconstruction from central Chile (von Gunten et al 2009) showing a

correspondence with cold phases and high δsup1⁵N values at Vichuqueacuten except for the

last 100 years c) Palmer Drought Severity Index (PDSI) is an interannual moisture

variability reconstruction for late springndashearly summer during the last six centuries

(Christie et al 2009) Grey shadow indicating higher precipitation periods

From 1550 and 1810 CE (unit 2a) and during the Colonial period several peaks

of δ15N could be further related not only to high precipitation (Fig 10 grey shadow)

but also pulses of enhanced N input from the watershed linked to human land use

In 1550 CE Juan Cuevas was granted lands and indigenous workers under the

encomienda system for agricultural and mining development of the Vichuqueacuten

village (Ramiacuterez and Vidal 1985) Historical documents show that around 1579 CE

the Vichuqueacuten watershed was occupied by indigenous communities dedicated to

wheat plantations and vineyards wood extraction and gold mining (Odone 1998)

The introduction of the Spanish agricultural system implied not just a change in the

types of crops used (from quinoa to vineyards and wheat) but also a clearing of

native species for the continuous increase of agricultural surface and wood

extraction During the Colonial period wheat from Vichuqueacuten was exported to Peru

(Ramiacuterez and Vidal 1985) Armesto et al (2009) indicate that during the XVIII and

XIX centuries the extraction of wood for mining operations was important enough to

cause extensive loss of native forests The independence and instauration of the

Chilean Republic did not change this prevailing system Increases in the

contributions of N to the lake during the second half of the XIX century (peaks in

δsup1⁵N ca 1870 CE) could be due to expanding farm land dedicated for wheat

101

production and increased commercial trade with California and Canada (Ramiacuterez

and Vidal 1985)

In contrast LUCC in the last century are clearly related to the development of

large-scale tree plantations (Fig 7) The δsup1⁵N record reaches the lowest values of

the entire sequence in the last few decades (Fig 10) A marked increase in lake

productivity NT concentration and decreasing sediment input is synchronous (unit

1 Fig 4) with trees replacing meadows shrublands and areas with native forests

(Fig 7 and 8) The implementation of the lsquoForest Lawrsquo in 1974 had a stronger impact

on the landscape and lake ecosystem dynamics than the impacts of ongoing climate

change in the region which is much more recent (Garreaud et al 2018) although

the prevalence of hot dry summers seen over the last decade would also be

associated with low δsup1⁵N values and increase of NT (Fig 10) Heavy metals ratios

(FeTi CoTi and PbTi) show notable increases in lake sediments from 1992 to 2011

CE (Fig 4) Although this could be related to mining in the El Maule region the

closest mines are 60 Km away (Pencahue and Romeral) so local factors related to

shoreline urbanization for the summer homes and an increase in tourist activity

could also be a major factor

6 Conclusions

The N isotope signal in the watershed depends on the rates of exchange

between vegetation and soil cover (Fig 11) Plants preferentially uptake 14N and the

underlying soils become enriched in 15N especially when the terrestrial ecosystem

is N-limited andor significant N loss occurs (ie denitrification andor ammonia

volatilization) LUCC in the Lago Vichuqueacuten watershed have heavily modified the

links between terrestrial and aquatic ecosystems with agriculture practices

102

contributing more N to the lake than tree plantations or native forests In situ lake

processes can also fractionate N isotopes An increase of N-fixing species results

in OM depleted in 15N which results in POM with lower δsup1⁵N values during these

periods During winter phytoplankton is typically enriched in 15N due to the

decreased abundance of N-fixing species and increased N input from the

watershed This in turn generates the highest δsup1⁵NPOM values in Lago Vichuqueacuten

Periods of elevated productivity tend to deplete the dissolved inorganic N of 14N

resulting in even higher δ15N values

Our study illustrates the usefulness of δsup1⁵N as a tool for reconstructing the past

influence of LUCC on N availability in lake ecosystems To constrain the relative

roles of the diverse forcing mechanisms that can alter N cycling in mediterranean

ecosystems all main components of the N cycle should be monitored seasonally

(or monthly) including the measurements of δ15N values in land samples

(vegetation-soil) as well as POM

103

Figure 11 Summary of human and environmental factors controlling the δ15N

values of lake sediments Particulate organic matter(POM) δ15N values in

mediterranean lakes are driven by N input from the watershed that in turn depend

on land use and cover changes (ie forest plantation agriculture) andor seasonal

changes in N sources andor lake ecosystem processes (ie bioproductivity redox

condition denitrification) Arrows indicate the direction of N fluxes (inputoutput from

the N cycle) N cycle processes that deplete lake sediments of 15N are shown in

blue whereas those that enrich sediments in 15N are shown in red

104

Supplementary material

Figure S1 Pearson correlate coefficient between geochemical variables in core

VIC13-2B Positive and large correlations are in blue whereas negative and small

correlations are in red (p valuelt0001)

Figure S2 Principal Component Analysis of geochemical elements from core

VIC13-2B

105

Table S1 Lago Vichuqueacuten radiocarbon samples

RADIOCARBON

LAB CODE

SAMPLE

CODE

DEPTH

(m)

MATERIAL

DATED

14C AGE ERROR

D-AMS 029287

VIC13-2B-

1 043 Bulk 1520 24

D-AMS 029285

VIC13-2B-

2 085 Bulk 1700 22

D-AMS 029286

VIC13-2B-

2 124 Bulk 1100 29

Poz-63883 Chill-2D-1 191 Bulk 945 30

D-AMS 001133

VIC11-2A-

2 201 Bulk 1150 44

Poz-63884

Chill-2D-

1U 299 Bulk 1935 30

Poz-64089

VIC13-2D-

2U 463 Bulk 1845 30

Poz-64090

VIC13-2A-

3U 469 Bulk 1830 35

D-AMS 010068

VIC13-2D-

4U 667 Bulk 2831 25

Poz-63886

VIC13-2D-

4U 719 Bulk 3375 35

106

D-AMS 010069

VIC13-2D-

5U 775 Bulk 3143 27

Poz-64088

VIC13-2D-

5U 807 Bulk 3835 35

D-AMS-010066

VIC13-2D-

7U 1075 Bulk 6174 31

Poz-63885

VIC13-2D-

7U 1197 Bulk 6440 40

Poz-5782 VIC13-15 DIC 180 25

Table S2 Loadings of the trace chemical elements used in the PCA

Elementos PC1 PC2 PC3 PC4

Zr 0922 0025 -0108 -0007

Zn 0913 -0124 -0212 0001

Rb 0898 -0057 -0228 0016

K 0843 0459 0108 0113

Ti 0827 0497 0060 -0029

Al 0806 0467 0080 0107

Si 0803 0474 0133 0136

Y 0784 -0293 -0174 0262

V 0766 0455 0090 -0057

Br 0422 -0716 -0045 0226

Ca 0316 -0429 0577 0489

Sr 0164 -0420 0342 -0182

Cl 0151 -0781 -0397 0162

107

Mn -0121 -0091 0859 0095

S -0174 -0179 -0051 0714

Pb -0349 0414 -0282 0500

Fe -0700 0584 -0023 0280

Co -0704 0564 -0107 0250

Table S3 Stable Isotope values from vegetation of Lago Vichuqueacutenacutes watershed

Taxa Classification δsup1⁵N δsup1sup3C CN

molar

Poaceae Meadow 1216 -2589 3602

Juncacea Meadow 1404 -2450 3855

Cyperaceae Meadow 1031 -2596 1711

Taraxacum

officinale Meadow 836 -2400 2035

Poaceae Meadow 660 -2779 1583

Poaceae Meadow 453 -2813 1401

Poaceae Meadow 966 -2908 4010

Juncus Meadow 1247 -2418 3892

Poaceae Meadow 747 -3177 6992

Poaceae Meadow 942 -2764 3147

Poaceae Meadow 1479 -2634 2895

Poaceae Meadow 1113 -2776 1795

Poaceae Meadow 2215 -2737 7971

Poaceae Meadow 1121 -2944 2934

Poaceae Meadow 638 -3206 1529

108

Macrophytes Macrophytes 886 -3044 2286

Macrophytes Macrophytes 1056 -2720 2673

Macrophytes Macrophytes 769 -3297 1249

Macrophytes Macrophytes 967 -2763 1442

Macrophytes Macrophytes 959 -2670 2105

Macrophytes Macrophytes 334 -2728 1038

Acacia dealbata

Introduced

species 656 -2696 1296

Acacia dealbata

Introduced

species 487 -2941 1782

Acacia dealbata

Introduced

species 220 -2611 3888

Luma apiculata Native species 433 -2542 4135

Luma apiculata Native species 171 -2664 7634

Luma apiculata Native species -001 -2736 6283

Luma apiculata Native species 029 -2764 6425

Azara sp Native species 159 -2868 8408

Azara sp Native species 101 -2606 2885

Baccharis concava Native species 104 -2699 5779

Baccharis concava Native species 265 -2488 4325

Baccharis concava Native species 287 -2562 7802

Baccharis concava Native species 427 -2781 5204

Baccharis linearis Native species 190 -2610 4414

Baccharis linearis Native species 023 -2825 5647

109

Peumus boldus Native species 042 -2969 6327

Peumus boldus Native species 205 -2746 4110

Peumus boldus Native species 183 -2743 6293

Chusquea quila Native species 482 -2801 4275

Poaceae meadow 217 -2629 7214

Lobelia sp Native species 224 -2645 3963

Lobelia sp Native species -091 -2565 4538

Aristotelia chilensis Native species -035 -2785 5247

Aristotelia chilensis Native species -305 -2889 2305

Aristotelia chilensis Native species 093 -2836 5457

Chusquea quila Native species 173 -2754 3534

Chusquea quila Native species 045 -2950 6739

Quillaja saponaria Native species 223 -2838 9385

Scirpus meadow 018 -2820 7115

Sophora sp Native species -184 -2481 2094

Sophora sp Native species -181 -2717 1721

Pinus radiata

Introduced

trees 1581 -2602 3679

Pinus radiata

Introduced

trees 1431 -2784 4852

Pinus radiata

Introduced

trees -091 -2708 9760

Pinus radiata

Introduced

trees 153 -2568 3470

110

Salix sp

Introduced

trees 632 -2878 1921

LITERATURE CITED

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea

AM Marquet PA 2010 From the Holocene to the Anthropocene A historical

framework for land cover change in southwestern South America in the past 15000

years Land use policy 27 148ndash160

httpsdoiorg101016jlandusepol200907006

Battye W Aneja VP Schlesinger WH 2017 Earth rsquo s Future Is nitrogen the next

carbon  Earthrsquos Future Global Biogeochem Cycles 30 1000ndash1014

httpsdoiorg101002eft2235

Blaauw M Christeny JA 2011 Flexible paleoclimate age-depth models using an

autoregressive gamma process Bayesian Anal 6 457ndash474

httpsdoiorg10121411-BA618

Bowman DMJS Cook GD 2002 Can stable carbon isotopes (δ13C) in soil

carbon be used to describe the dynamics of Eucalyptus savanna-rainforest

boundaries in the Australian monsoon tropics Austral Ecol

httpsdoiorg101046j1442-9993200201158x

Brahney J Ballantyne AP Turner BL Spaulding SA Otu M Neff JC 2014

Separating the influences of diagenesis productivity and anthropogenic nitrogen

deposition on sedimentary δ15N variations Org Geochem 75 140ndash150

httpsdoiorg101016jorggeochem201407003

111

Bruland GL MacKenzie RA 2010 Nitrogen Source Tracking with δN Content

of Coastal Wetland Plants in Hawaii J Environ Qual 39 409

httpsdoiorg102134jeq20090005

Carrevedo ML Frugone M Latorre C Maldonado A Bernaacuterdez P Prego R

Caacuterdenas D Valero-Garceacutes B 2015 A 700-year record of climate and

environmental change from a high Andean lake Laguna del Maule central Chile

(36degS) Holocene 25 956ndash972 httpsdoiorg1011770959683615574584

Christie DA Boninsegna JA Cleaveland MK Lara A Le Quesne C

Morales MS Mudelsee M Stahle DW Villalba R 2009 Aridity changes in the

Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from

tree-rings Clim Dyn 36 1505ndash1521 httpsdoiorg101007s00382-009-0723-4

Craine JM Elmore AJ Aidar MPM Dawson TE Hobbie EA Kahmen A

Mack MC Kendra K Michelsen A Nardoto GB Pardo LH Pentildeuelas J

Reich B Schuur EAG Stock WD Templer PH Virginia RA Welker JM

Wright IJ 2009 Global patterns of foliar nitrogen isotopes and their relationships

with cliamte mycorrhizal fungi foliar nutrient concentrations and nitrogen

availability New Phytol 183 980ndash992 httpsdoiorg101111j1469-

8137200902917x

Cuven S Francus P Lamoureux SF 2010 Estimation of grain size variability

with micro X-ray fluorescence in laminated lacustrine sediments Cape Bounty

Canadian High Arctic J Paleolimnol 44 803ndash817 httpsdoiorg101007s10933-

010-9453-1

Diebel M Vander Zanden MJ 2012 Nitrogen stable isotopes in streams  stable

isotopes Nitrogen effects of agricultural sources and transformations Ecol Appl 19

1127ndash1134 httpsdoiorg10189008-03271

112

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in freshwater

wetlands record long-term changes in watershed nitrogen source and land use SO

- Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash

2916

Fariacuteas L Castro-Gonzales M Cornejo M Charpentier J Faundez J

Boontanon N Yoshida N 2009 Denitrification and nitrous oxide cycling within the

upper oxycline of the oxygen minimum zone off the eastern tropical South Pacific

Limnol Oceanogr 54 132ndash144

Farquhar GD Ehleringer JR Hubick KT 1989 Carbon Isotope Discrimination

and Photosynthesis Annu Rev Plant Physiol Plant Mol Biol

httpsdoiorg101146annurevpp40060189002443

Farquhar GD OrsquoLeary MH Berry JA 1982 On the relationship between

carbon isotope discrimination and the intercellular carbon dioxide concentration in

leaves Aust J Plant Physiol httpsdoiorg101071PP9820121

Fogel ML Cifuentes LA 1993 Isotope fractionation during primary production

Org Geochem httpsdoiorg101007978-1-4615-2890-6_3

Frugone-Aacutelvarez M Latorre C Giralt S Polanco-Martiacutenez J Bernaacuterdez P

Oliva-Urcia B Maldonado A Carrevedo ML Moreno A Delgado Huertas A

Prego R Barreiro-Lostres F Valero-Garceacutes B 2017 A 7000-year high-

resolution lake sediment record from coastal central Chile (Lago Vichuqueacuten 34degS)

implications for past sea level and environmental variability J Quat Sci 32 830ndash

844 httpsdoiorg101002jqs2936

Gaumllman V Rydberg J Bigler C 2009 Decadal diagenetic effects on δ 13 C and

δ 15 N studied in varved lake sediment Limnol Oceanogr 54 917ndash924

httpsdoiorg104319lo20095430917

113

Gerhart LM McLauchlan KK 2014 Reconstructing terrestrial nutrient cycling

using stable nitrogen isotopes in wood Biogeochemistry 120 1ndash21

httpsdoiorg101007s10533-014-9988-8

Granger J Sigman DM Lehmann MF Tortell PD 2008 Nitrogen and oxygen

isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria 53

2533ndash2545 httpsdoiorg10230740058342

Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater

eutrophic lake Limnol Oceanogr 51 2837ndash2848

httpsdoiorg104319lo20065162837

Harris D Horwaacuteth WR van Kessel C 2001 Acid fumigation of soils to remove

carbonates prior to total organic carbon or CARBON-13 isotopic analysis Soil Sci

Soc Am J 65 1853 httpsdoiorg102136sssaj20011853

Houmlgberg P 1997 Tansley review no 95 natural abundance in soil-plant systems

New Phytol httpsdoiorg101046j1469-8137199700808x

Kylander ME Ampel L Wohlfarth B Veres D 2011 High-resolution X-ray

fluorescence core scanning analysis of Les Echets (France) sedimentary sequence

New insights from chemical proxies J Quat Sci 26 109ndash117

httpsdoiorg101002jqs1438

Lara A Solari ME Prieto MDR Pentildea MP 2012 Reconstruccioacuten de la

cobertura de la vegetacioacuten y uso del suelo hacia 1550 y sus cambios a 2007 en la

ecorregioacuten de los bosques valdivianos lluviosos de Chile (35o - 43o 30acute S) Bosque

(Valdivia) 33 03ndash04 httpsdoiorg104067s0717-92002012000100002

Lehmann M Bernasconi S Barbieri A McKenzie J 2002 Preservation of

organic matter and alteration of its carbon and nitrogen isotope composition during

114

simulated and in situ early sedimentary diagenesis Geochim Cosmochim Acta 66

3573ndash3584 httpsdoiorg101016S0016-7037(02)00968-7

Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos Transactions

American Geophysical Union httpsdoiorg1010292007EO070007

Liu G Li M An L 2007 The Environmental Significance Of Stable Carbon

Isotope Composition Of Modern Plant Leaves In The Northern Tibetan Plateau

China Arctic Antarct Alp Res httpsdoiorg1016571523-0430(07-505)[liu-

g]20co2

Marzecovaacute A Mikomaumlgi A Koff T Martma T 2011 Sedimentary geochemical

response to human impact on Lake Notildemmejaumlrv Estonia Est J Ecol 60 54

httpsdoiorg103176eco2011105

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash

1643 httpsdoiorg1011770959683613496289

Meyers PA 2003 Application of organic geochemistry to paleolimnological

reconstruction a summary of examples from the Laurention Great Lakes Org

Geochem 34 261ndash289 httpsdoiorg101016S0146-6380(02)00168-7

Naeher S Gilli A North RP Hamann Y Schubert CJ 2013 Tracing bottom

water oxygenation with sedimentary MnFe ratios in Lake Zurich Switzerland

Chem Geol 352 125ndash133 httpsdoiorg101016jchemgeo201306006

Odone C 1998 El Pueblo de Indios de Vichuqueacuten siglos XVI y XVII Rev Hist

Indiacutegena 3 19ndash67

Pausch J Kuzyakov Y 2018 Carbon input by roots into the soil Quantification of

rhizodeposition from root to ecosystem scale Glob Chang Biol

httpsdoiorg101111gcb13850

115

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98

httpsdoiorg1011772053019614564785

Sun W Zhang E Jones RT Liu E Shen J 2016 Biogeochemical processes

and response to climate change recorded in the isotopes of lacustrine organic

matter southeastern Qinghai-Tibetan Plateau China Palaeogeogr Palaeoclimatol

Palaeoecol httpsdoiorg101016jpalaeo201604013

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of

different trophic status J Paleolimnol 47 693ndash706

httpsdoiorg101007s10933-012-9593-6

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl

httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M 2009 High-resolution quantitative climate

reconstruction over the past 1000 years and pollution history derived from lake

sediments in Central Chile Philos Fak PhD 246

Woodward C Chang J Zawadzki A Shulmeister J Haworth R Collecutt S

Jacobsen G 2011 Evidence against early nineteenth century major European

induced environmental impacts by illegal settlers in the New England Tablelands

south eastern Australia Quat Sci Rev 30 3743ndash3747

httpsdoiorg101016jquascirev201110014

Xu H Yu K Lan J Sheng E Liu B Ye Y Hong B Wu H Zhou K Yeager

KM 2016 Different responses of sedimentary δ15N to climatic changes and

116

anthropogenic impacts in lakes across the Eastern margin of the Tibetan Plateau

J Asian Earth Sci 123 111ndash118 httpsdoiorg101016jjseaes201603024

117

DISCUSION GENERAL

El Nitroacutegeno (N) es un elemento clave que controla la dinaacutemica y

funcionamiento de ecosistemas tanto terrestres como acuaacuteticos (Vitousek et al

1997) Pese a que el N (N2) es muy abundante en la atmoacutesfera (78) es escaso

en los ecosistemas pues la mayoriacutea de la biota no puede acceder a su forma

molecular (Galloway et al 1995 Zaehle et al 2013) En este sentido la entrada

natural de N en los ecosistemas es viacutea fijacioacuten bioloacutegica del N2 por bacterias que lo

convierten en compuestos bioloacutegicamente disponibles (Battye et al 2017) Debido

a que la fijacioacuten es un proceso energeacuteticamente costoso los ecosistemas

comuacutenmente estaacuten limitados por N (Vitousek and Howarth 1991) Los LUCC

contribuyen al incremento del N disponible y son una de las principales causas de

eutroficacioacuten y contaminacioacuten de los cuerpos de agua (Woodward et al 2012)

En Chile central los LUCC principalmente relacionados con las actividades

agriacutecolas y forestales han causado grandes cambios en el ciclo del N debido al

118

reemplazo de la cobertura natural por un monocultivo y al uso de fertilizantes que

modifican los aportes de MO y N a los cuerpos de agua El programa de

estabilizacioacuten de laderas impulsada por el gobierno (Albert 1900) y la ley forestal

de 1974 han fomentado la forestacioacuten con plantaciones de Pinus radiata y

Eucalyptus globulus y en el caso de Lago Vichuqueacuten estas actualmente cubren maacutes

del 60 de su cuenca (Cap2 Fig 5) Ademaacutes en Laguna Matanzas la

sobreexplotacioacuten del agua en conjunto con el cambio climaacutetico actual el que ha

conducido a una de las megasequiacuteas maacutes severas en las uacuteltimas deacutecadas

(Garreaud et al 2017) generoacute una combinacioacuten letal que secoacute el lago en tan solo

10 antildeos (Cap1 Fig1) Las evidencias obtenidas a partir de estos dos lagos

permiten identificar las huellas del Antropoceno en Chile central basadas en el

registro sedimentario lacustre

La transferencia de N desde los ecosistemas terrestres a acuaacuteticos es un

proceso natural con controles bioacuteticos climaacuteticos y geoloacutegicos El enlace

hidroloacutegico entre los ecosistemas terrestres y acuaacuteticos hace que el estado troacutefico

de los lagos esteacute vinculado al de su cuenca (McLauchlan et al 2013) En Chile

central se sabe poco del impacto de los LUCC sobre el ciclo de nutrientes en los

ecosistemas lacustres aunque al menos desde la colonizacioacuten espantildeola se tienen

registros de influencia humana en las cuencas Durante la colonia espantildeola

Laguna Matanzas fue una hacienda ganadera que exportaba productos caacuternicos al

Peruacute (Contreras-Lopez et al 2014) A su vez en el Lago Vichuqueacuten se realizaban

extensas actividades agriacutecolas hasta comienzos del s XX como por ejemplo

cultivos de vid y trigo ademaacutes de extraccioacuten de madera y mineriacutea de oro (Odone

1997) En las uacuteltimas deacutecadas los LUCC han estado vinculados principalmente con

el desarrollo forestal al compaacutes de una estrategia gubernamental de fomentar con

119

incentivos financieros (Ley de Bosques DFL nordm265 de 1931 y DFL 701 de 1974)

esta actividad El incremento de la superficie forestal es especialmente fuerte en

ambos lagos a partir de la deacutecada de 1980 y hasta 2016 (Laguna de Matanzas 0-

17 Lago Vichuqueacuten 1-66) Este aumento habriacutea sido en detrimento del bosque

nativo y los pastizales (Cap 1 Fig 5 y Cap 2 Fig 8) El incremento de la superficie

forestal generariacutea una disminucioacuten de los aportes de sedimentos y nutrientes al lago

y en este sentido un cambio de estado en los flujos de N (e g tipping points) que

a su vez ha quedado registrado en la sentildeal isotoacutepica (δ15N) y la acumulacioacuten de

MO en los sedimentos lacustres

Isoacutetopos estables y la dinaacutemica de N en los lagos de Chile central

Los sedimentos lacustres son verdaderos ldquosumiderosrdquo que pueden llegar a

registrar lo que ocurre en cuanto a la historia ambiental de su cuenca En esta tesis

se utilizan los isoacutetopos estables de N (15N y 14N) en sedimentos lacustres para

reconstruir los cambios en la disponibilidad de N en el tiempo y establecer la

magnitud de impacto generado por actividades humanas El fraccionamiento

cineacutetico en los lagos es mediado por procesos bioloacutegicos que mediante la

asimilacioacuten de N genera un producto (eg fitoplancton) maacutes ldquoligerordquo (valores maacutes

bajos de 15N) que su remanente (eg DIN) (Fogel y Cifuentes 1993) Sin embargo

en periacuteodos en que los lagos estaacuten limitados por N el fitoplancton discrimina menos

y la MO resultante queda enriquecida en 15N (Fig 1 a y b) Ademaacutes la

desnitrificacioacuten acentuada en lagos de fondo anoacutexicos (eg Laguna Matanzas

entre 1800 y 1940 Cap1 Fig 6) conduce a un enriquecimiento en 15N de los

sedimentos y de la columna de agua Esta informacioacuten queda reflejada en la MO

120

de los sedimentos lacustres lo que permite conocer la disponibilidad del N en el

tiempo a partir de las variaciones de 15N

En esta tesis analizamos la MO de los sedimentos lacustres para reconstruir

la influencia de los LUCC en los aportes de sedimentos y N al lago En teacuterminos de

asimilacioacuten de N se puede distinguir entre dos grupos principales de productores

primarios que componen el POM (Fig1)

1 Los que asimilan el DIN compuesto por amonio nitratos y nitritos Aquiacute el

δ15N resultante fluctuaraacute en torno a valores maacutes positivos en la medida que

la productividad se incrementa o no hay reposicioacuten del DIN (Fig 1)

2 Los fijadores de N Dado que es un proceso energeacuteticamente costoso en

ambientes que no estaacuten limitados por N muchas veces son excluiacutedas

competitivamente por el resto del fitoplancton Si el DIN queda agotado por

el incremento de la productividad (o bien si el ambiente estaacute limitado ya sea

por N o por otros nutrientes) los fijadores de N pueden florecer y la MO que

se genera a partir de ello tendraacute un δ15N con valores en torno a 0permil

De este modo la MO en los sedimentos lacustres dependeraacute de la

composicioacuten de productores primarios (ie fijadores vs asimiladores del DIN)

ademaacutes de los aportes desde la cuenca tanto de MO como del N de la cuenca que

pasa a formar parte del DIN (eg fertilizantes estieacutercol) (Fig 1)

La MO de los lagos estudiados en esta tesis ha sido analizada a partir de

variables geoquiacutemicas isotoacutepicas frotis y estaacute compuesta principalmente por

diatomeas y MO amorfa A partir de los datos obtenidos en esta tesis los valores

de δ15N aumentan cuando hay una mayor cobertura agriacutecola o pastizales A su vez

tiende a disminuir cuando aumenta la cobertura arboacuterea independiente si esta es

por plantaciones forestales o por bosque nativo

121

Por otra parte la dinaacutemica del lago tambieacuten imprime caracteriacutesticas

especiales en el POM observaacutendose variaciones estacionales en los valores

δ15NPOM Durante la estacioacuten caacutelida y seca se observan valores maacutes bajos que

durante la estacioacuten friacutea y huacutemeda posiblemente relacionado con el incremento de

la contribucioacuten de especies fijadoras de N (Lago Vichuqueacuten Fig 9 Cap 2) durante

el verano En la estacioacuten friacutea y huacutemeda el DIN seriacutea la principal fuente de N Las

mayores entradas de MO y N terrestre debidos a un incremento del lavado de la

cuenca como consecuencia de las precipitaciones y la mineralizacioacuten de la MO

podriacutean estimular la produccioacuten de MO lacustre por crecimiento del fitoplancton

Como consecuencia se observan tendencias decrecientes de los valores de

δ15N en la MO sedimentaria cuando la productividad en el lago estaacute relacionada

con especies fijadoras de N mientras que el δ15N muestra aumentos cuando la

productividad del lago estaacute asociada principalmente al consumo del DIN pero

tambieacuten cuando predominan procesos de perdida de N (eg desnitrificacioacuten Fig

1)

Hemos identificado tres fases en la dinaacutemica del δ15N para ambos lagos

Entre 1800 y 1940 CE la cuenca de laguna de Matanzas estaba dominada por

actividades agriacutecolas y ganaderas (δ15Nsuelo gt 4permil Cap 1 Fig 4 y 6) Las entradas

de sedimentos y MO desde la cuenca son altas (δ13C lt -209permil ZrTi ~029 AlTi

~013) y coincide con un clima maacutes huacutemedo y friacuteo (Von Gunten et al 2009

Christiansen et al 2011) El lago teniacutea un nivel de agua maacutes profundo dominado

por condiciones anoacutexicas (MnFe ~0013) que contribuiriacutean a mayores valores de

δ15N en la columna de agua y por ende de los sedimentos acumulados en el fondo

debido a la peacuterdida diferencial de 14N viacutea desnitrificacioacuten (Fig 7 Cap1) La baja

122

produccioacuten de MO lacustre (BrTi ~002 TOC~17) coincide con un bajo contenido

de NT (~478 μg) y valores maacutes positivos de δ15N (gt 4permil)

La actividad agriacutecola tambieacuten dominaba en la cuenca del Lago Vichuqueacuten

durante este periacuteodo (δ15Nsuelo gt4permil Cap2 Fig 6) El aporte sedimentario desde la

cuenca es alto (AlTi ~029 ZrTi ~032) y fue favorecido por mayores

precipitaciones a las actuales (Christiansen et al 2011) El Lago Vichuqueacuten es un

lago estratificado anoacutexico (MnFe ~002) y profundo (~30 m) por lo que la

desnitrificacioacuten juega un rol importante en el enriquecimiento de la MO

sedimentaria La baja produccioacuten de MO (BrTi ~007 TOC ~12) de origen

lacustre (δ13C ~ -268permil) coincide con un bajo contenido de NT (~309μg +6) y

valores maacutes positivos de δ15N (56permil +03)

Durante esta fase en ambos lagos los aportes de N de la cuenca parecen

ser los principales responsables en las fluctuaciones del δ15N Esta sentildeal podriacutea

estar amplificada por bajas temperaturas (que afectan la productividad lacustre) y

altas precipitaciones que favorecen el lavado de la cuenca y aumentan el aporte de

sedimentos y MO desde la cuenca predominantemente agriacutecola

Entre 1940 y 1980 CE en Laguna Matanzas se observa un incremento en

la acumulacioacuten de MO algal (TOC ~2 +1 δ13C ~-230+09permil) El ambiente

deposicional es ligeramente menos turbulento que el anterior (AlTi ~011+001

ZrTi ~03+001) y el lago estaacute en una fase de transicioacuten hacia condiciones maacutes

oacutexicas (MnFe ~002+0004) y maacutes productivas (BrTi ~004+0007) A su vez δ15N

tiende hacia valores maacutes negativos (δ15N ~30permil+03) mientras que el NT aumenta

oscilando en antifase con el δ15N

En Lago Vichuqueacuten en cambio se observa un ligero incremento en la

acumulacioacuten de MO (TOC ~13 +02) de origen terrestre (δ13C ~-27permil +04) La

123

productividad es similar al periacuteodo anterior (BrTi ~007+003) y el ambiente

deposicional es menos turbulento (AlTi ~02 +009 Zrti ~033 +007) El δ15N y el

NT oscilan en torno a valores ligeramente maacutes bajos (δ15N ~51permil +04 NT ~292μg

+6) Este periacuteodo se caracteriza por ser maacutes caacutelido que el anterior lo que

posibilitariacutea un incremento en la productividad lacustre en Laguna Matanzas pero

que no es observada en el Lago Vichuqueacuten

Entre 1980 y la actualidad en Laguna Matanzas habriacutea un incremento de la

acumulacioacuten de MO (TOC ~59 + 3) asociada a un incremento en la productividad

del lago (BrTi ~009+005) y a los aportes de MO terrestres (δ13C ~-24 + 2permil) El

lago se vuelve maacutes oacutexico (Mn ~0003 +0006) y las entradas de sedimento

disminuyen (AlTi~ 009 +002) El δ15N tiende a valores maacutes negativos (δ15N ~13permil

+1) y el NT aumenta de 20 a 55 μg (NT ~346 + 9 μg) tomando valores sin

precedentes en todo el registro En los sedimentos lacustres del Lago Vichuqueacuten

tambieacuten se observa un incremento de la acumulacioacuten de MO (TOC ~17 + 05)

asociada a un incremento en la productividad del lago (BrTi ~01 + 003) y las

entradas de sedimento desde la cuenca disminuyen (AlTi ~005 + 005) El δ15N

(~43 + 05permil) tiende a valores maacutes negativos y el NT incrementa de 20 a 55 μg (NT

~346 + 9 μg) oscilando en antifase

Durante esta fase en ambos lagos se observa un aumento en la

acumulacioacuten de MO sedimentaria un incremento en el NT y valores maacutes negativos

de δ15N que coincide con el incremento de la superficie forestal de las cuencas

(Laguna Matanzas gt17 Lago Vichuqueacuten gt60)

124

Figura 2 Comparacioacuten de los cambios del ciclo del N entre Laguna Matanzas y

Lago Vichuqueacuten con los procesos biogeoquiacutemicos contrastantes en rojo En L

Matanzas las condiciones oacutexicas podriacutean estar favoreciendo la nitrificacioacuten del

amonio En Vichuqueacuten las condiciones anoacutexicas favorecen un aumento en δ15N de

la MO en los sedimentos por desnitrificacioacuten y mineralizacioacuten

Los ambientes mediterraacuteneos en el que los lagos del presente estudio se

encuentran insertos estaacuten caracterizados por una estacioacuten seca prolongada y las

precipitaciones ocurren en eventos puntuales alcanzando altos montos

pluviomeacutetricos en poco tiempo Las lluvias favorecen un lavado de la cuenca la

perdida de N y otros nutrientes Por lo que es esperable que los sedimentos del

lago reflejen mejor los valores isotoacutepicos de los suelos de la cuenca durante los

periacuteodos con altos montos pluviomeacutetricos En el Lago Vichuqueacuten por ejemplo el

125

POM superficial (2 y 5 m de profundidad) despliega valores isotoacutepicos maacutes

positivos en invierno presumiblemente como resultado de mayores aportes de MO

y N de su cuenca (Fig 1b) En ambos lagos los valores maacutes positivos en los

sedimentos lacustres ocurren durante periacuteodos con mayores montos pluviomeacutetricos

(Cap1 Fig 6 y Cap 2 Fig 12)

Ademaacutes del efecto de la precipitacioacuten en el aporte de nutrientes al lago en

esta tesis hemos encontrado que los mayores aportes de N desde la cuenca se dan

cuando la cobertura vegetal del suelo es menor En Laguna Matanzas el desarrollo

de la actividad ganadera desde la llegada de los espantildeoles a la cuenca habriacutea

incrementado los aportes de N al lago Los valores de δ15N en los sedimentos

lacustres depositados durante este periacuteodo son los maacutes positivos de todo el registro

(~4permil) A su vez en Lago Vichuqueacuten los valores isotoacutepicos maacutes positivos se

registran entre 1300 y 1900 CE que coinciden con el mayor desarrollo de

actividades agriacutecola y de extraccioacuten de maderas de la cuenca (Fig 10 Cap 2)

Los recientes LUCC (a partir de 1975) en las cuencas de Laguna Matanzas

y Lago Vichuqueacuten estaacuten caracterizados por un incremento de la superficie forestal

y agriacutecola en reemplazo de la cobertura de pastizal (Laguna Matanzas) y bosque

nativo (Lago Vichuqueacuten) Los valores de δ15N en los testigos sedimentarios fueron

maacutes positivos cuanto mayor la superficie agriacutecola de la cuenca y maacutes negativos

cuanto mayor la superficie forestal Aunque por los alcances de esta tesis no

podemos ser concluyentes respecto del origen del NT (aloacutectonoautoacutectono) parece

ser que esta maacutes ligado a los aportes de la cuenca pese a la disminucioacuten del aporte

sedimentario observado en ambos lagos Las plantaciones forestales a diferencia

del bosque nativo son fertilizadas con una mezcla de N P y K (Toral et al 2005)

Por lo que pese a la disminucioacuten del aporte sedimentario la concentracioacuten de

126

nutrientes en el aporte al lago puede verse incrementada por el tipo de manejo

forestal con respecto al bosque nativo

Los resultados del primer capiacutetulo demuestran que 1) las plantaciones

forestales yo bosque nativo retiene maacutes sedimentos y MO mientras que el uso de

suelo agriacutecola y los pastizales destinados al desarrollo de la actividad ganadera lo

libera 2) Al parecer la desnitrificacioacuten es el proceso natural maacutes importante de

perdida de N en lagos costeros y favorece el enriquecimiento de 15N tanto en la

columna de agua (ie 15N-DIN) como en los sedimentos una vez enterrados y 3) la

desnitrificacioacuten depende de los cambios en las condiciones REDOX en el lago La

oxigenacioacuten en lagos poco profundos -como Laguna Matanzas- es altamente

fluctuante a escalas decadal-centenal depende de la profundidad de la laacutemina de

agua y de la variabilidad de la precipitacioacuten En este sentido en Laguna Matanzas

habriacutea condiciones anoacutexicas en ambientes cuando el lago alcanza niveles maacutes

altos Estas condiciones se observan entre 1820 y 1940 CE y son coetaacuteneas con

episodios maacutes huacutemedos y friacuteos (von Gunten et al 2009 Christie et al 2009) pero

tambieacuten con una fuerte actividad ganadera en la cuenca

Las fuentes variables de N y su fluctuacioacuten en el tiempo hacen necesario

contar con un anaacutelogo moderno que permite usar al δ15N de los sedimentos

lacustres como un indicador indirecto de los cambios en la disponibilidad de N en

el tiempo Por ello en el segundo capiacutetulo integramos muestras de suelo-

vegetacioacuten y un monitoreo de POM de la columna de agua en verano e invierno La

composicioacuten isotoacutepica de POM estariacutea reflejando cambios de la fuente de N (fijacioacuten

vs consumo del DIN) que variacutea durante el antildeo hidroloacutegico Durante el verano la

mayor temperatura y horas-luz favoreceriacutean las entradas de N al lago viacutea fijacioacuten

bioloacutegica de N2 atmosfeacuterico resultando en un incremento de la MO con un valor

127

isotoacutepico bajo (POM verano~5permil Fig 1b) El N2 (δ15N = 0permil) es fijado praacutecticamente

sin fraccionamiento isotoacutepico generando un δ15N de la OM cercano a 0permil (Leng et

al 2006) En invierno las precipitaciones pueden estar favoreciendo un incremento

en la entrada de nutrientes al lago El DIN de la columna de agua llega a contener

valores de δ15N maacutes altos reflejando estos mayores aportes de la cuenca y el POM

del Lago Vichuqueacuten queda enriquecido en 15N (δ15N ~11permil Cap 2 Fig 9) Estas

variaciones estacionales pueden estar evidenciando un cambio en la composicioacuten

de especies de POM desde especies fijadoras a especies que consumen el N de la

columna de agua Sin embargo para corroborar esta informacioacuten seriacutea deseable

contar con el anaacutelisis de la composicioacuten de especies de las muestras de agua

extraidas

Entre los resultados maacutes importantes estaacuten los valores isotoacutepicos del suelo

y la biomasa representativa de la cuenca que incluye un listado de las especies

nativas de la zona que hasta ahora no se contaba (Cap 2 Tabla en material

suplementario) Las especies colectadas despliegan valores de δ15Nfoliar maacutes

positivos (plantaciones forestales y pastizal ~89permil) que el suelo (35permil) salvo por

las especies nativas las que oscilan en torno a valores cercanos al atmosfeacuterico

(~14permil) La razoacuten isotoacutepica 15N14N refleja la dinaacutemica de intercambio de N entre la

vegetacioacuten y el suelo (Koba et al 2002) La discriminacioacuten es positiva en la mayoriacutea

de los sistemas bioloacutegicos por lo que las plantas tienen valores de δ15N maacutes bajos

que el suelo (Evans et al 2001) como sucede con las especies nativas en Lago

Vichuqueacuten En consecuencia las plantas quedan empobrecidas en 15N y conducen

a un enriquecimiento en 15N del suelo sobretodo si no hay reposicioacuten de N por otras

viacuteas (eg fijacioacuten de N) Por lo tanto los valores maacutes negativos de δsup1⁵Nfoliar de las

especies nativas pueden estar relacionados con el consumo preferencial de 14N del

128

suelo donde la discriminacioacuten isotoacutepica de la vegetacioacuten contra el 15N conduce a

valores del δsup1⁵Nsuelo maacutes altos (Houmlgberg 1997) Por el contrario los valores maacutes

positivos de δsup1⁵Nfoliar de las plantaciones forestales y pastos con respecto al suelo

puede deberse por una parte que el suelo no cuenta con mecanismos naturales de

reposicioacuten de N salvo por la descomposicioacuten de la hojarasca que puede ser maacutes

lenta en Pinus radiata que en bosque nativo (Lusk et al 2001) y por otra por el alto

impacto de los aportes de N (y otros nutrientes) derivado de las actividades

humanas (eg uso de fertilizantes) en el suelo

El alcance maacutes significativo de esta tesis se relaciona con un cambio en la

tendencia maacutes negativa de δsup1⁵N y el incremento del NT a partir de 1940 y a partir

de 1970 CE en ambos lagos La causa maacutes probable de esta tendencia es el

reemplazo de la cobertura natural o preexistente a 1940 CE por plantaciones

forestales

En la figura 2 se observa una siacutentesis de los principales procesos que

afectan la sentildeal isotoacutepica de la MO en los sedimentos lacustres de L Matanzas y

L Vichuqueacuten La entrada de N y MO desde la cuenca depende del tipo de cobertura

Las plantaciones forestales y el bosque nativo retienen maacutes nutrientes y sedimentos

en la cuenca mientras que la agricultura los favorece Sin embargo las praacutecticas

de manejo que incluyen la aplicacioacuten de N (y otros nutrientes) pueden aportar maacutes

nutrientes al lago que la cobertra de bosque nativo Cuando las actividades

forestales cubren una mayor superficie de la cuenca (1940 en adelante) δsup1⁵N oscila

en valores maacutes negativos y el NT tiende a incrementarse en los sedimentos

lacustres Cabe destacar que los valores de δsup1⁵N observados en los testigos

sedimentarios a fines del s XX no tienen precedente durante la conquista y colonia

espantildeola o durante el resto del periodo de la Repuacuteblica

129

Figura 2 Modelo de transferencia de N entre los ecosistemas terrestres y

acuaacuteticos El δ15N de los sedimentos lacustres depende de la interaccioacuten entre los

aportes de la cuenca y porcesos ldquoin-lakerdquo Flechas indican la direccioacuten del flujo de

N En azul las salidasentradas de 14N en rojo las salidasentradas de 15N δ15N de

la interaccioacuten plantas-suelo depende del tipo de cobertura de suelo

130

CONCLUSIONES GENERALES

La transferencia de N entre cuencas y lagos es un factor de control del ciclo

del N en los lagos y queda reflejado en la sentildeal isotoacutepica de los sedimentos

lacustres (Leng et al 2006 McLauchlan et al 2007) En Laguna Matanzas el

suelo de las especies nativas y las plantaciones forestales despliegan valores de

δ15N maacutes bajos (~1permil) que los de Lago Vichuqueacuten (~35permil) Coincidentemente los

sedimentos lacustres de Laguna Matanzas oscilan con valores de δ15N maacutes bajos

(-15 a +45permil Fig 1) que los de Lago Vichuqueacuten (+3 a +8permil)

Por otra parte el estudio de la MO de los sedimentos lacustres ha permitido

reconstruir los cambios en los aportes de MO y N desde la cuenca Aunque no es

posible afirmar queacute tipo de N estaacute entrando al lago (eg Nitroacutegeno orgaacutenico e

inorganico) si podemos decir que los cambios en las fluctuaciones de δ15N son

coincentes con el crecimiento de la actividad forestal (1980 - hasta 2016 L

Matanzas 0-17 y L Vichuqueacuten 1-66) El δ15N fluctuacutea hacia valores maacutes

negativos Ademaacutes se observa un incremento del NT en los sedimentos lacustres

cuanto mayor es la superficie forestal

Entre 1800-1940 las cuencas eran fundamentalmente agriacutecolas y

ganaderas (Cap1 Fig 7 y Cap 2 Fig 12) el δ15N de los sedimentos lacustres

oscila con valores maacutes positivos (L Matanzas +40 plusmn 05permil y L Vichuqueacuten 56 plusmn

033permil Fig 1) hay una baja bioproductividad en el lago (BrTi ~002 TOC~17)

lo que coincide con un bajo contenido de NT (~478 μg) Este es un periacuteodo de altas

precipitaciones (Christie et al 2009) que tienden a favorecer el lavado de la cuenca

131

y con ello el aporte de MO sedimentos y nutrientes desde la cuenca tiende a verse

favorecido Aunque las principales actividades humanas en estas cuencas son

diferentes (ganaderiacutea en Laguna Matanzas Contreras-Lopez et al 2014

agricultura en Lago Vichuqueacuten Odone 1997) en ambos casos hubo un reemplazo

de la cobertura natural de bosques nativo que favorecioacute mayores aportes de N y

sedimentos desde la cuenca en un efecto sumado con el aumento de las

precipitaciones

A partir de 1980 CE en ambos lagos se observa una disminucioacuten en los

valores de δ15N y un incremento del NT que no tiene precedentes en todo el registro

y pese a que ambos lagos son limnologicamente muy diferentes En Lago

Vichuqueacuten el δ15N tiende a oscilar en antifase con el NT (Fig 1) En el caso de

Laguna Matanzas se observa una tendencia hacia valores maacutes negativos y a partir

de 1990s a valores maacutes positivos mientras que el NT tiende a incrementarse de

manera sostenida Ello podriacutea estar relacionado con el crecimiento de la actividad

forestal habriacutea una mayor retencioacuten de N y sedimentos en la cuenca ligado al

incremento de la superficie forestal Ademaacutes en el caso de L Matanzas el

incremento de la actividad agriacutecola (sumado al de las plantaciones forestales)

podriacutea expicar el cambio en la tendencia en la deacutecada de los 1990s

En el contexto de Antropoceno esta tesis nos permite identificar un gran

impacto de las actividades humanas en Chile central a partir de la deacutecada de 1940

y una Gran Aceleracoacuten a partir de la deacutecada de 1970s En el registro sedimentario

de los lagos en estudio se observa una gran acumulacioacuten de MO el δ15N oscila

hacia valores maacutes negativos y un gran incremento del NT y el crecimiento de la

actividad forestal parece ser la principal responsable Ademaacutes la sobreexplotacioacuten

132

del agua junto al cambio climaacutetico global ha generado una combinacioacuten letal para

los lagos costeros de Chile central

Figura 1 Comparacioacuten de las fluctuaciones de δ15N durante los uacuteltimos 300

antildeos en Laguna Matanzas y Lago Vichuqueacuten

133

Referencias

Battye W Aneja VP Schlesinger WH 2017 Earthrsquos Future Is nitrogen the next carbon Earthrsquos Future Global Biogeochem Cycles 30 1000ndash1014 httpsdoiorg101002eft2235

Christie DA Boninsegna JA Cleaveland MK Lara A Le Quesne C

Morales MS Mudelsee M Stahle DW Villalba R 2009 Aridity changes in the Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from tree-rings Clim Dyn 36 1505ndash1521 httpsdoiorg101007s00382-009-0723-4

Contreras-Loacutepez M (Playa AUHVC (Universidad de VRFS (Pontificia

UC de V 2014 Elementos de la historia natural del An Mus Hist Natulas Vaplaraiso 27 51ndash67

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in

freshwater wetlands record long-term changes in watershed nitrogen source and land use SO - Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash2916

Evans RD Evans RD 2001 Physiological mechanisms influencing

plant nitrogen isotope composition 6 121ndash126 Fogel ML Cifuentes LA 1993 Isotope fractionation during primary

production Org Geochem 73ndash98 httpsdoiorg101007978-1-4615-2890-6_3 Galloway JN Schlesinger WH Ii HL Schnoor L Tg N 1995

Nitrogen fixation Anthropogenic enhancement-environmental response reactive N Global Biogeochem Cycles 9 235ndash252

Garreaud RD Alvarez-Garreton C Barichivich J Pablo Boisier J

Christie D Galleguillos M LeQuesne C McPhee J Zambrano-Bigiarini M 2017 The 2010-2015 megadrought in central Chile Impacts on regional hydroclimate and vegetation Hydrol Earth Syst Sci 21 6307ndash6327 httpsdoiorg105194hess-21-6307-2017

Koba K Koyama LA Kohzu A Nadelhoffer KJ 2003 Natural 15 N

Abundance of Plants Coniferous Forest httpsdoiorg101007s10021-002-0132-6

Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos

Transactions American Geophysical Union httpsdoiorg1010292007EO070007 McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE

2007 Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470 httpsdoiorg101073pnas0701779104

134

Phytologist N Oct N 2006 Tansley Review No 95 15N Natural Abundance in Soil-Plant Systems Peter Hogberg 137 179ndash203

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98 httpsdoiorg1011772053019614564785

Turner BL Kasperson RE Matson PA McCarthy JJ Corell RW

Christensen L Eckley N Kasperson JX Luers A Martello ML Polsky C Pulsipher A Schiller A 2003 A framework for vulnerability analysis in sustainability science Proc Natl Acad Sci U S A httpsdoiorg101073pnas1231335100

Vitousek PM Aber JD Howarth RW Likens GE Matson PA

Schindler DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

Vitousek PM Howarth RW 1991 Nitrogen limitation on land and in the

sea How can it occur Biogeochemistry httpsdoiorg101007BF00002772 von Gunten L Grosjean M Rein B Urrutia R Appleby P 2009 A

quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo central Chile back to AD 850 Holocene 19 873ndash881 httpsdoiorg1011770959683609336573

Xu R Tian H Pan S Dangal SRS Chen J Chang J Lu Y Maria

Skiba U Tubiello FN Zhang B 2019 Increased nitrogen enrichment and shifted patterns in the worldrsquos grassland 1860-2016 Earth Syst Sci Data httpsdoiorg105194essd-11-175-2019

Zaehle S 2013 Terrestrial nitrogen-carbon cycle interactions at the global

scale Philos Trans R Soc B Biol Sci 368 httpsdoiorg101098rstb20130125

Page 5: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …

5

A mis padres Arturo y Malena

A mis hijos Xavi y Panchito

6

AGRADECIMIENTOS

Quiero agradecer a mi tutor y mentor Dr Claudio Latorre por brindarme su

apoyo sin el cual no habriacutea logrado concluir esta tesis de doctorado Claudio tu

apoyo constante incentivo y el fijarme metas que a veces me pareciacutean imposibles

de alcanzar no solo han dado forma a esta tesis sino tambieacuten me ha hecho maacutes

exigente como cientiacutefica Claudio destacas no solo por ser un gran cientiacutefico si no

tambieacuten por tu gran calidad humana eres un gran ejemplo

Quiero agradecer Dr Blas Valero-Garceacutes por nuestras numerosas

conversaciones viacutea Skype que incluiacutean vacaciones y fines de semana para discutir

los resultados de la tesis y que han dado forma a esta investigacioacuten principalmente

al primer capiacutetulo Ademaacutes por haberme acogido como un miembro maacutes en el

laboratorio de Paleoambientes Cuaternarios durante las estancias que he realizado

en el transcurso de estos antildeos Blas eres un ejemplo para miacute conjugas ciencia de

calidad calidez y dedicacioacuten por tus estudiantes

A quienes han financiado mi doctorado la Comisioacuten Nacional de

Investigacioacuten Cientiacutefica y Tecnoloacutegica (CONICYT) con sus becas de manutencioacuten

doctoral (2013) gastos operacionales pasantiacutea (2016) postnatal (2017) y termino

de tesis doctoralrdquo (2013) A FONDECYT a traveacutes del proyecto 1160744 de C

Santoro Al Departamento de InvestigacioacutenAl Instituto de Ecologiacutea y Biodiversidad

(IEB) a traveacutes de del PIA financiamiento basal 170008 la Pontificia Universidad

Catoacutelica de Chile por la beca incentivo para tesis interdisciplinaria para doctorandos

(2015)

Agradezco a mis compantildeeros del laboratorio de Paleoecologiacutea y

Paleoclimatologiacutea Karla Matias Dani Carolina Mauricio y Pancho que han hecho

grato mi tiempo en el laboratorio Agradecimientos especiales a Carolina Matiacuteas y

Leo por acompantildearme a terreno

7

Agradezco a los miembros del laboratorio de Paleoambientes Cuaternarios

(IPE) en especial a Raquel Elena Fernando Ana Penelope Graciela Miguel

Sevilla Mariacutea y Miguel Bartolomeacute

Agradezco a los miembros de la comisioacuten Dr Joseacute Miguel Farintildea Dr Juan

Armesto y Dr Ricardo De Pol-Holz por la gran ayuda durante el desarrollo de mi

doctorado en especial por las correcciones finales de la tesis

Al departamento de Ecologiacutea en especial a Rosario Galaz Edita Luengo

Daniela Mora y Valeria Cavallero por su apoyo

A mis compantildeeros de doctorado Beleacuten Gallardo Pancho Diacuteaz Bryan Bularz

Bian Latorre Renato Borras Juan Carlos Hernaacutendez y Paulina Troncoso con

quienes estudieacute aprendiacute y compartimos muy buenos momentos durante los

primeros antildeos del doctorado

A Pablo Sarricolea mi compantildeero de vida Gracias por tu constante e

incondicional apoyo Sin ti durante este proceso todo habriacutea sido cuesta arriba

A mis padres Arturo y Malena gracias por su carintildeo apoyo y compromiso

Papaacute aunque no esteacutes a mi lado siempre te recuerdo con mucho carintildeo A mi

madre que ha sido un constante apoyo sobre todo en el cuidado de mis hijos xavi

y panchito

A mis hermanos Rodrigo y David por estar presentes durante toda esta

etapa Siempre con carintildeo y hermandad

A Rodrigo David Matiacuteas Jany Paola y Julio por cuidar a mis hijos con carintildeo

siempre que estuve ausente por el doctorado

8

ABREVIATURAS

N Nitroacutegeno (Nitrogen)

DIN Nitroacutegeno Inorgaacutenico Disuelto (Dissolved Inorganic Nitrogen)

C Carbono (Carbon)

TOC Carbono Inorgaacutenico Total (Total Organic Carbon)

TIC Carbono Inorgaacutenico Total (Total inorganic Carbon)

TC Carbono Total (Total Carbon)

TS Azufre Total (Total Sulfur)

LUCC Cambios de UsoCobertura del Suelo (Land Use and Cover Change)

OM Materia Orgaacutenica (Organic Matter)

POM Particulate Organic Matter (materia orgaacutenica particulada)

CE Common Era

BCE Before Common Era

Cal BP Calibrado en antildeos radiocarbono antes de 1950

ie id est (esto es)

e g Exempli gratia (por ejemplo)

9

RESUMEN

El ldquoAntropocenordquo se caracteriza por pertubaciones de origen humano que

conllevan impactos globales Por ejemplo los cambios de usocobertura del suelo

(LUCC) son conocidos por perturbar el ciclo del N a partir de la Revolucioacuten Industrial

pero especialmente desde la Gran Aceleracioacuten (1950 CE) en adelante Sin

embargo existen incertezas asociadas a la magnitud del impacto y su efecto

acoplado con los cambios climaacuteticos actuales (ie megasequiacutea disminucioacuten de las

precipitaciones) y acoplamientos con otros ciclos biogeoquiacutemicos (eg ciclo del

Carbono) Este impacto ha cambiado la disponibilidad de N en los ecosistemas

terrestres y acuaacuteticos y sus enlaces Los sedimentos lacustres contienen

informacioacuten de las condiciones paleoambientales del lago y su cuenca en el

momento en que se depositaron y el anaacutelisis de los isoacutetopos estables de N (δ15N)

en los sedimentos permiten reconstruir los cambios en la disponibilidad de N a

traveacutes del tiempo En este trabajo usamos una aproximacioacuten multiproxy que incluye

10

anaacutelisis sedimentoloacutegicos geoquiacutemicos e isotoacutepicos (δ15N δ13C) de los sedimentos

lacustres columna de agua y suelo-vegetacioacuten de la cuenca y la reconstruccioacuten de

los LUCC entre 1975 y 2016 a partir de imaacutegenes satelitales El objetivo de esta

tesis fue evaluar el rol de LUCC como principal control del ciclo del N en el sistema

cuenca-lago durante las uacuteltimas centurias en Chile central Nuestros principales

resultados muestran que valores maacutes positivos de δ15N en los sedimentos lacustres

estaacuten relacionados con grandes aportes de N de la cuenca que a su vez son

mayores cuanto mayor la superficie agriacutecola yo los pastizales mientras que tanto

las plantaciones forestales como los bosques favorecen la retencioacuten de nutrientes

en la cuenca (lo que se ve reflejado en un δ15N maacutes negativo) Esta tesis plantea

un cambio de estado en la dinaacutemica del N asociado a la introduccioacuten y expansioacuten

de las plantaciones forestales o bosques los que retienen el Nitroacutegeno en las

cuencas mientras que el clima juega un rol secundario

11

ABSTRACT

The Anthropocene is characterized by human disturbances at the global

scale For example changes in land use are known to disturb the N cycle since the

industrial revolution but especially since the Great Acceleration (1950 CE) onwards

This impact has changed N availability in both terrestrial and aquatic ecosystems

However there are some important uncertainties associated with the extent of this

impact and how it is coupled to ongoing climate change (ie megadroughts rainfall

variability and shifting stationarity) or to other nutrient cycles (e g carbon cycle)

Lake sediments contain paleoenvironmental information regarding the conditions of

the watershed and associated lakes and which the respective sediments are

deposited Nitrogen stable isotope analysis (δ15N) on lake sediments allows us to

reconstruct the changes in N availability through time Here we used a multiproxy

approach that uses sedimentological geochemical and isotopic analyses on

lacustrine sediments water column and soilvegetation from the watershed as well

12

as land use and cover change (LUCC) from 1975 to 2016 obtained from satellite

images The goal of this thesis is to evaluate the role of LUCC as the main driver for

N cycling in a coastal watershed system of central Chile over the last centuries Our

main results show that more positive δ15N values in lake sediments are related to

higher N contributions from the watershed which in turn increase with increased

agricultural andor pasture cover whereas either forest plantations or native forests

can favor nutrient retention in the watershed (δ15N more negative) This thesis

proposes that N dynamics are mainly driven by the introduction and expansion of

forest or tree plantations that retain nitrogen in the watershed whereas climate plays

a secondary role

13

INTRODUCCIOacuteN

El N es un elemento esencial para la vida y limita la productividad en

ecosistemas tanto terrestres como acuaacuteticos (Vitousek et al 1997) Las actividades

humanas han tenido un profundo impacto sobre el ciclo del N global principalmente

a partir la revolucioacuten industrial (IPCC 2013 2007) Las concentraciones de N se

han incrementado por la fijacioacuten industrial de N atmosfeacuterico (viacutea el proceso Haber-

Bosch Erisman et al 2008) por el uso de fertilizantes sobre la base de N para

mejorar el rendimiento de los cultivos la produccioacuten ganadera y ademaacutes de los

cambios en el uso del suelo (abreviado en ingleacutes- LUCC) (Robertson y Vitousek

2009 Galloway et al 2008 Battye et al 2017 Xu et al 2019) Estas actividades

contribuyen significativamente al incremento de la disponibilidad bioloacutegica de N

cuyas consecuencias para los ecosistemas incluye la perdida de diversidad

modificacioacuten de la disponibilidad de nutrientes y acidificacioacuten de los suelos entre

otras Sin embargo se desconoce la cantidad destino y el alcance que ha tenido

14

el N movilizado entre los ecosistemas generado por la influencia de las actividades

humanas (Vitousek et al 1997)

La entrada natural de N en los ecosistemas terrestres y acuaacuteticos es viacutea

fijacioacuten atmosfeacuterica la que es llevada a cabo por microorganismos muchos de ellos

en relaciones simbioacuteticas (eg Rhizobium en leguminosas) y las algas (Vitousek et

al 1997 Battye et al 2017) Las principales salidas estaacuten relacionadas con la

desnitrificacioacuten volatilizacioacuten del amoniaco y por escurrimiento superficial y

subterraacuteneo (Galloway et al 2008 Diacuteaz et al 2016) En el caso de los sistemas

lacustres ademaacutes estaacuten la resuspencioacuten de N del fondo del lago los aportes desde

la cuenca (entradas de N) La depositacioacuten de MO en el fondo del lago que marca

la salida de N de la columna de agua Estas relaciones de intercambio de N tienen

un control geograacutefico (eg latitud exposicioacuten relieve etc) climaacutetico y biotico

(McLauchlan et al 2013) La alteracioacuten provocada por los LUCC no solo genera

las peacuterdidas de nutrientes del suelo por erosioacuten y escurrimiento superficial sino que

tambieacuten modifica la disponibilidad y transferencia de N entre los ecosistemas

terrestres y acuaacuteticos (Elbert et al 2012 McLauchlan et al 2013) Por ejemplo el

reemplazo de la vegetacioacuten nativa por la agricultura yo plantaciones forestales

altera el ciclo del N debido al despeje de los terrenos viacutea quema de la vegetacioacuten

pero tambieacuten debido al reemplazo de la vegetacioacuten preexistente por un

monocultivo (eg trigo pino) y el uso ineficiente de fertilizantes para mejorar el

rendimiento agriacutecola Estas actividades favorecen un incremento de los aportes de

N (y otros nutrientes) viacutea sistemas de drenajes a lagos los que actuacutean como

sumideros El incremento del N derivado de las actividades humanas tanto en los

ecosistemas terrestres como acuaacuteticos genera incertezas relacionados con la

trayectoria y la magnitud de la disponibilidad de N en ambos ecosistemas (Batye et

15

al 2017 Mclauchlan et al 2017) Por lo tanto se requiere de una liacutenea base de

largo plazo para saber coacutemo estas perturbaciones impactan la disponibilidad de N

en las uacuteltimas deacutecadassiglos en los ecosistemas lacustres y por lo tanto el alcance

real que los LUCC han tenido en el ciclo del N

Los ecosistemas mediterraacuteneos y el ciclo del N

Los ecosistemas mediterraacuteneos son especialmente sensibles a los LUCC

pues estos se encuentran sometidos a un estreacutes hiacutedrico durante largas temporadas

estivales y las precipitaciones se concentran en eventos puntuales y a veces con

altos montos pluviomeacutetricos Las precipitaciones tienen un alto potencial de arrastre

de sedimentos y nutrientes los que actuacutean como fertilizantes al llegar a los

ecosistemas lacustres A su vez un incremento en la disponibilidad de N puede

generar un desbalance con otros nutrientes (eg Fosforo) con efectos sobre la

productividad y diversidad de los lagos (Pentildeuelas et al 2012 Sardans et al 2012

McLauchlan 2013) En este sentido en Chile central se observa una disminucioacuten

de las precipitaciones especialmente fuerte en las uacuteltimas deacutecadas por lo que se ha

denoacuteminado como Megasequiacutea (Garreaud et al 2017) y el efecto de las

precipitaciones esporaacutedicas pueden generar un arrastre de nutrientes que no ha

sido evaluado

Los ecosistemas mediterraacuteneos concentran el 20 de la biodiversidad global

(Myers et al 2000) pero existe una escasez de conocimiento respecto a los

efectos del incremento de N en los cuerpos de agua como consecuencia de las

actividades humanas en el pasado histoacuterico (Ochoa-Hueso et al 2011) y coacutemo la

disponibilidad de N ha variado en el tiempo Los LUCC han aumentado el flujo de

N en las cuencas hidrograacuteficas viacutea escurrimiento superficial y lixiviacioacuten

16

favoreciendo la peacuterdida de sedimentos y nutrientes del suelo en el mundo entero

(Elser et al 2011 McLauchlan et al 2013 Xu et al 2017 y 2019) Ello ha

contribuido a la acidificacioacuten y eutrofizacioacuten generalizada de riacuteos y lagos

(McLauchlan et al 2013 Schindler et al 2008)

El ecosistema mediterraacuteneo de Chile central es una regioacuten ampliamente

intervenida desde al menos la colonizacioacuten espantildeola (1600-1800 CE) Los LUCC

han tenido efectos negativos en la disponibilidad de agua especialmente

observados con el desarrollo de las actividades minera (Prieto et al 2019) Aunque

se sabe de los impactos en los ecosistemas de bosque en teacuterminos de cobertura

debidos al desarrollo silvo-agropecuarias (Armesto et al 2010) se desconoce el

impacto de estas actividades sobre el ciclo del N en los cuerpos de agua o en queacute

momento cobran fuerza suficiente para alterar el flujo de N hacia los lagos de Chile

Central Por lo tanto en esta tesis nos centramos en entender coacutemo los LUCC han

afectado la disponibilidad de N en los lagos costeros de Laguna Matanzas y Lago

Vichuqueacuten desde la llegada de los espantildeoles a Chile hasta el presente

Los lagos como sensores ambientales

Los sedimentos lacustres son buenos sensores de cambios en los aportes

de nutrientes contaminacioacuten y eutroficacioacuten de los cuerpos de agua ya que son

capaces de preservar sentildeales quiacutemicas y fiacutesicas al momento de su formacioacuten y

ademaacutes con alta resolucioacuten y a largo plazo (Leng et al 2006) Por lo tanto

constituyen una herramienta uacutetil para reconstruir el flujo de N entre ecosistemas

terrestres y acuaacuteticos en el pasado sus consecuencias (eg incremento de la

productividad lacustre) y el rol del clima y los LUCC en el pasado (McLauchlan et

al 2013 von Gunten et al 2009) Por ejemplo el cultivo de maiacutez por parte de los

17

nativos iroqueses en Canadaacute provocoacute la eutrofizacioacuten del Lago Crawford (43degN)

durante los siglos XII y XV Entre las consecuencias registradas se documentoacute un

claro incremento de la productividad primaria y cambios en la estructura comunitaria

de diatomeas foacutesiles (incremento de Stephanodiscus complex y disminucioacuten de

Cyclotella bodanica en Ekdahl et al 2007) Otro ejemplo demuestra como las

actividades agriacutecolas en la cuenca del riacuteo Mississippi modificaron los patrones de

sedimentacioacuten y aporte de nutrientes al lago Pepin EE UU (44degN) a partir del

asentamiento europeo en 1840 CE y principalmente desde 1940 CE (Engstrom et

al 2009) Para Chile von Gunten et al (2009) a partir de indicadores

limnogeoloacutegicos evidencioacute la contaminacioacuten y eutroficacioacuten de cinco lagos cercanos

a la ciudad de Santiago (33ordmS) como consecuencia de la deposicioacuten atmosfeacuterica

de metales pesados (especialmente Cu) quema de combustible foacutesil y flujo de

nutrientes durante los uacuteltimos 200 antildeos

Caracteriacutesticas limnoloacutegicas de los lagos

Los procesos limnoloacutegicos afectan la distribucioacuten y abundancia de los

organismos en los lagos Estaacuten influenciados por forzamientos externos por

ejemplo la precipitacioacuten o la penetracioacuten de la luz y la morfometriacutea del lago En este

sentido el nivel del lago dependeraacute del balance entre las entradas y salidas de agua

(precipitaciones escurrimiento superficial y subterraacuteneo y la evaporacioacuten) y la forma

de la cuenca (profundidad pendiente aacuterea del espejo de agua)

En funcioacuten de la profundidad de penetracioacuten de la luz es posible diferenciar

dos aacutereas que determinan la distribucioacuten de los organismos la zona foacutetica (donde

penetra la luz y permite la fotosiacutentesis) y la zona afoacutetica (subyacente a la zona

foacutetica) Al depender de la radiacioacuten la zona foacutetica variacutea estacionalmente Ademaacutes

18

puede variar por el grado de turbidez la morfometriacutea del lago y la produccioacuten de

materia orgaacutenica en la columna de agua

Otro factor que influye en la productividad es el reacutegimen de mezcla de la

columna de agua pues favorece la oxigenacioacuten y el reciclado de nutrientes La

mezcla ocurre en condiciones de gran inestabilidad usualmente relacionado con el

reacutegimen de viento Por el contrario un lago estratificado resulta de grandes

diferencias en temperatura o salinidad entre la superficie (epilimnion) y el fondo del

lago (hipolimnion) que separa las masas de agua superficial y de fondo por una

termoclina (si la estratificacioacuten estaacute relacionada con diferencias de temperatura de

las masas de agua) o haloclina (diferencias de salinidad) En funcioacuten del reacutegimen

de mezcla los lagos se pueden clasificar en (Lewis 1983)

1 Amiacutecticos no hay mezcla vertical de la columna de agua

2 Monomiacutecticos friacuteos y caacutelidos se mezcla una vez al antildeo

3 Dimiacutecticos la columna de agua se mezcla dos veces al antildeo

4 Oligomiacutecticos Lagos estratificados la mayor parte del tiempo pero se mezclan a

intervalos irregulares mayores a 1 antildeo

5 Polimiacutecticos friacuteos y caacutelidos la columna de agua se mezcla varias veces al antildeo

El ciclo del N en lagos

Al estar presente en aacutecidos nucleicos aminoaacutecidos y proteiacutenas el N es un

nutriente esencial de los organismos Por lo tanto su disponibilidad en la columna

de agua es clave para la produccioacuten composicioacuten y acumulacioacuten de la MO a traveacutes

del tiempo (Olson 1998 Talbot 2002) Aunque el principal reservorio de N estaacute en

19

la atmosfera (N2) solo unos pocos organismos (eg cianobacterias) pueden fijarlo

directamente Asiacute el Nitroacutegeno Inorgaacutenico Disuelto (DIN) representa la principal

fuente de N disponible para la produccioacuten primaria en los ecosistemas acuaacuteticos

(Talbot et al 2002) El DIN estaacute compuesto por nitrato (NO3-) nitrito (N02

-) y amonio

(NH4+) y los cambios en su disponibilidad condicionan el tipo de produccioacuten primaria

(eg fijadores vs asimiladores de N ver Scott y Grant 2013 Scott 2008)

La Figura 1 resume los principales componentes en lagos del ciclo del N y

sus interacciones La principal entrada natural de N es viacutea fijacioacuten de N atmosfeacuterico

y es llevado a cabo principalmente por bacterias y algas verde-azules capaces de

romper el triple enlace entre los dos aacutetomos de N a un alto costo energeacutetico (Torres

et al 2012) El N fijado es reducido a NH3 Tras la muerte de los organismos el N

es liberado de sus tejidos por hongos y bacterias implicados en la descomposicioacuten

de la MO Una parte se deposita en el fondo del lago y la otra queda disponible para

ser asimilada por el fitoplancton como amonio mediante el proceso de

amonificacioacuten (Talbot 2002) La amonificacioacuten resulta de la reduccioacuten bacteriana

del amoniaco y se da preferentemente en condiciones anoacutexicas La volatizacioacuten del

amoniaco es un proceso por medio este se incorpora a la atmoacutesfera Este proceso

se da preferentemente en lagos aacutecidos (pH gt 85) El nitrato es otra forma de N

bioloacutegicamente disponible para el fitoplancton En los lagos el NO3 del DIN estaacute

compuesto por los aportes desde la cuenca hidrograacutefica en la que se circunscriben

por la resuspensioacuten desde el fondo del lago favorecido por procesos de mezcla

(descrito en seccioacuten anterior) y por los nitratos de la columna de agua Estos uacuteltimos

son el resultado de la nitrificacioacuten proceso realizado por bacterias aeroacutebicas

mediante el cual el amonio se oxida para formar nitrito y nitrato El ciclo se completa

20

con la desnitrificacioacuten que es la reduccioacuten bacteriana de nitrato al N atmosfeacuterico

Este proceso se da preferentemente en condiciones anoacutexicas

Figura 1 Materia Orgaacutenica sedimentaria y su relacioacuten con el ciclo del N y las

variaciones de δ15N (elaborado a partir de Talbot et al 2002) En la figura se

representan los factores clave en la acumulacioacuten de la MO sedimentaria y su

relacioacuten con el ciclo del N El δ15N de la MO es resultado de los aportes de MO

desde la cuenca MO de macroacutefitas y de la productividad bioloacutegica La productividad

en ecosistemas lacustres estaacute condicionada por DIN y la fijacioacuten de N atmosfeacuterico

El δ15N del pool del DIN disponible se va enriqueciendo por la asimilacioacuten

preferencial de 14N por parte del fitoplancton Ademaacutes el DIN remanente se va

enriqueciendo por accioacuten microbiana (amonificacioacuten nitrificacioacuten desnitrificacioacuten)

Reconstruyendo el ciclo del N a partir de variaciones en δ15N

La sentildeal isotoacutepica de N (δ15N) en los sedimentos lacustres puede ser usada

para reconstruir los cambios pasados del ciclo N la transferencia de N entre

ecosistemas terrestres y acuaacuteticos y el estado troacutefico del lago (Bruland y Mackenzie

2015 McLauchlan et al 2013 Woodward et al 2012 von Gunten et al 2009

Leng et al 2006 Meyers y Teranes 2001) La Figura 1 resume los principales

procesos y fuentes que afectan la sentildeal isotoacutepica δ15N (total o ldquobulkrdquo) en la MO de

21

los sedimentos lacustres Entre los que destacan las fuentes de MO (aloacutectona vs

autoacutectona) la bioproductividad lacustre y las entradas de N (ie fijacioacuten bioloacutegica

de N2) (Torres et al 2012) Estos procesos conducen a un fraccionamiento

isotoacutepico cineacutetico que favorece la disociacioacuten entre sus isotopos ldquopesadosrdquo (15N) y

ldquoligerosrdquo (14N) Asiacute por ejemplo los valores de δ15N de la MO se enriquecen en 15N

en la medida que los sedimentos lacustres estaacuten sometidos a perdidas de 14N viacutea

desnitrificacioacuten (Bruland y Mackenzie 2015 Diaz et al 2016 Talbot et al 2002)

Por otra parte el fitoplancton en la medida que aumenta su biomasa (eg

durante la estacioacuten caacutelida) puede llegar a asimilar el DIN hasta agotarse En este

caso el N remanente se va empobreciendo en 14N si no hay reposicioacuten de N (eg

aporte de NO3 de la cuenca) y la MO queda enriquecida en 15N Esta disminucioacuten

induce a una limitacioacuten de fitoplancton por N y los organismos diztroacuteficos pueden

verse estimulados por lo que se incrementa la entrada de N viacutea fijacioacuten de N2 (Scott

y Grantsz 2013) como resultado la MO oscila en valores maacutes bajos (en torno a 0permil)

La cantidad de MO que se deposita en el fondo del lago depende del

predominio de contribuciones provenientes desde la cuenca (aloacutectona) versus las

producidas dentro del mismo lago (autoacutectona) (Torres et al 2012) Aunque en

general los lagos reciben permanentemente aportes de sedimentos y MO desde

su cuenca los lagos pequentildeos tienden a reflejar maacutes los procesos que ocurren

solamente en su cuenca directa y reflejan los valores isotoacutepicos de la misma (Gu et

al 2006) Woodward et al (2012) realizaron un estudio en 50 lagos en Irlanda que

les permitioacute correlacionar diferentes patrones de LUCC (bosques de coniacuteferas

agricultura ganaderiacutea entre otros) con los valores de δ15N (y δ13C) en los

sedimentos superficiales de los lagos Encontraron que los valores de δ15N son maacutes

negativos en cuencas poco impactadas y maacutes positivos en aquellas con alto

22

impacto humano (eg usos de suelo agriacutecola y ganadero) McLauchlan et al (2007)

encontraron valores maacutes positivos de δ15N en los sedimentos del Mirror Lake New

Hampshire (29ordm N) a partir de la desforestacioacuten de su cuenca en 1790 CE (inicio

del asentamiento europeo en el lago) para el desarrollo de la actividad agriacutecola

Estos valores se volvieron maacutes negativos hacia valores similares al pre-

asentamiento europeo despueacutes del cese de la agricultura en la cuenca y la

recuperacioacuten del bosque a partir de 1929 CE

El anaacutelisis de δ15N en los sedimentos lacustres es una herramienta casi sin

explorar en Chile central Proponemos reconstruir la dinaacutemica de transferencia de

N cuenca-lago como consecuencia de los LUCC desde la colonizacioacuten espantildeola en

los lagos costeros de Laguna Matanzas (34ordmS) y Lago Vichuqueacuten (36ordmS) Como son

muacuteltiples los procesos que pueden afectar la sentildeal isotoacutepica de N (medido como

δ15N) en los sedimentos lacustres existen muchos problemas para su

interpretacioacuten paleoambiental (Leng et al 2006) Por ello en esta tesis utilizamos

un enfoque multiproxy que consiste en integrar el anaacutelisis limnoloacutegico y geoquiacutemico

de los sedimentos lacustres con los valores isotoacutepicos modernos de la columna de

agua (mediante monitoreo del POM) la relacioacuten vegetacioacuten-suelo de la cuenca y la

reconstruccioacuten de los principales usos de suelo de las cuencas desde 1975 CE

mediante el uso de imaacutegenes satelitales Considerando estas muacuteltiples liacuteneas de

evidencia nos planteamos utilizar las variaciones del δ15N para reconstruir los

cambios en la disponibilidad de N en los lagos costeros de Chile central y establecer

coacutemo y desde cuaacutendo las actividades humanas en la cuenca son lo suficientemente

importantes como para modificar el ciclo del N en los lagos desde la colonizacioacuten

espantildeola (siglo XVII)

23

Como hipoacutetesis planteamos que la dinaacutemica de transferencia de sedimentos

y nutrientes entre la cuenca y el lago tiene controles geoloacutegicos climaacuteticos y

bioloacutegicos que interactuacutean en el tiempo registraacutendose en la acumulacioacuten de MO de

los sedimentos lacustres (Fig1) Bajo este marco los LUCC modifican esta

dinaacutemica alterando la transferencia de N a los lagos ya que las actividades agriacutecolas

y ganaderas tienden a aportar maacutes N (aumentando δ15N) que la actividad forestal

(la que disminuye δ15N)

En el primer capiacutetulo titulado ldquoA combined approach to establishing the timing

and magnitude of anthropogenic nutrient alteration in a mediterranean coastal lake-

watershed systemrdquo se evaluoacute el rol de los LUCC en el control de la descarga de N

y sedimentos a Laguna Matanzas en un sistema cuenca-lago desde el siglo XVII

Para ello se realizoacute un anaacutelisis de la dinaacutemica sedimentaria lacustre mediante el

anaacutelisis de muacuteltiples proxys sedimentoloacutegicos (ie minerales y textura)

geoquiacutemicos (eg geoquiacutemica orgaacutenica e isotoacutepica) y bioloacutegicos (ie diatomeas) de

Laguna Matanzas que cubren los uacuteltimos 200 antildeos Ademaacutes se realizoacute una

reconstruccioacuten de los usos de suelo entre 1975 y 2016 a partir de imaacutegenes de

sateacutelites y se colectaron muestras de suelo de las principales coberturas de la

cuenca a los cuales se midioacute el δ15N

Entre los principales resultados obtenidos se destaca la influencia de la

ganaderiacutea y la denitrificacioacuten lo que explica los altos valores de δ15N evidenciados

por el registro lacustre durante la colonizacioacuten espantildeola e inicios de la repuacuteblica A

partir de la Gran Aceleracioacuten (1950 CE) la desforestacioacuten y el reemplazo de la

ganaderiacutea por plantaciones forestales tienen un correlato en el registro

sedimentario con valores de δ15N maacutes bajos Estos resultados demuestran que los

LUCC son el factor de primer orden para explicar los cambios observados en

24

nuestro registro de δ15N y a su vez implica un rol secundario del clima como posible

control de la disponibilidad de N en Laguna Matanzas Este capiacutetulo fue sometido

a la revista Scientific Reports y estaacute en revisioacuten desde el 26 de marzo de 2019 En

la elaboracioacuten del mauscrito han colaborado Claudio Latorre Blas Valero-Garceacutes

Matiacuteas Frugone Pablo Sarricolea Santiago Giralt Manuel Contreras-Lopez

Ricardo Prego y Patricia Bernardez

El segundo capiacutetulo se titula ldquoStable isotopes track land use and cover

changes in a mediterranean lake in central Chile over the last 600 yearsrdquo Aquiacute

evaluamos la dinaacutemica del N actual en el sistema cuenca-lago considerando los

valores isotoacutepicos modernos tanto de la vegetacioacuten como del suelo ademaacutes de los

cambios estacionales del POM de la columna de agua Esta informacioacuten se utiliza

como un anaacutelogo moderno para conocer el rol de los LUCC en la disponibilidad de

N en los uacuteltimos 600 antildeos Para ello se colectaron muestras filtradas de la columna

de agua a 2 5 y 20 m dos veces por antildeo entre noviembre de 2015 y julio de 2018

y se obtuvo el δsup1⁵N del POM Ademaacutes se colectoacute muestras de vegetacioacuten y suelo

de la cuenca diferenciando entre especies nativas plantaciones forestales y

vegetacioacuten herbaacutecea Esta informacioacuten se analizoacute en conjunto con la reconstruccioacuten

de los LUCC entre 1975 y 2014 y el anaacutelisis limnoloacutegico del lago Ello nos permitioacute

evaluar coacutemo el δ15N de los sedimentos lacustres refleja los valores δ15N de la

cuenca en el Lago Vichuqueacuten y el control que ejerce el clima en la sentildeal isotoacutepica

de POM Este capiacutetulo seraacute sometido a la revista Science of total environmet

proximamente En la elaboracioacuten del mauscrito han colaborado Claudio Latorre

Blas Valero-Garceacutes Matiacuteas Frugone Pablo Sarricolea Leonardo Villacis y M Laura

Carrevedo

25

Entre los principales resultados encontramos que el δ15N en los sedimentos

lacustres es maacutes positivo con presencia de agricultura en la cuenca y maacutes negativo

cuando esta es reemplazada por cobertura arboacuterea bien sea plantaciones

forestales bien sea bosque nativo A su vez durante la estacioacuten seca y caacutelida la

mayor entrada al lago es viacutea fijacioacuten de N atmosfeacuterico (bajos valores de δ15NPOM)

Durante la estacioacuten huacutemeda en cambio prevalecen los aportes de la cuenca con

altos valores de δ15NPOM Ello estariacutea evidenciando un cambio estacional en la

composicioacuten de especies en verano ligado a especies fijadoras de N y en invierno

las algas y microorganismos que consumen el DIN de la columna de agua

Referencias

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea AM Marquet PA 2010 From the Holocene to the Anthropocene A historical framework for land cover change in southwestern South America in the past 15000 years Land use policy 27 148ndash160 httpsdoiorg101016jlandusepol200907006

Battye W Aneja VP Schlesinger WH 2017 Earth rsquo s Future Is nitrogen the

next carbon  Earth rsquo s Future Global Biogeochem Cycles 30 1000ndash1014 httpsdoiorg101002eft2235

Bruland GL MacKenzie RA 2010 Nitrogen Source Tracking with δN Content

of Coastal Wetland Plants in Hawaii J Environ Qual 39 409 httpsdoiorg102134jeq20090005

Diacuteaz FP Frugone M Gutieacuterrez RA Latorre C 2016 Nitrogen cycling in an

extreme hyperarid environment inferred from δ15 N analyses of plants soils and herbivore diet Sci Rep 6 1ndash11 httpsdoiorg101038srep22226

Ekdahl EJ Teranes JL Wittkop CA Stoermer EF Reavie ED Smol JP

2007 Diatom assemblage response to Iroquoian and Euro-Canadian eutrophication of Crawford Lake Ontario Canada J Paleolimnol 37 233ndash246 httpsdoiorg101007s10933-006-9016-7

Elbert W Weber B Burrows S Steinkamp J Buumldel B Andreae MO

Poumlschl U 2012 Contribution of cryptogamic covers to the global cycles of carbon and nitrogen Nat Geosci 5 459ndash462

26

httpsdoiorg101038ngeo1486 Elser J 2011 A world awash with nitrogen Science 334 1504ndash1506

httpsdoiorg101126science1215567 ARTICLE Engstrom DR Almendinger JE Wolin JA 2009 Historical changes in

sediment and phosphorus loading to the upper Mississippi River Mass-balance reconstructions from the sediments of Lake Pepin J Paleolimnol 41 563ndash588 httpsdoiorg101007s10933-008-9292-5

Erisman J W Sutton M A Galloway J Klimont Z amp Winiwarter W (2008)

How a century of ammonia synthesis changed the world Nature Geoscience 1(10) 636

Galloway JN Townsend AR Erisman JW Bekunda M Cai Z Freney JR

Martinelli LA Seitzinger SP Sutton MA 2008 Transformation of the Nitrogen Cycle  Science (80- ) 320 889ndash892

httpsdoiorg101126science1136674 Garreaud RD Alvarez-Garreton C Barichivich J Pablo Boisier J Christie

D Galleguillos M LeQuesne C McPhee J Zambrano-Bigiarini M 2017 The 2010-2015 megadrought in central Chile Impacts on regional hydroclimate and vegetation Hydrol Earth Syst Sci 21 6307ndash6327 httpsdoiorg105194hess-21-6307-2017

Gruber N Galloway JN 2008 An Earth-system perspective of the global

nitrogen cycle Nature 451 293ndash296 httpsdoiorg101038nature06592 Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater eutrophic lake Limnol Oceanogr 51 2837ndash2848 httpsdoiorg104319lo20065162837

IPCC 2013 Climate Change 2013 The Physical Science BasisContribution of

Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press Cambridge United Kingdom and New York NY USA

httpsdoiorg101017CBO9781107415324 Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos Transactions

American Geophysical Union httpsdoiorg1010292007EO070007 Martel-Cea A Maldonado A Grosjean M Alvial I de Jong R Fritz SC von

Gunten L 2016 Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical Central Chile (32iumliquestfrac12S 3050iumliquestfrac12miumliquestfrac12asl) Palaeogeogr Palaeoclimatol Palaeoecol 461 44ndash54 httpsdoiorg101016jpalaeo201608003

McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE 2007

Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470

27

httpsdoiorg101073pnas0701779104 McLauchlan KK Gerhart LM Battles JJ Craine JM Elmore AJ Higuera

PE Mack MC McNeil BE Nelson DM Pederson N Perakis SS 2017 Centennial-scale reductions in nitrogen availability in temperate forests of the United States Sci Rep 7 1ndash7 httpsdoiorg101038s41598-017-08170-z

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash1643 httpsdoiorg1011770959683613496289

Meyers PA Teranes JL 2001 Sediment organic matter in Tracking

Environmental Change Using Lake Sediments Volume 2 Physical and Geochemical Methods httpsdoiorg1018971551-5028(1999)018lt0231SOMCAAgt23CO2

Myers N Mittermeler RA Mittermeler CG Da Fonseca GAB Kent J

2000 Biodiversity hotspots for conservation priorities Nature httpsdoiorg10103835002501

Pentildeuelas J Poulter B Sardans J Ciais P Van Der Velde M Bopp L

Boucher O Godderis Y Hinsinger P Llusia J Nardin E Vicca S Obersteiner M Janssens IA 2013 Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe Nat Commun 4 httpsdoiorg101038ncomms3934

Prieto M Salazar D Valenzuela MJ 2019 The dispossession of the San

Pedro de Inacaliri river Political Ecology extractivism and archaeology Extr Ind Soc httpsdoiorg101016jexis201902004

Robertson GP Vitousek P 2010 Nitrogen in Agriculture Balancing the Cost of

an Essential Resource Ssrn 34 97ndash125 httpsdoiorg101146annurevenviron032108105046

Sardans J Rivas-Ubach A Pentildeuelas J 2012 The CNP stoichiometry of

organisms and ecosystems in a changing world A review and perspectives Perspect Plant Ecol Evol Syst 14 33ndash47 httpsdoiorg101016jppees201108002

Schindler DW Howarth RW Vitousek PM Tilman DG Schlesinger WH

Matson PA Likens GE Aber JD 2007 Human Alteration of the Global Nitrogen Cycle Sources and Consequences Ecol Appl 7 737ndash750 httpsdoiorg1018901051-0761(1997)007[0737haotgn]20co2

Scott E and EM Grantzs 2013 N2 fixation exceeds internal nitrogen loading as

a phytoplankton nutrient source in perpetually nitrogen-limited reservoirs Freshwater Science 2013 32(3)849ndash861 10189912-1901

28

Stocker TF Dahe Q Plattner G-K Alexander L V Allen SK Bindoff NL Breacuteon F-M Church JA Cubash U Emori S Forster P Friedlingstein P Talley LD Vaughan DG Xie S-P 2013 Technical Summary in Climate Change 2013 The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change httpsdoiorg101017 CBO9781107415324005

Talbot M R (2002) Nitrogen isotopes in palaeolimnology In Tracking

environmental change using lake sediments (pp 401-439) Springer Dordrecht

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status J Paleolimnol 47 693ndash706 httpsdoiorg101007s10933-012-9593-6

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M Eggenberger U Grob P Urrutia R Morales A

2009 Pollution and eutrophication history AD 1800-2005 as recorded in sediments from five lakes in Central Chile Glob Planet Change 68 198ndash208 httpsdoiorg101016jgloplacha200904004

Woodward CA Potito AP Beilman DW 2012 Carbon and nitrogen stable

isotope ratios in surface sediments from lakes of western Ireland Implications for inferring past lake productivity and nitrogen loading J Paleolimnol 47 167ndash184 httpsdoiorg101007s10933-011-9568-z

Xu H Yu K Lan J Sheng E Liu B Ye Y Hong B Wu H Zhou K

Yeager KM 2016 Different responses of sedimentary δ15N to climatic changes and anthropogenic impacts in lakes across the Eastern margin of the Tibetan Plateau J Asian Earth Sci 123 111ndash118 httpsdoiorg101016jjseaes201603024

29

CAPIacuteTULO 1 A COMBINED APPROACH TO ESTABLISHING THE TIMING

AND MAGNITUDE OF ANTHROPOGENIC NUTRIENT ALTERATION IN A

MEDITERRANEAN COASTAL LAKE- WATERSHED SYSTEM

30

A combined approach to establishing the timing and magnitude of anthropogenic

nutrient alteration in a mediterranean coastal lake- watershed system

Magdalena Fuentealbaabc Claudio Latorreabc Matiacuteas Frugoneabc Pablo

Sarricolead Santiago Giralte Manuel Contreras-Lopezf Ricardo Prego g Patricia

Bernaacuterdez g Blas Valero-Garceacutesch

a Departamento de Ecologiacutea Pontificia Universidad Catoacutelica de Chile Alameda 340 Santiago Chile

b Institute of Ecology and Biodiversity (IEB) Las Palmeras 3425 Nuntildeoa Santiago Chile

c Laboratorio Internacional de Cambio Global LINCGlobal PUC-CSIC Spain

d Departamento de Geografiacutea Universidad de Chile Marcoleta 250 Santiago Chile

e Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) CLluis Solegrave Sabaris sn Barcelona E-

08028 Spain

f Facultad de Ingenieriacutea y Centro de Estudios Avanzados Universidad de Playa Ancha Traslavintildea

450 Vintildea del Mar Chile

g Instituto de Investigaciones Marinas (CSIC) CEduardo Cabello 6 36208 Vigo Spain

h Instituto Pirenaico de Ecologiacutea (IPE-CSIC) Avenida Montantildeana 1005 Zaragoza 50059 Spain

Corresponding author

E-mail address

clatorrebiopuccl magdalenafuentealbagmailcom

Abstract

Since the industrial revolution and especially during the Great Acceleration (1950

CE) human activities have profoundly altered the global nutrient cycle through land

use and cover changes (LUCC) However the timing and intensity of recent N

variability together with the extent of its impact in terrestrial and aquatic ecosystems

and coupled effects of regional LUCC and climate are not well understood Here

we used a multiproxy approach (sedimentological geochemical and isotopic

31

analyses historical records climate data and satellite images) to evaluate the role

of LUCC as the main control for N cycling in a coastal watershed system of central

Chile during the last few centuries The largest changes in N dynamics occurred in

the mid-1970s associated with the replacement of native forests and grasslands for

livestock grazing by plantations of introduced Monterey pine (Pinus radiata) and

eucalyptus (Eucalyptus globulus) Lake productivity increased and is evidenced by

an increase trend in δ15N values Our study shows that anthropogenic land

usecover changes are key in controlling nutrient supply and N availability in

Mediterranean watershed ndash lake systems and that large-scale forestry

developments during the mid-1970s likely caused the largest changes in central

Chile

Keywords Anthropocene Organic geochemistry watershedndashlake system Stable

Isotope Analyses Land usecover change Nitrogen cycle Mediterranean

ecosystems central Chile

1 INTRODUCTION

Human activities have become the most important driver of the nutrient cycles in

terrestrial and aquatic ecosystems since the industrial revolution (Gruber and

Galloway 2008 Galloway et al 2008 Holtgrieve et al 2011 Fowler et al 2013

Goyette et al 2016) Among these N is a common nutrient that limits productivity

in terrestrial and aquatic ecosystems (Vitousek and Howarth 1991 McLauchlan et

al 2013) With the advent of the Haber-Bosch industrial N fixation process in the

early 20th century total N fluxes have surpassed previous planetary boundaries

32

(Galloway et al 2008 Elser 2011) reaching unprecedented values (ie tipping

points) in the Earth system especially during what is now termed the Great

Acceleration (which began in the 1950s) which intensified in the 1970s (Howarth

2004 Steffen et al 2015) Yet dramatic changes in LUCC have occurred in the last

few centuries mainly linked to forestry and agro-pastoral activities (Poraj-Goacuterska et

al 2017 Ge et al 2019 Cheng et al 2019) These have had large impacts on N

(and Carbon -C-) availability in terrestrial and aquatic ecosystems but the synergic

effect with climate change and global N dynamics has not been established

(Vitousek et al 1997 Mclauchlan et al 2007 2013 Pongratz et al 2010

Woodward et al 2012 Mclauchlan et al 2017)

The onset of the Anthropocene poses significant challenges in mediterranean

regions that have a strong seasonality of hydrological regimes and an annual water

deficit (Stocker et al 2013) Mediterranean climates occur in all continents

(California central Chile Australia South Africa circum-Mediterranean regions)

providing a unique opportunity to investigate global change processes during the

Anthropocene in similar climate settings but with variable geographic and cultural

contexts The effects of global change in mediterranean watersheds have been

analyzed from different perspectives hydrology (Giorgi 2006 Arnell and Gosling

2013 Prudhomme et al 2014) vegetation dynamics (Lenihan et al 2003 Vicente-

Serrano et al 2013 Matesanz and Valladares 2014) sediment dynamics (Garciacutea-

Ruiz et al 2013 Garciacutea-Ruiz 2010 Syvitski et al 2005) changes in

biogeochemical cycles (Thomas et al 2013 Fowler et al 2013 Frank et al 2015)

carbon storage (Muntildeoz-Rojas et al 2015) and biodiversity (Hooper et al 2012) A

recent review showed an extraordinarily high variability of erosion rates in

mediterranean watersheds positive relationships with slope and annual

33

precipitation and the paramount effect of land use (Garciacutea-Ruiz et al 2015)

However the temporal context and effect of LUCC on nutrient supply to

mediterranean lakes has not been analyzed in much detail

Major LUCC in central Chile occurred during the Spanish Colonial period

(17th-18th centuries) (Armesto 1994 Gurnell et al 2001 Figueroa et al 2004

Martiacuten-Foreacutes et al 2012 Contreras-Loacutepez et al 2014) with the onset of

industrialization and mostly during the mid to late 20th century (von Gunten et al

2009 Gayo et al 2012) Recent copper pollution caused by 20th century mining

and industrial smelters has been documented in cores throughout the Andes

(Laguna el Ocho and Laguna Ensuentildeo von Gunten et al 2009) and also from our

surveys in the central valley (Batuco wetland) coastal range (Cordillera de Name)

and along the coast itself (Bucalemito and Colejuda) (Valero-Garceacutes et al 2010

unpublished data)

Paleolimnological studies have shown how these systems respond to

climate LUCC and anthropogenic impacts during the last millennia (Jenny et al

2002 2003 Villa Martiacutenez et al 2002 Frugone-Aacutelvarez et al 2017 Contreras et

al 2018) Furthermore changes in sediment and nutrient cycles have also been

identified in associated terrestrial ecosystems dating as far back as the Spanish

Conquest and related to fire clearance and wood extraction practices of the native

forests (Armesto 1994 Contreras-Loacutepez et al 2014) Nevertheless pollen and

limnological evidence argue for a more recent timing of the largest anthropogenic

impacts in central Chile For example paleo records show that during the mid-20th

century increased soil erosion followed replacement of native forest by Pinus

radiata and Eucalyptus globulus plantations at Laguna Matanzas Aculeo and

34

Vichuqueacuten lakes (Jenny et al 2002 Villa-Martiacutenez et al 2002 2003 Frugone-

Aacutelvarez et al 2017)

Lakes are a central component of the global carbon cycle Lakes act as a

sink of the carbon cycle both by mineralizing terrestrially derived organic matter and

by storing substantial amounts of organic carbon (OC) in their sediments (Anderson

et al 2009) Paleolimnological studies have shown a large increase in OC burial

rates during the last century (Heathcote et al 2015) however the rates and

controls on OC burial by lakes remain uncertain as do the possible effects of future

global change and the coupled effect with the N cycle LUCC intensification of

agriculture and associated nutrient loading together with atmospheric N-deposition

are expected to enhance OC sequestration by lakes Climate change has been

mainly responsible for the increased algal productivity since the end of the 19th

century and during the late 20th century in lakes from both the northern (Ruumlhland et

al2015) and southern hemispheres (Michelutti et al 2015 Carrevedo et al 2015)

but many studies suggest a complex interaction of global warming and

anthropogenic influences and it remains to be proven if climate is indeed the only

factor controlling these transitions (Catalaacuten et al 2013) Alternative causes for

recent N (Galloway et al 2008) increases in high altitude lakes such as catchment

mediated processes cannot be ruled out (Camarero and Catalan 2012 Fritz and

Anderson 2013) Few lake-watershed systems have robust enough chronologies of

recent changes to compare variations in C and N with regional and local processes

and even fewer of these are from the southern hemisphere (McLauchlan et al

2007 Holtgrieve et al 2011)

In this paper we present a multiproxy lake-watershed study including N and

C stable isotope analyses on a series of short cores from Laguna Matanzas in

35

central Chile focused in the last 200 years We complemented our record with land

use surveys satellite and aerial photograph studies Our major objectives are 1) to

reconstruct the dynamics among climate human activities and changes in the N

cycle over the last two centuries 2) to evaluate how human activities have altered

the N cycle during the Great Acceleration (since the mid-20th century)

2 STUDY SITE

Laguna Matanzas (33ordm45rsquoS 71ordm 40acuteW 7 m asl Fig 1) is a coastal lake located

in central Chile near to a large populated area (Santiago gt6106 inhabitants) The

lake has a surface area of 15 km2 with a max depth of 3 m and a watershed of 30

km2 The lake basin is emplaced over Pleistocene-Holocene aeolian and alluvial fan

deposits (SERNAGEOMIN 2003) A recent phase of dune activity occurred from the

mid to late Holocene which mostly sealed off the basin from the ocean (Villa-

Martinez 2002) Climate in Laguna Matanzas is characterized by cool-wet winters

and hot-dry summers with annual precipitation of ~510 mm and a mean annual

temperature of 12ordmC Central Chile is in the transition zone between the southern

hemisphere mid-latitude westerlies belt and the South Pacific Anticyclone (or SPA)

(Garreaud et al 2009) In winter precipitation is modulated by the north-west

displacement of the SPA the northward shift of the westerlies wind belt and an

increased frequency of storm fronts stemming off the Southern Hemisphere

Westerly Winds (SWW) (Frugone-Aacutelvarez et al 2017) Austral summers are

typically dry and warm as a strong SPA blocks the northward migration of storm

tracks stemming off the SWW

36

Historic land cover changes started after the Spanish conquest with a Jesuit

settlement in 1627 CE near El Convento village and the development of a livestock

ranch that included the Matanzas watershed After the Jesuits were expelled from

South America in 1778 CE the farm was bought by Pedro Balmaceda and had more

than 40000 head of cattle around 1800 CE (Contreras-Lopez et al 2014) The first

Pinus radiata and Eucalyptus globulus trees were planted during the second half of

the 19th century and were mostly used for dune stabilization (Albert 1900 Gibson

1972) However the main plantation phase occurred 60 years ago (Villa-Martinez

2002) as a response to the application of Chilean Forestry Laws promulgated in

1931 and 1974 and associated state subsidies

Major land cover changes occurred recently from 1975 to 2008 as shrublands

were replaced by more intensive land uses practices such as farmland and tree

plantations (Schulz et al 2010) Laguna Matanzas is part of the Reserva Nacional

Humedal El Yali protected area (Ramsar Ndeg 878) Despite this protected status the

lake and its watershed have been heavily affected by intense agricultural and

farming activities during the last decades The main inlet ldquoLas Rosasrdquo has been

diverted for crop irrigation causing a significant loss of water input to the lake

Consequently the flooded area of the lake has greatly decreased in the last couple

of decades (Fig 1b) Exotic tree species cover a large surface area of the

watershed Recently other activities such as farms for intensive chicken production

have been emplaced in the watershed

37

Figure 1 Laguna Matanzas a) Digital Elevation Model showing the watershed and

the surface hydrologic connection with Colejuda and Cabildo lakes b) Climograph

depicting the warm dry season in austral summer c) Annual precipitation from

1965-2015 (arrow shows start of the most recent ldquomega-droughtrdquo- see Garreaud et

al 2017) d) A decline of lake area occurs between 2007 and 2018 Lake surface

area decreased first along the western sector (in 2007) followed by more inland

areas (in 2018)

38

3 RESULTS

31 Age Model

The age model for the Matanzas sequence was developed using Bacon software

to establish the deposition rates and age uncertainty (Blaauw and Christen 2011)

It is based on 210Pb and 137Cs dates and two 14C dates (Table 2) According to this

age model the lake sequence spans the last 1000 years (Fig 2) A major breccia

layer (unit 3b) was deposited during the early 18th century which agrees with

historic documents indicating that a tsunami impacted Laguna Matanzas and its

watershed in 1730 CE (Contreras-Loacutepez et al 2014) Here we focus in the last 200

years were the most important changes occurred in terms of LUCC (after the

sedimentary hiatus caused by the tsunami) The Spanish colonial period (17th -18th

century) brought new forms of territorial management along with an intensification

of watershed use which remained relatively unchanged until the 1900s

39

Figure 2 a) Age-depth model obtained for the Laguna de Matanzas sedimentary

sequence A hiatus occurs at 80 cm depth (unit 3b) The section of core used for our

analysis is highlighted in a red rectangle b) Close up of the age model used for

analysis of recent anthropogenic influences on the N cycle c) Information regarding

the 14C dates used to construct age model

Lab code Sample ID

Depth (cm) Material Fraction of modern C

Radiocarbon age

Pmc Error BP Error

D-AMS 021579

MAT11-6A 104-105 Bulk Sediment

8843 041 988 37

D-AMS 001132

MAT11-6A 1345-1355

Bulk Sediment

8482 024 1268 21

POZ-57285

MAT13-12 DIC Water column 10454 035 Modern

Table 2 Laguna Matanzas radiocarbon dates

32 The sediment sequence

Laguna Matanzas sediments consist of massive to banded mud with some silt

intercalations They are composed of silicate minerals (plagioclase quartz and clay

minerals) with relatively high TOC content (Fig 3) Pyrite is a common mineral

indicating dominant anoxic conditions in the lake sediments whereas aragonite

occurs only in the uppermost section Mineralogical analyses visual descriptions

texture and geochemical composition were used to characterize five main facies

(Fig 3) F1 (organic-rich mud) represents baseline sedimentation in a shallow well-

mixed brackish highly productive lake and F1acute (dark orange) is a less organic facies

than F1 (more details see table in the supplementary material) F2 (massive to

banded silty mud) indicates periods of higher clastic input into the lake but finer

(mostly clay minerals) likely from suspension deposition associated with flooding

40

events Aragonite (up to 15 ) occurs in both facies but only in samples from the

uppermost 30 cm and it is interpreted as endogenic linked to higher MgFe waters

and elevated biologic productivity

Figure 3 Sedimentary facies and units mineralogy grain size elemental geochemical

and isotopic composition of Laguna Matanzas core Values highlighted in gray indicate

that these are above average

The banded to laminated fining upward silty clay layers (F3) reflect

deposition by high energy turbidity currents The presence of aragonite suggests

that littoral sediments were incorporated by these currents Non-graded laminated

coarse silt layers (F4) do not have aragonite indicating a dominant watershed

41

sediment source Both facies are interpreted as more energetic flood deposits but

with different sediment sources A unique breccia layer with coarse silt matrix and

cm-long soft clasts (F5) is interpreted as a high-energy event (ie a tsunami)

capable of eroding the littoral zone and depositing coarse clastic material in the

distal zone of the lake Similar coarse breccia layers have been found at several

coastal sites in Chile and interpreted as tsunami-related deposits (Vargas et al

2005 Le Roux et al 2008)

33 Sedimentary units

Three main units and six subunits have been defined (Fig 3) based on

sedimentary facies and sediment composition We use ZrTi as an indicator of the

mineral fraction transported from the watershed (Marzecoacuteva et al 2011) as higher

ZrTi (F3 and F4) is commonly associated with coarser sediments (Cuven et al

2010) A high correlation among Br BrTi and TOC (r = 046-087 p value=0)

supports the use of BrTi as an indicator of lake productivity (Marzecoacuteva et al 2011

Frugone-Aacutelvarez et al 2017) The MnFe ratio is indicative of lake bottom

oxygenation (Naecher et al 2013) as under reducing conditions Mn mobilizes more

than Fe leading to a decreased MnFe ratio (Marzecoacuteva et al 2011) SrTi indicates

periods of increased aragonite formation as Sr is preferentially included in the

aragonite mineral structure (Veizer et al 1971) (See supplementary material)

The basal unit (3c 129 to 99 cm) is relatively organic-rich (TOC mean=26

BioSi mean=5) and composed by F1 (without aragonite) with some coarser F4

flood layers (ZrTi mean=025) Unit 3b (98 to 80 cm) is interpreted as a tsunami or

storm surge deposit (breccia F5 grading into massive to banded silt F2) Unit 3a

(79 to 73 cm) is characterized by relatively low productivity (TOC=2 BrTi=002

42

BioSi=4) under anoxic conditions (MnFe=001) Unit 2a (72 to 31cm) has

relatively less organic content and more intercalated clastic facies F3 and F4 The

top of this unit (43-30 cm) has elevated TS values The Subunit 1b (30-20 cm)

shows increasing TOC BioSi and BrTi values (TOC mean = 29 BioSi mean =

54 BrTi mean=004) and the upper subunit 1a (19-0 cm) has the highest TOC

(mean = 64) and BioSi (mean = 56) high BrTi mean = 010 and the presence

of aragonite More frequent anoxic conditions (MnFe lower than 001) during units

3 and 2 shifted towards more oxic episodes (MnFe = 003) in unit 1 (Fig 3)

34 Isotopic signatures

Figure 4 shows the isotopic signature from soil samples of the major land

usescover present in the Laguna Matanzas used as an end member in comparison

with the lacustrine sedimentary units δ15N from cropland samples exhibit the

highest values whereas grassland and soil samples from lake shore areas have

intermediate values (Fig 4) Tree plantations and native forests have similarly low

δ15N values (+11 permil SD=24) All samples (except those from the lake shore)

exhibit low δ13C values (from ndash285permil to ndash298permil) CNmolar from agriculture land

lakeshore area and non-vegetation areas samples display the lowest values (about

18) CNmolar from tree plantations and native forest have the highest values (383

and 267 respectively)

43

Figure 4 C-N stable isotope plot showing a comparison of lake sediments grouped

by sedimentary units (MAT11-6A) with the soil end members of present-day (lake

shore and land usecover) from Laguna Matanzas

The δ15N values from sediment samples (MAT11-6A) range from ndash15 and

+53permil (mean= +35 SD=05) δ13C values range from ndash266permil to ndash202permil (mean=

ndash240 SD=14) In unit 3c δ15N and δ13C show relatively high values (mean=

+41permil and ndash233permil respectively) δ15N and δ13C from unit 3b and 3a fluctuate at

slightly lower values than in 3c (mean δ15N from 3a= +38permil and 3b mean= +39permil

mean δ13C from 3a= ndash242permil and 3b mean= ndash244permil) In unit 2a δ15N values are

relatively high (mean= +38permil) but show a slightly decreasing trend (from +52 to

+24permil at 66 cm and 36 cm respectively) δ13C also decreases (mean= ndash242permil)

reaching minimum values at 45 cm (ndash266permil) with a sharp increase towards the top

of this unit with maximum values ca ndash210permil Unit 1 exhibits the lowest δ15N values

(1a mean= +11permil 1b mean= +28permil) with negative values in the uppermost

44

sediments (ndash04permil at 14 cm) δ13C values show a decreasing trend over most of

subunit 1b and increase only near the very top of this unit

35 Recent land use changes in the Laguna Matanzas watershed

Major LUCC from 1975 (unit 1b) to 2016 CE in the Laguna Matanzasacutes

watershed is summarized in Figure 5 The watershed has a surface area of 30 km2

of which native forest (36) and grassland areas (44) represented 80 of the

total surface in 1975 The area occupied by agriculture was only 02 and tree

plantations were absent Isolated burned areas (33) were located mostly in the

northern part of the watershed By 1989 tree plantations surface area had increased

to 5 burned areas to 17 and agricultural fields to 9 (a 45-fold increase) and

native forest and grassland sectors decreased to 23 and 27 respectively By

2016 agricultural land and tree plantations have increased to 17 of the total area

whereas native forests decreased to 21

45

Figure 5 Land uses and cover changes from 1975 to 2016 in Laguna Matanzas

watershed from natural cover and areas for livestock grazing (grassland) to the

expansion of agriculture and forest plantation

4 DISCUSSION

41 N and C dynamics in Laguna Matanzas

Small lakes with relatively large watersheds such as Laguna Matanzas would

be expected to have relatively high contributions of allochthonous C to the sediment

OM (Gu et al 2006) Terrestrial C3 plants (δ13C =ndash26 to ndash28permil Meyers and Terranes

2001 Ku et al 2007) are dominant in the Laguna Matanzas watershed Likewise

our soil samples ranged across similar although slightly more negative values

46

(δ13C = ndash30 to ndash28permil Fig 4) to those proposed by Meyers and Terranes (2001)

and are used here as terrestrial end members oil samples were taken from the lake

shore (δ13C = ndash22permil) and POM from surface water (δ13C = ndash24permil) were more

positive than the terrestrial end member and are used as lacustrine end members

Thus more negative δ13C values in lake sediment samples are attributed to higher

OM inputs from terrestrial vegetation and more positive δ13C values have increased

aquatic OM (Gu et al 2006 Torres et al 2012) Phytoplankton preferentially uptake

12C leaving the DIC pool enriched in 13C (Gu et al 2006) especially when there are

no important external sources of C (eg decreased C input from the watershed)

Therefore during events of elevated primary productivity the phytoplankton uptakes

12C until its depletion and are then obligated to use the heavier isotope resulting in

an increase in δ13C Changes in lake productivity thus greatly affect the C isotope

signal (Torres et al 2012) with high productivity leading to elevated δ13C values

(Torres et al 2012 Gu et al 2006)

In a similar fashion the N isotope signatures in Laguna Matanzas reflect a

combination of factors including different N sources (autochthonousallochthonous)

and lake processes such as productivity isotope fractionation in the water column

and sediment denitrification Elevated δ15N values from a POM sample (+22permil) and

average values from the lake shore (mean=+34permil SD=028) are used as aquatic

end members whereas terrestrial samples have values from +10 +24 (tree species)

to +77permil +35 (agriculture) which we use as terrestrial end members (Fig 4)

Autochthonous OM in aquatic ecosystems typically displays low δ15N values

when the OM comes from N-fixing species Atmospheric fixation of N2 by

cyanobacteria ends in OM with δ15N values close to 0permil (Leng et al 2006)

Phytoplankton preferentially uptake 14N from Dissolved Inorganic Nitrogen (DIN) in

47

the water column and derived OM typically have δ15N values lower than DIN values

When productivity increases the remaining DIN becomes depleted in 14N which in

turn increases the δ15N values of phytoplankton over time especially if the N not

replenished (Torres et al 2012) Thus high POM δ15N values from Laguna

Matanzas reflect elevated phytoplankton productivity with a 14N- depleted DIN In

addition N-watershed inputs also contribute to high δ15N values Heavily impacted

watersheds by human activities are often reflected in isotope values due to land use

changes and associated modified N fluxes For example the input of N runoff

derived from the use of inorganic fertilizers leads to the presence of elevated δ15N

(between ndash4 to +4permil) values in the water bodies (Elliott and Brush 2006 Diebel and

Vander Zanden 2009) Widory et al (2004) reported a direct relationship between

elevated δ15N values and increased nitrate concentration from manure in the

groundwater of Brittany (France) Terranes and Bernasconi (2000) found a good

correlation between augmented nutrient loading and a progressive increase in δ15N

values of sedimentary OM related to agricultural land use

Post-depositional diagenetic processes can further affect C and N isotope

signatures Several studies have shown a decrease in δ13C values of OM in anoxic

environments particularly during the first years of burial related to the selective

preservation of OM depleted in 13C (Hollander and Smith 2001 Lehmann et al

2002 Gӓlman et al 2009 Torres et al 2012) Diagenetic processes can also lead

to post-burial N isotope enrichment of the sediments Indeed 14N is consumed more

rapidly than 15N by denitrifying bacteria which intensifies under anoxic conditions

(Diebel and Vander Zanden 2009) Thus the remaining OM pool will be enriched

in 15N leaving to elevated δ15N values (Granger et al 2008 Menzel et al 2013)

48

In summary the relatively high δ15N values in sediments of Laguna Matanzas

reflect N input from an agriculturegrassland watershed with positive synergetic

effects from increased lake productivity enrichment of DIN in the water column and

most likely denitrification The increase of algal productivity associated with

increased N terrestrial input andor recycling of lake nutrients (and lesser extent

fixing atmospheric N) and denitrification under anoxic conditions can all increase

δ15N values (Fig 3) In addition elevated lake productivity without C replenishing

(eg by terrestrial C input) produces shifts towards positive δ13C values whereas C

input from the watershed generates more negative δ13C values

42 Recent evolution of the Laguna Matanzas watershed

Sedimentological compositional and geochemical indicators show three

depositional phases in the lake evolution under the human influence in the Laguna

Matanzas over the last two hundred years Although the record is longer (around

1000 years) we analyzed the last two centuries (unit 2 and 1) to provide a recent

historical context for the large changes detected during the 20th century

The first phase lasted from the beginning of the 19th century until ca 1940

(unit 2a Fig 3 4) and was characterized by moderate productivity with elevated

sediment input from the watershed as indicated by our geochemical proxies (BrTi

= 004 AlTi gt 01 Fig 6) Higher lake levels and dominant anoxic bottom conditions

(MnFe = 001 Fig3) can be related to increased precipitation (mean= 557 mmyr)

and lower temperatures (summer annual temperature lt19ordmC) During the Spanish

colonial period the Laguna Matanzas watershed was used as a livestock farm

(Jesuits 1627-1780 unit 3 followed by the Pedro Balmaceda era 1780-1810- unit

2a) (Contreras-Loacutepez et al 2014) The main buildings and farm facilities at the El

49

Convento village During this period livestock grazing and lumber extraction for

mining would have involved extensive deforestation and loss of native vegetation

(eg Armesto et al 1994 2010) However the Matanzas pollen record does not

show any significant regional deforestation during this period (Villa Martiacutenez 2002)

suggesting that the impact may have been highly localized

Lake productivity sediment input and elevated precipitation (Fig 6) all

suggest that N availability was related to this increased input from the watershed

The N from cow manure and soil particles would have led to higher δ15N values

(Elliot and Brush 2016) In addition anoxic lake bottom conditions would lead to

even further enrichment of buried sediment N The δ13C values lend further support

to our interpretation of increased sediment input -and N- from the watershed

Decreased δ13C values reach their lowest values in the entire record (ndash270permil) at

ca 1910 CE (Fig 4 6)

During most of the 19th century human activities in Laguna Matanzas were

similar to those during the Spanish Colonial period However the appearance of

Pinus radiata and Eucalyptus globulus pollen ca 1890 CE (Gibson 1972) the dune

stabilization-afforestation program which began ca 1900 CE (Albert 1900) and the

application of the Chilean forestry law of 1931 (DFL nordm265) contributed to an

increased capacity of the surrounding vegetation to retain nutrients and sediments

The law subsidized forest plantations in areas devoid of vegetation and prohibited

the cutting of forest on slopes greater than 45ordm These land use changes were coeval

with decreased sediment inputs (AlTi trend) from the watershed slightly increased

lake productivity (BrTi from 001 to 003) and a decrease in annual precipitation

(Fig 6) N isotope values become more negative during this period although they

remained high (from +49permil to +37permil) whereas the δ13C trend towards more

50

positive values reflects changes in the N source from watershed to in-lake dynamics

(e g increased endogenic productivity)

The second phase started after 1940 and is clearly marked by an abrupt

change in the general trend of δ15N that oscillates around +41permil (SD = 04permil) during

the first phase to +24permil (SD = 14permil) during the second These δ15N trends reflect

the lowest watershed nutrient and sediment inputs (based on the AlTi record)

decreased precipitation (mean = 318 mm year) and a slight increase in lake

productivity (increased BrTI) Depositional dynamics in the lake likely crossed a

threshold as human activity intensified throughout the watershed and lake levels

decreased

During the Great Acceleration δ15N values shifted towards higher values to

ca 3permil with an increase in δ13C values that are not reflected either in lake

productivity or lake level As the sediment input from the watershed increased and

precipitation remained as low as the previous decade δ15N values during this period

are likely related to watershed clearance which would have increased both nutrient

and sediment input into the lake

The δ13C trend to more positive values reaching the peaks in the 1960s (ndash

212permil) at the same time as the peaks in temperature (196 ordmC mean annual) with a

downward trend in precipitation A shift in OM origin from macrophytes and

watershed input influences to increased lake productivity could explain this trend

(Fig 4 1b)

In the 1970s the Laguna Matanzasacute watershed was mostly covered by native

forest (36) and grassland areas were intended for livestock grazing (44 Fig 5)

Both soils have δ15NSoil lt 5permil (Fig 4) Farming fields occupied a very small area and

tree plantations were almost nonexistent The decreasing trend in δ15N values seen

51

in our record is interrupted by several large peaks that occurred between ca 1975

and ca 1989 when the native forest and grassland areas fell by 23 and 27

respectively largely due to fires affecting 17 of the forests Agriculture fields

increased by 4 and forest plantations increased by 9 (unit 1a) Concomitantly

sediment ndash and likely N - inputs from the watershed decreased (as indicated by the

trend in AlTi) the precipitation was still relatively low (Fig 6) These changes are

likely related to the increase of vegetation cover especially of tree plantations (which

have more negative δ15N values) The small increase in productivity in the lake could

have been favored by increased temperature (von Gunten et al 2009) After 1989

the increase in agriculture land (17 in 2016) correlates with increasing δ15N δ13C

and TOC trends in spite of declining rainfall The increase of forest plantations was

mostly in response to the implementation of the Law Decree of Forestry

Development (DL 701 of 1974) that subsidized forest plantation After 1989 the

increase in agricultural land (17 in 2016) is synchronous with increasing δ15N

δ13C TOC and MnFe trends despite the decline in rainfall and overall lower lake

levels as more water is used for irrigation

The third phase started c 1990 CE (unit 1a) when OM accumulation rates

increase and δ13C δ15N decreased reaching their lowest values in the sequence

around 2000 CE Afterward during the 21st century δ13C and δ15N values again

began to increase The onset of unit 1 is marked by increased lake productivity and

decreased sediment input (AlTi lt 02) synchronous with intensive farming replacing

forestry and extensive agriculture (Fig 5 6)

A change in the general trend of δ15N values which decreased until 1990

(unit 1a) as the native forest and grassland area fell to 23 and 27 respectively

is most likely due to deforestation and fires Agriculture surface increased to 4 and

52

forest plantations increased by 9 (Fig 5) Concomitantly sediment ndash and likely N

ndash inputs from the watershed decreased probably related to the low precipitation (Fig

1b) and the increase of vegetation cover in the watershed in particularly by tree

plantations (with more negative δ15N Fig 4)

At present agriculture and tree plantations occupy around 34 of the

watershed surface whereas native forests and grassland cover 21 and 25

respectively Lake productivity as indicated by BrTi (Fig6) is higher and generates

OM with lower δ15N and higher δ13C values (about +2permil and ndash20permil ca 2000 CE

respectively) due to in-lake processes (ie biological N fixation and nutrient

recycling) and driven by changes in the arboreal cover which diminishes nutrient

flux into the lake (Fig6)

53

Figure 6 Anthropogenic and climatic forcing and lake dynamics response

(productivity sediment input N and C cycles) at Matanzas Lake over the last two

54

centuries Mean annual precipitation reconstructed and temperatures (von Gunten

et al 2009) Vertical gray bars indicate mega-droughts

5 CONCLUSIONS

Human activities have been the main factor controlling the N and C cycle in

the Laguna Matanzas during the last two centuries The N isotope signature in the

lake sediments reflects changes in the watershed fluxes to the lake but also in-lake

processes such as productivity and post-depositional changes Denitrification could

have been a dominant process during periods of increased anoxic conditions which

were more frequent prior to Great Acceleration (1950 CE) Higher δ15N and lower

δ13C values are associated with increased nutrient input from the watershed due to

increased livestock grazing and agriculture pressure (phase 1 Fig 7a) whereas

lower isotope values occurred during periods of increased forest plantations (phase

3 Fig 7c) During periods of increased lake productivity - such as in the last few

decades - δ15N values increased significantly

The most important change in C and N dynamics in the lake occurred after the

1950s (Phase 2 and 3) as tree plantations dominated the watershed Recent

changes in N dynamics can be explained by the higher nutrient contribution

associated with intensive agriculture (i e fertilizers) since the 1990s Although the

replacement of livestock activities with forestry and farming seems to have reduced

nutrient and soil export from the watershed to the lake the inefficient use of fertilizer

(by agriculture) can be the ultimate responsible for lake productivity increase during

the last decades

55

Figure 7 Schematic diagrams illustrating the main factors controlling the

isotope N signal in sediment OM of Laguna Matanzas N input from watershed

depends on human activities and land cover type Agriculture practices and cattle

(grassland development) contribute more N to the lake than native forest and

plantations Periods of higher productivity tend to deplete the dissolved inorganic N

in 14N resulting in higher δ15N (OM) The denitrification processes are more effective

in anoxic conditions associated with higher lake levels

6 METHODS

Short sediment cores were recovered from Laguna Matanzas using an Uwitec

gravity piston corer in 2011 and 2013 (Fig 1a) Sediment cores (MAT11-6A 129 cm

MAT13-2A 149 cm MAT13-3A 33 cm MAT13-4A 99 cm) were split

photographed sub-sampled and stored at the Pyrenean Institute of Ecology (IPE-

CSIC Spain) Core MAT11-6A was obtained from the central sector of the lake and

56

was selected for detailed multiproxy analyses (including elemental geochemistry C

and N isotope analyses XRF and 14C dating)

The isotope analyses (δ13C and δ15N) were performed at the Laboratory of

Biogeochemistry and Applied Stable Isotopes (LABASI-PUC Chile) using a Delta

V Advantage IRMS coupled to a Thermo Flash 2000 Elemental Analyzer via a

Conflo IV interface Isotope results are expressed in standard delta notation (δ) in

per mil (permil) relative to the standards Pee Dee Belemnite (Vienna Pee Dee

Belemnite) for C and to atmospheric N2 for N (Leng et al 2006) Sediment samples

for δ13Corg were pre-treated with 50 ml of HCl and 50 ml of deionized water and

dried at 60ordmC for 4 hr to remove carbonates (Harris et al 2011)

Total Carbon (TC) Total Organic Carbon (TOC) Total Inorganic Carbon (TIC)

and Total Sulphur (TS) were measured every cm with a LECO SC 144 DR at IPE-

CSIC XRF measurements were carried out every 4 mm in MAT11-1A-1G core using

an AVAATECH X-ray Fluorescence II core scanner at the University of Barcelona

(Spain) Results are expressed as element intensities in counts per second (cps)

Tube voltage was operated at 30 kV and 10 kV to obtain the abundances of 15

elements (Al Si S Cl K Ca Ti V Mn Fe Br Rb Sr Y Zr) with an average at

least of 1600 cps (less for Br=1000)

Biogenic silica content mineralogy and grain size were measured every 4

cm Biogenic silica was measured following Mortlock and Froelich (1989) and

Bernaacuterdez et al (2005) using an Auto Analyzer Technicon AAII for dissolved silicate

analysis Mineralogy was analyzed with a Siemens D-500 X-ray diffractometer (Cu

kα 40 kV 30 mA graphite monochromator) at the ICTJA-CSIC (Spain) Grain size

analyses were performed in a Beckmann Coulter LS 13 320 Particle Size Analyzer

57

at the IPE-CSIC The samples were classified according to textural classes as

follows clay (lt2 μm) silt (20-2 microm) and sand (gt2 microm) fractions

The age-depth model for the Laguna Matanzas sedimentary sequence was

constructed using 210Pb and 137Cs dating techniques (MAT13-4A) as well as two 14C

AMS dates on bulk sediment samples (MAT11-6A fig 2) We dated the dissolved

inorganic carbon (DIC) in the water column and no significant reservoir effect is

present in the modern-day water column (10454 + 035 pcmc Table 2) An age-

depth model was obtained with the Bacon R package to estimate the deposition

rates and associated age uncertainties along the core (Blaauw and Christen 2011)

To estimate LUCC of Laguna Matanzasacutes watershed we use satellite images

Landsat MSS for 1975 Landsat TM for 1989 and Landsat OLI for 2016 all taken in

summer or autumn (Table 1) We performed supervised classification of land uses

(maximum likelihood algorithm) for each year (1975 1989 and 2016) and the results

were mapped using software ArcGIS 102 in 2017

Satellite Images Acquisition Date

Resolution

Landsat MSS 19750322 60 m

Landsat TM 19890217 30 m

Landsat OLI 20160404 30 m

Table 1 Landsat imagery

Surface water samples were filtered for obtained particulate organic matter In

addition soil samples from the main land usecover present in the Laguna Matanzas

watershed were collected Elemental C N and their corresponding isotopes from

POM and soil were obtained at the LABASI and used here as end members

Daily precipitation at Santo Domingo (33ordm39`S 71ordm3 6`W)- the nearest weather

station to Laguna Matanzasndash was compiled using the redPrec R package (Fig1 d

Serrano-Notivoli et al 2017 Sarricolea et al 2019) To extend our precipitation

58

reconstruction back to 1824 we correlated this dataset with that available for

Santiago The Santiago data was compiled from data published in the Anales of

Universidad of Chile (1850) for the years 1824 to 1849 Almeyda (1940) for the years

1849 to 1864 and the Quinta Normal series from 1866 to the present (Direccioacuten

Meteoroloacutegica de Chile) We generated a linear regression model between the

presentday Santo Domingo station and the compiled Santiago data with a Pearson

coefficient of 087 and p-valuelt 001

Acknowledgments This research was funded by grants CONICYT AFB170008

to the Institute of Ecology and Biodiversity (IEB) and FONDECYT 1150763 (to CL)

Doctoral grant Becas Chile 21150224 MEDLANT (Spanish Ministry of Economy

and Competitiveness grant CGL2016-76215-R) Additional funding was provided

by the Laboratorio Internacional de Cambio Global (LINCGlobal PUC-CSIC) We

thank R Lopez E Royo and M Gallegos for help with sample analyses We thank

the Laboratory of Biogeochemistry and Applied Stable Isotopes (LABASI) of the

Department of Ecology (PUC) for sample analyses

References

Albert F 1900 Las dunas o sean arenas volantes voladeros arenas muertas invasion de las arenas playas I meacutedanos del centro de Chile comprendiendo el litoral desde el liacutemite norte de la provincia de Aconcagua hasta el liacutemite sur de la de Arauco Memorias cientiacuteficas I Lit

Anderson NJ W D Fritz SC 2009 Holocene carbon burial by lakes in SW

Greenland Glob Chang Biol httpsdoiorg101111j1365-2486200901942x

Armesto J Villagraacuten C Donoso C 1994 La historia del bosque templado

chileno Ambient y Desarro 66 66ndash72 httpsdoiorg101007BF00385244

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea

AM Marquet PA 2010 From the Holocene to the Anthropocene A

59

historical framework for land cover change in southwestern South America in the past 15000 years Land use policy 27 148ndash160 httpsdoiorg101016jlandusepol200907006

Arnell NW Gosling SN 2013 The impacts of climate change on river flow

regimes at the global scale J Hydrol 486 351ndash364 httpsdoiorg101016JJHYDROL201302010

Bernaacuterdez P Prego R Franceacutes G Gonzaacutelez-Aacutelvarez R 2005 Opal content in

the Riacutea de Vigo and Galician continental shelf Biogenic silica in the muddy fraction as an accurate paleoproductivity proxy Cont Shelf Res httpsdoiorg101016jcsr200412009

Blaauw M Christen JA 2011 Flexible paleoclimate age-depth models using an

autoregressive gamma process Bayesian Anal 6 457ndash474 httpsdoiorg10121411-BA618

Brush GS 2009 Historical land use nitrogen and coastal eutrophication A

paleoecological perspective Estuaries and Coasts 32 18ndash28 httpsdoiorg101007s12237-008-9106-z

Camarero L Catalan J 2012 Atmospheric phosphorus deposition may cause

lakes to revert from phosphorus limitation back to nitrogen limitation Nat Commun httpsdoiorg101038ncomms2125

Carrevedo ML Frugone M Latorre C Maldonado A Bernaacuterdez P Prego

R Caacuterdenas D Valero-Garceacutes B 2015 A 700-year record of climate and environmental change from a high Andean lake Laguna del Maule central Chile (36degS) Holocene 25 956ndash972 httpsdoiorg1011770959683615574584

Catalan J Pla-Rabeacutes S Wolfe AP Smol JP Ruumlhland KM Anderson NJ

Kopaacuteček J Stuchliacutek E Schmidt R Koinig KA Camarero L Flower RJ Heiri O Kamenik C Korhola A Leavitt PR Psenner R Renberg I 2013 Global change revealed by palaeolimnological records from remote lakes A review J Paleolimnol httpsdoiorg101007s10933-013-9681-2

Chen Y Y Huang W Wang W H Juang J Y Hong J S Kato T amp

Luyssaert S (2019) Reconstructing Taiwanrsquos land cover changes between 1904 and 2015 from historical maps and satellite images Scientific Reports 9(1) 3643 httpsdoiorg101038s41598-019-40063-1

Contreras S Werne J P Araneda A Urrutia R amp Conejero C A (2018)

Organic matter geochemical signatures (TOC TN CN ratio δ 13 C and δ 15 N) of surface sediment from lakes distributed along a climatological gradient on the western side of the southern Andes Science of The Total Environment 630 878-888 httpsdoiorg101016jscitotenv201802225

Contreras-Loacutepez M (Playa AUHVC (Universidad de VRFS (Pontificia UC

60

de V 2014 ELEMENTOS DE LA HISTORIA NATURAL DEL An Mus Hist Natulas Vaplaraiso 27 51ndash67

Cuven S Francus P Lamoureux SF 2010 Estimation of grain size variability

with micro X-ray fluorescence in laminated lacustrine sediments Cape Bounty Canadian High Arctic J Paleolimnol 44 803ndash817 httpsdoiorg101007s10933-010-9453-1

Diebel M Vander Zanden MJ 201209 Nitrogen stable isotopes in streams

stable isotopes Nitrogen effects of agricultural sources and transformations Ecol Appl 19 1127ndash1134 httpsdoiorg10189008-03271

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in

freshwater wetlands record long-term changes in watershed nitrogen source and land use SO - Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash2916

Elser J 2011 A world awash with nitrogen Science 334 1504ndash1506 Espizua LE Pitte P 2009 The Little Ice Age glacier advance in the Central

Andes (35degS) Argentina Palaeogeogr Palaeoclimatol Palaeoecol 281 345ndash350 httpsdoiorg101016JPALAEO200810032

Figueroa JA Castro S A Marquet P A Jaksic FM 2004 Exotic plant

invasions to the mediterranean region of Chile  causes history and impacts Invasioacuten de plantas exoacuteticas en la regioacuten mediterraacutenea de Chile  causas historia e impactos Rev Chil Hist Nat 465ndash483 httpsdoiorg104067S0716-078X2004000300006

Fowler D Coyle M Skiba U Sutton MA Cape JN Reis S Sheppard

LJ Jenkins A Grizzetti B Galloway N Vitousek P Leach A Bouwman AF Butterbach-bahl K Dentener F Stevenson D Amann M Voss M 2013 The global nitrogen cycle in the twenty- first century Philisophical Trans R Soc B httpsdoiorghttpdxdoiorg101098rstb20130164

Frank D Reichstein M Bahn M Thonicke K Frank D Mahecha MD

Smith P van der Velde M Vicca S Babst F Beer C Buchmann N Canadell JG Ciais P Cramer W Ibrom A Miglietta F Poulter B Rammig A Seneviratne SI Walz A Wattenbach M Zavala MA Zscheischler J 2015 Effects of climate extremes on the terrestrial carbon cycle Concepts processes and potential future impacts Glob Chang Biol httpsdoiorg101111gcb12916

Fritz SC Anderson NJ 2013 The relative influences of climate and catchment

processes on Holocene lake development in glaciated regions J Paleolimnol httpsdoiorg101007s10933-013-9684-z

Frugone-Aacutelvarez M Latorre C Giralt S Polanco-Martiacutenez J Bernaacuterdez P

61

Oliva-Urcia B Maldonado A Carrevedo ML Moreno A Delgado Huertas A Prego R Barreiro-Lostres F Valero-Garceacutes B 2017 A 7000-year high-resolution lake sediment record from coastal central Chile (Lago Vichuqueacuten 34degS) implications for past sea level and environmental variability J Quat Sci 32 830ndash844 httpsdoiorg101002jqs2936

Galloway JN Townsend AR Erisman JW Bekunda M Cai Z Freney JR

Martinelli LA Seitzinger SP Sutton MA 2008 Transformation of the Nitrogen Cycle  Science (80- ) 320 889ndash892 httpsdoiorg101126science1136674

Gaumllman V Rydberg J Bigler C 2009 Decadal diagenetic effects on δ 13 C and

δ 15 N studied in varved lake sediment Limnol Oceanogr 54 917ndash924 httpsdoiorg104319lo20095430917

Garciacutea-Ruiz JM 2010 The effects of land uses on soil erosion in Spain A

review Catena httpsdoiorg101016jcatena201001001

Garciacutea-Ruiz JM Loacutepez-Moreno JI Lasanta T Vicente-Serrano SM

Gonzaacutelez-Sampeacuteriz P Valero-Garceacutes BL Sanjuaacuten Y Begueriacutea S Nadal-Romero E Lana-Renault N Goacutemez-Villar A 2015 Los efectos geoecoloacutegicos del cambio global en el Pirineo Central espantildeol una revisioacuten a distintas escalas espaciales y temporales Pirineos httpsdoiorg103989Pirineos2015170005

Garciacutea-Ruiz JM Nadal-Romero E Lana-Renault N Begueriacutea S 2013

Erosion in Mediterranean landscapes Changes and future challenges Geomorphology 198 20ndash36 httpsdoiorg101016jgeomorph201305023

Garreaud RD Vuille M Compagnucci R Marengo J 2009 Present-day

South American climate Palaeogeogr Palaeoclimatol Palaeoecol httpsdoiorg101016jpalaeo200710032

Gayo EM Latorre C Jordan TE Nester PL Estay SA Ojeda KF

Santoro CM 2012 Late Quaternary hydrological and ecological changes in the hyperarid core of the northern Atacama Desert (~21degS) Earth-Science Rev httpsdoiorg101016jearscirev201204003

Ge Y Zhang K amp Yang X (2019) A 110-year pollen record of land use and land

cover changes in an anthropogenic watershed landscape eastern China Understanding past human-environment interactions Science of The Total Environment 650 2906-2918 httpsdoiorg101016jscitotenv201810058

Goyette J Bennett EM Howarth RW Maranger R 2016 Global

Biogeochemical Cycles 1000ndash1014 httpsdoiorg1010022016GB005384Received

Granger J Sigman DM Lehmann MF Tortell PD 2008 Nitrogen and

oxygen isotope fractionation during dissimilatory nitrate reduction by

62

denitrifying bacteria 53 2533ndash2545 httpsdoiorg10230740058342

Gruber N Galloway JN 2008 An Earth-system perspective of the global

nitrogen cycle Nature 451 293ndash296 httpsdoiorg101038nature06592

Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater eutrophic lake Limnol Oceanogr 51 2837ndash2848 httpsdoiorg104319lo20065162837

Gurnell AM Petts GE Hannah DM Smith BPG Edwards PJ Kollmann

J Ward J V Tockner K 2001 Effects of historical land use on sediment yield from a lacustrine watershed in central Chile Earth Surf Process Landforms 26 63ndash76 httpsdoiorg1010021096-9837(200101)261lt63AID-ESP157gt30CO2-J

Heathcote A J et al Large increases in carbon burial in northern lakes during the

Anthropocene Nat Commun 610016 doi 101038ncomms10016 (2015) Hollander DJ Smith MA 2001 Microbially mediated carbon cycling as a

control on the δ13C of sedimentary carbon in eutrophic Lake Mendota (USA) New models for interpreting isotopic excursions in the sedimentary record Geochim Cosmochim Acta httpsdoiorg101016S0016-7037(00)00506-8

Holtgrieve GW Schindler DE Hobbs WO Leavitt PR Ward EJ Bunting

L Chen G Finney BP Gregory-Eaves I Holmgren S Lisac MJ Lisi PJ Nydick K Rogers LA Saros JE Selbie DT Shapley MD Walsh PB Wolfe AP 2011 A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere Science (80) 334 1545ndash1548 httpsdoiorg101126science1212267

Hooper DU Adair EC Cardinale BJ Byrnes JEK Hungate BA Matulich

KL Gonzalez A Duffy JE Gamfeldt L Connor MI 2012 A global synthesis reveals biodiversity loss as a major driver of ecosystem change Nature httpsdoiorg101038nature11118

Horvatinčić N Sironić A Barešić J Sondi I Krajcar Bronić I Borković D

2016 Mineralogical organic and isotopic composition as palaeoenvironmental records in the lake sediments of two lakes the Plitvice Lakes Croatia Quat Int httpsdoiorg101016jquaint201701022

Howarth RW 2004 Human acceleration of the nitrogen cycle Drivers

consequences and steps toward solutions Water Sci Technol httpsdoiorg1010382Fscientificamerican0490-56

Jenny B Valero-Garceacutes BL Urrutia R Kelts K Veit H Appleby PG Geyh

M 2002 Moisture changes and fluctuations of the Westerlies in Mediterranean Central Chile during the last 2000 years The Laguna Aculeo record (33deg50primeS) Quat Int 87 3ndash18 httpsdoiorg101016S1040-

63

6182(01)00058-1

Jenny B Wilhelm D Valero-Garceacutes BL 2003 The Southern Westerlies in

Central Chile Holocene precipitation estimates based on a water balance model for Laguna Aculeo (33deg50primeS) Clim Dyn 20 269ndash280 httpsdoiorg101007s00382-002-0267-3

Leng M J Lamb A L Heaton T H Marshall J D Wolfe B B Jones M D

amp Arrowsmith C 2006 Isotopes in lake sediments In Isotopes in palaeoenvironmental research (pp 147-184) Springer Dordrecht

Le Roux JP Nielsen SN Kemnitz H Henriquez Aacute 2008 A Pliocene mega-

tsunami deposit and associated features in the Ranquil Formation southern Chile Sediment Geol 203 164ndash180 httpsdoiorg101016jsedgeo200712002

Lehmann M Bernasconi S Barbieri a McKenzie J 2002 Preservation of

organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis Geochim Cosmochim Acta 66 3573ndash3584 httpsdoiorg101016S0016-7037(02)00968-7

Lenihan JM Drapek R Bachelet D Neilson RP 2003 Climate change

effects on vegetation distribution carbon and fire in California Ecol Appl httpsdoiorg101890025295

McLauchlan K K Gerhart L M Battles J J Craine J M Elmore A J

Higuera P E amp Perakis S S (2017) Centennial-scale reductions in nitrogen availability in temperate forests of the United States Scientific reports 7(1) 7856 httpsdoi101038s41598-017-08170-z

Martel-Cea A Maldonado A Grosjean M Alvial I de Jong R Fritz SC von

Gunten L 2016 Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical Central Chile (32ordmS 3050 masl) Palaeogeogr Palaeoclimatol Palaeoecol 461 44ndash54 httpsdoiorg101016jpalaeo201608003

Martiacuten-Foreacutes I Casado MA Castro I Ovalle C Pozo A Del Acosta-Gallo

B Saacutenchez-Jardoacuten L Miguel JM De 2012 Flora of the mediterranean basin in the chilean ESPINALES Evidence of colonisation Pastos 42 137ndash160

Marzecovaacute A Mikomaumlgi a Koff T Martma T 2011 Sedimentary geochemical

response to human impact on Lake Notildemmejaumlrv Estonia Est J Ecol 60 54 httpsdoiorg103176eco2011105

Matesanz S Valladares F 2014 Ecological and evolutionary responses of

Mediterranean plants to global change Environ Exp Bot httpsdoiorg101016jenvexpbot201309004

64

McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE 2007

Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470 httpsdoiorg101073pnas0701779104

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash1643 httpsdoiorg1011770959683613496289

Menzel P Gaye B Wiesner MG Prasad S Stebich M Das BK Anoop A

Riedel N Basavaiah N 2013 Influence of bottom water anoxia on nitrogen isotopic ratios and amino acid contributions of recent sediments from small eutrophic Lonar Lake central India Limnol Oceanogr 58 1061ndash1074 httpsdoiorg104319lo20135831061

Meyers PA Teranes JL 2001 Sediment organic matter in Tracking

Environmental Change Using Lake Sediments Volume 2 Physical and Geochemical Methods httpsdoiorg1018971551-5028(1999)018lt0231SOMCAAgt23CO2

Michelutti N Wolfe AP Cooke CA Hobbs WO Vuille M Smol JP 2015

Climate change forces new ecological states in tropical Andean lakes PLoS One httpsdoiorg101371journalpone0115338

Muntildeoz-Rojas M De la Rosa D Zavala LM Jordaacuten A Anaya-Romero M

2011 Changes in land cover and vegetation carbon stocks in Andalusia Southern Spain (1956-2007) Sci Total Environ httpsdoiorg101016jscitotenv201104009

Naeher S Gilli A North RP Hamann Y Schubert CJ 2013 Tracing bottom

water oxygenation with sedimentary MnFe ratios in Lake Zurich Switzerland Chem Geol 352 125ndash133 httpsdoiorg101016jchemgeo201306006

Poraj-Goacuterska A I Żarczyński M J Ahrens A Enters D Weisbrodt D amp

Tylmann W (2017) Impact of historical land use changes on lacustrine sedimentation recorded in varved sediments of Lake Jaczno northeastern Poland Catena 153 182-193 httpdxdoiorg101016jcatena201702007

Pongratz J Reick CH Raddatz T Claussen M 2010 Biogeophysical versus

biogeochemical climate response to historical anthropogenic land cover change Geophys Res Lett 37 1ndash5 httpsdoiorg1010292010GL043010

Prudhomme C Giuntoli I Robinson EL Clark DB Arnell NW Dankers R

Fekete BM Franssen W Gerten D Gosling SN Hagemann S Hannah DM Kim H Masaki Y Satoh Y Stacke T Wada Y Wisser D 2014 Hydrological droughts in the 21st century hotspots and uncertainties from a global multimodel ensemble experiment Proc Natl Acad Sci httpsdoiorg101073pnas1222473110

65

Ruumlhland KM Paterson AM Smol JP 2015 Lake diatom responses to

warming reviewing the evidence J Paleolimnol httpsdoiorg101007s10933-

015-9837-3

Sarricolea P Meseguer-Ruiz Oacute Serrano-Notivoli R Soto M V amp Martin-Vide

J (2019) Trends of daily precipitation concentration in Central-Southern Chile Atmospheric research 215 85-98 httpsdoiorg101016jatmosres201809005

Sernageomin 2003 Mapa geologico de chile version digital Publ Geol Digit Serrano-Notivoli R de Luis M Begueriumlia S 2017 An R package for daily

precipitation climate series reconstruction Environ Model Softw httpsdoiorg101016jenvsoft201611005

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98 httpsdoiorg1011772053019614564785

Stine S 1994 Extreme and persistent drought in California and Patagonia during

mediaeval time Nature 369 546ndash549 httpsdoiorg101038369546a0

Stocker TF Dahe Q Plattner G-K Alexander L V Allen SK Bindoff NL

Breacuteon F-M Church JA Cubash U Emori S Forster P Friedlingstein P Talley LD Vaughan DG Xie S-P 2013 Technical Summary in Climate Change 2013 The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change httpsdoiorg101017 CBO9781107415324005

Syvitski JPM Voumlroumlsmarty CJ Kettner AJ Green P 2005 Impact of humans

on the flux of terrestrial sediment to the global coastal ocean Science 308(5720) 376-380 httpsdoiorg101126science1109454

Thomas RQ Zaehle S Templer PH Goodale CL 2013 Global patterns of

nitrogen limitation Confronting two global biogeochemical models with observations Glob Chang Biol httpsdoiorg101111gcb12281

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status J Paleolimnol 47 693ndash706 httpsdoiorg101007s10933-012-9593-6

Urbina Carrasco MX Gorigoitiacutea Abbott N Cisternas Vega M 2016 Aportes a

la historia siacutesmica de Chile el caso del gran terremoto de 1730 Anuario de Estudios Americanos httpsdoiorg103989aeamer2016211

Vargas G Ortlieb L Chapron E Valdes J Marquardt C 2005 Paleoseismic

inferences from a high-resolution marine sedimentary record in northern Chile

66

(23degS) Tectonophysics httpsdoiorg101016jtecto200412031 399(1-4) 381-398httpsdoiorg101016jtecto200412031

Valero-Garceacutes BL Latorre C Morelliacuten M Corella P Maldonado A Frugone M Moreno A 2010 Recent Climate variability and human impact from lacustrine cores in central Chile 2nd International LOTRED-South America Symposium Reconstructing Climate Variations in South America and the Antarctic Peninsula over the last 2000 years Valdivia p 76 (httpwwwpagesunibechproductsmeeting-products1024-2nd-international-lotred-south-america-symposium-reconstructing-climate-variations-in-south-america-and-the-antarctic-peninsula-over-the-last-2000-yearshttpwwwpagesunibechproductsmeeting-products1024-2nd-international-lotred-south-america-symposium-reconstructing-climate-variations-in-south-america-and-the-antarctic-peninsula-over-the-last-2000-years

Vicente-Serrano SM Gouveia C Camarero JJ Begueria S Trigo R

Lopez-Moreno JI Azorin-Molina C Pasho E Lorenzo-Lacruz J Revuelto J Moran-Tejeda E Sanchez-Lorenzo A 2013 Response of vegetation to drought time-scales across global land biomes Proc Natl Acad Sci httpsdoiorg101073pnas1207068110

Villa Martiacutenez R P 2002 Historia del clima y la vegetacioacuten de Chile Central

durante el Holoceno Una reconstruccioacuten basada en el anaacutelisis de polen sedimentos microalgas y carboacuten PhD

Villa-Martiacutenez R Villagraacuten C Jenny B 2003 Pollen evidence for late -

Holocene climatic variability at laguna de Aculeo Central Chile (lat 34o S) The Holocene 3 361ndash367

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Human alteration of the global nitrogen cycle sources and consequences Ecological applications 7(3) 737-750 httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M Rein B Urrutia R amp Appleby P (2009) A

quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo central Chile back to AD 850 The Holocene 19(6) 873-881 httpsdoiorg1011770959683609336573

von Gunten L Grosjean M Eggenberger U Grob P Urrutia R Morales A

2009 Pollution and eutrophication history AD 1800-2005 as recorded in sediments from five lakes in Central Chile Glob Planet Change 68 198ndash208 httpsdoiorg101016jgloplacha200904004

Widory D Kloppmann W Chery L Bonnin J Rochdi H Guinamant JL

2004 Nitrate in groundwater An isotopic multi-tracer approach J Contam Hydrol 72 165ndash188 httpsdoiorg101016jjconhyd200310010

67

Woodward CA Potito AP Beilman DW 2012 Carbon and nitrogen stable isotope ratios in surface sediments from lakes of western Ireland Implications for inferring past lake productivity and nitrogen loading J Paleolimnol 47 167ndash184 httpsdoiorg101007s10933-011-9568-z

68

Supplementary material

Facie Name Description Depositional Environment

F1 Organic-rich

mud

Massive to banded black

organic - rich (TOC up to 14 )

mud with aragonite in dm - thick

layers Slightly banded intervals

contain less OM (TOClt4) and

aragonite than massive

intervals High MnFe (oxic

bottom conditions) High CaTi

BrTi and BioSi (up to 5)

Distal low energy environment

high productivity well oxygenated

and brackish waters and relative

low lake level

F2 Massive to

banded silty clay

to fine silt

cm-thick layers mostly

composed by silicates

(plagioclase quartz cristobalite

up to 65 TOC mean=23)

Some layers have relatively high

pyrite content (up to 25) No

carbonates CaTi BrTi and

BioSi (mean=48) are lower

than F1 higher ZrTi (coarser

grain size)

Deposition during periods of

higher sediment input from the

watershed

69

F3 Banded to

laminated light

brown silty clay

cm-thick layers mostly

composed of clay minerals

quartz and plagioclase (up to

42) low organic matter

(TOC mean=13) low pyrite

and BioSi content

(mean=46) and some

aragonite

Flooding events reworking

coastal deposits

F4 Laminated

coarse silts

Thin massive layers (lt2mm)

dominated by silicates Low

TOC (mean=214 ) BrTi

(mean=002) MnFe (lt02)

TIC (lt034) BioSi

(mean=46) and TS values

(lt064) and high ZrTi

Rapid flooding events

transporting material mostly

from within the watershed

F5 Breccia with

coarse silt

matrix

A 17 cm thick (80-97 cm

depth) layer composed by

irregular mm to cm-long ldquosoft-

clastsrdquo of silty sediment

fragments in a coarse silt

matrix Low CaTi BrTi and

MnFe ratios and BioSi

Rapid high energy flood

events

70

(mean=43) and high ZrTi

(gt018)

Table Sedimentological and compositional characteristics of Laguna Matanzas

facies

71

CAPIacuteTULO 2 STABLE ISOTOPES TRACK LAND USE AND COVER

CHANGES IN A MEDITERRANEAN LAKE IN CENTRAL CHILE OVER THE

LAST 600 YEARS

72

Stable isotopes track land use and cover changes in a mediterranean lake in

central Chile over the last 600 years

Magdalena Fuentealbaabc Claudio Latorreabc Matiacuteas Frugone-Aacutelvarezabc Pablo

Sarricolead Leonardo Villaciacutese M Laura Carrevedob Blas Valero-Garceacutescg

a Departamento de Ecologiacutea Pontificia Universidad Catoacutelica de Chile Alameda 340 Santiago Chile

b Institute of Ecology and Biodiversity (IEB) Las Palmeras 3425 Nuntildeoa Santiago Chile

c Laboratorio Internacional de Cambio Global LINCGlobal PUC-CSIC Spain

d Departamento de Geografiacutea Universidad de Chile Marcoleta 250 Santiago Chile

e Departamento de Ecologiacutea Universidad de ChileLas Palmeras 3425 Nuntildeoa Santiago Chile

f Instituto Pirenaico de Ecologiacutea (IPE-CSIC) Avenida Montantildeana 1005 Zaragoza 50059 Spain

Corresponding authors E-mail addresses clatorrebiopuccl magdalenafuentealbagmailcom

Key words Anthropocene lake sediment δsup1⁵N δsup1sup3C Great Acceleration organic

geochemistry watershedndashlake system Stable Isotope Analyses land usecover

change Nitrogen cycle mediterranean ecosystems central Chile

73

Abstract

Nutrient fluxes in many aquatic ecosystems are currently being overridden by

anthropic controls especially since the industrial revolution (mid-1800s) and the

Great Acceleration (mid-1900s) Land use and cover changes (LUCC) alter the

availability and fluxes of nutrients such as nitrogen that are transferred via runoff

and groundwater into lakes By altering lake productivity and trophic status these

changes are often preserved in the sedimentary record Here we use

geolimnological proxies and stable isotope analyses (δsup1⁵N δsup13C) on lake sediments

to reconstruct the lake-watershed nutrient transfer in a central Chilean lake (Lago

Vichuqueacuten) over the past 600 years We compare our multiproxy record from recent

lake sediments to the soilvegetation relationship across the watershed as well as

land usecover changes from 1975 to 2014 derived from satellite images Our results

show that lake sediment δsup1⁵N values increased with meadow cover but decreased

with tree plantations suggesting increased nitrogen retention when trees dominate

the watershed Our δsup1⁵N record from central Chile can thus be interpreted as a proxy

for nutrient availability over the last 600 years mainly derived from land use changes

coupled with climate drivers Although variable sources of organic matter and in situ

fractionation often hinder straightforward environmental interpretations of stable N

isotope signatures our study shows that lake sediment δsup1⁵N can be a useful tool for

assessing the contribution of past human activities in nutrient and nitrogen cycling

1 Introduction

Nitrogen (N) is a limiting nutrient in terrestrial and aquatic ecosystems (Vitousek

et al 1997) Changes in its availability can drive eutrophication and increase

pollution in these ecosystems (McLauchlan et al 2013) Although recent human

74

impacts on the global N cycle have been significant the consequences of increased

anthropogenic N on these ecosystems are unclear (Gerhart and Mclauchlan 2014

Battye et al 2017) Isotopic signatures are key to understand N dynamics in lakes

nevertheless in situ andor diagenetic fractionation along with multiple sources of

organic matter (OM) often hinder straightforward environmental interpretations from

isotopes Monitoring δ15N and δ13C values as components of the N cycle

specifically those related to the link between terrestrial and aquatic ecosystems can

help differentiate between effects from processes versus sources in stable isotope

values (eg from Particulate Organic Matter -POM- soil and vegetation) and

improve how we interpret variations in δ15N (and δ13C) values at longer temporal

scales

The main processes controlling stable N isotopes in bulk lake OM are source

lake productivity diagenesis and denitrification (Talbot 2001 Leng et al 2006

Fariacuteas et al 2009 Torres et al 2012 Brahney et al 2014) N sources depend on

contributions from the watershed (ie soil and biomass) the transfer of atmospheric

N to the lake (ie atmospheric N2 fixation) and nutrient recycling (Leng et al 2006)

Atmospheric N2 (isotopically defined as δ15N =0) is fixed by cyanobacteria with

minimal fractionation resulting in δ15NOM values that fluctuate from -2 to +2permil (Fogel

and Cifuentes 1993 Talbot 2001 Elliot and Brush 2006) Besides N2 fixation by

cyanobacteria phytoplankton species assimilate dissolved inorganic nitrogen (DIN)

and values typically range from +7 to +10permil (Xu et al 2016 Meyers et al 2003) In

addition seasonal changes in POM occur in the lake water column Gu et al (2006)

sampled the water column of Lake Wauberg (Florida USA) during a hydrologic year

and found a higher development of N fixing species during the summer A major

factor behind this increase are human activities in the watershed which control the

75

inputs of the sediment and nutrients to the lake (Woodward et al 2011) Some

studies have shown higher δ15N values in lake sediments from watersheds that are

highly affected by human activities (Bruland and Mackenzie 2010 Woodward et al

2011) Syntenic fertilizers displayed δ15N values between -4 to +4permil cattle manure

around +8 to +22permil and surface and groundwater OM between 0 to +10permil (Elliott

and Brush 2006 Leng et al 2006) Although relatively low δ15N values from

fertilizers constitute major N input to human-altered watersheds the elevated loss

of 14N via volatilization of ammonia and denitrification leaves the remaining total N

input enriched in 15N (Bruland and Mackenzie 2010)

In addition to the different sources and variations in lake productivity early

diagenesis at the sedimentndashwater interface in the sediment can further alter

sediment OM isotope values (Brahney et al 2014 Galman et al 2009) During

diagenetic loss of N in lacustrine systems kinetic fractionation occurs and the

remaining N is enriched in 15N leading to higher δ15N values (Galman et al 2006

Talbot 2001) Denitrification tends to enrich lake sediments in 15N due to the

assimilation of nitrates by denitrifying bacteria (Granger et al 2008) and is more

prevalent in anoxic environments (Brahney et al 2016 Lehman et al 2002)

Carbon isotopes in lake sediments can also provide useful information about

paleoenvironmental changes OM origin and depositional processes (Meyers et al

2003) Allochthonous organic sources (high CN ratios) produce isotope values

similar to values from catchment vegetation Autochthonous organic matter (low CN

ratio) is influenced by fractionation both in the lake and the watershed leading up to

carbon assimilation by lacustrine biota (Woodward et al 2011) Changes in

productivity greatly affect δ13COM values (Torres et al 2012) as during C uptake

plankton preferentially assimilate 12C leaving the dissolved inorganic carbon (DIC)

76

pool enriched in 13C (Gu et al 2006) with phytoplankton averaging ca 20 permil lower

than the respective δ13CDIC values (Leng et al 2006) Under conditions of low to

moderate primary productivity plankton preferentially uptake the lighter 12C

resulting in low δ13C values displayed by the OM (Torres et al 2012) Conversely

during high primary productivity phytoplankton will uptake 12C until its depletion and

is then forced to assimilate the heavier isotope resulting in an increase in δ13C

values Higher productivity in C-limited lakes due to slow water-atmosphere

exchange of CO2 also results in high δ13C values (Galman et al 2009) In these

cases algae are forced to uptake dissolved bicarbonate with δ13C values between

7 to 10permil higher than those of the atmospheric CO2 dissolved in water (Sun et al

2016 Torres et al 2012 Galman et al 2009)

Stable isotope analyses from lake sediments are thus useful tools to

reconstruct shifts in lake-watershed dynamics caused by changes in limnological

parameters and LUCC Our knowledge of the current processes that can affect

stable isotope signals in a watershed-lake system is limited however as monitoring

studies are scarce Besides in order to use stable isotope signatures to reconstruct

past environmental changes we require a multiproxy approach to understand the

role of the different variables in controlling these values Hence in this study we

carried out a detailed survey of current N dynamics in a coastal central Chilean lake

(Lago Vichuqueacuten) and a multiproxy study of a sediment record spanning the last

600 years The characterization of the recent changes in the watershed since 1970s

is based on satellite images to compare recent changes in the lake and assess how

these are related with climate variability and an ever increasing human footprint

(Lara et al 2012 Gallardo et al 2015 Steffen et al 2015) Our main goal is to

investigate how stable isotope values from lake sediment reflect changes in the lake

77

ndash watershed system during periods of high watershed disruption (eg Spanish

Conquest late XIX century Great Acceleration) and recent climate change (eg

Little Ice Age and current global warming)

2 Study Site

Lago Vichuqueacuten (34ordm49`S 72ordm04W 4 m asl 30 m of depth Fig 1) is a

mesotrophic to eutrophic lake with dominant anoxic bottom conditions that is

stratified year around (Frugone-Aacutelvarez et al 2017) The main inlets are the

Vichuqueacuten and Huintildee rivers and the only outlet is the Llico estuary that drains into

the Pacific Ocean High tides can sporadically shift the flow direction of the Llico

estuary which increases the marine influence in the lake Dune accretion gradually

limited ocean-lake connectivity until the estuary was almost completely closed off

by ca 10 ky BP and the current lake regime formed (Frugone-Aacutelvarez et al 2017)

The area is characterized by a mediterranean climate with cold-wet winters and

hot-dry summers and an annual precipitation of ~650 mm and a mean annual

temperature of 15ordmC During the austral winter months (June - August) precipitation

is modulated by north-west shifts of the South Pacific Anticyclone (SPA) followed by

an increased frequency of storm fronts stemming off the South Westerly Winds

(SWW) A strengthened SPA during austral summers (December - March) which

are typically dry and warm blocks the northward migration of storm tracks stemming

off the SWW (Fig1 Frugone-Aacutelvarez et al 2017)

78

Figure 1 a) The location of the Lago Vichuqueacuten in central Chile b) Map of land

uses and cover in 2016 c) Ombrothermic diagram mediterranean climates are

characterized by cold-wet winters with surplus moisture from June to August and

hot-dry summers d) Lake bathymetry showing location of cores and water sampling

sites used in this study

Although major land cover changes in the area have occurred since 1975 to the

present as the native forests were replaced by tree (Monterey pine and eucalyptus)

plantations the region was settled before the Spanish conquest (Frugone-Alvarez

et al 2018) Historical documents indicate that Vichuqueacuten was occupied by a

Mitimaes colony as part of the Inka empire (Odone 1998) Unlike other Andean

areas during the Inka period the introduction of corn and quinoa in the Vichuqueacuten

watershed do not seem to have intensified land use The Spanish colonial period in

Chile lasted from 1542 CE to the independence in 1810 CE The first historical

document (1550 CE) shows that the areas around Vichuqueacuten were settled by the

Spanish early on as the Vichuqueacuten watershed was given as an ldquoencomiendardquo

system to Juan Cuevas The ldquoencomiendardquo system provided the owners with land

79

and indigenous people to work but also the introduction of wheat wine cattle

grazing and logging of native forests for lumber extraction and increasing land for

agricultural activities (Odone et al 1998 Armesto et al 2010) During the 19th

century (the Republic) the export of wheat to Australia and Canada generated

intensive changes in land cover use The town of Vichuqueacuten became the regional

capital and plans to build a maritime port in the bay of Vichuqueacuten were drawn

However the fall of international markets in 1880 paralyzed these plans During the

20th century the plantation of trees (Pinus radiata and Eucalyptus globulus) in areas

cleared of native forests was subsidized by two national laws DFL nordm265 (1931) and

DFL nordm 701 (1974) both of which provided funds for such plantations During the last

decades the urbanization with summer vacation homes along the shorelines of

Lago Vichuqueacuten has greatly increased Extensive lake eutrophication is currently a

large environmental problem (EULA 2008)

3 Methods

Coring campaigns were organized from 2011 to 2015 (Fig 1d) We recovered

12 short cores and 4 long cores (up to 14 m long) at several sites using a hammer-

modified UWITEC gravity corer Sediment cores (VIC11-2A 170 cm VIC13-2B 170

cm VIC13-2D 1200 cm and VIC15-1A 119 cm) were split photographed sub-

sampled and stored in the Pyrenean Institute of Ecology (IPE-CSIC Spain) Core

VIC13-2B was selected for detailed multiproxy analyses (including elemental

geochemistry C and N isotopes XRF and 14C dating) Stable isotope analyses

(δ13C δ15N) were performed at the Laboratory of Biogeochemistry and Applied

Stable Isotopes (LABASI-PUC Chile) Sediment samples for δ13Corg were pre-

treated with 50 ml of HCl and 50 ml of deionized water and dried at 60ordmC for 4 hr to

remove carbonates (Harris et al 2011) Isotope analyses were conducted using a

80

Delta V Advantage IRMS coupled to a Thermo Flash 2000 Elemental Analyzer via

a Conflo IV interface Isotope results are expressed in standard delta notation (δ)

and expressed in per mil (permil) relative to the Pee Dee Belemnite (Vienna Pee Dee

Belemnite) for C and to atmospheric N2 for N (Leng et al 2006) Total carbon (TC)

Total Organic Carbon (TOC) Total Inorganic Carbon (TIC) and Total Sulfur (TS)

were measured every 2 cm with a LECO SC 144 DR at the IPE-CSIC

An AVAATECH X-Ray Fluorescence II core scanner with a Rh X-ray tube from

the University of Barcelona was used to obtain XRF logs every 4 mm of resolution

Results are expressed as element intensities in counts per second (cps) Tube

voltage was operated at 30 kV and 10 kV to obtain the abundances of 18 elements

(Pb Al Si S Cl K Ca Ti V Mn Fe Co Zn Br Rb Sr Y Zr) with an average of

at least of 1800 cps (less for Pb=437 and Zn=934 cps) Pb was included due to

similar behavior with Co and Fe Element ratios were calculated to describe changes

in redox conditions (MnFe) endogenic productivity (BrTi) carbonate formation

(SrCa and CaTi) and sediment input (ZrTi) (Barreiro-Lostres et al 2014

Carrevedo et al 2015 Frugone-Aacutelvarez et al 2017 Kylander et al 2011 Moreno

et al 2007a)

Several campaigns were carried out to sample the POM from the water column

two per hydrologic year from November 2015 to August 2018 A liter of water was

recovered in three sites through to the lake two are from the shallower areas (with

samples taken at 2 and 5 m depth at each site) and one in the deeper central portion

(at 2 5 and 20 m depth) of the lake (Fig 1d) The samples were filtered using glass

fiber filters (25 m) and then frozen to obtain the stable carbon and nitrogen isotope

signal of lacustrine POM Additionally soil and vegetation samples from the

following communities native species meadow hydrophytic vegetation and

81

Monterrey pine (Pinus radiata) were taken for stable isotope analyses (see in

supplementary material)

The age model for the complete Lago Vichuqueacuten sedimentary sequence is

based on Frugone-Aacutelvarez et al (2017) with the last 1000 years based on

210Pb137Cs dating techniques in VIC15-1A and 14C AMS dates on bulk sediment

samples (Supplementary Table S1) The 14C measurements of lake water DIC show

a moderate reservoir effect of 180 plusmn 25 14C yr) The revised age-depth model used

here includes three more 14C AMS dates performed with the program Bacon to

establish the deposition rates along the core (Blaauw and Christen 2011 Fig 2)

The age-depth model indicates that average resolution between 0 to 87 cm is lt2

cm per year and from 88 to 170 cm it is lt47 cm per year

82

Figure 2 Chronological age-depth model for the Lago Vichuqueacuten sedimentary

sequence spanning the last 1000 yr (see also Frugone-Alvarez et al 2017)

To estimate land use changes in the watershed we use Landsat MSS images

for 1975 and Landsat TM for 1989 and 2014 all taken in either summer or autumn

(Table 1) We performed supervised classification of land uses (maximum likelihood

83

algorithm) for each year (1975 1989 and 2014) and results were mapped using

ArcGIS 102

Table 1 Images using for LUCC reconstruction

Source of LUCC

Acquisition

Date Resolution

Landsat MSS 19750322 60 m

Landsat TM 19890217 30 m

Landsat TM 19991226 30 m

CONAF 2009 30 m

Land cover Chile 2014 30 m

CONAF 2016 30 m

Previous Work on Lago Vichuqueacuten sedimentary sequence

The sediments are organic-poor dark brown to brown laminated silt with some

intercalated thin coarser clastic layers Lacustrine facies have been classified

according to elemental composition (TOC TS TIC and TN) grain size and

sedimentary textures (Frugone-Aacutelvarez et al 2017) Four main types of lacustrine

facies were identified in this short core Facies L1 is a laminated (1cm) black to dark

brown diatom-poor silt with relatively higher TOC percentages (TOC about 185)

TS (about of 18) and TOCTN (about 92) Facies L2 is characterized by a

homogeneous black organic-poor silty clay with low TOC (mean= 13) TS (mean=

13) TOCTN (mean= 88) values Facies L3 is a laminated (1cm) black organic-

poor (TOC mean 14) silts with higher TS (mean= 21) and TOCTN ratios

(mean= 88) Facies L3 is interpreted as ldquobaselinerdquo deposition on the distal areas

84

of Vichuqueacuten lake Mineralogy is dominated by mica (muscovite) clay minerals

(chlorite) and plagioclase (albite) Quartz and calcite occur at the top and pyrite

occurs in the lower part of the sequence Facies T is composed by massive banded

sediments 4 cm thick and coarse grain size It is interpreted as an instantaneous

depositional event (for more detail see Frugone-Aacutelvarez et al 2017) In this work

we identified four subunits based on geochemical and stable isotope signals

4 Results

41 Geochemistry and PCA analysis

High positive correlations exist between Al Si K and Ti (r = 078 ndash 096

supplementary Fig S1) and between Zn Zr Rb and Y (r = 072 - 096) which reflect

the silicate content of the watershed-derived sediments (Marzecoacuteva et al 2011) Zr

is commonly associated with minerals more abundant in coarser deposits Thus the

ZrTi profile could reflect grain size (Cuven et al 2010) showing higher variability

in the upper part of the Lake Vichuqueacuten sequence and in the alternation between

facies L1 and L2 Another group of elements made up of Co Fe and Pb displayed

positive correlations (r = 067ndash 097) and represents the input of heavy metals Br

Cl and Ca show a positive correlation (r = 049 ndash 06 p-value = 00001) BrTi ratio

is interpreted as a productivity indicator due to Br having a strong affinity with humic

and organic compounds (Marzecoacuteva et al 2011 Frugone-Aacutelvarez et al 2017) In

our Lago Vichuqueacuten sequence BrTi values are high from 170 to 132 cm and from

36 cm to the top of core where it shows several sharps peaks (Fig 3) The MnFe

ratio is indicative of lake bottom oxygenation (Naecher et al 2013) as under

reducing conditions Mn tends to become more mobile than Fe leading to a

decreased MnFe (Marzecoacuteva et al 2011) Several sharp peaks in MnFe occurred

85

from 127 to 120 cm and from 57 to 30 cm (MgFegt03) The silicate group and the

Br Cl Ca Mn group are negatively correlated (r= -012 and -066)

Principal Component Analysis (PCA) was undertaken on the XRF

geochemical data to investigate the main factors controlling sediment deposition in

Lago Vichuqueacuten (Fig 3) The four main eigenvectors explain 801 of the variance

(supplementary material Table S2) The principal component (PC1) explain 437

of the total of variance and grouped elements are associated with terrigenous input

to the lake Positive values of the biplot have been attributed to higher heavy metals

deposition (Pb Co and Fe) and negative values to higher silicate input (Al K Ti and

Si) in a high energy catchment environment (Zr) The PC2 explains 198 of the

total of variance and highlights the endogenic productivity in the lake The positive

loading is compound by Br Cl Ca and Sr and to a lesser extent by Y Zn Rb and

Mn The PC2 may explain both the precipitation of carbonates (Ca Sr) and biological

production (Br)

86

Figure 3 Principal Component Analysis of XRF geochemical measurements in

VIC13-2B Lago Vichuqueacuten lake sediments

42 Sedimentary units

Based on geochemical and stable isotope analysis we identified four

lithological subunits in the short core sedimentary sequence Our PCA analyses and

Pearson correlations pointed out which variables were better for characterizing the

subunits (Fig 4) in terms of endogenic productivity heavy metals and terrestrial

input The unit 2c (170-131 cm) is characterized by the occurrence of some clastic

layers (L2 from 160 and 150 cm) high δsup1⁵N values (mean= +59 plusmn 04permil) with

Magnetic Susceptibility (MS) BrTi ZrTi and SrCa values increase towards the top

Also it has relatively low δsup1sup3C values (mean= -265 plusmn 11permil) and CNmolar ratios

(mean=78 plusmn 04) The ZrTi show upwards increasing values reaching the highest

values of the sequence at the top of this unit suggesting a coarsening upward trend

and relatively higher depositional energy The MS trend also indicates higher

erosion in the watershed and enhanced delivery of ferromagnetic minerals likely

from soil particles particularly from 150 to 160 cm (Frugone-Aacutelvarez at al 2017)

The subunit 2b (130-118 cm) is also composed of black silts but it has the

lowest MS values of the whole sequence and its onset is marked by a sharp

decrease in ZrTi This subunit is marked by sharp peaks of MnFe (at 126 and 120

cmgt027) SrCa (at 125 and 120 cmgt033) CaTi (at 124 and 120 cmgt199) TOC

(about 26 at 130 124 122 and 118 cm) and δsup1⁵N (gt+67permil at 126 and 120 cm)

BrTi oscillates around low values (about 01) whereas the δsup1sup3C values range

between -262 and -282permil

87

The unit 2a (58-117 cm) shows increasing and then decreasing MS values

and displayed sharps peaks of δsup1⁵N (gt64 at 102 to 99 87 and 75 cm) and CN

(about 10 at 86 74 66 and 60 cm) SrCa (mean = 04 plusmn 013) BrTi (mean = 008

plusmn 002) MnFe (mean = 002 plusmn 001) and δsup1sup3C (mean = -260 plusmn 07permil) oscillate in

low values The upper part of this unit (72 ndash 57 cm) shows an increase of SrCa

(from 03 to 05)

The upper unit 1a (0 - 57 cm) starts with a fine clastic layer (T at 57 to 54

cm) interpreted as deposition during a high-energy event It is characterized by

lower BrTi (mean = 003 plusmn 002) TOC (mean = 12 plusmn 03) and δsup1sup3C (mean= -

266 plusmn 06permil) higher δsup1⁵N (mean = +55 plusmn 08 permil) This unit is made of alternating

fine (lt 1cm) black and dark brown laminae with carbonate (L1 facies) Recently

deposited sediments show decreasing MS values increasing TOC (mean= 15 plusmn

04 ) sharp peaks of BrTi (gt015 at 33 21 5 and 1 cm) and the lowest δsup1⁵N values

of the entire record (mean= 45 plusmn 06 permil) and δsup1sup3C values (mean= -277 plusmn 09 permil)

Heavy metal content increases abruptly in the upper section of the core (2 - 20 cm)

(peaks of FeTi CoTi and PbTi)

88

Figure 4 Sedimentary units of Lago Vichuqueacuten sedimentary sequence Selected

variables illustrate watershed input (Magnetic Susceptibility ZrTi CoTi and MnFe)

endogenic productivity (SrCa CaTi TS) organic matter source (BrTi TOC

CNmolar and stable isotope records (δ13Corg and δ15Nbulk)

43 Recent seasonal changes of particulate organic matter on water column

The average of δ15NPOM from the three sites across to the lake was +86 plusmn 58

permil oscillating widely from -14 to +193permil (Fig 5) Important seasonal differences

occur at 2 and 5 m depth with more negative values during summer (~53 plusmn 52 permil)

than winter (~122 plusmn 40permil) At 20 m depth δ15NPOM values exhibit small seasonal

ranges (mean = +10permil for winter and +87permil for summer) The δ13CPOM average was

-296 plusmn 33permil with slightly seasonal and water column depth differences However

more positive δ13CPOM values occurred during winter (mean=-290 plusmn 41permil) than in

summer (mean= -301 plusmn 19 permil) Like the δ15NPOM values CNPOM (mean= 83 plusmn 17)

displayed important seasonal and water depth differences Lower CNPOM ratios

89

occurred during summer at 2 and 5 m depth (mean= 95 plusmn 17) and higher and more

constant values during winter (mean = 73 plusmn 09) at the same depth At 20 m CNPOM

shows similar values in both winter (70) and summer (74)

Figure 5 Seasonal POM averages from samples taken of the Lago Vichuqueacuten

water column Samples were taken from 2015 to 2018 at 2 (n=16) 5 (n=14) and 20

(n=8) meters depth

44 Stable isotope values across the Lake Vichuqueacuten watershed

Figure 6 shows modern vegetation soil and sediment isotope values found for

the watershed Huintildee tributary and Vichuqueacuten lake The δsup1⁵NFoliar values from

meadow plantations and macrophytes have similar range values with a mean of

+89 plusmn50 permil (n=18) +74 plusmn 75 permil (n=5) +82 plusmn 36 permil (n=6) respectively Native

vegetation has overall lower δsup1⁵NFoliar values with a mean of 14 plusmn 21 permil (n=28 see

Table 2 in supplementary material) The δsup1sup3CFoliar from terrestrial samples exhibit

similar values across the different plant communities (tree plantation mean=-274 plusmn

13permil meadow mean = -275 plusmn 23 permil native species mean=-272 plusmn 14permil) whereas

macrophytes display slightly more negative values with a mean of -287 plusmn 23permil

Macrophytes substrate displayed the highest δsup1⁵N values with a mean of +60 plusmn

14permil (n=3) Similar and relatively high δsup1⁵N values for soil of plantation (mean= +54

plusmn 13permil n=4) meadow (mean= +49 plusmn 04permil n=8) and surface river sediment

90

(mean= +52 plusmn 17permil n=10) Native forest soils oscillate around slightly more

negative values with a mean of +45 plusmn 12permil (n=4) Slightly more positive soil δsup1sup3C

values occur both underneath native forests and in tree plantations with means of -

284 plusmn 23permil and -298 plusmn 13permil respectively compared to either meadow soils

(mean= -302 plusmn 11permil) aquatic sediments underneath macrophytes (-311 plusmn 10permil)

or from surface river sediments (mean= -312 plusmn 10permil)

Figure 6 Stable isotope content of modern soil river sediment and foliar vegetation

used as end members in the sedimentary sequence of Lago Vichuqueacuten a)

Scatterplot of foliar δsup1⁵N and δsup13C values for vegetation from Lago Vichuqueacuten

watershed (plantation meadow and native species) and macrophytes on Lake

Vichuqueacuten See supplementary material for more detail of vegetation types b)

Scatterplot of soil δsup1⁵N and δsup13C values across the watershed the sediments of the

Huintildee and Vichuqueacuten rivers and the fluvial sediment corresponding to the

macrophyte vegetation

45 Land use and cover change from 1975 to 2014

Major land use changes between 1975 CE and 2016 CE in the Lago

Vichuqueacuten watershed are summarized in Figure 7 The watershed has a surface

area of 535329 km2 of which native vegetation (26) and shrublands (53)

represent 79 of the total surface in 1975 Meadows are confined to the valley and

91

represent 17 of watershed surface Tree plantations initially occupied 1 of the

watershed and were first located along the lake periphery By 1989 the areas of

native forests shrublands and meadows had decreased to 22 31 and 14

respectively whereas tree plantations had expanded to 30 These trends

continued almost invariably until 2016 when shrublands and meadows reached 17

and 5 of the total areas while tree plantations increased to 66 Native forests

had practically disappeared by 1989 and then increased up to 7 of the total area

in 2016 (Fig 6) preferentially occupying the southeastern sector of the watershed

Figure 7 Changes in land use and cover between 1975 and 2016 in the Lago

Vichuqueacuten watershed as measured from satellite images The major change is

represented by the replacement of native forest shrubland and meadows by

plantations of Monterrey pine (Pinus radiata)

Figure 8 shows correlations between lake sediment stable isotope values and

changes in the soil cover from 1975 to 2013 Positive relationships occurred

between sediment δsup1⁵N and δsup13C values from core VIC13-2B (unit 1) and the

92

percentage of native forest (r=089 for δsup1⁵N 082 for δsup13C) shrublands (r = 071 for

δsup1⁵N 057 for δsup13C) and meadow cover (r = 088 for δsup1⁵N 081 for δsup13C) All of these

correlations are significant (p value lt 0001) In contrast significant negative

correlations (p lt0001) occurred between tree plantation cover and lake sediment

stable isotope values (δsup1⁵N r = -082 and δsup13C r = -067) native forest (r = -097)

meadows (r = -086) and shrubland (r =-093)

Figure 8 Correlation plots of land use and cover change versus lake sediment

stable isotope values The δsup1⁵N values are positively correlated with native forests

agricultural fields and meadow cover across the watershed Total Plantation area

increases are negatively correlated with native forest meadow and shrubland total

area Significance levels are indicated by the symbols p-values (0 0001 001

005 01 1) lt=gt symbols ( )

93

5 Discussion

51 Seasonal variability of POM in the water column

The stable isotope values of POM can vary during the annual cycle due to

climate and biologic controls namely temperature and length of the photoperiod

which affect phytoplankton growth rates and isotope fractionation in the water

column (Gu et al 2006 Leng et al 2006) POM from Lago Vichuqueacuten surface

samples (2 and 5 m depth) displayed lower δ13CPOM values during the summer than

in winter During C uptake phytoplankton preferentially utilize 12C leaving the

DICpool enriched in 13C Therefore as temperature increases during the summer

phytoplankton growth generates OM enriched in 12C until this becomes depleted

and then the biomas come to enriched u At the onset of winter the DICpool is now

enriched in 13C and despite an overall decrease in phytoplankton production the

OM produced will also be enriched in 13C In contrast δ13CPOM values at 20 m depth

did not reflect these seasonal differences probably due to water-column

stratification that maintains similar temperatures and biological activity throughout

the year

Lake N availability depends on N sources including inputs from the

watershed and the atmosphere (ie deposition of N compounds and fixation of

atmospheric N2) which varies during the hydrologic year The fixation of atmospheric

N2 is an important natural source of N to the lake occurring mainly during the

summer season associated with higher temperature and light (Gu et al 2006)

Because the δ15NPOM of N2 fixers is close to 0permil with almost no overall isotope

fractionation (Leng et al 2006) when N2 is the major N source δ15NPOM values are

typically low However when DIN concentrations are high or alternatively when little

94

N2 fixation occurs δ15NPOM values will be higher (Gu et al 2006) δ15NPOM values

from summer Lago Vichuqueacuten samples were lower than those from winter with large

differences between the seasons (~5permil Fig 5 and 9) Furthermore δ15NPOM values

were high when monthly average temperature was low and monthly precipitation

was high (Fig 9) This pattern is consistent with the dominance of high N2 fixation

by cyanobacteria associated with increased summer temperatures This correlation

of δ15NPOM values with temperature further suggests a functional group shift i e

from N fixers to phytoplankton that uptake DIN The correlation between wetter

months and higher δ15NPOM values could be caused by increased N input from the

watershed due to increased runoff during the winter season The lack of data of the

δ15NPOM between the 30 mm and the 160 mm of precipitation is due to the

mediterranean-type climate that concentrates precipitations in the winter months

Finally Lago Vichuqueacuten is characterized by pronounced seasonality leading to

higher phytoplankton biomass in summer characterized by low δ15NPOM In winter

low biomass production and increased input from watershed is associated to high

δ15NPOM

95

Figure 9 Seasonal changes can drive δ15NPOM values in Lago Vichuqueacuten Data

correspond to average monthly temperature and total monthly precipitation for the

months when the water samples were taken (years 2015 - 2018) P-valuelt005

52 Stable isotope signatures in the Lake Vichuqueacuten watershed

The natural abundance of 15N14N isotopes of soil and vegetation samples

from the Lago Vichuqueacuten watershed appear to result from a combination of factors

isotope fractionation different N sources for plants and soil microorganisms (eg N2

fixation Nitrates) depth in the soil where N uptake by vegetation occurs and N loss

mechanisms (ie denitrification leaching and ammonia volatilization Hogberg

1997) The lowest δsup1⁵Nfoliar values are associated with native species and are

probably due to the contribution of N-fixing species (eg Sophora) (Fig6 and for

more detail see Table S3 in supplementary material) The number native N-fixers

species present in the Chilean mediterranean vegetation are not well known

however so there could be other N-fixing species in this group Alternatively δsup1⁵Nfoliar

values reflect soil N uptake (Kahmen et al 2008) In environments limited by N

plants have δsup1⁵N values similar to the soil δsup1⁵N values however the denitrification

and volatilization of ammonia can lead to the remain N of soil to come enriched in

15N (Cifuentes et al 1989 Craine et al 2009 Bruland and Mckenzie 2010) Soil N

isotope samples from native species communities tends to display relatively high

δsup1⁵N values respect to foliar samples due to loss of N-soil

The higher foliar and soil δsup1⁵N values obtained from samples of meadows

aquatic macrophytes and tree plantations can be attributed to the presence of

greater amounts of nitrate available for plant uptake (Fig 6) Houmlgberg (1997)

suggests that the availability of different N sources in soils (ie nitrates versus

96

ammonia) with different residence times can also explain these δsup1⁵NFoliar values

Indeed Feigin et al (1974) described differences of up to 20permil between ammonia

and nitrates sources Denitrification and nitrification discriminate much more against

15N than N2 fixation does (Craine et al 2009) leading to soils (and plants after

uptake) enriched in 14N

In general multiple processes that affect the isotopic signal result in similar

δsup1⁵N values between the soil of the watershed and the sediments of the river

However POM isotope fluctuations allow to say that more negative δsup1⁵N values are

associated to lake productivity while more positive δsup1⁵N values are associated with

N input from the watershed

δ13C values in Lago Vichuqueacuten watershed reflect CO2 gas exchange between

C3 plants and algae with the atmosphere During photosynthesis plants

discriminate against the heavier stable isotope of carbon (13C) in favor of the lighter

isotope 12C which results in δ13CFoliar values between -220permil and -320permil (Browman

and Cook 2002 Liu et al 2007) Likewise the δ13CFoliar values from Lago Vichuqueacuten

oscillate around -27permil (Fig 6) Plants transform atmospheric CO2 into soil organic

carbon (C) which in turn reflects this initial discrimination against 13C during C

uptake and post photosynthetic fractionation (Farquhar et al 1982 1989 Badeck

et al 2005 Pausch and Kuzyakov 2017) Slightly more positive δ13CFoliar values

(about 15permil) were measured in comparison with their δ13CSoil values This may be

reflecting the C transference from plants to the soil but also a soil-atmosphere

interchange The preferential assimilation of the light isotopes (12C) during soil

respiration carried by the roots and the microbial biomass that is associated with the

decomposition of litter roots and soil organic matter explain this differential

(Berhardt et al 2006 Blagodatskaya et al 2010 Midwood and Millard 2011)

97

In general the δ13CSoil values from the Lago Vichuqueacuten watershed oscillated

around -290permil and did not vary with our plant classification types Here we use

these values as terrestrial-end members to track changes in source OM (Fig 6)

Thus more negative δ13C values in lake sediment samples are attributed to higher

OM inputs from the terrestrial watershed By the other hand more positive δ13C

values most likely reflect an increased aquatic OM component as indicated by POM

isotope fluctuations (Fig 9)

53 Recently land use and cover change and its influences on N inputs to the lake

Tree plantations in the Lago Vichuqueacuten watershed have increased greatly in

the last few decades (from 1 in 1975 to 66 in 2016 Fig 7) replacing previous

native forests (from 26 to 7) meadows (17 to 5) and shrublands (53 to

17) In 1975 tree plantations were confined to the lake perimeter with discrete

patches distributed throughout the watershed The ldquoForest Lawrdquo (DFL 701- passed

in 1974) allocated state funding to afforestation efforts and management of tree

plantations which greatly favored the replacement native forests by introduced trees

This increase is marked by a sharp and steady decrease in lake sediment δ15N and

δ13C values because tree plantations function as a nutrient sink whereas other land

uses such as meadows favor nutrient loss from the watershed (Fig8) Bruland and

Mackenzie (2014) noted a decrease in wetland δ15N values when watershed

forested cover increased and concluded that N inputs to the wetlands are lower from

the forested areas as they generally do not export as much N as agricultural lands

A positive correlation between native vegetation and δ15Ncore values can be

explained by the relatively scarce arboreal cover in the watershed in 1975 when

native forest occupied just 26 of the watershed surface whereas shrublands and

98

meadows occupied more than the 70 of the surface of the watershed with the

concomitant elevated loss of N (Fig 7 and Fig 8)

54 Nitrogen dynamics in Lago Vichuqueacuten over the last six hundred years

Sedimentological compositional and geochemical indicators all show changes in

the N cycle associated to LUCC lake dynamics and climate changes (Fig 10) From

the pre-Columbian indigenous settlement including the Spanish colonial period up

to the start of the Republic (1300 - 1800 CE) the introduction of crops such as

quinoa and wheat but also the clearing of land for extensive agriculture would have

favored the entry of N into the lake Conversely major changes observed during the

last century were characterized by a sharp decrease of N input that were coeval

with the increase of tree plantations

From 1365 until 1550 CE (unit 2c 2b and half of 2a Fig 3 and Fig 10) pre-

Columbian agricultural societies planted mostly crops of corn and quinoa (Ramirez

and Vidal 1985) This period is characterized by large peaks seen in the δsup1⁵N record

(eg 1403 1452 1476 and 1505) with overall high δsup1⁵N values (up to 5permil) indicating

that N input from watershed was elevated and oscillating to the beat of the NT These

positive δsup1⁵N peaks could be due to several causes including a) the clearing of land

for farming b) N loss via denitrification which would be generally augmented in

anoxic environments (Diebel et al 2009) such as Lago Vichuqueacuten (low MnFe

values about 0001 Fig 4) or c) climate especially cold-wet winters or hot-dry

summers can also exert control on the δsup1⁵N record Indeed tree-ring records and

summer temperature reconstructions show overall wetcold conditions during this

period (Christie et al 2009 Von Gunten et al 2009 Fig 10) Increased

precipitation would bring more sediment (and nutrients) from the watershed into the

99

lake and increase lake productivity which is also detected by the geochemical

proxies for productivity (peaks of BrTi SrCa and TOC Fig 4 and Fig 10) (see also

Frugone-Alvarez et al 2017)

Figure 10 Changes in the N availability during the last six centuries in Lago

Vichuqueacuten a) lake sediment δsup1⁵N values displayed more positive values during the

prehistoric period Spanish Colony and the starting 19th century which is associated

with enhanced N input from the watershed by extensive clearing and crop

plantations The inset shows this relationship between sediment δsup1⁵N and

100

percentage of meadow cover over the last 30 years b) Summer temperature

reconstruction from central Chile (von Gunten et al 2009) showing a

correspondence with cold phases and high δsup1⁵N values at Vichuqueacuten except for the

last 100 years c) Palmer Drought Severity Index (PDSI) is an interannual moisture

variability reconstruction for late springndashearly summer during the last six centuries

(Christie et al 2009) Grey shadow indicating higher precipitation periods

From 1550 and 1810 CE (unit 2a) and during the Colonial period several peaks

of δ15N could be further related not only to high precipitation (Fig 10 grey shadow)

but also pulses of enhanced N input from the watershed linked to human land use

In 1550 CE Juan Cuevas was granted lands and indigenous workers under the

encomienda system for agricultural and mining development of the Vichuqueacuten

village (Ramiacuterez and Vidal 1985) Historical documents show that around 1579 CE

the Vichuqueacuten watershed was occupied by indigenous communities dedicated to

wheat plantations and vineyards wood extraction and gold mining (Odone 1998)

The introduction of the Spanish agricultural system implied not just a change in the

types of crops used (from quinoa to vineyards and wheat) but also a clearing of

native species for the continuous increase of agricultural surface and wood

extraction During the Colonial period wheat from Vichuqueacuten was exported to Peru

(Ramiacuterez and Vidal 1985) Armesto et al (2009) indicate that during the XVIII and

XIX centuries the extraction of wood for mining operations was important enough to

cause extensive loss of native forests The independence and instauration of the

Chilean Republic did not change this prevailing system Increases in the

contributions of N to the lake during the second half of the XIX century (peaks in

δsup1⁵N ca 1870 CE) could be due to expanding farm land dedicated for wheat

101

production and increased commercial trade with California and Canada (Ramiacuterez

and Vidal 1985)

In contrast LUCC in the last century are clearly related to the development of

large-scale tree plantations (Fig 7) The δsup1⁵N record reaches the lowest values of

the entire sequence in the last few decades (Fig 10) A marked increase in lake

productivity NT concentration and decreasing sediment input is synchronous (unit

1 Fig 4) with trees replacing meadows shrublands and areas with native forests

(Fig 7 and 8) The implementation of the lsquoForest Lawrsquo in 1974 had a stronger impact

on the landscape and lake ecosystem dynamics than the impacts of ongoing climate

change in the region which is much more recent (Garreaud et al 2018) although

the prevalence of hot dry summers seen over the last decade would also be

associated with low δsup1⁵N values and increase of NT (Fig 10) Heavy metals ratios

(FeTi CoTi and PbTi) show notable increases in lake sediments from 1992 to 2011

CE (Fig 4) Although this could be related to mining in the El Maule region the

closest mines are 60 Km away (Pencahue and Romeral) so local factors related to

shoreline urbanization for the summer homes and an increase in tourist activity

could also be a major factor

6 Conclusions

The N isotope signal in the watershed depends on the rates of exchange

between vegetation and soil cover (Fig 11) Plants preferentially uptake 14N and the

underlying soils become enriched in 15N especially when the terrestrial ecosystem

is N-limited andor significant N loss occurs (ie denitrification andor ammonia

volatilization) LUCC in the Lago Vichuqueacuten watershed have heavily modified the

links between terrestrial and aquatic ecosystems with agriculture practices

102

contributing more N to the lake than tree plantations or native forests In situ lake

processes can also fractionate N isotopes An increase of N-fixing species results

in OM depleted in 15N which results in POM with lower δsup1⁵N values during these

periods During winter phytoplankton is typically enriched in 15N due to the

decreased abundance of N-fixing species and increased N input from the

watershed This in turn generates the highest δsup1⁵NPOM values in Lago Vichuqueacuten

Periods of elevated productivity tend to deplete the dissolved inorganic N of 14N

resulting in even higher δ15N values

Our study illustrates the usefulness of δsup1⁵N as a tool for reconstructing the past

influence of LUCC on N availability in lake ecosystems To constrain the relative

roles of the diverse forcing mechanisms that can alter N cycling in mediterranean

ecosystems all main components of the N cycle should be monitored seasonally

(or monthly) including the measurements of δ15N values in land samples

(vegetation-soil) as well as POM

103

Figure 11 Summary of human and environmental factors controlling the δ15N

values of lake sediments Particulate organic matter(POM) δ15N values in

mediterranean lakes are driven by N input from the watershed that in turn depend

on land use and cover changes (ie forest plantation agriculture) andor seasonal

changes in N sources andor lake ecosystem processes (ie bioproductivity redox

condition denitrification) Arrows indicate the direction of N fluxes (inputoutput from

the N cycle) N cycle processes that deplete lake sediments of 15N are shown in

blue whereas those that enrich sediments in 15N are shown in red

104

Supplementary material

Figure S1 Pearson correlate coefficient between geochemical variables in core

VIC13-2B Positive and large correlations are in blue whereas negative and small

correlations are in red (p valuelt0001)

Figure S2 Principal Component Analysis of geochemical elements from core

VIC13-2B

105

Table S1 Lago Vichuqueacuten radiocarbon samples

RADIOCARBON

LAB CODE

SAMPLE

CODE

DEPTH

(m)

MATERIAL

DATED

14C AGE ERROR

D-AMS 029287

VIC13-2B-

1 043 Bulk 1520 24

D-AMS 029285

VIC13-2B-

2 085 Bulk 1700 22

D-AMS 029286

VIC13-2B-

2 124 Bulk 1100 29

Poz-63883 Chill-2D-1 191 Bulk 945 30

D-AMS 001133

VIC11-2A-

2 201 Bulk 1150 44

Poz-63884

Chill-2D-

1U 299 Bulk 1935 30

Poz-64089

VIC13-2D-

2U 463 Bulk 1845 30

Poz-64090

VIC13-2A-

3U 469 Bulk 1830 35

D-AMS 010068

VIC13-2D-

4U 667 Bulk 2831 25

Poz-63886

VIC13-2D-

4U 719 Bulk 3375 35

106

D-AMS 010069

VIC13-2D-

5U 775 Bulk 3143 27

Poz-64088

VIC13-2D-

5U 807 Bulk 3835 35

D-AMS-010066

VIC13-2D-

7U 1075 Bulk 6174 31

Poz-63885

VIC13-2D-

7U 1197 Bulk 6440 40

Poz-5782 VIC13-15 DIC 180 25

Table S2 Loadings of the trace chemical elements used in the PCA

Elementos PC1 PC2 PC3 PC4

Zr 0922 0025 -0108 -0007

Zn 0913 -0124 -0212 0001

Rb 0898 -0057 -0228 0016

K 0843 0459 0108 0113

Ti 0827 0497 0060 -0029

Al 0806 0467 0080 0107

Si 0803 0474 0133 0136

Y 0784 -0293 -0174 0262

V 0766 0455 0090 -0057

Br 0422 -0716 -0045 0226

Ca 0316 -0429 0577 0489

Sr 0164 -0420 0342 -0182

Cl 0151 -0781 -0397 0162

107

Mn -0121 -0091 0859 0095

S -0174 -0179 -0051 0714

Pb -0349 0414 -0282 0500

Fe -0700 0584 -0023 0280

Co -0704 0564 -0107 0250

Table S3 Stable Isotope values from vegetation of Lago Vichuqueacutenacutes watershed

Taxa Classification δsup1⁵N δsup1sup3C CN

molar

Poaceae Meadow 1216 -2589 3602

Juncacea Meadow 1404 -2450 3855

Cyperaceae Meadow 1031 -2596 1711

Taraxacum

officinale Meadow 836 -2400 2035

Poaceae Meadow 660 -2779 1583

Poaceae Meadow 453 -2813 1401

Poaceae Meadow 966 -2908 4010

Juncus Meadow 1247 -2418 3892

Poaceae Meadow 747 -3177 6992

Poaceae Meadow 942 -2764 3147

Poaceae Meadow 1479 -2634 2895

Poaceae Meadow 1113 -2776 1795

Poaceae Meadow 2215 -2737 7971

Poaceae Meadow 1121 -2944 2934

Poaceae Meadow 638 -3206 1529

108

Macrophytes Macrophytes 886 -3044 2286

Macrophytes Macrophytes 1056 -2720 2673

Macrophytes Macrophytes 769 -3297 1249

Macrophytes Macrophytes 967 -2763 1442

Macrophytes Macrophytes 959 -2670 2105

Macrophytes Macrophytes 334 -2728 1038

Acacia dealbata

Introduced

species 656 -2696 1296

Acacia dealbata

Introduced

species 487 -2941 1782

Acacia dealbata

Introduced

species 220 -2611 3888

Luma apiculata Native species 433 -2542 4135

Luma apiculata Native species 171 -2664 7634

Luma apiculata Native species -001 -2736 6283

Luma apiculata Native species 029 -2764 6425

Azara sp Native species 159 -2868 8408

Azara sp Native species 101 -2606 2885

Baccharis concava Native species 104 -2699 5779

Baccharis concava Native species 265 -2488 4325

Baccharis concava Native species 287 -2562 7802

Baccharis concava Native species 427 -2781 5204

Baccharis linearis Native species 190 -2610 4414

Baccharis linearis Native species 023 -2825 5647

109

Peumus boldus Native species 042 -2969 6327

Peumus boldus Native species 205 -2746 4110

Peumus boldus Native species 183 -2743 6293

Chusquea quila Native species 482 -2801 4275

Poaceae meadow 217 -2629 7214

Lobelia sp Native species 224 -2645 3963

Lobelia sp Native species -091 -2565 4538

Aristotelia chilensis Native species -035 -2785 5247

Aristotelia chilensis Native species -305 -2889 2305

Aristotelia chilensis Native species 093 -2836 5457

Chusquea quila Native species 173 -2754 3534

Chusquea quila Native species 045 -2950 6739

Quillaja saponaria Native species 223 -2838 9385

Scirpus meadow 018 -2820 7115

Sophora sp Native species -184 -2481 2094

Sophora sp Native species -181 -2717 1721

Pinus radiata

Introduced

trees 1581 -2602 3679

Pinus radiata

Introduced

trees 1431 -2784 4852

Pinus radiata

Introduced

trees -091 -2708 9760

Pinus radiata

Introduced

trees 153 -2568 3470

110

Salix sp

Introduced

trees 632 -2878 1921

LITERATURE CITED

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea

AM Marquet PA 2010 From the Holocene to the Anthropocene A historical

framework for land cover change in southwestern South America in the past 15000

years Land use policy 27 148ndash160

httpsdoiorg101016jlandusepol200907006

Battye W Aneja VP Schlesinger WH 2017 Earth rsquo s Future Is nitrogen the next

carbon  Earthrsquos Future Global Biogeochem Cycles 30 1000ndash1014

httpsdoiorg101002eft2235

Blaauw M Christeny JA 2011 Flexible paleoclimate age-depth models using an

autoregressive gamma process Bayesian Anal 6 457ndash474

httpsdoiorg10121411-BA618

Bowman DMJS Cook GD 2002 Can stable carbon isotopes (δ13C) in soil

carbon be used to describe the dynamics of Eucalyptus savanna-rainforest

boundaries in the Australian monsoon tropics Austral Ecol

httpsdoiorg101046j1442-9993200201158x

Brahney J Ballantyne AP Turner BL Spaulding SA Otu M Neff JC 2014

Separating the influences of diagenesis productivity and anthropogenic nitrogen

deposition on sedimentary δ15N variations Org Geochem 75 140ndash150

httpsdoiorg101016jorggeochem201407003

111

Bruland GL MacKenzie RA 2010 Nitrogen Source Tracking with δN Content

of Coastal Wetland Plants in Hawaii J Environ Qual 39 409

httpsdoiorg102134jeq20090005

Carrevedo ML Frugone M Latorre C Maldonado A Bernaacuterdez P Prego R

Caacuterdenas D Valero-Garceacutes B 2015 A 700-year record of climate and

environmental change from a high Andean lake Laguna del Maule central Chile

(36degS) Holocene 25 956ndash972 httpsdoiorg1011770959683615574584

Christie DA Boninsegna JA Cleaveland MK Lara A Le Quesne C

Morales MS Mudelsee M Stahle DW Villalba R 2009 Aridity changes in the

Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from

tree-rings Clim Dyn 36 1505ndash1521 httpsdoiorg101007s00382-009-0723-4

Craine JM Elmore AJ Aidar MPM Dawson TE Hobbie EA Kahmen A

Mack MC Kendra K Michelsen A Nardoto GB Pardo LH Pentildeuelas J

Reich B Schuur EAG Stock WD Templer PH Virginia RA Welker JM

Wright IJ 2009 Global patterns of foliar nitrogen isotopes and their relationships

with cliamte mycorrhizal fungi foliar nutrient concentrations and nitrogen

availability New Phytol 183 980ndash992 httpsdoiorg101111j1469-

8137200902917x

Cuven S Francus P Lamoureux SF 2010 Estimation of grain size variability

with micro X-ray fluorescence in laminated lacustrine sediments Cape Bounty

Canadian High Arctic J Paleolimnol 44 803ndash817 httpsdoiorg101007s10933-

010-9453-1

Diebel M Vander Zanden MJ 2012 Nitrogen stable isotopes in streams  stable

isotopes Nitrogen effects of agricultural sources and transformations Ecol Appl 19

1127ndash1134 httpsdoiorg10189008-03271

112

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in freshwater

wetlands record long-term changes in watershed nitrogen source and land use SO

- Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash

2916

Fariacuteas L Castro-Gonzales M Cornejo M Charpentier J Faundez J

Boontanon N Yoshida N 2009 Denitrification and nitrous oxide cycling within the

upper oxycline of the oxygen minimum zone off the eastern tropical South Pacific

Limnol Oceanogr 54 132ndash144

Farquhar GD Ehleringer JR Hubick KT 1989 Carbon Isotope Discrimination

and Photosynthesis Annu Rev Plant Physiol Plant Mol Biol

httpsdoiorg101146annurevpp40060189002443

Farquhar GD OrsquoLeary MH Berry JA 1982 On the relationship between

carbon isotope discrimination and the intercellular carbon dioxide concentration in

leaves Aust J Plant Physiol httpsdoiorg101071PP9820121

Fogel ML Cifuentes LA 1993 Isotope fractionation during primary production

Org Geochem httpsdoiorg101007978-1-4615-2890-6_3

Frugone-Aacutelvarez M Latorre C Giralt S Polanco-Martiacutenez J Bernaacuterdez P

Oliva-Urcia B Maldonado A Carrevedo ML Moreno A Delgado Huertas A

Prego R Barreiro-Lostres F Valero-Garceacutes B 2017 A 7000-year high-

resolution lake sediment record from coastal central Chile (Lago Vichuqueacuten 34degS)

implications for past sea level and environmental variability J Quat Sci 32 830ndash

844 httpsdoiorg101002jqs2936

Gaumllman V Rydberg J Bigler C 2009 Decadal diagenetic effects on δ 13 C and

δ 15 N studied in varved lake sediment Limnol Oceanogr 54 917ndash924

httpsdoiorg104319lo20095430917

113

Gerhart LM McLauchlan KK 2014 Reconstructing terrestrial nutrient cycling

using stable nitrogen isotopes in wood Biogeochemistry 120 1ndash21

httpsdoiorg101007s10533-014-9988-8

Granger J Sigman DM Lehmann MF Tortell PD 2008 Nitrogen and oxygen

isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria 53

2533ndash2545 httpsdoiorg10230740058342

Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater

eutrophic lake Limnol Oceanogr 51 2837ndash2848

httpsdoiorg104319lo20065162837

Harris D Horwaacuteth WR van Kessel C 2001 Acid fumigation of soils to remove

carbonates prior to total organic carbon or CARBON-13 isotopic analysis Soil Sci

Soc Am J 65 1853 httpsdoiorg102136sssaj20011853

Houmlgberg P 1997 Tansley review no 95 natural abundance in soil-plant systems

New Phytol httpsdoiorg101046j1469-8137199700808x

Kylander ME Ampel L Wohlfarth B Veres D 2011 High-resolution X-ray

fluorescence core scanning analysis of Les Echets (France) sedimentary sequence

New insights from chemical proxies J Quat Sci 26 109ndash117

httpsdoiorg101002jqs1438

Lara A Solari ME Prieto MDR Pentildea MP 2012 Reconstruccioacuten de la

cobertura de la vegetacioacuten y uso del suelo hacia 1550 y sus cambios a 2007 en la

ecorregioacuten de los bosques valdivianos lluviosos de Chile (35o - 43o 30acute S) Bosque

(Valdivia) 33 03ndash04 httpsdoiorg104067s0717-92002012000100002

Lehmann M Bernasconi S Barbieri A McKenzie J 2002 Preservation of

organic matter and alteration of its carbon and nitrogen isotope composition during

114

simulated and in situ early sedimentary diagenesis Geochim Cosmochim Acta 66

3573ndash3584 httpsdoiorg101016S0016-7037(02)00968-7

Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos Transactions

American Geophysical Union httpsdoiorg1010292007EO070007

Liu G Li M An L 2007 The Environmental Significance Of Stable Carbon

Isotope Composition Of Modern Plant Leaves In The Northern Tibetan Plateau

China Arctic Antarct Alp Res httpsdoiorg1016571523-0430(07-505)[liu-

g]20co2

Marzecovaacute A Mikomaumlgi A Koff T Martma T 2011 Sedimentary geochemical

response to human impact on Lake Notildemmejaumlrv Estonia Est J Ecol 60 54

httpsdoiorg103176eco2011105

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash

1643 httpsdoiorg1011770959683613496289

Meyers PA 2003 Application of organic geochemistry to paleolimnological

reconstruction a summary of examples from the Laurention Great Lakes Org

Geochem 34 261ndash289 httpsdoiorg101016S0146-6380(02)00168-7

Naeher S Gilli A North RP Hamann Y Schubert CJ 2013 Tracing bottom

water oxygenation with sedimentary MnFe ratios in Lake Zurich Switzerland

Chem Geol 352 125ndash133 httpsdoiorg101016jchemgeo201306006

Odone C 1998 El Pueblo de Indios de Vichuqueacuten siglos XVI y XVII Rev Hist

Indiacutegena 3 19ndash67

Pausch J Kuzyakov Y 2018 Carbon input by roots into the soil Quantification of

rhizodeposition from root to ecosystem scale Glob Chang Biol

httpsdoiorg101111gcb13850

115

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98

httpsdoiorg1011772053019614564785

Sun W Zhang E Jones RT Liu E Shen J 2016 Biogeochemical processes

and response to climate change recorded in the isotopes of lacustrine organic

matter southeastern Qinghai-Tibetan Plateau China Palaeogeogr Palaeoclimatol

Palaeoecol httpsdoiorg101016jpalaeo201604013

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of

different trophic status J Paleolimnol 47 693ndash706

httpsdoiorg101007s10933-012-9593-6

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl

httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M 2009 High-resolution quantitative climate

reconstruction over the past 1000 years and pollution history derived from lake

sediments in Central Chile Philos Fak PhD 246

Woodward C Chang J Zawadzki A Shulmeister J Haworth R Collecutt S

Jacobsen G 2011 Evidence against early nineteenth century major European

induced environmental impacts by illegal settlers in the New England Tablelands

south eastern Australia Quat Sci Rev 30 3743ndash3747

httpsdoiorg101016jquascirev201110014

Xu H Yu K Lan J Sheng E Liu B Ye Y Hong B Wu H Zhou K Yeager

KM 2016 Different responses of sedimentary δ15N to climatic changes and

116

anthropogenic impacts in lakes across the Eastern margin of the Tibetan Plateau

J Asian Earth Sci 123 111ndash118 httpsdoiorg101016jjseaes201603024

117

DISCUSION GENERAL

El Nitroacutegeno (N) es un elemento clave que controla la dinaacutemica y

funcionamiento de ecosistemas tanto terrestres como acuaacuteticos (Vitousek et al

1997) Pese a que el N (N2) es muy abundante en la atmoacutesfera (78) es escaso

en los ecosistemas pues la mayoriacutea de la biota no puede acceder a su forma

molecular (Galloway et al 1995 Zaehle et al 2013) En este sentido la entrada

natural de N en los ecosistemas es viacutea fijacioacuten bioloacutegica del N2 por bacterias que lo

convierten en compuestos bioloacutegicamente disponibles (Battye et al 2017) Debido

a que la fijacioacuten es un proceso energeacuteticamente costoso los ecosistemas

comuacutenmente estaacuten limitados por N (Vitousek and Howarth 1991) Los LUCC

contribuyen al incremento del N disponible y son una de las principales causas de

eutroficacioacuten y contaminacioacuten de los cuerpos de agua (Woodward et al 2012)

En Chile central los LUCC principalmente relacionados con las actividades

agriacutecolas y forestales han causado grandes cambios en el ciclo del N debido al

118

reemplazo de la cobertura natural por un monocultivo y al uso de fertilizantes que

modifican los aportes de MO y N a los cuerpos de agua El programa de

estabilizacioacuten de laderas impulsada por el gobierno (Albert 1900) y la ley forestal

de 1974 han fomentado la forestacioacuten con plantaciones de Pinus radiata y

Eucalyptus globulus y en el caso de Lago Vichuqueacuten estas actualmente cubren maacutes

del 60 de su cuenca (Cap2 Fig 5) Ademaacutes en Laguna Matanzas la

sobreexplotacioacuten del agua en conjunto con el cambio climaacutetico actual el que ha

conducido a una de las megasequiacuteas maacutes severas en las uacuteltimas deacutecadas

(Garreaud et al 2017) generoacute una combinacioacuten letal que secoacute el lago en tan solo

10 antildeos (Cap1 Fig1) Las evidencias obtenidas a partir de estos dos lagos

permiten identificar las huellas del Antropoceno en Chile central basadas en el

registro sedimentario lacustre

La transferencia de N desde los ecosistemas terrestres a acuaacuteticos es un

proceso natural con controles bioacuteticos climaacuteticos y geoloacutegicos El enlace

hidroloacutegico entre los ecosistemas terrestres y acuaacuteticos hace que el estado troacutefico

de los lagos esteacute vinculado al de su cuenca (McLauchlan et al 2013) En Chile

central se sabe poco del impacto de los LUCC sobre el ciclo de nutrientes en los

ecosistemas lacustres aunque al menos desde la colonizacioacuten espantildeola se tienen

registros de influencia humana en las cuencas Durante la colonia espantildeola

Laguna Matanzas fue una hacienda ganadera que exportaba productos caacuternicos al

Peruacute (Contreras-Lopez et al 2014) A su vez en el Lago Vichuqueacuten se realizaban

extensas actividades agriacutecolas hasta comienzos del s XX como por ejemplo

cultivos de vid y trigo ademaacutes de extraccioacuten de madera y mineriacutea de oro (Odone

1997) En las uacuteltimas deacutecadas los LUCC han estado vinculados principalmente con

el desarrollo forestal al compaacutes de una estrategia gubernamental de fomentar con

119

incentivos financieros (Ley de Bosques DFL nordm265 de 1931 y DFL 701 de 1974)

esta actividad El incremento de la superficie forestal es especialmente fuerte en

ambos lagos a partir de la deacutecada de 1980 y hasta 2016 (Laguna de Matanzas 0-

17 Lago Vichuqueacuten 1-66) Este aumento habriacutea sido en detrimento del bosque

nativo y los pastizales (Cap 1 Fig 5 y Cap 2 Fig 8) El incremento de la superficie

forestal generariacutea una disminucioacuten de los aportes de sedimentos y nutrientes al lago

y en este sentido un cambio de estado en los flujos de N (e g tipping points) que

a su vez ha quedado registrado en la sentildeal isotoacutepica (δ15N) y la acumulacioacuten de

MO en los sedimentos lacustres

Isoacutetopos estables y la dinaacutemica de N en los lagos de Chile central

Los sedimentos lacustres son verdaderos ldquosumiderosrdquo que pueden llegar a

registrar lo que ocurre en cuanto a la historia ambiental de su cuenca En esta tesis

se utilizan los isoacutetopos estables de N (15N y 14N) en sedimentos lacustres para

reconstruir los cambios en la disponibilidad de N en el tiempo y establecer la

magnitud de impacto generado por actividades humanas El fraccionamiento

cineacutetico en los lagos es mediado por procesos bioloacutegicos que mediante la

asimilacioacuten de N genera un producto (eg fitoplancton) maacutes ldquoligerordquo (valores maacutes

bajos de 15N) que su remanente (eg DIN) (Fogel y Cifuentes 1993) Sin embargo

en periacuteodos en que los lagos estaacuten limitados por N el fitoplancton discrimina menos

y la MO resultante queda enriquecida en 15N (Fig 1 a y b) Ademaacutes la

desnitrificacioacuten acentuada en lagos de fondo anoacutexicos (eg Laguna Matanzas

entre 1800 y 1940 Cap1 Fig 6) conduce a un enriquecimiento en 15N de los

sedimentos y de la columna de agua Esta informacioacuten queda reflejada en la MO

120

de los sedimentos lacustres lo que permite conocer la disponibilidad del N en el

tiempo a partir de las variaciones de 15N

En esta tesis analizamos la MO de los sedimentos lacustres para reconstruir

la influencia de los LUCC en los aportes de sedimentos y N al lago En teacuterminos de

asimilacioacuten de N se puede distinguir entre dos grupos principales de productores

primarios que componen el POM (Fig1)

1 Los que asimilan el DIN compuesto por amonio nitratos y nitritos Aquiacute el

δ15N resultante fluctuaraacute en torno a valores maacutes positivos en la medida que

la productividad se incrementa o no hay reposicioacuten del DIN (Fig 1)

2 Los fijadores de N Dado que es un proceso energeacuteticamente costoso en

ambientes que no estaacuten limitados por N muchas veces son excluiacutedas

competitivamente por el resto del fitoplancton Si el DIN queda agotado por

el incremento de la productividad (o bien si el ambiente estaacute limitado ya sea

por N o por otros nutrientes) los fijadores de N pueden florecer y la MO que

se genera a partir de ello tendraacute un δ15N con valores en torno a 0permil

De este modo la MO en los sedimentos lacustres dependeraacute de la

composicioacuten de productores primarios (ie fijadores vs asimiladores del DIN)

ademaacutes de los aportes desde la cuenca tanto de MO como del N de la cuenca que

pasa a formar parte del DIN (eg fertilizantes estieacutercol) (Fig 1)

La MO de los lagos estudiados en esta tesis ha sido analizada a partir de

variables geoquiacutemicas isotoacutepicas frotis y estaacute compuesta principalmente por

diatomeas y MO amorfa A partir de los datos obtenidos en esta tesis los valores

de δ15N aumentan cuando hay una mayor cobertura agriacutecola o pastizales A su vez

tiende a disminuir cuando aumenta la cobertura arboacuterea independiente si esta es

por plantaciones forestales o por bosque nativo

121

Por otra parte la dinaacutemica del lago tambieacuten imprime caracteriacutesticas

especiales en el POM observaacutendose variaciones estacionales en los valores

δ15NPOM Durante la estacioacuten caacutelida y seca se observan valores maacutes bajos que

durante la estacioacuten friacutea y huacutemeda posiblemente relacionado con el incremento de

la contribucioacuten de especies fijadoras de N (Lago Vichuqueacuten Fig 9 Cap 2) durante

el verano En la estacioacuten friacutea y huacutemeda el DIN seriacutea la principal fuente de N Las

mayores entradas de MO y N terrestre debidos a un incremento del lavado de la

cuenca como consecuencia de las precipitaciones y la mineralizacioacuten de la MO

podriacutean estimular la produccioacuten de MO lacustre por crecimiento del fitoplancton

Como consecuencia se observan tendencias decrecientes de los valores de

δ15N en la MO sedimentaria cuando la productividad en el lago estaacute relacionada

con especies fijadoras de N mientras que el δ15N muestra aumentos cuando la

productividad del lago estaacute asociada principalmente al consumo del DIN pero

tambieacuten cuando predominan procesos de perdida de N (eg desnitrificacioacuten Fig

1)

Hemos identificado tres fases en la dinaacutemica del δ15N para ambos lagos

Entre 1800 y 1940 CE la cuenca de laguna de Matanzas estaba dominada por

actividades agriacutecolas y ganaderas (δ15Nsuelo gt 4permil Cap 1 Fig 4 y 6) Las entradas

de sedimentos y MO desde la cuenca son altas (δ13C lt -209permil ZrTi ~029 AlTi

~013) y coincide con un clima maacutes huacutemedo y friacuteo (Von Gunten et al 2009

Christiansen et al 2011) El lago teniacutea un nivel de agua maacutes profundo dominado

por condiciones anoacutexicas (MnFe ~0013) que contribuiriacutean a mayores valores de

δ15N en la columna de agua y por ende de los sedimentos acumulados en el fondo

debido a la peacuterdida diferencial de 14N viacutea desnitrificacioacuten (Fig 7 Cap1) La baja

122

produccioacuten de MO lacustre (BrTi ~002 TOC~17) coincide con un bajo contenido

de NT (~478 μg) y valores maacutes positivos de δ15N (gt 4permil)

La actividad agriacutecola tambieacuten dominaba en la cuenca del Lago Vichuqueacuten

durante este periacuteodo (δ15Nsuelo gt4permil Cap2 Fig 6) El aporte sedimentario desde la

cuenca es alto (AlTi ~029 ZrTi ~032) y fue favorecido por mayores

precipitaciones a las actuales (Christiansen et al 2011) El Lago Vichuqueacuten es un

lago estratificado anoacutexico (MnFe ~002) y profundo (~30 m) por lo que la

desnitrificacioacuten juega un rol importante en el enriquecimiento de la MO

sedimentaria La baja produccioacuten de MO (BrTi ~007 TOC ~12) de origen

lacustre (δ13C ~ -268permil) coincide con un bajo contenido de NT (~309μg +6) y

valores maacutes positivos de δ15N (56permil +03)

Durante esta fase en ambos lagos los aportes de N de la cuenca parecen

ser los principales responsables en las fluctuaciones del δ15N Esta sentildeal podriacutea

estar amplificada por bajas temperaturas (que afectan la productividad lacustre) y

altas precipitaciones que favorecen el lavado de la cuenca y aumentan el aporte de

sedimentos y MO desde la cuenca predominantemente agriacutecola

Entre 1940 y 1980 CE en Laguna Matanzas se observa un incremento en

la acumulacioacuten de MO algal (TOC ~2 +1 δ13C ~-230+09permil) El ambiente

deposicional es ligeramente menos turbulento que el anterior (AlTi ~011+001

ZrTi ~03+001) y el lago estaacute en una fase de transicioacuten hacia condiciones maacutes

oacutexicas (MnFe ~002+0004) y maacutes productivas (BrTi ~004+0007) A su vez δ15N

tiende hacia valores maacutes negativos (δ15N ~30permil+03) mientras que el NT aumenta

oscilando en antifase con el δ15N

En Lago Vichuqueacuten en cambio se observa un ligero incremento en la

acumulacioacuten de MO (TOC ~13 +02) de origen terrestre (δ13C ~-27permil +04) La

123

productividad es similar al periacuteodo anterior (BrTi ~007+003) y el ambiente

deposicional es menos turbulento (AlTi ~02 +009 Zrti ~033 +007) El δ15N y el

NT oscilan en torno a valores ligeramente maacutes bajos (δ15N ~51permil +04 NT ~292μg

+6) Este periacuteodo se caracteriza por ser maacutes caacutelido que el anterior lo que

posibilitariacutea un incremento en la productividad lacustre en Laguna Matanzas pero

que no es observada en el Lago Vichuqueacuten

Entre 1980 y la actualidad en Laguna Matanzas habriacutea un incremento de la

acumulacioacuten de MO (TOC ~59 + 3) asociada a un incremento en la productividad

del lago (BrTi ~009+005) y a los aportes de MO terrestres (δ13C ~-24 + 2permil) El

lago se vuelve maacutes oacutexico (Mn ~0003 +0006) y las entradas de sedimento

disminuyen (AlTi~ 009 +002) El δ15N tiende a valores maacutes negativos (δ15N ~13permil

+1) y el NT aumenta de 20 a 55 μg (NT ~346 + 9 μg) tomando valores sin

precedentes en todo el registro En los sedimentos lacustres del Lago Vichuqueacuten

tambieacuten se observa un incremento de la acumulacioacuten de MO (TOC ~17 + 05)

asociada a un incremento en la productividad del lago (BrTi ~01 + 003) y las

entradas de sedimento desde la cuenca disminuyen (AlTi ~005 + 005) El δ15N

(~43 + 05permil) tiende a valores maacutes negativos y el NT incrementa de 20 a 55 μg (NT

~346 + 9 μg) oscilando en antifase

Durante esta fase en ambos lagos se observa un aumento en la

acumulacioacuten de MO sedimentaria un incremento en el NT y valores maacutes negativos

de δ15N que coincide con el incremento de la superficie forestal de las cuencas

(Laguna Matanzas gt17 Lago Vichuqueacuten gt60)

124

Figura 2 Comparacioacuten de los cambios del ciclo del N entre Laguna Matanzas y

Lago Vichuqueacuten con los procesos biogeoquiacutemicos contrastantes en rojo En L

Matanzas las condiciones oacutexicas podriacutean estar favoreciendo la nitrificacioacuten del

amonio En Vichuqueacuten las condiciones anoacutexicas favorecen un aumento en δ15N de

la MO en los sedimentos por desnitrificacioacuten y mineralizacioacuten

Los ambientes mediterraacuteneos en el que los lagos del presente estudio se

encuentran insertos estaacuten caracterizados por una estacioacuten seca prolongada y las

precipitaciones ocurren en eventos puntuales alcanzando altos montos

pluviomeacutetricos en poco tiempo Las lluvias favorecen un lavado de la cuenca la

perdida de N y otros nutrientes Por lo que es esperable que los sedimentos del

lago reflejen mejor los valores isotoacutepicos de los suelos de la cuenca durante los

periacuteodos con altos montos pluviomeacutetricos En el Lago Vichuqueacuten por ejemplo el

125

POM superficial (2 y 5 m de profundidad) despliega valores isotoacutepicos maacutes

positivos en invierno presumiblemente como resultado de mayores aportes de MO

y N de su cuenca (Fig 1b) En ambos lagos los valores maacutes positivos en los

sedimentos lacustres ocurren durante periacuteodos con mayores montos pluviomeacutetricos

(Cap1 Fig 6 y Cap 2 Fig 12)

Ademaacutes del efecto de la precipitacioacuten en el aporte de nutrientes al lago en

esta tesis hemos encontrado que los mayores aportes de N desde la cuenca se dan

cuando la cobertura vegetal del suelo es menor En Laguna Matanzas el desarrollo

de la actividad ganadera desde la llegada de los espantildeoles a la cuenca habriacutea

incrementado los aportes de N al lago Los valores de δ15N en los sedimentos

lacustres depositados durante este periacuteodo son los maacutes positivos de todo el registro

(~4permil) A su vez en Lago Vichuqueacuten los valores isotoacutepicos maacutes positivos se

registran entre 1300 y 1900 CE que coinciden con el mayor desarrollo de

actividades agriacutecola y de extraccioacuten de maderas de la cuenca (Fig 10 Cap 2)

Los recientes LUCC (a partir de 1975) en las cuencas de Laguna Matanzas

y Lago Vichuqueacuten estaacuten caracterizados por un incremento de la superficie forestal

y agriacutecola en reemplazo de la cobertura de pastizal (Laguna Matanzas) y bosque

nativo (Lago Vichuqueacuten) Los valores de δ15N en los testigos sedimentarios fueron

maacutes positivos cuanto mayor la superficie agriacutecola de la cuenca y maacutes negativos

cuanto mayor la superficie forestal Aunque por los alcances de esta tesis no

podemos ser concluyentes respecto del origen del NT (aloacutectonoautoacutectono) parece

ser que esta maacutes ligado a los aportes de la cuenca pese a la disminucioacuten del aporte

sedimentario observado en ambos lagos Las plantaciones forestales a diferencia

del bosque nativo son fertilizadas con una mezcla de N P y K (Toral et al 2005)

Por lo que pese a la disminucioacuten del aporte sedimentario la concentracioacuten de

126

nutrientes en el aporte al lago puede verse incrementada por el tipo de manejo

forestal con respecto al bosque nativo

Los resultados del primer capiacutetulo demuestran que 1) las plantaciones

forestales yo bosque nativo retiene maacutes sedimentos y MO mientras que el uso de

suelo agriacutecola y los pastizales destinados al desarrollo de la actividad ganadera lo

libera 2) Al parecer la desnitrificacioacuten es el proceso natural maacutes importante de

perdida de N en lagos costeros y favorece el enriquecimiento de 15N tanto en la

columna de agua (ie 15N-DIN) como en los sedimentos una vez enterrados y 3) la

desnitrificacioacuten depende de los cambios en las condiciones REDOX en el lago La

oxigenacioacuten en lagos poco profundos -como Laguna Matanzas- es altamente

fluctuante a escalas decadal-centenal depende de la profundidad de la laacutemina de

agua y de la variabilidad de la precipitacioacuten En este sentido en Laguna Matanzas

habriacutea condiciones anoacutexicas en ambientes cuando el lago alcanza niveles maacutes

altos Estas condiciones se observan entre 1820 y 1940 CE y son coetaacuteneas con

episodios maacutes huacutemedos y friacuteos (von Gunten et al 2009 Christie et al 2009) pero

tambieacuten con una fuerte actividad ganadera en la cuenca

Las fuentes variables de N y su fluctuacioacuten en el tiempo hacen necesario

contar con un anaacutelogo moderno que permite usar al δ15N de los sedimentos

lacustres como un indicador indirecto de los cambios en la disponibilidad de N en

el tiempo Por ello en el segundo capiacutetulo integramos muestras de suelo-

vegetacioacuten y un monitoreo de POM de la columna de agua en verano e invierno La

composicioacuten isotoacutepica de POM estariacutea reflejando cambios de la fuente de N (fijacioacuten

vs consumo del DIN) que variacutea durante el antildeo hidroloacutegico Durante el verano la

mayor temperatura y horas-luz favoreceriacutean las entradas de N al lago viacutea fijacioacuten

bioloacutegica de N2 atmosfeacuterico resultando en un incremento de la MO con un valor

127

isotoacutepico bajo (POM verano~5permil Fig 1b) El N2 (δ15N = 0permil) es fijado praacutecticamente

sin fraccionamiento isotoacutepico generando un δ15N de la OM cercano a 0permil (Leng et

al 2006) En invierno las precipitaciones pueden estar favoreciendo un incremento

en la entrada de nutrientes al lago El DIN de la columna de agua llega a contener

valores de δ15N maacutes altos reflejando estos mayores aportes de la cuenca y el POM

del Lago Vichuqueacuten queda enriquecido en 15N (δ15N ~11permil Cap 2 Fig 9) Estas

variaciones estacionales pueden estar evidenciando un cambio en la composicioacuten

de especies de POM desde especies fijadoras a especies que consumen el N de la

columna de agua Sin embargo para corroborar esta informacioacuten seriacutea deseable

contar con el anaacutelisis de la composicioacuten de especies de las muestras de agua

extraidas

Entre los resultados maacutes importantes estaacuten los valores isotoacutepicos del suelo

y la biomasa representativa de la cuenca que incluye un listado de las especies

nativas de la zona que hasta ahora no se contaba (Cap 2 Tabla en material

suplementario) Las especies colectadas despliegan valores de δ15Nfoliar maacutes

positivos (plantaciones forestales y pastizal ~89permil) que el suelo (35permil) salvo por

las especies nativas las que oscilan en torno a valores cercanos al atmosfeacuterico

(~14permil) La razoacuten isotoacutepica 15N14N refleja la dinaacutemica de intercambio de N entre la

vegetacioacuten y el suelo (Koba et al 2002) La discriminacioacuten es positiva en la mayoriacutea

de los sistemas bioloacutegicos por lo que las plantas tienen valores de δ15N maacutes bajos

que el suelo (Evans et al 2001) como sucede con las especies nativas en Lago

Vichuqueacuten En consecuencia las plantas quedan empobrecidas en 15N y conducen

a un enriquecimiento en 15N del suelo sobretodo si no hay reposicioacuten de N por otras

viacuteas (eg fijacioacuten de N) Por lo tanto los valores maacutes negativos de δsup1⁵Nfoliar de las

especies nativas pueden estar relacionados con el consumo preferencial de 14N del

128

suelo donde la discriminacioacuten isotoacutepica de la vegetacioacuten contra el 15N conduce a

valores del δsup1⁵Nsuelo maacutes altos (Houmlgberg 1997) Por el contrario los valores maacutes

positivos de δsup1⁵Nfoliar de las plantaciones forestales y pastos con respecto al suelo

puede deberse por una parte que el suelo no cuenta con mecanismos naturales de

reposicioacuten de N salvo por la descomposicioacuten de la hojarasca que puede ser maacutes

lenta en Pinus radiata que en bosque nativo (Lusk et al 2001) y por otra por el alto

impacto de los aportes de N (y otros nutrientes) derivado de las actividades

humanas (eg uso de fertilizantes) en el suelo

El alcance maacutes significativo de esta tesis se relaciona con un cambio en la

tendencia maacutes negativa de δsup1⁵N y el incremento del NT a partir de 1940 y a partir

de 1970 CE en ambos lagos La causa maacutes probable de esta tendencia es el

reemplazo de la cobertura natural o preexistente a 1940 CE por plantaciones

forestales

En la figura 2 se observa una siacutentesis de los principales procesos que

afectan la sentildeal isotoacutepica de la MO en los sedimentos lacustres de L Matanzas y

L Vichuqueacuten La entrada de N y MO desde la cuenca depende del tipo de cobertura

Las plantaciones forestales y el bosque nativo retienen maacutes nutrientes y sedimentos

en la cuenca mientras que la agricultura los favorece Sin embargo las praacutecticas

de manejo que incluyen la aplicacioacuten de N (y otros nutrientes) pueden aportar maacutes

nutrientes al lago que la cobertra de bosque nativo Cuando las actividades

forestales cubren una mayor superficie de la cuenca (1940 en adelante) δsup1⁵N oscila

en valores maacutes negativos y el NT tiende a incrementarse en los sedimentos

lacustres Cabe destacar que los valores de δsup1⁵N observados en los testigos

sedimentarios a fines del s XX no tienen precedente durante la conquista y colonia

espantildeola o durante el resto del periodo de la Repuacuteblica

129

Figura 2 Modelo de transferencia de N entre los ecosistemas terrestres y

acuaacuteticos El δ15N de los sedimentos lacustres depende de la interaccioacuten entre los

aportes de la cuenca y porcesos ldquoin-lakerdquo Flechas indican la direccioacuten del flujo de

N En azul las salidasentradas de 14N en rojo las salidasentradas de 15N δ15N de

la interaccioacuten plantas-suelo depende del tipo de cobertura de suelo

130

CONCLUSIONES GENERALES

La transferencia de N entre cuencas y lagos es un factor de control del ciclo

del N en los lagos y queda reflejado en la sentildeal isotoacutepica de los sedimentos

lacustres (Leng et al 2006 McLauchlan et al 2007) En Laguna Matanzas el

suelo de las especies nativas y las plantaciones forestales despliegan valores de

δ15N maacutes bajos (~1permil) que los de Lago Vichuqueacuten (~35permil) Coincidentemente los

sedimentos lacustres de Laguna Matanzas oscilan con valores de δ15N maacutes bajos

(-15 a +45permil Fig 1) que los de Lago Vichuqueacuten (+3 a +8permil)

Por otra parte el estudio de la MO de los sedimentos lacustres ha permitido

reconstruir los cambios en los aportes de MO y N desde la cuenca Aunque no es

posible afirmar queacute tipo de N estaacute entrando al lago (eg Nitroacutegeno orgaacutenico e

inorganico) si podemos decir que los cambios en las fluctuaciones de δ15N son

coincentes con el crecimiento de la actividad forestal (1980 - hasta 2016 L

Matanzas 0-17 y L Vichuqueacuten 1-66) El δ15N fluctuacutea hacia valores maacutes

negativos Ademaacutes se observa un incremento del NT en los sedimentos lacustres

cuanto mayor es la superficie forestal

Entre 1800-1940 las cuencas eran fundamentalmente agriacutecolas y

ganaderas (Cap1 Fig 7 y Cap 2 Fig 12) el δ15N de los sedimentos lacustres

oscila con valores maacutes positivos (L Matanzas +40 plusmn 05permil y L Vichuqueacuten 56 plusmn

033permil Fig 1) hay una baja bioproductividad en el lago (BrTi ~002 TOC~17)

lo que coincide con un bajo contenido de NT (~478 μg) Este es un periacuteodo de altas

precipitaciones (Christie et al 2009) que tienden a favorecer el lavado de la cuenca

131

y con ello el aporte de MO sedimentos y nutrientes desde la cuenca tiende a verse

favorecido Aunque las principales actividades humanas en estas cuencas son

diferentes (ganaderiacutea en Laguna Matanzas Contreras-Lopez et al 2014

agricultura en Lago Vichuqueacuten Odone 1997) en ambos casos hubo un reemplazo

de la cobertura natural de bosques nativo que favorecioacute mayores aportes de N y

sedimentos desde la cuenca en un efecto sumado con el aumento de las

precipitaciones

A partir de 1980 CE en ambos lagos se observa una disminucioacuten en los

valores de δ15N y un incremento del NT que no tiene precedentes en todo el registro

y pese a que ambos lagos son limnologicamente muy diferentes En Lago

Vichuqueacuten el δ15N tiende a oscilar en antifase con el NT (Fig 1) En el caso de

Laguna Matanzas se observa una tendencia hacia valores maacutes negativos y a partir

de 1990s a valores maacutes positivos mientras que el NT tiende a incrementarse de

manera sostenida Ello podriacutea estar relacionado con el crecimiento de la actividad

forestal habriacutea una mayor retencioacuten de N y sedimentos en la cuenca ligado al

incremento de la superficie forestal Ademaacutes en el caso de L Matanzas el

incremento de la actividad agriacutecola (sumado al de las plantaciones forestales)

podriacutea expicar el cambio en la tendencia en la deacutecada de los 1990s

En el contexto de Antropoceno esta tesis nos permite identificar un gran

impacto de las actividades humanas en Chile central a partir de la deacutecada de 1940

y una Gran Aceleracoacuten a partir de la deacutecada de 1970s En el registro sedimentario

de los lagos en estudio se observa una gran acumulacioacuten de MO el δ15N oscila

hacia valores maacutes negativos y un gran incremento del NT y el crecimiento de la

actividad forestal parece ser la principal responsable Ademaacutes la sobreexplotacioacuten

132

del agua junto al cambio climaacutetico global ha generado una combinacioacuten letal para

los lagos costeros de Chile central

Figura 1 Comparacioacuten de las fluctuaciones de δ15N durante los uacuteltimos 300

antildeos en Laguna Matanzas y Lago Vichuqueacuten

133

Referencias

Battye W Aneja VP Schlesinger WH 2017 Earthrsquos Future Is nitrogen the next carbon Earthrsquos Future Global Biogeochem Cycles 30 1000ndash1014 httpsdoiorg101002eft2235

Christie DA Boninsegna JA Cleaveland MK Lara A Le Quesne C

Morales MS Mudelsee M Stahle DW Villalba R 2009 Aridity changes in the Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from tree-rings Clim Dyn 36 1505ndash1521 httpsdoiorg101007s00382-009-0723-4

Contreras-Loacutepez M (Playa AUHVC (Universidad de VRFS (Pontificia

UC de V 2014 Elementos de la historia natural del An Mus Hist Natulas Vaplaraiso 27 51ndash67

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in

freshwater wetlands record long-term changes in watershed nitrogen source and land use SO - Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash2916

Evans RD Evans RD 2001 Physiological mechanisms influencing

plant nitrogen isotope composition 6 121ndash126 Fogel ML Cifuentes LA 1993 Isotope fractionation during primary

production Org Geochem 73ndash98 httpsdoiorg101007978-1-4615-2890-6_3 Galloway JN Schlesinger WH Ii HL Schnoor L Tg N 1995

Nitrogen fixation Anthropogenic enhancement-environmental response reactive N Global Biogeochem Cycles 9 235ndash252

Garreaud RD Alvarez-Garreton C Barichivich J Pablo Boisier J

Christie D Galleguillos M LeQuesne C McPhee J Zambrano-Bigiarini M 2017 The 2010-2015 megadrought in central Chile Impacts on regional hydroclimate and vegetation Hydrol Earth Syst Sci 21 6307ndash6327 httpsdoiorg105194hess-21-6307-2017

Koba K Koyama LA Kohzu A Nadelhoffer KJ 2003 Natural 15 N

Abundance of Plants Coniferous Forest httpsdoiorg101007s10021-002-0132-6

Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos

Transactions American Geophysical Union httpsdoiorg1010292007EO070007 McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE

2007 Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470 httpsdoiorg101073pnas0701779104

134

Phytologist N Oct N 2006 Tansley Review No 95 15N Natural Abundance in Soil-Plant Systems Peter Hogberg 137 179ndash203

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98 httpsdoiorg1011772053019614564785

Turner BL Kasperson RE Matson PA McCarthy JJ Corell RW

Christensen L Eckley N Kasperson JX Luers A Martello ML Polsky C Pulsipher A Schiller A 2003 A framework for vulnerability analysis in sustainability science Proc Natl Acad Sci U S A httpsdoiorg101073pnas1231335100

Vitousek PM Aber JD Howarth RW Likens GE Matson PA

Schindler DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

Vitousek PM Howarth RW 1991 Nitrogen limitation on land and in the

sea How can it occur Biogeochemistry httpsdoiorg101007BF00002772 von Gunten L Grosjean M Rein B Urrutia R Appleby P 2009 A

quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo central Chile back to AD 850 Holocene 19 873ndash881 httpsdoiorg1011770959683609336573

Xu R Tian H Pan S Dangal SRS Chen J Chang J Lu Y Maria

Skiba U Tubiello FN Zhang B 2019 Increased nitrogen enrichment and shifted patterns in the worldrsquos grassland 1860-2016 Earth Syst Sci Data httpsdoiorg105194essd-11-175-2019

Zaehle S 2013 Terrestrial nitrogen-carbon cycle interactions at the global

scale Philos Trans R Soc B Biol Sci 368 httpsdoiorg101098rstb20130125

Page 6: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …

6

AGRADECIMIENTOS

Quiero agradecer a mi tutor y mentor Dr Claudio Latorre por brindarme su

apoyo sin el cual no habriacutea logrado concluir esta tesis de doctorado Claudio tu

apoyo constante incentivo y el fijarme metas que a veces me pareciacutean imposibles

de alcanzar no solo han dado forma a esta tesis sino tambieacuten me ha hecho maacutes

exigente como cientiacutefica Claudio destacas no solo por ser un gran cientiacutefico si no

tambieacuten por tu gran calidad humana eres un gran ejemplo

Quiero agradecer Dr Blas Valero-Garceacutes por nuestras numerosas

conversaciones viacutea Skype que incluiacutean vacaciones y fines de semana para discutir

los resultados de la tesis y que han dado forma a esta investigacioacuten principalmente

al primer capiacutetulo Ademaacutes por haberme acogido como un miembro maacutes en el

laboratorio de Paleoambientes Cuaternarios durante las estancias que he realizado

en el transcurso de estos antildeos Blas eres un ejemplo para miacute conjugas ciencia de

calidad calidez y dedicacioacuten por tus estudiantes

A quienes han financiado mi doctorado la Comisioacuten Nacional de

Investigacioacuten Cientiacutefica y Tecnoloacutegica (CONICYT) con sus becas de manutencioacuten

doctoral (2013) gastos operacionales pasantiacutea (2016) postnatal (2017) y termino

de tesis doctoralrdquo (2013) A FONDECYT a traveacutes del proyecto 1160744 de C

Santoro Al Departamento de InvestigacioacutenAl Instituto de Ecologiacutea y Biodiversidad

(IEB) a traveacutes de del PIA financiamiento basal 170008 la Pontificia Universidad

Catoacutelica de Chile por la beca incentivo para tesis interdisciplinaria para doctorandos

(2015)

Agradezco a mis compantildeeros del laboratorio de Paleoecologiacutea y

Paleoclimatologiacutea Karla Matias Dani Carolina Mauricio y Pancho que han hecho

grato mi tiempo en el laboratorio Agradecimientos especiales a Carolina Matiacuteas y

Leo por acompantildearme a terreno

7

Agradezco a los miembros del laboratorio de Paleoambientes Cuaternarios

(IPE) en especial a Raquel Elena Fernando Ana Penelope Graciela Miguel

Sevilla Mariacutea y Miguel Bartolomeacute

Agradezco a los miembros de la comisioacuten Dr Joseacute Miguel Farintildea Dr Juan

Armesto y Dr Ricardo De Pol-Holz por la gran ayuda durante el desarrollo de mi

doctorado en especial por las correcciones finales de la tesis

Al departamento de Ecologiacutea en especial a Rosario Galaz Edita Luengo

Daniela Mora y Valeria Cavallero por su apoyo

A mis compantildeeros de doctorado Beleacuten Gallardo Pancho Diacuteaz Bryan Bularz

Bian Latorre Renato Borras Juan Carlos Hernaacutendez y Paulina Troncoso con

quienes estudieacute aprendiacute y compartimos muy buenos momentos durante los

primeros antildeos del doctorado

A Pablo Sarricolea mi compantildeero de vida Gracias por tu constante e

incondicional apoyo Sin ti durante este proceso todo habriacutea sido cuesta arriba

A mis padres Arturo y Malena gracias por su carintildeo apoyo y compromiso

Papaacute aunque no esteacutes a mi lado siempre te recuerdo con mucho carintildeo A mi

madre que ha sido un constante apoyo sobre todo en el cuidado de mis hijos xavi

y panchito

A mis hermanos Rodrigo y David por estar presentes durante toda esta

etapa Siempre con carintildeo y hermandad

A Rodrigo David Matiacuteas Jany Paola y Julio por cuidar a mis hijos con carintildeo

siempre que estuve ausente por el doctorado

8

ABREVIATURAS

N Nitroacutegeno (Nitrogen)

DIN Nitroacutegeno Inorgaacutenico Disuelto (Dissolved Inorganic Nitrogen)

C Carbono (Carbon)

TOC Carbono Inorgaacutenico Total (Total Organic Carbon)

TIC Carbono Inorgaacutenico Total (Total inorganic Carbon)

TC Carbono Total (Total Carbon)

TS Azufre Total (Total Sulfur)

LUCC Cambios de UsoCobertura del Suelo (Land Use and Cover Change)

OM Materia Orgaacutenica (Organic Matter)

POM Particulate Organic Matter (materia orgaacutenica particulada)

CE Common Era

BCE Before Common Era

Cal BP Calibrado en antildeos radiocarbono antes de 1950

ie id est (esto es)

e g Exempli gratia (por ejemplo)

9

RESUMEN

El ldquoAntropocenordquo se caracteriza por pertubaciones de origen humano que

conllevan impactos globales Por ejemplo los cambios de usocobertura del suelo

(LUCC) son conocidos por perturbar el ciclo del N a partir de la Revolucioacuten Industrial

pero especialmente desde la Gran Aceleracioacuten (1950 CE) en adelante Sin

embargo existen incertezas asociadas a la magnitud del impacto y su efecto

acoplado con los cambios climaacuteticos actuales (ie megasequiacutea disminucioacuten de las

precipitaciones) y acoplamientos con otros ciclos biogeoquiacutemicos (eg ciclo del

Carbono) Este impacto ha cambiado la disponibilidad de N en los ecosistemas

terrestres y acuaacuteticos y sus enlaces Los sedimentos lacustres contienen

informacioacuten de las condiciones paleoambientales del lago y su cuenca en el

momento en que se depositaron y el anaacutelisis de los isoacutetopos estables de N (δ15N)

en los sedimentos permiten reconstruir los cambios en la disponibilidad de N a

traveacutes del tiempo En este trabajo usamos una aproximacioacuten multiproxy que incluye

10

anaacutelisis sedimentoloacutegicos geoquiacutemicos e isotoacutepicos (δ15N δ13C) de los sedimentos

lacustres columna de agua y suelo-vegetacioacuten de la cuenca y la reconstruccioacuten de

los LUCC entre 1975 y 2016 a partir de imaacutegenes satelitales El objetivo de esta

tesis fue evaluar el rol de LUCC como principal control del ciclo del N en el sistema

cuenca-lago durante las uacuteltimas centurias en Chile central Nuestros principales

resultados muestran que valores maacutes positivos de δ15N en los sedimentos lacustres

estaacuten relacionados con grandes aportes de N de la cuenca que a su vez son

mayores cuanto mayor la superficie agriacutecola yo los pastizales mientras que tanto

las plantaciones forestales como los bosques favorecen la retencioacuten de nutrientes

en la cuenca (lo que se ve reflejado en un δ15N maacutes negativo) Esta tesis plantea

un cambio de estado en la dinaacutemica del N asociado a la introduccioacuten y expansioacuten

de las plantaciones forestales o bosques los que retienen el Nitroacutegeno en las

cuencas mientras que el clima juega un rol secundario

11

ABSTRACT

The Anthropocene is characterized by human disturbances at the global

scale For example changes in land use are known to disturb the N cycle since the

industrial revolution but especially since the Great Acceleration (1950 CE) onwards

This impact has changed N availability in both terrestrial and aquatic ecosystems

However there are some important uncertainties associated with the extent of this

impact and how it is coupled to ongoing climate change (ie megadroughts rainfall

variability and shifting stationarity) or to other nutrient cycles (e g carbon cycle)

Lake sediments contain paleoenvironmental information regarding the conditions of

the watershed and associated lakes and which the respective sediments are

deposited Nitrogen stable isotope analysis (δ15N) on lake sediments allows us to

reconstruct the changes in N availability through time Here we used a multiproxy

approach that uses sedimentological geochemical and isotopic analyses on

lacustrine sediments water column and soilvegetation from the watershed as well

12

as land use and cover change (LUCC) from 1975 to 2016 obtained from satellite

images The goal of this thesis is to evaluate the role of LUCC as the main driver for

N cycling in a coastal watershed system of central Chile over the last centuries Our

main results show that more positive δ15N values in lake sediments are related to

higher N contributions from the watershed which in turn increase with increased

agricultural andor pasture cover whereas either forest plantations or native forests

can favor nutrient retention in the watershed (δ15N more negative) This thesis

proposes that N dynamics are mainly driven by the introduction and expansion of

forest or tree plantations that retain nitrogen in the watershed whereas climate plays

a secondary role

13

INTRODUCCIOacuteN

El N es un elemento esencial para la vida y limita la productividad en

ecosistemas tanto terrestres como acuaacuteticos (Vitousek et al 1997) Las actividades

humanas han tenido un profundo impacto sobre el ciclo del N global principalmente

a partir la revolucioacuten industrial (IPCC 2013 2007) Las concentraciones de N se

han incrementado por la fijacioacuten industrial de N atmosfeacuterico (viacutea el proceso Haber-

Bosch Erisman et al 2008) por el uso de fertilizantes sobre la base de N para

mejorar el rendimiento de los cultivos la produccioacuten ganadera y ademaacutes de los

cambios en el uso del suelo (abreviado en ingleacutes- LUCC) (Robertson y Vitousek

2009 Galloway et al 2008 Battye et al 2017 Xu et al 2019) Estas actividades

contribuyen significativamente al incremento de la disponibilidad bioloacutegica de N

cuyas consecuencias para los ecosistemas incluye la perdida de diversidad

modificacioacuten de la disponibilidad de nutrientes y acidificacioacuten de los suelos entre

otras Sin embargo se desconoce la cantidad destino y el alcance que ha tenido

14

el N movilizado entre los ecosistemas generado por la influencia de las actividades

humanas (Vitousek et al 1997)

La entrada natural de N en los ecosistemas terrestres y acuaacuteticos es viacutea

fijacioacuten atmosfeacuterica la que es llevada a cabo por microorganismos muchos de ellos

en relaciones simbioacuteticas (eg Rhizobium en leguminosas) y las algas (Vitousek et

al 1997 Battye et al 2017) Las principales salidas estaacuten relacionadas con la

desnitrificacioacuten volatilizacioacuten del amoniaco y por escurrimiento superficial y

subterraacuteneo (Galloway et al 2008 Diacuteaz et al 2016) En el caso de los sistemas

lacustres ademaacutes estaacuten la resuspencioacuten de N del fondo del lago los aportes desde

la cuenca (entradas de N) La depositacioacuten de MO en el fondo del lago que marca

la salida de N de la columna de agua Estas relaciones de intercambio de N tienen

un control geograacutefico (eg latitud exposicioacuten relieve etc) climaacutetico y biotico

(McLauchlan et al 2013) La alteracioacuten provocada por los LUCC no solo genera

las peacuterdidas de nutrientes del suelo por erosioacuten y escurrimiento superficial sino que

tambieacuten modifica la disponibilidad y transferencia de N entre los ecosistemas

terrestres y acuaacuteticos (Elbert et al 2012 McLauchlan et al 2013) Por ejemplo el

reemplazo de la vegetacioacuten nativa por la agricultura yo plantaciones forestales

altera el ciclo del N debido al despeje de los terrenos viacutea quema de la vegetacioacuten

pero tambieacuten debido al reemplazo de la vegetacioacuten preexistente por un

monocultivo (eg trigo pino) y el uso ineficiente de fertilizantes para mejorar el

rendimiento agriacutecola Estas actividades favorecen un incremento de los aportes de

N (y otros nutrientes) viacutea sistemas de drenajes a lagos los que actuacutean como

sumideros El incremento del N derivado de las actividades humanas tanto en los

ecosistemas terrestres como acuaacuteticos genera incertezas relacionados con la

trayectoria y la magnitud de la disponibilidad de N en ambos ecosistemas (Batye et

15

al 2017 Mclauchlan et al 2017) Por lo tanto se requiere de una liacutenea base de

largo plazo para saber coacutemo estas perturbaciones impactan la disponibilidad de N

en las uacuteltimas deacutecadassiglos en los ecosistemas lacustres y por lo tanto el alcance

real que los LUCC han tenido en el ciclo del N

Los ecosistemas mediterraacuteneos y el ciclo del N

Los ecosistemas mediterraacuteneos son especialmente sensibles a los LUCC

pues estos se encuentran sometidos a un estreacutes hiacutedrico durante largas temporadas

estivales y las precipitaciones se concentran en eventos puntuales y a veces con

altos montos pluviomeacutetricos Las precipitaciones tienen un alto potencial de arrastre

de sedimentos y nutrientes los que actuacutean como fertilizantes al llegar a los

ecosistemas lacustres A su vez un incremento en la disponibilidad de N puede

generar un desbalance con otros nutrientes (eg Fosforo) con efectos sobre la

productividad y diversidad de los lagos (Pentildeuelas et al 2012 Sardans et al 2012

McLauchlan 2013) En este sentido en Chile central se observa una disminucioacuten

de las precipitaciones especialmente fuerte en las uacuteltimas deacutecadas por lo que se ha

denoacuteminado como Megasequiacutea (Garreaud et al 2017) y el efecto de las

precipitaciones esporaacutedicas pueden generar un arrastre de nutrientes que no ha

sido evaluado

Los ecosistemas mediterraacuteneos concentran el 20 de la biodiversidad global

(Myers et al 2000) pero existe una escasez de conocimiento respecto a los

efectos del incremento de N en los cuerpos de agua como consecuencia de las

actividades humanas en el pasado histoacuterico (Ochoa-Hueso et al 2011) y coacutemo la

disponibilidad de N ha variado en el tiempo Los LUCC han aumentado el flujo de

N en las cuencas hidrograacuteficas viacutea escurrimiento superficial y lixiviacioacuten

16

favoreciendo la peacuterdida de sedimentos y nutrientes del suelo en el mundo entero

(Elser et al 2011 McLauchlan et al 2013 Xu et al 2017 y 2019) Ello ha

contribuido a la acidificacioacuten y eutrofizacioacuten generalizada de riacuteos y lagos

(McLauchlan et al 2013 Schindler et al 2008)

El ecosistema mediterraacuteneo de Chile central es una regioacuten ampliamente

intervenida desde al menos la colonizacioacuten espantildeola (1600-1800 CE) Los LUCC

han tenido efectos negativos en la disponibilidad de agua especialmente

observados con el desarrollo de las actividades minera (Prieto et al 2019) Aunque

se sabe de los impactos en los ecosistemas de bosque en teacuterminos de cobertura

debidos al desarrollo silvo-agropecuarias (Armesto et al 2010) se desconoce el

impacto de estas actividades sobre el ciclo del N en los cuerpos de agua o en queacute

momento cobran fuerza suficiente para alterar el flujo de N hacia los lagos de Chile

Central Por lo tanto en esta tesis nos centramos en entender coacutemo los LUCC han

afectado la disponibilidad de N en los lagos costeros de Laguna Matanzas y Lago

Vichuqueacuten desde la llegada de los espantildeoles a Chile hasta el presente

Los lagos como sensores ambientales

Los sedimentos lacustres son buenos sensores de cambios en los aportes

de nutrientes contaminacioacuten y eutroficacioacuten de los cuerpos de agua ya que son

capaces de preservar sentildeales quiacutemicas y fiacutesicas al momento de su formacioacuten y

ademaacutes con alta resolucioacuten y a largo plazo (Leng et al 2006) Por lo tanto

constituyen una herramienta uacutetil para reconstruir el flujo de N entre ecosistemas

terrestres y acuaacuteticos en el pasado sus consecuencias (eg incremento de la

productividad lacustre) y el rol del clima y los LUCC en el pasado (McLauchlan et

al 2013 von Gunten et al 2009) Por ejemplo el cultivo de maiacutez por parte de los

17

nativos iroqueses en Canadaacute provocoacute la eutrofizacioacuten del Lago Crawford (43degN)

durante los siglos XII y XV Entre las consecuencias registradas se documentoacute un

claro incremento de la productividad primaria y cambios en la estructura comunitaria

de diatomeas foacutesiles (incremento de Stephanodiscus complex y disminucioacuten de

Cyclotella bodanica en Ekdahl et al 2007) Otro ejemplo demuestra como las

actividades agriacutecolas en la cuenca del riacuteo Mississippi modificaron los patrones de

sedimentacioacuten y aporte de nutrientes al lago Pepin EE UU (44degN) a partir del

asentamiento europeo en 1840 CE y principalmente desde 1940 CE (Engstrom et

al 2009) Para Chile von Gunten et al (2009) a partir de indicadores

limnogeoloacutegicos evidencioacute la contaminacioacuten y eutroficacioacuten de cinco lagos cercanos

a la ciudad de Santiago (33ordmS) como consecuencia de la deposicioacuten atmosfeacuterica

de metales pesados (especialmente Cu) quema de combustible foacutesil y flujo de

nutrientes durante los uacuteltimos 200 antildeos

Caracteriacutesticas limnoloacutegicas de los lagos

Los procesos limnoloacutegicos afectan la distribucioacuten y abundancia de los

organismos en los lagos Estaacuten influenciados por forzamientos externos por

ejemplo la precipitacioacuten o la penetracioacuten de la luz y la morfometriacutea del lago En este

sentido el nivel del lago dependeraacute del balance entre las entradas y salidas de agua

(precipitaciones escurrimiento superficial y subterraacuteneo y la evaporacioacuten) y la forma

de la cuenca (profundidad pendiente aacuterea del espejo de agua)

En funcioacuten de la profundidad de penetracioacuten de la luz es posible diferenciar

dos aacutereas que determinan la distribucioacuten de los organismos la zona foacutetica (donde

penetra la luz y permite la fotosiacutentesis) y la zona afoacutetica (subyacente a la zona

foacutetica) Al depender de la radiacioacuten la zona foacutetica variacutea estacionalmente Ademaacutes

18

puede variar por el grado de turbidez la morfometriacutea del lago y la produccioacuten de

materia orgaacutenica en la columna de agua

Otro factor que influye en la productividad es el reacutegimen de mezcla de la

columna de agua pues favorece la oxigenacioacuten y el reciclado de nutrientes La

mezcla ocurre en condiciones de gran inestabilidad usualmente relacionado con el

reacutegimen de viento Por el contrario un lago estratificado resulta de grandes

diferencias en temperatura o salinidad entre la superficie (epilimnion) y el fondo del

lago (hipolimnion) que separa las masas de agua superficial y de fondo por una

termoclina (si la estratificacioacuten estaacute relacionada con diferencias de temperatura de

las masas de agua) o haloclina (diferencias de salinidad) En funcioacuten del reacutegimen

de mezcla los lagos se pueden clasificar en (Lewis 1983)

1 Amiacutecticos no hay mezcla vertical de la columna de agua

2 Monomiacutecticos friacuteos y caacutelidos se mezcla una vez al antildeo

3 Dimiacutecticos la columna de agua se mezcla dos veces al antildeo

4 Oligomiacutecticos Lagos estratificados la mayor parte del tiempo pero se mezclan a

intervalos irregulares mayores a 1 antildeo

5 Polimiacutecticos friacuteos y caacutelidos la columna de agua se mezcla varias veces al antildeo

El ciclo del N en lagos

Al estar presente en aacutecidos nucleicos aminoaacutecidos y proteiacutenas el N es un

nutriente esencial de los organismos Por lo tanto su disponibilidad en la columna

de agua es clave para la produccioacuten composicioacuten y acumulacioacuten de la MO a traveacutes

del tiempo (Olson 1998 Talbot 2002) Aunque el principal reservorio de N estaacute en

19

la atmosfera (N2) solo unos pocos organismos (eg cianobacterias) pueden fijarlo

directamente Asiacute el Nitroacutegeno Inorgaacutenico Disuelto (DIN) representa la principal

fuente de N disponible para la produccioacuten primaria en los ecosistemas acuaacuteticos

(Talbot et al 2002) El DIN estaacute compuesto por nitrato (NO3-) nitrito (N02

-) y amonio

(NH4+) y los cambios en su disponibilidad condicionan el tipo de produccioacuten primaria

(eg fijadores vs asimiladores de N ver Scott y Grant 2013 Scott 2008)

La Figura 1 resume los principales componentes en lagos del ciclo del N y

sus interacciones La principal entrada natural de N es viacutea fijacioacuten de N atmosfeacuterico

y es llevado a cabo principalmente por bacterias y algas verde-azules capaces de

romper el triple enlace entre los dos aacutetomos de N a un alto costo energeacutetico (Torres

et al 2012) El N fijado es reducido a NH3 Tras la muerte de los organismos el N

es liberado de sus tejidos por hongos y bacterias implicados en la descomposicioacuten

de la MO Una parte se deposita en el fondo del lago y la otra queda disponible para

ser asimilada por el fitoplancton como amonio mediante el proceso de

amonificacioacuten (Talbot 2002) La amonificacioacuten resulta de la reduccioacuten bacteriana

del amoniaco y se da preferentemente en condiciones anoacutexicas La volatizacioacuten del

amoniaco es un proceso por medio este se incorpora a la atmoacutesfera Este proceso

se da preferentemente en lagos aacutecidos (pH gt 85) El nitrato es otra forma de N

bioloacutegicamente disponible para el fitoplancton En los lagos el NO3 del DIN estaacute

compuesto por los aportes desde la cuenca hidrograacutefica en la que se circunscriben

por la resuspensioacuten desde el fondo del lago favorecido por procesos de mezcla

(descrito en seccioacuten anterior) y por los nitratos de la columna de agua Estos uacuteltimos

son el resultado de la nitrificacioacuten proceso realizado por bacterias aeroacutebicas

mediante el cual el amonio se oxida para formar nitrito y nitrato El ciclo se completa

20

con la desnitrificacioacuten que es la reduccioacuten bacteriana de nitrato al N atmosfeacuterico

Este proceso se da preferentemente en condiciones anoacutexicas

Figura 1 Materia Orgaacutenica sedimentaria y su relacioacuten con el ciclo del N y las

variaciones de δ15N (elaborado a partir de Talbot et al 2002) En la figura se

representan los factores clave en la acumulacioacuten de la MO sedimentaria y su

relacioacuten con el ciclo del N El δ15N de la MO es resultado de los aportes de MO

desde la cuenca MO de macroacutefitas y de la productividad bioloacutegica La productividad

en ecosistemas lacustres estaacute condicionada por DIN y la fijacioacuten de N atmosfeacuterico

El δ15N del pool del DIN disponible se va enriqueciendo por la asimilacioacuten

preferencial de 14N por parte del fitoplancton Ademaacutes el DIN remanente se va

enriqueciendo por accioacuten microbiana (amonificacioacuten nitrificacioacuten desnitrificacioacuten)

Reconstruyendo el ciclo del N a partir de variaciones en δ15N

La sentildeal isotoacutepica de N (δ15N) en los sedimentos lacustres puede ser usada

para reconstruir los cambios pasados del ciclo N la transferencia de N entre

ecosistemas terrestres y acuaacuteticos y el estado troacutefico del lago (Bruland y Mackenzie

2015 McLauchlan et al 2013 Woodward et al 2012 von Gunten et al 2009

Leng et al 2006 Meyers y Teranes 2001) La Figura 1 resume los principales

procesos y fuentes que afectan la sentildeal isotoacutepica δ15N (total o ldquobulkrdquo) en la MO de

21

los sedimentos lacustres Entre los que destacan las fuentes de MO (aloacutectona vs

autoacutectona) la bioproductividad lacustre y las entradas de N (ie fijacioacuten bioloacutegica

de N2) (Torres et al 2012) Estos procesos conducen a un fraccionamiento

isotoacutepico cineacutetico que favorece la disociacioacuten entre sus isotopos ldquopesadosrdquo (15N) y

ldquoligerosrdquo (14N) Asiacute por ejemplo los valores de δ15N de la MO se enriquecen en 15N

en la medida que los sedimentos lacustres estaacuten sometidos a perdidas de 14N viacutea

desnitrificacioacuten (Bruland y Mackenzie 2015 Diaz et al 2016 Talbot et al 2002)

Por otra parte el fitoplancton en la medida que aumenta su biomasa (eg

durante la estacioacuten caacutelida) puede llegar a asimilar el DIN hasta agotarse En este

caso el N remanente se va empobreciendo en 14N si no hay reposicioacuten de N (eg

aporte de NO3 de la cuenca) y la MO queda enriquecida en 15N Esta disminucioacuten

induce a una limitacioacuten de fitoplancton por N y los organismos diztroacuteficos pueden

verse estimulados por lo que se incrementa la entrada de N viacutea fijacioacuten de N2 (Scott

y Grantsz 2013) como resultado la MO oscila en valores maacutes bajos (en torno a 0permil)

La cantidad de MO que se deposita en el fondo del lago depende del

predominio de contribuciones provenientes desde la cuenca (aloacutectona) versus las

producidas dentro del mismo lago (autoacutectona) (Torres et al 2012) Aunque en

general los lagos reciben permanentemente aportes de sedimentos y MO desde

su cuenca los lagos pequentildeos tienden a reflejar maacutes los procesos que ocurren

solamente en su cuenca directa y reflejan los valores isotoacutepicos de la misma (Gu et

al 2006) Woodward et al (2012) realizaron un estudio en 50 lagos en Irlanda que

les permitioacute correlacionar diferentes patrones de LUCC (bosques de coniacuteferas

agricultura ganaderiacutea entre otros) con los valores de δ15N (y δ13C) en los

sedimentos superficiales de los lagos Encontraron que los valores de δ15N son maacutes

negativos en cuencas poco impactadas y maacutes positivos en aquellas con alto

22

impacto humano (eg usos de suelo agriacutecola y ganadero) McLauchlan et al (2007)

encontraron valores maacutes positivos de δ15N en los sedimentos del Mirror Lake New

Hampshire (29ordm N) a partir de la desforestacioacuten de su cuenca en 1790 CE (inicio

del asentamiento europeo en el lago) para el desarrollo de la actividad agriacutecola

Estos valores se volvieron maacutes negativos hacia valores similares al pre-

asentamiento europeo despueacutes del cese de la agricultura en la cuenca y la

recuperacioacuten del bosque a partir de 1929 CE

El anaacutelisis de δ15N en los sedimentos lacustres es una herramienta casi sin

explorar en Chile central Proponemos reconstruir la dinaacutemica de transferencia de

N cuenca-lago como consecuencia de los LUCC desde la colonizacioacuten espantildeola en

los lagos costeros de Laguna Matanzas (34ordmS) y Lago Vichuqueacuten (36ordmS) Como son

muacuteltiples los procesos que pueden afectar la sentildeal isotoacutepica de N (medido como

δ15N) en los sedimentos lacustres existen muchos problemas para su

interpretacioacuten paleoambiental (Leng et al 2006) Por ello en esta tesis utilizamos

un enfoque multiproxy que consiste en integrar el anaacutelisis limnoloacutegico y geoquiacutemico

de los sedimentos lacustres con los valores isotoacutepicos modernos de la columna de

agua (mediante monitoreo del POM) la relacioacuten vegetacioacuten-suelo de la cuenca y la

reconstruccioacuten de los principales usos de suelo de las cuencas desde 1975 CE

mediante el uso de imaacutegenes satelitales Considerando estas muacuteltiples liacuteneas de

evidencia nos planteamos utilizar las variaciones del δ15N para reconstruir los

cambios en la disponibilidad de N en los lagos costeros de Chile central y establecer

coacutemo y desde cuaacutendo las actividades humanas en la cuenca son lo suficientemente

importantes como para modificar el ciclo del N en los lagos desde la colonizacioacuten

espantildeola (siglo XVII)

23

Como hipoacutetesis planteamos que la dinaacutemica de transferencia de sedimentos

y nutrientes entre la cuenca y el lago tiene controles geoloacutegicos climaacuteticos y

bioloacutegicos que interactuacutean en el tiempo registraacutendose en la acumulacioacuten de MO de

los sedimentos lacustres (Fig1) Bajo este marco los LUCC modifican esta

dinaacutemica alterando la transferencia de N a los lagos ya que las actividades agriacutecolas

y ganaderas tienden a aportar maacutes N (aumentando δ15N) que la actividad forestal

(la que disminuye δ15N)

En el primer capiacutetulo titulado ldquoA combined approach to establishing the timing

and magnitude of anthropogenic nutrient alteration in a mediterranean coastal lake-

watershed systemrdquo se evaluoacute el rol de los LUCC en el control de la descarga de N

y sedimentos a Laguna Matanzas en un sistema cuenca-lago desde el siglo XVII

Para ello se realizoacute un anaacutelisis de la dinaacutemica sedimentaria lacustre mediante el

anaacutelisis de muacuteltiples proxys sedimentoloacutegicos (ie minerales y textura)

geoquiacutemicos (eg geoquiacutemica orgaacutenica e isotoacutepica) y bioloacutegicos (ie diatomeas) de

Laguna Matanzas que cubren los uacuteltimos 200 antildeos Ademaacutes se realizoacute una

reconstruccioacuten de los usos de suelo entre 1975 y 2016 a partir de imaacutegenes de

sateacutelites y se colectaron muestras de suelo de las principales coberturas de la

cuenca a los cuales se midioacute el δ15N

Entre los principales resultados obtenidos se destaca la influencia de la

ganaderiacutea y la denitrificacioacuten lo que explica los altos valores de δ15N evidenciados

por el registro lacustre durante la colonizacioacuten espantildeola e inicios de la repuacuteblica A

partir de la Gran Aceleracioacuten (1950 CE) la desforestacioacuten y el reemplazo de la

ganaderiacutea por plantaciones forestales tienen un correlato en el registro

sedimentario con valores de δ15N maacutes bajos Estos resultados demuestran que los

LUCC son el factor de primer orden para explicar los cambios observados en

24

nuestro registro de δ15N y a su vez implica un rol secundario del clima como posible

control de la disponibilidad de N en Laguna Matanzas Este capiacutetulo fue sometido

a la revista Scientific Reports y estaacute en revisioacuten desde el 26 de marzo de 2019 En

la elaboracioacuten del mauscrito han colaborado Claudio Latorre Blas Valero-Garceacutes

Matiacuteas Frugone Pablo Sarricolea Santiago Giralt Manuel Contreras-Lopez

Ricardo Prego y Patricia Bernardez

El segundo capiacutetulo se titula ldquoStable isotopes track land use and cover

changes in a mediterranean lake in central Chile over the last 600 yearsrdquo Aquiacute

evaluamos la dinaacutemica del N actual en el sistema cuenca-lago considerando los

valores isotoacutepicos modernos tanto de la vegetacioacuten como del suelo ademaacutes de los

cambios estacionales del POM de la columna de agua Esta informacioacuten se utiliza

como un anaacutelogo moderno para conocer el rol de los LUCC en la disponibilidad de

N en los uacuteltimos 600 antildeos Para ello se colectaron muestras filtradas de la columna

de agua a 2 5 y 20 m dos veces por antildeo entre noviembre de 2015 y julio de 2018

y se obtuvo el δsup1⁵N del POM Ademaacutes se colectoacute muestras de vegetacioacuten y suelo

de la cuenca diferenciando entre especies nativas plantaciones forestales y

vegetacioacuten herbaacutecea Esta informacioacuten se analizoacute en conjunto con la reconstruccioacuten

de los LUCC entre 1975 y 2014 y el anaacutelisis limnoloacutegico del lago Ello nos permitioacute

evaluar coacutemo el δ15N de los sedimentos lacustres refleja los valores δ15N de la

cuenca en el Lago Vichuqueacuten y el control que ejerce el clima en la sentildeal isotoacutepica

de POM Este capiacutetulo seraacute sometido a la revista Science of total environmet

proximamente En la elaboracioacuten del mauscrito han colaborado Claudio Latorre

Blas Valero-Garceacutes Matiacuteas Frugone Pablo Sarricolea Leonardo Villacis y M Laura

Carrevedo

25

Entre los principales resultados encontramos que el δ15N en los sedimentos

lacustres es maacutes positivo con presencia de agricultura en la cuenca y maacutes negativo

cuando esta es reemplazada por cobertura arboacuterea bien sea plantaciones

forestales bien sea bosque nativo A su vez durante la estacioacuten seca y caacutelida la

mayor entrada al lago es viacutea fijacioacuten de N atmosfeacuterico (bajos valores de δ15NPOM)

Durante la estacioacuten huacutemeda en cambio prevalecen los aportes de la cuenca con

altos valores de δ15NPOM Ello estariacutea evidenciando un cambio estacional en la

composicioacuten de especies en verano ligado a especies fijadoras de N y en invierno

las algas y microorganismos que consumen el DIN de la columna de agua

Referencias

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea AM Marquet PA 2010 From the Holocene to the Anthropocene A historical framework for land cover change in southwestern South America in the past 15000 years Land use policy 27 148ndash160 httpsdoiorg101016jlandusepol200907006

Battye W Aneja VP Schlesinger WH 2017 Earth rsquo s Future Is nitrogen the

next carbon  Earth rsquo s Future Global Biogeochem Cycles 30 1000ndash1014 httpsdoiorg101002eft2235

Bruland GL MacKenzie RA 2010 Nitrogen Source Tracking with δN Content

of Coastal Wetland Plants in Hawaii J Environ Qual 39 409 httpsdoiorg102134jeq20090005

Diacuteaz FP Frugone M Gutieacuterrez RA Latorre C 2016 Nitrogen cycling in an

extreme hyperarid environment inferred from δ15 N analyses of plants soils and herbivore diet Sci Rep 6 1ndash11 httpsdoiorg101038srep22226

Ekdahl EJ Teranes JL Wittkop CA Stoermer EF Reavie ED Smol JP

2007 Diatom assemblage response to Iroquoian and Euro-Canadian eutrophication of Crawford Lake Ontario Canada J Paleolimnol 37 233ndash246 httpsdoiorg101007s10933-006-9016-7

Elbert W Weber B Burrows S Steinkamp J Buumldel B Andreae MO

Poumlschl U 2012 Contribution of cryptogamic covers to the global cycles of carbon and nitrogen Nat Geosci 5 459ndash462

26

httpsdoiorg101038ngeo1486 Elser J 2011 A world awash with nitrogen Science 334 1504ndash1506

httpsdoiorg101126science1215567 ARTICLE Engstrom DR Almendinger JE Wolin JA 2009 Historical changes in

sediment and phosphorus loading to the upper Mississippi River Mass-balance reconstructions from the sediments of Lake Pepin J Paleolimnol 41 563ndash588 httpsdoiorg101007s10933-008-9292-5

Erisman J W Sutton M A Galloway J Klimont Z amp Winiwarter W (2008)

How a century of ammonia synthesis changed the world Nature Geoscience 1(10) 636

Galloway JN Townsend AR Erisman JW Bekunda M Cai Z Freney JR

Martinelli LA Seitzinger SP Sutton MA 2008 Transformation of the Nitrogen Cycle  Science (80- ) 320 889ndash892

httpsdoiorg101126science1136674 Garreaud RD Alvarez-Garreton C Barichivich J Pablo Boisier J Christie

D Galleguillos M LeQuesne C McPhee J Zambrano-Bigiarini M 2017 The 2010-2015 megadrought in central Chile Impacts on regional hydroclimate and vegetation Hydrol Earth Syst Sci 21 6307ndash6327 httpsdoiorg105194hess-21-6307-2017

Gruber N Galloway JN 2008 An Earth-system perspective of the global

nitrogen cycle Nature 451 293ndash296 httpsdoiorg101038nature06592 Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater eutrophic lake Limnol Oceanogr 51 2837ndash2848 httpsdoiorg104319lo20065162837

IPCC 2013 Climate Change 2013 The Physical Science BasisContribution of

Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press Cambridge United Kingdom and New York NY USA

httpsdoiorg101017CBO9781107415324 Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos Transactions

American Geophysical Union httpsdoiorg1010292007EO070007 Martel-Cea A Maldonado A Grosjean M Alvial I de Jong R Fritz SC von

Gunten L 2016 Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical Central Chile (32iumliquestfrac12S 3050iumliquestfrac12miumliquestfrac12asl) Palaeogeogr Palaeoclimatol Palaeoecol 461 44ndash54 httpsdoiorg101016jpalaeo201608003

McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE 2007

Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470

27

httpsdoiorg101073pnas0701779104 McLauchlan KK Gerhart LM Battles JJ Craine JM Elmore AJ Higuera

PE Mack MC McNeil BE Nelson DM Pederson N Perakis SS 2017 Centennial-scale reductions in nitrogen availability in temperate forests of the United States Sci Rep 7 1ndash7 httpsdoiorg101038s41598-017-08170-z

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash1643 httpsdoiorg1011770959683613496289

Meyers PA Teranes JL 2001 Sediment organic matter in Tracking

Environmental Change Using Lake Sediments Volume 2 Physical and Geochemical Methods httpsdoiorg1018971551-5028(1999)018lt0231SOMCAAgt23CO2

Myers N Mittermeler RA Mittermeler CG Da Fonseca GAB Kent J

2000 Biodiversity hotspots for conservation priorities Nature httpsdoiorg10103835002501

Pentildeuelas J Poulter B Sardans J Ciais P Van Der Velde M Bopp L

Boucher O Godderis Y Hinsinger P Llusia J Nardin E Vicca S Obersteiner M Janssens IA 2013 Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe Nat Commun 4 httpsdoiorg101038ncomms3934

Prieto M Salazar D Valenzuela MJ 2019 The dispossession of the San

Pedro de Inacaliri river Political Ecology extractivism and archaeology Extr Ind Soc httpsdoiorg101016jexis201902004

Robertson GP Vitousek P 2010 Nitrogen in Agriculture Balancing the Cost of

an Essential Resource Ssrn 34 97ndash125 httpsdoiorg101146annurevenviron032108105046

Sardans J Rivas-Ubach A Pentildeuelas J 2012 The CNP stoichiometry of

organisms and ecosystems in a changing world A review and perspectives Perspect Plant Ecol Evol Syst 14 33ndash47 httpsdoiorg101016jppees201108002

Schindler DW Howarth RW Vitousek PM Tilman DG Schlesinger WH

Matson PA Likens GE Aber JD 2007 Human Alteration of the Global Nitrogen Cycle Sources and Consequences Ecol Appl 7 737ndash750 httpsdoiorg1018901051-0761(1997)007[0737haotgn]20co2

Scott E and EM Grantzs 2013 N2 fixation exceeds internal nitrogen loading as

a phytoplankton nutrient source in perpetually nitrogen-limited reservoirs Freshwater Science 2013 32(3)849ndash861 10189912-1901

28

Stocker TF Dahe Q Plattner G-K Alexander L V Allen SK Bindoff NL Breacuteon F-M Church JA Cubash U Emori S Forster P Friedlingstein P Talley LD Vaughan DG Xie S-P 2013 Technical Summary in Climate Change 2013 The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change httpsdoiorg101017 CBO9781107415324005

Talbot M R (2002) Nitrogen isotopes in palaeolimnology In Tracking

environmental change using lake sediments (pp 401-439) Springer Dordrecht

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status J Paleolimnol 47 693ndash706 httpsdoiorg101007s10933-012-9593-6

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M Eggenberger U Grob P Urrutia R Morales A

2009 Pollution and eutrophication history AD 1800-2005 as recorded in sediments from five lakes in Central Chile Glob Planet Change 68 198ndash208 httpsdoiorg101016jgloplacha200904004

Woodward CA Potito AP Beilman DW 2012 Carbon and nitrogen stable

isotope ratios in surface sediments from lakes of western Ireland Implications for inferring past lake productivity and nitrogen loading J Paleolimnol 47 167ndash184 httpsdoiorg101007s10933-011-9568-z

Xu H Yu K Lan J Sheng E Liu B Ye Y Hong B Wu H Zhou K

Yeager KM 2016 Different responses of sedimentary δ15N to climatic changes and anthropogenic impacts in lakes across the Eastern margin of the Tibetan Plateau J Asian Earth Sci 123 111ndash118 httpsdoiorg101016jjseaes201603024

29

CAPIacuteTULO 1 A COMBINED APPROACH TO ESTABLISHING THE TIMING

AND MAGNITUDE OF ANTHROPOGENIC NUTRIENT ALTERATION IN A

MEDITERRANEAN COASTAL LAKE- WATERSHED SYSTEM

30

A combined approach to establishing the timing and magnitude of anthropogenic

nutrient alteration in a mediterranean coastal lake- watershed system

Magdalena Fuentealbaabc Claudio Latorreabc Matiacuteas Frugoneabc Pablo

Sarricolead Santiago Giralte Manuel Contreras-Lopezf Ricardo Prego g Patricia

Bernaacuterdez g Blas Valero-Garceacutesch

a Departamento de Ecologiacutea Pontificia Universidad Catoacutelica de Chile Alameda 340 Santiago Chile

b Institute of Ecology and Biodiversity (IEB) Las Palmeras 3425 Nuntildeoa Santiago Chile

c Laboratorio Internacional de Cambio Global LINCGlobal PUC-CSIC Spain

d Departamento de Geografiacutea Universidad de Chile Marcoleta 250 Santiago Chile

e Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) CLluis Solegrave Sabaris sn Barcelona E-

08028 Spain

f Facultad de Ingenieriacutea y Centro de Estudios Avanzados Universidad de Playa Ancha Traslavintildea

450 Vintildea del Mar Chile

g Instituto de Investigaciones Marinas (CSIC) CEduardo Cabello 6 36208 Vigo Spain

h Instituto Pirenaico de Ecologiacutea (IPE-CSIC) Avenida Montantildeana 1005 Zaragoza 50059 Spain

Corresponding author

E-mail address

clatorrebiopuccl magdalenafuentealbagmailcom

Abstract

Since the industrial revolution and especially during the Great Acceleration (1950

CE) human activities have profoundly altered the global nutrient cycle through land

use and cover changes (LUCC) However the timing and intensity of recent N

variability together with the extent of its impact in terrestrial and aquatic ecosystems

and coupled effects of regional LUCC and climate are not well understood Here

we used a multiproxy approach (sedimentological geochemical and isotopic

31

analyses historical records climate data and satellite images) to evaluate the role

of LUCC as the main control for N cycling in a coastal watershed system of central

Chile during the last few centuries The largest changes in N dynamics occurred in

the mid-1970s associated with the replacement of native forests and grasslands for

livestock grazing by plantations of introduced Monterey pine (Pinus radiata) and

eucalyptus (Eucalyptus globulus) Lake productivity increased and is evidenced by

an increase trend in δ15N values Our study shows that anthropogenic land

usecover changes are key in controlling nutrient supply and N availability in

Mediterranean watershed ndash lake systems and that large-scale forestry

developments during the mid-1970s likely caused the largest changes in central

Chile

Keywords Anthropocene Organic geochemistry watershedndashlake system Stable

Isotope Analyses Land usecover change Nitrogen cycle Mediterranean

ecosystems central Chile

1 INTRODUCTION

Human activities have become the most important driver of the nutrient cycles in

terrestrial and aquatic ecosystems since the industrial revolution (Gruber and

Galloway 2008 Galloway et al 2008 Holtgrieve et al 2011 Fowler et al 2013

Goyette et al 2016) Among these N is a common nutrient that limits productivity

in terrestrial and aquatic ecosystems (Vitousek and Howarth 1991 McLauchlan et

al 2013) With the advent of the Haber-Bosch industrial N fixation process in the

early 20th century total N fluxes have surpassed previous planetary boundaries

32

(Galloway et al 2008 Elser 2011) reaching unprecedented values (ie tipping

points) in the Earth system especially during what is now termed the Great

Acceleration (which began in the 1950s) which intensified in the 1970s (Howarth

2004 Steffen et al 2015) Yet dramatic changes in LUCC have occurred in the last

few centuries mainly linked to forestry and agro-pastoral activities (Poraj-Goacuterska et

al 2017 Ge et al 2019 Cheng et al 2019) These have had large impacts on N

(and Carbon -C-) availability in terrestrial and aquatic ecosystems but the synergic

effect with climate change and global N dynamics has not been established

(Vitousek et al 1997 Mclauchlan et al 2007 2013 Pongratz et al 2010

Woodward et al 2012 Mclauchlan et al 2017)

The onset of the Anthropocene poses significant challenges in mediterranean

regions that have a strong seasonality of hydrological regimes and an annual water

deficit (Stocker et al 2013) Mediterranean climates occur in all continents

(California central Chile Australia South Africa circum-Mediterranean regions)

providing a unique opportunity to investigate global change processes during the

Anthropocene in similar climate settings but with variable geographic and cultural

contexts The effects of global change in mediterranean watersheds have been

analyzed from different perspectives hydrology (Giorgi 2006 Arnell and Gosling

2013 Prudhomme et al 2014) vegetation dynamics (Lenihan et al 2003 Vicente-

Serrano et al 2013 Matesanz and Valladares 2014) sediment dynamics (Garciacutea-

Ruiz et al 2013 Garciacutea-Ruiz 2010 Syvitski et al 2005) changes in

biogeochemical cycles (Thomas et al 2013 Fowler et al 2013 Frank et al 2015)

carbon storage (Muntildeoz-Rojas et al 2015) and biodiversity (Hooper et al 2012) A

recent review showed an extraordinarily high variability of erosion rates in

mediterranean watersheds positive relationships with slope and annual

33

precipitation and the paramount effect of land use (Garciacutea-Ruiz et al 2015)

However the temporal context and effect of LUCC on nutrient supply to

mediterranean lakes has not been analyzed in much detail

Major LUCC in central Chile occurred during the Spanish Colonial period

(17th-18th centuries) (Armesto 1994 Gurnell et al 2001 Figueroa et al 2004

Martiacuten-Foreacutes et al 2012 Contreras-Loacutepez et al 2014) with the onset of

industrialization and mostly during the mid to late 20th century (von Gunten et al

2009 Gayo et al 2012) Recent copper pollution caused by 20th century mining

and industrial smelters has been documented in cores throughout the Andes

(Laguna el Ocho and Laguna Ensuentildeo von Gunten et al 2009) and also from our

surveys in the central valley (Batuco wetland) coastal range (Cordillera de Name)

and along the coast itself (Bucalemito and Colejuda) (Valero-Garceacutes et al 2010

unpublished data)

Paleolimnological studies have shown how these systems respond to

climate LUCC and anthropogenic impacts during the last millennia (Jenny et al

2002 2003 Villa Martiacutenez et al 2002 Frugone-Aacutelvarez et al 2017 Contreras et

al 2018) Furthermore changes in sediment and nutrient cycles have also been

identified in associated terrestrial ecosystems dating as far back as the Spanish

Conquest and related to fire clearance and wood extraction practices of the native

forests (Armesto 1994 Contreras-Loacutepez et al 2014) Nevertheless pollen and

limnological evidence argue for a more recent timing of the largest anthropogenic

impacts in central Chile For example paleo records show that during the mid-20th

century increased soil erosion followed replacement of native forest by Pinus

radiata and Eucalyptus globulus plantations at Laguna Matanzas Aculeo and

34

Vichuqueacuten lakes (Jenny et al 2002 Villa-Martiacutenez et al 2002 2003 Frugone-

Aacutelvarez et al 2017)

Lakes are a central component of the global carbon cycle Lakes act as a

sink of the carbon cycle both by mineralizing terrestrially derived organic matter and

by storing substantial amounts of organic carbon (OC) in their sediments (Anderson

et al 2009) Paleolimnological studies have shown a large increase in OC burial

rates during the last century (Heathcote et al 2015) however the rates and

controls on OC burial by lakes remain uncertain as do the possible effects of future

global change and the coupled effect with the N cycle LUCC intensification of

agriculture and associated nutrient loading together with atmospheric N-deposition

are expected to enhance OC sequestration by lakes Climate change has been

mainly responsible for the increased algal productivity since the end of the 19th

century and during the late 20th century in lakes from both the northern (Ruumlhland et

al2015) and southern hemispheres (Michelutti et al 2015 Carrevedo et al 2015)

but many studies suggest a complex interaction of global warming and

anthropogenic influences and it remains to be proven if climate is indeed the only

factor controlling these transitions (Catalaacuten et al 2013) Alternative causes for

recent N (Galloway et al 2008) increases in high altitude lakes such as catchment

mediated processes cannot be ruled out (Camarero and Catalan 2012 Fritz and

Anderson 2013) Few lake-watershed systems have robust enough chronologies of

recent changes to compare variations in C and N with regional and local processes

and even fewer of these are from the southern hemisphere (McLauchlan et al

2007 Holtgrieve et al 2011)

In this paper we present a multiproxy lake-watershed study including N and

C stable isotope analyses on a series of short cores from Laguna Matanzas in

35

central Chile focused in the last 200 years We complemented our record with land

use surveys satellite and aerial photograph studies Our major objectives are 1) to

reconstruct the dynamics among climate human activities and changes in the N

cycle over the last two centuries 2) to evaluate how human activities have altered

the N cycle during the Great Acceleration (since the mid-20th century)

2 STUDY SITE

Laguna Matanzas (33ordm45rsquoS 71ordm 40acuteW 7 m asl Fig 1) is a coastal lake located

in central Chile near to a large populated area (Santiago gt6106 inhabitants) The

lake has a surface area of 15 km2 with a max depth of 3 m and a watershed of 30

km2 The lake basin is emplaced over Pleistocene-Holocene aeolian and alluvial fan

deposits (SERNAGEOMIN 2003) A recent phase of dune activity occurred from the

mid to late Holocene which mostly sealed off the basin from the ocean (Villa-

Martinez 2002) Climate in Laguna Matanzas is characterized by cool-wet winters

and hot-dry summers with annual precipitation of ~510 mm and a mean annual

temperature of 12ordmC Central Chile is in the transition zone between the southern

hemisphere mid-latitude westerlies belt and the South Pacific Anticyclone (or SPA)

(Garreaud et al 2009) In winter precipitation is modulated by the north-west

displacement of the SPA the northward shift of the westerlies wind belt and an

increased frequency of storm fronts stemming off the Southern Hemisphere

Westerly Winds (SWW) (Frugone-Aacutelvarez et al 2017) Austral summers are

typically dry and warm as a strong SPA blocks the northward migration of storm

tracks stemming off the SWW

36

Historic land cover changes started after the Spanish conquest with a Jesuit

settlement in 1627 CE near El Convento village and the development of a livestock

ranch that included the Matanzas watershed After the Jesuits were expelled from

South America in 1778 CE the farm was bought by Pedro Balmaceda and had more

than 40000 head of cattle around 1800 CE (Contreras-Lopez et al 2014) The first

Pinus radiata and Eucalyptus globulus trees were planted during the second half of

the 19th century and were mostly used for dune stabilization (Albert 1900 Gibson

1972) However the main plantation phase occurred 60 years ago (Villa-Martinez

2002) as a response to the application of Chilean Forestry Laws promulgated in

1931 and 1974 and associated state subsidies

Major land cover changes occurred recently from 1975 to 2008 as shrublands

were replaced by more intensive land uses practices such as farmland and tree

plantations (Schulz et al 2010) Laguna Matanzas is part of the Reserva Nacional

Humedal El Yali protected area (Ramsar Ndeg 878) Despite this protected status the

lake and its watershed have been heavily affected by intense agricultural and

farming activities during the last decades The main inlet ldquoLas Rosasrdquo has been

diverted for crop irrigation causing a significant loss of water input to the lake

Consequently the flooded area of the lake has greatly decreased in the last couple

of decades (Fig 1b) Exotic tree species cover a large surface area of the

watershed Recently other activities such as farms for intensive chicken production

have been emplaced in the watershed

37

Figure 1 Laguna Matanzas a) Digital Elevation Model showing the watershed and

the surface hydrologic connection with Colejuda and Cabildo lakes b) Climograph

depicting the warm dry season in austral summer c) Annual precipitation from

1965-2015 (arrow shows start of the most recent ldquomega-droughtrdquo- see Garreaud et

al 2017) d) A decline of lake area occurs between 2007 and 2018 Lake surface

area decreased first along the western sector (in 2007) followed by more inland

areas (in 2018)

38

3 RESULTS

31 Age Model

The age model for the Matanzas sequence was developed using Bacon software

to establish the deposition rates and age uncertainty (Blaauw and Christen 2011)

It is based on 210Pb and 137Cs dates and two 14C dates (Table 2) According to this

age model the lake sequence spans the last 1000 years (Fig 2) A major breccia

layer (unit 3b) was deposited during the early 18th century which agrees with

historic documents indicating that a tsunami impacted Laguna Matanzas and its

watershed in 1730 CE (Contreras-Loacutepez et al 2014) Here we focus in the last 200

years were the most important changes occurred in terms of LUCC (after the

sedimentary hiatus caused by the tsunami) The Spanish colonial period (17th -18th

century) brought new forms of territorial management along with an intensification

of watershed use which remained relatively unchanged until the 1900s

39

Figure 2 a) Age-depth model obtained for the Laguna de Matanzas sedimentary

sequence A hiatus occurs at 80 cm depth (unit 3b) The section of core used for our

analysis is highlighted in a red rectangle b) Close up of the age model used for

analysis of recent anthropogenic influences on the N cycle c) Information regarding

the 14C dates used to construct age model

Lab code Sample ID

Depth (cm) Material Fraction of modern C

Radiocarbon age

Pmc Error BP Error

D-AMS 021579

MAT11-6A 104-105 Bulk Sediment

8843 041 988 37

D-AMS 001132

MAT11-6A 1345-1355

Bulk Sediment

8482 024 1268 21

POZ-57285

MAT13-12 DIC Water column 10454 035 Modern

Table 2 Laguna Matanzas radiocarbon dates

32 The sediment sequence

Laguna Matanzas sediments consist of massive to banded mud with some silt

intercalations They are composed of silicate minerals (plagioclase quartz and clay

minerals) with relatively high TOC content (Fig 3) Pyrite is a common mineral

indicating dominant anoxic conditions in the lake sediments whereas aragonite

occurs only in the uppermost section Mineralogical analyses visual descriptions

texture and geochemical composition were used to characterize five main facies

(Fig 3) F1 (organic-rich mud) represents baseline sedimentation in a shallow well-

mixed brackish highly productive lake and F1acute (dark orange) is a less organic facies

than F1 (more details see table in the supplementary material) F2 (massive to

banded silty mud) indicates periods of higher clastic input into the lake but finer

(mostly clay minerals) likely from suspension deposition associated with flooding

40

events Aragonite (up to 15 ) occurs in both facies but only in samples from the

uppermost 30 cm and it is interpreted as endogenic linked to higher MgFe waters

and elevated biologic productivity

Figure 3 Sedimentary facies and units mineralogy grain size elemental geochemical

and isotopic composition of Laguna Matanzas core Values highlighted in gray indicate

that these are above average

The banded to laminated fining upward silty clay layers (F3) reflect

deposition by high energy turbidity currents The presence of aragonite suggests

that littoral sediments were incorporated by these currents Non-graded laminated

coarse silt layers (F4) do not have aragonite indicating a dominant watershed

41

sediment source Both facies are interpreted as more energetic flood deposits but

with different sediment sources A unique breccia layer with coarse silt matrix and

cm-long soft clasts (F5) is interpreted as a high-energy event (ie a tsunami)

capable of eroding the littoral zone and depositing coarse clastic material in the

distal zone of the lake Similar coarse breccia layers have been found at several

coastal sites in Chile and interpreted as tsunami-related deposits (Vargas et al

2005 Le Roux et al 2008)

33 Sedimentary units

Three main units and six subunits have been defined (Fig 3) based on

sedimentary facies and sediment composition We use ZrTi as an indicator of the

mineral fraction transported from the watershed (Marzecoacuteva et al 2011) as higher

ZrTi (F3 and F4) is commonly associated with coarser sediments (Cuven et al

2010) A high correlation among Br BrTi and TOC (r = 046-087 p value=0)

supports the use of BrTi as an indicator of lake productivity (Marzecoacuteva et al 2011

Frugone-Aacutelvarez et al 2017) The MnFe ratio is indicative of lake bottom

oxygenation (Naecher et al 2013) as under reducing conditions Mn mobilizes more

than Fe leading to a decreased MnFe ratio (Marzecoacuteva et al 2011) SrTi indicates

periods of increased aragonite formation as Sr is preferentially included in the

aragonite mineral structure (Veizer et al 1971) (See supplementary material)

The basal unit (3c 129 to 99 cm) is relatively organic-rich (TOC mean=26

BioSi mean=5) and composed by F1 (without aragonite) with some coarser F4

flood layers (ZrTi mean=025) Unit 3b (98 to 80 cm) is interpreted as a tsunami or

storm surge deposit (breccia F5 grading into massive to banded silt F2) Unit 3a

(79 to 73 cm) is characterized by relatively low productivity (TOC=2 BrTi=002

42

BioSi=4) under anoxic conditions (MnFe=001) Unit 2a (72 to 31cm) has

relatively less organic content and more intercalated clastic facies F3 and F4 The

top of this unit (43-30 cm) has elevated TS values The Subunit 1b (30-20 cm)

shows increasing TOC BioSi and BrTi values (TOC mean = 29 BioSi mean =

54 BrTi mean=004) and the upper subunit 1a (19-0 cm) has the highest TOC

(mean = 64) and BioSi (mean = 56) high BrTi mean = 010 and the presence

of aragonite More frequent anoxic conditions (MnFe lower than 001) during units

3 and 2 shifted towards more oxic episodes (MnFe = 003) in unit 1 (Fig 3)

34 Isotopic signatures

Figure 4 shows the isotopic signature from soil samples of the major land

usescover present in the Laguna Matanzas used as an end member in comparison

with the lacustrine sedimentary units δ15N from cropland samples exhibit the

highest values whereas grassland and soil samples from lake shore areas have

intermediate values (Fig 4) Tree plantations and native forests have similarly low

δ15N values (+11 permil SD=24) All samples (except those from the lake shore)

exhibit low δ13C values (from ndash285permil to ndash298permil) CNmolar from agriculture land

lakeshore area and non-vegetation areas samples display the lowest values (about

18) CNmolar from tree plantations and native forest have the highest values (383

and 267 respectively)

43

Figure 4 C-N stable isotope plot showing a comparison of lake sediments grouped

by sedimentary units (MAT11-6A) with the soil end members of present-day (lake

shore and land usecover) from Laguna Matanzas

The δ15N values from sediment samples (MAT11-6A) range from ndash15 and

+53permil (mean= +35 SD=05) δ13C values range from ndash266permil to ndash202permil (mean=

ndash240 SD=14) In unit 3c δ15N and δ13C show relatively high values (mean=

+41permil and ndash233permil respectively) δ15N and δ13C from unit 3b and 3a fluctuate at

slightly lower values than in 3c (mean δ15N from 3a= +38permil and 3b mean= +39permil

mean δ13C from 3a= ndash242permil and 3b mean= ndash244permil) In unit 2a δ15N values are

relatively high (mean= +38permil) but show a slightly decreasing trend (from +52 to

+24permil at 66 cm and 36 cm respectively) δ13C also decreases (mean= ndash242permil)

reaching minimum values at 45 cm (ndash266permil) with a sharp increase towards the top

of this unit with maximum values ca ndash210permil Unit 1 exhibits the lowest δ15N values

(1a mean= +11permil 1b mean= +28permil) with negative values in the uppermost

44

sediments (ndash04permil at 14 cm) δ13C values show a decreasing trend over most of

subunit 1b and increase only near the very top of this unit

35 Recent land use changes in the Laguna Matanzas watershed

Major LUCC from 1975 (unit 1b) to 2016 CE in the Laguna Matanzasacutes

watershed is summarized in Figure 5 The watershed has a surface area of 30 km2

of which native forest (36) and grassland areas (44) represented 80 of the

total surface in 1975 The area occupied by agriculture was only 02 and tree

plantations were absent Isolated burned areas (33) were located mostly in the

northern part of the watershed By 1989 tree plantations surface area had increased

to 5 burned areas to 17 and agricultural fields to 9 (a 45-fold increase) and

native forest and grassland sectors decreased to 23 and 27 respectively By

2016 agricultural land and tree plantations have increased to 17 of the total area

whereas native forests decreased to 21

45

Figure 5 Land uses and cover changes from 1975 to 2016 in Laguna Matanzas

watershed from natural cover and areas for livestock grazing (grassland) to the

expansion of agriculture and forest plantation

4 DISCUSSION

41 N and C dynamics in Laguna Matanzas

Small lakes with relatively large watersheds such as Laguna Matanzas would

be expected to have relatively high contributions of allochthonous C to the sediment

OM (Gu et al 2006) Terrestrial C3 plants (δ13C =ndash26 to ndash28permil Meyers and Terranes

2001 Ku et al 2007) are dominant in the Laguna Matanzas watershed Likewise

our soil samples ranged across similar although slightly more negative values

46

(δ13C = ndash30 to ndash28permil Fig 4) to those proposed by Meyers and Terranes (2001)

and are used here as terrestrial end members oil samples were taken from the lake

shore (δ13C = ndash22permil) and POM from surface water (δ13C = ndash24permil) were more

positive than the terrestrial end member and are used as lacustrine end members

Thus more negative δ13C values in lake sediment samples are attributed to higher

OM inputs from terrestrial vegetation and more positive δ13C values have increased

aquatic OM (Gu et al 2006 Torres et al 2012) Phytoplankton preferentially uptake

12C leaving the DIC pool enriched in 13C (Gu et al 2006) especially when there are

no important external sources of C (eg decreased C input from the watershed)

Therefore during events of elevated primary productivity the phytoplankton uptakes

12C until its depletion and are then obligated to use the heavier isotope resulting in

an increase in δ13C Changes in lake productivity thus greatly affect the C isotope

signal (Torres et al 2012) with high productivity leading to elevated δ13C values

(Torres et al 2012 Gu et al 2006)

In a similar fashion the N isotope signatures in Laguna Matanzas reflect a

combination of factors including different N sources (autochthonousallochthonous)

and lake processes such as productivity isotope fractionation in the water column

and sediment denitrification Elevated δ15N values from a POM sample (+22permil) and

average values from the lake shore (mean=+34permil SD=028) are used as aquatic

end members whereas terrestrial samples have values from +10 +24 (tree species)

to +77permil +35 (agriculture) which we use as terrestrial end members (Fig 4)

Autochthonous OM in aquatic ecosystems typically displays low δ15N values

when the OM comes from N-fixing species Atmospheric fixation of N2 by

cyanobacteria ends in OM with δ15N values close to 0permil (Leng et al 2006)

Phytoplankton preferentially uptake 14N from Dissolved Inorganic Nitrogen (DIN) in

47

the water column and derived OM typically have δ15N values lower than DIN values

When productivity increases the remaining DIN becomes depleted in 14N which in

turn increases the δ15N values of phytoplankton over time especially if the N not

replenished (Torres et al 2012) Thus high POM δ15N values from Laguna

Matanzas reflect elevated phytoplankton productivity with a 14N- depleted DIN In

addition N-watershed inputs also contribute to high δ15N values Heavily impacted

watersheds by human activities are often reflected in isotope values due to land use

changes and associated modified N fluxes For example the input of N runoff

derived from the use of inorganic fertilizers leads to the presence of elevated δ15N

(between ndash4 to +4permil) values in the water bodies (Elliott and Brush 2006 Diebel and

Vander Zanden 2009) Widory et al (2004) reported a direct relationship between

elevated δ15N values and increased nitrate concentration from manure in the

groundwater of Brittany (France) Terranes and Bernasconi (2000) found a good

correlation between augmented nutrient loading and a progressive increase in δ15N

values of sedimentary OM related to agricultural land use

Post-depositional diagenetic processes can further affect C and N isotope

signatures Several studies have shown a decrease in δ13C values of OM in anoxic

environments particularly during the first years of burial related to the selective

preservation of OM depleted in 13C (Hollander and Smith 2001 Lehmann et al

2002 Gӓlman et al 2009 Torres et al 2012) Diagenetic processes can also lead

to post-burial N isotope enrichment of the sediments Indeed 14N is consumed more

rapidly than 15N by denitrifying bacteria which intensifies under anoxic conditions

(Diebel and Vander Zanden 2009) Thus the remaining OM pool will be enriched

in 15N leaving to elevated δ15N values (Granger et al 2008 Menzel et al 2013)

48

In summary the relatively high δ15N values in sediments of Laguna Matanzas

reflect N input from an agriculturegrassland watershed with positive synergetic

effects from increased lake productivity enrichment of DIN in the water column and

most likely denitrification The increase of algal productivity associated with

increased N terrestrial input andor recycling of lake nutrients (and lesser extent

fixing atmospheric N) and denitrification under anoxic conditions can all increase

δ15N values (Fig 3) In addition elevated lake productivity without C replenishing

(eg by terrestrial C input) produces shifts towards positive δ13C values whereas C

input from the watershed generates more negative δ13C values

42 Recent evolution of the Laguna Matanzas watershed

Sedimentological compositional and geochemical indicators show three

depositional phases in the lake evolution under the human influence in the Laguna

Matanzas over the last two hundred years Although the record is longer (around

1000 years) we analyzed the last two centuries (unit 2 and 1) to provide a recent

historical context for the large changes detected during the 20th century

The first phase lasted from the beginning of the 19th century until ca 1940

(unit 2a Fig 3 4) and was characterized by moderate productivity with elevated

sediment input from the watershed as indicated by our geochemical proxies (BrTi

= 004 AlTi gt 01 Fig 6) Higher lake levels and dominant anoxic bottom conditions

(MnFe = 001 Fig3) can be related to increased precipitation (mean= 557 mmyr)

and lower temperatures (summer annual temperature lt19ordmC) During the Spanish

colonial period the Laguna Matanzas watershed was used as a livestock farm

(Jesuits 1627-1780 unit 3 followed by the Pedro Balmaceda era 1780-1810- unit

2a) (Contreras-Loacutepez et al 2014) The main buildings and farm facilities at the El

49

Convento village During this period livestock grazing and lumber extraction for

mining would have involved extensive deforestation and loss of native vegetation

(eg Armesto et al 1994 2010) However the Matanzas pollen record does not

show any significant regional deforestation during this period (Villa Martiacutenez 2002)

suggesting that the impact may have been highly localized

Lake productivity sediment input and elevated precipitation (Fig 6) all

suggest that N availability was related to this increased input from the watershed

The N from cow manure and soil particles would have led to higher δ15N values

(Elliot and Brush 2016) In addition anoxic lake bottom conditions would lead to

even further enrichment of buried sediment N The δ13C values lend further support

to our interpretation of increased sediment input -and N- from the watershed

Decreased δ13C values reach their lowest values in the entire record (ndash270permil) at

ca 1910 CE (Fig 4 6)

During most of the 19th century human activities in Laguna Matanzas were

similar to those during the Spanish Colonial period However the appearance of

Pinus radiata and Eucalyptus globulus pollen ca 1890 CE (Gibson 1972) the dune

stabilization-afforestation program which began ca 1900 CE (Albert 1900) and the

application of the Chilean forestry law of 1931 (DFL nordm265) contributed to an

increased capacity of the surrounding vegetation to retain nutrients and sediments

The law subsidized forest plantations in areas devoid of vegetation and prohibited

the cutting of forest on slopes greater than 45ordm These land use changes were coeval

with decreased sediment inputs (AlTi trend) from the watershed slightly increased

lake productivity (BrTi from 001 to 003) and a decrease in annual precipitation

(Fig 6) N isotope values become more negative during this period although they

remained high (from +49permil to +37permil) whereas the δ13C trend towards more

50

positive values reflects changes in the N source from watershed to in-lake dynamics

(e g increased endogenic productivity)

The second phase started after 1940 and is clearly marked by an abrupt

change in the general trend of δ15N that oscillates around +41permil (SD = 04permil) during

the first phase to +24permil (SD = 14permil) during the second These δ15N trends reflect

the lowest watershed nutrient and sediment inputs (based on the AlTi record)

decreased precipitation (mean = 318 mm year) and a slight increase in lake

productivity (increased BrTI) Depositional dynamics in the lake likely crossed a

threshold as human activity intensified throughout the watershed and lake levels

decreased

During the Great Acceleration δ15N values shifted towards higher values to

ca 3permil with an increase in δ13C values that are not reflected either in lake

productivity or lake level As the sediment input from the watershed increased and

precipitation remained as low as the previous decade δ15N values during this period

are likely related to watershed clearance which would have increased both nutrient

and sediment input into the lake

The δ13C trend to more positive values reaching the peaks in the 1960s (ndash

212permil) at the same time as the peaks in temperature (196 ordmC mean annual) with a

downward trend in precipitation A shift in OM origin from macrophytes and

watershed input influences to increased lake productivity could explain this trend

(Fig 4 1b)

In the 1970s the Laguna Matanzasacute watershed was mostly covered by native

forest (36) and grassland areas were intended for livestock grazing (44 Fig 5)

Both soils have δ15NSoil lt 5permil (Fig 4) Farming fields occupied a very small area and

tree plantations were almost nonexistent The decreasing trend in δ15N values seen

51

in our record is interrupted by several large peaks that occurred between ca 1975

and ca 1989 when the native forest and grassland areas fell by 23 and 27

respectively largely due to fires affecting 17 of the forests Agriculture fields

increased by 4 and forest plantations increased by 9 (unit 1a) Concomitantly

sediment ndash and likely N - inputs from the watershed decreased (as indicated by the

trend in AlTi) the precipitation was still relatively low (Fig 6) These changes are

likely related to the increase of vegetation cover especially of tree plantations (which

have more negative δ15N values) The small increase in productivity in the lake could

have been favored by increased temperature (von Gunten et al 2009) After 1989

the increase in agriculture land (17 in 2016) correlates with increasing δ15N δ13C

and TOC trends in spite of declining rainfall The increase of forest plantations was

mostly in response to the implementation of the Law Decree of Forestry

Development (DL 701 of 1974) that subsidized forest plantation After 1989 the

increase in agricultural land (17 in 2016) is synchronous with increasing δ15N

δ13C TOC and MnFe trends despite the decline in rainfall and overall lower lake

levels as more water is used for irrigation

The third phase started c 1990 CE (unit 1a) when OM accumulation rates

increase and δ13C δ15N decreased reaching their lowest values in the sequence

around 2000 CE Afterward during the 21st century δ13C and δ15N values again

began to increase The onset of unit 1 is marked by increased lake productivity and

decreased sediment input (AlTi lt 02) synchronous with intensive farming replacing

forestry and extensive agriculture (Fig 5 6)

A change in the general trend of δ15N values which decreased until 1990

(unit 1a) as the native forest and grassland area fell to 23 and 27 respectively

is most likely due to deforestation and fires Agriculture surface increased to 4 and

52

forest plantations increased by 9 (Fig 5) Concomitantly sediment ndash and likely N

ndash inputs from the watershed decreased probably related to the low precipitation (Fig

1b) and the increase of vegetation cover in the watershed in particularly by tree

plantations (with more negative δ15N Fig 4)

At present agriculture and tree plantations occupy around 34 of the

watershed surface whereas native forests and grassland cover 21 and 25

respectively Lake productivity as indicated by BrTi (Fig6) is higher and generates

OM with lower δ15N and higher δ13C values (about +2permil and ndash20permil ca 2000 CE

respectively) due to in-lake processes (ie biological N fixation and nutrient

recycling) and driven by changes in the arboreal cover which diminishes nutrient

flux into the lake (Fig6)

53

Figure 6 Anthropogenic and climatic forcing and lake dynamics response

(productivity sediment input N and C cycles) at Matanzas Lake over the last two

54

centuries Mean annual precipitation reconstructed and temperatures (von Gunten

et al 2009) Vertical gray bars indicate mega-droughts

5 CONCLUSIONS

Human activities have been the main factor controlling the N and C cycle in

the Laguna Matanzas during the last two centuries The N isotope signature in the

lake sediments reflects changes in the watershed fluxes to the lake but also in-lake

processes such as productivity and post-depositional changes Denitrification could

have been a dominant process during periods of increased anoxic conditions which

were more frequent prior to Great Acceleration (1950 CE) Higher δ15N and lower

δ13C values are associated with increased nutrient input from the watershed due to

increased livestock grazing and agriculture pressure (phase 1 Fig 7a) whereas

lower isotope values occurred during periods of increased forest plantations (phase

3 Fig 7c) During periods of increased lake productivity - such as in the last few

decades - δ15N values increased significantly

The most important change in C and N dynamics in the lake occurred after the

1950s (Phase 2 and 3) as tree plantations dominated the watershed Recent

changes in N dynamics can be explained by the higher nutrient contribution

associated with intensive agriculture (i e fertilizers) since the 1990s Although the

replacement of livestock activities with forestry and farming seems to have reduced

nutrient and soil export from the watershed to the lake the inefficient use of fertilizer

(by agriculture) can be the ultimate responsible for lake productivity increase during

the last decades

55

Figure 7 Schematic diagrams illustrating the main factors controlling the

isotope N signal in sediment OM of Laguna Matanzas N input from watershed

depends on human activities and land cover type Agriculture practices and cattle

(grassland development) contribute more N to the lake than native forest and

plantations Periods of higher productivity tend to deplete the dissolved inorganic N

in 14N resulting in higher δ15N (OM) The denitrification processes are more effective

in anoxic conditions associated with higher lake levels

6 METHODS

Short sediment cores were recovered from Laguna Matanzas using an Uwitec

gravity piston corer in 2011 and 2013 (Fig 1a) Sediment cores (MAT11-6A 129 cm

MAT13-2A 149 cm MAT13-3A 33 cm MAT13-4A 99 cm) were split

photographed sub-sampled and stored at the Pyrenean Institute of Ecology (IPE-

CSIC Spain) Core MAT11-6A was obtained from the central sector of the lake and

56

was selected for detailed multiproxy analyses (including elemental geochemistry C

and N isotope analyses XRF and 14C dating)

The isotope analyses (δ13C and δ15N) were performed at the Laboratory of

Biogeochemistry and Applied Stable Isotopes (LABASI-PUC Chile) using a Delta

V Advantage IRMS coupled to a Thermo Flash 2000 Elemental Analyzer via a

Conflo IV interface Isotope results are expressed in standard delta notation (δ) in

per mil (permil) relative to the standards Pee Dee Belemnite (Vienna Pee Dee

Belemnite) for C and to atmospheric N2 for N (Leng et al 2006) Sediment samples

for δ13Corg were pre-treated with 50 ml of HCl and 50 ml of deionized water and

dried at 60ordmC for 4 hr to remove carbonates (Harris et al 2011)

Total Carbon (TC) Total Organic Carbon (TOC) Total Inorganic Carbon (TIC)

and Total Sulphur (TS) were measured every cm with a LECO SC 144 DR at IPE-

CSIC XRF measurements were carried out every 4 mm in MAT11-1A-1G core using

an AVAATECH X-ray Fluorescence II core scanner at the University of Barcelona

(Spain) Results are expressed as element intensities in counts per second (cps)

Tube voltage was operated at 30 kV and 10 kV to obtain the abundances of 15

elements (Al Si S Cl K Ca Ti V Mn Fe Br Rb Sr Y Zr) with an average at

least of 1600 cps (less for Br=1000)

Biogenic silica content mineralogy and grain size were measured every 4

cm Biogenic silica was measured following Mortlock and Froelich (1989) and

Bernaacuterdez et al (2005) using an Auto Analyzer Technicon AAII for dissolved silicate

analysis Mineralogy was analyzed with a Siemens D-500 X-ray diffractometer (Cu

kα 40 kV 30 mA graphite monochromator) at the ICTJA-CSIC (Spain) Grain size

analyses were performed in a Beckmann Coulter LS 13 320 Particle Size Analyzer

57

at the IPE-CSIC The samples were classified according to textural classes as

follows clay (lt2 μm) silt (20-2 microm) and sand (gt2 microm) fractions

The age-depth model for the Laguna Matanzas sedimentary sequence was

constructed using 210Pb and 137Cs dating techniques (MAT13-4A) as well as two 14C

AMS dates on bulk sediment samples (MAT11-6A fig 2) We dated the dissolved

inorganic carbon (DIC) in the water column and no significant reservoir effect is

present in the modern-day water column (10454 + 035 pcmc Table 2) An age-

depth model was obtained with the Bacon R package to estimate the deposition

rates and associated age uncertainties along the core (Blaauw and Christen 2011)

To estimate LUCC of Laguna Matanzasacutes watershed we use satellite images

Landsat MSS for 1975 Landsat TM for 1989 and Landsat OLI for 2016 all taken in

summer or autumn (Table 1) We performed supervised classification of land uses

(maximum likelihood algorithm) for each year (1975 1989 and 2016) and the results

were mapped using software ArcGIS 102 in 2017

Satellite Images Acquisition Date

Resolution

Landsat MSS 19750322 60 m

Landsat TM 19890217 30 m

Landsat OLI 20160404 30 m

Table 1 Landsat imagery

Surface water samples were filtered for obtained particulate organic matter In

addition soil samples from the main land usecover present in the Laguna Matanzas

watershed were collected Elemental C N and their corresponding isotopes from

POM and soil were obtained at the LABASI and used here as end members

Daily precipitation at Santo Domingo (33ordm39`S 71ordm3 6`W)- the nearest weather

station to Laguna Matanzasndash was compiled using the redPrec R package (Fig1 d

Serrano-Notivoli et al 2017 Sarricolea et al 2019) To extend our precipitation

58

reconstruction back to 1824 we correlated this dataset with that available for

Santiago The Santiago data was compiled from data published in the Anales of

Universidad of Chile (1850) for the years 1824 to 1849 Almeyda (1940) for the years

1849 to 1864 and the Quinta Normal series from 1866 to the present (Direccioacuten

Meteoroloacutegica de Chile) We generated a linear regression model between the

presentday Santo Domingo station and the compiled Santiago data with a Pearson

coefficient of 087 and p-valuelt 001

Acknowledgments This research was funded by grants CONICYT AFB170008

to the Institute of Ecology and Biodiversity (IEB) and FONDECYT 1150763 (to CL)

Doctoral grant Becas Chile 21150224 MEDLANT (Spanish Ministry of Economy

and Competitiveness grant CGL2016-76215-R) Additional funding was provided

by the Laboratorio Internacional de Cambio Global (LINCGlobal PUC-CSIC) We

thank R Lopez E Royo and M Gallegos for help with sample analyses We thank

the Laboratory of Biogeochemistry and Applied Stable Isotopes (LABASI) of the

Department of Ecology (PUC) for sample analyses

References

Albert F 1900 Las dunas o sean arenas volantes voladeros arenas muertas invasion de las arenas playas I meacutedanos del centro de Chile comprendiendo el litoral desde el liacutemite norte de la provincia de Aconcagua hasta el liacutemite sur de la de Arauco Memorias cientiacuteficas I Lit

Anderson NJ W D Fritz SC 2009 Holocene carbon burial by lakes in SW

Greenland Glob Chang Biol httpsdoiorg101111j1365-2486200901942x

Armesto J Villagraacuten C Donoso C 1994 La historia del bosque templado

chileno Ambient y Desarro 66 66ndash72 httpsdoiorg101007BF00385244

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea

AM Marquet PA 2010 From the Holocene to the Anthropocene A

59

historical framework for land cover change in southwestern South America in the past 15000 years Land use policy 27 148ndash160 httpsdoiorg101016jlandusepol200907006

Arnell NW Gosling SN 2013 The impacts of climate change on river flow

regimes at the global scale J Hydrol 486 351ndash364 httpsdoiorg101016JJHYDROL201302010

Bernaacuterdez P Prego R Franceacutes G Gonzaacutelez-Aacutelvarez R 2005 Opal content in

the Riacutea de Vigo and Galician continental shelf Biogenic silica in the muddy fraction as an accurate paleoproductivity proxy Cont Shelf Res httpsdoiorg101016jcsr200412009

Blaauw M Christen JA 2011 Flexible paleoclimate age-depth models using an

autoregressive gamma process Bayesian Anal 6 457ndash474 httpsdoiorg10121411-BA618

Brush GS 2009 Historical land use nitrogen and coastal eutrophication A

paleoecological perspective Estuaries and Coasts 32 18ndash28 httpsdoiorg101007s12237-008-9106-z

Camarero L Catalan J 2012 Atmospheric phosphorus deposition may cause

lakes to revert from phosphorus limitation back to nitrogen limitation Nat Commun httpsdoiorg101038ncomms2125

Carrevedo ML Frugone M Latorre C Maldonado A Bernaacuterdez P Prego

R Caacuterdenas D Valero-Garceacutes B 2015 A 700-year record of climate and environmental change from a high Andean lake Laguna del Maule central Chile (36degS) Holocene 25 956ndash972 httpsdoiorg1011770959683615574584

Catalan J Pla-Rabeacutes S Wolfe AP Smol JP Ruumlhland KM Anderson NJ

Kopaacuteček J Stuchliacutek E Schmidt R Koinig KA Camarero L Flower RJ Heiri O Kamenik C Korhola A Leavitt PR Psenner R Renberg I 2013 Global change revealed by palaeolimnological records from remote lakes A review J Paleolimnol httpsdoiorg101007s10933-013-9681-2

Chen Y Y Huang W Wang W H Juang J Y Hong J S Kato T amp

Luyssaert S (2019) Reconstructing Taiwanrsquos land cover changes between 1904 and 2015 from historical maps and satellite images Scientific Reports 9(1) 3643 httpsdoiorg101038s41598-019-40063-1

Contreras S Werne J P Araneda A Urrutia R amp Conejero C A (2018)

Organic matter geochemical signatures (TOC TN CN ratio δ 13 C and δ 15 N) of surface sediment from lakes distributed along a climatological gradient on the western side of the southern Andes Science of The Total Environment 630 878-888 httpsdoiorg101016jscitotenv201802225

Contreras-Loacutepez M (Playa AUHVC (Universidad de VRFS (Pontificia UC

60

de V 2014 ELEMENTOS DE LA HISTORIA NATURAL DEL An Mus Hist Natulas Vaplaraiso 27 51ndash67

Cuven S Francus P Lamoureux SF 2010 Estimation of grain size variability

with micro X-ray fluorescence in laminated lacustrine sediments Cape Bounty Canadian High Arctic J Paleolimnol 44 803ndash817 httpsdoiorg101007s10933-010-9453-1

Diebel M Vander Zanden MJ 201209 Nitrogen stable isotopes in streams

stable isotopes Nitrogen effects of agricultural sources and transformations Ecol Appl 19 1127ndash1134 httpsdoiorg10189008-03271

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in

freshwater wetlands record long-term changes in watershed nitrogen source and land use SO - Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash2916

Elser J 2011 A world awash with nitrogen Science 334 1504ndash1506 Espizua LE Pitte P 2009 The Little Ice Age glacier advance in the Central

Andes (35degS) Argentina Palaeogeogr Palaeoclimatol Palaeoecol 281 345ndash350 httpsdoiorg101016JPALAEO200810032

Figueroa JA Castro S A Marquet P A Jaksic FM 2004 Exotic plant

invasions to the mediterranean region of Chile  causes history and impacts Invasioacuten de plantas exoacuteticas en la regioacuten mediterraacutenea de Chile  causas historia e impactos Rev Chil Hist Nat 465ndash483 httpsdoiorg104067S0716-078X2004000300006

Fowler D Coyle M Skiba U Sutton MA Cape JN Reis S Sheppard

LJ Jenkins A Grizzetti B Galloway N Vitousek P Leach A Bouwman AF Butterbach-bahl K Dentener F Stevenson D Amann M Voss M 2013 The global nitrogen cycle in the twenty- first century Philisophical Trans R Soc B httpsdoiorghttpdxdoiorg101098rstb20130164

Frank D Reichstein M Bahn M Thonicke K Frank D Mahecha MD

Smith P van der Velde M Vicca S Babst F Beer C Buchmann N Canadell JG Ciais P Cramer W Ibrom A Miglietta F Poulter B Rammig A Seneviratne SI Walz A Wattenbach M Zavala MA Zscheischler J 2015 Effects of climate extremes on the terrestrial carbon cycle Concepts processes and potential future impacts Glob Chang Biol httpsdoiorg101111gcb12916

Fritz SC Anderson NJ 2013 The relative influences of climate and catchment

processes on Holocene lake development in glaciated regions J Paleolimnol httpsdoiorg101007s10933-013-9684-z

Frugone-Aacutelvarez M Latorre C Giralt S Polanco-Martiacutenez J Bernaacuterdez P

61

Oliva-Urcia B Maldonado A Carrevedo ML Moreno A Delgado Huertas A Prego R Barreiro-Lostres F Valero-Garceacutes B 2017 A 7000-year high-resolution lake sediment record from coastal central Chile (Lago Vichuqueacuten 34degS) implications for past sea level and environmental variability J Quat Sci 32 830ndash844 httpsdoiorg101002jqs2936

Galloway JN Townsend AR Erisman JW Bekunda M Cai Z Freney JR

Martinelli LA Seitzinger SP Sutton MA 2008 Transformation of the Nitrogen Cycle  Science (80- ) 320 889ndash892 httpsdoiorg101126science1136674

Gaumllman V Rydberg J Bigler C 2009 Decadal diagenetic effects on δ 13 C and

δ 15 N studied in varved lake sediment Limnol Oceanogr 54 917ndash924 httpsdoiorg104319lo20095430917

Garciacutea-Ruiz JM 2010 The effects of land uses on soil erosion in Spain A

review Catena httpsdoiorg101016jcatena201001001

Garciacutea-Ruiz JM Loacutepez-Moreno JI Lasanta T Vicente-Serrano SM

Gonzaacutelez-Sampeacuteriz P Valero-Garceacutes BL Sanjuaacuten Y Begueriacutea S Nadal-Romero E Lana-Renault N Goacutemez-Villar A 2015 Los efectos geoecoloacutegicos del cambio global en el Pirineo Central espantildeol una revisioacuten a distintas escalas espaciales y temporales Pirineos httpsdoiorg103989Pirineos2015170005

Garciacutea-Ruiz JM Nadal-Romero E Lana-Renault N Begueriacutea S 2013

Erosion in Mediterranean landscapes Changes and future challenges Geomorphology 198 20ndash36 httpsdoiorg101016jgeomorph201305023

Garreaud RD Vuille M Compagnucci R Marengo J 2009 Present-day

South American climate Palaeogeogr Palaeoclimatol Palaeoecol httpsdoiorg101016jpalaeo200710032

Gayo EM Latorre C Jordan TE Nester PL Estay SA Ojeda KF

Santoro CM 2012 Late Quaternary hydrological and ecological changes in the hyperarid core of the northern Atacama Desert (~21degS) Earth-Science Rev httpsdoiorg101016jearscirev201204003

Ge Y Zhang K amp Yang X (2019) A 110-year pollen record of land use and land

cover changes in an anthropogenic watershed landscape eastern China Understanding past human-environment interactions Science of The Total Environment 650 2906-2918 httpsdoiorg101016jscitotenv201810058

Goyette J Bennett EM Howarth RW Maranger R 2016 Global

Biogeochemical Cycles 1000ndash1014 httpsdoiorg1010022016GB005384Received

Granger J Sigman DM Lehmann MF Tortell PD 2008 Nitrogen and

oxygen isotope fractionation during dissimilatory nitrate reduction by

62

denitrifying bacteria 53 2533ndash2545 httpsdoiorg10230740058342

Gruber N Galloway JN 2008 An Earth-system perspective of the global

nitrogen cycle Nature 451 293ndash296 httpsdoiorg101038nature06592

Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater eutrophic lake Limnol Oceanogr 51 2837ndash2848 httpsdoiorg104319lo20065162837

Gurnell AM Petts GE Hannah DM Smith BPG Edwards PJ Kollmann

J Ward J V Tockner K 2001 Effects of historical land use on sediment yield from a lacustrine watershed in central Chile Earth Surf Process Landforms 26 63ndash76 httpsdoiorg1010021096-9837(200101)261lt63AID-ESP157gt30CO2-J

Heathcote A J et al Large increases in carbon burial in northern lakes during the

Anthropocene Nat Commun 610016 doi 101038ncomms10016 (2015) Hollander DJ Smith MA 2001 Microbially mediated carbon cycling as a

control on the δ13C of sedimentary carbon in eutrophic Lake Mendota (USA) New models for interpreting isotopic excursions in the sedimentary record Geochim Cosmochim Acta httpsdoiorg101016S0016-7037(00)00506-8

Holtgrieve GW Schindler DE Hobbs WO Leavitt PR Ward EJ Bunting

L Chen G Finney BP Gregory-Eaves I Holmgren S Lisac MJ Lisi PJ Nydick K Rogers LA Saros JE Selbie DT Shapley MD Walsh PB Wolfe AP 2011 A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere Science (80) 334 1545ndash1548 httpsdoiorg101126science1212267

Hooper DU Adair EC Cardinale BJ Byrnes JEK Hungate BA Matulich

KL Gonzalez A Duffy JE Gamfeldt L Connor MI 2012 A global synthesis reveals biodiversity loss as a major driver of ecosystem change Nature httpsdoiorg101038nature11118

Horvatinčić N Sironić A Barešić J Sondi I Krajcar Bronić I Borković D

2016 Mineralogical organic and isotopic composition as palaeoenvironmental records in the lake sediments of two lakes the Plitvice Lakes Croatia Quat Int httpsdoiorg101016jquaint201701022

Howarth RW 2004 Human acceleration of the nitrogen cycle Drivers

consequences and steps toward solutions Water Sci Technol httpsdoiorg1010382Fscientificamerican0490-56

Jenny B Valero-Garceacutes BL Urrutia R Kelts K Veit H Appleby PG Geyh

M 2002 Moisture changes and fluctuations of the Westerlies in Mediterranean Central Chile during the last 2000 years The Laguna Aculeo record (33deg50primeS) Quat Int 87 3ndash18 httpsdoiorg101016S1040-

63

6182(01)00058-1

Jenny B Wilhelm D Valero-Garceacutes BL 2003 The Southern Westerlies in

Central Chile Holocene precipitation estimates based on a water balance model for Laguna Aculeo (33deg50primeS) Clim Dyn 20 269ndash280 httpsdoiorg101007s00382-002-0267-3

Leng M J Lamb A L Heaton T H Marshall J D Wolfe B B Jones M D

amp Arrowsmith C 2006 Isotopes in lake sediments In Isotopes in palaeoenvironmental research (pp 147-184) Springer Dordrecht

Le Roux JP Nielsen SN Kemnitz H Henriquez Aacute 2008 A Pliocene mega-

tsunami deposit and associated features in the Ranquil Formation southern Chile Sediment Geol 203 164ndash180 httpsdoiorg101016jsedgeo200712002

Lehmann M Bernasconi S Barbieri a McKenzie J 2002 Preservation of

organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis Geochim Cosmochim Acta 66 3573ndash3584 httpsdoiorg101016S0016-7037(02)00968-7

Lenihan JM Drapek R Bachelet D Neilson RP 2003 Climate change

effects on vegetation distribution carbon and fire in California Ecol Appl httpsdoiorg101890025295

McLauchlan K K Gerhart L M Battles J J Craine J M Elmore A J

Higuera P E amp Perakis S S (2017) Centennial-scale reductions in nitrogen availability in temperate forests of the United States Scientific reports 7(1) 7856 httpsdoi101038s41598-017-08170-z

Martel-Cea A Maldonado A Grosjean M Alvial I de Jong R Fritz SC von

Gunten L 2016 Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical Central Chile (32ordmS 3050 masl) Palaeogeogr Palaeoclimatol Palaeoecol 461 44ndash54 httpsdoiorg101016jpalaeo201608003

Martiacuten-Foreacutes I Casado MA Castro I Ovalle C Pozo A Del Acosta-Gallo

B Saacutenchez-Jardoacuten L Miguel JM De 2012 Flora of the mediterranean basin in the chilean ESPINALES Evidence of colonisation Pastos 42 137ndash160

Marzecovaacute A Mikomaumlgi a Koff T Martma T 2011 Sedimentary geochemical

response to human impact on Lake Notildemmejaumlrv Estonia Est J Ecol 60 54 httpsdoiorg103176eco2011105

Matesanz S Valladares F 2014 Ecological and evolutionary responses of

Mediterranean plants to global change Environ Exp Bot httpsdoiorg101016jenvexpbot201309004

64

McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE 2007

Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470 httpsdoiorg101073pnas0701779104

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash1643 httpsdoiorg1011770959683613496289

Menzel P Gaye B Wiesner MG Prasad S Stebich M Das BK Anoop A

Riedel N Basavaiah N 2013 Influence of bottom water anoxia on nitrogen isotopic ratios and amino acid contributions of recent sediments from small eutrophic Lonar Lake central India Limnol Oceanogr 58 1061ndash1074 httpsdoiorg104319lo20135831061

Meyers PA Teranes JL 2001 Sediment organic matter in Tracking

Environmental Change Using Lake Sediments Volume 2 Physical and Geochemical Methods httpsdoiorg1018971551-5028(1999)018lt0231SOMCAAgt23CO2

Michelutti N Wolfe AP Cooke CA Hobbs WO Vuille M Smol JP 2015

Climate change forces new ecological states in tropical Andean lakes PLoS One httpsdoiorg101371journalpone0115338

Muntildeoz-Rojas M De la Rosa D Zavala LM Jordaacuten A Anaya-Romero M

2011 Changes in land cover and vegetation carbon stocks in Andalusia Southern Spain (1956-2007) Sci Total Environ httpsdoiorg101016jscitotenv201104009

Naeher S Gilli A North RP Hamann Y Schubert CJ 2013 Tracing bottom

water oxygenation with sedimentary MnFe ratios in Lake Zurich Switzerland Chem Geol 352 125ndash133 httpsdoiorg101016jchemgeo201306006

Poraj-Goacuterska A I Żarczyński M J Ahrens A Enters D Weisbrodt D amp

Tylmann W (2017) Impact of historical land use changes on lacustrine sedimentation recorded in varved sediments of Lake Jaczno northeastern Poland Catena 153 182-193 httpdxdoiorg101016jcatena201702007

Pongratz J Reick CH Raddatz T Claussen M 2010 Biogeophysical versus

biogeochemical climate response to historical anthropogenic land cover change Geophys Res Lett 37 1ndash5 httpsdoiorg1010292010GL043010

Prudhomme C Giuntoli I Robinson EL Clark DB Arnell NW Dankers R

Fekete BM Franssen W Gerten D Gosling SN Hagemann S Hannah DM Kim H Masaki Y Satoh Y Stacke T Wada Y Wisser D 2014 Hydrological droughts in the 21st century hotspots and uncertainties from a global multimodel ensemble experiment Proc Natl Acad Sci httpsdoiorg101073pnas1222473110

65

Ruumlhland KM Paterson AM Smol JP 2015 Lake diatom responses to

warming reviewing the evidence J Paleolimnol httpsdoiorg101007s10933-

015-9837-3

Sarricolea P Meseguer-Ruiz Oacute Serrano-Notivoli R Soto M V amp Martin-Vide

J (2019) Trends of daily precipitation concentration in Central-Southern Chile Atmospheric research 215 85-98 httpsdoiorg101016jatmosres201809005

Sernageomin 2003 Mapa geologico de chile version digital Publ Geol Digit Serrano-Notivoli R de Luis M Begueriumlia S 2017 An R package for daily

precipitation climate series reconstruction Environ Model Softw httpsdoiorg101016jenvsoft201611005

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98 httpsdoiorg1011772053019614564785

Stine S 1994 Extreme and persistent drought in California and Patagonia during

mediaeval time Nature 369 546ndash549 httpsdoiorg101038369546a0

Stocker TF Dahe Q Plattner G-K Alexander L V Allen SK Bindoff NL

Breacuteon F-M Church JA Cubash U Emori S Forster P Friedlingstein P Talley LD Vaughan DG Xie S-P 2013 Technical Summary in Climate Change 2013 The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change httpsdoiorg101017 CBO9781107415324005

Syvitski JPM Voumlroumlsmarty CJ Kettner AJ Green P 2005 Impact of humans

on the flux of terrestrial sediment to the global coastal ocean Science 308(5720) 376-380 httpsdoiorg101126science1109454

Thomas RQ Zaehle S Templer PH Goodale CL 2013 Global patterns of

nitrogen limitation Confronting two global biogeochemical models with observations Glob Chang Biol httpsdoiorg101111gcb12281

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status J Paleolimnol 47 693ndash706 httpsdoiorg101007s10933-012-9593-6

Urbina Carrasco MX Gorigoitiacutea Abbott N Cisternas Vega M 2016 Aportes a

la historia siacutesmica de Chile el caso del gran terremoto de 1730 Anuario de Estudios Americanos httpsdoiorg103989aeamer2016211

Vargas G Ortlieb L Chapron E Valdes J Marquardt C 2005 Paleoseismic

inferences from a high-resolution marine sedimentary record in northern Chile

66

(23degS) Tectonophysics httpsdoiorg101016jtecto200412031 399(1-4) 381-398httpsdoiorg101016jtecto200412031

Valero-Garceacutes BL Latorre C Morelliacuten M Corella P Maldonado A Frugone M Moreno A 2010 Recent Climate variability and human impact from lacustrine cores in central Chile 2nd International LOTRED-South America Symposium Reconstructing Climate Variations in South America and the Antarctic Peninsula over the last 2000 years Valdivia p 76 (httpwwwpagesunibechproductsmeeting-products1024-2nd-international-lotred-south-america-symposium-reconstructing-climate-variations-in-south-america-and-the-antarctic-peninsula-over-the-last-2000-yearshttpwwwpagesunibechproductsmeeting-products1024-2nd-international-lotred-south-america-symposium-reconstructing-climate-variations-in-south-america-and-the-antarctic-peninsula-over-the-last-2000-years

Vicente-Serrano SM Gouveia C Camarero JJ Begueria S Trigo R

Lopez-Moreno JI Azorin-Molina C Pasho E Lorenzo-Lacruz J Revuelto J Moran-Tejeda E Sanchez-Lorenzo A 2013 Response of vegetation to drought time-scales across global land biomes Proc Natl Acad Sci httpsdoiorg101073pnas1207068110

Villa Martiacutenez R P 2002 Historia del clima y la vegetacioacuten de Chile Central

durante el Holoceno Una reconstruccioacuten basada en el anaacutelisis de polen sedimentos microalgas y carboacuten PhD

Villa-Martiacutenez R Villagraacuten C Jenny B 2003 Pollen evidence for late -

Holocene climatic variability at laguna de Aculeo Central Chile (lat 34o S) The Holocene 3 361ndash367

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Human alteration of the global nitrogen cycle sources and consequences Ecological applications 7(3) 737-750 httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M Rein B Urrutia R amp Appleby P (2009) A

quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo central Chile back to AD 850 The Holocene 19(6) 873-881 httpsdoiorg1011770959683609336573

von Gunten L Grosjean M Eggenberger U Grob P Urrutia R Morales A

2009 Pollution and eutrophication history AD 1800-2005 as recorded in sediments from five lakes in Central Chile Glob Planet Change 68 198ndash208 httpsdoiorg101016jgloplacha200904004

Widory D Kloppmann W Chery L Bonnin J Rochdi H Guinamant JL

2004 Nitrate in groundwater An isotopic multi-tracer approach J Contam Hydrol 72 165ndash188 httpsdoiorg101016jjconhyd200310010

67

Woodward CA Potito AP Beilman DW 2012 Carbon and nitrogen stable isotope ratios in surface sediments from lakes of western Ireland Implications for inferring past lake productivity and nitrogen loading J Paleolimnol 47 167ndash184 httpsdoiorg101007s10933-011-9568-z

68

Supplementary material

Facie Name Description Depositional Environment

F1 Organic-rich

mud

Massive to banded black

organic - rich (TOC up to 14 )

mud with aragonite in dm - thick

layers Slightly banded intervals

contain less OM (TOClt4) and

aragonite than massive

intervals High MnFe (oxic

bottom conditions) High CaTi

BrTi and BioSi (up to 5)

Distal low energy environment

high productivity well oxygenated

and brackish waters and relative

low lake level

F2 Massive to

banded silty clay

to fine silt

cm-thick layers mostly

composed by silicates

(plagioclase quartz cristobalite

up to 65 TOC mean=23)

Some layers have relatively high

pyrite content (up to 25) No

carbonates CaTi BrTi and

BioSi (mean=48) are lower

than F1 higher ZrTi (coarser

grain size)

Deposition during periods of

higher sediment input from the

watershed

69

F3 Banded to

laminated light

brown silty clay

cm-thick layers mostly

composed of clay minerals

quartz and plagioclase (up to

42) low organic matter

(TOC mean=13) low pyrite

and BioSi content

(mean=46) and some

aragonite

Flooding events reworking

coastal deposits

F4 Laminated

coarse silts

Thin massive layers (lt2mm)

dominated by silicates Low

TOC (mean=214 ) BrTi

(mean=002) MnFe (lt02)

TIC (lt034) BioSi

(mean=46) and TS values

(lt064) and high ZrTi

Rapid flooding events

transporting material mostly

from within the watershed

F5 Breccia with

coarse silt

matrix

A 17 cm thick (80-97 cm

depth) layer composed by

irregular mm to cm-long ldquosoft-

clastsrdquo of silty sediment

fragments in a coarse silt

matrix Low CaTi BrTi and

MnFe ratios and BioSi

Rapid high energy flood

events

70

(mean=43) and high ZrTi

(gt018)

Table Sedimentological and compositional characteristics of Laguna Matanzas

facies

71

CAPIacuteTULO 2 STABLE ISOTOPES TRACK LAND USE AND COVER

CHANGES IN A MEDITERRANEAN LAKE IN CENTRAL CHILE OVER THE

LAST 600 YEARS

72

Stable isotopes track land use and cover changes in a mediterranean lake in

central Chile over the last 600 years

Magdalena Fuentealbaabc Claudio Latorreabc Matiacuteas Frugone-Aacutelvarezabc Pablo

Sarricolead Leonardo Villaciacutese M Laura Carrevedob Blas Valero-Garceacutescg

a Departamento de Ecologiacutea Pontificia Universidad Catoacutelica de Chile Alameda 340 Santiago Chile

b Institute of Ecology and Biodiversity (IEB) Las Palmeras 3425 Nuntildeoa Santiago Chile

c Laboratorio Internacional de Cambio Global LINCGlobal PUC-CSIC Spain

d Departamento de Geografiacutea Universidad de Chile Marcoleta 250 Santiago Chile

e Departamento de Ecologiacutea Universidad de ChileLas Palmeras 3425 Nuntildeoa Santiago Chile

f Instituto Pirenaico de Ecologiacutea (IPE-CSIC) Avenida Montantildeana 1005 Zaragoza 50059 Spain

Corresponding authors E-mail addresses clatorrebiopuccl magdalenafuentealbagmailcom

Key words Anthropocene lake sediment δsup1⁵N δsup1sup3C Great Acceleration organic

geochemistry watershedndashlake system Stable Isotope Analyses land usecover

change Nitrogen cycle mediterranean ecosystems central Chile

73

Abstract

Nutrient fluxes in many aquatic ecosystems are currently being overridden by

anthropic controls especially since the industrial revolution (mid-1800s) and the

Great Acceleration (mid-1900s) Land use and cover changes (LUCC) alter the

availability and fluxes of nutrients such as nitrogen that are transferred via runoff

and groundwater into lakes By altering lake productivity and trophic status these

changes are often preserved in the sedimentary record Here we use

geolimnological proxies and stable isotope analyses (δsup1⁵N δsup13C) on lake sediments

to reconstruct the lake-watershed nutrient transfer in a central Chilean lake (Lago

Vichuqueacuten) over the past 600 years We compare our multiproxy record from recent

lake sediments to the soilvegetation relationship across the watershed as well as

land usecover changes from 1975 to 2014 derived from satellite images Our results

show that lake sediment δsup1⁵N values increased with meadow cover but decreased

with tree plantations suggesting increased nitrogen retention when trees dominate

the watershed Our δsup1⁵N record from central Chile can thus be interpreted as a proxy

for nutrient availability over the last 600 years mainly derived from land use changes

coupled with climate drivers Although variable sources of organic matter and in situ

fractionation often hinder straightforward environmental interpretations of stable N

isotope signatures our study shows that lake sediment δsup1⁵N can be a useful tool for

assessing the contribution of past human activities in nutrient and nitrogen cycling

1 Introduction

Nitrogen (N) is a limiting nutrient in terrestrial and aquatic ecosystems (Vitousek

et al 1997) Changes in its availability can drive eutrophication and increase

pollution in these ecosystems (McLauchlan et al 2013) Although recent human

74

impacts on the global N cycle have been significant the consequences of increased

anthropogenic N on these ecosystems are unclear (Gerhart and Mclauchlan 2014

Battye et al 2017) Isotopic signatures are key to understand N dynamics in lakes

nevertheless in situ andor diagenetic fractionation along with multiple sources of

organic matter (OM) often hinder straightforward environmental interpretations from

isotopes Monitoring δ15N and δ13C values as components of the N cycle

specifically those related to the link between terrestrial and aquatic ecosystems can

help differentiate between effects from processes versus sources in stable isotope

values (eg from Particulate Organic Matter -POM- soil and vegetation) and

improve how we interpret variations in δ15N (and δ13C) values at longer temporal

scales

The main processes controlling stable N isotopes in bulk lake OM are source

lake productivity diagenesis and denitrification (Talbot 2001 Leng et al 2006

Fariacuteas et al 2009 Torres et al 2012 Brahney et al 2014) N sources depend on

contributions from the watershed (ie soil and biomass) the transfer of atmospheric

N to the lake (ie atmospheric N2 fixation) and nutrient recycling (Leng et al 2006)

Atmospheric N2 (isotopically defined as δ15N =0) is fixed by cyanobacteria with

minimal fractionation resulting in δ15NOM values that fluctuate from -2 to +2permil (Fogel

and Cifuentes 1993 Talbot 2001 Elliot and Brush 2006) Besides N2 fixation by

cyanobacteria phytoplankton species assimilate dissolved inorganic nitrogen (DIN)

and values typically range from +7 to +10permil (Xu et al 2016 Meyers et al 2003) In

addition seasonal changes in POM occur in the lake water column Gu et al (2006)

sampled the water column of Lake Wauberg (Florida USA) during a hydrologic year

and found a higher development of N fixing species during the summer A major

factor behind this increase are human activities in the watershed which control the

75

inputs of the sediment and nutrients to the lake (Woodward et al 2011) Some

studies have shown higher δ15N values in lake sediments from watersheds that are

highly affected by human activities (Bruland and Mackenzie 2010 Woodward et al

2011) Syntenic fertilizers displayed δ15N values between -4 to +4permil cattle manure

around +8 to +22permil and surface and groundwater OM between 0 to +10permil (Elliott

and Brush 2006 Leng et al 2006) Although relatively low δ15N values from

fertilizers constitute major N input to human-altered watersheds the elevated loss

of 14N via volatilization of ammonia and denitrification leaves the remaining total N

input enriched in 15N (Bruland and Mackenzie 2010)

In addition to the different sources and variations in lake productivity early

diagenesis at the sedimentndashwater interface in the sediment can further alter

sediment OM isotope values (Brahney et al 2014 Galman et al 2009) During

diagenetic loss of N in lacustrine systems kinetic fractionation occurs and the

remaining N is enriched in 15N leading to higher δ15N values (Galman et al 2006

Talbot 2001) Denitrification tends to enrich lake sediments in 15N due to the

assimilation of nitrates by denitrifying bacteria (Granger et al 2008) and is more

prevalent in anoxic environments (Brahney et al 2016 Lehman et al 2002)

Carbon isotopes in lake sediments can also provide useful information about

paleoenvironmental changes OM origin and depositional processes (Meyers et al

2003) Allochthonous organic sources (high CN ratios) produce isotope values

similar to values from catchment vegetation Autochthonous organic matter (low CN

ratio) is influenced by fractionation both in the lake and the watershed leading up to

carbon assimilation by lacustrine biota (Woodward et al 2011) Changes in

productivity greatly affect δ13COM values (Torres et al 2012) as during C uptake

plankton preferentially assimilate 12C leaving the dissolved inorganic carbon (DIC)

76

pool enriched in 13C (Gu et al 2006) with phytoplankton averaging ca 20 permil lower

than the respective δ13CDIC values (Leng et al 2006) Under conditions of low to

moderate primary productivity plankton preferentially uptake the lighter 12C

resulting in low δ13C values displayed by the OM (Torres et al 2012) Conversely

during high primary productivity phytoplankton will uptake 12C until its depletion and

is then forced to assimilate the heavier isotope resulting in an increase in δ13C

values Higher productivity in C-limited lakes due to slow water-atmosphere

exchange of CO2 also results in high δ13C values (Galman et al 2009) In these

cases algae are forced to uptake dissolved bicarbonate with δ13C values between

7 to 10permil higher than those of the atmospheric CO2 dissolved in water (Sun et al

2016 Torres et al 2012 Galman et al 2009)

Stable isotope analyses from lake sediments are thus useful tools to

reconstruct shifts in lake-watershed dynamics caused by changes in limnological

parameters and LUCC Our knowledge of the current processes that can affect

stable isotope signals in a watershed-lake system is limited however as monitoring

studies are scarce Besides in order to use stable isotope signatures to reconstruct

past environmental changes we require a multiproxy approach to understand the

role of the different variables in controlling these values Hence in this study we

carried out a detailed survey of current N dynamics in a coastal central Chilean lake

(Lago Vichuqueacuten) and a multiproxy study of a sediment record spanning the last

600 years The characterization of the recent changes in the watershed since 1970s

is based on satellite images to compare recent changes in the lake and assess how

these are related with climate variability and an ever increasing human footprint

(Lara et al 2012 Gallardo et al 2015 Steffen et al 2015) Our main goal is to

investigate how stable isotope values from lake sediment reflect changes in the lake

77

ndash watershed system during periods of high watershed disruption (eg Spanish

Conquest late XIX century Great Acceleration) and recent climate change (eg

Little Ice Age and current global warming)

2 Study Site

Lago Vichuqueacuten (34ordm49`S 72ordm04W 4 m asl 30 m of depth Fig 1) is a

mesotrophic to eutrophic lake with dominant anoxic bottom conditions that is

stratified year around (Frugone-Aacutelvarez et al 2017) The main inlets are the

Vichuqueacuten and Huintildee rivers and the only outlet is the Llico estuary that drains into

the Pacific Ocean High tides can sporadically shift the flow direction of the Llico

estuary which increases the marine influence in the lake Dune accretion gradually

limited ocean-lake connectivity until the estuary was almost completely closed off

by ca 10 ky BP and the current lake regime formed (Frugone-Aacutelvarez et al 2017)

The area is characterized by a mediterranean climate with cold-wet winters and

hot-dry summers and an annual precipitation of ~650 mm and a mean annual

temperature of 15ordmC During the austral winter months (June - August) precipitation

is modulated by north-west shifts of the South Pacific Anticyclone (SPA) followed by

an increased frequency of storm fronts stemming off the South Westerly Winds

(SWW) A strengthened SPA during austral summers (December - March) which

are typically dry and warm blocks the northward migration of storm tracks stemming

off the SWW (Fig1 Frugone-Aacutelvarez et al 2017)

78

Figure 1 a) The location of the Lago Vichuqueacuten in central Chile b) Map of land

uses and cover in 2016 c) Ombrothermic diagram mediterranean climates are

characterized by cold-wet winters with surplus moisture from June to August and

hot-dry summers d) Lake bathymetry showing location of cores and water sampling

sites used in this study

Although major land cover changes in the area have occurred since 1975 to the

present as the native forests were replaced by tree (Monterey pine and eucalyptus)

plantations the region was settled before the Spanish conquest (Frugone-Alvarez

et al 2018) Historical documents indicate that Vichuqueacuten was occupied by a

Mitimaes colony as part of the Inka empire (Odone 1998) Unlike other Andean

areas during the Inka period the introduction of corn and quinoa in the Vichuqueacuten

watershed do not seem to have intensified land use The Spanish colonial period in

Chile lasted from 1542 CE to the independence in 1810 CE The first historical

document (1550 CE) shows that the areas around Vichuqueacuten were settled by the

Spanish early on as the Vichuqueacuten watershed was given as an ldquoencomiendardquo

system to Juan Cuevas The ldquoencomiendardquo system provided the owners with land

79

and indigenous people to work but also the introduction of wheat wine cattle

grazing and logging of native forests for lumber extraction and increasing land for

agricultural activities (Odone et al 1998 Armesto et al 2010) During the 19th

century (the Republic) the export of wheat to Australia and Canada generated

intensive changes in land cover use The town of Vichuqueacuten became the regional

capital and plans to build a maritime port in the bay of Vichuqueacuten were drawn

However the fall of international markets in 1880 paralyzed these plans During the

20th century the plantation of trees (Pinus radiata and Eucalyptus globulus) in areas

cleared of native forests was subsidized by two national laws DFL nordm265 (1931) and

DFL nordm 701 (1974) both of which provided funds for such plantations During the last

decades the urbanization with summer vacation homes along the shorelines of

Lago Vichuqueacuten has greatly increased Extensive lake eutrophication is currently a

large environmental problem (EULA 2008)

3 Methods

Coring campaigns were organized from 2011 to 2015 (Fig 1d) We recovered

12 short cores and 4 long cores (up to 14 m long) at several sites using a hammer-

modified UWITEC gravity corer Sediment cores (VIC11-2A 170 cm VIC13-2B 170

cm VIC13-2D 1200 cm and VIC15-1A 119 cm) were split photographed sub-

sampled and stored in the Pyrenean Institute of Ecology (IPE-CSIC Spain) Core

VIC13-2B was selected for detailed multiproxy analyses (including elemental

geochemistry C and N isotopes XRF and 14C dating) Stable isotope analyses

(δ13C δ15N) were performed at the Laboratory of Biogeochemistry and Applied

Stable Isotopes (LABASI-PUC Chile) Sediment samples for δ13Corg were pre-

treated with 50 ml of HCl and 50 ml of deionized water and dried at 60ordmC for 4 hr to

remove carbonates (Harris et al 2011) Isotope analyses were conducted using a

80

Delta V Advantage IRMS coupled to a Thermo Flash 2000 Elemental Analyzer via

a Conflo IV interface Isotope results are expressed in standard delta notation (δ)

and expressed in per mil (permil) relative to the Pee Dee Belemnite (Vienna Pee Dee

Belemnite) for C and to atmospheric N2 for N (Leng et al 2006) Total carbon (TC)

Total Organic Carbon (TOC) Total Inorganic Carbon (TIC) and Total Sulfur (TS)

were measured every 2 cm with a LECO SC 144 DR at the IPE-CSIC

An AVAATECH X-Ray Fluorescence II core scanner with a Rh X-ray tube from

the University of Barcelona was used to obtain XRF logs every 4 mm of resolution

Results are expressed as element intensities in counts per second (cps) Tube

voltage was operated at 30 kV and 10 kV to obtain the abundances of 18 elements

(Pb Al Si S Cl K Ca Ti V Mn Fe Co Zn Br Rb Sr Y Zr) with an average of

at least of 1800 cps (less for Pb=437 and Zn=934 cps) Pb was included due to

similar behavior with Co and Fe Element ratios were calculated to describe changes

in redox conditions (MnFe) endogenic productivity (BrTi) carbonate formation

(SrCa and CaTi) and sediment input (ZrTi) (Barreiro-Lostres et al 2014

Carrevedo et al 2015 Frugone-Aacutelvarez et al 2017 Kylander et al 2011 Moreno

et al 2007a)

Several campaigns were carried out to sample the POM from the water column

two per hydrologic year from November 2015 to August 2018 A liter of water was

recovered in three sites through to the lake two are from the shallower areas (with

samples taken at 2 and 5 m depth at each site) and one in the deeper central portion

(at 2 5 and 20 m depth) of the lake (Fig 1d) The samples were filtered using glass

fiber filters (25 m) and then frozen to obtain the stable carbon and nitrogen isotope

signal of lacustrine POM Additionally soil and vegetation samples from the

following communities native species meadow hydrophytic vegetation and

81

Monterrey pine (Pinus radiata) were taken for stable isotope analyses (see in

supplementary material)

The age model for the complete Lago Vichuqueacuten sedimentary sequence is

based on Frugone-Aacutelvarez et al (2017) with the last 1000 years based on

210Pb137Cs dating techniques in VIC15-1A and 14C AMS dates on bulk sediment

samples (Supplementary Table S1) The 14C measurements of lake water DIC show

a moderate reservoir effect of 180 plusmn 25 14C yr) The revised age-depth model used

here includes three more 14C AMS dates performed with the program Bacon to

establish the deposition rates along the core (Blaauw and Christen 2011 Fig 2)

The age-depth model indicates that average resolution between 0 to 87 cm is lt2

cm per year and from 88 to 170 cm it is lt47 cm per year

82

Figure 2 Chronological age-depth model for the Lago Vichuqueacuten sedimentary

sequence spanning the last 1000 yr (see also Frugone-Alvarez et al 2017)

To estimate land use changes in the watershed we use Landsat MSS images

for 1975 and Landsat TM for 1989 and 2014 all taken in either summer or autumn

(Table 1) We performed supervised classification of land uses (maximum likelihood

83

algorithm) for each year (1975 1989 and 2014) and results were mapped using

ArcGIS 102

Table 1 Images using for LUCC reconstruction

Source of LUCC

Acquisition

Date Resolution

Landsat MSS 19750322 60 m

Landsat TM 19890217 30 m

Landsat TM 19991226 30 m

CONAF 2009 30 m

Land cover Chile 2014 30 m

CONAF 2016 30 m

Previous Work on Lago Vichuqueacuten sedimentary sequence

The sediments are organic-poor dark brown to brown laminated silt with some

intercalated thin coarser clastic layers Lacustrine facies have been classified

according to elemental composition (TOC TS TIC and TN) grain size and

sedimentary textures (Frugone-Aacutelvarez et al 2017) Four main types of lacustrine

facies were identified in this short core Facies L1 is a laminated (1cm) black to dark

brown diatom-poor silt with relatively higher TOC percentages (TOC about 185)

TS (about of 18) and TOCTN (about 92) Facies L2 is characterized by a

homogeneous black organic-poor silty clay with low TOC (mean= 13) TS (mean=

13) TOCTN (mean= 88) values Facies L3 is a laminated (1cm) black organic-

poor (TOC mean 14) silts with higher TS (mean= 21) and TOCTN ratios

(mean= 88) Facies L3 is interpreted as ldquobaselinerdquo deposition on the distal areas

84

of Vichuqueacuten lake Mineralogy is dominated by mica (muscovite) clay minerals

(chlorite) and plagioclase (albite) Quartz and calcite occur at the top and pyrite

occurs in the lower part of the sequence Facies T is composed by massive banded

sediments 4 cm thick and coarse grain size It is interpreted as an instantaneous

depositional event (for more detail see Frugone-Aacutelvarez et al 2017) In this work

we identified four subunits based on geochemical and stable isotope signals

4 Results

41 Geochemistry and PCA analysis

High positive correlations exist between Al Si K and Ti (r = 078 ndash 096

supplementary Fig S1) and between Zn Zr Rb and Y (r = 072 - 096) which reflect

the silicate content of the watershed-derived sediments (Marzecoacuteva et al 2011) Zr

is commonly associated with minerals more abundant in coarser deposits Thus the

ZrTi profile could reflect grain size (Cuven et al 2010) showing higher variability

in the upper part of the Lake Vichuqueacuten sequence and in the alternation between

facies L1 and L2 Another group of elements made up of Co Fe and Pb displayed

positive correlations (r = 067ndash 097) and represents the input of heavy metals Br

Cl and Ca show a positive correlation (r = 049 ndash 06 p-value = 00001) BrTi ratio

is interpreted as a productivity indicator due to Br having a strong affinity with humic

and organic compounds (Marzecoacuteva et al 2011 Frugone-Aacutelvarez et al 2017) In

our Lago Vichuqueacuten sequence BrTi values are high from 170 to 132 cm and from

36 cm to the top of core where it shows several sharps peaks (Fig 3) The MnFe

ratio is indicative of lake bottom oxygenation (Naecher et al 2013) as under

reducing conditions Mn tends to become more mobile than Fe leading to a

decreased MnFe (Marzecoacuteva et al 2011) Several sharp peaks in MnFe occurred

85

from 127 to 120 cm and from 57 to 30 cm (MgFegt03) The silicate group and the

Br Cl Ca Mn group are negatively correlated (r= -012 and -066)

Principal Component Analysis (PCA) was undertaken on the XRF

geochemical data to investigate the main factors controlling sediment deposition in

Lago Vichuqueacuten (Fig 3) The four main eigenvectors explain 801 of the variance

(supplementary material Table S2) The principal component (PC1) explain 437

of the total of variance and grouped elements are associated with terrigenous input

to the lake Positive values of the biplot have been attributed to higher heavy metals

deposition (Pb Co and Fe) and negative values to higher silicate input (Al K Ti and

Si) in a high energy catchment environment (Zr) The PC2 explains 198 of the

total of variance and highlights the endogenic productivity in the lake The positive

loading is compound by Br Cl Ca and Sr and to a lesser extent by Y Zn Rb and

Mn The PC2 may explain both the precipitation of carbonates (Ca Sr) and biological

production (Br)

86

Figure 3 Principal Component Analysis of XRF geochemical measurements in

VIC13-2B Lago Vichuqueacuten lake sediments

42 Sedimentary units

Based on geochemical and stable isotope analysis we identified four

lithological subunits in the short core sedimentary sequence Our PCA analyses and

Pearson correlations pointed out which variables were better for characterizing the

subunits (Fig 4) in terms of endogenic productivity heavy metals and terrestrial

input The unit 2c (170-131 cm) is characterized by the occurrence of some clastic

layers (L2 from 160 and 150 cm) high δsup1⁵N values (mean= +59 plusmn 04permil) with

Magnetic Susceptibility (MS) BrTi ZrTi and SrCa values increase towards the top

Also it has relatively low δsup1sup3C values (mean= -265 plusmn 11permil) and CNmolar ratios

(mean=78 plusmn 04) The ZrTi show upwards increasing values reaching the highest

values of the sequence at the top of this unit suggesting a coarsening upward trend

and relatively higher depositional energy The MS trend also indicates higher

erosion in the watershed and enhanced delivery of ferromagnetic minerals likely

from soil particles particularly from 150 to 160 cm (Frugone-Aacutelvarez at al 2017)

The subunit 2b (130-118 cm) is also composed of black silts but it has the

lowest MS values of the whole sequence and its onset is marked by a sharp

decrease in ZrTi This subunit is marked by sharp peaks of MnFe (at 126 and 120

cmgt027) SrCa (at 125 and 120 cmgt033) CaTi (at 124 and 120 cmgt199) TOC

(about 26 at 130 124 122 and 118 cm) and δsup1⁵N (gt+67permil at 126 and 120 cm)

BrTi oscillates around low values (about 01) whereas the δsup1sup3C values range

between -262 and -282permil

87

The unit 2a (58-117 cm) shows increasing and then decreasing MS values

and displayed sharps peaks of δsup1⁵N (gt64 at 102 to 99 87 and 75 cm) and CN

(about 10 at 86 74 66 and 60 cm) SrCa (mean = 04 plusmn 013) BrTi (mean = 008

plusmn 002) MnFe (mean = 002 plusmn 001) and δsup1sup3C (mean = -260 plusmn 07permil) oscillate in

low values The upper part of this unit (72 ndash 57 cm) shows an increase of SrCa

(from 03 to 05)

The upper unit 1a (0 - 57 cm) starts with a fine clastic layer (T at 57 to 54

cm) interpreted as deposition during a high-energy event It is characterized by

lower BrTi (mean = 003 plusmn 002) TOC (mean = 12 plusmn 03) and δsup1sup3C (mean= -

266 plusmn 06permil) higher δsup1⁵N (mean = +55 plusmn 08 permil) This unit is made of alternating

fine (lt 1cm) black and dark brown laminae with carbonate (L1 facies) Recently

deposited sediments show decreasing MS values increasing TOC (mean= 15 plusmn

04 ) sharp peaks of BrTi (gt015 at 33 21 5 and 1 cm) and the lowest δsup1⁵N values

of the entire record (mean= 45 plusmn 06 permil) and δsup1sup3C values (mean= -277 plusmn 09 permil)

Heavy metal content increases abruptly in the upper section of the core (2 - 20 cm)

(peaks of FeTi CoTi and PbTi)

88

Figure 4 Sedimentary units of Lago Vichuqueacuten sedimentary sequence Selected

variables illustrate watershed input (Magnetic Susceptibility ZrTi CoTi and MnFe)

endogenic productivity (SrCa CaTi TS) organic matter source (BrTi TOC

CNmolar and stable isotope records (δ13Corg and δ15Nbulk)

43 Recent seasonal changes of particulate organic matter on water column

The average of δ15NPOM from the three sites across to the lake was +86 plusmn 58

permil oscillating widely from -14 to +193permil (Fig 5) Important seasonal differences

occur at 2 and 5 m depth with more negative values during summer (~53 plusmn 52 permil)

than winter (~122 plusmn 40permil) At 20 m depth δ15NPOM values exhibit small seasonal

ranges (mean = +10permil for winter and +87permil for summer) The δ13CPOM average was

-296 plusmn 33permil with slightly seasonal and water column depth differences However

more positive δ13CPOM values occurred during winter (mean=-290 plusmn 41permil) than in

summer (mean= -301 plusmn 19 permil) Like the δ15NPOM values CNPOM (mean= 83 plusmn 17)

displayed important seasonal and water depth differences Lower CNPOM ratios

89

occurred during summer at 2 and 5 m depth (mean= 95 plusmn 17) and higher and more

constant values during winter (mean = 73 plusmn 09) at the same depth At 20 m CNPOM

shows similar values in both winter (70) and summer (74)

Figure 5 Seasonal POM averages from samples taken of the Lago Vichuqueacuten

water column Samples were taken from 2015 to 2018 at 2 (n=16) 5 (n=14) and 20

(n=8) meters depth

44 Stable isotope values across the Lake Vichuqueacuten watershed

Figure 6 shows modern vegetation soil and sediment isotope values found for

the watershed Huintildee tributary and Vichuqueacuten lake The δsup1⁵NFoliar values from

meadow plantations and macrophytes have similar range values with a mean of

+89 plusmn50 permil (n=18) +74 plusmn 75 permil (n=5) +82 plusmn 36 permil (n=6) respectively Native

vegetation has overall lower δsup1⁵NFoliar values with a mean of 14 plusmn 21 permil (n=28 see

Table 2 in supplementary material) The δsup1sup3CFoliar from terrestrial samples exhibit

similar values across the different plant communities (tree plantation mean=-274 plusmn

13permil meadow mean = -275 plusmn 23 permil native species mean=-272 plusmn 14permil) whereas

macrophytes display slightly more negative values with a mean of -287 plusmn 23permil

Macrophytes substrate displayed the highest δsup1⁵N values with a mean of +60 plusmn

14permil (n=3) Similar and relatively high δsup1⁵N values for soil of plantation (mean= +54

plusmn 13permil n=4) meadow (mean= +49 plusmn 04permil n=8) and surface river sediment

90

(mean= +52 plusmn 17permil n=10) Native forest soils oscillate around slightly more

negative values with a mean of +45 plusmn 12permil (n=4) Slightly more positive soil δsup1sup3C

values occur both underneath native forests and in tree plantations with means of -

284 plusmn 23permil and -298 plusmn 13permil respectively compared to either meadow soils

(mean= -302 plusmn 11permil) aquatic sediments underneath macrophytes (-311 plusmn 10permil)

or from surface river sediments (mean= -312 plusmn 10permil)

Figure 6 Stable isotope content of modern soil river sediment and foliar vegetation

used as end members in the sedimentary sequence of Lago Vichuqueacuten a)

Scatterplot of foliar δsup1⁵N and δsup13C values for vegetation from Lago Vichuqueacuten

watershed (plantation meadow and native species) and macrophytes on Lake

Vichuqueacuten See supplementary material for more detail of vegetation types b)

Scatterplot of soil δsup1⁵N and δsup13C values across the watershed the sediments of the

Huintildee and Vichuqueacuten rivers and the fluvial sediment corresponding to the

macrophyte vegetation

45 Land use and cover change from 1975 to 2014

Major land use changes between 1975 CE and 2016 CE in the Lago

Vichuqueacuten watershed are summarized in Figure 7 The watershed has a surface

area of 535329 km2 of which native vegetation (26) and shrublands (53)

represent 79 of the total surface in 1975 Meadows are confined to the valley and

91

represent 17 of watershed surface Tree plantations initially occupied 1 of the

watershed and were first located along the lake periphery By 1989 the areas of

native forests shrublands and meadows had decreased to 22 31 and 14

respectively whereas tree plantations had expanded to 30 These trends

continued almost invariably until 2016 when shrublands and meadows reached 17

and 5 of the total areas while tree plantations increased to 66 Native forests

had practically disappeared by 1989 and then increased up to 7 of the total area

in 2016 (Fig 6) preferentially occupying the southeastern sector of the watershed

Figure 7 Changes in land use and cover between 1975 and 2016 in the Lago

Vichuqueacuten watershed as measured from satellite images The major change is

represented by the replacement of native forest shrubland and meadows by

plantations of Monterrey pine (Pinus radiata)

Figure 8 shows correlations between lake sediment stable isotope values and

changes in the soil cover from 1975 to 2013 Positive relationships occurred

between sediment δsup1⁵N and δsup13C values from core VIC13-2B (unit 1) and the

92

percentage of native forest (r=089 for δsup1⁵N 082 for δsup13C) shrublands (r = 071 for

δsup1⁵N 057 for δsup13C) and meadow cover (r = 088 for δsup1⁵N 081 for δsup13C) All of these

correlations are significant (p value lt 0001) In contrast significant negative

correlations (p lt0001) occurred between tree plantation cover and lake sediment

stable isotope values (δsup1⁵N r = -082 and δsup13C r = -067) native forest (r = -097)

meadows (r = -086) and shrubland (r =-093)

Figure 8 Correlation plots of land use and cover change versus lake sediment

stable isotope values The δsup1⁵N values are positively correlated with native forests

agricultural fields and meadow cover across the watershed Total Plantation area

increases are negatively correlated with native forest meadow and shrubland total

area Significance levels are indicated by the symbols p-values (0 0001 001

005 01 1) lt=gt symbols ( )

93

5 Discussion

51 Seasonal variability of POM in the water column

The stable isotope values of POM can vary during the annual cycle due to

climate and biologic controls namely temperature and length of the photoperiod

which affect phytoplankton growth rates and isotope fractionation in the water

column (Gu et al 2006 Leng et al 2006) POM from Lago Vichuqueacuten surface

samples (2 and 5 m depth) displayed lower δ13CPOM values during the summer than

in winter During C uptake phytoplankton preferentially utilize 12C leaving the

DICpool enriched in 13C Therefore as temperature increases during the summer

phytoplankton growth generates OM enriched in 12C until this becomes depleted

and then the biomas come to enriched u At the onset of winter the DICpool is now

enriched in 13C and despite an overall decrease in phytoplankton production the

OM produced will also be enriched in 13C In contrast δ13CPOM values at 20 m depth

did not reflect these seasonal differences probably due to water-column

stratification that maintains similar temperatures and biological activity throughout

the year

Lake N availability depends on N sources including inputs from the

watershed and the atmosphere (ie deposition of N compounds and fixation of

atmospheric N2) which varies during the hydrologic year The fixation of atmospheric

N2 is an important natural source of N to the lake occurring mainly during the

summer season associated with higher temperature and light (Gu et al 2006)

Because the δ15NPOM of N2 fixers is close to 0permil with almost no overall isotope

fractionation (Leng et al 2006) when N2 is the major N source δ15NPOM values are

typically low However when DIN concentrations are high or alternatively when little

94

N2 fixation occurs δ15NPOM values will be higher (Gu et al 2006) δ15NPOM values

from summer Lago Vichuqueacuten samples were lower than those from winter with large

differences between the seasons (~5permil Fig 5 and 9) Furthermore δ15NPOM values

were high when monthly average temperature was low and monthly precipitation

was high (Fig 9) This pattern is consistent with the dominance of high N2 fixation

by cyanobacteria associated with increased summer temperatures This correlation

of δ15NPOM values with temperature further suggests a functional group shift i e

from N fixers to phytoplankton that uptake DIN The correlation between wetter

months and higher δ15NPOM values could be caused by increased N input from the

watershed due to increased runoff during the winter season The lack of data of the

δ15NPOM between the 30 mm and the 160 mm of precipitation is due to the

mediterranean-type climate that concentrates precipitations in the winter months

Finally Lago Vichuqueacuten is characterized by pronounced seasonality leading to

higher phytoplankton biomass in summer characterized by low δ15NPOM In winter

low biomass production and increased input from watershed is associated to high

δ15NPOM

95

Figure 9 Seasonal changes can drive δ15NPOM values in Lago Vichuqueacuten Data

correspond to average monthly temperature and total monthly precipitation for the

months when the water samples were taken (years 2015 - 2018) P-valuelt005

52 Stable isotope signatures in the Lake Vichuqueacuten watershed

The natural abundance of 15N14N isotopes of soil and vegetation samples

from the Lago Vichuqueacuten watershed appear to result from a combination of factors

isotope fractionation different N sources for plants and soil microorganisms (eg N2

fixation Nitrates) depth in the soil where N uptake by vegetation occurs and N loss

mechanisms (ie denitrification leaching and ammonia volatilization Hogberg

1997) The lowest δsup1⁵Nfoliar values are associated with native species and are

probably due to the contribution of N-fixing species (eg Sophora) (Fig6 and for

more detail see Table S3 in supplementary material) The number native N-fixers

species present in the Chilean mediterranean vegetation are not well known

however so there could be other N-fixing species in this group Alternatively δsup1⁵Nfoliar

values reflect soil N uptake (Kahmen et al 2008) In environments limited by N

plants have δsup1⁵N values similar to the soil δsup1⁵N values however the denitrification

and volatilization of ammonia can lead to the remain N of soil to come enriched in

15N (Cifuentes et al 1989 Craine et al 2009 Bruland and Mckenzie 2010) Soil N

isotope samples from native species communities tends to display relatively high

δsup1⁵N values respect to foliar samples due to loss of N-soil

The higher foliar and soil δsup1⁵N values obtained from samples of meadows

aquatic macrophytes and tree plantations can be attributed to the presence of

greater amounts of nitrate available for plant uptake (Fig 6) Houmlgberg (1997)

suggests that the availability of different N sources in soils (ie nitrates versus

96

ammonia) with different residence times can also explain these δsup1⁵NFoliar values

Indeed Feigin et al (1974) described differences of up to 20permil between ammonia

and nitrates sources Denitrification and nitrification discriminate much more against

15N than N2 fixation does (Craine et al 2009) leading to soils (and plants after

uptake) enriched in 14N

In general multiple processes that affect the isotopic signal result in similar

δsup1⁵N values between the soil of the watershed and the sediments of the river

However POM isotope fluctuations allow to say that more negative δsup1⁵N values are

associated to lake productivity while more positive δsup1⁵N values are associated with

N input from the watershed

δ13C values in Lago Vichuqueacuten watershed reflect CO2 gas exchange between

C3 plants and algae with the atmosphere During photosynthesis plants

discriminate against the heavier stable isotope of carbon (13C) in favor of the lighter

isotope 12C which results in δ13CFoliar values between -220permil and -320permil (Browman

and Cook 2002 Liu et al 2007) Likewise the δ13CFoliar values from Lago Vichuqueacuten

oscillate around -27permil (Fig 6) Plants transform atmospheric CO2 into soil organic

carbon (C) which in turn reflects this initial discrimination against 13C during C

uptake and post photosynthetic fractionation (Farquhar et al 1982 1989 Badeck

et al 2005 Pausch and Kuzyakov 2017) Slightly more positive δ13CFoliar values

(about 15permil) were measured in comparison with their δ13CSoil values This may be

reflecting the C transference from plants to the soil but also a soil-atmosphere

interchange The preferential assimilation of the light isotopes (12C) during soil

respiration carried by the roots and the microbial biomass that is associated with the

decomposition of litter roots and soil organic matter explain this differential

(Berhardt et al 2006 Blagodatskaya et al 2010 Midwood and Millard 2011)

97

In general the δ13CSoil values from the Lago Vichuqueacuten watershed oscillated

around -290permil and did not vary with our plant classification types Here we use

these values as terrestrial-end members to track changes in source OM (Fig 6)

Thus more negative δ13C values in lake sediment samples are attributed to higher

OM inputs from the terrestrial watershed By the other hand more positive δ13C

values most likely reflect an increased aquatic OM component as indicated by POM

isotope fluctuations (Fig 9)

53 Recently land use and cover change and its influences on N inputs to the lake

Tree plantations in the Lago Vichuqueacuten watershed have increased greatly in

the last few decades (from 1 in 1975 to 66 in 2016 Fig 7) replacing previous

native forests (from 26 to 7) meadows (17 to 5) and shrublands (53 to

17) In 1975 tree plantations were confined to the lake perimeter with discrete

patches distributed throughout the watershed The ldquoForest Lawrdquo (DFL 701- passed

in 1974) allocated state funding to afforestation efforts and management of tree

plantations which greatly favored the replacement native forests by introduced trees

This increase is marked by a sharp and steady decrease in lake sediment δ15N and

δ13C values because tree plantations function as a nutrient sink whereas other land

uses such as meadows favor nutrient loss from the watershed (Fig8) Bruland and

Mackenzie (2014) noted a decrease in wetland δ15N values when watershed

forested cover increased and concluded that N inputs to the wetlands are lower from

the forested areas as they generally do not export as much N as agricultural lands

A positive correlation between native vegetation and δ15Ncore values can be

explained by the relatively scarce arboreal cover in the watershed in 1975 when

native forest occupied just 26 of the watershed surface whereas shrublands and

98

meadows occupied more than the 70 of the surface of the watershed with the

concomitant elevated loss of N (Fig 7 and Fig 8)

54 Nitrogen dynamics in Lago Vichuqueacuten over the last six hundred years

Sedimentological compositional and geochemical indicators all show changes in

the N cycle associated to LUCC lake dynamics and climate changes (Fig 10) From

the pre-Columbian indigenous settlement including the Spanish colonial period up

to the start of the Republic (1300 - 1800 CE) the introduction of crops such as

quinoa and wheat but also the clearing of land for extensive agriculture would have

favored the entry of N into the lake Conversely major changes observed during the

last century were characterized by a sharp decrease of N input that were coeval

with the increase of tree plantations

From 1365 until 1550 CE (unit 2c 2b and half of 2a Fig 3 and Fig 10) pre-

Columbian agricultural societies planted mostly crops of corn and quinoa (Ramirez

and Vidal 1985) This period is characterized by large peaks seen in the δsup1⁵N record

(eg 1403 1452 1476 and 1505) with overall high δsup1⁵N values (up to 5permil) indicating

that N input from watershed was elevated and oscillating to the beat of the NT These

positive δsup1⁵N peaks could be due to several causes including a) the clearing of land

for farming b) N loss via denitrification which would be generally augmented in

anoxic environments (Diebel et al 2009) such as Lago Vichuqueacuten (low MnFe

values about 0001 Fig 4) or c) climate especially cold-wet winters or hot-dry

summers can also exert control on the δsup1⁵N record Indeed tree-ring records and

summer temperature reconstructions show overall wetcold conditions during this

period (Christie et al 2009 Von Gunten et al 2009 Fig 10) Increased

precipitation would bring more sediment (and nutrients) from the watershed into the

99

lake and increase lake productivity which is also detected by the geochemical

proxies for productivity (peaks of BrTi SrCa and TOC Fig 4 and Fig 10) (see also

Frugone-Alvarez et al 2017)

Figure 10 Changes in the N availability during the last six centuries in Lago

Vichuqueacuten a) lake sediment δsup1⁵N values displayed more positive values during the

prehistoric period Spanish Colony and the starting 19th century which is associated

with enhanced N input from the watershed by extensive clearing and crop

plantations The inset shows this relationship between sediment δsup1⁵N and

100

percentage of meadow cover over the last 30 years b) Summer temperature

reconstruction from central Chile (von Gunten et al 2009) showing a

correspondence with cold phases and high δsup1⁵N values at Vichuqueacuten except for the

last 100 years c) Palmer Drought Severity Index (PDSI) is an interannual moisture

variability reconstruction for late springndashearly summer during the last six centuries

(Christie et al 2009) Grey shadow indicating higher precipitation periods

From 1550 and 1810 CE (unit 2a) and during the Colonial period several peaks

of δ15N could be further related not only to high precipitation (Fig 10 grey shadow)

but also pulses of enhanced N input from the watershed linked to human land use

In 1550 CE Juan Cuevas was granted lands and indigenous workers under the

encomienda system for agricultural and mining development of the Vichuqueacuten

village (Ramiacuterez and Vidal 1985) Historical documents show that around 1579 CE

the Vichuqueacuten watershed was occupied by indigenous communities dedicated to

wheat plantations and vineyards wood extraction and gold mining (Odone 1998)

The introduction of the Spanish agricultural system implied not just a change in the

types of crops used (from quinoa to vineyards and wheat) but also a clearing of

native species for the continuous increase of agricultural surface and wood

extraction During the Colonial period wheat from Vichuqueacuten was exported to Peru

(Ramiacuterez and Vidal 1985) Armesto et al (2009) indicate that during the XVIII and

XIX centuries the extraction of wood for mining operations was important enough to

cause extensive loss of native forests The independence and instauration of the

Chilean Republic did not change this prevailing system Increases in the

contributions of N to the lake during the second half of the XIX century (peaks in

δsup1⁵N ca 1870 CE) could be due to expanding farm land dedicated for wheat

101

production and increased commercial trade with California and Canada (Ramiacuterez

and Vidal 1985)

In contrast LUCC in the last century are clearly related to the development of

large-scale tree plantations (Fig 7) The δsup1⁵N record reaches the lowest values of

the entire sequence in the last few decades (Fig 10) A marked increase in lake

productivity NT concentration and decreasing sediment input is synchronous (unit

1 Fig 4) with trees replacing meadows shrublands and areas with native forests

(Fig 7 and 8) The implementation of the lsquoForest Lawrsquo in 1974 had a stronger impact

on the landscape and lake ecosystem dynamics than the impacts of ongoing climate

change in the region which is much more recent (Garreaud et al 2018) although

the prevalence of hot dry summers seen over the last decade would also be

associated with low δsup1⁵N values and increase of NT (Fig 10) Heavy metals ratios

(FeTi CoTi and PbTi) show notable increases in lake sediments from 1992 to 2011

CE (Fig 4) Although this could be related to mining in the El Maule region the

closest mines are 60 Km away (Pencahue and Romeral) so local factors related to

shoreline urbanization for the summer homes and an increase in tourist activity

could also be a major factor

6 Conclusions

The N isotope signal in the watershed depends on the rates of exchange

between vegetation and soil cover (Fig 11) Plants preferentially uptake 14N and the

underlying soils become enriched in 15N especially when the terrestrial ecosystem

is N-limited andor significant N loss occurs (ie denitrification andor ammonia

volatilization) LUCC in the Lago Vichuqueacuten watershed have heavily modified the

links between terrestrial and aquatic ecosystems with agriculture practices

102

contributing more N to the lake than tree plantations or native forests In situ lake

processes can also fractionate N isotopes An increase of N-fixing species results

in OM depleted in 15N which results in POM with lower δsup1⁵N values during these

periods During winter phytoplankton is typically enriched in 15N due to the

decreased abundance of N-fixing species and increased N input from the

watershed This in turn generates the highest δsup1⁵NPOM values in Lago Vichuqueacuten

Periods of elevated productivity tend to deplete the dissolved inorganic N of 14N

resulting in even higher δ15N values

Our study illustrates the usefulness of δsup1⁵N as a tool for reconstructing the past

influence of LUCC on N availability in lake ecosystems To constrain the relative

roles of the diverse forcing mechanisms that can alter N cycling in mediterranean

ecosystems all main components of the N cycle should be monitored seasonally

(or monthly) including the measurements of δ15N values in land samples

(vegetation-soil) as well as POM

103

Figure 11 Summary of human and environmental factors controlling the δ15N

values of lake sediments Particulate organic matter(POM) δ15N values in

mediterranean lakes are driven by N input from the watershed that in turn depend

on land use and cover changes (ie forest plantation agriculture) andor seasonal

changes in N sources andor lake ecosystem processes (ie bioproductivity redox

condition denitrification) Arrows indicate the direction of N fluxes (inputoutput from

the N cycle) N cycle processes that deplete lake sediments of 15N are shown in

blue whereas those that enrich sediments in 15N are shown in red

104

Supplementary material

Figure S1 Pearson correlate coefficient between geochemical variables in core

VIC13-2B Positive and large correlations are in blue whereas negative and small

correlations are in red (p valuelt0001)

Figure S2 Principal Component Analysis of geochemical elements from core

VIC13-2B

105

Table S1 Lago Vichuqueacuten radiocarbon samples

RADIOCARBON

LAB CODE

SAMPLE

CODE

DEPTH

(m)

MATERIAL

DATED

14C AGE ERROR

D-AMS 029287

VIC13-2B-

1 043 Bulk 1520 24

D-AMS 029285

VIC13-2B-

2 085 Bulk 1700 22

D-AMS 029286

VIC13-2B-

2 124 Bulk 1100 29

Poz-63883 Chill-2D-1 191 Bulk 945 30

D-AMS 001133

VIC11-2A-

2 201 Bulk 1150 44

Poz-63884

Chill-2D-

1U 299 Bulk 1935 30

Poz-64089

VIC13-2D-

2U 463 Bulk 1845 30

Poz-64090

VIC13-2A-

3U 469 Bulk 1830 35

D-AMS 010068

VIC13-2D-

4U 667 Bulk 2831 25

Poz-63886

VIC13-2D-

4U 719 Bulk 3375 35

106

D-AMS 010069

VIC13-2D-

5U 775 Bulk 3143 27

Poz-64088

VIC13-2D-

5U 807 Bulk 3835 35

D-AMS-010066

VIC13-2D-

7U 1075 Bulk 6174 31

Poz-63885

VIC13-2D-

7U 1197 Bulk 6440 40

Poz-5782 VIC13-15 DIC 180 25

Table S2 Loadings of the trace chemical elements used in the PCA

Elementos PC1 PC2 PC3 PC4

Zr 0922 0025 -0108 -0007

Zn 0913 -0124 -0212 0001

Rb 0898 -0057 -0228 0016

K 0843 0459 0108 0113

Ti 0827 0497 0060 -0029

Al 0806 0467 0080 0107

Si 0803 0474 0133 0136

Y 0784 -0293 -0174 0262

V 0766 0455 0090 -0057

Br 0422 -0716 -0045 0226

Ca 0316 -0429 0577 0489

Sr 0164 -0420 0342 -0182

Cl 0151 -0781 -0397 0162

107

Mn -0121 -0091 0859 0095

S -0174 -0179 -0051 0714

Pb -0349 0414 -0282 0500

Fe -0700 0584 -0023 0280

Co -0704 0564 -0107 0250

Table S3 Stable Isotope values from vegetation of Lago Vichuqueacutenacutes watershed

Taxa Classification δsup1⁵N δsup1sup3C CN

molar

Poaceae Meadow 1216 -2589 3602

Juncacea Meadow 1404 -2450 3855

Cyperaceae Meadow 1031 -2596 1711

Taraxacum

officinale Meadow 836 -2400 2035

Poaceae Meadow 660 -2779 1583

Poaceae Meadow 453 -2813 1401

Poaceae Meadow 966 -2908 4010

Juncus Meadow 1247 -2418 3892

Poaceae Meadow 747 -3177 6992

Poaceae Meadow 942 -2764 3147

Poaceae Meadow 1479 -2634 2895

Poaceae Meadow 1113 -2776 1795

Poaceae Meadow 2215 -2737 7971

Poaceae Meadow 1121 -2944 2934

Poaceae Meadow 638 -3206 1529

108

Macrophytes Macrophytes 886 -3044 2286

Macrophytes Macrophytes 1056 -2720 2673

Macrophytes Macrophytes 769 -3297 1249

Macrophytes Macrophytes 967 -2763 1442

Macrophytes Macrophytes 959 -2670 2105

Macrophytes Macrophytes 334 -2728 1038

Acacia dealbata

Introduced

species 656 -2696 1296

Acacia dealbata

Introduced

species 487 -2941 1782

Acacia dealbata

Introduced

species 220 -2611 3888

Luma apiculata Native species 433 -2542 4135

Luma apiculata Native species 171 -2664 7634

Luma apiculata Native species -001 -2736 6283

Luma apiculata Native species 029 -2764 6425

Azara sp Native species 159 -2868 8408

Azara sp Native species 101 -2606 2885

Baccharis concava Native species 104 -2699 5779

Baccharis concava Native species 265 -2488 4325

Baccharis concava Native species 287 -2562 7802

Baccharis concava Native species 427 -2781 5204

Baccharis linearis Native species 190 -2610 4414

Baccharis linearis Native species 023 -2825 5647

109

Peumus boldus Native species 042 -2969 6327

Peumus boldus Native species 205 -2746 4110

Peumus boldus Native species 183 -2743 6293

Chusquea quila Native species 482 -2801 4275

Poaceae meadow 217 -2629 7214

Lobelia sp Native species 224 -2645 3963

Lobelia sp Native species -091 -2565 4538

Aristotelia chilensis Native species -035 -2785 5247

Aristotelia chilensis Native species -305 -2889 2305

Aristotelia chilensis Native species 093 -2836 5457

Chusquea quila Native species 173 -2754 3534

Chusquea quila Native species 045 -2950 6739

Quillaja saponaria Native species 223 -2838 9385

Scirpus meadow 018 -2820 7115

Sophora sp Native species -184 -2481 2094

Sophora sp Native species -181 -2717 1721

Pinus radiata

Introduced

trees 1581 -2602 3679

Pinus radiata

Introduced

trees 1431 -2784 4852

Pinus radiata

Introduced

trees -091 -2708 9760

Pinus radiata

Introduced

trees 153 -2568 3470

110

Salix sp

Introduced

trees 632 -2878 1921

LITERATURE CITED

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea

AM Marquet PA 2010 From the Holocene to the Anthropocene A historical

framework for land cover change in southwestern South America in the past 15000

years Land use policy 27 148ndash160

httpsdoiorg101016jlandusepol200907006

Battye W Aneja VP Schlesinger WH 2017 Earth rsquo s Future Is nitrogen the next

carbon  Earthrsquos Future Global Biogeochem Cycles 30 1000ndash1014

httpsdoiorg101002eft2235

Blaauw M Christeny JA 2011 Flexible paleoclimate age-depth models using an

autoregressive gamma process Bayesian Anal 6 457ndash474

httpsdoiorg10121411-BA618

Bowman DMJS Cook GD 2002 Can stable carbon isotopes (δ13C) in soil

carbon be used to describe the dynamics of Eucalyptus savanna-rainforest

boundaries in the Australian monsoon tropics Austral Ecol

httpsdoiorg101046j1442-9993200201158x

Brahney J Ballantyne AP Turner BL Spaulding SA Otu M Neff JC 2014

Separating the influences of diagenesis productivity and anthropogenic nitrogen

deposition on sedimentary δ15N variations Org Geochem 75 140ndash150

httpsdoiorg101016jorggeochem201407003

111

Bruland GL MacKenzie RA 2010 Nitrogen Source Tracking with δN Content

of Coastal Wetland Plants in Hawaii J Environ Qual 39 409

httpsdoiorg102134jeq20090005

Carrevedo ML Frugone M Latorre C Maldonado A Bernaacuterdez P Prego R

Caacuterdenas D Valero-Garceacutes B 2015 A 700-year record of climate and

environmental change from a high Andean lake Laguna del Maule central Chile

(36degS) Holocene 25 956ndash972 httpsdoiorg1011770959683615574584

Christie DA Boninsegna JA Cleaveland MK Lara A Le Quesne C

Morales MS Mudelsee M Stahle DW Villalba R 2009 Aridity changes in the

Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from

tree-rings Clim Dyn 36 1505ndash1521 httpsdoiorg101007s00382-009-0723-4

Craine JM Elmore AJ Aidar MPM Dawson TE Hobbie EA Kahmen A

Mack MC Kendra K Michelsen A Nardoto GB Pardo LH Pentildeuelas J

Reich B Schuur EAG Stock WD Templer PH Virginia RA Welker JM

Wright IJ 2009 Global patterns of foliar nitrogen isotopes and their relationships

with cliamte mycorrhizal fungi foliar nutrient concentrations and nitrogen

availability New Phytol 183 980ndash992 httpsdoiorg101111j1469-

8137200902917x

Cuven S Francus P Lamoureux SF 2010 Estimation of grain size variability

with micro X-ray fluorescence in laminated lacustrine sediments Cape Bounty

Canadian High Arctic J Paleolimnol 44 803ndash817 httpsdoiorg101007s10933-

010-9453-1

Diebel M Vander Zanden MJ 2012 Nitrogen stable isotopes in streams  stable

isotopes Nitrogen effects of agricultural sources and transformations Ecol Appl 19

1127ndash1134 httpsdoiorg10189008-03271

112

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in freshwater

wetlands record long-term changes in watershed nitrogen source and land use SO

- Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash

2916

Fariacuteas L Castro-Gonzales M Cornejo M Charpentier J Faundez J

Boontanon N Yoshida N 2009 Denitrification and nitrous oxide cycling within the

upper oxycline of the oxygen minimum zone off the eastern tropical South Pacific

Limnol Oceanogr 54 132ndash144

Farquhar GD Ehleringer JR Hubick KT 1989 Carbon Isotope Discrimination

and Photosynthesis Annu Rev Plant Physiol Plant Mol Biol

httpsdoiorg101146annurevpp40060189002443

Farquhar GD OrsquoLeary MH Berry JA 1982 On the relationship between

carbon isotope discrimination and the intercellular carbon dioxide concentration in

leaves Aust J Plant Physiol httpsdoiorg101071PP9820121

Fogel ML Cifuentes LA 1993 Isotope fractionation during primary production

Org Geochem httpsdoiorg101007978-1-4615-2890-6_3

Frugone-Aacutelvarez M Latorre C Giralt S Polanco-Martiacutenez J Bernaacuterdez P

Oliva-Urcia B Maldonado A Carrevedo ML Moreno A Delgado Huertas A

Prego R Barreiro-Lostres F Valero-Garceacutes B 2017 A 7000-year high-

resolution lake sediment record from coastal central Chile (Lago Vichuqueacuten 34degS)

implications for past sea level and environmental variability J Quat Sci 32 830ndash

844 httpsdoiorg101002jqs2936

Gaumllman V Rydberg J Bigler C 2009 Decadal diagenetic effects on δ 13 C and

δ 15 N studied in varved lake sediment Limnol Oceanogr 54 917ndash924

httpsdoiorg104319lo20095430917

113

Gerhart LM McLauchlan KK 2014 Reconstructing terrestrial nutrient cycling

using stable nitrogen isotopes in wood Biogeochemistry 120 1ndash21

httpsdoiorg101007s10533-014-9988-8

Granger J Sigman DM Lehmann MF Tortell PD 2008 Nitrogen and oxygen

isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria 53

2533ndash2545 httpsdoiorg10230740058342

Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater

eutrophic lake Limnol Oceanogr 51 2837ndash2848

httpsdoiorg104319lo20065162837

Harris D Horwaacuteth WR van Kessel C 2001 Acid fumigation of soils to remove

carbonates prior to total organic carbon or CARBON-13 isotopic analysis Soil Sci

Soc Am J 65 1853 httpsdoiorg102136sssaj20011853

Houmlgberg P 1997 Tansley review no 95 natural abundance in soil-plant systems

New Phytol httpsdoiorg101046j1469-8137199700808x

Kylander ME Ampel L Wohlfarth B Veres D 2011 High-resolution X-ray

fluorescence core scanning analysis of Les Echets (France) sedimentary sequence

New insights from chemical proxies J Quat Sci 26 109ndash117

httpsdoiorg101002jqs1438

Lara A Solari ME Prieto MDR Pentildea MP 2012 Reconstruccioacuten de la

cobertura de la vegetacioacuten y uso del suelo hacia 1550 y sus cambios a 2007 en la

ecorregioacuten de los bosques valdivianos lluviosos de Chile (35o - 43o 30acute S) Bosque

(Valdivia) 33 03ndash04 httpsdoiorg104067s0717-92002012000100002

Lehmann M Bernasconi S Barbieri A McKenzie J 2002 Preservation of

organic matter and alteration of its carbon and nitrogen isotope composition during

114

simulated and in situ early sedimentary diagenesis Geochim Cosmochim Acta 66

3573ndash3584 httpsdoiorg101016S0016-7037(02)00968-7

Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos Transactions

American Geophysical Union httpsdoiorg1010292007EO070007

Liu G Li M An L 2007 The Environmental Significance Of Stable Carbon

Isotope Composition Of Modern Plant Leaves In The Northern Tibetan Plateau

China Arctic Antarct Alp Res httpsdoiorg1016571523-0430(07-505)[liu-

g]20co2

Marzecovaacute A Mikomaumlgi A Koff T Martma T 2011 Sedimentary geochemical

response to human impact on Lake Notildemmejaumlrv Estonia Est J Ecol 60 54

httpsdoiorg103176eco2011105

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash

1643 httpsdoiorg1011770959683613496289

Meyers PA 2003 Application of organic geochemistry to paleolimnological

reconstruction a summary of examples from the Laurention Great Lakes Org

Geochem 34 261ndash289 httpsdoiorg101016S0146-6380(02)00168-7

Naeher S Gilli A North RP Hamann Y Schubert CJ 2013 Tracing bottom

water oxygenation with sedimentary MnFe ratios in Lake Zurich Switzerland

Chem Geol 352 125ndash133 httpsdoiorg101016jchemgeo201306006

Odone C 1998 El Pueblo de Indios de Vichuqueacuten siglos XVI y XVII Rev Hist

Indiacutegena 3 19ndash67

Pausch J Kuzyakov Y 2018 Carbon input by roots into the soil Quantification of

rhizodeposition from root to ecosystem scale Glob Chang Biol

httpsdoiorg101111gcb13850

115

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98

httpsdoiorg1011772053019614564785

Sun W Zhang E Jones RT Liu E Shen J 2016 Biogeochemical processes

and response to climate change recorded in the isotopes of lacustrine organic

matter southeastern Qinghai-Tibetan Plateau China Palaeogeogr Palaeoclimatol

Palaeoecol httpsdoiorg101016jpalaeo201604013

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of

different trophic status J Paleolimnol 47 693ndash706

httpsdoiorg101007s10933-012-9593-6

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl

httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M 2009 High-resolution quantitative climate

reconstruction over the past 1000 years and pollution history derived from lake

sediments in Central Chile Philos Fak PhD 246

Woodward C Chang J Zawadzki A Shulmeister J Haworth R Collecutt S

Jacobsen G 2011 Evidence against early nineteenth century major European

induced environmental impacts by illegal settlers in the New England Tablelands

south eastern Australia Quat Sci Rev 30 3743ndash3747

httpsdoiorg101016jquascirev201110014

Xu H Yu K Lan J Sheng E Liu B Ye Y Hong B Wu H Zhou K Yeager

KM 2016 Different responses of sedimentary δ15N to climatic changes and

116

anthropogenic impacts in lakes across the Eastern margin of the Tibetan Plateau

J Asian Earth Sci 123 111ndash118 httpsdoiorg101016jjseaes201603024

117

DISCUSION GENERAL

El Nitroacutegeno (N) es un elemento clave que controla la dinaacutemica y

funcionamiento de ecosistemas tanto terrestres como acuaacuteticos (Vitousek et al

1997) Pese a que el N (N2) es muy abundante en la atmoacutesfera (78) es escaso

en los ecosistemas pues la mayoriacutea de la biota no puede acceder a su forma

molecular (Galloway et al 1995 Zaehle et al 2013) En este sentido la entrada

natural de N en los ecosistemas es viacutea fijacioacuten bioloacutegica del N2 por bacterias que lo

convierten en compuestos bioloacutegicamente disponibles (Battye et al 2017) Debido

a que la fijacioacuten es un proceso energeacuteticamente costoso los ecosistemas

comuacutenmente estaacuten limitados por N (Vitousek and Howarth 1991) Los LUCC

contribuyen al incremento del N disponible y son una de las principales causas de

eutroficacioacuten y contaminacioacuten de los cuerpos de agua (Woodward et al 2012)

En Chile central los LUCC principalmente relacionados con las actividades

agriacutecolas y forestales han causado grandes cambios en el ciclo del N debido al

118

reemplazo de la cobertura natural por un monocultivo y al uso de fertilizantes que

modifican los aportes de MO y N a los cuerpos de agua El programa de

estabilizacioacuten de laderas impulsada por el gobierno (Albert 1900) y la ley forestal

de 1974 han fomentado la forestacioacuten con plantaciones de Pinus radiata y

Eucalyptus globulus y en el caso de Lago Vichuqueacuten estas actualmente cubren maacutes

del 60 de su cuenca (Cap2 Fig 5) Ademaacutes en Laguna Matanzas la

sobreexplotacioacuten del agua en conjunto con el cambio climaacutetico actual el que ha

conducido a una de las megasequiacuteas maacutes severas en las uacuteltimas deacutecadas

(Garreaud et al 2017) generoacute una combinacioacuten letal que secoacute el lago en tan solo

10 antildeos (Cap1 Fig1) Las evidencias obtenidas a partir de estos dos lagos

permiten identificar las huellas del Antropoceno en Chile central basadas en el

registro sedimentario lacustre

La transferencia de N desde los ecosistemas terrestres a acuaacuteticos es un

proceso natural con controles bioacuteticos climaacuteticos y geoloacutegicos El enlace

hidroloacutegico entre los ecosistemas terrestres y acuaacuteticos hace que el estado troacutefico

de los lagos esteacute vinculado al de su cuenca (McLauchlan et al 2013) En Chile

central se sabe poco del impacto de los LUCC sobre el ciclo de nutrientes en los

ecosistemas lacustres aunque al menos desde la colonizacioacuten espantildeola se tienen

registros de influencia humana en las cuencas Durante la colonia espantildeola

Laguna Matanzas fue una hacienda ganadera que exportaba productos caacuternicos al

Peruacute (Contreras-Lopez et al 2014) A su vez en el Lago Vichuqueacuten se realizaban

extensas actividades agriacutecolas hasta comienzos del s XX como por ejemplo

cultivos de vid y trigo ademaacutes de extraccioacuten de madera y mineriacutea de oro (Odone

1997) En las uacuteltimas deacutecadas los LUCC han estado vinculados principalmente con

el desarrollo forestal al compaacutes de una estrategia gubernamental de fomentar con

119

incentivos financieros (Ley de Bosques DFL nordm265 de 1931 y DFL 701 de 1974)

esta actividad El incremento de la superficie forestal es especialmente fuerte en

ambos lagos a partir de la deacutecada de 1980 y hasta 2016 (Laguna de Matanzas 0-

17 Lago Vichuqueacuten 1-66) Este aumento habriacutea sido en detrimento del bosque

nativo y los pastizales (Cap 1 Fig 5 y Cap 2 Fig 8) El incremento de la superficie

forestal generariacutea una disminucioacuten de los aportes de sedimentos y nutrientes al lago

y en este sentido un cambio de estado en los flujos de N (e g tipping points) que

a su vez ha quedado registrado en la sentildeal isotoacutepica (δ15N) y la acumulacioacuten de

MO en los sedimentos lacustres

Isoacutetopos estables y la dinaacutemica de N en los lagos de Chile central

Los sedimentos lacustres son verdaderos ldquosumiderosrdquo que pueden llegar a

registrar lo que ocurre en cuanto a la historia ambiental de su cuenca En esta tesis

se utilizan los isoacutetopos estables de N (15N y 14N) en sedimentos lacustres para

reconstruir los cambios en la disponibilidad de N en el tiempo y establecer la

magnitud de impacto generado por actividades humanas El fraccionamiento

cineacutetico en los lagos es mediado por procesos bioloacutegicos que mediante la

asimilacioacuten de N genera un producto (eg fitoplancton) maacutes ldquoligerordquo (valores maacutes

bajos de 15N) que su remanente (eg DIN) (Fogel y Cifuentes 1993) Sin embargo

en periacuteodos en que los lagos estaacuten limitados por N el fitoplancton discrimina menos

y la MO resultante queda enriquecida en 15N (Fig 1 a y b) Ademaacutes la

desnitrificacioacuten acentuada en lagos de fondo anoacutexicos (eg Laguna Matanzas

entre 1800 y 1940 Cap1 Fig 6) conduce a un enriquecimiento en 15N de los

sedimentos y de la columna de agua Esta informacioacuten queda reflejada en la MO

120

de los sedimentos lacustres lo que permite conocer la disponibilidad del N en el

tiempo a partir de las variaciones de 15N

En esta tesis analizamos la MO de los sedimentos lacustres para reconstruir

la influencia de los LUCC en los aportes de sedimentos y N al lago En teacuterminos de

asimilacioacuten de N se puede distinguir entre dos grupos principales de productores

primarios que componen el POM (Fig1)

1 Los que asimilan el DIN compuesto por amonio nitratos y nitritos Aquiacute el

δ15N resultante fluctuaraacute en torno a valores maacutes positivos en la medida que

la productividad se incrementa o no hay reposicioacuten del DIN (Fig 1)

2 Los fijadores de N Dado que es un proceso energeacuteticamente costoso en

ambientes que no estaacuten limitados por N muchas veces son excluiacutedas

competitivamente por el resto del fitoplancton Si el DIN queda agotado por

el incremento de la productividad (o bien si el ambiente estaacute limitado ya sea

por N o por otros nutrientes) los fijadores de N pueden florecer y la MO que

se genera a partir de ello tendraacute un δ15N con valores en torno a 0permil

De este modo la MO en los sedimentos lacustres dependeraacute de la

composicioacuten de productores primarios (ie fijadores vs asimiladores del DIN)

ademaacutes de los aportes desde la cuenca tanto de MO como del N de la cuenca que

pasa a formar parte del DIN (eg fertilizantes estieacutercol) (Fig 1)

La MO de los lagos estudiados en esta tesis ha sido analizada a partir de

variables geoquiacutemicas isotoacutepicas frotis y estaacute compuesta principalmente por

diatomeas y MO amorfa A partir de los datos obtenidos en esta tesis los valores

de δ15N aumentan cuando hay una mayor cobertura agriacutecola o pastizales A su vez

tiende a disminuir cuando aumenta la cobertura arboacuterea independiente si esta es

por plantaciones forestales o por bosque nativo

121

Por otra parte la dinaacutemica del lago tambieacuten imprime caracteriacutesticas

especiales en el POM observaacutendose variaciones estacionales en los valores

δ15NPOM Durante la estacioacuten caacutelida y seca se observan valores maacutes bajos que

durante la estacioacuten friacutea y huacutemeda posiblemente relacionado con el incremento de

la contribucioacuten de especies fijadoras de N (Lago Vichuqueacuten Fig 9 Cap 2) durante

el verano En la estacioacuten friacutea y huacutemeda el DIN seriacutea la principal fuente de N Las

mayores entradas de MO y N terrestre debidos a un incremento del lavado de la

cuenca como consecuencia de las precipitaciones y la mineralizacioacuten de la MO

podriacutean estimular la produccioacuten de MO lacustre por crecimiento del fitoplancton

Como consecuencia se observan tendencias decrecientes de los valores de

δ15N en la MO sedimentaria cuando la productividad en el lago estaacute relacionada

con especies fijadoras de N mientras que el δ15N muestra aumentos cuando la

productividad del lago estaacute asociada principalmente al consumo del DIN pero

tambieacuten cuando predominan procesos de perdida de N (eg desnitrificacioacuten Fig

1)

Hemos identificado tres fases en la dinaacutemica del δ15N para ambos lagos

Entre 1800 y 1940 CE la cuenca de laguna de Matanzas estaba dominada por

actividades agriacutecolas y ganaderas (δ15Nsuelo gt 4permil Cap 1 Fig 4 y 6) Las entradas

de sedimentos y MO desde la cuenca son altas (δ13C lt -209permil ZrTi ~029 AlTi

~013) y coincide con un clima maacutes huacutemedo y friacuteo (Von Gunten et al 2009

Christiansen et al 2011) El lago teniacutea un nivel de agua maacutes profundo dominado

por condiciones anoacutexicas (MnFe ~0013) que contribuiriacutean a mayores valores de

δ15N en la columna de agua y por ende de los sedimentos acumulados en el fondo

debido a la peacuterdida diferencial de 14N viacutea desnitrificacioacuten (Fig 7 Cap1) La baja

122

produccioacuten de MO lacustre (BrTi ~002 TOC~17) coincide con un bajo contenido

de NT (~478 μg) y valores maacutes positivos de δ15N (gt 4permil)

La actividad agriacutecola tambieacuten dominaba en la cuenca del Lago Vichuqueacuten

durante este periacuteodo (δ15Nsuelo gt4permil Cap2 Fig 6) El aporte sedimentario desde la

cuenca es alto (AlTi ~029 ZrTi ~032) y fue favorecido por mayores

precipitaciones a las actuales (Christiansen et al 2011) El Lago Vichuqueacuten es un

lago estratificado anoacutexico (MnFe ~002) y profundo (~30 m) por lo que la

desnitrificacioacuten juega un rol importante en el enriquecimiento de la MO

sedimentaria La baja produccioacuten de MO (BrTi ~007 TOC ~12) de origen

lacustre (δ13C ~ -268permil) coincide con un bajo contenido de NT (~309μg +6) y

valores maacutes positivos de δ15N (56permil +03)

Durante esta fase en ambos lagos los aportes de N de la cuenca parecen

ser los principales responsables en las fluctuaciones del δ15N Esta sentildeal podriacutea

estar amplificada por bajas temperaturas (que afectan la productividad lacustre) y

altas precipitaciones que favorecen el lavado de la cuenca y aumentan el aporte de

sedimentos y MO desde la cuenca predominantemente agriacutecola

Entre 1940 y 1980 CE en Laguna Matanzas se observa un incremento en

la acumulacioacuten de MO algal (TOC ~2 +1 δ13C ~-230+09permil) El ambiente

deposicional es ligeramente menos turbulento que el anterior (AlTi ~011+001

ZrTi ~03+001) y el lago estaacute en una fase de transicioacuten hacia condiciones maacutes

oacutexicas (MnFe ~002+0004) y maacutes productivas (BrTi ~004+0007) A su vez δ15N

tiende hacia valores maacutes negativos (δ15N ~30permil+03) mientras que el NT aumenta

oscilando en antifase con el δ15N

En Lago Vichuqueacuten en cambio se observa un ligero incremento en la

acumulacioacuten de MO (TOC ~13 +02) de origen terrestre (δ13C ~-27permil +04) La

123

productividad es similar al periacuteodo anterior (BrTi ~007+003) y el ambiente

deposicional es menos turbulento (AlTi ~02 +009 Zrti ~033 +007) El δ15N y el

NT oscilan en torno a valores ligeramente maacutes bajos (δ15N ~51permil +04 NT ~292μg

+6) Este periacuteodo se caracteriza por ser maacutes caacutelido que el anterior lo que

posibilitariacutea un incremento en la productividad lacustre en Laguna Matanzas pero

que no es observada en el Lago Vichuqueacuten

Entre 1980 y la actualidad en Laguna Matanzas habriacutea un incremento de la

acumulacioacuten de MO (TOC ~59 + 3) asociada a un incremento en la productividad

del lago (BrTi ~009+005) y a los aportes de MO terrestres (δ13C ~-24 + 2permil) El

lago se vuelve maacutes oacutexico (Mn ~0003 +0006) y las entradas de sedimento

disminuyen (AlTi~ 009 +002) El δ15N tiende a valores maacutes negativos (δ15N ~13permil

+1) y el NT aumenta de 20 a 55 μg (NT ~346 + 9 μg) tomando valores sin

precedentes en todo el registro En los sedimentos lacustres del Lago Vichuqueacuten

tambieacuten se observa un incremento de la acumulacioacuten de MO (TOC ~17 + 05)

asociada a un incremento en la productividad del lago (BrTi ~01 + 003) y las

entradas de sedimento desde la cuenca disminuyen (AlTi ~005 + 005) El δ15N

(~43 + 05permil) tiende a valores maacutes negativos y el NT incrementa de 20 a 55 μg (NT

~346 + 9 μg) oscilando en antifase

Durante esta fase en ambos lagos se observa un aumento en la

acumulacioacuten de MO sedimentaria un incremento en el NT y valores maacutes negativos

de δ15N que coincide con el incremento de la superficie forestal de las cuencas

(Laguna Matanzas gt17 Lago Vichuqueacuten gt60)

124

Figura 2 Comparacioacuten de los cambios del ciclo del N entre Laguna Matanzas y

Lago Vichuqueacuten con los procesos biogeoquiacutemicos contrastantes en rojo En L

Matanzas las condiciones oacutexicas podriacutean estar favoreciendo la nitrificacioacuten del

amonio En Vichuqueacuten las condiciones anoacutexicas favorecen un aumento en δ15N de

la MO en los sedimentos por desnitrificacioacuten y mineralizacioacuten

Los ambientes mediterraacuteneos en el que los lagos del presente estudio se

encuentran insertos estaacuten caracterizados por una estacioacuten seca prolongada y las

precipitaciones ocurren en eventos puntuales alcanzando altos montos

pluviomeacutetricos en poco tiempo Las lluvias favorecen un lavado de la cuenca la

perdida de N y otros nutrientes Por lo que es esperable que los sedimentos del

lago reflejen mejor los valores isotoacutepicos de los suelos de la cuenca durante los

periacuteodos con altos montos pluviomeacutetricos En el Lago Vichuqueacuten por ejemplo el

125

POM superficial (2 y 5 m de profundidad) despliega valores isotoacutepicos maacutes

positivos en invierno presumiblemente como resultado de mayores aportes de MO

y N de su cuenca (Fig 1b) En ambos lagos los valores maacutes positivos en los

sedimentos lacustres ocurren durante periacuteodos con mayores montos pluviomeacutetricos

(Cap1 Fig 6 y Cap 2 Fig 12)

Ademaacutes del efecto de la precipitacioacuten en el aporte de nutrientes al lago en

esta tesis hemos encontrado que los mayores aportes de N desde la cuenca se dan

cuando la cobertura vegetal del suelo es menor En Laguna Matanzas el desarrollo

de la actividad ganadera desde la llegada de los espantildeoles a la cuenca habriacutea

incrementado los aportes de N al lago Los valores de δ15N en los sedimentos

lacustres depositados durante este periacuteodo son los maacutes positivos de todo el registro

(~4permil) A su vez en Lago Vichuqueacuten los valores isotoacutepicos maacutes positivos se

registran entre 1300 y 1900 CE que coinciden con el mayor desarrollo de

actividades agriacutecola y de extraccioacuten de maderas de la cuenca (Fig 10 Cap 2)

Los recientes LUCC (a partir de 1975) en las cuencas de Laguna Matanzas

y Lago Vichuqueacuten estaacuten caracterizados por un incremento de la superficie forestal

y agriacutecola en reemplazo de la cobertura de pastizal (Laguna Matanzas) y bosque

nativo (Lago Vichuqueacuten) Los valores de δ15N en los testigos sedimentarios fueron

maacutes positivos cuanto mayor la superficie agriacutecola de la cuenca y maacutes negativos

cuanto mayor la superficie forestal Aunque por los alcances de esta tesis no

podemos ser concluyentes respecto del origen del NT (aloacutectonoautoacutectono) parece

ser que esta maacutes ligado a los aportes de la cuenca pese a la disminucioacuten del aporte

sedimentario observado en ambos lagos Las plantaciones forestales a diferencia

del bosque nativo son fertilizadas con una mezcla de N P y K (Toral et al 2005)

Por lo que pese a la disminucioacuten del aporte sedimentario la concentracioacuten de

126

nutrientes en el aporte al lago puede verse incrementada por el tipo de manejo

forestal con respecto al bosque nativo

Los resultados del primer capiacutetulo demuestran que 1) las plantaciones

forestales yo bosque nativo retiene maacutes sedimentos y MO mientras que el uso de

suelo agriacutecola y los pastizales destinados al desarrollo de la actividad ganadera lo

libera 2) Al parecer la desnitrificacioacuten es el proceso natural maacutes importante de

perdida de N en lagos costeros y favorece el enriquecimiento de 15N tanto en la

columna de agua (ie 15N-DIN) como en los sedimentos una vez enterrados y 3) la

desnitrificacioacuten depende de los cambios en las condiciones REDOX en el lago La

oxigenacioacuten en lagos poco profundos -como Laguna Matanzas- es altamente

fluctuante a escalas decadal-centenal depende de la profundidad de la laacutemina de

agua y de la variabilidad de la precipitacioacuten En este sentido en Laguna Matanzas

habriacutea condiciones anoacutexicas en ambientes cuando el lago alcanza niveles maacutes

altos Estas condiciones se observan entre 1820 y 1940 CE y son coetaacuteneas con

episodios maacutes huacutemedos y friacuteos (von Gunten et al 2009 Christie et al 2009) pero

tambieacuten con una fuerte actividad ganadera en la cuenca

Las fuentes variables de N y su fluctuacioacuten en el tiempo hacen necesario

contar con un anaacutelogo moderno que permite usar al δ15N de los sedimentos

lacustres como un indicador indirecto de los cambios en la disponibilidad de N en

el tiempo Por ello en el segundo capiacutetulo integramos muestras de suelo-

vegetacioacuten y un monitoreo de POM de la columna de agua en verano e invierno La

composicioacuten isotoacutepica de POM estariacutea reflejando cambios de la fuente de N (fijacioacuten

vs consumo del DIN) que variacutea durante el antildeo hidroloacutegico Durante el verano la

mayor temperatura y horas-luz favoreceriacutean las entradas de N al lago viacutea fijacioacuten

bioloacutegica de N2 atmosfeacuterico resultando en un incremento de la MO con un valor

127

isotoacutepico bajo (POM verano~5permil Fig 1b) El N2 (δ15N = 0permil) es fijado praacutecticamente

sin fraccionamiento isotoacutepico generando un δ15N de la OM cercano a 0permil (Leng et

al 2006) En invierno las precipitaciones pueden estar favoreciendo un incremento

en la entrada de nutrientes al lago El DIN de la columna de agua llega a contener

valores de δ15N maacutes altos reflejando estos mayores aportes de la cuenca y el POM

del Lago Vichuqueacuten queda enriquecido en 15N (δ15N ~11permil Cap 2 Fig 9) Estas

variaciones estacionales pueden estar evidenciando un cambio en la composicioacuten

de especies de POM desde especies fijadoras a especies que consumen el N de la

columna de agua Sin embargo para corroborar esta informacioacuten seriacutea deseable

contar con el anaacutelisis de la composicioacuten de especies de las muestras de agua

extraidas

Entre los resultados maacutes importantes estaacuten los valores isotoacutepicos del suelo

y la biomasa representativa de la cuenca que incluye un listado de las especies

nativas de la zona que hasta ahora no se contaba (Cap 2 Tabla en material

suplementario) Las especies colectadas despliegan valores de δ15Nfoliar maacutes

positivos (plantaciones forestales y pastizal ~89permil) que el suelo (35permil) salvo por

las especies nativas las que oscilan en torno a valores cercanos al atmosfeacuterico

(~14permil) La razoacuten isotoacutepica 15N14N refleja la dinaacutemica de intercambio de N entre la

vegetacioacuten y el suelo (Koba et al 2002) La discriminacioacuten es positiva en la mayoriacutea

de los sistemas bioloacutegicos por lo que las plantas tienen valores de δ15N maacutes bajos

que el suelo (Evans et al 2001) como sucede con las especies nativas en Lago

Vichuqueacuten En consecuencia las plantas quedan empobrecidas en 15N y conducen

a un enriquecimiento en 15N del suelo sobretodo si no hay reposicioacuten de N por otras

viacuteas (eg fijacioacuten de N) Por lo tanto los valores maacutes negativos de δsup1⁵Nfoliar de las

especies nativas pueden estar relacionados con el consumo preferencial de 14N del

128

suelo donde la discriminacioacuten isotoacutepica de la vegetacioacuten contra el 15N conduce a

valores del δsup1⁵Nsuelo maacutes altos (Houmlgberg 1997) Por el contrario los valores maacutes

positivos de δsup1⁵Nfoliar de las plantaciones forestales y pastos con respecto al suelo

puede deberse por una parte que el suelo no cuenta con mecanismos naturales de

reposicioacuten de N salvo por la descomposicioacuten de la hojarasca que puede ser maacutes

lenta en Pinus radiata que en bosque nativo (Lusk et al 2001) y por otra por el alto

impacto de los aportes de N (y otros nutrientes) derivado de las actividades

humanas (eg uso de fertilizantes) en el suelo

El alcance maacutes significativo de esta tesis se relaciona con un cambio en la

tendencia maacutes negativa de δsup1⁵N y el incremento del NT a partir de 1940 y a partir

de 1970 CE en ambos lagos La causa maacutes probable de esta tendencia es el

reemplazo de la cobertura natural o preexistente a 1940 CE por plantaciones

forestales

En la figura 2 se observa una siacutentesis de los principales procesos que

afectan la sentildeal isotoacutepica de la MO en los sedimentos lacustres de L Matanzas y

L Vichuqueacuten La entrada de N y MO desde la cuenca depende del tipo de cobertura

Las plantaciones forestales y el bosque nativo retienen maacutes nutrientes y sedimentos

en la cuenca mientras que la agricultura los favorece Sin embargo las praacutecticas

de manejo que incluyen la aplicacioacuten de N (y otros nutrientes) pueden aportar maacutes

nutrientes al lago que la cobertra de bosque nativo Cuando las actividades

forestales cubren una mayor superficie de la cuenca (1940 en adelante) δsup1⁵N oscila

en valores maacutes negativos y el NT tiende a incrementarse en los sedimentos

lacustres Cabe destacar que los valores de δsup1⁵N observados en los testigos

sedimentarios a fines del s XX no tienen precedente durante la conquista y colonia

espantildeola o durante el resto del periodo de la Repuacuteblica

129

Figura 2 Modelo de transferencia de N entre los ecosistemas terrestres y

acuaacuteticos El δ15N de los sedimentos lacustres depende de la interaccioacuten entre los

aportes de la cuenca y porcesos ldquoin-lakerdquo Flechas indican la direccioacuten del flujo de

N En azul las salidasentradas de 14N en rojo las salidasentradas de 15N δ15N de

la interaccioacuten plantas-suelo depende del tipo de cobertura de suelo

130

CONCLUSIONES GENERALES

La transferencia de N entre cuencas y lagos es un factor de control del ciclo

del N en los lagos y queda reflejado en la sentildeal isotoacutepica de los sedimentos

lacustres (Leng et al 2006 McLauchlan et al 2007) En Laguna Matanzas el

suelo de las especies nativas y las plantaciones forestales despliegan valores de

δ15N maacutes bajos (~1permil) que los de Lago Vichuqueacuten (~35permil) Coincidentemente los

sedimentos lacustres de Laguna Matanzas oscilan con valores de δ15N maacutes bajos

(-15 a +45permil Fig 1) que los de Lago Vichuqueacuten (+3 a +8permil)

Por otra parte el estudio de la MO de los sedimentos lacustres ha permitido

reconstruir los cambios en los aportes de MO y N desde la cuenca Aunque no es

posible afirmar queacute tipo de N estaacute entrando al lago (eg Nitroacutegeno orgaacutenico e

inorganico) si podemos decir que los cambios en las fluctuaciones de δ15N son

coincentes con el crecimiento de la actividad forestal (1980 - hasta 2016 L

Matanzas 0-17 y L Vichuqueacuten 1-66) El δ15N fluctuacutea hacia valores maacutes

negativos Ademaacutes se observa un incremento del NT en los sedimentos lacustres

cuanto mayor es la superficie forestal

Entre 1800-1940 las cuencas eran fundamentalmente agriacutecolas y

ganaderas (Cap1 Fig 7 y Cap 2 Fig 12) el δ15N de los sedimentos lacustres

oscila con valores maacutes positivos (L Matanzas +40 plusmn 05permil y L Vichuqueacuten 56 plusmn

033permil Fig 1) hay una baja bioproductividad en el lago (BrTi ~002 TOC~17)

lo que coincide con un bajo contenido de NT (~478 μg) Este es un periacuteodo de altas

precipitaciones (Christie et al 2009) que tienden a favorecer el lavado de la cuenca

131

y con ello el aporte de MO sedimentos y nutrientes desde la cuenca tiende a verse

favorecido Aunque las principales actividades humanas en estas cuencas son

diferentes (ganaderiacutea en Laguna Matanzas Contreras-Lopez et al 2014

agricultura en Lago Vichuqueacuten Odone 1997) en ambos casos hubo un reemplazo

de la cobertura natural de bosques nativo que favorecioacute mayores aportes de N y

sedimentos desde la cuenca en un efecto sumado con el aumento de las

precipitaciones

A partir de 1980 CE en ambos lagos se observa una disminucioacuten en los

valores de δ15N y un incremento del NT que no tiene precedentes en todo el registro

y pese a que ambos lagos son limnologicamente muy diferentes En Lago

Vichuqueacuten el δ15N tiende a oscilar en antifase con el NT (Fig 1) En el caso de

Laguna Matanzas se observa una tendencia hacia valores maacutes negativos y a partir

de 1990s a valores maacutes positivos mientras que el NT tiende a incrementarse de

manera sostenida Ello podriacutea estar relacionado con el crecimiento de la actividad

forestal habriacutea una mayor retencioacuten de N y sedimentos en la cuenca ligado al

incremento de la superficie forestal Ademaacutes en el caso de L Matanzas el

incremento de la actividad agriacutecola (sumado al de las plantaciones forestales)

podriacutea expicar el cambio en la tendencia en la deacutecada de los 1990s

En el contexto de Antropoceno esta tesis nos permite identificar un gran

impacto de las actividades humanas en Chile central a partir de la deacutecada de 1940

y una Gran Aceleracoacuten a partir de la deacutecada de 1970s En el registro sedimentario

de los lagos en estudio se observa una gran acumulacioacuten de MO el δ15N oscila

hacia valores maacutes negativos y un gran incremento del NT y el crecimiento de la

actividad forestal parece ser la principal responsable Ademaacutes la sobreexplotacioacuten

132

del agua junto al cambio climaacutetico global ha generado una combinacioacuten letal para

los lagos costeros de Chile central

Figura 1 Comparacioacuten de las fluctuaciones de δ15N durante los uacuteltimos 300

antildeos en Laguna Matanzas y Lago Vichuqueacuten

133

Referencias

Battye W Aneja VP Schlesinger WH 2017 Earthrsquos Future Is nitrogen the next carbon Earthrsquos Future Global Biogeochem Cycles 30 1000ndash1014 httpsdoiorg101002eft2235

Christie DA Boninsegna JA Cleaveland MK Lara A Le Quesne C

Morales MS Mudelsee M Stahle DW Villalba R 2009 Aridity changes in the Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from tree-rings Clim Dyn 36 1505ndash1521 httpsdoiorg101007s00382-009-0723-4

Contreras-Loacutepez M (Playa AUHVC (Universidad de VRFS (Pontificia

UC de V 2014 Elementos de la historia natural del An Mus Hist Natulas Vaplaraiso 27 51ndash67

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in

freshwater wetlands record long-term changes in watershed nitrogen source and land use SO - Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash2916

Evans RD Evans RD 2001 Physiological mechanisms influencing

plant nitrogen isotope composition 6 121ndash126 Fogel ML Cifuentes LA 1993 Isotope fractionation during primary

production Org Geochem 73ndash98 httpsdoiorg101007978-1-4615-2890-6_3 Galloway JN Schlesinger WH Ii HL Schnoor L Tg N 1995

Nitrogen fixation Anthropogenic enhancement-environmental response reactive N Global Biogeochem Cycles 9 235ndash252

Garreaud RD Alvarez-Garreton C Barichivich J Pablo Boisier J

Christie D Galleguillos M LeQuesne C McPhee J Zambrano-Bigiarini M 2017 The 2010-2015 megadrought in central Chile Impacts on regional hydroclimate and vegetation Hydrol Earth Syst Sci 21 6307ndash6327 httpsdoiorg105194hess-21-6307-2017

Koba K Koyama LA Kohzu A Nadelhoffer KJ 2003 Natural 15 N

Abundance of Plants Coniferous Forest httpsdoiorg101007s10021-002-0132-6

Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos

Transactions American Geophysical Union httpsdoiorg1010292007EO070007 McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE

2007 Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470 httpsdoiorg101073pnas0701779104

134

Phytologist N Oct N 2006 Tansley Review No 95 15N Natural Abundance in Soil-Plant Systems Peter Hogberg 137 179ndash203

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98 httpsdoiorg1011772053019614564785

Turner BL Kasperson RE Matson PA McCarthy JJ Corell RW

Christensen L Eckley N Kasperson JX Luers A Martello ML Polsky C Pulsipher A Schiller A 2003 A framework for vulnerability analysis in sustainability science Proc Natl Acad Sci U S A httpsdoiorg101073pnas1231335100

Vitousek PM Aber JD Howarth RW Likens GE Matson PA

Schindler DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

Vitousek PM Howarth RW 1991 Nitrogen limitation on land and in the

sea How can it occur Biogeochemistry httpsdoiorg101007BF00002772 von Gunten L Grosjean M Rein B Urrutia R Appleby P 2009 A

quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo central Chile back to AD 850 Holocene 19 873ndash881 httpsdoiorg1011770959683609336573

Xu R Tian H Pan S Dangal SRS Chen J Chang J Lu Y Maria

Skiba U Tubiello FN Zhang B 2019 Increased nitrogen enrichment and shifted patterns in the worldrsquos grassland 1860-2016 Earth Syst Sci Data httpsdoiorg105194essd-11-175-2019

Zaehle S 2013 Terrestrial nitrogen-carbon cycle interactions at the global

scale Philos Trans R Soc B Biol Sci 368 httpsdoiorg101098rstb20130125

Page 7: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …

7

Agradezco a los miembros del laboratorio de Paleoambientes Cuaternarios

(IPE) en especial a Raquel Elena Fernando Ana Penelope Graciela Miguel

Sevilla Mariacutea y Miguel Bartolomeacute

Agradezco a los miembros de la comisioacuten Dr Joseacute Miguel Farintildea Dr Juan

Armesto y Dr Ricardo De Pol-Holz por la gran ayuda durante el desarrollo de mi

doctorado en especial por las correcciones finales de la tesis

Al departamento de Ecologiacutea en especial a Rosario Galaz Edita Luengo

Daniela Mora y Valeria Cavallero por su apoyo

A mis compantildeeros de doctorado Beleacuten Gallardo Pancho Diacuteaz Bryan Bularz

Bian Latorre Renato Borras Juan Carlos Hernaacutendez y Paulina Troncoso con

quienes estudieacute aprendiacute y compartimos muy buenos momentos durante los

primeros antildeos del doctorado

A Pablo Sarricolea mi compantildeero de vida Gracias por tu constante e

incondicional apoyo Sin ti durante este proceso todo habriacutea sido cuesta arriba

A mis padres Arturo y Malena gracias por su carintildeo apoyo y compromiso

Papaacute aunque no esteacutes a mi lado siempre te recuerdo con mucho carintildeo A mi

madre que ha sido un constante apoyo sobre todo en el cuidado de mis hijos xavi

y panchito

A mis hermanos Rodrigo y David por estar presentes durante toda esta

etapa Siempre con carintildeo y hermandad

A Rodrigo David Matiacuteas Jany Paola y Julio por cuidar a mis hijos con carintildeo

siempre que estuve ausente por el doctorado

8

ABREVIATURAS

N Nitroacutegeno (Nitrogen)

DIN Nitroacutegeno Inorgaacutenico Disuelto (Dissolved Inorganic Nitrogen)

C Carbono (Carbon)

TOC Carbono Inorgaacutenico Total (Total Organic Carbon)

TIC Carbono Inorgaacutenico Total (Total inorganic Carbon)

TC Carbono Total (Total Carbon)

TS Azufre Total (Total Sulfur)

LUCC Cambios de UsoCobertura del Suelo (Land Use and Cover Change)

OM Materia Orgaacutenica (Organic Matter)

POM Particulate Organic Matter (materia orgaacutenica particulada)

CE Common Era

BCE Before Common Era

Cal BP Calibrado en antildeos radiocarbono antes de 1950

ie id est (esto es)

e g Exempli gratia (por ejemplo)

9

RESUMEN

El ldquoAntropocenordquo se caracteriza por pertubaciones de origen humano que

conllevan impactos globales Por ejemplo los cambios de usocobertura del suelo

(LUCC) son conocidos por perturbar el ciclo del N a partir de la Revolucioacuten Industrial

pero especialmente desde la Gran Aceleracioacuten (1950 CE) en adelante Sin

embargo existen incertezas asociadas a la magnitud del impacto y su efecto

acoplado con los cambios climaacuteticos actuales (ie megasequiacutea disminucioacuten de las

precipitaciones) y acoplamientos con otros ciclos biogeoquiacutemicos (eg ciclo del

Carbono) Este impacto ha cambiado la disponibilidad de N en los ecosistemas

terrestres y acuaacuteticos y sus enlaces Los sedimentos lacustres contienen

informacioacuten de las condiciones paleoambientales del lago y su cuenca en el

momento en que se depositaron y el anaacutelisis de los isoacutetopos estables de N (δ15N)

en los sedimentos permiten reconstruir los cambios en la disponibilidad de N a

traveacutes del tiempo En este trabajo usamos una aproximacioacuten multiproxy que incluye

10

anaacutelisis sedimentoloacutegicos geoquiacutemicos e isotoacutepicos (δ15N δ13C) de los sedimentos

lacustres columna de agua y suelo-vegetacioacuten de la cuenca y la reconstruccioacuten de

los LUCC entre 1975 y 2016 a partir de imaacutegenes satelitales El objetivo de esta

tesis fue evaluar el rol de LUCC como principal control del ciclo del N en el sistema

cuenca-lago durante las uacuteltimas centurias en Chile central Nuestros principales

resultados muestran que valores maacutes positivos de δ15N en los sedimentos lacustres

estaacuten relacionados con grandes aportes de N de la cuenca que a su vez son

mayores cuanto mayor la superficie agriacutecola yo los pastizales mientras que tanto

las plantaciones forestales como los bosques favorecen la retencioacuten de nutrientes

en la cuenca (lo que se ve reflejado en un δ15N maacutes negativo) Esta tesis plantea

un cambio de estado en la dinaacutemica del N asociado a la introduccioacuten y expansioacuten

de las plantaciones forestales o bosques los que retienen el Nitroacutegeno en las

cuencas mientras que el clima juega un rol secundario

11

ABSTRACT

The Anthropocene is characterized by human disturbances at the global

scale For example changes in land use are known to disturb the N cycle since the

industrial revolution but especially since the Great Acceleration (1950 CE) onwards

This impact has changed N availability in both terrestrial and aquatic ecosystems

However there are some important uncertainties associated with the extent of this

impact and how it is coupled to ongoing climate change (ie megadroughts rainfall

variability and shifting stationarity) or to other nutrient cycles (e g carbon cycle)

Lake sediments contain paleoenvironmental information regarding the conditions of

the watershed and associated lakes and which the respective sediments are

deposited Nitrogen stable isotope analysis (δ15N) on lake sediments allows us to

reconstruct the changes in N availability through time Here we used a multiproxy

approach that uses sedimentological geochemical and isotopic analyses on

lacustrine sediments water column and soilvegetation from the watershed as well

12

as land use and cover change (LUCC) from 1975 to 2016 obtained from satellite

images The goal of this thesis is to evaluate the role of LUCC as the main driver for

N cycling in a coastal watershed system of central Chile over the last centuries Our

main results show that more positive δ15N values in lake sediments are related to

higher N contributions from the watershed which in turn increase with increased

agricultural andor pasture cover whereas either forest plantations or native forests

can favor nutrient retention in the watershed (δ15N more negative) This thesis

proposes that N dynamics are mainly driven by the introduction and expansion of

forest or tree plantations that retain nitrogen in the watershed whereas climate plays

a secondary role

13

INTRODUCCIOacuteN

El N es un elemento esencial para la vida y limita la productividad en

ecosistemas tanto terrestres como acuaacuteticos (Vitousek et al 1997) Las actividades

humanas han tenido un profundo impacto sobre el ciclo del N global principalmente

a partir la revolucioacuten industrial (IPCC 2013 2007) Las concentraciones de N se

han incrementado por la fijacioacuten industrial de N atmosfeacuterico (viacutea el proceso Haber-

Bosch Erisman et al 2008) por el uso de fertilizantes sobre la base de N para

mejorar el rendimiento de los cultivos la produccioacuten ganadera y ademaacutes de los

cambios en el uso del suelo (abreviado en ingleacutes- LUCC) (Robertson y Vitousek

2009 Galloway et al 2008 Battye et al 2017 Xu et al 2019) Estas actividades

contribuyen significativamente al incremento de la disponibilidad bioloacutegica de N

cuyas consecuencias para los ecosistemas incluye la perdida de diversidad

modificacioacuten de la disponibilidad de nutrientes y acidificacioacuten de los suelos entre

otras Sin embargo se desconoce la cantidad destino y el alcance que ha tenido

14

el N movilizado entre los ecosistemas generado por la influencia de las actividades

humanas (Vitousek et al 1997)

La entrada natural de N en los ecosistemas terrestres y acuaacuteticos es viacutea

fijacioacuten atmosfeacuterica la que es llevada a cabo por microorganismos muchos de ellos

en relaciones simbioacuteticas (eg Rhizobium en leguminosas) y las algas (Vitousek et

al 1997 Battye et al 2017) Las principales salidas estaacuten relacionadas con la

desnitrificacioacuten volatilizacioacuten del amoniaco y por escurrimiento superficial y

subterraacuteneo (Galloway et al 2008 Diacuteaz et al 2016) En el caso de los sistemas

lacustres ademaacutes estaacuten la resuspencioacuten de N del fondo del lago los aportes desde

la cuenca (entradas de N) La depositacioacuten de MO en el fondo del lago que marca

la salida de N de la columna de agua Estas relaciones de intercambio de N tienen

un control geograacutefico (eg latitud exposicioacuten relieve etc) climaacutetico y biotico

(McLauchlan et al 2013) La alteracioacuten provocada por los LUCC no solo genera

las peacuterdidas de nutrientes del suelo por erosioacuten y escurrimiento superficial sino que

tambieacuten modifica la disponibilidad y transferencia de N entre los ecosistemas

terrestres y acuaacuteticos (Elbert et al 2012 McLauchlan et al 2013) Por ejemplo el

reemplazo de la vegetacioacuten nativa por la agricultura yo plantaciones forestales

altera el ciclo del N debido al despeje de los terrenos viacutea quema de la vegetacioacuten

pero tambieacuten debido al reemplazo de la vegetacioacuten preexistente por un

monocultivo (eg trigo pino) y el uso ineficiente de fertilizantes para mejorar el

rendimiento agriacutecola Estas actividades favorecen un incremento de los aportes de

N (y otros nutrientes) viacutea sistemas de drenajes a lagos los que actuacutean como

sumideros El incremento del N derivado de las actividades humanas tanto en los

ecosistemas terrestres como acuaacuteticos genera incertezas relacionados con la

trayectoria y la magnitud de la disponibilidad de N en ambos ecosistemas (Batye et

15

al 2017 Mclauchlan et al 2017) Por lo tanto se requiere de una liacutenea base de

largo plazo para saber coacutemo estas perturbaciones impactan la disponibilidad de N

en las uacuteltimas deacutecadassiglos en los ecosistemas lacustres y por lo tanto el alcance

real que los LUCC han tenido en el ciclo del N

Los ecosistemas mediterraacuteneos y el ciclo del N

Los ecosistemas mediterraacuteneos son especialmente sensibles a los LUCC

pues estos se encuentran sometidos a un estreacutes hiacutedrico durante largas temporadas

estivales y las precipitaciones se concentran en eventos puntuales y a veces con

altos montos pluviomeacutetricos Las precipitaciones tienen un alto potencial de arrastre

de sedimentos y nutrientes los que actuacutean como fertilizantes al llegar a los

ecosistemas lacustres A su vez un incremento en la disponibilidad de N puede

generar un desbalance con otros nutrientes (eg Fosforo) con efectos sobre la

productividad y diversidad de los lagos (Pentildeuelas et al 2012 Sardans et al 2012

McLauchlan 2013) En este sentido en Chile central se observa una disminucioacuten

de las precipitaciones especialmente fuerte en las uacuteltimas deacutecadas por lo que se ha

denoacuteminado como Megasequiacutea (Garreaud et al 2017) y el efecto de las

precipitaciones esporaacutedicas pueden generar un arrastre de nutrientes que no ha

sido evaluado

Los ecosistemas mediterraacuteneos concentran el 20 de la biodiversidad global

(Myers et al 2000) pero existe una escasez de conocimiento respecto a los

efectos del incremento de N en los cuerpos de agua como consecuencia de las

actividades humanas en el pasado histoacuterico (Ochoa-Hueso et al 2011) y coacutemo la

disponibilidad de N ha variado en el tiempo Los LUCC han aumentado el flujo de

N en las cuencas hidrograacuteficas viacutea escurrimiento superficial y lixiviacioacuten

16

favoreciendo la peacuterdida de sedimentos y nutrientes del suelo en el mundo entero

(Elser et al 2011 McLauchlan et al 2013 Xu et al 2017 y 2019) Ello ha

contribuido a la acidificacioacuten y eutrofizacioacuten generalizada de riacuteos y lagos

(McLauchlan et al 2013 Schindler et al 2008)

El ecosistema mediterraacuteneo de Chile central es una regioacuten ampliamente

intervenida desde al menos la colonizacioacuten espantildeola (1600-1800 CE) Los LUCC

han tenido efectos negativos en la disponibilidad de agua especialmente

observados con el desarrollo de las actividades minera (Prieto et al 2019) Aunque

se sabe de los impactos en los ecosistemas de bosque en teacuterminos de cobertura

debidos al desarrollo silvo-agropecuarias (Armesto et al 2010) se desconoce el

impacto de estas actividades sobre el ciclo del N en los cuerpos de agua o en queacute

momento cobran fuerza suficiente para alterar el flujo de N hacia los lagos de Chile

Central Por lo tanto en esta tesis nos centramos en entender coacutemo los LUCC han

afectado la disponibilidad de N en los lagos costeros de Laguna Matanzas y Lago

Vichuqueacuten desde la llegada de los espantildeoles a Chile hasta el presente

Los lagos como sensores ambientales

Los sedimentos lacustres son buenos sensores de cambios en los aportes

de nutrientes contaminacioacuten y eutroficacioacuten de los cuerpos de agua ya que son

capaces de preservar sentildeales quiacutemicas y fiacutesicas al momento de su formacioacuten y

ademaacutes con alta resolucioacuten y a largo plazo (Leng et al 2006) Por lo tanto

constituyen una herramienta uacutetil para reconstruir el flujo de N entre ecosistemas

terrestres y acuaacuteticos en el pasado sus consecuencias (eg incremento de la

productividad lacustre) y el rol del clima y los LUCC en el pasado (McLauchlan et

al 2013 von Gunten et al 2009) Por ejemplo el cultivo de maiacutez por parte de los

17

nativos iroqueses en Canadaacute provocoacute la eutrofizacioacuten del Lago Crawford (43degN)

durante los siglos XII y XV Entre las consecuencias registradas se documentoacute un

claro incremento de la productividad primaria y cambios en la estructura comunitaria

de diatomeas foacutesiles (incremento de Stephanodiscus complex y disminucioacuten de

Cyclotella bodanica en Ekdahl et al 2007) Otro ejemplo demuestra como las

actividades agriacutecolas en la cuenca del riacuteo Mississippi modificaron los patrones de

sedimentacioacuten y aporte de nutrientes al lago Pepin EE UU (44degN) a partir del

asentamiento europeo en 1840 CE y principalmente desde 1940 CE (Engstrom et

al 2009) Para Chile von Gunten et al (2009) a partir de indicadores

limnogeoloacutegicos evidencioacute la contaminacioacuten y eutroficacioacuten de cinco lagos cercanos

a la ciudad de Santiago (33ordmS) como consecuencia de la deposicioacuten atmosfeacuterica

de metales pesados (especialmente Cu) quema de combustible foacutesil y flujo de

nutrientes durante los uacuteltimos 200 antildeos

Caracteriacutesticas limnoloacutegicas de los lagos

Los procesos limnoloacutegicos afectan la distribucioacuten y abundancia de los

organismos en los lagos Estaacuten influenciados por forzamientos externos por

ejemplo la precipitacioacuten o la penetracioacuten de la luz y la morfometriacutea del lago En este

sentido el nivel del lago dependeraacute del balance entre las entradas y salidas de agua

(precipitaciones escurrimiento superficial y subterraacuteneo y la evaporacioacuten) y la forma

de la cuenca (profundidad pendiente aacuterea del espejo de agua)

En funcioacuten de la profundidad de penetracioacuten de la luz es posible diferenciar

dos aacutereas que determinan la distribucioacuten de los organismos la zona foacutetica (donde

penetra la luz y permite la fotosiacutentesis) y la zona afoacutetica (subyacente a la zona

foacutetica) Al depender de la radiacioacuten la zona foacutetica variacutea estacionalmente Ademaacutes

18

puede variar por el grado de turbidez la morfometriacutea del lago y la produccioacuten de

materia orgaacutenica en la columna de agua

Otro factor que influye en la productividad es el reacutegimen de mezcla de la

columna de agua pues favorece la oxigenacioacuten y el reciclado de nutrientes La

mezcla ocurre en condiciones de gran inestabilidad usualmente relacionado con el

reacutegimen de viento Por el contrario un lago estratificado resulta de grandes

diferencias en temperatura o salinidad entre la superficie (epilimnion) y el fondo del

lago (hipolimnion) que separa las masas de agua superficial y de fondo por una

termoclina (si la estratificacioacuten estaacute relacionada con diferencias de temperatura de

las masas de agua) o haloclina (diferencias de salinidad) En funcioacuten del reacutegimen

de mezcla los lagos se pueden clasificar en (Lewis 1983)

1 Amiacutecticos no hay mezcla vertical de la columna de agua

2 Monomiacutecticos friacuteos y caacutelidos se mezcla una vez al antildeo

3 Dimiacutecticos la columna de agua se mezcla dos veces al antildeo

4 Oligomiacutecticos Lagos estratificados la mayor parte del tiempo pero se mezclan a

intervalos irregulares mayores a 1 antildeo

5 Polimiacutecticos friacuteos y caacutelidos la columna de agua se mezcla varias veces al antildeo

El ciclo del N en lagos

Al estar presente en aacutecidos nucleicos aminoaacutecidos y proteiacutenas el N es un

nutriente esencial de los organismos Por lo tanto su disponibilidad en la columna

de agua es clave para la produccioacuten composicioacuten y acumulacioacuten de la MO a traveacutes

del tiempo (Olson 1998 Talbot 2002) Aunque el principal reservorio de N estaacute en

19

la atmosfera (N2) solo unos pocos organismos (eg cianobacterias) pueden fijarlo

directamente Asiacute el Nitroacutegeno Inorgaacutenico Disuelto (DIN) representa la principal

fuente de N disponible para la produccioacuten primaria en los ecosistemas acuaacuteticos

(Talbot et al 2002) El DIN estaacute compuesto por nitrato (NO3-) nitrito (N02

-) y amonio

(NH4+) y los cambios en su disponibilidad condicionan el tipo de produccioacuten primaria

(eg fijadores vs asimiladores de N ver Scott y Grant 2013 Scott 2008)

La Figura 1 resume los principales componentes en lagos del ciclo del N y

sus interacciones La principal entrada natural de N es viacutea fijacioacuten de N atmosfeacuterico

y es llevado a cabo principalmente por bacterias y algas verde-azules capaces de

romper el triple enlace entre los dos aacutetomos de N a un alto costo energeacutetico (Torres

et al 2012) El N fijado es reducido a NH3 Tras la muerte de los organismos el N

es liberado de sus tejidos por hongos y bacterias implicados en la descomposicioacuten

de la MO Una parte se deposita en el fondo del lago y la otra queda disponible para

ser asimilada por el fitoplancton como amonio mediante el proceso de

amonificacioacuten (Talbot 2002) La amonificacioacuten resulta de la reduccioacuten bacteriana

del amoniaco y se da preferentemente en condiciones anoacutexicas La volatizacioacuten del

amoniaco es un proceso por medio este se incorpora a la atmoacutesfera Este proceso

se da preferentemente en lagos aacutecidos (pH gt 85) El nitrato es otra forma de N

bioloacutegicamente disponible para el fitoplancton En los lagos el NO3 del DIN estaacute

compuesto por los aportes desde la cuenca hidrograacutefica en la que se circunscriben

por la resuspensioacuten desde el fondo del lago favorecido por procesos de mezcla

(descrito en seccioacuten anterior) y por los nitratos de la columna de agua Estos uacuteltimos

son el resultado de la nitrificacioacuten proceso realizado por bacterias aeroacutebicas

mediante el cual el amonio se oxida para formar nitrito y nitrato El ciclo se completa

20

con la desnitrificacioacuten que es la reduccioacuten bacteriana de nitrato al N atmosfeacuterico

Este proceso se da preferentemente en condiciones anoacutexicas

Figura 1 Materia Orgaacutenica sedimentaria y su relacioacuten con el ciclo del N y las

variaciones de δ15N (elaborado a partir de Talbot et al 2002) En la figura se

representan los factores clave en la acumulacioacuten de la MO sedimentaria y su

relacioacuten con el ciclo del N El δ15N de la MO es resultado de los aportes de MO

desde la cuenca MO de macroacutefitas y de la productividad bioloacutegica La productividad

en ecosistemas lacustres estaacute condicionada por DIN y la fijacioacuten de N atmosfeacuterico

El δ15N del pool del DIN disponible se va enriqueciendo por la asimilacioacuten

preferencial de 14N por parte del fitoplancton Ademaacutes el DIN remanente se va

enriqueciendo por accioacuten microbiana (amonificacioacuten nitrificacioacuten desnitrificacioacuten)

Reconstruyendo el ciclo del N a partir de variaciones en δ15N

La sentildeal isotoacutepica de N (δ15N) en los sedimentos lacustres puede ser usada

para reconstruir los cambios pasados del ciclo N la transferencia de N entre

ecosistemas terrestres y acuaacuteticos y el estado troacutefico del lago (Bruland y Mackenzie

2015 McLauchlan et al 2013 Woodward et al 2012 von Gunten et al 2009

Leng et al 2006 Meyers y Teranes 2001) La Figura 1 resume los principales

procesos y fuentes que afectan la sentildeal isotoacutepica δ15N (total o ldquobulkrdquo) en la MO de

21

los sedimentos lacustres Entre los que destacan las fuentes de MO (aloacutectona vs

autoacutectona) la bioproductividad lacustre y las entradas de N (ie fijacioacuten bioloacutegica

de N2) (Torres et al 2012) Estos procesos conducen a un fraccionamiento

isotoacutepico cineacutetico que favorece la disociacioacuten entre sus isotopos ldquopesadosrdquo (15N) y

ldquoligerosrdquo (14N) Asiacute por ejemplo los valores de δ15N de la MO se enriquecen en 15N

en la medida que los sedimentos lacustres estaacuten sometidos a perdidas de 14N viacutea

desnitrificacioacuten (Bruland y Mackenzie 2015 Diaz et al 2016 Talbot et al 2002)

Por otra parte el fitoplancton en la medida que aumenta su biomasa (eg

durante la estacioacuten caacutelida) puede llegar a asimilar el DIN hasta agotarse En este

caso el N remanente se va empobreciendo en 14N si no hay reposicioacuten de N (eg

aporte de NO3 de la cuenca) y la MO queda enriquecida en 15N Esta disminucioacuten

induce a una limitacioacuten de fitoplancton por N y los organismos diztroacuteficos pueden

verse estimulados por lo que se incrementa la entrada de N viacutea fijacioacuten de N2 (Scott

y Grantsz 2013) como resultado la MO oscila en valores maacutes bajos (en torno a 0permil)

La cantidad de MO que se deposita en el fondo del lago depende del

predominio de contribuciones provenientes desde la cuenca (aloacutectona) versus las

producidas dentro del mismo lago (autoacutectona) (Torres et al 2012) Aunque en

general los lagos reciben permanentemente aportes de sedimentos y MO desde

su cuenca los lagos pequentildeos tienden a reflejar maacutes los procesos que ocurren

solamente en su cuenca directa y reflejan los valores isotoacutepicos de la misma (Gu et

al 2006) Woodward et al (2012) realizaron un estudio en 50 lagos en Irlanda que

les permitioacute correlacionar diferentes patrones de LUCC (bosques de coniacuteferas

agricultura ganaderiacutea entre otros) con los valores de δ15N (y δ13C) en los

sedimentos superficiales de los lagos Encontraron que los valores de δ15N son maacutes

negativos en cuencas poco impactadas y maacutes positivos en aquellas con alto

22

impacto humano (eg usos de suelo agriacutecola y ganadero) McLauchlan et al (2007)

encontraron valores maacutes positivos de δ15N en los sedimentos del Mirror Lake New

Hampshire (29ordm N) a partir de la desforestacioacuten de su cuenca en 1790 CE (inicio

del asentamiento europeo en el lago) para el desarrollo de la actividad agriacutecola

Estos valores se volvieron maacutes negativos hacia valores similares al pre-

asentamiento europeo despueacutes del cese de la agricultura en la cuenca y la

recuperacioacuten del bosque a partir de 1929 CE

El anaacutelisis de δ15N en los sedimentos lacustres es una herramienta casi sin

explorar en Chile central Proponemos reconstruir la dinaacutemica de transferencia de

N cuenca-lago como consecuencia de los LUCC desde la colonizacioacuten espantildeola en

los lagos costeros de Laguna Matanzas (34ordmS) y Lago Vichuqueacuten (36ordmS) Como son

muacuteltiples los procesos que pueden afectar la sentildeal isotoacutepica de N (medido como

δ15N) en los sedimentos lacustres existen muchos problemas para su

interpretacioacuten paleoambiental (Leng et al 2006) Por ello en esta tesis utilizamos

un enfoque multiproxy que consiste en integrar el anaacutelisis limnoloacutegico y geoquiacutemico

de los sedimentos lacustres con los valores isotoacutepicos modernos de la columna de

agua (mediante monitoreo del POM) la relacioacuten vegetacioacuten-suelo de la cuenca y la

reconstruccioacuten de los principales usos de suelo de las cuencas desde 1975 CE

mediante el uso de imaacutegenes satelitales Considerando estas muacuteltiples liacuteneas de

evidencia nos planteamos utilizar las variaciones del δ15N para reconstruir los

cambios en la disponibilidad de N en los lagos costeros de Chile central y establecer

coacutemo y desde cuaacutendo las actividades humanas en la cuenca son lo suficientemente

importantes como para modificar el ciclo del N en los lagos desde la colonizacioacuten

espantildeola (siglo XVII)

23

Como hipoacutetesis planteamos que la dinaacutemica de transferencia de sedimentos

y nutrientes entre la cuenca y el lago tiene controles geoloacutegicos climaacuteticos y

bioloacutegicos que interactuacutean en el tiempo registraacutendose en la acumulacioacuten de MO de

los sedimentos lacustres (Fig1) Bajo este marco los LUCC modifican esta

dinaacutemica alterando la transferencia de N a los lagos ya que las actividades agriacutecolas

y ganaderas tienden a aportar maacutes N (aumentando δ15N) que la actividad forestal

(la que disminuye δ15N)

En el primer capiacutetulo titulado ldquoA combined approach to establishing the timing

and magnitude of anthropogenic nutrient alteration in a mediterranean coastal lake-

watershed systemrdquo se evaluoacute el rol de los LUCC en el control de la descarga de N

y sedimentos a Laguna Matanzas en un sistema cuenca-lago desde el siglo XVII

Para ello se realizoacute un anaacutelisis de la dinaacutemica sedimentaria lacustre mediante el

anaacutelisis de muacuteltiples proxys sedimentoloacutegicos (ie minerales y textura)

geoquiacutemicos (eg geoquiacutemica orgaacutenica e isotoacutepica) y bioloacutegicos (ie diatomeas) de

Laguna Matanzas que cubren los uacuteltimos 200 antildeos Ademaacutes se realizoacute una

reconstruccioacuten de los usos de suelo entre 1975 y 2016 a partir de imaacutegenes de

sateacutelites y se colectaron muestras de suelo de las principales coberturas de la

cuenca a los cuales se midioacute el δ15N

Entre los principales resultados obtenidos se destaca la influencia de la

ganaderiacutea y la denitrificacioacuten lo que explica los altos valores de δ15N evidenciados

por el registro lacustre durante la colonizacioacuten espantildeola e inicios de la repuacuteblica A

partir de la Gran Aceleracioacuten (1950 CE) la desforestacioacuten y el reemplazo de la

ganaderiacutea por plantaciones forestales tienen un correlato en el registro

sedimentario con valores de δ15N maacutes bajos Estos resultados demuestran que los

LUCC son el factor de primer orden para explicar los cambios observados en

24

nuestro registro de δ15N y a su vez implica un rol secundario del clima como posible

control de la disponibilidad de N en Laguna Matanzas Este capiacutetulo fue sometido

a la revista Scientific Reports y estaacute en revisioacuten desde el 26 de marzo de 2019 En

la elaboracioacuten del mauscrito han colaborado Claudio Latorre Blas Valero-Garceacutes

Matiacuteas Frugone Pablo Sarricolea Santiago Giralt Manuel Contreras-Lopez

Ricardo Prego y Patricia Bernardez

El segundo capiacutetulo se titula ldquoStable isotopes track land use and cover

changes in a mediterranean lake in central Chile over the last 600 yearsrdquo Aquiacute

evaluamos la dinaacutemica del N actual en el sistema cuenca-lago considerando los

valores isotoacutepicos modernos tanto de la vegetacioacuten como del suelo ademaacutes de los

cambios estacionales del POM de la columna de agua Esta informacioacuten se utiliza

como un anaacutelogo moderno para conocer el rol de los LUCC en la disponibilidad de

N en los uacuteltimos 600 antildeos Para ello se colectaron muestras filtradas de la columna

de agua a 2 5 y 20 m dos veces por antildeo entre noviembre de 2015 y julio de 2018

y se obtuvo el δsup1⁵N del POM Ademaacutes se colectoacute muestras de vegetacioacuten y suelo

de la cuenca diferenciando entre especies nativas plantaciones forestales y

vegetacioacuten herbaacutecea Esta informacioacuten se analizoacute en conjunto con la reconstruccioacuten

de los LUCC entre 1975 y 2014 y el anaacutelisis limnoloacutegico del lago Ello nos permitioacute

evaluar coacutemo el δ15N de los sedimentos lacustres refleja los valores δ15N de la

cuenca en el Lago Vichuqueacuten y el control que ejerce el clima en la sentildeal isotoacutepica

de POM Este capiacutetulo seraacute sometido a la revista Science of total environmet

proximamente En la elaboracioacuten del mauscrito han colaborado Claudio Latorre

Blas Valero-Garceacutes Matiacuteas Frugone Pablo Sarricolea Leonardo Villacis y M Laura

Carrevedo

25

Entre los principales resultados encontramos que el δ15N en los sedimentos

lacustres es maacutes positivo con presencia de agricultura en la cuenca y maacutes negativo

cuando esta es reemplazada por cobertura arboacuterea bien sea plantaciones

forestales bien sea bosque nativo A su vez durante la estacioacuten seca y caacutelida la

mayor entrada al lago es viacutea fijacioacuten de N atmosfeacuterico (bajos valores de δ15NPOM)

Durante la estacioacuten huacutemeda en cambio prevalecen los aportes de la cuenca con

altos valores de δ15NPOM Ello estariacutea evidenciando un cambio estacional en la

composicioacuten de especies en verano ligado a especies fijadoras de N y en invierno

las algas y microorganismos que consumen el DIN de la columna de agua

Referencias

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea AM Marquet PA 2010 From the Holocene to the Anthropocene A historical framework for land cover change in southwestern South America in the past 15000 years Land use policy 27 148ndash160 httpsdoiorg101016jlandusepol200907006

Battye W Aneja VP Schlesinger WH 2017 Earth rsquo s Future Is nitrogen the

next carbon  Earth rsquo s Future Global Biogeochem Cycles 30 1000ndash1014 httpsdoiorg101002eft2235

Bruland GL MacKenzie RA 2010 Nitrogen Source Tracking with δN Content

of Coastal Wetland Plants in Hawaii J Environ Qual 39 409 httpsdoiorg102134jeq20090005

Diacuteaz FP Frugone M Gutieacuterrez RA Latorre C 2016 Nitrogen cycling in an

extreme hyperarid environment inferred from δ15 N analyses of plants soils and herbivore diet Sci Rep 6 1ndash11 httpsdoiorg101038srep22226

Ekdahl EJ Teranes JL Wittkop CA Stoermer EF Reavie ED Smol JP

2007 Diatom assemblage response to Iroquoian and Euro-Canadian eutrophication of Crawford Lake Ontario Canada J Paleolimnol 37 233ndash246 httpsdoiorg101007s10933-006-9016-7

Elbert W Weber B Burrows S Steinkamp J Buumldel B Andreae MO

Poumlschl U 2012 Contribution of cryptogamic covers to the global cycles of carbon and nitrogen Nat Geosci 5 459ndash462

26

httpsdoiorg101038ngeo1486 Elser J 2011 A world awash with nitrogen Science 334 1504ndash1506

httpsdoiorg101126science1215567 ARTICLE Engstrom DR Almendinger JE Wolin JA 2009 Historical changes in

sediment and phosphorus loading to the upper Mississippi River Mass-balance reconstructions from the sediments of Lake Pepin J Paleolimnol 41 563ndash588 httpsdoiorg101007s10933-008-9292-5

Erisman J W Sutton M A Galloway J Klimont Z amp Winiwarter W (2008)

How a century of ammonia synthesis changed the world Nature Geoscience 1(10) 636

Galloway JN Townsend AR Erisman JW Bekunda M Cai Z Freney JR

Martinelli LA Seitzinger SP Sutton MA 2008 Transformation of the Nitrogen Cycle  Science (80- ) 320 889ndash892

httpsdoiorg101126science1136674 Garreaud RD Alvarez-Garreton C Barichivich J Pablo Boisier J Christie

D Galleguillos M LeQuesne C McPhee J Zambrano-Bigiarini M 2017 The 2010-2015 megadrought in central Chile Impacts on regional hydroclimate and vegetation Hydrol Earth Syst Sci 21 6307ndash6327 httpsdoiorg105194hess-21-6307-2017

Gruber N Galloway JN 2008 An Earth-system perspective of the global

nitrogen cycle Nature 451 293ndash296 httpsdoiorg101038nature06592 Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater eutrophic lake Limnol Oceanogr 51 2837ndash2848 httpsdoiorg104319lo20065162837

IPCC 2013 Climate Change 2013 The Physical Science BasisContribution of

Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press Cambridge United Kingdom and New York NY USA

httpsdoiorg101017CBO9781107415324 Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos Transactions

American Geophysical Union httpsdoiorg1010292007EO070007 Martel-Cea A Maldonado A Grosjean M Alvial I de Jong R Fritz SC von

Gunten L 2016 Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical Central Chile (32iumliquestfrac12S 3050iumliquestfrac12miumliquestfrac12asl) Palaeogeogr Palaeoclimatol Palaeoecol 461 44ndash54 httpsdoiorg101016jpalaeo201608003

McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE 2007

Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470

27

httpsdoiorg101073pnas0701779104 McLauchlan KK Gerhart LM Battles JJ Craine JM Elmore AJ Higuera

PE Mack MC McNeil BE Nelson DM Pederson N Perakis SS 2017 Centennial-scale reductions in nitrogen availability in temperate forests of the United States Sci Rep 7 1ndash7 httpsdoiorg101038s41598-017-08170-z

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash1643 httpsdoiorg1011770959683613496289

Meyers PA Teranes JL 2001 Sediment organic matter in Tracking

Environmental Change Using Lake Sediments Volume 2 Physical and Geochemical Methods httpsdoiorg1018971551-5028(1999)018lt0231SOMCAAgt23CO2

Myers N Mittermeler RA Mittermeler CG Da Fonseca GAB Kent J

2000 Biodiversity hotspots for conservation priorities Nature httpsdoiorg10103835002501

Pentildeuelas J Poulter B Sardans J Ciais P Van Der Velde M Bopp L

Boucher O Godderis Y Hinsinger P Llusia J Nardin E Vicca S Obersteiner M Janssens IA 2013 Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe Nat Commun 4 httpsdoiorg101038ncomms3934

Prieto M Salazar D Valenzuela MJ 2019 The dispossession of the San

Pedro de Inacaliri river Political Ecology extractivism and archaeology Extr Ind Soc httpsdoiorg101016jexis201902004

Robertson GP Vitousek P 2010 Nitrogen in Agriculture Balancing the Cost of

an Essential Resource Ssrn 34 97ndash125 httpsdoiorg101146annurevenviron032108105046

Sardans J Rivas-Ubach A Pentildeuelas J 2012 The CNP stoichiometry of

organisms and ecosystems in a changing world A review and perspectives Perspect Plant Ecol Evol Syst 14 33ndash47 httpsdoiorg101016jppees201108002

Schindler DW Howarth RW Vitousek PM Tilman DG Schlesinger WH

Matson PA Likens GE Aber JD 2007 Human Alteration of the Global Nitrogen Cycle Sources and Consequences Ecol Appl 7 737ndash750 httpsdoiorg1018901051-0761(1997)007[0737haotgn]20co2

Scott E and EM Grantzs 2013 N2 fixation exceeds internal nitrogen loading as

a phytoplankton nutrient source in perpetually nitrogen-limited reservoirs Freshwater Science 2013 32(3)849ndash861 10189912-1901

28

Stocker TF Dahe Q Plattner G-K Alexander L V Allen SK Bindoff NL Breacuteon F-M Church JA Cubash U Emori S Forster P Friedlingstein P Talley LD Vaughan DG Xie S-P 2013 Technical Summary in Climate Change 2013 The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change httpsdoiorg101017 CBO9781107415324005

Talbot M R (2002) Nitrogen isotopes in palaeolimnology In Tracking

environmental change using lake sediments (pp 401-439) Springer Dordrecht

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status J Paleolimnol 47 693ndash706 httpsdoiorg101007s10933-012-9593-6

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M Eggenberger U Grob P Urrutia R Morales A

2009 Pollution and eutrophication history AD 1800-2005 as recorded in sediments from five lakes in Central Chile Glob Planet Change 68 198ndash208 httpsdoiorg101016jgloplacha200904004

Woodward CA Potito AP Beilman DW 2012 Carbon and nitrogen stable

isotope ratios in surface sediments from lakes of western Ireland Implications for inferring past lake productivity and nitrogen loading J Paleolimnol 47 167ndash184 httpsdoiorg101007s10933-011-9568-z

Xu H Yu K Lan J Sheng E Liu B Ye Y Hong B Wu H Zhou K

Yeager KM 2016 Different responses of sedimentary δ15N to climatic changes and anthropogenic impacts in lakes across the Eastern margin of the Tibetan Plateau J Asian Earth Sci 123 111ndash118 httpsdoiorg101016jjseaes201603024

29

CAPIacuteTULO 1 A COMBINED APPROACH TO ESTABLISHING THE TIMING

AND MAGNITUDE OF ANTHROPOGENIC NUTRIENT ALTERATION IN A

MEDITERRANEAN COASTAL LAKE- WATERSHED SYSTEM

30

A combined approach to establishing the timing and magnitude of anthropogenic

nutrient alteration in a mediterranean coastal lake- watershed system

Magdalena Fuentealbaabc Claudio Latorreabc Matiacuteas Frugoneabc Pablo

Sarricolead Santiago Giralte Manuel Contreras-Lopezf Ricardo Prego g Patricia

Bernaacuterdez g Blas Valero-Garceacutesch

a Departamento de Ecologiacutea Pontificia Universidad Catoacutelica de Chile Alameda 340 Santiago Chile

b Institute of Ecology and Biodiversity (IEB) Las Palmeras 3425 Nuntildeoa Santiago Chile

c Laboratorio Internacional de Cambio Global LINCGlobal PUC-CSIC Spain

d Departamento de Geografiacutea Universidad de Chile Marcoleta 250 Santiago Chile

e Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) CLluis Solegrave Sabaris sn Barcelona E-

08028 Spain

f Facultad de Ingenieriacutea y Centro de Estudios Avanzados Universidad de Playa Ancha Traslavintildea

450 Vintildea del Mar Chile

g Instituto de Investigaciones Marinas (CSIC) CEduardo Cabello 6 36208 Vigo Spain

h Instituto Pirenaico de Ecologiacutea (IPE-CSIC) Avenida Montantildeana 1005 Zaragoza 50059 Spain

Corresponding author

E-mail address

clatorrebiopuccl magdalenafuentealbagmailcom

Abstract

Since the industrial revolution and especially during the Great Acceleration (1950

CE) human activities have profoundly altered the global nutrient cycle through land

use and cover changes (LUCC) However the timing and intensity of recent N

variability together with the extent of its impact in terrestrial and aquatic ecosystems

and coupled effects of regional LUCC and climate are not well understood Here

we used a multiproxy approach (sedimentological geochemical and isotopic

31

analyses historical records climate data and satellite images) to evaluate the role

of LUCC as the main control for N cycling in a coastal watershed system of central

Chile during the last few centuries The largest changes in N dynamics occurred in

the mid-1970s associated with the replacement of native forests and grasslands for

livestock grazing by plantations of introduced Monterey pine (Pinus radiata) and

eucalyptus (Eucalyptus globulus) Lake productivity increased and is evidenced by

an increase trend in δ15N values Our study shows that anthropogenic land

usecover changes are key in controlling nutrient supply and N availability in

Mediterranean watershed ndash lake systems and that large-scale forestry

developments during the mid-1970s likely caused the largest changes in central

Chile

Keywords Anthropocene Organic geochemistry watershedndashlake system Stable

Isotope Analyses Land usecover change Nitrogen cycle Mediterranean

ecosystems central Chile

1 INTRODUCTION

Human activities have become the most important driver of the nutrient cycles in

terrestrial and aquatic ecosystems since the industrial revolution (Gruber and

Galloway 2008 Galloway et al 2008 Holtgrieve et al 2011 Fowler et al 2013

Goyette et al 2016) Among these N is a common nutrient that limits productivity

in terrestrial and aquatic ecosystems (Vitousek and Howarth 1991 McLauchlan et

al 2013) With the advent of the Haber-Bosch industrial N fixation process in the

early 20th century total N fluxes have surpassed previous planetary boundaries

32

(Galloway et al 2008 Elser 2011) reaching unprecedented values (ie tipping

points) in the Earth system especially during what is now termed the Great

Acceleration (which began in the 1950s) which intensified in the 1970s (Howarth

2004 Steffen et al 2015) Yet dramatic changes in LUCC have occurred in the last

few centuries mainly linked to forestry and agro-pastoral activities (Poraj-Goacuterska et

al 2017 Ge et al 2019 Cheng et al 2019) These have had large impacts on N

(and Carbon -C-) availability in terrestrial and aquatic ecosystems but the synergic

effect with climate change and global N dynamics has not been established

(Vitousek et al 1997 Mclauchlan et al 2007 2013 Pongratz et al 2010

Woodward et al 2012 Mclauchlan et al 2017)

The onset of the Anthropocene poses significant challenges in mediterranean

regions that have a strong seasonality of hydrological regimes and an annual water

deficit (Stocker et al 2013) Mediterranean climates occur in all continents

(California central Chile Australia South Africa circum-Mediterranean regions)

providing a unique opportunity to investigate global change processes during the

Anthropocene in similar climate settings but with variable geographic and cultural

contexts The effects of global change in mediterranean watersheds have been

analyzed from different perspectives hydrology (Giorgi 2006 Arnell and Gosling

2013 Prudhomme et al 2014) vegetation dynamics (Lenihan et al 2003 Vicente-

Serrano et al 2013 Matesanz and Valladares 2014) sediment dynamics (Garciacutea-

Ruiz et al 2013 Garciacutea-Ruiz 2010 Syvitski et al 2005) changes in

biogeochemical cycles (Thomas et al 2013 Fowler et al 2013 Frank et al 2015)

carbon storage (Muntildeoz-Rojas et al 2015) and biodiversity (Hooper et al 2012) A

recent review showed an extraordinarily high variability of erosion rates in

mediterranean watersheds positive relationships with slope and annual

33

precipitation and the paramount effect of land use (Garciacutea-Ruiz et al 2015)

However the temporal context and effect of LUCC on nutrient supply to

mediterranean lakes has not been analyzed in much detail

Major LUCC in central Chile occurred during the Spanish Colonial period

(17th-18th centuries) (Armesto 1994 Gurnell et al 2001 Figueroa et al 2004

Martiacuten-Foreacutes et al 2012 Contreras-Loacutepez et al 2014) with the onset of

industrialization and mostly during the mid to late 20th century (von Gunten et al

2009 Gayo et al 2012) Recent copper pollution caused by 20th century mining

and industrial smelters has been documented in cores throughout the Andes

(Laguna el Ocho and Laguna Ensuentildeo von Gunten et al 2009) and also from our

surveys in the central valley (Batuco wetland) coastal range (Cordillera de Name)

and along the coast itself (Bucalemito and Colejuda) (Valero-Garceacutes et al 2010

unpublished data)

Paleolimnological studies have shown how these systems respond to

climate LUCC and anthropogenic impacts during the last millennia (Jenny et al

2002 2003 Villa Martiacutenez et al 2002 Frugone-Aacutelvarez et al 2017 Contreras et

al 2018) Furthermore changes in sediment and nutrient cycles have also been

identified in associated terrestrial ecosystems dating as far back as the Spanish

Conquest and related to fire clearance and wood extraction practices of the native

forests (Armesto 1994 Contreras-Loacutepez et al 2014) Nevertheless pollen and

limnological evidence argue for a more recent timing of the largest anthropogenic

impacts in central Chile For example paleo records show that during the mid-20th

century increased soil erosion followed replacement of native forest by Pinus

radiata and Eucalyptus globulus plantations at Laguna Matanzas Aculeo and

34

Vichuqueacuten lakes (Jenny et al 2002 Villa-Martiacutenez et al 2002 2003 Frugone-

Aacutelvarez et al 2017)

Lakes are a central component of the global carbon cycle Lakes act as a

sink of the carbon cycle both by mineralizing terrestrially derived organic matter and

by storing substantial amounts of organic carbon (OC) in their sediments (Anderson

et al 2009) Paleolimnological studies have shown a large increase in OC burial

rates during the last century (Heathcote et al 2015) however the rates and

controls on OC burial by lakes remain uncertain as do the possible effects of future

global change and the coupled effect with the N cycle LUCC intensification of

agriculture and associated nutrient loading together with atmospheric N-deposition

are expected to enhance OC sequestration by lakes Climate change has been

mainly responsible for the increased algal productivity since the end of the 19th

century and during the late 20th century in lakes from both the northern (Ruumlhland et

al2015) and southern hemispheres (Michelutti et al 2015 Carrevedo et al 2015)

but many studies suggest a complex interaction of global warming and

anthropogenic influences and it remains to be proven if climate is indeed the only

factor controlling these transitions (Catalaacuten et al 2013) Alternative causes for

recent N (Galloway et al 2008) increases in high altitude lakes such as catchment

mediated processes cannot be ruled out (Camarero and Catalan 2012 Fritz and

Anderson 2013) Few lake-watershed systems have robust enough chronologies of

recent changes to compare variations in C and N with regional and local processes

and even fewer of these are from the southern hemisphere (McLauchlan et al

2007 Holtgrieve et al 2011)

In this paper we present a multiproxy lake-watershed study including N and

C stable isotope analyses on a series of short cores from Laguna Matanzas in

35

central Chile focused in the last 200 years We complemented our record with land

use surveys satellite and aerial photograph studies Our major objectives are 1) to

reconstruct the dynamics among climate human activities and changes in the N

cycle over the last two centuries 2) to evaluate how human activities have altered

the N cycle during the Great Acceleration (since the mid-20th century)

2 STUDY SITE

Laguna Matanzas (33ordm45rsquoS 71ordm 40acuteW 7 m asl Fig 1) is a coastal lake located

in central Chile near to a large populated area (Santiago gt6106 inhabitants) The

lake has a surface area of 15 km2 with a max depth of 3 m and a watershed of 30

km2 The lake basin is emplaced over Pleistocene-Holocene aeolian and alluvial fan

deposits (SERNAGEOMIN 2003) A recent phase of dune activity occurred from the

mid to late Holocene which mostly sealed off the basin from the ocean (Villa-

Martinez 2002) Climate in Laguna Matanzas is characterized by cool-wet winters

and hot-dry summers with annual precipitation of ~510 mm and a mean annual

temperature of 12ordmC Central Chile is in the transition zone between the southern

hemisphere mid-latitude westerlies belt and the South Pacific Anticyclone (or SPA)

(Garreaud et al 2009) In winter precipitation is modulated by the north-west

displacement of the SPA the northward shift of the westerlies wind belt and an

increased frequency of storm fronts stemming off the Southern Hemisphere

Westerly Winds (SWW) (Frugone-Aacutelvarez et al 2017) Austral summers are

typically dry and warm as a strong SPA blocks the northward migration of storm

tracks stemming off the SWW

36

Historic land cover changes started after the Spanish conquest with a Jesuit

settlement in 1627 CE near El Convento village and the development of a livestock

ranch that included the Matanzas watershed After the Jesuits were expelled from

South America in 1778 CE the farm was bought by Pedro Balmaceda and had more

than 40000 head of cattle around 1800 CE (Contreras-Lopez et al 2014) The first

Pinus radiata and Eucalyptus globulus trees were planted during the second half of

the 19th century and were mostly used for dune stabilization (Albert 1900 Gibson

1972) However the main plantation phase occurred 60 years ago (Villa-Martinez

2002) as a response to the application of Chilean Forestry Laws promulgated in

1931 and 1974 and associated state subsidies

Major land cover changes occurred recently from 1975 to 2008 as shrublands

were replaced by more intensive land uses practices such as farmland and tree

plantations (Schulz et al 2010) Laguna Matanzas is part of the Reserva Nacional

Humedal El Yali protected area (Ramsar Ndeg 878) Despite this protected status the

lake and its watershed have been heavily affected by intense agricultural and

farming activities during the last decades The main inlet ldquoLas Rosasrdquo has been

diverted for crop irrigation causing a significant loss of water input to the lake

Consequently the flooded area of the lake has greatly decreased in the last couple

of decades (Fig 1b) Exotic tree species cover a large surface area of the

watershed Recently other activities such as farms for intensive chicken production

have been emplaced in the watershed

37

Figure 1 Laguna Matanzas a) Digital Elevation Model showing the watershed and

the surface hydrologic connection with Colejuda and Cabildo lakes b) Climograph

depicting the warm dry season in austral summer c) Annual precipitation from

1965-2015 (arrow shows start of the most recent ldquomega-droughtrdquo- see Garreaud et

al 2017) d) A decline of lake area occurs between 2007 and 2018 Lake surface

area decreased first along the western sector (in 2007) followed by more inland

areas (in 2018)

38

3 RESULTS

31 Age Model

The age model for the Matanzas sequence was developed using Bacon software

to establish the deposition rates and age uncertainty (Blaauw and Christen 2011)

It is based on 210Pb and 137Cs dates and two 14C dates (Table 2) According to this

age model the lake sequence spans the last 1000 years (Fig 2) A major breccia

layer (unit 3b) was deposited during the early 18th century which agrees with

historic documents indicating that a tsunami impacted Laguna Matanzas and its

watershed in 1730 CE (Contreras-Loacutepez et al 2014) Here we focus in the last 200

years were the most important changes occurred in terms of LUCC (after the

sedimentary hiatus caused by the tsunami) The Spanish colonial period (17th -18th

century) brought new forms of territorial management along with an intensification

of watershed use which remained relatively unchanged until the 1900s

39

Figure 2 a) Age-depth model obtained for the Laguna de Matanzas sedimentary

sequence A hiatus occurs at 80 cm depth (unit 3b) The section of core used for our

analysis is highlighted in a red rectangle b) Close up of the age model used for

analysis of recent anthropogenic influences on the N cycle c) Information regarding

the 14C dates used to construct age model

Lab code Sample ID

Depth (cm) Material Fraction of modern C

Radiocarbon age

Pmc Error BP Error

D-AMS 021579

MAT11-6A 104-105 Bulk Sediment

8843 041 988 37

D-AMS 001132

MAT11-6A 1345-1355

Bulk Sediment

8482 024 1268 21

POZ-57285

MAT13-12 DIC Water column 10454 035 Modern

Table 2 Laguna Matanzas radiocarbon dates

32 The sediment sequence

Laguna Matanzas sediments consist of massive to banded mud with some silt

intercalations They are composed of silicate minerals (plagioclase quartz and clay

minerals) with relatively high TOC content (Fig 3) Pyrite is a common mineral

indicating dominant anoxic conditions in the lake sediments whereas aragonite

occurs only in the uppermost section Mineralogical analyses visual descriptions

texture and geochemical composition were used to characterize five main facies

(Fig 3) F1 (organic-rich mud) represents baseline sedimentation in a shallow well-

mixed brackish highly productive lake and F1acute (dark orange) is a less organic facies

than F1 (more details see table in the supplementary material) F2 (massive to

banded silty mud) indicates periods of higher clastic input into the lake but finer

(mostly clay minerals) likely from suspension deposition associated with flooding

40

events Aragonite (up to 15 ) occurs in both facies but only in samples from the

uppermost 30 cm and it is interpreted as endogenic linked to higher MgFe waters

and elevated biologic productivity

Figure 3 Sedimentary facies and units mineralogy grain size elemental geochemical

and isotopic composition of Laguna Matanzas core Values highlighted in gray indicate

that these are above average

The banded to laminated fining upward silty clay layers (F3) reflect

deposition by high energy turbidity currents The presence of aragonite suggests

that littoral sediments were incorporated by these currents Non-graded laminated

coarse silt layers (F4) do not have aragonite indicating a dominant watershed

41

sediment source Both facies are interpreted as more energetic flood deposits but

with different sediment sources A unique breccia layer with coarse silt matrix and

cm-long soft clasts (F5) is interpreted as a high-energy event (ie a tsunami)

capable of eroding the littoral zone and depositing coarse clastic material in the

distal zone of the lake Similar coarse breccia layers have been found at several

coastal sites in Chile and interpreted as tsunami-related deposits (Vargas et al

2005 Le Roux et al 2008)

33 Sedimentary units

Three main units and six subunits have been defined (Fig 3) based on

sedimentary facies and sediment composition We use ZrTi as an indicator of the

mineral fraction transported from the watershed (Marzecoacuteva et al 2011) as higher

ZrTi (F3 and F4) is commonly associated with coarser sediments (Cuven et al

2010) A high correlation among Br BrTi and TOC (r = 046-087 p value=0)

supports the use of BrTi as an indicator of lake productivity (Marzecoacuteva et al 2011

Frugone-Aacutelvarez et al 2017) The MnFe ratio is indicative of lake bottom

oxygenation (Naecher et al 2013) as under reducing conditions Mn mobilizes more

than Fe leading to a decreased MnFe ratio (Marzecoacuteva et al 2011) SrTi indicates

periods of increased aragonite formation as Sr is preferentially included in the

aragonite mineral structure (Veizer et al 1971) (See supplementary material)

The basal unit (3c 129 to 99 cm) is relatively organic-rich (TOC mean=26

BioSi mean=5) and composed by F1 (without aragonite) with some coarser F4

flood layers (ZrTi mean=025) Unit 3b (98 to 80 cm) is interpreted as a tsunami or

storm surge deposit (breccia F5 grading into massive to banded silt F2) Unit 3a

(79 to 73 cm) is characterized by relatively low productivity (TOC=2 BrTi=002

42

BioSi=4) under anoxic conditions (MnFe=001) Unit 2a (72 to 31cm) has

relatively less organic content and more intercalated clastic facies F3 and F4 The

top of this unit (43-30 cm) has elevated TS values The Subunit 1b (30-20 cm)

shows increasing TOC BioSi and BrTi values (TOC mean = 29 BioSi mean =

54 BrTi mean=004) and the upper subunit 1a (19-0 cm) has the highest TOC

(mean = 64) and BioSi (mean = 56) high BrTi mean = 010 and the presence

of aragonite More frequent anoxic conditions (MnFe lower than 001) during units

3 and 2 shifted towards more oxic episodes (MnFe = 003) in unit 1 (Fig 3)

34 Isotopic signatures

Figure 4 shows the isotopic signature from soil samples of the major land

usescover present in the Laguna Matanzas used as an end member in comparison

with the lacustrine sedimentary units δ15N from cropland samples exhibit the

highest values whereas grassland and soil samples from lake shore areas have

intermediate values (Fig 4) Tree plantations and native forests have similarly low

δ15N values (+11 permil SD=24) All samples (except those from the lake shore)

exhibit low δ13C values (from ndash285permil to ndash298permil) CNmolar from agriculture land

lakeshore area and non-vegetation areas samples display the lowest values (about

18) CNmolar from tree plantations and native forest have the highest values (383

and 267 respectively)

43

Figure 4 C-N stable isotope plot showing a comparison of lake sediments grouped

by sedimentary units (MAT11-6A) with the soil end members of present-day (lake

shore and land usecover) from Laguna Matanzas

The δ15N values from sediment samples (MAT11-6A) range from ndash15 and

+53permil (mean= +35 SD=05) δ13C values range from ndash266permil to ndash202permil (mean=

ndash240 SD=14) In unit 3c δ15N and δ13C show relatively high values (mean=

+41permil and ndash233permil respectively) δ15N and δ13C from unit 3b and 3a fluctuate at

slightly lower values than in 3c (mean δ15N from 3a= +38permil and 3b mean= +39permil

mean δ13C from 3a= ndash242permil and 3b mean= ndash244permil) In unit 2a δ15N values are

relatively high (mean= +38permil) but show a slightly decreasing trend (from +52 to

+24permil at 66 cm and 36 cm respectively) δ13C also decreases (mean= ndash242permil)

reaching minimum values at 45 cm (ndash266permil) with a sharp increase towards the top

of this unit with maximum values ca ndash210permil Unit 1 exhibits the lowest δ15N values

(1a mean= +11permil 1b mean= +28permil) with negative values in the uppermost

44

sediments (ndash04permil at 14 cm) δ13C values show a decreasing trend over most of

subunit 1b and increase only near the very top of this unit

35 Recent land use changes in the Laguna Matanzas watershed

Major LUCC from 1975 (unit 1b) to 2016 CE in the Laguna Matanzasacutes

watershed is summarized in Figure 5 The watershed has a surface area of 30 km2

of which native forest (36) and grassland areas (44) represented 80 of the

total surface in 1975 The area occupied by agriculture was only 02 and tree

plantations were absent Isolated burned areas (33) were located mostly in the

northern part of the watershed By 1989 tree plantations surface area had increased

to 5 burned areas to 17 and agricultural fields to 9 (a 45-fold increase) and

native forest and grassland sectors decreased to 23 and 27 respectively By

2016 agricultural land and tree plantations have increased to 17 of the total area

whereas native forests decreased to 21

45

Figure 5 Land uses and cover changes from 1975 to 2016 in Laguna Matanzas

watershed from natural cover and areas for livestock grazing (grassland) to the

expansion of agriculture and forest plantation

4 DISCUSSION

41 N and C dynamics in Laguna Matanzas

Small lakes with relatively large watersheds such as Laguna Matanzas would

be expected to have relatively high contributions of allochthonous C to the sediment

OM (Gu et al 2006) Terrestrial C3 plants (δ13C =ndash26 to ndash28permil Meyers and Terranes

2001 Ku et al 2007) are dominant in the Laguna Matanzas watershed Likewise

our soil samples ranged across similar although slightly more negative values

46

(δ13C = ndash30 to ndash28permil Fig 4) to those proposed by Meyers and Terranes (2001)

and are used here as terrestrial end members oil samples were taken from the lake

shore (δ13C = ndash22permil) and POM from surface water (δ13C = ndash24permil) were more

positive than the terrestrial end member and are used as lacustrine end members

Thus more negative δ13C values in lake sediment samples are attributed to higher

OM inputs from terrestrial vegetation and more positive δ13C values have increased

aquatic OM (Gu et al 2006 Torres et al 2012) Phytoplankton preferentially uptake

12C leaving the DIC pool enriched in 13C (Gu et al 2006) especially when there are

no important external sources of C (eg decreased C input from the watershed)

Therefore during events of elevated primary productivity the phytoplankton uptakes

12C until its depletion and are then obligated to use the heavier isotope resulting in

an increase in δ13C Changes in lake productivity thus greatly affect the C isotope

signal (Torres et al 2012) with high productivity leading to elevated δ13C values

(Torres et al 2012 Gu et al 2006)

In a similar fashion the N isotope signatures in Laguna Matanzas reflect a

combination of factors including different N sources (autochthonousallochthonous)

and lake processes such as productivity isotope fractionation in the water column

and sediment denitrification Elevated δ15N values from a POM sample (+22permil) and

average values from the lake shore (mean=+34permil SD=028) are used as aquatic

end members whereas terrestrial samples have values from +10 +24 (tree species)

to +77permil +35 (agriculture) which we use as terrestrial end members (Fig 4)

Autochthonous OM in aquatic ecosystems typically displays low δ15N values

when the OM comes from N-fixing species Atmospheric fixation of N2 by

cyanobacteria ends in OM with δ15N values close to 0permil (Leng et al 2006)

Phytoplankton preferentially uptake 14N from Dissolved Inorganic Nitrogen (DIN) in

47

the water column and derived OM typically have δ15N values lower than DIN values

When productivity increases the remaining DIN becomes depleted in 14N which in

turn increases the δ15N values of phytoplankton over time especially if the N not

replenished (Torres et al 2012) Thus high POM δ15N values from Laguna

Matanzas reflect elevated phytoplankton productivity with a 14N- depleted DIN In

addition N-watershed inputs also contribute to high δ15N values Heavily impacted

watersheds by human activities are often reflected in isotope values due to land use

changes and associated modified N fluxes For example the input of N runoff

derived from the use of inorganic fertilizers leads to the presence of elevated δ15N

(between ndash4 to +4permil) values in the water bodies (Elliott and Brush 2006 Diebel and

Vander Zanden 2009) Widory et al (2004) reported a direct relationship between

elevated δ15N values and increased nitrate concentration from manure in the

groundwater of Brittany (France) Terranes and Bernasconi (2000) found a good

correlation between augmented nutrient loading and a progressive increase in δ15N

values of sedimentary OM related to agricultural land use

Post-depositional diagenetic processes can further affect C and N isotope

signatures Several studies have shown a decrease in δ13C values of OM in anoxic

environments particularly during the first years of burial related to the selective

preservation of OM depleted in 13C (Hollander and Smith 2001 Lehmann et al

2002 Gӓlman et al 2009 Torres et al 2012) Diagenetic processes can also lead

to post-burial N isotope enrichment of the sediments Indeed 14N is consumed more

rapidly than 15N by denitrifying bacteria which intensifies under anoxic conditions

(Diebel and Vander Zanden 2009) Thus the remaining OM pool will be enriched

in 15N leaving to elevated δ15N values (Granger et al 2008 Menzel et al 2013)

48

In summary the relatively high δ15N values in sediments of Laguna Matanzas

reflect N input from an agriculturegrassland watershed with positive synergetic

effects from increased lake productivity enrichment of DIN in the water column and

most likely denitrification The increase of algal productivity associated with

increased N terrestrial input andor recycling of lake nutrients (and lesser extent

fixing atmospheric N) and denitrification under anoxic conditions can all increase

δ15N values (Fig 3) In addition elevated lake productivity without C replenishing

(eg by terrestrial C input) produces shifts towards positive δ13C values whereas C

input from the watershed generates more negative δ13C values

42 Recent evolution of the Laguna Matanzas watershed

Sedimentological compositional and geochemical indicators show three

depositional phases in the lake evolution under the human influence in the Laguna

Matanzas over the last two hundred years Although the record is longer (around

1000 years) we analyzed the last two centuries (unit 2 and 1) to provide a recent

historical context for the large changes detected during the 20th century

The first phase lasted from the beginning of the 19th century until ca 1940

(unit 2a Fig 3 4) and was characterized by moderate productivity with elevated

sediment input from the watershed as indicated by our geochemical proxies (BrTi

= 004 AlTi gt 01 Fig 6) Higher lake levels and dominant anoxic bottom conditions

(MnFe = 001 Fig3) can be related to increased precipitation (mean= 557 mmyr)

and lower temperatures (summer annual temperature lt19ordmC) During the Spanish

colonial period the Laguna Matanzas watershed was used as a livestock farm

(Jesuits 1627-1780 unit 3 followed by the Pedro Balmaceda era 1780-1810- unit

2a) (Contreras-Loacutepez et al 2014) The main buildings and farm facilities at the El

49

Convento village During this period livestock grazing and lumber extraction for

mining would have involved extensive deforestation and loss of native vegetation

(eg Armesto et al 1994 2010) However the Matanzas pollen record does not

show any significant regional deforestation during this period (Villa Martiacutenez 2002)

suggesting that the impact may have been highly localized

Lake productivity sediment input and elevated precipitation (Fig 6) all

suggest that N availability was related to this increased input from the watershed

The N from cow manure and soil particles would have led to higher δ15N values

(Elliot and Brush 2016) In addition anoxic lake bottom conditions would lead to

even further enrichment of buried sediment N The δ13C values lend further support

to our interpretation of increased sediment input -and N- from the watershed

Decreased δ13C values reach their lowest values in the entire record (ndash270permil) at

ca 1910 CE (Fig 4 6)

During most of the 19th century human activities in Laguna Matanzas were

similar to those during the Spanish Colonial period However the appearance of

Pinus radiata and Eucalyptus globulus pollen ca 1890 CE (Gibson 1972) the dune

stabilization-afforestation program which began ca 1900 CE (Albert 1900) and the

application of the Chilean forestry law of 1931 (DFL nordm265) contributed to an

increased capacity of the surrounding vegetation to retain nutrients and sediments

The law subsidized forest plantations in areas devoid of vegetation and prohibited

the cutting of forest on slopes greater than 45ordm These land use changes were coeval

with decreased sediment inputs (AlTi trend) from the watershed slightly increased

lake productivity (BrTi from 001 to 003) and a decrease in annual precipitation

(Fig 6) N isotope values become more negative during this period although they

remained high (from +49permil to +37permil) whereas the δ13C trend towards more

50

positive values reflects changes in the N source from watershed to in-lake dynamics

(e g increased endogenic productivity)

The second phase started after 1940 and is clearly marked by an abrupt

change in the general trend of δ15N that oscillates around +41permil (SD = 04permil) during

the first phase to +24permil (SD = 14permil) during the second These δ15N trends reflect

the lowest watershed nutrient and sediment inputs (based on the AlTi record)

decreased precipitation (mean = 318 mm year) and a slight increase in lake

productivity (increased BrTI) Depositional dynamics in the lake likely crossed a

threshold as human activity intensified throughout the watershed and lake levels

decreased

During the Great Acceleration δ15N values shifted towards higher values to

ca 3permil with an increase in δ13C values that are not reflected either in lake

productivity or lake level As the sediment input from the watershed increased and

precipitation remained as low as the previous decade δ15N values during this period

are likely related to watershed clearance which would have increased both nutrient

and sediment input into the lake

The δ13C trend to more positive values reaching the peaks in the 1960s (ndash

212permil) at the same time as the peaks in temperature (196 ordmC mean annual) with a

downward trend in precipitation A shift in OM origin from macrophytes and

watershed input influences to increased lake productivity could explain this trend

(Fig 4 1b)

In the 1970s the Laguna Matanzasacute watershed was mostly covered by native

forest (36) and grassland areas were intended for livestock grazing (44 Fig 5)

Both soils have δ15NSoil lt 5permil (Fig 4) Farming fields occupied a very small area and

tree plantations were almost nonexistent The decreasing trend in δ15N values seen

51

in our record is interrupted by several large peaks that occurred between ca 1975

and ca 1989 when the native forest and grassland areas fell by 23 and 27

respectively largely due to fires affecting 17 of the forests Agriculture fields

increased by 4 and forest plantations increased by 9 (unit 1a) Concomitantly

sediment ndash and likely N - inputs from the watershed decreased (as indicated by the

trend in AlTi) the precipitation was still relatively low (Fig 6) These changes are

likely related to the increase of vegetation cover especially of tree plantations (which

have more negative δ15N values) The small increase in productivity in the lake could

have been favored by increased temperature (von Gunten et al 2009) After 1989

the increase in agriculture land (17 in 2016) correlates with increasing δ15N δ13C

and TOC trends in spite of declining rainfall The increase of forest plantations was

mostly in response to the implementation of the Law Decree of Forestry

Development (DL 701 of 1974) that subsidized forest plantation After 1989 the

increase in agricultural land (17 in 2016) is synchronous with increasing δ15N

δ13C TOC and MnFe trends despite the decline in rainfall and overall lower lake

levels as more water is used for irrigation

The third phase started c 1990 CE (unit 1a) when OM accumulation rates

increase and δ13C δ15N decreased reaching their lowest values in the sequence

around 2000 CE Afterward during the 21st century δ13C and δ15N values again

began to increase The onset of unit 1 is marked by increased lake productivity and

decreased sediment input (AlTi lt 02) synchronous with intensive farming replacing

forestry and extensive agriculture (Fig 5 6)

A change in the general trend of δ15N values which decreased until 1990

(unit 1a) as the native forest and grassland area fell to 23 and 27 respectively

is most likely due to deforestation and fires Agriculture surface increased to 4 and

52

forest plantations increased by 9 (Fig 5) Concomitantly sediment ndash and likely N

ndash inputs from the watershed decreased probably related to the low precipitation (Fig

1b) and the increase of vegetation cover in the watershed in particularly by tree

plantations (with more negative δ15N Fig 4)

At present agriculture and tree plantations occupy around 34 of the

watershed surface whereas native forests and grassland cover 21 and 25

respectively Lake productivity as indicated by BrTi (Fig6) is higher and generates

OM with lower δ15N and higher δ13C values (about +2permil and ndash20permil ca 2000 CE

respectively) due to in-lake processes (ie biological N fixation and nutrient

recycling) and driven by changes in the arboreal cover which diminishes nutrient

flux into the lake (Fig6)

53

Figure 6 Anthropogenic and climatic forcing and lake dynamics response

(productivity sediment input N and C cycles) at Matanzas Lake over the last two

54

centuries Mean annual precipitation reconstructed and temperatures (von Gunten

et al 2009) Vertical gray bars indicate mega-droughts

5 CONCLUSIONS

Human activities have been the main factor controlling the N and C cycle in

the Laguna Matanzas during the last two centuries The N isotope signature in the

lake sediments reflects changes in the watershed fluxes to the lake but also in-lake

processes such as productivity and post-depositional changes Denitrification could

have been a dominant process during periods of increased anoxic conditions which

were more frequent prior to Great Acceleration (1950 CE) Higher δ15N and lower

δ13C values are associated with increased nutrient input from the watershed due to

increased livestock grazing and agriculture pressure (phase 1 Fig 7a) whereas

lower isotope values occurred during periods of increased forest plantations (phase

3 Fig 7c) During periods of increased lake productivity - such as in the last few

decades - δ15N values increased significantly

The most important change in C and N dynamics in the lake occurred after the

1950s (Phase 2 and 3) as tree plantations dominated the watershed Recent

changes in N dynamics can be explained by the higher nutrient contribution

associated with intensive agriculture (i e fertilizers) since the 1990s Although the

replacement of livestock activities with forestry and farming seems to have reduced

nutrient and soil export from the watershed to the lake the inefficient use of fertilizer

(by agriculture) can be the ultimate responsible for lake productivity increase during

the last decades

55

Figure 7 Schematic diagrams illustrating the main factors controlling the

isotope N signal in sediment OM of Laguna Matanzas N input from watershed

depends on human activities and land cover type Agriculture practices and cattle

(grassland development) contribute more N to the lake than native forest and

plantations Periods of higher productivity tend to deplete the dissolved inorganic N

in 14N resulting in higher δ15N (OM) The denitrification processes are more effective

in anoxic conditions associated with higher lake levels

6 METHODS

Short sediment cores were recovered from Laguna Matanzas using an Uwitec

gravity piston corer in 2011 and 2013 (Fig 1a) Sediment cores (MAT11-6A 129 cm

MAT13-2A 149 cm MAT13-3A 33 cm MAT13-4A 99 cm) were split

photographed sub-sampled and stored at the Pyrenean Institute of Ecology (IPE-

CSIC Spain) Core MAT11-6A was obtained from the central sector of the lake and

56

was selected for detailed multiproxy analyses (including elemental geochemistry C

and N isotope analyses XRF and 14C dating)

The isotope analyses (δ13C and δ15N) were performed at the Laboratory of

Biogeochemistry and Applied Stable Isotopes (LABASI-PUC Chile) using a Delta

V Advantage IRMS coupled to a Thermo Flash 2000 Elemental Analyzer via a

Conflo IV interface Isotope results are expressed in standard delta notation (δ) in

per mil (permil) relative to the standards Pee Dee Belemnite (Vienna Pee Dee

Belemnite) for C and to atmospheric N2 for N (Leng et al 2006) Sediment samples

for δ13Corg were pre-treated with 50 ml of HCl and 50 ml of deionized water and

dried at 60ordmC for 4 hr to remove carbonates (Harris et al 2011)

Total Carbon (TC) Total Organic Carbon (TOC) Total Inorganic Carbon (TIC)

and Total Sulphur (TS) were measured every cm with a LECO SC 144 DR at IPE-

CSIC XRF measurements were carried out every 4 mm in MAT11-1A-1G core using

an AVAATECH X-ray Fluorescence II core scanner at the University of Barcelona

(Spain) Results are expressed as element intensities in counts per second (cps)

Tube voltage was operated at 30 kV and 10 kV to obtain the abundances of 15

elements (Al Si S Cl K Ca Ti V Mn Fe Br Rb Sr Y Zr) with an average at

least of 1600 cps (less for Br=1000)

Biogenic silica content mineralogy and grain size were measured every 4

cm Biogenic silica was measured following Mortlock and Froelich (1989) and

Bernaacuterdez et al (2005) using an Auto Analyzer Technicon AAII for dissolved silicate

analysis Mineralogy was analyzed with a Siemens D-500 X-ray diffractometer (Cu

kα 40 kV 30 mA graphite monochromator) at the ICTJA-CSIC (Spain) Grain size

analyses were performed in a Beckmann Coulter LS 13 320 Particle Size Analyzer

57

at the IPE-CSIC The samples were classified according to textural classes as

follows clay (lt2 μm) silt (20-2 microm) and sand (gt2 microm) fractions

The age-depth model for the Laguna Matanzas sedimentary sequence was

constructed using 210Pb and 137Cs dating techniques (MAT13-4A) as well as two 14C

AMS dates on bulk sediment samples (MAT11-6A fig 2) We dated the dissolved

inorganic carbon (DIC) in the water column and no significant reservoir effect is

present in the modern-day water column (10454 + 035 pcmc Table 2) An age-

depth model was obtained with the Bacon R package to estimate the deposition

rates and associated age uncertainties along the core (Blaauw and Christen 2011)

To estimate LUCC of Laguna Matanzasacutes watershed we use satellite images

Landsat MSS for 1975 Landsat TM for 1989 and Landsat OLI for 2016 all taken in

summer or autumn (Table 1) We performed supervised classification of land uses

(maximum likelihood algorithm) for each year (1975 1989 and 2016) and the results

were mapped using software ArcGIS 102 in 2017

Satellite Images Acquisition Date

Resolution

Landsat MSS 19750322 60 m

Landsat TM 19890217 30 m

Landsat OLI 20160404 30 m

Table 1 Landsat imagery

Surface water samples were filtered for obtained particulate organic matter In

addition soil samples from the main land usecover present in the Laguna Matanzas

watershed were collected Elemental C N and their corresponding isotopes from

POM and soil were obtained at the LABASI and used here as end members

Daily precipitation at Santo Domingo (33ordm39`S 71ordm3 6`W)- the nearest weather

station to Laguna Matanzasndash was compiled using the redPrec R package (Fig1 d

Serrano-Notivoli et al 2017 Sarricolea et al 2019) To extend our precipitation

58

reconstruction back to 1824 we correlated this dataset with that available for

Santiago The Santiago data was compiled from data published in the Anales of

Universidad of Chile (1850) for the years 1824 to 1849 Almeyda (1940) for the years

1849 to 1864 and the Quinta Normal series from 1866 to the present (Direccioacuten

Meteoroloacutegica de Chile) We generated a linear regression model between the

presentday Santo Domingo station and the compiled Santiago data with a Pearson

coefficient of 087 and p-valuelt 001

Acknowledgments This research was funded by grants CONICYT AFB170008

to the Institute of Ecology and Biodiversity (IEB) and FONDECYT 1150763 (to CL)

Doctoral grant Becas Chile 21150224 MEDLANT (Spanish Ministry of Economy

and Competitiveness grant CGL2016-76215-R) Additional funding was provided

by the Laboratorio Internacional de Cambio Global (LINCGlobal PUC-CSIC) We

thank R Lopez E Royo and M Gallegos for help with sample analyses We thank

the Laboratory of Biogeochemistry and Applied Stable Isotopes (LABASI) of the

Department of Ecology (PUC) for sample analyses

References

Albert F 1900 Las dunas o sean arenas volantes voladeros arenas muertas invasion de las arenas playas I meacutedanos del centro de Chile comprendiendo el litoral desde el liacutemite norte de la provincia de Aconcagua hasta el liacutemite sur de la de Arauco Memorias cientiacuteficas I Lit

Anderson NJ W D Fritz SC 2009 Holocene carbon burial by lakes in SW

Greenland Glob Chang Biol httpsdoiorg101111j1365-2486200901942x

Armesto J Villagraacuten C Donoso C 1994 La historia del bosque templado

chileno Ambient y Desarro 66 66ndash72 httpsdoiorg101007BF00385244

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea

AM Marquet PA 2010 From the Holocene to the Anthropocene A

59

historical framework for land cover change in southwestern South America in the past 15000 years Land use policy 27 148ndash160 httpsdoiorg101016jlandusepol200907006

Arnell NW Gosling SN 2013 The impacts of climate change on river flow

regimes at the global scale J Hydrol 486 351ndash364 httpsdoiorg101016JJHYDROL201302010

Bernaacuterdez P Prego R Franceacutes G Gonzaacutelez-Aacutelvarez R 2005 Opal content in

the Riacutea de Vigo and Galician continental shelf Biogenic silica in the muddy fraction as an accurate paleoproductivity proxy Cont Shelf Res httpsdoiorg101016jcsr200412009

Blaauw M Christen JA 2011 Flexible paleoclimate age-depth models using an

autoregressive gamma process Bayesian Anal 6 457ndash474 httpsdoiorg10121411-BA618

Brush GS 2009 Historical land use nitrogen and coastal eutrophication A

paleoecological perspective Estuaries and Coasts 32 18ndash28 httpsdoiorg101007s12237-008-9106-z

Camarero L Catalan J 2012 Atmospheric phosphorus deposition may cause

lakes to revert from phosphorus limitation back to nitrogen limitation Nat Commun httpsdoiorg101038ncomms2125

Carrevedo ML Frugone M Latorre C Maldonado A Bernaacuterdez P Prego

R Caacuterdenas D Valero-Garceacutes B 2015 A 700-year record of climate and environmental change from a high Andean lake Laguna del Maule central Chile (36degS) Holocene 25 956ndash972 httpsdoiorg1011770959683615574584

Catalan J Pla-Rabeacutes S Wolfe AP Smol JP Ruumlhland KM Anderson NJ

Kopaacuteček J Stuchliacutek E Schmidt R Koinig KA Camarero L Flower RJ Heiri O Kamenik C Korhola A Leavitt PR Psenner R Renberg I 2013 Global change revealed by palaeolimnological records from remote lakes A review J Paleolimnol httpsdoiorg101007s10933-013-9681-2

Chen Y Y Huang W Wang W H Juang J Y Hong J S Kato T amp

Luyssaert S (2019) Reconstructing Taiwanrsquos land cover changes between 1904 and 2015 from historical maps and satellite images Scientific Reports 9(1) 3643 httpsdoiorg101038s41598-019-40063-1

Contreras S Werne J P Araneda A Urrutia R amp Conejero C A (2018)

Organic matter geochemical signatures (TOC TN CN ratio δ 13 C and δ 15 N) of surface sediment from lakes distributed along a climatological gradient on the western side of the southern Andes Science of The Total Environment 630 878-888 httpsdoiorg101016jscitotenv201802225

Contreras-Loacutepez M (Playa AUHVC (Universidad de VRFS (Pontificia UC

60

de V 2014 ELEMENTOS DE LA HISTORIA NATURAL DEL An Mus Hist Natulas Vaplaraiso 27 51ndash67

Cuven S Francus P Lamoureux SF 2010 Estimation of grain size variability

with micro X-ray fluorescence in laminated lacustrine sediments Cape Bounty Canadian High Arctic J Paleolimnol 44 803ndash817 httpsdoiorg101007s10933-010-9453-1

Diebel M Vander Zanden MJ 201209 Nitrogen stable isotopes in streams

stable isotopes Nitrogen effects of agricultural sources and transformations Ecol Appl 19 1127ndash1134 httpsdoiorg10189008-03271

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in

freshwater wetlands record long-term changes in watershed nitrogen source and land use SO - Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash2916

Elser J 2011 A world awash with nitrogen Science 334 1504ndash1506 Espizua LE Pitte P 2009 The Little Ice Age glacier advance in the Central

Andes (35degS) Argentina Palaeogeogr Palaeoclimatol Palaeoecol 281 345ndash350 httpsdoiorg101016JPALAEO200810032

Figueroa JA Castro S A Marquet P A Jaksic FM 2004 Exotic plant

invasions to the mediterranean region of Chile  causes history and impacts Invasioacuten de plantas exoacuteticas en la regioacuten mediterraacutenea de Chile  causas historia e impactos Rev Chil Hist Nat 465ndash483 httpsdoiorg104067S0716-078X2004000300006

Fowler D Coyle M Skiba U Sutton MA Cape JN Reis S Sheppard

LJ Jenkins A Grizzetti B Galloway N Vitousek P Leach A Bouwman AF Butterbach-bahl K Dentener F Stevenson D Amann M Voss M 2013 The global nitrogen cycle in the twenty- first century Philisophical Trans R Soc B httpsdoiorghttpdxdoiorg101098rstb20130164

Frank D Reichstein M Bahn M Thonicke K Frank D Mahecha MD

Smith P van der Velde M Vicca S Babst F Beer C Buchmann N Canadell JG Ciais P Cramer W Ibrom A Miglietta F Poulter B Rammig A Seneviratne SI Walz A Wattenbach M Zavala MA Zscheischler J 2015 Effects of climate extremes on the terrestrial carbon cycle Concepts processes and potential future impacts Glob Chang Biol httpsdoiorg101111gcb12916

Fritz SC Anderson NJ 2013 The relative influences of climate and catchment

processes on Holocene lake development in glaciated regions J Paleolimnol httpsdoiorg101007s10933-013-9684-z

Frugone-Aacutelvarez M Latorre C Giralt S Polanco-Martiacutenez J Bernaacuterdez P

61

Oliva-Urcia B Maldonado A Carrevedo ML Moreno A Delgado Huertas A Prego R Barreiro-Lostres F Valero-Garceacutes B 2017 A 7000-year high-resolution lake sediment record from coastal central Chile (Lago Vichuqueacuten 34degS) implications for past sea level and environmental variability J Quat Sci 32 830ndash844 httpsdoiorg101002jqs2936

Galloway JN Townsend AR Erisman JW Bekunda M Cai Z Freney JR

Martinelli LA Seitzinger SP Sutton MA 2008 Transformation of the Nitrogen Cycle  Science (80- ) 320 889ndash892 httpsdoiorg101126science1136674

Gaumllman V Rydberg J Bigler C 2009 Decadal diagenetic effects on δ 13 C and

δ 15 N studied in varved lake sediment Limnol Oceanogr 54 917ndash924 httpsdoiorg104319lo20095430917

Garciacutea-Ruiz JM 2010 The effects of land uses on soil erosion in Spain A

review Catena httpsdoiorg101016jcatena201001001

Garciacutea-Ruiz JM Loacutepez-Moreno JI Lasanta T Vicente-Serrano SM

Gonzaacutelez-Sampeacuteriz P Valero-Garceacutes BL Sanjuaacuten Y Begueriacutea S Nadal-Romero E Lana-Renault N Goacutemez-Villar A 2015 Los efectos geoecoloacutegicos del cambio global en el Pirineo Central espantildeol una revisioacuten a distintas escalas espaciales y temporales Pirineos httpsdoiorg103989Pirineos2015170005

Garciacutea-Ruiz JM Nadal-Romero E Lana-Renault N Begueriacutea S 2013

Erosion in Mediterranean landscapes Changes and future challenges Geomorphology 198 20ndash36 httpsdoiorg101016jgeomorph201305023

Garreaud RD Vuille M Compagnucci R Marengo J 2009 Present-day

South American climate Palaeogeogr Palaeoclimatol Palaeoecol httpsdoiorg101016jpalaeo200710032

Gayo EM Latorre C Jordan TE Nester PL Estay SA Ojeda KF

Santoro CM 2012 Late Quaternary hydrological and ecological changes in the hyperarid core of the northern Atacama Desert (~21degS) Earth-Science Rev httpsdoiorg101016jearscirev201204003

Ge Y Zhang K amp Yang X (2019) A 110-year pollen record of land use and land

cover changes in an anthropogenic watershed landscape eastern China Understanding past human-environment interactions Science of The Total Environment 650 2906-2918 httpsdoiorg101016jscitotenv201810058

Goyette J Bennett EM Howarth RW Maranger R 2016 Global

Biogeochemical Cycles 1000ndash1014 httpsdoiorg1010022016GB005384Received

Granger J Sigman DM Lehmann MF Tortell PD 2008 Nitrogen and

oxygen isotope fractionation during dissimilatory nitrate reduction by

62

denitrifying bacteria 53 2533ndash2545 httpsdoiorg10230740058342

Gruber N Galloway JN 2008 An Earth-system perspective of the global

nitrogen cycle Nature 451 293ndash296 httpsdoiorg101038nature06592

Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater eutrophic lake Limnol Oceanogr 51 2837ndash2848 httpsdoiorg104319lo20065162837

Gurnell AM Petts GE Hannah DM Smith BPG Edwards PJ Kollmann

J Ward J V Tockner K 2001 Effects of historical land use on sediment yield from a lacustrine watershed in central Chile Earth Surf Process Landforms 26 63ndash76 httpsdoiorg1010021096-9837(200101)261lt63AID-ESP157gt30CO2-J

Heathcote A J et al Large increases in carbon burial in northern lakes during the

Anthropocene Nat Commun 610016 doi 101038ncomms10016 (2015) Hollander DJ Smith MA 2001 Microbially mediated carbon cycling as a

control on the δ13C of sedimentary carbon in eutrophic Lake Mendota (USA) New models for interpreting isotopic excursions in the sedimentary record Geochim Cosmochim Acta httpsdoiorg101016S0016-7037(00)00506-8

Holtgrieve GW Schindler DE Hobbs WO Leavitt PR Ward EJ Bunting

L Chen G Finney BP Gregory-Eaves I Holmgren S Lisac MJ Lisi PJ Nydick K Rogers LA Saros JE Selbie DT Shapley MD Walsh PB Wolfe AP 2011 A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere Science (80) 334 1545ndash1548 httpsdoiorg101126science1212267

Hooper DU Adair EC Cardinale BJ Byrnes JEK Hungate BA Matulich

KL Gonzalez A Duffy JE Gamfeldt L Connor MI 2012 A global synthesis reveals biodiversity loss as a major driver of ecosystem change Nature httpsdoiorg101038nature11118

Horvatinčić N Sironić A Barešić J Sondi I Krajcar Bronić I Borković D

2016 Mineralogical organic and isotopic composition as palaeoenvironmental records in the lake sediments of two lakes the Plitvice Lakes Croatia Quat Int httpsdoiorg101016jquaint201701022

Howarth RW 2004 Human acceleration of the nitrogen cycle Drivers

consequences and steps toward solutions Water Sci Technol httpsdoiorg1010382Fscientificamerican0490-56

Jenny B Valero-Garceacutes BL Urrutia R Kelts K Veit H Appleby PG Geyh

M 2002 Moisture changes and fluctuations of the Westerlies in Mediterranean Central Chile during the last 2000 years The Laguna Aculeo record (33deg50primeS) Quat Int 87 3ndash18 httpsdoiorg101016S1040-

63

6182(01)00058-1

Jenny B Wilhelm D Valero-Garceacutes BL 2003 The Southern Westerlies in

Central Chile Holocene precipitation estimates based on a water balance model for Laguna Aculeo (33deg50primeS) Clim Dyn 20 269ndash280 httpsdoiorg101007s00382-002-0267-3

Leng M J Lamb A L Heaton T H Marshall J D Wolfe B B Jones M D

amp Arrowsmith C 2006 Isotopes in lake sediments In Isotopes in palaeoenvironmental research (pp 147-184) Springer Dordrecht

Le Roux JP Nielsen SN Kemnitz H Henriquez Aacute 2008 A Pliocene mega-

tsunami deposit and associated features in the Ranquil Formation southern Chile Sediment Geol 203 164ndash180 httpsdoiorg101016jsedgeo200712002

Lehmann M Bernasconi S Barbieri a McKenzie J 2002 Preservation of

organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis Geochim Cosmochim Acta 66 3573ndash3584 httpsdoiorg101016S0016-7037(02)00968-7

Lenihan JM Drapek R Bachelet D Neilson RP 2003 Climate change

effects on vegetation distribution carbon and fire in California Ecol Appl httpsdoiorg101890025295

McLauchlan K K Gerhart L M Battles J J Craine J M Elmore A J

Higuera P E amp Perakis S S (2017) Centennial-scale reductions in nitrogen availability in temperate forests of the United States Scientific reports 7(1) 7856 httpsdoi101038s41598-017-08170-z

Martel-Cea A Maldonado A Grosjean M Alvial I de Jong R Fritz SC von

Gunten L 2016 Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical Central Chile (32ordmS 3050 masl) Palaeogeogr Palaeoclimatol Palaeoecol 461 44ndash54 httpsdoiorg101016jpalaeo201608003

Martiacuten-Foreacutes I Casado MA Castro I Ovalle C Pozo A Del Acosta-Gallo

B Saacutenchez-Jardoacuten L Miguel JM De 2012 Flora of the mediterranean basin in the chilean ESPINALES Evidence of colonisation Pastos 42 137ndash160

Marzecovaacute A Mikomaumlgi a Koff T Martma T 2011 Sedimentary geochemical

response to human impact on Lake Notildemmejaumlrv Estonia Est J Ecol 60 54 httpsdoiorg103176eco2011105

Matesanz S Valladares F 2014 Ecological and evolutionary responses of

Mediterranean plants to global change Environ Exp Bot httpsdoiorg101016jenvexpbot201309004

64

McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE 2007

Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470 httpsdoiorg101073pnas0701779104

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash1643 httpsdoiorg1011770959683613496289

Menzel P Gaye B Wiesner MG Prasad S Stebich M Das BK Anoop A

Riedel N Basavaiah N 2013 Influence of bottom water anoxia on nitrogen isotopic ratios and amino acid contributions of recent sediments from small eutrophic Lonar Lake central India Limnol Oceanogr 58 1061ndash1074 httpsdoiorg104319lo20135831061

Meyers PA Teranes JL 2001 Sediment organic matter in Tracking

Environmental Change Using Lake Sediments Volume 2 Physical and Geochemical Methods httpsdoiorg1018971551-5028(1999)018lt0231SOMCAAgt23CO2

Michelutti N Wolfe AP Cooke CA Hobbs WO Vuille M Smol JP 2015

Climate change forces new ecological states in tropical Andean lakes PLoS One httpsdoiorg101371journalpone0115338

Muntildeoz-Rojas M De la Rosa D Zavala LM Jordaacuten A Anaya-Romero M

2011 Changes in land cover and vegetation carbon stocks in Andalusia Southern Spain (1956-2007) Sci Total Environ httpsdoiorg101016jscitotenv201104009

Naeher S Gilli A North RP Hamann Y Schubert CJ 2013 Tracing bottom

water oxygenation with sedimentary MnFe ratios in Lake Zurich Switzerland Chem Geol 352 125ndash133 httpsdoiorg101016jchemgeo201306006

Poraj-Goacuterska A I Żarczyński M J Ahrens A Enters D Weisbrodt D amp

Tylmann W (2017) Impact of historical land use changes on lacustrine sedimentation recorded in varved sediments of Lake Jaczno northeastern Poland Catena 153 182-193 httpdxdoiorg101016jcatena201702007

Pongratz J Reick CH Raddatz T Claussen M 2010 Biogeophysical versus

biogeochemical climate response to historical anthropogenic land cover change Geophys Res Lett 37 1ndash5 httpsdoiorg1010292010GL043010

Prudhomme C Giuntoli I Robinson EL Clark DB Arnell NW Dankers R

Fekete BM Franssen W Gerten D Gosling SN Hagemann S Hannah DM Kim H Masaki Y Satoh Y Stacke T Wada Y Wisser D 2014 Hydrological droughts in the 21st century hotspots and uncertainties from a global multimodel ensemble experiment Proc Natl Acad Sci httpsdoiorg101073pnas1222473110

65

Ruumlhland KM Paterson AM Smol JP 2015 Lake diatom responses to

warming reviewing the evidence J Paleolimnol httpsdoiorg101007s10933-

015-9837-3

Sarricolea P Meseguer-Ruiz Oacute Serrano-Notivoli R Soto M V amp Martin-Vide

J (2019) Trends of daily precipitation concentration in Central-Southern Chile Atmospheric research 215 85-98 httpsdoiorg101016jatmosres201809005

Sernageomin 2003 Mapa geologico de chile version digital Publ Geol Digit Serrano-Notivoli R de Luis M Begueriumlia S 2017 An R package for daily

precipitation climate series reconstruction Environ Model Softw httpsdoiorg101016jenvsoft201611005

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98 httpsdoiorg1011772053019614564785

Stine S 1994 Extreme and persistent drought in California and Patagonia during

mediaeval time Nature 369 546ndash549 httpsdoiorg101038369546a0

Stocker TF Dahe Q Plattner G-K Alexander L V Allen SK Bindoff NL

Breacuteon F-M Church JA Cubash U Emori S Forster P Friedlingstein P Talley LD Vaughan DG Xie S-P 2013 Technical Summary in Climate Change 2013 The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change httpsdoiorg101017 CBO9781107415324005

Syvitski JPM Voumlroumlsmarty CJ Kettner AJ Green P 2005 Impact of humans

on the flux of terrestrial sediment to the global coastal ocean Science 308(5720) 376-380 httpsdoiorg101126science1109454

Thomas RQ Zaehle S Templer PH Goodale CL 2013 Global patterns of

nitrogen limitation Confronting two global biogeochemical models with observations Glob Chang Biol httpsdoiorg101111gcb12281

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status J Paleolimnol 47 693ndash706 httpsdoiorg101007s10933-012-9593-6

Urbina Carrasco MX Gorigoitiacutea Abbott N Cisternas Vega M 2016 Aportes a

la historia siacutesmica de Chile el caso del gran terremoto de 1730 Anuario de Estudios Americanos httpsdoiorg103989aeamer2016211

Vargas G Ortlieb L Chapron E Valdes J Marquardt C 2005 Paleoseismic

inferences from a high-resolution marine sedimentary record in northern Chile

66

(23degS) Tectonophysics httpsdoiorg101016jtecto200412031 399(1-4) 381-398httpsdoiorg101016jtecto200412031

Valero-Garceacutes BL Latorre C Morelliacuten M Corella P Maldonado A Frugone M Moreno A 2010 Recent Climate variability and human impact from lacustrine cores in central Chile 2nd International LOTRED-South America Symposium Reconstructing Climate Variations in South America and the Antarctic Peninsula over the last 2000 years Valdivia p 76 (httpwwwpagesunibechproductsmeeting-products1024-2nd-international-lotred-south-america-symposium-reconstructing-climate-variations-in-south-america-and-the-antarctic-peninsula-over-the-last-2000-yearshttpwwwpagesunibechproductsmeeting-products1024-2nd-international-lotred-south-america-symposium-reconstructing-climate-variations-in-south-america-and-the-antarctic-peninsula-over-the-last-2000-years

Vicente-Serrano SM Gouveia C Camarero JJ Begueria S Trigo R

Lopez-Moreno JI Azorin-Molina C Pasho E Lorenzo-Lacruz J Revuelto J Moran-Tejeda E Sanchez-Lorenzo A 2013 Response of vegetation to drought time-scales across global land biomes Proc Natl Acad Sci httpsdoiorg101073pnas1207068110

Villa Martiacutenez R P 2002 Historia del clima y la vegetacioacuten de Chile Central

durante el Holoceno Una reconstruccioacuten basada en el anaacutelisis de polen sedimentos microalgas y carboacuten PhD

Villa-Martiacutenez R Villagraacuten C Jenny B 2003 Pollen evidence for late -

Holocene climatic variability at laguna de Aculeo Central Chile (lat 34o S) The Holocene 3 361ndash367

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Human alteration of the global nitrogen cycle sources and consequences Ecological applications 7(3) 737-750 httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M Rein B Urrutia R amp Appleby P (2009) A

quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo central Chile back to AD 850 The Holocene 19(6) 873-881 httpsdoiorg1011770959683609336573

von Gunten L Grosjean M Eggenberger U Grob P Urrutia R Morales A

2009 Pollution and eutrophication history AD 1800-2005 as recorded in sediments from five lakes in Central Chile Glob Planet Change 68 198ndash208 httpsdoiorg101016jgloplacha200904004

Widory D Kloppmann W Chery L Bonnin J Rochdi H Guinamant JL

2004 Nitrate in groundwater An isotopic multi-tracer approach J Contam Hydrol 72 165ndash188 httpsdoiorg101016jjconhyd200310010

67

Woodward CA Potito AP Beilman DW 2012 Carbon and nitrogen stable isotope ratios in surface sediments from lakes of western Ireland Implications for inferring past lake productivity and nitrogen loading J Paleolimnol 47 167ndash184 httpsdoiorg101007s10933-011-9568-z

68

Supplementary material

Facie Name Description Depositional Environment

F1 Organic-rich

mud

Massive to banded black

organic - rich (TOC up to 14 )

mud with aragonite in dm - thick

layers Slightly banded intervals

contain less OM (TOClt4) and

aragonite than massive

intervals High MnFe (oxic

bottom conditions) High CaTi

BrTi and BioSi (up to 5)

Distal low energy environment

high productivity well oxygenated

and brackish waters and relative

low lake level

F2 Massive to

banded silty clay

to fine silt

cm-thick layers mostly

composed by silicates

(plagioclase quartz cristobalite

up to 65 TOC mean=23)

Some layers have relatively high

pyrite content (up to 25) No

carbonates CaTi BrTi and

BioSi (mean=48) are lower

than F1 higher ZrTi (coarser

grain size)

Deposition during periods of

higher sediment input from the

watershed

69

F3 Banded to

laminated light

brown silty clay

cm-thick layers mostly

composed of clay minerals

quartz and plagioclase (up to

42) low organic matter

(TOC mean=13) low pyrite

and BioSi content

(mean=46) and some

aragonite

Flooding events reworking

coastal deposits

F4 Laminated

coarse silts

Thin massive layers (lt2mm)

dominated by silicates Low

TOC (mean=214 ) BrTi

(mean=002) MnFe (lt02)

TIC (lt034) BioSi

(mean=46) and TS values

(lt064) and high ZrTi

Rapid flooding events

transporting material mostly

from within the watershed

F5 Breccia with

coarse silt

matrix

A 17 cm thick (80-97 cm

depth) layer composed by

irregular mm to cm-long ldquosoft-

clastsrdquo of silty sediment

fragments in a coarse silt

matrix Low CaTi BrTi and

MnFe ratios and BioSi

Rapid high energy flood

events

70

(mean=43) and high ZrTi

(gt018)

Table Sedimentological and compositional characteristics of Laguna Matanzas

facies

71

CAPIacuteTULO 2 STABLE ISOTOPES TRACK LAND USE AND COVER

CHANGES IN A MEDITERRANEAN LAKE IN CENTRAL CHILE OVER THE

LAST 600 YEARS

72

Stable isotopes track land use and cover changes in a mediterranean lake in

central Chile over the last 600 years

Magdalena Fuentealbaabc Claudio Latorreabc Matiacuteas Frugone-Aacutelvarezabc Pablo

Sarricolead Leonardo Villaciacutese M Laura Carrevedob Blas Valero-Garceacutescg

a Departamento de Ecologiacutea Pontificia Universidad Catoacutelica de Chile Alameda 340 Santiago Chile

b Institute of Ecology and Biodiversity (IEB) Las Palmeras 3425 Nuntildeoa Santiago Chile

c Laboratorio Internacional de Cambio Global LINCGlobal PUC-CSIC Spain

d Departamento de Geografiacutea Universidad de Chile Marcoleta 250 Santiago Chile

e Departamento de Ecologiacutea Universidad de ChileLas Palmeras 3425 Nuntildeoa Santiago Chile

f Instituto Pirenaico de Ecologiacutea (IPE-CSIC) Avenida Montantildeana 1005 Zaragoza 50059 Spain

Corresponding authors E-mail addresses clatorrebiopuccl magdalenafuentealbagmailcom

Key words Anthropocene lake sediment δsup1⁵N δsup1sup3C Great Acceleration organic

geochemistry watershedndashlake system Stable Isotope Analyses land usecover

change Nitrogen cycle mediterranean ecosystems central Chile

73

Abstract

Nutrient fluxes in many aquatic ecosystems are currently being overridden by

anthropic controls especially since the industrial revolution (mid-1800s) and the

Great Acceleration (mid-1900s) Land use and cover changes (LUCC) alter the

availability and fluxes of nutrients such as nitrogen that are transferred via runoff

and groundwater into lakes By altering lake productivity and trophic status these

changes are often preserved in the sedimentary record Here we use

geolimnological proxies and stable isotope analyses (δsup1⁵N δsup13C) on lake sediments

to reconstruct the lake-watershed nutrient transfer in a central Chilean lake (Lago

Vichuqueacuten) over the past 600 years We compare our multiproxy record from recent

lake sediments to the soilvegetation relationship across the watershed as well as

land usecover changes from 1975 to 2014 derived from satellite images Our results

show that lake sediment δsup1⁵N values increased with meadow cover but decreased

with tree plantations suggesting increased nitrogen retention when trees dominate

the watershed Our δsup1⁵N record from central Chile can thus be interpreted as a proxy

for nutrient availability over the last 600 years mainly derived from land use changes

coupled with climate drivers Although variable sources of organic matter and in situ

fractionation often hinder straightforward environmental interpretations of stable N

isotope signatures our study shows that lake sediment δsup1⁵N can be a useful tool for

assessing the contribution of past human activities in nutrient and nitrogen cycling

1 Introduction

Nitrogen (N) is a limiting nutrient in terrestrial and aquatic ecosystems (Vitousek

et al 1997) Changes in its availability can drive eutrophication and increase

pollution in these ecosystems (McLauchlan et al 2013) Although recent human

74

impacts on the global N cycle have been significant the consequences of increased

anthropogenic N on these ecosystems are unclear (Gerhart and Mclauchlan 2014

Battye et al 2017) Isotopic signatures are key to understand N dynamics in lakes

nevertheless in situ andor diagenetic fractionation along with multiple sources of

organic matter (OM) often hinder straightforward environmental interpretations from

isotopes Monitoring δ15N and δ13C values as components of the N cycle

specifically those related to the link between terrestrial and aquatic ecosystems can

help differentiate between effects from processes versus sources in stable isotope

values (eg from Particulate Organic Matter -POM- soil and vegetation) and

improve how we interpret variations in δ15N (and δ13C) values at longer temporal

scales

The main processes controlling stable N isotopes in bulk lake OM are source

lake productivity diagenesis and denitrification (Talbot 2001 Leng et al 2006

Fariacuteas et al 2009 Torres et al 2012 Brahney et al 2014) N sources depend on

contributions from the watershed (ie soil and biomass) the transfer of atmospheric

N to the lake (ie atmospheric N2 fixation) and nutrient recycling (Leng et al 2006)

Atmospheric N2 (isotopically defined as δ15N =0) is fixed by cyanobacteria with

minimal fractionation resulting in δ15NOM values that fluctuate from -2 to +2permil (Fogel

and Cifuentes 1993 Talbot 2001 Elliot and Brush 2006) Besides N2 fixation by

cyanobacteria phytoplankton species assimilate dissolved inorganic nitrogen (DIN)

and values typically range from +7 to +10permil (Xu et al 2016 Meyers et al 2003) In

addition seasonal changes in POM occur in the lake water column Gu et al (2006)

sampled the water column of Lake Wauberg (Florida USA) during a hydrologic year

and found a higher development of N fixing species during the summer A major

factor behind this increase are human activities in the watershed which control the

75

inputs of the sediment and nutrients to the lake (Woodward et al 2011) Some

studies have shown higher δ15N values in lake sediments from watersheds that are

highly affected by human activities (Bruland and Mackenzie 2010 Woodward et al

2011) Syntenic fertilizers displayed δ15N values between -4 to +4permil cattle manure

around +8 to +22permil and surface and groundwater OM between 0 to +10permil (Elliott

and Brush 2006 Leng et al 2006) Although relatively low δ15N values from

fertilizers constitute major N input to human-altered watersheds the elevated loss

of 14N via volatilization of ammonia and denitrification leaves the remaining total N

input enriched in 15N (Bruland and Mackenzie 2010)

In addition to the different sources and variations in lake productivity early

diagenesis at the sedimentndashwater interface in the sediment can further alter

sediment OM isotope values (Brahney et al 2014 Galman et al 2009) During

diagenetic loss of N in lacustrine systems kinetic fractionation occurs and the

remaining N is enriched in 15N leading to higher δ15N values (Galman et al 2006

Talbot 2001) Denitrification tends to enrich lake sediments in 15N due to the

assimilation of nitrates by denitrifying bacteria (Granger et al 2008) and is more

prevalent in anoxic environments (Brahney et al 2016 Lehman et al 2002)

Carbon isotopes in lake sediments can also provide useful information about

paleoenvironmental changes OM origin and depositional processes (Meyers et al

2003) Allochthonous organic sources (high CN ratios) produce isotope values

similar to values from catchment vegetation Autochthonous organic matter (low CN

ratio) is influenced by fractionation both in the lake and the watershed leading up to

carbon assimilation by lacustrine biota (Woodward et al 2011) Changes in

productivity greatly affect δ13COM values (Torres et al 2012) as during C uptake

plankton preferentially assimilate 12C leaving the dissolved inorganic carbon (DIC)

76

pool enriched in 13C (Gu et al 2006) with phytoplankton averaging ca 20 permil lower

than the respective δ13CDIC values (Leng et al 2006) Under conditions of low to

moderate primary productivity plankton preferentially uptake the lighter 12C

resulting in low δ13C values displayed by the OM (Torres et al 2012) Conversely

during high primary productivity phytoplankton will uptake 12C until its depletion and

is then forced to assimilate the heavier isotope resulting in an increase in δ13C

values Higher productivity in C-limited lakes due to slow water-atmosphere

exchange of CO2 also results in high δ13C values (Galman et al 2009) In these

cases algae are forced to uptake dissolved bicarbonate with δ13C values between

7 to 10permil higher than those of the atmospheric CO2 dissolved in water (Sun et al

2016 Torres et al 2012 Galman et al 2009)

Stable isotope analyses from lake sediments are thus useful tools to

reconstruct shifts in lake-watershed dynamics caused by changes in limnological

parameters and LUCC Our knowledge of the current processes that can affect

stable isotope signals in a watershed-lake system is limited however as monitoring

studies are scarce Besides in order to use stable isotope signatures to reconstruct

past environmental changes we require a multiproxy approach to understand the

role of the different variables in controlling these values Hence in this study we

carried out a detailed survey of current N dynamics in a coastal central Chilean lake

(Lago Vichuqueacuten) and a multiproxy study of a sediment record spanning the last

600 years The characterization of the recent changes in the watershed since 1970s

is based on satellite images to compare recent changes in the lake and assess how

these are related with climate variability and an ever increasing human footprint

(Lara et al 2012 Gallardo et al 2015 Steffen et al 2015) Our main goal is to

investigate how stable isotope values from lake sediment reflect changes in the lake

77

ndash watershed system during periods of high watershed disruption (eg Spanish

Conquest late XIX century Great Acceleration) and recent climate change (eg

Little Ice Age and current global warming)

2 Study Site

Lago Vichuqueacuten (34ordm49`S 72ordm04W 4 m asl 30 m of depth Fig 1) is a

mesotrophic to eutrophic lake with dominant anoxic bottom conditions that is

stratified year around (Frugone-Aacutelvarez et al 2017) The main inlets are the

Vichuqueacuten and Huintildee rivers and the only outlet is the Llico estuary that drains into

the Pacific Ocean High tides can sporadically shift the flow direction of the Llico

estuary which increases the marine influence in the lake Dune accretion gradually

limited ocean-lake connectivity until the estuary was almost completely closed off

by ca 10 ky BP and the current lake regime formed (Frugone-Aacutelvarez et al 2017)

The area is characterized by a mediterranean climate with cold-wet winters and

hot-dry summers and an annual precipitation of ~650 mm and a mean annual

temperature of 15ordmC During the austral winter months (June - August) precipitation

is modulated by north-west shifts of the South Pacific Anticyclone (SPA) followed by

an increased frequency of storm fronts stemming off the South Westerly Winds

(SWW) A strengthened SPA during austral summers (December - March) which

are typically dry and warm blocks the northward migration of storm tracks stemming

off the SWW (Fig1 Frugone-Aacutelvarez et al 2017)

78

Figure 1 a) The location of the Lago Vichuqueacuten in central Chile b) Map of land

uses and cover in 2016 c) Ombrothermic diagram mediterranean climates are

characterized by cold-wet winters with surplus moisture from June to August and

hot-dry summers d) Lake bathymetry showing location of cores and water sampling

sites used in this study

Although major land cover changes in the area have occurred since 1975 to the

present as the native forests were replaced by tree (Monterey pine and eucalyptus)

plantations the region was settled before the Spanish conquest (Frugone-Alvarez

et al 2018) Historical documents indicate that Vichuqueacuten was occupied by a

Mitimaes colony as part of the Inka empire (Odone 1998) Unlike other Andean

areas during the Inka period the introduction of corn and quinoa in the Vichuqueacuten

watershed do not seem to have intensified land use The Spanish colonial period in

Chile lasted from 1542 CE to the independence in 1810 CE The first historical

document (1550 CE) shows that the areas around Vichuqueacuten were settled by the

Spanish early on as the Vichuqueacuten watershed was given as an ldquoencomiendardquo

system to Juan Cuevas The ldquoencomiendardquo system provided the owners with land

79

and indigenous people to work but also the introduction of wheat wine cattle

grazing and logging of native forests for lumber extraction and increasing land for

agricultural activities (Odone et al 1998 Armesto et al 2010) During the 19th

century (the Republic) the export of wheat to Australia and Canada generated

intensive changes in land cover use The town of Vichuqueacuten became the regional

capital and plans to build a maritime port in the bay of Vichuqueacuten were drawn

However the fall of international markets in 1880 paralyzed these plans During the

20th century the plantation of trees (Pinus radiata and Eucalyptus globulus) in areas

cleared of native forests was subsidized by two national laws DFL nordm265 (1931) and

DFL nordm 701 (1974) both of which provided funds for such plantations During the last

decades the urbanization with summer vacation homes along the shorelines of

Lago Vichuqueacuten has greatly increased Extensive lake eutrophication is currently a

large environmental problem (EULA 2008)

3 Methods

Coring campaigns were organized from 2011 to 2015 (Fig 1d) We recovered

12 short cores and 4 long cores (up to 14 m long) at several sites using a hammer-

modified UWITEC gravity corer Sediment cores (VIC11-2A 170 cm VIC13-2B 170

cm VIC13-2D 1200 cm and VIC15-1A 119 cm) were split photographed sub-

sampled and stored in the Pyrenean Institute of Ecology (IPE-CSIC Spain) Core

VIC13-2B was selected for detailed multiproxy analyses (including elemental

geochemistry C and N isotopes XRF and 14C dating) Stable isotope analyses

(δ13C δ15N) were performed at the Laboratory of Biogeochemistry and Applied

Stable Isotopes (LABASI-PUC Chile) Sediment samples for δ13Corg were pre-

treated with 50 ml of HCl and 50 ml of deionized water and dried at 60ordmC for 4 hr to

remove carbonates (Harris et al 2011) Isotope analyses were conducted using a

80

Delta V Advantage IRMS coupled to a Thermo Flash 2000 Elemental Analyzer via

a Conflo IV interface Isotope results are expressed in standard delta notation (δ)

and expressed in per mil (permil) relative to the Pee Dee Belemnite (Vienna Pee Dee

Belemnite) for C and to atmospheric N2 for N (Leng et al 2006) Total carbon (TC)

Total Organic Carbon (TOC) Total Inorganic Carbon (TIC) and Total Sulfur (TS)

were measured every 2 cm with a LECO SC 144 DR at the IPE-CSIC

An AVAATECH X-Ray Fluorescence II core scanner with a Rh X-ray tube from

the University of Barcelona was used to obtain XRF logs every 4 mm of resolution

Results are expressed as element intensities in counts per second (cps) Tube

voltage was operated at 30 kV and 10 kV to obtain the abundances of 18 elements

(Pb Al Si S Cl K Ca Ti V Mn Fe Co Zn Br Rb Sr Y Zr) with an average of

at least of 1800 cps (less for Pb=437 and Zn=934 cps) Pb was included due to

similar behavior with Co and Fe Element ratios were calculated to describe changes

in redox conditions (MnFe) endogenic productivity (BrTi) carbonate formation

(SrCa and CaTi) and sediment input (ZrTi) (Barreiro-Lostres et al 2014

Carrevedo et al 2015 Frugone-Aacutelvarez et al 2017 Kylander et al 2011 Moreno

et al 2007a)

Several campaigns were carried out to sample the POM from the water column

two per hydrologic year from November 2015 to August 2018 A liter of water was

recovered in three sites through to the lake two are from the shallower areas (with

samples taken at 2 and 5 m depth at each site) and one in the deeper central portion

(at 2 5 and 20 m depth) of the lake (Fig 1d) The samples were filtered using glass

fiber filters (25 m) and then frozen to obtain the stable carbon and nitrogen isotope

signal of lacustrine POM Additionally soil and vegetation samples from the

following communities native species meadow hydrophytic vegetation and

81

Monterrey pine (Pinus radiata) were taken for stable isotope analyses (see in

supplementary material)

The age model for the complete Lago Vichuqueacuten sedimentary sequence is

based on Frugone-Aacutelvarez et al (2017) with the last 1000 years based on

210Pb137Cs dating techniques in VIC15-1A and 14C AMS dates on bulk sediment

samples (Supplementary Table S1) The 14C measurements of lake water DIC show

a moderate reservoir effect of 180 plusmn 25 14C yr) The revised age-depth model used

here includes three more 14C AMS dates performed with the program Bacon to

establish the deposition rates along the core (Blaauw and Christen 2011 Fig 2)

The age-depth model indicates that average resolution between 0 to 87 cm is lt2

cm per year and from 88 to 170 cm it is lt47 cm per year

82

Figure 2 Chronological age-depth model for the Lago Vichuqueacuten sedimentary

sequence spanning the last 1000 yr (see also Frugone-Alvarez et al 2017)

To estimate land use changes in the watershed we use Landsat MSS images

for 1975 and Landsat TM for 1989 and 2014 all taken in either summer or autumn

(Table 1) We performed supervised classification of land uses (maximum likelihood

83

algorithm) for each year (1975 1989 and 2014) and results were mapped using

ArcGIS 102

Table 1 Images using for LUCC reconstruction

Source of LUCC

Acquisition

Date Resolution

Landsat MSS 19750322 60 m

Landsat TM 19890217 30 m

Landsat TM 19991226 30 m

CONAF 2009 30 m

Land cover Chile 2014 30 m

CONAF 2016 30 m

Previous Work on Lago Vichuqueacuten sedimentary sequence

The sediments are organic-poor dark brown to brown laminated silt with some

intercalated thin coarser clastic layers Lacustrine facies have been classified

according to elemental composition (TOC TS TIC and TN) grain size and

sedimentary textures (Frugone-Aacutelvarez et al 2017) Four main types of lacustrine

facies were identified in this short core Facies L1 is a laminated (1cm) black to dark

brown diatom-poor silt with relatively higher TOC percentages (TOC about 185)

TS (about of 18) and TOCTN (about 92) Facies L2 is characterized by a

homogeneous black organic-poor silty clay with low TOC (mean= 13) TS (mean=

13) TOCTN (mean= 88) values Facies L3 is a laminated (1cm) black organic-

poor (TOC mean 14) silts with higher TS (mean= 21) and TOCTN ratios

(mean= 88) Facies L3 is interpreted as ldquobaselinerdquo deposition on the distal areas

84

of Vichuqueacuten lake Mineralogy is dominated by mica (muscovite) clay minerals

(chlorite) and plagioclase (albite) Quartz and calcite occur at the top and pyrite

occurs in the lower part of the sequence Facies T is composed by massive banded

sediments 4 cm thick and coarse grain size It is interpreted as an instantaneous

depositional event (for more detail see Frugone-Aacutelvarez et al 2017) In this work

we identified four subunits based on geochemical and stable isotope signals

4 Results

41 Geochemistry and PCA analysis

High positive correlations exist between Al Si K and Ti (r = 078 ndash 096

supplementary Fig S1) and between Zn Zr Rb and Y (r = 072 - 096) which reflect

the silicate content of the watershed-derived sediments (Marzecoacuteva et al 2011) Zr

is commonly associated with minerals more abundant in coarser deposits Thus the

ZrTi profile could reflect grain size (Cuven et al 2010) showing higher variability

in the upper part of the Lake Vichuqueacuten sequence and in the alternation between

facies L1 and L2 Another group of elements made up of Co Fe and Pb displayed

positive correlations (r = 067ndash 097) and represents the input of heavy metals Br

Cl and Ca show a positive correlation (r = 049 ndash 06 p-value = 00001) BrTi ratio

is interpreted as a productivity indicator due to Br having a strong affinity with humic

and organic compounds (Marzecoacuteva et al 2011 Frugone-Aacutelvarez et al 2017) In

our Lago Vichuqueacuten sequence BrTi values are high from 170 to 132 cm and from

36 cm to the top of core where it shows several sharps peaks (Fig 3) The MnFe

ratio is indicative of lake bottom oxygenation (Naecher et al 2013) as under

reducing conditions Mn tends to become more mobile than Fe leading to a

decreased MnFe (Marzecoacuteva et al 2011) Several sharp peaks in MnFe occurred

85

from 127 to 120 cm and from 57 to 30 cm (MgFegt03) The silicate group and the

Br Cl Ca Mn group are negatively correlated (r= -012 and -066)

Principal Component Analysis (PCA) was undertaken on the XRF

geochemical data to investigate the main factors controlling sediment deposition in

Lago Vichuqueacuten (Fig 3) The four main eigenvectors explain 801 of the variance

(supplementary material Table S2) The principal component (PC1) explain 437

of the total of variance and grouped elements are associated with terrigenous input

to the lake Positive values of the biplot have been attributed to higher heavy metals

deposition (Pb Co and Fe) and negative values to higher silicate input (Al K Ti and

Si) in a high energy catchment environment (Zr) The PC2 explains 198 of the

total of variance and highlights the endogenic productivity in the lake The positive

loading is compound by Br Cl Ca and Sr and to a lesser extent by Y Zn Rb and

Mn The PC2 may explain both the precipitation of carbonates (Ca Sr) and biological

production (Br)

86

Figure 3 Principal Component Analysis of XRF geochemical measurements in

VIC13-2B Lago Vichuqueacuten lake sediments

42 Sedimentary units

Based on geochemical and stable isotope analysis we identified four

lithological subunits in the short core sedimentary sequence Our PCA analyses and

Pearson correlations pointed out which variables were better for characterizing the

subunits (Fig 4) in terms of endogenic productivity heavy metals and terrestrial

input The unit 2c (170-131 cm) is characterized by the occurrence of some clastic

layers (L2 from 160 and 150 cm) high δsup1⁵N values (mean= +59 plusmn 04permil) with

Magnetic Susceptibility (MS) BrTi ZrTi and SrCa values increase towards the top

Also it has relatively low δsup1sup3C values (mean= -265 plusmn 11permil) and CNmolar ratios

(mean=78 plusmn 04) The ZrTi show upwards increasing values reaching the highest

values of the sequence at the top of this unit suggesting a coarsening upward trend

and relatively higher depositional energy The MS trend also indicates higher

erosion in the watershed and enhanced delivery of ferromagnetic minerals likely

from soil particles particularly from 150 to 160 cm (Frugone-Aacutelvarez at al 2017)

The subunit 2b (130-118 cm) is also composed of black silts but it has the

lowest MS values of the whole sequence and its onset is marked by a sharp

decrease in ZrTi This subunit is marked by sharp peaks of MnFe (at 126 and 120

cmgt027) SrCa (at 125 and 120 cmgt033) CaTi (at 124 and 120 cmgt199) TOC

(about 26 at 130 124 122 and 118 cm) and δsup1⁵N (gt+67permil at 126 and 120 cm)

BrTi oscillates around low values (about 01) whereas the δsup1sup3C values range

between -262 and -282permil

87

The unit 2a (58-117 cm) shows increasing and then decreasing MS values

and displayed sharps peaks of δsup1⁵N (gt64 at 102 to 99 87 and 75 cm) and CN

(about 10 at 86 74 66 and 60 cm) SrCa (mean = 04 plusmn 013) BrTi (mean = 008

plusmn 002) MnFe (mean = 002 plusmn 001) and δsup1sup3C (mean = -260 plusmn 07permil) oscillate in

low values The upper part of this unit (72 ndash 57 cm) shows an increase of SrCa

(from 03 to 05)

The upper unit 1a (0 - 57 cm) starts with a fine clastic layer (T at 57 to 54

cm) interpreted as deposition during a high-energy event It is characterized by

lower BrTi (mean = 003 plusmn 002) TOC (mean = 12 plusmn 03) and δsup1sup3C (mean= -

266 plusmn 06permil) higher δsup1⁵N (mean = +55 plusmn 08 permil) This unit is made of alternating

fine (lt 1cm) black and dark brown laminae with carbonate (L1 facies) Recently

deposited sediments show decreasing MS values increasing TOC (mean= 15 plusmn

04 ) sharp peaks of BrTi (gt015 at 33 21 5 and 1 cm) and the lowest δsup1⁵N values

of the entire record (mean= 45 plusmn 06 permil) and δsup1sup3C values (mean= -277 plusmn 09 permil)

Heavy metal content increases abruptly in the upper section of the core (2 - 20 cm)

(peaks of FeTi CoTi and PbTi)

88

Figure 4 Sedimentary units of Lago Vichuqueacuten sedimentary sequence Selected

variables illustrate watershed input (Magnetic Susceptibility ZrTi CoTi and MnFe)

endogenic productivity (SrCa CaTi TS) organic matter source (BrTi TOC

CNmolar and stable isotope records (δ13Corg and δ15Nbulk)

43 Recent seasonal changes of particulate organic matter on water column

The average of δ15NPOM from the three sites across to the lake was +86 plusmn 58

permil oscillating widely from -14 to +193permil (Fig 5) Important seasonal differences

occur at 2 and 5 m depth with more negative values during summer (~53 plusmn 52 permil)

than winter (~122 plusmn 40permil) At 20 m depth δ15NPOM values exhibit small seasonal

ranges (mean = +10permil for winter and +87permil for summer) The δ13CPOM average was

-296 plusmn 33permil with slightly seasonal and water column depth differences However

more positive δ13CPOM values occurred during winter (mean=-290 plusmn 41permil) than in

summer (mean= -301 plusmn 19 permil) Like the δ15NPOM values CNPOM (mean= 83 plusmn 17)

displayed important seasonal and water depth differences Lower CNPOM ratios

89

occurred during summer at 2 and 5 m depth (mean= 95 plusmn 17) and higher and more

constant values during winter (mean = 73 plusmn 09) at the same depth At 20 m CNPOM

shows similar values in both winter (70) and summer (74)

Figure 5 Seasonal POM averages from samples taken of the Lago Vichuqueacuten

water column Samples were taken from 2015 to 2018 at 2 (n=16) 5 (n=14) and 20

(n=8) meters depth

44 Stable isotope values across the Lake Vichuqueacuten watershed

Figure 6 shows modern vegetation soil and sediment isotope values found for

the watershed Huintildee tributary and Vichuqueacuten lake The δsup1⁵NFoliar values from

meadow plantations and macrophytes have similar range values with a mean of

+89 plusmn50 permil (n=18) +74 plusmn 75 permil (n=5) +82 plusmn 36 permil (n=6) respectively Native

vegetation has overall lower δsup1⁵NFoliar values with a mean of 14 plusmn 21 permil (n=28 see

Table 2 in supplementary material) The δsup1sup3CFoliar from terrestrial samples exhibit

similar values across the different plant communities (tree plantation mean=-274 plusmn

13permil meadow mean = -275 plusmn 23 permil native species mean=-272 plusmn 14permil) whereas

macrophytes display slightly more negative values with a mean of -287 plusmn 23permil

Macrophytes substrate displayed the highest δsup1⁵N values with a mean of +60 plusmn

14permil (n=3) Similar and relatively high δsup1⁵N values for soil of plantation (mean= +54

plusmn 13permil n=4) meadow (mean= +49 plusmn 04permil n=8) and surface river sediment

90

(mean= +52 plusmn 17permil n=10) Native forest soils oscillate around slightly more

negative values with a mean of +45 plusmn 12permil (n=4) Slightly more positive soil δsup1sup3C

values occur both underneath native forests and in tree plantations with means of -

284 plusmn 23permil and -298 plusmn 13permil respectively compared to either meadow soils

(mean= -302 plusmn 11permil) aquatic sediments underneath macrophytes (-311 plusmn 10permil)

or from surface river sediments (mean= -312 plusmn 10permil)

Figure 6 Stable isotope content of modern soil river sediment and foliar vegetation

used as end members in the sedimentary sequence of Lago Vichuqueacuten a)

Scatterplot of foliar δsup1⁵N and δsup13C values for vegetation from Lago Vichuqueacuten

watershed (plantation meadow and native species) and macrophytes on Lake

Vichuqueacuten See supplementary material for more detail of vegetation types b)

Scatterplot of soil δsup1⁵N and δsup13C values across the watershed the sediments of the

Huintildee and Vichuqueacuten rivers and the fluvial sediment corresponding to the

macrophyte vegetation

45 Land use and cover change from 1975 to 2014

Major land use changes between 1975 CE and 2016 CE in the Lago

Vichuqueacuten watershed are summarized in Figure 7 The watershed has a surface

area of 535329 km2 of which native vegetation (26) and shrublands (53)

represent 79 of the total surface in 1975 Meadows are confined to the valley and

91

represent 17 of watershed surface Tree plantations initially occupied 1 of the

watershed and were first located along the lake periphery By 1989 the areas of

native forests shrublands and meadows had decreased to 22 31 and 14

respectively whereas tree plantations had expanded to 30 These trends

continued almost invariably until 2016 when shrublands and meadows reached 17

and 5 of the total areas while tree plantations increased to 66 Native forests

had practically disappeared by 1989 and then increased up to 7 of the total area

in 2016 (Fig 6) preferentially occupying the southeastern sector of the watershed

Figure 7 Changes in land use and cover between 1975 and 2016 in the Lago

Vichuqueacuten watershed as measured from satellite images The major change is

represented by the replacement of native forest shrubland and meadows by

plantations of Monterrey pine (Pinus radiata)

Figure 8 shows correlations between lake sediment stable isotope values and

changes in the soil cover from 1975 to 2013 Positive relationships occurred

between sediment δsup1⁵N and δsup13C values from core VIC13-2B (unit 1) and the

92

percentage of native forest (r=089 for δsup1⁵N 082 for δsup13C) shrublands (r = 071 for

δsup1⁵N 057 for δsup13C) and meadow cover (r = 088 for δsup1⁵N 081 for δsup13C) All of these

correlations are significant (p value lt 0001) In contrast significant negative

correlations (p lt0001) occurred between tree plantation cover and lake sediment

stable isotope values (δsup1⁵N r = -082 and δsup13C r = -067) native forest (r = -097)

meadows (r = -086) and shrubland (r =-093)

Figure 8 Correlation plots of land use and cover change versus lake sediment

stable isotope values The δsup1⁵N values are positively correlated with native forests

agricultural fields and meadow cover across the watershed Total Plantation area

increases are negatively correlated with native forest meadow and shrubland total

area Significance levels are indicated by the symbols p-values (0 0001 001

005 01 1) lt=gt symbols ( )

93

5 Discussion

51 Seasonal variability of POM in the water column

The stable isotope values of POM can vary during the annual cycle due to

climate and biologic controls namely temperature and length of the photoperiod

which affect phytoplankton growth rates and isotope fractionation in the water

column (Gu et al 2006 Leng et al 2006) POM from Lago Vichuqueacuten surface

samples (2 and 5 m depth) displayed lower δ13CPOM values during the summer than

in winter During C uptake phytoplankton preferentially utilize 12C leaving the

DICpool enriched in 13C Therefore as temperature increases during the summer

phytoplankton growth generates OM enriched in 12C until this becomes depleted

and then the biomas come to enriched u At the onset of winter the DICpool is now

enriched in 13C and despite an overall decrease in phytoplankton production the

OM produced will also be enriched in 13C In contrast δ13CPOM values at 20 m depth

did not reflect these seasonal differences probably due to water-column

stratification that maintains similar temperatures and biological activity throughout

the year

Lake N availability depends on N sources including inputs from the

watershed and the atmosphere (ie deposition of N compounds and fixation of

atmospheric N2) which varies during the hydrologic year The fixation of atmospheric

N2 is an important natural source of N to the lake occurring mainly during the

summer season associated with higher temperature and light (Gu et al 2006)

Because the δ15NPOM of N2 fixers is close to 0permil with almost no overall isotope

fractionation (Leng et al 2006) when N2 is the major N source δ15NPOM values are

typically low However when DIN concentrations are high or alternatively when little

94

N2 fixation occurs δ15NPOM values will be higher (Gu et al 2006) δ15NPOM values

from summer Lago Vichuqueacuten samples were lower than those from winter with large

differences between the seasons (~5permil Fig 5 and 9) Furthermore δ15NPOM values

were high when monthly average temperature was low and monthly precipitation

was high (Fig 9) This pattern is consistent with the dominance of high N2 fixation

by cyanobacteria associated with increased summer temperatures This correlation

of δ15NPOM values with temperature further suggests a functional group shift i e

from N fixers to phytoplankton that uptake DIN The correlation between wetter

months and higher δ15NPOM values could be caused by increased N input from the

watershed due to increased runoff during the winter season The lack of data of the

δ15NPOM between the 30 mm and the 160 mm of precipitation is due to the

mediterranean-type climate that concentrates precipitations in the winter months

Finally Lago Vichuqueacuten is characterized by pronounced seasonality leading to

higher phytoplankton biomass in summer characterized by low δ15NPOM In winter

low biomass production and increased input from watershed is associated to high

δ15NPOM

95

Figure 9 Seasonal changes can drive δ15NPOM values in Lago Vichuqueacuten Data

correspond to average monthly temperature and total monthly precipitation for the

months when the water samples were taken (years 2015 - 2018) P-valuelt005

52 Stable isotope signatures in the Lake Vichuqueacuten watershed

The natural abundance of 15N14N isotopes of soil and vegetation samples

from the Lago Vichuqueacuten watershed appear to result from a combination of factors

isotope fractionation different N sources for plants and soil microorganisms (eg N2

fixation Nitrates) depth in the soil where N uptake by vegetation occurs and N loss

mechanisms (ie denitrification leaching and ammonia volatilization Hogberg

1997) The lowest δsup1⁵Nfoliar values are associated with native species and are

probably due to the contribution of N-fixing species (eg Sophora) (Fig6 and for

more detail see Table S3 in supplementary material) The number native N-fixers

species present in the Chilean mediterranean vegetation are not well known

however so there could be other N-fixing species in this group Alternatively δsup1⁵Nfoliar

values reflect soil N uptake (Kahmen et al 2008) In environments limited by N

plants have δsup1⁵N values similar to the soil δsup1⁵N values however the denitrification

and volatilization of ammonia can lead to the remain N of soil to come enriched in

15N (Cifuentes et al 1989 Craine et al 2009 Bruland and Mckenzie 2010) Soil N

isotope samples from native species communities tends to display relatively high

δsup1⁵N values respect to foliar samples due to loss of N-soil

The higher foliar and soil δsup1⁵N values obtained from samples of meadows

aquatic macrophytes and tree plantations can be attributed to the presence of

greater amounts of nitrate available for plant uptake (Fig 6) Houmlgberg (1997)

suggests that the availability of different N sources in soils (ie nitrates versus

96

ammonia) with different residence times can also explain these δsup1⁵NFoliar values

Indeed Feigin et al (1974) described differences of up to 20permil between ammonia

and nitrates sources Denitrification and nitrification discriminate much more against

15N than N2 fixation does (Craine et al 2009) leading to soils (and plants after

uptake) enriched in 14N

In general multiple processes that affect the isotopic signal result in similar

δsup1⁵N values between the soil of the watershed and the sediments of the river

However POM isotope fluctuations allow to say that more negative δsup1⁵N values are

associated to lake productivity while more positive δsup1⁵N values are associated with

N input from the watershed

δ13C values in Lago Vichuqueacuten watershed reflect CO2 gas exchange between

C3 plants and algae with the atmosphere During photosynthesis plants

discriminate against the heavier stable isotope of carbon (13C) in favor of the lighter

isotope 12C which results in δ13CFoliar values between -220permil and -320permil (Browman

and Cook 2002 Liu et al 2007) Likewise the δ13CFoliar values from Lago Vichuqueacuten

oscillate around -27permil (Fig 6) Plants transform atmospheric CO2 into soil organic

carbon (C) which in turn reflects this initial discrimination against 13C during C

uptake and post photosynthetic fractionation (Farquhar et al 1982 1989 Badeck

et al 2005 Pausch and Kuzyakov 2017) Slightly more positive δ13CFoliar values

(about 15permil) were measured in comparison with their δ13CSoil values This may be

reflecting the C transference from plants to the soil but also a soil-atmosphere

interchange The preferential assimilation of the light isotopes (12C) during soil

respiration carried by the roots and the microbial biomass that is associated with the

decomposition of litter roots and soil organic matter explain this differential

(Berhardt et al 2006 Blagodatskaya et al 2010 Midwood and Millard 2011)

97

In general the δ13CSoil values from the Lago Vichuqueacuten watershed oscillated

around -290permil and did not vary with our plant classification types Here we use

these values as terrestrial-end members to track changes in source OM (Fig 6)

Thus more negative δ13C values in lake sediment samples are attributed to higher

OM inputs from the terrestrial watershed By the other hand more positive δ13C

values most likely reflect an increased aquatic OM component as indicated by POM

isotope fluctuations (Fig 9)

53 Recently land use and cover change and its influences on N inputs to the lake

Tree plantations in the Lago Vichuqueacuten watershed have increased greatly in

the last few decades (from 1 in 1975 to 66 in 2016 Fig 7) replacing previous

native forests (from 26 to 7) meadows (17 to 5) and shrublands (53 to

17) In 1975 tree plantations were confined to the lake perimeter with discrete

patches distributed throughout the watershed The ldquoForest Lawrdquo (DFL 701- passed

in 1974) allocated state funding to afforestation efforts and management of tree

plantations which greatly favored the replacement native forests by introduced trees

This increase is marked by a sharp and steady decrease in lake sediment δ15N and

δ13C values because tree plantations function as a nutrient sink whereas other land

uses such as meadows favor nutrient loss from the watershed (Fig8) Bruland and

Mackenzie (2014) noted a decrease in wetland δ15N values when watershed

forested cover increased and concluded that N inputs to the wetlands are lower from

the forested areas as they generally do not export as much N as agricultural lands

A positive correlation between native vegetation and δ15Ncore values can be

explained by the relatively scarce arboreal cover in the watershed in 1975 when

native forest occupied just 26 of the watershed surface whereas shrublands and

98

meadows occupied more than the 70 of the surface of the watershed with the

concomitant elevated loss of N (Fig 7 and Fig 8)

54 Nitrogen dynamics in Lago Vichuqueacuten over the last six hundred years

Sedimentological compositional and geochemical indicators all show changes in

the N cycle associated to LUCC lake dynamics and climate changes (Fig 10) From

the pre-Columbian indigenous settlement including the Spanish colonial period up

to the start of the Republic (1300 - 1800 CE) the introduction of crops such as

quinoa and wheat but also the clearing of land for extensive agriculture would have

favored the entry of N into the lake Conversely major changes observed during the

last century were characterized by a sharp decrease of N input that were coeval

with the increase of tree plantations

From 1365 until 1550 CE (unit 2c 2b and half of 2a Fig 3 and Fig 10) pre-

Columbian agricultural societies planted mostly crops of corn and quinoa (Ramirez

and Vidal 1985) This period is characterized by large peaks seen in the δsup1⁵N record

(eg 1403 1452 1476 and 1505) with overall high δsup1⁵N values (up to 5permil) indicating

that N input from watershed was elevated and oscillating to the beat of the NT These

positive δsup1⁵N peaks could be due to several causes including a) the clearing of land

for farming b) N loss via denitrification which would be generally augmented in

anoxic environments (Diebel et al 2009) such as Lago Vichuqueacuten (low MnFe

values about 0001 Fig 4) or c) climate especially cold-wet winters or hot-dry

summers can also exert control on the δsup1⁵N record Indeed tree-ring records and

summer temperature reconstructions show overall wetcold conditions during this

period (Christie et al 2009 Von Gunten et al 2009 Fig 10) Increased

precipitation would bring more sediment (and nutrients) from the watershed into the

99

lake and increase lake productivity which is also detected by the geochemical

proxies for productivity (peaks of BrTi SrCa and TOC Fig 4 and Fig 10) (see also

Frugone-Alvarez et al 2017)

Figure 10 Changes in the N availability during the last six centuries in Lago

Vichuqueacuten a) lake sediment δsup1⁵N values displayed more positive values during the

prehistoric period Spanish Colony and the starting 19th century which is associated

with enhanced N input from the watershed by extensive clearing and crop

plantations The inset shows this relationship between sediment δsup1⁵N and

100

percentage of meadow cover over the last 30 years b) Summer temperature

reconstruction from central Chile (von Gunten et al 2009) showing a

correspondence with cold phases and high δsup1⁵N values at Vichuqueacuten except for the

last 100 years c) Palmer Drought Severity Index (PDSI) is an interannual moisture

variability reconstruction for late springndashearly summer during the last six centuries

(Christie et al 2009) Grey shadow indicating higher precipitation periods

From 1550 and 1810 CE (unit 2a) and during the Colonial period several peaks

of δ15N could be further related not only to high precipitation (Fig 10 grey shadow)

but also pulses of enhanced N input from the watershed linked to human land use

In 1550 CE Juan Cuevas was granted lands and indigenous workers under the

encomienda system for agricultural and mining development of the Vichuqueacuten

village (Ramiacuterez and Vidal 1985) Historical documents show that around 1579 CE

the Vichuqueacuten watershed was occupied by indigenous communities dedicated to

wheat plantations and vineyards wood extraction and gold mining (Odone 1998)

The introduction of the Spanish agricultural system implied not just a change in the

types of crops used (from quinoa to vineyards and wheat) but also a clearing of

native species for the continuous increase of agricultural surface and wood

extraction During the Colonial period wheat from Vichuqueacuten was exported to Peru

(Ramiacuterez and Vidal 1985) Armesto et al (2009) indicate that during the XVIII and

XIX centuries the extraction of wood for mining operations was important enough to

cause extensive loss of native forests The independence and instauration of the

Chilean Republic did not change this prevailing system Increases in the

contributions of N to the lake during the second half of the XIX century (peaks in

δsup1⁵N ca 1870 CE) could be due to expanding farm land dedicated for wheat

101

production and increased commercial trade with California and Canada (Ramiacuterez

and Vidal 1985)

In contrast LUCC in the last century are clearly related to the development of

large-scale tree plantations (Fig 7) The δsup1⁵N record reaches the lowest values of

the entire sequence in the last few decades (Fig 10) A marked increase in lake

productivity NT concentration and decreasing sediment input is synchronous (unit

1 Fig 4) with trees replacing meadows shrublands and areas with native forests

(Fig 7 and 8) The implementation of the lsquoForest Lawrsquo in 1974 had a stronger impact

on the landscape and lake ecosystem dynamics than the impacts of ongoing climate

change in the region which is much more recent (Garreaud et al 2018) although

the prevalence of hot dry summers seen over the last decade would also be

associated with low δsup1⁵N values and increase of NT (Fig 10) Heavy metals ratios

(FeTi CoTi and PbTi) show notable increases in lake sediments from 1992 to 2011

CE (Fig 4) Although this could be related to mining in the El Maule region the

closest mines are 60 Km away (Pencahue and Romeral) so local factors related to

shoreline urbanization for the summer homes and an increase in tourist activity

could also be a major factor

6 Conclusions

The N isotope signal in the watershed depends on the rates of exchange

between vegetation and soil cover (Fig 11) Plants preferentially uptake 14N and the

underlying soils become enriched in 15N especially when the terrestrial ecosystem

is N-limited andor significant N loss occurs (ie denitrification andor ammonia

volatilization) LUCC in the Lago Vichuqueacuten watershed have heavily modified the

links between terrestrial and aquatic ecosystems with agriculture practices

102

contributing more N to the lake than tree plantations or native forests In situ lake

processes can also fractionate N isotopes An increase of N-fixing species results

in OM depleted in 15N which results in POM with lower δsup1⁵N values during these

periods During winter phytoplankton is typically enriched in 15N due to the

decreased abundance of N-fixing species and increased N input from the

watershed This in turn generates the highest δsup1⁵NPOM values in Lago Vichuqueacuten

Periods of elevated productivity tend to deplete the dissolved inorganic N of 14N

resulting in even higher δ15N values

Our study illustrates the usefulness of δsup1⁵N as a tool for reconstructing the past

influence of LUCC on N availability in lake ecosystems To constrain the relative

roles of the diverse forcing mechanisms that can alter N cycling in mediterranean

ecosystems all main components of the N cycle should be monitored seasonally

(or monthly) including the measurements of δ15N values in land samples

(vegetation-soil) as well as POM

103

Figure 11 Summary of human and environmental factors controlling the δ15N

values of lake sediments Particulate organic matter(POM) δ15N values in

mediterranean lakes are driven by N input from the watershed that in turn depend

on land use and cover changes (ie forest plantation agriculture) andor seasonal

changes in N sources andor lake ecosystem processes (ie bioproductivity redox

condition denitrification) Arrows indicate the direction of N fluxes (inputoutput from

the N cycle) N cycle processes that deplete lake sediments of 15N are shown in

blue whereas those that enrich sediments in 15N are shown in red

104

Supplementary material

Figure S1 Pearson correlate coefficient between geochemical variables in core

VIC13-2B Positive and large correlations are in blue whereas negative and small

correlations are in red (p valuelt0001)

Figure S2 Principal Component Analysis of geochemical elements from core

VIC13-2B

105

Table S1 Lago Vichuqueacuten radiocarbon samples

RADIOCARBON

LAB CODE

SAMPLE

CODE

DEPTH

(m)

MATERIAL

DATED

14C AGE ERROR

D-AMS 029287

VIC13-2B-

1 043 Bulk 1520 24

D-AMS 029285

VIC13-2B-

2 085 Bulk 1700 22

D-AMS 029286

VIC13-2B-

2 124 Bulk 1100 29

Poz-63883 Chill-2D-1 191 Bulk 945 30

D-AMS 001133

VIC11-2A-

2 201 Bulk 1150 44

Poz-63884

Chill-2D-

1U 299 Bulk 1935 30

Poz-64089

VIC13-2D-

2U 463 Bulk 1845 30

Poz-64090

VIC13-2A-

3U 469 Bulk 1830 35

D-AMS 010068

VIC13-2D-

4U 667 Bulk 2831 25

Poz-63886

VIC13-2D-

4U 719 Bulk 3375 35

106

D-AMS 010069

VIC13-2D-

5U 775 Bulk 3143 27

Poz-64088

VIC13-2D-

5U 807 Bulk 3835 35

D-AMS-010066

VIC13-2D-

7U 1075 Bulk 6174 31

Poz-63885

VIC13-2D-

7U 1197 Bulk 6440 40

Poz-5782 VIC13-15 DIC 180 25

Table S2 Loadings of the trace chemical elements used in the PCA

Elementos PC1 PC2 PC3 PC4

Zr 0922 0025 -0108 -0007

Zn 0913 -0124 -0212 0001

Rb 0898 -0057 -0228 0016

K 0843 0459 0108 0113

Ti 0827 0497 0060 -0029

Al 0806 0467 0080 0107

Si 0803 0474 0133 0136

Y 0784 -0293 -0174 0262

V 0766 0455 0090 -0057

Br 0422 -0716 -0045 0226

Ca 0316 -0429 0577 0489

Sr 0164 -0420 0342 -0182

Cl 0151 -0781 -0397 0162

107

Mn -0121 -0091 0859 0095

S -0174 -0179 -0051 0714

Pb -0349 0414 -0282 0500

Fe -0700 0584 -0023 0280

Co -0704 0564 -0107 0250

Table S3 Stable Isotope values from vegetation of Lago Vichuqueacutenacutes watershed

Taxa Classification δsup1⁵N δsup1sup3C CN

molar

Poaceae Meadow 1216 -2589 3602

Juncacea Meadow 1404 -2450 3855

Cyperaceae Meadow 1031 -2596 1711

Taraxacum

officinale Meadow 836 -2400 2035

Poaceae Meadow 660 -2779 1583

Poaceae Meadow 453 -2813 1401

Poaceae Meadow 966 -2908 4010

Juncus Meadow 1247 -2418 3892

Poaceae Meadow 747 -3177 6992

Poaceae Meadow 942 -2764 3147

Poaceae Meadow 1479 -2634 2895

Poaceae Meadow 1113 -2776 1795

Poaceae Meadow 2215 -2737 7971

Poaceae Meadow 1121 -2944 2934

Poaceae Meadow 638 -3206 1529

108

Macrophytes Macrophytes 886 -3044 2286

Macrophytes Macrophytes 1056 -2720 2673

Macrophytes Macrophytes 769 -3297 1249

Macrophytes Macrophytes 967 -2763 1442

Macrophytes Macrophytes 959 -2670 2105

Macrophytes Macrophytes 334 -2728 1038

Acacia dealbata

Introduced

species 656 -2696 1296

Acacia dealbata

Introduced

species 487 -2941 1782

Acacia dealbata

Introduced

species 220 -2611 3888

Luma apiculata Native species 433 -2542 4135

Luma apiculata Native species 171 -2664 7634

Luma apiculata Native species -001 -2736 6283

Luma apiculata Native species 029 -2764 6425

Azara sp Native species 159 -2868 8408

Azara sp Native species 101 -2606 2885

Baccharis concava Native species 104 -2699 5779

Baccharis concava Native species 265 -2488 4325

Baccharis concava Native species 287 -2562 7802

Baccharis concava Native species 427 -2781 5204

Baccharis linearis Native species 190 -2610 4414

Baccharis linearis Native species 023 -2825 5647

109

Peumus boldus Native species 042 -2969 6327

Peumus boldus Native species 205 -2746 4110

Peumus boldus Native species 183 -2743 6293

Chusquea quila Native species 482 -2801 4275

Poaceae meadow 217 -2629 7214

Lobelia sp Native species 224 -2645 3963

Lobelia sp Native species -091 -2565 4538

Aristotelia chilensis Native species -035 -2785 5247

Aristotelia chilensis Native species -305 -2889 2305

Aristotelia chilensis Native species 093 -2836 5457

Chusquea quila Native species 173 -2754 3534

Chusquea quila Native species 045 -2950 6739

Quillaja saponaria Native species 223 -2838 9385

Scirpus meadow 018 -2820 7115

Sophora sp Native species -184 -2481 2094

Sophora sp Native species -181 -2717 1721

Pinus radiata

Introduced

trees 1581 -2602 3679

Pinus radiata

Introduced

trees 1431 -2784 4852

Pinus radiata

Introduced

trees -091 -2708 9760

Pinus radiata

Introduced

trees 153 -2568 3470

110

Salix sp

Introduced

trees 632 -2878 1921

LITERATURE CITED

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea

AM Marquet PA 2010 From the Holocene to the Anthropocene A historical

framework for land cover change in southwestern South America in the past 15000

years Land use policy 27 148ndash160

httpsdoiorg101016jlandusepol200907006

Battye W Aneja VP Schlesinger WH 2017 Earth rsquo s Future Is nitrogen the next

carbon  Earthrsquos Future Global Biogeochem Cycles 30 1000ndash1014

httpsdoiorg101002eft2235

Blaauw M Christeny JA 2011 Flexible paleoclimate age-depth models using an

autoregressive gamma process Bayesian Anal 6 457ndash474

httpsdoiorg10121411-BA618

Bowman DMJS Cook GD 2002 Can stable carbon isotopes (δ13C) in soil

carbon be used to describe the dynamics of Eucalyptus savanna-rainforest

boundaries in the Australian monsoon tropics Austral Ecol

httpsdoiorg101046j1442-9993200201158x

Brahney J Ballantyne AP Turner BL Spaulding SA Otu M Neff JC 2014

Separating the influences of diagenesis productivity and anthropogenic nitrogen

deposition on sedimentary δ15N variations Org Geochem 75 140ndash150

httpsdoiorg101016jorggeochem201407003

111

Bruland GL MacKenzie RA 2010 Nitrogen Source Tracking with δN Content

of Coastal Wetland Plants in Hawaii J Environ Qual 39 409

httpsdoiorg102134jeq20090005

Carrevedo ML Frugone M Latorre C Maldonado A Bernaacuterdez P Prego R

Caacuterdenas D Valero-Garceacutes B 2015 A 700-year record of climate and

environmental change from a high Andean lake Laguna del Maule central Chile

(36degS) Holocene 25 956ndash972 httpsdoiorg1011770959683615574584

Christie DA Boninsegna JA Cleaveland MK Lara A Le Quesne C

Morales MS Mudelsee M Stahle DW Villalba R 2009 Aridity changes in the

Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from

tree-rings Clim Dyn 36 1505ndash1521 httpsdoiorg101007s00382-009-0723-4

Craine JM Elmore AJ Aidar MPM Dawson TE Hobbie EA Kahmen A

Mack MC Kendra K Michelsen A Nardoto GB Pardo LH Pentildeuelas J

Reich B Schuur EAG Stock WD Templer PH Virginia RA Welker JM

Wright IJ 2009 Global patterns of foliar nitrogen isotopes and their relationships

with cliamte mycorrhizal fungi foliar nutrient concentrations and nitrogen

availability New Phytol 183 980ndash992 httpsdoiorg101111j1469-

8137200902917x

Cuven S Francus P Lamoureux SF 2010 Estimation of grain size variability

with micro X-ray fluorescence in laminated lacustrine sediments Cape Bounty

Canadian High Arctic J Paleolimnol 44 803ndash817 httpsdoiorg101007s10933-

010-9453-1

Diebel M Vander Zanden MJ 2012 Nitrogen stable isotopes in streams  stable

isotopes Nitrogen effects of agricultural sources and transformations Ecol Appl 19

1127ndash1134 httpsdoiorg10189008-03271

112

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in freshwater

wetlands record long-term changes in watershed nitrogen source and land use SO

- Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash

2916

Fariacuteas L Castro-Gonzales M Cornejo M Charpentier J Faundez J

Boontanon N Yoshida N 2009 Denitrification and nitrous oxide cycling within the

upper oxycline of the oxygen minimum zone off the eastern tropical South Pacific

Limnol Oceanogr 54 132ndash144

Farquhar GD Ehleringer JR Hubick KT 1989 Carbon Isotope Discrimination

and Photosynthesis Annu Rev Plant Physiol Plant Mol Biol

httpsdoiorg101146annurevpp40060189002443

Farquhar GD OrsquoLeary MH Berry JA 1982 On the relationship between

carbon isotope discrimination and the intercellular carbon dioxide concentration in

leaves Aust J Plant Physiol httpsdoiorg101071PP9820121

Fogel ML Cifuentes LA 1993 Isotope fractionation during primary production

Org Geochem httpsdoiorg101007978-1-4615-2890-6_3

Frugone-Aacutelvarez M Latorre C Giralt S Polanco-Martiacutenez J Bernaacuterdez P

Oliva-Urcia B Maldonado A Carrevedo ML Moreno A Delgado Huertas A

Prego R Barreiro-Lostres F Valero-Garceacutes B 2017 A 7000-year high-

resolution lake sediment record from coastal central Chile (Lago Vichuqueacuten 34degS)

implications for past sea level and environmental variability J Quat Sci 32 830ndash

844 httpsdoiorg101002jqs2936

Gaumllman V Rydberg J Bigler C 2009 Decadal diagenetic effects on δ 13 C and

δ 15 N studied in varved lake sediment Limnol Oceanogr 54 917ndash924

httpsdoiorg104319lo20095430917

113

Gerhart LM McLauchlan KK 2014 Reconstructing terrestrial nutrient cycling

using stable nitrogen isotopes in wood Biogeochemistry 120 1ndash21

httpsdoiorg101007s10533-014-9988-8

Granger J Sigman DM Lehmann MF Tortell PD 2008 Nitrogen and oxygen

isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria 53

2533ndash2545 httpsdoiorg10230740058342

Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater

eutrophic lake Limnol Oceanogr 51 2837ndash2848

httpsdoiorg104319lo20065162837

Harris D Horwaacuteth WR van Kessel C 2001 Acid fumigation of soils to remove

carbonates prior to total organic carbon or CARBON-13 isotopic analysis Soil Sci

Soc Am J 65 1853 httpsdoiorg102136sssaj20011853

Houmlgberg P 1997 Tansley review no 95 natural abundance in soil-plant systems

New Phytol httpsdoiorg101046j1469-8137199700808x

Kylander ME Ampel L Wohlfarth B Veres D 2011 High-resolution X-ray

fluorescence core scanning analysis of Les Echets (France) sedimentary sequence

New insights from chemical proxies J Quat Sci 26 109ndash117

httpsdoiorg101002jqs1438

Lara A Solari ME Prieto MDR Pentildea MP 2012 Reconstruccioacuten de la

cobertura de la vegetacioacuten y uso del suelo hacia 1550 y sus cambios a 2007 en la

ecorregioacuten de los bosques valdivianos lluviosos de Chile (35o - 43o 30acute S) Bosque

(Valdivia) 33 03ndash04 httpsdoiorg104067s0717-92002012000100002

Lehmann M Bernasconi S Barbieri A McKenzie J 2002 Preservation of

organic matter and alteration of its carbon and nitrogen isotope composition during

114

simulated and in situ early sedimentary diagenesis Geochim Cosmochim Acta 66

3573ndash3584 httpsdoiorg101016S0016-7037(02)00968-7

Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos Transactions

American Geophysical Union httpsdoiorg1010292007EO070007

Liu G Li M An L 2007 The Environmental Significance Of Stable Carbon

Isotope Composition Of Modern Plant Leaves In The Northern Tibetan Plateau

China Arctic Antarct Alp Res httpsdoiorg1016571523-0430(07-505)[liu-

g]20co2

Marzecovaacute A Mikomaumlgi A Koff T Martma T 2011 Sedimentary geochemical

response to human impact on Lake Notildemmejaumlrv Estonia Est J Ecol 60 54

httpsdoiorg103176eco2011105

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash

1643 httpsdoiorg1011770959683613496289

Meyers PA 2003 Application of organic geochemistry to paleolimnological

reconstruction a summary of examples from the Laurention Great Lakes Org

Geochem 34 261ndash289 httpsdoiorg101016S0146-6380(02)00168-7

Naeher S Gilli A North RP Hamann Y Schubert CJ 2013 Tracing bottom

water oxygenation with sedimentary MnFe ratios in Lake Zurich Switzerland

Chem Geol 352 125ndash133 httpsdoiorg101016jchemgeo201306006

Odone C 1998 El Pueblo de Indios de Vichuqueacuten siglos XVI y XVII Rev Hist

Indiacutegena 3 19ndash67

Pausch J Kuzyakov Y 2018 Carbon input by roots into the soil Quantification of

rhizodeposition from root to ecosystem scale Glob Chang Biol

httpsdoiorg101111gcb13850

115

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98

httpsdoiorg1011772053019614564785

Sun W Zhang E Jones RT Liu E Shen J 2016 Biogeochemical processes

and response to climate change recorded in the isotopes of lacustrine organic

matter southeastern Qinghai-Tibetan Plateau China Palaeogeogr Palaeoclimatol

Palaeoecol httpsdoiorg101016jpalaeo201604013

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of

different trophic status J Paleolimnol 47 693ndash706

httpsdoiorg101007s10933-012-9593-6

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl

httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M 2009 High-resolution quantitative climate

reconstruction over the past 1000 years and pollution history derived from lake

sediments in Central Chile Philos Fak PhD 246

Woodward C Chang J Zawadzki A Shulmeister J Haworth R Collecutt S

Jacobsen G 2011 Evidence against early nineteenth century major European

induced environmental impacts by illegal settlers in the New England Tablelands

south eastern Australia Quat Sci Rev 30 3743ndash3747

httpsdoiorg101016jquascirev201110014

Xu H Yu K Lan J Sheng E Liu B Ye Y Hong B Wu H Zhou K Yeager

KM 2016 Different responses of sedimentary δ15N to climatic changes and

116

anthropogenic impacts in lakes across the Eastern margin of the Tibetan Plateau

J Asian Earth Sci 123 111ndash118 httpsdoiorg101016jjseaes201603024

117

DISCUSION GENERAL

El Nitroacutegeno (N) es un elemento clave que controla la dinaacutemica y

funcionamiento de ecosistemas tanto terrestres como acuaacuteticos (Vitousek et al

1997) Pese a que el N (N2) es muy abundante en la atmoacutesfera (78) es escaso

en los ecosistemas pues la mayoriacutea de la biota no puede acceder a su forma

molecular (Galloway et al 1995 Zaehle et al 2013) En este sentido la entrada

natural de N en los ecosistemas es viacutea fijacioacuten bioloacutegica del N2 por bacterias que lo

convierten en compuestos bioloacutegicamente disponibles (Battye et al 2017) Debido

a que la fijacioacuten es un proceso energeacuteticamente costoso los ecosistemas

comuacutenmente estaacuten limitados por N (Vitousek and Howarth 1991) Los LUCC

contribuyen al incremento del N disponible y son una de las principales causas de

eutroficacioacuten y contaminacioacuten de los cuerpos de agua (Woodward et al 2012)

En Chile central los LUCC principalmente relacionados con las actividades

agriacutecolas y forestales han causado grandes cambios en el ciclo del N debido al

118

reemplazo de la cobertura natural por un monocultivo y al uso de fertilizantes que

modifican los aportes de MO y N a los cuerpos de agua El programa de

estabilizacioacuten de laderas impulsada por el gobierno (Albert 1900) y la ley forestal

de 1974 han fomentado la forestacioacuten con plantaciones de Pinus radiata y

Eucalyptus globulus y en el caso de Lago Vichuqueacuten estas actualmente cubren maacutes

del 60 de su cuenca (Cap2 Fig 5) Ademaacutes en Laguna Matanzas la

sobreexplotacioacuten del agua en conjunto con el cambio climaacutetico actual el que ha

conducido a una de las megasequiacuteas maacutes severas en las uacuteltimas deacutecadas

(Garreaud et al 2017) generoacute una combinacioacuten letal que secoacute el lago en tan solo

10 antildeos (Cap1 Fig1) Las evidencias obtenidas a partir de estos dos lagos

permiten identificar las huellas del Antropoceno en Chile central basadas en el

registro sedimentario lacustre

La transferencia de N desde los ecosistemas terrestres a acuaacuteticos es un

proceso natural con controles bioacuteticos climaacuteticos y geoloacutegicos El enlace

hidroloacutegico entre los ecosistemas terrestres y acuaacuteticos hace que el estado troacutefico

de los lagos esteacute vinculado al de su cuenca (McLauchlan et al 2013) En Chile

central se sabe poco del impacto de los LUCC sobre el ciclo de nutrientes en los

ecosistemas lacustres aunque al menos desde la colonizacioacuten espantildeola se tienen

registros de influencia humana en las cuencas Durante la colonia espantildeola

Laguna Matanzas fue una hacienda ganadera que exportaba productos caacuternicos al

Peruacute (Contreras-Lopez et al 2014) A su vez en el Lago Vichuqueacuten se realizaban

extensas actividades agriacutecolas hasta comienzos del s XX como por ejemplo

cultivos de vid y trigo ademaacutes de extraccioacuten de madera y mineriacutea de oro (Odone

1997) En las uacuteltimas deacutecadas los LUCC han estado vinculados principalmente con

el desarrollo forestal al compaacutes de una estrategia gubernamental de fomentar con

119

incentivos financieros (Ley de Bosques DFL nordm265 de 1931 y DFL 701 de 1974)

esta actividad El incremento de la superficie forestal es especialmente fuerte en

ambos lagos a partir de la deacutecada de 1980 y hasta 2016 (Laguna de Matanzas 0-

17 Lago Vichuqueacuten 1-66) Este aumento habriacutea sido en detrimento del bosque

nativo y los pastizales (Cap 1 Fig 5 y Cap 2 Fig 8) El incremento de la superficie

forestal generariacutea una disminucioacuten de los aportes de sedimentos y nutrientes al lago

y en este sentido un cambio de estado en los flujos de N (e g tipping points) que

a su vez ha quedado registrado en la sentildeal isotoacutepica (δ15N) y la acumulacioacuten de

MO en los sedimentos lacustres

Isoacutetopos estables y la dinaacutemica de N en los lagos de Chile central

Los sedimentos lacustres son verdaderos ldquosumiderosrdquo que pueden llegar a

registrar lo que ocurre en cuanto a la historia ambiental de su cuenca En esta tesis

se utilizan los isoacutetopos estables de N (15N y 14N) en sedimentos lacustres para

reconstruir los cambios en la disponibilidad de N en el tiempo y establecer la

magnitud de impacto generado por actividades humanas El fraccionamiento

cineacutetico en los lagos es mediado por procesos bioloacutegicos que mediante la

asimilacioacuten de N genera un producto (eg fitoplancton) maacutes ldquoligerordquo (valores maacutes

bajos de 15N) que su remanente (eg DIN) (Fogel y Cifuentes 1993) Sin embargo

en periacuteodos en que los lagos estaacuten limitados por N el fitoplancton discrimina menos

y la MO resultante queda enriquecida en 15N (Fig 1 a y b) Ademaacutes la

desnitrificacioacuten acentuada en lagos de fondo anoacutexicos (eg Laguna Matanzas

entre 1800 y 1940 Cap1 Fig 6) conduce a un enriquecimiento en 15N de los

sedimentos y de la columna de agua Esta informacioacuten queda reflejada en la MO

120

de los sedimentos lacustres lo que permite conocer la disponibilidad del N en el

tiempo a partir de las variaciones de 15N

En esta tesis analizamos la MO de los sedimentos lacustres para reconstruir

la influencia de los LUCC en los aportes de sedimentos y N al lago En teacuterminos de

asimilacioacuten de N se puede distinguir entre dos grupos principales de productores

primarios que componen el POM (Fig1)

1 Los que asimilan el DIN compuesto por amonio nitratos y nitritos Aquiacute el

δ15N resultante fluctuaraacute en torno a valores maacutes positivos en la medida que

la productividad se incrementa o no hay reposicioacuten del DIN (Fig 1)

2 Los fijadores de N Dado que es un proceso energeacuteticamente costoso en

ambientes que no estaacuten limitados por N muchas veces son excluiacutedas

competitivamente por el resto del fitoplancton Si el DIN queda agotado por

el incremento de la productividad (o bien si el ambiente estaacute limitado ya sea

por N o por otros nutrientes) los fijadores de N pueden florecer y la MO que

se genera a partir de ello tendraacute un δ15N con valores en torno a 0permil

De este modo la MO en los sedimentos lacustres dependeraacute de la

composicioacuten de productores primarios (ie fijadores vs asimiladores del DIN)

ademaacutes de los aportes desde la cuenca tanto de MO como del N de la cuenca que

pasa a formar parte del DIN (eg fertilizantes estieacutercol) (Fig 1)

La MO de los lagos estudiados en esta tesis ha sido analizada a partir de

variables geoquiacutemicas isotoacutepicas frotis y estaacute compuesta principalmente por

diatomeas y MO amorfa A partir de los datos obtenidos en esta tesis los valores

de δ15N aumentan cuando hay una mayor cobertura agriacutecola o pastizales A su vez

tiende a disminuir cuando aumenta la cobertura arboacuterea independiente si esta es

por plantaciones forestales o por bosque nativo

121

Por otra parte la dinaacutemica del lago tambieacuten imprime caracteriacutesticas

especiales en el POM observaacutendose variaciones estacionales en los valores

δ15NPOM Durante la estacioacuten caacutelida y seca se observan valores maacutes bajos que

durante la estacioacuten friacutea y huacutemeda posiblemente relacionado con el incremento de

la contribucioacuten de especies fijadoras de N (Lago Vichuqueacuten Fig 9 Cap 2) durante

el verano En la estacioacuten friacutea y huacutemeda el DIN seriacutea la principal fuente de N Las

mayores entradas de MO y N terrestre debidos a un incremento del lavado de la

cuenca como consecuencia de las precipitaciones y la mineralizacioacuten de la MO

podriacutean estimular la produccioacuten de MO lacustre por crecimiento del fitoplancton

Como consecuencia se observan tendencias decrecientes de los valores de

δ15N en la MO sedimentaria cuando la productividad en el lago estaacute relacionada

con especies fijadoras de N mientras que el δ15N muestra aumentos cuando la

productividad del lago estaacute asociada principalmente al consumo del DIN pero

tambieacuten cuando predominan procesos de perdida de N (eg desnitrificacioacuten Fig

1)

Hemos identificado tres fases en la dinaacutemica del δ15N para ambos lagos

Entre 1800 y 1940 CE la cuenca de laguna de Matanzas estaba dominada por

actividades agriacutecolas y ganaderas (δ15Nsuelo gt 4permil Cap 1 Fig 4 y 6) Las entradas

de sedimentos y MO desde la cuenca son altas (δ13C lt -209permil ZrTi ~029 AlTi

~013) y coincide con un clima maacutes huacutemedo y friacuteo (Von Gunten et al 2009

Christiansen et al 2011) El lago teniacutea un nivel de agua maacutes profundo dominado

por condiciones anoacutexicas (MnFe ~0013) que contribuiriacutean a mayores valores de

δ15N en la columna de agua y por ende de los sedimentos acumulados en el fondo

debido a la peacuterdida diferencial de 14N viacutea desnitrificacioacuten (Fig 7 Cap1) La baja

122

produccioacuten de MO lacustre (BrTi ~002 TOC~17) coincide con un bajo contenido

de NT (~478 μg) y valores maacutes positivos de δ15N (gt 4permil)

La actividad agriacutecola tambieacuten dominaba en la cuenca del Lago Vichuqueacuten

durante este periacuteodo (δ15Nsuelo gt4permil Cap2 Fig 6) El aporte sedimentario desde la

cuenca es alto (AlTi ~029 ZrTi ~032) y fue favorecido por mayores

precipitaciones a las actuales (Christiansen et al 2011) El Lago Vichuqueacuten es un

lago estratificado anoacutexico (MnFe ~002) y profundo (~30 m) por lo que la

desnitrificacioacuten juega un rol importante en el enriquecimiento de la MO

sedimentaria La baja produccioacuten de MO (BrTi ~007 TOC ~12) de origen

lacustre (δ13C ~ -268permil) coincide con un bajo contenido de NT (~309μg +6) y

valores maacutes positivos de δ15N (56permil +03)

Durante esta fase en ambos lagos los aportes de N de la cuenca parecen

ser los principales responsables en las fluctuaciones del δ15N Esta sentildeal podriacutea

estar amplificada por bajas temperaturas (que afectan la productividad lacustre) y

altas precipitaciones que favorecen el lavado de la cuenca y aumentan el aporte de

sedimentos y MO desde la cuenca predominantemente agriacutecola

Entre 1940 y 1980 CE en Laguna Matanzas se observa un incremento en

la acumulacioacuten de MO algal (TOC ~2 +1 δ13C ~-230+09permil) El ambiente

deposicional es ligeramente menos turbulento que el anterior (AlTi ~011+001

ZrTi ~03+001) y el lago estaacute en una fase de transicioacuten hacia condiciones maacutes

oacutexicas (MnFe ~002+0004) y maacutes productivas (BrTi ~004+0007) A su vez δ15N

tiende hacia valores maacutes negativos (δ15N ~30permil+03) mientras que el NT aumenta

oscilando en antifase con el δ15N

En Lago Vichuqueacuten en cambio se observa un ligero incremento en la

acumulacioacuten de MO (TOC ~13 +02) de origen terrestre (δ13C ~-27permil +04) La

123

productividad es similar al periacuteodo anterior (BrTi ~007+003) y el ambiente

deposicional es menos turbulento (AlTi ~02 +009 Zrti ~033 +007) El δ15N y el

NT oscilan en torno a valores ligeramente maacutes bajos (δ15N ~51permil +04 NT ~292μg

+6) Este periacuteodo se caracteriza por ser maacutes caacutelido que el anterior lo que

posibilitariacutea un incremento en la productividad lacustre en Laguna Matanzas pero

que no es observada en el Lago Vichuqueacuten

Entre 1980 y la actualidad en Laguna Matanzas habriacutea un incremento de la

acumulacioacuten de MO (TOC ~59 + 3) asociada a un incremento en la productividad

del lago (BrTi ~009+005) y a los aportes de MO terrestres (δ13C ~-24 + 2permil) El

lago se vuelve maacutes oacutexico (Mn ~0003 +0006) y las entradas de sedimento

disminuyen (AlTi~ 009 +002) El δ15N tiende a valores maacutes negativos (δ15N ~13permil

+1) y el NT aumenta de 20 a 55 μg (NT ~346 + 9 μg) tomando valores sin

precedentes en todo el registro En los sedimentos lacustres del Lago Vichuqueacuten

tambieacuten se observa un incremento de la acumulacioacuten de MO (TOC ~17 + 05)

asociada a un incremento en la productividad del lago (BrTi ~01 + 003) y las

entradas de sedimento desde la cuenca disminuyen (AlTi ~005 + 005) El δ15N

(~43 + 05permil) tiende a valores maacutes negativos y el NT incrementa de 20 a 55 μg (NT

~346 + 9 μg) oscilando en antifase

Durante esta fase en ambos lagos se observa un aumento en la

acumulacioacuten de MO sedimentaria un incremento en el NT y valores maacutes negativos

de δ15N que coincide con el incremento de la superficie forestal de las cuencas

(Laguna Matanzas gt17 Lago Vichuqueacuten gt60)

124

Figura 2 Comparacioacuten de los cambios del ciclo del N entre Laguna Matanzas y

Lago Vichuqueacuten con los procesos biogeoquiacutemicos contrastantes en rojo En L

Matanzas las condiciones oacutexicas podriacutean estar favoreciendo la nitrificacioacuten del

amonio En Vichuqueacuten las condiciones anoacutexicas favorecen un aumento en δ15N de

la MO en los sedimentos por desnitrificacioacuten y mineralizacioacuten

Los ambientes mediterraacuteneos en el que los lagos del presente estudio se

encuentran insertos estaacuten caracterizados por una estacioacuten seca prolongada y las

precipitaciones ocurren en eventos puntuales alcanzando altos montos

pluviomeacutetricos en poco tiempo Las lluvias favorecen un lavado de la cuenca la

perdida de N y otros nutrientes Por lo que es esperable que los sedimentos del

lago reflejen mejor los valores isotoacutepicos de los suelos de la cuenca durante los

periacuteodos con altos montos pluviomeacutetricos En el Lago Vichuqueacuten por ejemplo el

125

POM superficial (2 y 5 m de profundidad) despliega valores isotoacutepicos maacutes

positivos en invierno presumiblemente como resultado de mayores aportes de MO

y N de su cuenca (Fig 1b) En ambos lagos los valores maacutes positivos en los

sedimentos lacustres ocurren durante periacuteodos con mayores montos pluviomeacutetricos

(Cap1 Fig 6 y Cap 2 Fig 12)

Ademaacutes del efecto de la precipitacioacuten en el aporte de nutrientes al lago en

esta tesis hemos encontrado que los mayores aportes de N desde la cuenca se dan

cuando la cobertura vegetal del suelo es menor En Laguna Matanzas el desarrollo

de la actividad ganadera desde la llegada de los espantildeoles a la cuenca habriacutea

incrementado los aportes de N al lago Los valores de δ15N en los sedimentos

lacustres depositados durante este periacuteodo son los maacutes positivos de todo el registro

(~4permil) A su vez en Lago Vichuqueacuten los valores isotoacutepicos maacutes positivos se

registran entre 1300 y 1900 CE que coinciden con el mayor desarrollo de

actividades agriacutecola y de extraccioacuten de maderas de la cuenca (Fig 10 Cap 2)

Los recientes LUCC (a partir de 1975) en las cuencas de Laguna Matanzas

y Lago Vichuqueacuten estaacuten caracterizados por un incremento de la superficie forestal

y agriacutecola en reemplazo de la cobertura de pastizal (Laguna Matanzas) y bosque

nativo (Lago Vichuqueacuten) Los valores de δ15N en los testigos sedimentarios fueron

maacutes positivos cuanto mayor la superficie agriacutecola de la cuenca y maacutes negativos

cuanto mayor la superficie forestal Aunque por los alcances de esta tesis no

podemos ser concluyentes respecto del origen del NT (aloacutectonoautoacutectono) parece

ser que esta maacutes ligado a los aportes de la cuenca pese a la disminucioacuten del aporte

sedimentario observado en ambos lagos Las plantaciones forestales a diferencia

del bosque nativo son fertilizadas con una mezcla de N P y K (Toral et al 2005)

Por lo que pese a la disminucioacuten del aporte sedimentario la concentracioacuten de

126

nutrientes en el aporte al lago puede verse incrementada por el tipo de manejo

forestal con respecto al bosque nativo

Los resultados del primer capiacutetulo demuestran que 1) las plantaciones

forestales yo bosque nativo retiene maacutes sedimentos y MO mientras que el uso de

suelo agriacutecola y los pastizales destinados al desarrollo de la actividad ganadera lo

libera 2) Al parecer la desnitrificacioacuten es el proceso natural maacutes importante de

perdida de N en lagos costeros y favorece el enriquecimiento de 15N tanto en la

columna de agua (ie 15N-DIN) como en los sedimentos una vez enterrados y 3) la

desnitrificacioacuten depende de los cambios en las condiciones REDOX en el lago La

oxigenacioacuten en lagos poco profundos -como Laguna Matanzas- es altamente

fluctuante a escalas decadal-centenal depende de la profundidad de la laacutemina de

agua y de la variabilidad de la precipitacioacuten En este sentido en Laguna Matanzas

habriacutea condiciones anoacutexicas en ambientes cuando el lago alcanza niveles maacutes

altos Estas condiciones se observan entre 1820 y 1940 CE y son coetaacuteneas con

episodios maacutes huacutemedos y friacuteos (von Gunten et al 2009 Christie et al 2009) pero

tambieacuten con una fuerte actividad ganadera en la cuenca

Las fuentes variables de N y su fluctuacioacuten en el tiempo hacen necesario

contar con un anaacutelogo moderno que permite usar al δ15N de los sedimentos

lacustres como un indicador indirecto de los cambios en la disponibilidad de N en

el tiempo Por ello en el segundo capiacutetulo integramos muestras de suelo-

vegetacioacuten y un monitoreo de POM de la columna de agua en verano e invierno La

composicioacuten isotoacutepica de POM estariacutea reflejando cambios de la fuente de N (fijacioacuten

vs consumo del DIN) que variacutea durante el antildeo hidroloacutegico Durante el verano la

mayor temperatura y horas-luz favoreceriacutean las entradas de N al lago viacutea fijacioacuten

bioloacutegica de N2 atmosfeacuterico resultando en un incremento de la MO con un valor

127

isotoacutepico bajo (POM verano~5permil Fig 1b) El N2 (δ15N = 0permil) es fijado praacutecticamente

sin fraccionamiento isotoacutepico generando un δ15N de la OM cercano a 0permil (Leng et

al 2006) En invierno las precipitaciones pueden estar favoreciendo un incremento

en la entrada de nutrientes al lago El DIN de la columna de agua llega a contener

valores de δ15N maacutes altos reflejando estos mayores aportes de la cuenca y el POM

del Lago Vichuqueacuten queda enriquecido en 15N (δ15N ~11permil Cap 2 Fig 9) Estas

variaciones estacionales pueden estar evidenciando un cambio en la composicioacuten

de especies de POM desde especies fijadoras a especies que consumen el N de la

columna de agua Sin embargo para corroborar esta informacioacuten seriacutea deseable

contar con el anaacutelisis de la composicioacuten de especies de las muestras de agua

extraidas

Entre los resultados maacutes importantes estaacuten los valores isotoacutepicos del suelo

y la biomasa representativa de la cuenca que incluye un listado de las especies

nativas de la zona que hasta ahora no se contaba (Cap 2 Tabla en material

suplementario) Las especies colectadas despliegan valores de δ15Nfoliar maacutes

positivos (plantaciones forestales y pastizal ~89permil) que el suelo (35permil) salvo por

las especies nativas las que oscilan en torno a valores cercanos al atmosfeacuterico

(~14permil) La razoacuten isotoacutepica 15N14N refleja la dinaacutemica de intercambio de N entre la

vegetacioacuten y el suelo (Koba et al 2002) La discriminacioacuten es positiva en la mayoriacutea

de los sistemas bioloacutegicos por lo que las plantas tienen valores de δ15N maacutes bajos

que el suelo (Evans et al 2001) como sucede con las especies nativas en Lago

Vichuqueacuten En consecuencia las plantas quedan empobrecidas en 15N y conducen

a un enriquecimiento en 15N del suelo sobretodo si no hay reposicioacuten de N por otras

viacuteas (eg fijacioacuten de N) Por lo tanto los valores maacutes negativos de δsup1⁵Nfoliar de las

especies nativas pueden estar relacionados con el consumo preferencial de 14N del

128

suelo donde la discriminacioacuten isotoacutepica de la vegetacioacuten contra el 15N conduce a

valores del δsup1⁵Nsuelo maacutes altos (Houmlgberg 1997) Por el contrario los valores maacutes

positivos de δsup1⁵Nfoliar de las plantaciones forestales y pastos con respecto al suelo

puede deberse por una parte que el suelo no cuenta con mecanismos naturales de

reposicioacuten de N salvo por la descomposicioacuten de la hojarasca que puede ser maacutes

lenta en Pinus radiata que en bosque nativo (Lusk et al 2001) y por otra por el alto

impacto de los aportes de N (y otros nutrientes) derivado de las actividades

humanas (eg uso de fertilizantes) en el suelo

El alcance maacutes significativo de esta tesis se relaciona con un cambio en la

tendencia maacutes negativa de δsup1⁵N y el incremento del NT a partir de 1940 y a partir

de 1970 CE en ambos lagos La causa maacutes probable de esta tendencia es el

reemplazo de la cobertura natural o preexistente a 1940 CE por plantaciones

forestales

En la figura 2 se observa una siacutentesis de los principales procesos que

afectan la sentildeal isotoacutepica de la MO en los sedimentos lacustres de L Matanzas y

L Vichuqueacuten La entrada de N y MO desde la cuenca depende del tipo de cobertura

Las plantaciones forestales y el bosque nativo retienen maacutes nutrientes y sedimentos

en la cuenca mientras que la agricultura los favorece Sin embargo las praacutecticas

de manejo que incluyen la aplicacioacuten de N (y otros nutrientes) pueden aportar maacutes

nutrientes al lago que la cobertra de bosque nativo Cuando las actividades

forestales cubren una mayor superficie de la cuenca (1940 en adelante) δsup1⁵N oscila

en valores maacutes negativos y el NT tiende a incrementarse en los sedimentos

lacustres Cabe destacar que los valores de δsup1⁵N observados en los testigos

sedimentarios a fines del s XX no tienen precedente durante la conquista y colonia

espantildeola o durante el resto del periodo de la Repuacuteblica

129

Figura 2 Modelo de transferencia de N entre los ecosistemas terrestres y

acuaacuteticos El δ15N de los sedimentos lacustres depende de la interaccioacuten entre los

aportes de la cuenca y porcesos ldquoin-lakerdquo Flechas indican la direccioacuten del flujo de

N En azul las salidasentradas de 14N en rojo las salidasentradas de 15N δ15N de

la interaccioacuten plantas-suelo depende del tipo de cobertura de suelo

130

CONCLUSIONES GENERALES

La transferencia de N entre cuencas y lagos es un factor de control del ciclo

del N en los lagos y queda reflejado en la sentildeal isotoacutepica de los sedimentos

lacustres (Leng et al 2006 McLauchlan et al 2007) En Laguna Matanzas el

suelo de las especies nativas y las plantaciones forestales despliegan valores de

δ15N maacutes bajos (~1permil) que los de Lago Vichuqueacuten (~35permil) Coincidentemente los

sedimentos lacustres de Laguna Matanzas oscilan con valores de δ15N maacutes bajos

(-15 a +45permil Fig 1) que los de Lago Vichuqueacuten (+3 a +8permil)

Por otra parte el estudio de la MO de los sedimentos lacustres ha permitido

reconstruir los cambios en los aportes de MO y N desde la cuenca Aunque no es

posible afirmar queacute tipo de N estaacute entrando al lago (eg Nitroacutegeno orgaacutenico e

inorganico) si podemos decir que los cambios en las fluctuaciones de δ15N son

coincentes con el crecimiento de la actividad forestal (1980 - hasta 2016 L

Matanzas 0-17 y L Vichuqueacuten 1-66) El δ15N fluctuacutea hacia valores maacutes

negativos Ademaacutes se observa un incremento del NT en los sedimentos lacustres

cuanto mayor es la superficie forestal

Entre 1800-1940 las cuencas eran fundamentalmente agriacutecolas y

ganaderas (Cap1 Fig 7 y Cap 2 Fig 12) el δ15N de los sedimentos lacustres

oscila con valores maacutes positivos (L Matanzas +40 plusmn 05permil y L Vichuqueacuten 56 plusmn

033permil Fig 1) hay una baja bioproductividad en el lago (BrTi ~002 TOC~17)

lo que coincide con un bajo contenido de NT (~478 μg) Este es un periacuteodo de altas

precipitaciones (Christie et al 2009) que tienden a favorecer el lavado de la cuenca

131

y con ello el aporte de MO sedimentos y nutrientes desde la cuenca tiende a verse

favorecido Aunque las principales actividades humanas en estas cuencas son

diferentes (ganaderiacutea en Laguna Matanzas Contreras-Lopez et al 2014

agricultura en Lago Vichuqueacuten Odone 1997) en ambos casos hubo un reemplazo

de la cobertura natural de bosques nativo que favorecioacute mayores aportes de N y

sedimentos desde la cuenca en un efecto sumado con el aumento de las

precipitaciones

A partir de 1980 CE en ambos lagos se observa una disminucioacuten en los

valores de δ15N y un incremento del NT que no tiene precedentes en todo el registro

y pese a que ambos lagos son limnologicamente muy diferentes En Lago

Vichuqueacuten el δ15N tiende a oscilar en antifase con el NT (Fig 1) En el caso de

Laguna Matanzas se observa una tendencia hacia valores maacutes negativos y a partir

de 1990s a valores maacutes positivos mientras que el NT tiende a incrementarse de

manera sostenida Ello podriacutea estar relacionado con el crecimiento de la actividad

forestal habriacutea una mayor retencioacuten de N y sedimentos en la cuenca ligado al

incremento de la superficie forestal Ademaacutes en el caso de L Matanzas el

incremento de la actividad agriacutecola (sumado al de las plantaciones forestales)

podriacutea expicar el cambio en la tendencia en la deacutecada de los 1990s

En el contexto de Antropoceno esta tesis nos permite identificar un gran

impacto de las actividades humanas en Chile central a partir de la deacutecada de 1940

y una Gran Aceleracoacuten a partir de la deacutecada de 1970s En el registro sedimentario

de los lagos en estudio se observa una gran acumulacioacuten de MO el δ15N oscila

hacia valores maacutes negativos y un gran incremento del NT y el crecimiento de la

actividad forestal parece ser la principal responsable Ademaacutes la sobreexplotacioacuten

132

del agua junto al cambio climaacutetico global ha generado una combinacioacuten letal para

los lagos costeros de Chile central

Figura 1 Comparacioacuten de las fluctuaciones de δ15N durante los uacuteltimos 300

antildeos en Laguna Matanzas y Lago Vichuqueacuten

133

Referencias

Battye W Aneja VP Schlesinger WH 2017 Earthrsquos Future Is nitrogen the next carbon Earthrsquos Future Global Biogeochem Cycles 30 1000ndash1014 httpsdoiorg101002eft2235

Christie DA Boninsegna JA Cleaveland MK Lara A Le Quesne C

Morales MS Mudelsee M Stahle DW Villalba R 2009 Aridity changes in the Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from tree-rings Clim Dyn 36 1505ndash1521 httpsdoiorg101007s00382-009-0723-4

Contreras-Loacutepez M (Playa AUHVC (Universidad de VRFS (Pontificia

UC de V 2014 Elementos de la historia natural del An Mus Hist Natulas Vaplaraiso 27 51ndash67

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in

freshwater wetlands record long-term changes in watershed nitrogen source and land use SO - Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash2916

Evans RD Evans RD 2001 Physiological mechanisms influencing

plant nitrogen isotope composition 6 121ndash126 Fogel ML Cifuentes LA 1993 Isotope fractionation during primary

production Org Geochem 73ndash98 httpsdoiorg101007978-1-4615-2890-6_3 Galloway JN Schlesinger WH Ii HL Schnoor L Tg N 1995

Nitrogen fixation Anthropogenic enhancement-environmental response reactive N Global Biogeochem Cycles 9 235ndash252

Garreaud RD Alvarez-Garreton C Barichivich J Pablo Boisier J

Christie D Galleguillos M LeQuesne C McPhee J Zambrano-Bigiarini M 2017 The 2010-2015 megadrought in central Chile Impacts on regional hydroclimate and vegetation Hydrol Earth Syst Sci 21 6307ndash6327 httpsdoiorg105194hess-21-6307-2017

Koba K Koyama LA Kohzu A Nadelhoffer KJ 2003 Natural 15 N

Abundance of Plants Coniferous Forest httpsdoiorg101007s10021-002-0132-6

Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos

Transactions American Geophysical Union httpsdoiorg1010292007EO070007 McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE

2007 Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470 httpsdoiorg101073pnas0701779104

134

Phytologist N Oct N 2006 Tansley Review No 95 15N Natural Abundance in Soil-Plant Systems Peter Hogberg 137 179ndash203

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98 httpsdoiorg1011772053019614564785

Turner BL Kasperson RE Matson PA McCarthy JJ Corell RW

Christensen L Eckley N Kasperson JX Luers A Martello ML Polsky C Pulsipher A Schiller A 2003 A framework for vulnerability analysis in sustainability science Proc Natl Acad Sci U S A httpsdoiorg101073pnas1231335100

Vitousek PM Aber JD Howarth RW Likens GE Matson PA

Schindler DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

Vitousek PM Howarth RW 1991 Nitrogen limitation on land and in the

sea How can it occur Biogeochemistry httpsdoiorg101007BF00002772 von Gunten L Grosjean M Rein B Urrutia R Appleby P 2009 A

quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo central Chile back to AD 850 Holocene 19 873ndash881 httpsdoiorg1011770959683609336573

Xu R Tian H Pan S Dangal SRS Chen J Chang J Lu Y Maria

Skiba U Tubiello FN Zhang B 2019 Increased nitrogen enrichment and shifted patterns in the worldrsquos grassland 1860-2016 Earth Syst Sci Data httpsdoiorg105194essd-11-175-2019

Zaehle S 2013 Terrestrial nitrogen-carbon cycle interactions at the global

scale Philos Trans R Soc B Biol Sci 368 httpsdoiorg101098rstb20130125

Page 8: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …

8

ABREVIATURAS

N Nitroacutegeno (Nitrogen)

DIN Nitroacutegeno Inorgaacutenico Disuelto (Dissolved Inorganic Nitrogen)

C Carbono (Carbon)

TOC Carbono Inorgaacutenico Total (Total Organic Carbon)

TIC Carbono Inorgaacutenico Total (Total inorganic Carbon)

TC Carbono Total (Total Carbon)

TS Azufre Total (Total Sulfur)

LUCC Cambios de UsoCobertura del Suelo (Land Use and Cover Change)

OM Materia Orgaacutenica (Organic Matter)

POM Particulate Organic Matter (materia orgaacutenica particulada)

CE Common Era

BCE Before Common Era

Cal BP Calibrado en antildeos radiocarbono antes de 1950

ie id est (esto es)

e g Exempli gratia (por ejemplo)

9

RESUMEN

El ldquoAntropocenordquo se caracteriza por pertubaciones de origen humano que

conllevan impactos globales Por ejemplo los cambios de usocobertura del suelo

(LUCC) son conocidos por perturbar el ciclo del N a partir de la Revolucioacuten Industrial

pero especialmente desde la Gran Aceleracioacuten (1950 CE) en adelante Sin

embargo existen incertezas asociadas a la magnitud del impacto y su efecto

acoplado con los cambios climaacuteticos actuales (ie megasequiacutea disminucioacuten de las

precipitaciones) y acoplamientos con otros ciclos biogeoquiacutemicos (eg ciclo del

Carbono) Este impacto ha cambiado la disponibilidad de N en los ecosistemas

terrestres y acuaacuteticos y sus enlaces Los sedimentos lacustres contienen

informacioacuten de las condiciones paleoambientales del lago y su cuenca en el

momento en que se depositaron y el anaacutelisis de los isoacutetopos estables de N (δ15N)

en los sedimentos permiten reconstruir los cambios en la disponibilidad de N a

traveacutes del tiempo En este trabajo usamos una aproximacioacuten multiproxy que incluye

10

anaacutelisis sedimentoloacutegicos geoquiacutemicos e isotoacutepicos (δ15N δ13C) de los sedimentos

lacustres columna de agua y suelo-vegetacioacuten de la cuenca y la reconstruccioacuten de

los LUCC entre 1975 y 2016 a partir de imaacutegenes satelitales El objetivo de esta

tesis fue evaluar el rol de LUCC como principal control del ciclo del N en el sistema

cuenca-lago durante las uacuteltimas centurias en Chile central Nuestros principales

resultados muestran que valores maacutes positivos de δ15N en los sedimentos lacustres

estaacuten relacionados con grandes aportes de N de la cuenca que a su vez son

mayores cuanto mayor la superficie agriacutecola yo los pastizales mientras que tanto

las plantaciones forestales como los bosques favorecen la retencioacuten de nutrientes

en la cuenca (lo que se ve reflejado en un δ15N maacutes negativo) Esta tesis plantea

un cambio de estado en la dinaacutemica del N asociado a la introduccioacuten y expansioacuten

de las plantaciones forestales o bosques los que retienen el Nitroacutegeno en las

cuencas mientras que el clima juega un rol secundario

11

ABSTRACT

The Anthropocene is characterized by human disturbances at the global

scale For example changes in land use are known to disturb the N cycle since the

industrial revolution but especially since the Great Acceleration (1950 CE) onwards

This impact has changed N availability in both terrestrial and aquatic ecosystems

However there are some important uncertainties associated with the extent of this

impact and how it is coupled to ongoing climate change (ie megadroughts rainfall

variability and shifting stationarity) or to other nutrient cycles (e g carbon cycle)

Lake sediments contain paleoenvironmental information regarding the conditions of

the watershed and associated lakes and which the respective sediments are

deposited Nitrogen stable isotope analysis (δ15N) on lake sediments allows us to

reconstruct the changes in N availability through time Here we used a multiproxy

approach that uses sedimentological geochemical and isotopic analyses on

lacustrine sediments water column and soilvegetation from the watershed as well

12

as land use and cover change (LUCC) from 1975 to 2016 obtained from satellite

images The goal of this thesis is to evaluate the role of LUCC as the main driver for

N cycling in a coastal watershed system of central Chile over the last centuries Our

main results show that more positive δ15N values in lake sediments are related to

higher N contributions from the watershed which in turn increase with increased

agricultural andor pasture cover whereas either forest plantations or native forests

can favor nutrient retention in the watershed (δ15N more negative) This thesis

proposes that N dynamics are mainly driven by the introduction and expansion of

forest or tree plantations that retain nitrogen in the watershed whereas climate plays

a secondary role

13

INTRODUCCIOacuteN

El N es un elemento esencial para la vida y limita la productividad en

ecosistemas tanto terrestres como acuaacuteticos (Vitousek et al 1997) Las actividades

humanas han tenido un profundo impacto sobre el ciclo del N global principalmente

a partir la revolucioacuten industrial (IPCC 2013 2007) Las concentraciones de N se

han incrementado por la fijacioacuten industrial de N atmosfeacuterico (viacutea el proceso Haber-

Bosch Erisman et al 2008) por el uso de fertilizantes sobre la base de N para

mejorar el rendimiento de los cultivos la produccioacuten ganadera y ademaacutes de los

cambios en el uso del suelo (abreviado en ingleacutes- LUCC) (Robertson y Vitousek

2009 Galloway et al 2008 Battye et al 2017 Xu et al 2019) Estas actividades

contribuyen significativamente al incremento de la disponibilidad bioloacutegica de N

cuyas consecuencias para los ecosistemas incluye la perdida de diversidad

modificacioacuten de la disponibilidad de nutrientes y acidificacioacuten de los suelos entre

otras Sin embargo se desconoce la cantidad destino y el alcance que ha tenido

14

el N movilizado entre los ecosistemas generado por la influencia de las actividades

humanas (Vitousek et al 1997)

La entrada natural de N en los ecosistemas terrestres y acuaacuteticos es viacutea

fijacioacuten atmosfeacuterica la que es llevada a cabo por microorganismos muchos de ellos

en relaciones simbioacuteticas (eg Rhizobium en leguminosas) y las algas (Vitousek et

al 1997 Battye et al 2017) Las principales salidas estaacuten relacionadas con la

desnitrificacioacuten volatilizacioacuten del amoniaco y por escurrimiento superficial y

subterraacuteneo (Galloway et al 2008 Diacuteaz et al 2016) En el caso de los sistemas

lacustres ademaacutes estaacuten la resuspencioacuten de N del fondo del lago los aportes desde

la cuenca (entradas de N) La depositacioacuten de MO en el fondo del lago que marca

la salida de N de la columna de agua Estas relaciones de intercambio de N tienen

un control geograacutefico (eg latitud exposicioacuten relieve etc) climaacutetico y biotico

(McLauchlan et al 2013) La alteracioacuten provocada por los LUCC no solo genera

las peacuterdidas de nutrientes del suelo por erosioacuten y escurrimiento superficial sino que

tambieacuten modifica la disponibilidad y transferencia de N entre los ecosistemas

terrestres y acuaacuteticos (Elbert et al 2012 McLauchlan et al 2013) Por ejemplo el

reemplazo de la vegetacioacuten nativa por la agricultura yo plantaciones forestales

altera el ciclo del N debido al despeje de los terrenos viacutea quema de la vegetacioacuten

pero tambieacuten debido al reemplazo de la vegetacioacuten preexistente por un

monocultivo (eg trigo pino) y el uso ineficiente de fertilizantes para mejorar el

rendimiento agriacutecola Estas actividades favorecen un incremento de los aportes de

N (y otros nutrientes) viacutea sistemas de drenajes a lagos los que actuacutean como

sumideros El incremento del N derivado de las actividades humanas tanto en los

ecosistemas terrestres como acuaacuteticos genera incertezas relacionados con la

trayectoria y la magnitud de la disponibilidad de N en ambos ecosistemas (Batye et

15

al 2017 Mclauchlan et al 2017) Por lo tanto se requiere de una liacutenea base de

largo plazo para saber coacutemo estas perturbaciones impactan la disponibilidad de N

en las uacuteltimas deacutecadassiglos en los ecosistemas lacustres y por lo tanto el alcance

real que los LUCC han tenido en el ciclo del N

Los ecosistemas mediterraacuteneos y el ciclo del N

Los ecosistemas mediterraacuteneos son especialmente sensibles a los LUCC

pues estos se encuentran sometidos a un estreacutes hiacutedrico durante largas temporadas

estivales y las precipitaciones se concentran en eventos puntuales y a veces con

altos montos pluviomeacutetricos Las precipitaciones tienen un alto potencial de arrastre

de sedimentos y nutrientes los que actuacutean como fertilizantes al llegar a los

ecosistemas lacustres A su vez un incremento en la disponibilidad de N puede

generar un desbalance con otros nutrientes (eg Fosforo) con efectos sobre la

productividad y diversidad de los lagos (Pentildeuelas et al 2012 Sardans et al 2012

McLauchlan 2013) En este sentido en Chile central se observa una disminucioacuten

de las precipitaciones especialmente fuerte en las uacuteltimas deacutecadas por lo que se ha

denoacuteminado como Megasequiacutea (Garreaud et al 2017) y el efecto de las

precipitaciones esporaacutedicas pueden generar un arrastre de nutrientes que no ha

sido evaluado

Los ecosistemas mediterraacuteneos concentran el 20 de la biodiversidad global

(Myers et al 2000) pero existe una escasez de conocimiento respecto a los

efectos del incremento de N en los cuerpos de agua como consecuencia de las

actividades humanas en el pasado histoacuterico (Ochoa-Hueso et al 2011) y coacutemo la

disponibilidad de N ha variado en el tiempo Los LUCC han aumentado el flujo de

N en las cuencas hidrograacuteficas viacutea escurrimiento superficial y lixiviacioacuten

16

favoreciendo la peacuterdida de sedimentos y nutrientes del suelo en el mundo entero

(Elser et al 2011 McLauchlan et al 2013 Xu et al 2017 y 2019) Ello ha

contribuido a la acidificacioacuten y eutrofizacioacuten generalizada de riacuteos y lagos

(McLauchlan et al 2013 Schindler et al 2008)

El ecosistema mediterraacuteneo de Chile central es una regioacuten ampliamente

intervenida desde al menos la colonizacioacuten espantildeola (1600-1800 CE) Los LUCC

han tenido efectos negativos en la disponibilidad de agua especialmente

observados con el desarrollo de las actividades minera (Prieto et al 2019) Aunque

se sabe de los impactos en los ecosistemas de bosque en teacuterminos de cobertura

debidos al desarrollo silvo-agropecuarias (Armesto et al 2010) se desconoce el

impacto de estas actividades sobre el ciclo del N en los cuerpos de agua o en queacute

momento cobran fuerza suficiente para alterar el flujo de N hacia los lagos de Chile

Central Por lo tanto en esta tesis nos centramos en entender coacutemo los LUCC han

afectado la disponibilidad de N en los lagos costeros de Laguna Matanzas y Lago

Vichuqueacuten desde la llegada de los espantildeoles a Chile hasta el presente

Los lagos como sensores ambientales

Los sedimentos lacustres son buenos sensores de cambios en los aportes

de nutrientes contaminacioacuten y eutroficacioacuten de los cuerpos de agua ya que son

capaces de preservar sentildeales quiacutemicas y fiacutesicas al momento de su formacioacuten y

ademaacutes con alta resolucioacuten y a largo plazo (Leng et al 2006) Por lo tanto

constituyen una herramienta uacutetil para reconstruir el flujo de N entre ecosistemas

terrestres y acuaacuteticos en el pasado sus consecuencias (eg incremento de la

productividad lacustre) y el rol del clima y los LUCC en el pasado (McLauchlan et

al 2013 von Gunten et al 2009) Por ejemplo el cultivo de maiacutez por parte de los

17

nativos iroqueses en Canadaacute provocoacute la eutrofizacioacuten del Lago Crawford (43degN)

durante los siglos XII y XV Entre las consecuencias registradas se documentoacute un

claro incremento de la productividad primaria y cambios en la estructura comunitaria

de diatomeas foacutesiles (incremento de Stephanodiscus complex y disminucioacuten de

Cyclotella bodanica en Ekdahl et al 2007) Otro ejemplo demuestra como las

actividades agriacutecolas en la cuenca del riacuteo Mississippi modificaron los patrones de

sedimentacioacuten y aporte de nutrientes al lago Pepin EE UU (44degN) a partir del

asentamiento europeo en 1840 CE y principalmente desde 1940 CE (Engstrom et

al 2009) Para Chile von Gunten et al (2009) a partir de indicadores

limnogeoloacutegicos evidencioacute la contaminacioacuten y eutroficacioacuten de cinco lagos cercanos

a la ciudad de Santiago (33ordmS) como consecuencia de la deposicioacuten atmosfeacuterica

de metales pesados (especialmente Cu) quema de combustible foacutesil y flujo de

nutrientes durante los uacuteltimos 200 antildeos

Caracteriacutesticas limnoloacutegicas de los lagos

Los procesos limnoloacutegicos afectan la distribucioacuten y abundancia de los

organismos en los lagos Estaacuten influenciados por forzamientos externos por

ejemplo la precipitacioacuten o la penetracioacuten de la luz y la morfometriacutea del lago En este

sentido el nivel del lago dependeraacute del balance entre las entradas y salidas de agua

(precipitaciones escurrimiento superficial y subterraacuteneo y la evaporacioacuten) y la forma

de la cuenca (profundidad pendiente aacuterea del espejo de agua)

En funcioacuten de la profundidad de penetracioacuten de la luz es posible diferenciar

dos aacutereas que determinan la distribucioacuten de los organismos la zona foacutetica (donde

penetra la luz y permite la fotosiacutentesis) y la zona afoacutetica (subyacente a la zona

foacutetica) Al depender de la radiacioacuten la zona foacutetica variacutea estacionalmente Ademaacutes

18

puede variar por el grado de turbidez la morfometriacutea del lago y la produccioacuten de

materia orgaacutenica en la columna de agua

Otro factor que influye en la productividad es el reacutegimen de mezcla de la

columna de agua pues favorece la oxigenacioacuten y el reciclado de nutrientes La

mezcla ocurre en condiciones de gran inestabilidad usualmente relacionado con el

reacutegimen de viento Por el contrario un lago estratificado resulta de grandes

diferencias en temperatura o salinidad entre la superficie (epilimnion) y el fondo del

lago (hipolimnion) que separa las masas de agua superficial y de fondo por una

termoclina (si la estratificacioacuten estaacute relacionada con diferencias de temperatura de

las masas de agua) o haloclina (diferencias de salinidad) En funcioacuten del reacutegimen

de mezcla los lagos se pueden clasificar en (Lewis 1983)

1 Amiacutecticos no hay mezcla vertical de la columna de agua

2 Monomiacutecticos friacuteos y caacutelidos se mezcla una vez al antildeo

3 Dimiacutecticos la columna de agua se mezcla dos veces al antildeo

4 Oligomiacutecticos Lagos estratificados la mayor parte del tiempo pero se mezclan a

intervalos irregulares mayores a 1 antildeo

5 Polimiacutecticos friacuteos y caacutelidos la columna de agua se mezcla varias veces al antildeo

El ciclo del N en lagos

Al estar presente en aacutecidos nucleicos aminoaacutecidos y proteiacutenas el N es un

nutriente esencial de los organismos Por lo tanto su disponibilidad en la columna

de agua es clave para la produccioacuten composicioacuten y acumulacioacuten de la MO a traveacutes

del tiempo (Olson 1998 Talbot 2002) Aunque el principal reservorio de N estaacute en

19

la atmosfera (N2) solo unos pocos organismos (eg cianobacterias) pueden fijarlo

directamente Asiacute el Nitroacutegeno Inorgaacutenico Disuelto (DIN) representa la principal

fuente de N disponible para la produccioacuten primaria en los ecosistemas acuaacuteticos

(Talbot et al 2002) El DIN estaacute compuesto por nitrato (NO3-) nitrito (N02

-) y amonio

(NH4+) y los cambios en su disponibilidad condicionan el tipo de produccioacuten primaria

(eg fijadores vs asimiladores de N ver Scott y Grant 2013 Scott 2008)

La Figura 1 resume los principales componentes en lagos del ciclo del N y

sus interacciones La principal entrada natural de N es viacutea fijacioacuten de N atmosfeacuterico

y es llevado a cabo principalmente por bacterias y algas verde-azules capaces de

romper el triple enlace entre los dos aacutetomos de N a un alto costo energeacutetico (Torres

et al 2012) El N fijado es reducido a NH3 Tras la muerte de los organismos el N

es liberado de sus tejidos por hongos y bacterias implicados en la descomposicioacuten

de la MO Una parte se deposita en el fondo del lago y la otra queda disponible para

ser asimilada por el fitoplancton como amonio mediante el proceso de

amonificacioacuten (Talbot 2002) La amonificacioacuten resulta de la reduccioacuten bacteriana

del amoniaco y se da preferentemente en condiciones anoacutexicas La volatizacioacuten del

amoniaco es un proceso por medio este se incorpora a la atmoacutesfera Este proceso

se da preferentemente en lagos aacutecidos (pH gt 85) El nitrato es otra forma de N

bioloacutegicamente disponible para el fitoplancton En los lagos el NO3 del DIN estaacute

compuesto por los aportes desde la cuenca hidrograacutefica en la que se circunscriben

por la resuspensioacuten desde el fondo del lago favorecido por procesos de mezcla

(descrito en seccioacuten anterior) y por los nitratos de la columna de agua Estos uacuteltimos

son el resultado de la nitrificacioacuten proceso realizado por bacterias aeroacutebicas

mediante el cual el amonio se oxida para formar nitrito y nitrato El ciclo se completa

20

con la desnitrificacioacuten que es la reduccioacuten bacteriana de nitrato al N atmosfeacuterico

Este proceso se da preferentemente en condiciones anoacutexicas

Figura 1 Materia Orgaacutenica sedimentaria y su relacioacuten con el ciclo del N y las

variaciones de δ15N (elaborado a partir de Talbot et al 2002) En la figura se

representan los factores clave en la acumulacioacuten de la MO sedimentaria y su

relacioacuten con el ciclo del N El δ15N de la MO es resultado de los aportes de MO

desde la cuenca MO de macroacutefitas y de la productividad bioloacutegica La productividad

en ecosistemas lacustres estaacute condicionada por DIN y la fijacioacuten de N atmosfeacuterico

El δ15N del pool del DIN disponible se va enriqueciendo por la asimilacioacuten

preferencial de 14N por parte del fitoplancton Ademaacutes el DIN remanente se va

enriqueciendo por accioacuten microbiana (amonificacioacuten nitrificacioacuten desnitrificacioacuten)

Reconstruyendo el ciclo del N a partir de variaciones en δ15N

La sentildeal isotoacutepica de N (δ15N) en los sedimentos lacustres puede ser usada

para reconstruir los cambios pasados del ciclo N la transferencia de N entre

ecosistemas terrestres y acuaacuteticos y el estado troacutefico del lago (Bruland y Mackenzie

2015 McLauchlan et al 2013 Woodward et al 2012 von Gunten et al 2009

Leng et al 2006 Meyers y Teranes 2001) La Figura 1 resume los principales

procesos y fuentes que afectan la sentildeal isotoacutepica δ15N (total o ldquobulkrdquo) en la MO de

21

los sedimentos lacustres Entre los que destacan las fuentes de MO (aloacutectona vs

autoacutectona) la bioproductividad lacustre y las entradas de N (ie fijacioacuten bioloacutegica

de N2) (Torres et al 2012) Estos procesos conducen a un fraccionamiento

isotoacutepico cineacutetico que favorece la disociacioacuten entre sus isotopos ldquopesadosrdquo (15N) y

ldquoligerosrdquo (14N) Asiacute por ejemplo los valores de δ15N de la MO se enriquecen en 15N

en la medida que los sedimentos lacustres estaacuten sometidos a perdidas de 14N viacutea

desnitrificacioacuten (Bruland y Mackenzie 2015 Diaz et al 2016 Talbot et al 2002)

Por otra parte el fitoplancton en la medida que aumenta su biomasa (eg

durante la estacioacuten caacutelida) puede llegar a asimilar el DIN hasta agotarse En este

caso el N remanente se va empobreciendo en 14N si no hay reposicioacuten de N (eg

aporte de NO3 de la cuenca) y la MO queda enriquecida en 15N Esta disminucioacuten

induce a una limitacioacuten de fitoplancton por N y los organismos diztroacuteficos pueden

verse estimulados por lo que se incrementa la entrada de N viacutea fijacioacuten de N2 (Scott

y Grantsz 2013) como resultado la MO oscila en valores maacutes bajos (en torno a 0permil)

La cantidad de MO que se deposita en el fondo del lago depende del

predominio de contribuciones provenientes desde la cuenca (aloacutectona) versus las

producidas dentro del mismo lago (autoacutectona) (Torres et al 2012) Aunque en

general los lagos reciben permanentemente aportes de sedimentos y MO desde

su cuenca los lagos pequentildeos tienden a reflejar maacutes los procesos que ocurren

solamente en su cuenca directa y reflejan los valores isotoacutepicos de la misma (Gu et

al 2006) Woodward et al (2012) realizaron un estudio en 50 lagos en Irlanda que

les permitioacute correlacionar diferentes patrones de LUCC (bosques de coniacuteferas

agricultura ganaderiacutea entre otros) con los valores de δ15N (y δ13C) en los

sedimentos superficiales de los lagos Encontraron que los valores de δ15N son maacutes

negativos en cuencas poco impactadas y maacutes positivos en aquellas con alto

22

impacto humano (eg usos de suelo agriacutecola y ganadero) McLauchlan et al (2007)

encontraron valores maacutes positivos de δ15N en los sedimentos del Mirror Lake New

Hampshire (29ordm N) a partir de la desforestacioacuten de su cuenca en 1790 CE (inicio

del asentamiento europeo en el lago) para el desarrollo de la actividad agriacutecola

Estos valores se volvieron maacutes negativos hacia valores similares al pre-

asentamiento europeo despueacutes del cese de la agricultura en la cuenca y la

recuperacioacuten del bosque a partir de 1929 CE

El anaacutelisis de δ15N en los sedimentos lacustres es una herramienta casi sin

explorar en Chile central Proponemos reconstruir la dinaacutemica de transferencia de

N cuenca-lago como consecuencia de los LUCC desde la colonizacioacuten espantildeola en

los lagos costeros de Laguna Matanzas (34ordmS) y Lago Vichuqueacuten (36ordmS) Como son

muacuteltiples los procesos que pueden afectar la sentildeal isotoacutepica de N (medido como

δ15N) en los sedimentos lacustres existen muchos problemas para su

interpretacioacuten paleoambiental (Leng et al 2006) Por ello en esta tesis utilizamos

un enfoque multiproxy que consiste en integrar el anaacutelisis limnoloacutegico y geoquiacutemico

de los sedimentos lacustres con los valores isotoacutepicos modernos de la columna de

agua (mediante monitoreo del POM) la relacioacuten vegetacioacuten-suelo de la cuenca y la

reconstruccioacuten de los principales usos de suelo de las cuencas desde 1975 CE

mediante el uso de imaacutegenes satelitales Considerando estas muacuteltiples liacuteneas de

evidencia nos planteamos utilizar las variaciones del δ15N para reconstruir los

cambios en la disponibilidad de N en los lagos costeros de Chile central y establecer

coacutemo y desde cuaacutendo las actividades humanas en la cuenca son lo suficientemente

importantes como para modificar el ciclo del N en los lagos desde la colonizacioacuten

espantildeola (siglo XVII)

23

Como hipoacutetesis planteamos que la dinaacutemica de transferencia de sedimentos

y nutrientes entre la cuenca y el lago tiene controles geoloacutegicos climaacuteticos y

bioloacutegicos que interactuacutean en el tiempo registraacutendose en la acumulacioacuten de MO de

los sedimentos lacustres (Fig1) Bajo este marco los LUCC modifican esta

dinaacutemica alterando la transferencia de N a los lagos ya que las actividades agriacutecolas

y ganaderas tienden a aportar maacutes N (aumentando δ15N) que la actividad forestal

(la que disminuye δ15N)

En el primer capiacutetulo titulado ldquoA combined approach to establishing the timing

and magnitude of anthropogenic nutrient alteration in a mediterranean coastal lake-

watershed systemrdquo se evaluoacute el rol de los LUCC en el control de la descarga de N

y sedimentos a Laguna Matanzas en un sistema cuenca-lago desde el siglo XVII

Para ello se realizoacute un anaacutelisis de la dinaacutemica sedimentaria lacustre mediante el

anaacutelisis de muacuteltiples proxys sedimentoloacutegicos (ie minerales y textura)

geoquiacutemicos (eg geoquiacutemica orgaacutenica e isotoacutepica) y bioloacutegicos (ie diatomeas) de

Laguna Matanzas que cubren los uacuteltimos 200 antildeos Ademaacutes se realizoacute una

reconstruccioacuten de los usos de suelo entre 1975 y 2016 a partir de imaacutegenes de

sateacutelites y se colectaron muestras de suelo de las principales coberturas de la

cuenca a los cuales se midioacute el δ15N

Entre los principales resultados obtenidos se destaca la influencia de la

ganaderiacutea y la denitrificacioacuten lo que explica los altos valores de δ15N evidenciados

por el registro lacustre durante la colonizacioacuten espantildeola e inicios de la repuacuteblica A

partir de la Gran Aceleracioacuten (1950 CE) la desforestacioacuten y el reemplazo de la

ganaderiacutea por plantaciones forestales tienen un correlato en el registro

sedimentario con valores de δ15N maacutes bajos Estos resultados demuestran que los

LUCC son el factor de primer orden para explicar los cambios observados en

24

nuestro registro de δ15N y a su vez implica un rol secundario del clima como posible

control de la disponibilidad de N en Laguna Matanzas Este capiacutetulo fue sometido

a la revista Scientific Reports y estaacute en revisioacuten desde el 26 de marzo de 2019 En

la elaboracioacuten del mauscrito han colaborado Claudio Latorre Blas Valero-Garceacutes

Matiacuteas Frugone Pablo Sarricolea Santiago Giralt Manuel Contreras-Lopez

Ricardo Prego y Patricia Bernardez

El segundo capiacutetulo se titula ldquoStable isotopes track land use and cover

changes in a mediterranean lake in central Chile over the last 600 yearsrdquo Aquiacute

evaluamos la dinaacutemica del N actual en el sistema cuenca-lago considerando los

valores isotoacutepicos modernos tanto de la vegetacioacuten como del suelo ademaacutes de los

cambios estacionales del POM de la columna de agua Esta informacioacuten se utiliza

como un anaacutelogo moderno para conocer el rol de los LUCC en la disponibilidad de

N en los uacuteltimos 600 antildeos Para ello se colectaron muestras filtradas de la columna

de agua a 2 5 y 20 m dos veces por antildeo entre noviembre de 2015 y julio de 2018

y se obtuvo el δsup1⁵N del POM Ademaacutes se colectoacute muestras de vegetacioacuten y suelo

de la cuenca diferenciando entre especies nativas plantaciones forestales y

vegetacioacuten herbaacutecea Esta informacioacuten se analizoacute en conjunto con la reconstruccioacuten

de los LUCC entre 1975 y 2014 y el anaacutelisis limnoloacutegico del lago Ello nos permitioacute

evaluar coacutemo el δ15N de los sedimentos lacustres refleja los valores δ15N de la

cuenca en el Lago Vichuqueacuten y el control que ejerce el clima en la sentildeal isotoacutepica

de POM Este capiacutetulo seraacute sometido a la revista Science of total environmet

proximamente En la elaboracioacuten del mauscrito han colaborado Claudio Latorre

Blas Valero-Garceacutes Matiacuteas Frugone Pablo Sarricolea Leonardo Villacis y M Laura

Carrevedo

25

Entre los principales resultados encontramos que el δ15N en los sedimentos

lacustres es maacutes positivo con presencia de agricultura en la cuenca y maacutes negativo

cuando esta es reemplazada por cobertura arboacuterea bien sea plantaciones

forestales bien sea bosque nativo A su vez durante la estacioacuten seca y caacutelida la

mayor entrada al lago es viacutea fijacioacuten de N atmosfeacuterico (bajos valores de δ15NPOM)

Durante la estacioacuten huacutemeda en cambio prevalecen los aportes de la cuenca con

altos valores de δ15NPOM Ello estariacutea evidenciando un cambio estacional en la

composicioacuten de especies en verano ligado a especies fijadoras de N y en invierno

las algas y microorganismos que consumen el DIN de la columna de agua

Referencias

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea AM Marquet PA 2010 From the Holocene to the Anthropocene A historical framework for land cover change in southwestern South America in the past 15000 years Land use policy 27 148ndash160 httpsdoiorg101016jlandusepol200907006

Battye W Aneja VP Schlesinger WH 2017 Earth rsquo s Future Is nitrogen the

next carbon  Earth rsquo s Future Global Biogeochem Cycles 30 1000ndash1014 httpsdoiorg101002eft2235

Bruland GL MacKenzie RA 2010 Nitrogen Source Tracking with δN Content

of Coastal Wetland Plants in Hawaii J Environ Qual 39 409 httpsdoiorg102134jeq20090005

Diacuteaz FP Frugone M Gutieacuterrez RA Latorre C 2016 Nitrogen cycling in an

extreme hyperarid environment inferred from δ15 N analyses of plants soils and herbivore diet Sci Rep 6 1ndash11 httpsdoiorg101038srep22226

Ekdahl EJ Teranes JL Wittkop CA Stoermer EF Reavie ED Smol JP

2007 Diatom assemblage response to Iroquoian and Euro-Canadian eutrophication of Crawford Lake Ontario Canada J Paleolimnol 37 233ndash246 httpsdoiorg101007s10933-006-9016-7

Elbert W Weber B Burrows S Steinkamp J Buumldel B Andreae MO

Poumlschl U 2012 Contribution of cryptogamic covers to the global cycles of carbon and nitrogen Nat Geosci 5 459ndash462

26

httpsdoiorg101038ngeo1486 Elser J 2011 A world awash with nitrogen Science 334 1504ndash1506

httpsdoiorg101126science1215567 ARTICLE Engstrom DR Almendinger JE Wolin JA 2009 Historical changes in

sediment and phosphorus loading to the upper Mississippi River Mass-balance reconstructions from the sediments of Lake Pepin J Paleolimnol 41 563ndash588 httpsdoiorg101007s10933-008-9292-5

Erisman J W Sutton M A Galloway J Klimont Z amp Winiwarter W (2008)

How a century of ammonia synthesis changed the world Nature Geoscience 1(10) 636

Galloway JN Townsend AR Erisman JW Bekunda M Cai Z Freney JR

Martinelli LA Seitzinger SP Sutton MA 2008 Transformation of the Nitrogen Cycle  Science (80- ) 320 889ndash892

httpsdoiorg101126science1136674 Garreaud RD Alvarez-Garreton C Barichivich J Pablo Boisier J Christie

D Galleguillos M LeQuesne C McPhee J Zambrano-Bigiarini M 2017 The 2010-2015 megadrought in central Chile Impacts on regional hydroclimate and vegetation Hydrol Earth Syst Sci 21 6307ndash6327 httpsdoiorg105194hess-21-6307-2017

Gruber N Galloway JN 2008 An Earth-system perspective of the global

nitrogen cycle Nature 451 293ndash296 httpsdoiorg101038nature06592 Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater eutrophic lake Limnol Oceanogr 51 2837ndash2848 httpsdoiorg104319lo20065162837

IPCC 2013 Climate Change 2013 The Physical Science BasisContribution of

Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press Cambridge United Kingdom and New York NY USA

httpsdoiorg101017CBO9781107415324 Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos Transactions

American Geophysical Union httpsdoiorg1010292007EO070007 Martel-Cea A Maldonado A Grosjean M Alvial I de Jong R Fritz SC von

Gunten L 2016 Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical Central Chile (32iumliquestfrac12S 3050iumliquestfrac12miumliquestfrac12asl) Palaeogeogr Palaeoclimatol Palaeoecol 461 44ndash54 httpsdoiorg101016jpalaeo201608003

McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE 2007

Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470

27

httpsdoiorg101073pnas0701779104 McLauchlan KK Gerhart LM Battles JJ Craine JM Elmore AJ Higuera

PE Mack MC McNeil BE Nelson DM Pederson N Perakis SS 2017 Centennial-scale reductions in nitrogen availability in temperate forests of the United States Sci Rep 7 1ndash7 httpsdoiorg101038s41598-017-08170-z

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash1643 httpsdoiorg1011770959683613496289

Meyers PA Teranes JL 2001 Sediment organic matter in Tracking

Environmental Change Using Lake Sediments Volume 2 Physical and Geochemical Methods httpsdoiorg1018971551-5028(1999)018lt0231SOMCAAgt23CO2

Myers N Mittermeler RA Mittermeler CG Da Fonseca GAB Kent J

2000 Biodiversity hotspots for conservation priorities Nature httpsdoiorg10103835002501

Pentildeuelas J Poulter B Sardans J Ciais P Van Der Velde M Bopp L

Boucher O Godderis Y Hinsinger P Llusia J Nardin E Vicca S Obersteiner M Janssens IA 2013 Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe Nat Commun 4 httpsdoiorg101038ncomms3934

Prieto M Salazar D Valenzuela MJ 2019 The dispossession of the San

Pedro de Inacaliri river Political Ecology extractivism and archaeology Extr Ind Soc httpsdoiorg101016jexis201902004

Robertson GP Vitousek P 2010 Nitrogen in Agriculture Balancing the Cost of

an Essential Resource Ssrn 34 97ndash125 httpsdoiorg101146annurevenviron032108105046

Sardans J Rivas-Ubach A Pentildeuelas J 2012 The CNP stoichiometry of

organisms and ecosystems in a changing world A review and perspectives Perspect Plant Ecol Evol Syst 14 33ndash47 httpsdoiorg101016jppees201108002

Schindler DW Howarth RW Vitousek PM Tilman DG Schlesinger WH

Matson PA Likens GE Aber JD 2007 Human Alteration of the Global Nitrogen Cycle Sources and Consequences Ecol Appl 7 737ndash750 httpsdoiorg1018901051-0761(1997)007[0737haotgn]20co2

Scott E and EM Grantzs 2013 N2 fixation exceeds internal nitrogen loading as

a phytoplankton nutrient source in perpetually nitrogen-limited reservoirs Freshwater Science 2013 32(3)849ndash861 10189912-1901

28

Stocker TF Dahe Q Plattner G-K Alexander L V Allen SK Bindoff NL Breacuteon F-M Church JA Cubash U Emori S Forster P Friedlingstein P Talley LD Vaughan DG Xie S-P 2013 Technical Summary in Climate Change 2013 The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change httpsdoiorg101017 CBO9781107415324005

Talbot M R (2002) Nitrogen isotopes in palaeolimnology In Tracking

environmental change using lake sediments (pp 401-439) Springer Dordrecht

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status J Paleolimnol 47 693ndash706 httpsdoiorg101007s10933-012-9593-6

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M Eggenberger U Grob P Urrutia R Morales A

2009 Pollution and eutrophication history AD 1800-2005 as recorded in sediments from five lakes in Central Chile Glob Planet Change 68 198ndash208 httpsdoiorg101016jgloplacha200904004

Woodward CA Potito AP Beilman DW 2012 Carbon and nitrogen stable

isotope ratios in surface sediments from lakes of western Ireland Implications for inferring past lake productivity and nitrogen loading J Paleolimnol 47 167ndash184 httpsdoiorg101007s10933-011-9568-z

Xu H Yu K Lan J Sheng E Liu B Ye Y Hong B Wu H Zhou K

Yeager KM 2016 Different responses of sedimentary δ15N to climatic changes and anthropogenic impacts in lakes across the Eastern margin of the Tibetan Plateau J Asian Earth Sci 123 111ndash118 httpsdoiorg101016jjseaes201603024

29

CAPIacuteTULO 1 A COMBINED APPROACH TO ESTABLISHING THE TIMING

AND MAGNITUDE OF ANTHROPOGENIC NUTRIENT ALTERATION IN A

MEDITERRANEAN COASTAL LAKE- WATERSHED SYSTEM

30

A combined approach to establishing the timing and magnitude of anthropogenic

nutrient alteration in a mediterranean coastal lake- watershed system

Magdalena Fuentealbaabc Claudio Latorreabc Matiacuteas Frugoneabc Pablo

Sarricolead Santiago Giralte Manuel Contreras-Lopezf Ricardo Prego g Patricia

Bernaacuterdez g Blas Valero-Garceacutesch

a Departamento de Ecologiacutea Pontificia Universidad Catoacutelica de Chile Alameda 340 Santiago Chile

b Institute of Ecology and Biodiversity (IEB) Las Palmeras 3425 Nuntildeoa Santiago Chile

c Laboratorio Internacional de Cambio Global LINCGlobal PUC-CSIC Spain

d Departamento de Geografiacutea Universidad de Chile Marcoleta 250 Santiago Chile

e Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) CLluis Solegrave Sabaris sn Barcelona E-

08028 Spain

f Facultad de Ingenieriacutea y Centro de Estudios Avanzados Universidad de Playa Ancha Traslavintildea

450 Vintildea del Mar Chile

g Instituto de Investigaciones Marinas (CSIC) CEduardo Cabello 6 36208 Vigo Spain

h Instituto Pirenaico de Ecologiacutea (IPE-CSIC) Avenida Montantildeana 1005 Zaragoza 50059 Spain

Corresponding author

E-mail address

clatorrebiopuccl magdalenafuentealbagmailcom

Abstract

Since the industrial revolution and especially during the Great Acceleration (1950

CE) human activities have profoundly altered the global nutrient cycle through land

use and cover changes (LUCC) However the timing and intensity of recent N

variability together with the extent of its impact in terrestrial and aquatic ecosystems

and coupled effects of regional LUCC and climate are not well understood Here

we used a multiproxy approach (sedimentological geochemical and isotopic

31

analyses historical records climate data and satellite images) to evaluate the role

of LUCC as the main control for N cycling in a coastal watershed system of central

Chile during the last few centuries The largest changes in N dynamics occurred in

the mid-1970s associated with the replacement of native forests and grasslands for

livestock grazing by plantations of introduced Monterey pine (Pinus radiata) and

eucalyptus (Eucalyptus globulus) Lake productivity increased and is evidenced by

an increase trend in δ15N values Our study shows that anthropogenic land

usecover changes are key in controlling nutrient supply and N availability in

Mediterranean watershed ndash lake systems and that large-scale forestry

developments during the mid-1970s likely caused the largest changes in central

Chile

Keywords Anthropocene Organic geochemistry watershedndashlake system Stable

Isotope Analyses Land usecover change Nitrogen cycle Mediterranean

ecosystems central Chile

1 INTRODUCTION

Human activities have become the most important driver of the nutrient cycles in

terrestrial and aquatic ecosystems since the industrial revolution (Gruber and

Galloway 2008 Galloway et al 2008 Holtgrieve et al 2011 Fowler et al 2013

Goyette et al 2016) Among these N is a common nutrient that limits productivity

in terrestrial and aquatic ecosystems (Vitousek and Howarth 1991 McLauchlan et

al 2013) With the advent of the Haber-Bosch industrial N fixation process in the

early 20th century total N fluxes have surpassed previous planetary boundaries

32

(Galloway et al 2008 Elser 2011) reaching unprecedented values (ie tipping

points) in the Earth system especially during what is now termed the Great

Acceleration (which began in the 1950s) which intensified in the 1970s (Howarth

2004 Steffen et al 2015) Yet dramatic changes in LUCC have occurred in the last

few centuries mainly linked to forestry and agro-pastoral activities (Poraj-Goacuterska et

al 2017 Ge et al 2019 Cheng et al 2019) These have had large impacts on N

(and Carbon -C-) availability in terrestrial and aquatic ecosystems but the synergic

effect with climate change and global N dynamics has not been established

(Vitousek et al 1997 Mclauchlan et al 2007 2013 Pongratz et al 2010

Woodward et al 2012 Mclauchlan et al 2017)

The onset of the Anthropocene poses significant challenges in mediterranean

regions that have a strong seasonality of hydrological regimes and an annual water

deficit (Stocker et al 2013) Mediterranean climates occur in all continents

(California central Chile Australia South Africa circum-Mediterranean regions)

providing a unique opportunity to investigate global change processes during the

Anthropocene in similar climate settings but with variable geographic and cultural

contexts The effects of global change in mediterranean watersheds have been

analyzed from different perspectives hydrology (Giorgi 2006 Arnell and Gosling

2013 Prudhomme et al 2014) vegetation dynamics (Lenihan et al 2003 Vicente-

Serrano et al 2013 Matesanz and Valladares 2014) sediment dynamics (Garciacutea-

Ruiz et al 2013 Garciacutea-Ruiz 2010 Syvitski et al 2005) changes in

biogeochemical cycles (Thomas et al 2013 Fowler et al 2013 Frank et al 2015)

carbon storage (Muntildeoz-Rojas et al 2015) and biodiversity (Hooper et al 2012) A

recent review showed an extraordinarily high variability of erosion rates in

mediterranean watersheds positive relationships with slope and annual

33

precipitation and the paramount effect of land use (Garciacutea-Ruiz et al 2015)

However the temporal context and effect of LUCC on nutrient supply to

mediterranean lakes has not been analyzed in much detail

Major LUCC in central Chile occurred during the Spanish Colonial period

(17th-18th centuries) (Armesto 1994 Gurnell et al 2001 Figueroa et al 2004

Martiacuten-Foreacutes et al 2012 Contreras-Loacutepez et al 2014) with the onset of

industrialization and mostly during the mid to late 20th century (von Gunten et al

2009 Gayo et al 2012) Recent copper pollution caused by 20th century mining

and industrial smelters has been documented in cores throughout the Andes

(Laguna el Ocho and Laguna Ensuentildeo von Gunten et al 2009) and also from our

surveys in the central valley (Batuco wetland) coastal range (Cordillera de Name)

and along the coast itself (Bucalemito and Colejuda) (Valero-Garceacutes et al 2010

unpublished data)

Paleolimnological studies have shown how these systems respond to

climate LUCC and anthropogenic impacts during the last millennia (Jenny et al

2002 2003 Villa Martiacutenez et al 2002 Frugone-Aacutelvarez et al 2017 Contreras et

al 2018) Furthermore changes in sediment and nutrient cycles have also been

identified in associated terrestrial ecosystems dating as far back as the Spanish

Conquest and related to fire clearance and wood extraction practices of the native

forests (Armesto 1994 Contreras-Loacutepez et al 2014) Nevertheless pollen and

limnological evidence argue for a more recent timing of the largest anthropogenic

impacts in central Chile For example paleo records show that during the mid-20th

century increased soil erosion followed replacement of native forest by Pinus

radiata and Eucalyptus globulus plantations at Laguna Matanzas Aculeo and

34

Vichuqueacuten lakes (Jenny et al 2002 Villa-Martiacutenez et al 2002 2003 Frugone-

Aacutelvarez et al 2017)

Lakes are a central component of the global carbon cycle Lakes act as a

sink of the carbon cycle both by mineralizing terrestrially derived organic matter and

by storing substantial amounts of organic carbon (OC) in their sediments (Anderson

et al 2009) Paleolimnological studies have shown a large increase in OC burial

rates during the last century (Heathcote et al 2015) however the rates and

controls on OC burial by lakes remain uncertain as do the possible effects of future

global change and the coupled effect with the N cycle LUCC intensification of

agriculture and associated nutrient loading together with atmospheric N-deposition

are expected to enhance OC sequestration by lakes Climate change has been

mainly responsible for the increased algal productivity since the end of the 19th

century and during the late 20th century in lakes from both the northern (Ruumlhland et

al2015) and southern hemispheres (Michelutti et al 2015 Carrevedo et al 2015)

but many studies suggest a complex interaction of global warming and

anthropogenic influences and it remains to be proven if climate is indeed the only

factor controlling these transitions (Catalaacuten et al 2013) Alternative causes for

recent N (Galloway et al 2008) increases in high altitude lakes such as catchment

mediated processes cannot be ruled out (Camarero and Catalan 2012 Fritz and

Anderson 2013) Few lake-watershed systems have robust enough chronologies of

recent changes to compare variations in C and N with regional and local processes

and even fewer of these are from the southern hemisphere (McLauchlan et al

2007 Holtgrieve et al 2011)

In this paper we present a multiproxy lake-watershed study including N and

C stable isotope analyses on a series of short cores from Laguna Matanzas in

35

central Chile focused in the last 200 years We complemented our record with land

use surveys satellite and aerial photograph studies Our major objectives are 1) to

reconstruct the dynamics among climate human activities and changes in the N

cycle over the last two centuries 2) to evaluate how human activities have altered

the N cycle during the Great Acceleration (since the mid-20th century)

2 STUDY SITE

Laguna Matanzas (33ordm45rsquoS 71ordm 40acuteW 7 m asl Fig 1) is a coastal lake located

in central Chile near to a large populated area (Santiago gt6106 inhabitants) The

lake has a surface area of 15 km2 with a max depth of 3 m and a watershed of 30

km2 The lake basin is emplaced over Pleistocene-Holocene aeolian and alluvial fan

deposits (SERNAGEOMIN 2003) A recent phase of dune activity occurred from the

mid to late Holocene which mostly sealed off the basin from the ocean (Villa-

Martinez 2002) Climate in Laguna Matanzas is characterized by cool-wet winters

and hot-dry summers with annual precipitation of ~510 mm and a mean annual

temperature of 12ordmC Central Chile is in the transition zone between the southern

hemisphere mid-latitude westerlies belt and the South Pacific Anticyclone (or SPA)

(Garreaud et al 2009) In winter precipitation is modulated by the north-west

displacement of the SPA the northward shift of the westerlies wind belt and an

increased frequency of storm fronts stemming off the Southern Hemisphere

Westerly Winds (SWW) (Frugone-Aacutelvarez et al 2017) Austral summers are

typically dry and warm as a strong SPA blocks the northward migration of storm

tracks stemming off the SWW

36

Historic land cover changes started after the Spanish conquest with a Jesuit

settlement in 1627 CE near El Convento village and the development of a livestock

ranch that included the Matanzas watershed After the Jesuits were expelled from

South America in 1778 CE the farm was bought by Pedro Balmaceda and had more

than 40000 head of cattle around 1800 CE (Contreras-Lopez et al 2014) The first

Pinus radiata and Eucalyptus globulus trees were planted during the second half of

the 19th century and were mostly used for dune stabilization (Albert 1900 Gibson

1972) However the main plantation phase occurred 60 years ago (Villa-Martinez

2002) as a response to the application of Chilean Forestry Laws promulgated in

1931 and 1974 and associated state subsidies

Major land cover changes occurred recently from 1975 to 2008 as shrublands

were replaced by more intensive land uses practices such as farmland and tree

plantations (Schulz et al 2010) Laguna Matanzas is part of the Reserva Nacional

Humedal El Yali protected area (Ramsar Ndeg 878) Despite this protected status the

lake and its watershed have been heavily affected by intense agricultural and

farming activities during the last decades The main inlet ldquoLas Rosasrdquo has been

diverted for crop irrigation causing a significant loss of water input to the lake

Consequently the flooded area of the lake has greatly decreased in the last couple

of decades (Fig 1b) Exotic tree species cover a large surface area of the

watershed Recently other activities such as farms for intensive chicken production

have been emplaced in the watershed

37

Figure 1 Laguna Matanzas a) Digital Elevation Model showing the watershed and

the surface hydrologic connection with Colejuda and Cabildo lakes b) Climograph

depicting the warm dry season in austral summer c) Annual precipitation from

1965-2015 (arrow shows start of the most recent ldquomega-droughtrdquo- see Garreaud et

al 2017) d) A decline of lake area occurs between 2007 and 2018 Lake surface

area decreased first along the western sector (in 2007) followed by more inland

areas (in 2018)

38

3 RESULTS

31 Age Model

The age model for the Matanzas sequence was developed using Bacon software

to establish the deposition rates and age uncertainty (Blaauw and Christen 2011)

It is based on 210Pb and 137Cs dates and two 14C dates (Table 2) According to this

age model the lake sequence spans the last 1000 years (Fig 2) A major breccia

layer (unit 3b) was deposited during the early 18th century which agrees with

historic documents indicating that a tsunami impacted Laguna Matanzas and its

watershed in 1730 CE (Contreras-Loacutepez et al 2014) Here we focus in the last 200

years were the most important changes occurred in terms of LUCC (after the

sedimentary hiatus caused by the tsunami) The Spanish colonial period (17th -18th

century) brought new forms of territorial management along with an intensification

of watershed use which remained relatively unchanged until the 1900s

39

Figure 2 a) Age-depth model obtained for the Laguna de Matanzas sedimentary

sequence A hiatus occurs at 80 cm depth (unit 3b) The section of core used for our

analysis is highlighted in a red rectangle b) Close up of the age model used for

analysis of recent anthropogenic influences on the N cycle c) Information regarding

the 14C dates used to construct age model

Lab code Sample ID

Depth (cm) Material Fraction of modern C

Radiocarbon age

Pmc Error BP Error

D-AMS 021579

MAT11-6A 104-105 Bulk Sediment

8843 041 988 37

D-AMS 001132

MAT11-6A 1345-1355

Bulk Sediment

8482 024 1268 21

POZ-57285

MAT13-12 DIC Water column 10454 035 Modern

Table 2 Laguna Matanzas radiocarbon dates

32 The sediment sequence

Laguna Matanzas sediments consist of massive to banded mud with some silt

intercalations They are composed of silicate minerals (plagioclase quartz and clay

minerals) with relatively high TOC content (Fig 3) Pyrite is a common mineral

indicating dominant anoxic conditions in the lake sediments whereas aragonite

occurs only in the uppermost section Mineralogical analyses visual descriptions

texture and geochemical composition were used to characterize five main facies

(Fig 3) F1 (organic-rich mud) represents baseline sedimentation in a shallow well-

mixed brackish highly productive lake and F1acute (dark orange) is a less organic facies

than F1 (more details see table in the supplementary material) F2 (massive to

banded silty mud) indicates periods of higher clastic input into the lake but finer

(mostly clay minerals) likely from suspension deposition associated with flooding

40

events Aragonite (up to 15 ) occurs in both facies but only in samples from the

uppermost 30 cm and it is interpreted as endogenic linked to higher MgFe waters

and elevated biologic productivity

Figure 3 Sedimentary facies and units mineralogy grain size elemental geochemical

and isotopic composition of Laguna Matanzas core Values highlighted in gray indicate

that these are above average

The banded to laminated fining upward silty clay layers (F3) reflect

deposition by high energy turbidity currents The presence of aragonite suggests

that littoral sediments were incorporated by these currents Non-graded laminated

coarse silt layers (F4) do not have aragonite indicating a dominant watershed

41

sediment source Both facies are interpreted as more energetic flood deposits but

with different sediment sources A unique breccia layer with coarse silt matrix and

cm-long soft clasts (F5) is interpreted as a high-energy event (ie a tsunami)

capable of eroding the littoral zone and depositing coarse clastic material in the

distal zone of the lake Similar coarse breccia layers have been found at several

coastal sites in Chile and interpreted as tsunami-related deposits (Vargas et al

2005 Le Roux et al 2008)

33 Sedimentary units

Three main units and six subunits have been defined (Fig 3) based on

sedimentary facies and sediment composition We use ZrTi as an indicator of the

mineral fraction transported from the watershed (Marzecoacuteva et al 2011) as higher

ZrTi (F3 and F4) is commonly associated with coarser sediments (Cuven et al

2010) A high correlation among Br BrTi and TOC (r = 046-087 p value=0)

supports the use of BrTi as an indicator of lake productivity (Marzecoacuteva et al 2011

Frugone-Aacutelvarez et al 2017) The MnFe ratio is indicative of lake bottom

oxygenation (Naecher et al 2013) as under reducing conditions Mn mobilizes more

than Fe leading to a decreased MnFe ratio (Marzecoacuteva et al 2011) SrTi indicates

periods of increased aragonite formation as Sr is preferentially included in the

aragonite mineral structure (Veizer et al 1971) (See supplementary material)

The basal unit (3c 129 to 99 cm) is relatively organic-rich (TOC mean=26

BioSi mean=5) and composed by F1 (without aragonite) with some coarser F4

flood layers (ZrTi mean=025) Unit 3b (98 to 80 cm) is interpreted as a tsunami or

storm surge deposit (breccia F5 grading into massive to banded silt F2) Unit 3a

(79 to 73 cm) is characterized by relatively low productivity (TOC=2 BrTi=002

42

BioSi=4) under anoxic conditions (MnFe=001) Unit 2a (72 to 31cm) has

relatively less organic content and more intercalated clastic facies F3 and F4 The

top of this unit (43-30 cm) has elevated TS values The Subunit 1b (30-20 cm)

shows increasing TOC BioSi and BrTi values (TOC mean = 29 BioSi mean =

54 BrTi mean=004) and the upper subunit 1a (19-0 cm) has the highest TOC

(mean = 64) and BioSi (mean = 56) high BrTi mean = 010 and the presence

of aragonite More frequent anoxic conditions (MnFe lower than 001) during units

3 and 2 shifted towards more oxic episodes (MnFe = 003) in unit 1 (Fig 3)

34 Isotopic signatures

Figure 4 shows the isotopic signature from soil samples of the major land

usescover present in the Laguna Matanzas used as an end member in comparison

with the lacustrine sedimentary units δ15N from cropland samples exhibit the

highest values whereas grassland and soil samples from lake shore areas have

intermediate values (Fig 4) Tree plantations and native forests have similarly low

δ15N values (+11 permil SD=24) All samples (except those from the lake shore)

exhibit low δ13C values (from ndash285permil to ndash298permil) CNmolar from agriculture land

lakeshore area and non-vegetation areas samples display the lowest values (about

18) CNmolar from tree plantations and native forest have the highest values (383

and 267 respectively)

43

Figure 4 C-N stable isotope plot showing a comparison of lake sediments grouped

by sedimentary units (MAT11-6A) with the soil end members of present-day (lake

shore and land usecover) from Laguna Matanzas

The δ15N values from sediment samples (MAT11-6A) range from ndash15 and

+53permil (mean= +35 SD=05) δ13C values range from ndash266permil to ndash202permil (mean=

ndash240 SD=14) In unit 3c δ15N and δ13C show relatively high values (mean=

+41permil and ndash233permil respectively) δ15N and δ13C from unit 3b and 3a fluctuate at

slightly lower values than in 3c (mean δ15N from 3a= +38permil and 3b mean= +39permil

mean δ13C from 3a= ndash242permil and 3b mean= ndash244permil) In unit 2a δ15N values are

relatively high (mean= +38permil) but show a slightly decreasing trend (from +52 to

+24permil at 66 cm and 36 cm respectively) δ13C also decreases (mean= ndash242permil)

reaching minimum values at 45 cm (ndash266permil) with a sharp increase towards the top

of this unit with maximum values ca ndash210permil Unit 1 exhibits the lowest δ15N values

(1a mean= +11permil 1b mean= +28permil) with negative values in the uppermost

44

sediments (ndash04permil at 14 cm) δ13C values show a decreasing trend over most of

subunit 1b and increase only near the very top of this unit

35 Recent land use changes in the Laguna Matanzas watershed

Major LUCC from 1975 (unit 1b) to 2016 CE in the Laguna Matanzasacutes

watershed is summarized in Figure 5 The watershed has a surface area of 30 km2

of which native forest (36) and grassland areas (44) represented 80 of the

total surface in 1975 The area occupied by agriculture was only 02 and tree

plantations were absent Isolated burned areas (33) were located mostly in the

northern part of the watershed By 1989 tree plantations surface area had increased

to 5 burned areas to 17 and agricultural fields to 9 (a 45-fold increase) and

native forest and grassland sectors decreased to 23 and 27 respectively By

2016 agricultural land and tree plantations have increased to 17 of the total area

whereas native forests decreased to 21

45

Figure 5 Land uses and cover changes from 1975 to 2016 in Laguna Matanzas

watershed from natural cover and areas for livestock grazing (grassland) to the

expansion of agriculture and forest plantation

4 DISCUSSION

41 N and C dynamics in Laguna Matanzas

Small lakes with relatively large watersheds such as Laguna Matanzas would

be expected to have relatively high contributions of allochthonous C to the sediment

OM (Gu et al 2006) Terrestrial C3 plants (δ13C =ndash26 to ndash28permil Meyers and Terranes

2001 Ku et al 2007) are dominant in the Laguna Matanzas watershed Likewise

our soil samples ranged across similar although slightly more negative values

46

(δ13C = ndash30 to ndash28permil Fig 4) to those proposed by Meyers and Terranes (2001)

and are used here as terrestrial end members oil samples were taken from the lake

shore (δ13C = ndash22permil) and POM from surface water (δ13C = ndash24permil) were more

positive than the terrestrial end member and are used as lacustrine end members

Thus more negative δ13C values in lake sediment samples are attributed to higher

OM inputs from terrestrial vegetation and more positive δ13C values have increased

aquatic OM (Gu et al 2006 Torres et al 2012) Phytoplankton preferentially uptake

12C leaving the DIC pool enriched in 13C (Gu et al 2006) especially when there are

no important external sources of C (eg decreased C input from the watershed)

Therefore during events of elevated primary productivity the phytoplankton uptakes

12C until its depletion and are then obligated to use the heavier isotope resulting in

an increase in δ13C Changes in lake productivity thus greatly affect the C isotope

signal (Torres et al 2012) with high productivity leading to elevated δ13C values

(Torres et al 2012 Gu et al 2006)

In a similar fashion the N isotope signatures in Laguna Matanzas reflect a

combination of factors including different N sources (autochthonousallochthonous)

and lake processes such as productivity isotope fractionation in the water column

and sediment denitrification Elevated δ15N values from a POM sample (+22permil) and

average values from the lake shore (mean=+34permil SD=028) are used as aquatic

end members whereas terrestrial samples have values from +10 +24 (tree species)

to +77permil +35 (agriculture) which we use as terrestrial end members (Fig 4)

Autochthonous OM in aquatic ecosystems typically displays low δ15N values

when the OM comes from N-fixing species Atmospheric fixation of N2 by

cyanobacteria ends in OM with δ15N values close to 0permil (Leng et al 2006)

Phytoplankton preferentially uptake 14N from Dissolved Inorganic Nitrogen (DIN) in

47

the water column and derived OM typically have δ15N values lower than DIN values

When productivity increases the remaining DIN becomes depleted in 14N which in

turn increases the δ15N values of phytoplankton over time especially if the N not

replenished (Torres et al 2012) Thus high POM δ15N values from Laguna

Matanzas reflect elevated phytoplankton productivity with a 14N- depleted DIN In

addition N-watershed inputs also contribute to high δ15N values Heavily impacted

watersheds by human activities are often reflected in isotope values due to land use

changes and associated modified N fluxes For example the input of N runoff

derived from the use of inorganic fertilizers leads to the presence of elevated δ15N

(between ndash4 to +4permil) values in the water bodies (Elliott and Brush 2006 Diebel and

Vander Zanden 2009) Widory et al (2004) reported a direct relationship between

elevated δ15N values and increased nitrate concentration from manure in the

groundwater of Brittany (France) Terranes and Bernasconi (2000) found a good

correlation between augmented nutrient loading and a progressive increase in δ15N

values of sedimentary OM related to agricultural land use

Post-depositional diagenetic processes can further affect C and N isotope

signatures Several studies have shown a decrease in δ13C values of OM in anoxic

environments particularly during the first years of burial related to the selective

preservation of OM depleted in 13C (Hollander and Smith 2001 Lehmann et al

2002 Gӓlman et al 2009 Torres et al 2012) Diagenetic processes can also lead

to post-burial N isotope enrichment of the sediments Indeed 14N is consumed more

rapidly than 15N by denitrifying bacteria which intensifies under anoxic conditions

(Diebel and Vander Zanden 2009) Thus the remaining OM pool will be enriched

in 15N leaving to elevated δ15N values (Granger et al 2008 Menzel et al 2013)

48

In summary the relatively high δ15N values in sediments of Laguna Matanzas

reflect N input from an agriculturegrassland watershed with positive synergetic

effects from increased lake productivity enrichment of DIN in the water column and

most likely denitrification The increase of algal productivity associated with

increased N terrestrial input andor recycling of lake nutrients (and lesser extent

fixing atmospheric N) and denitrification under anoxic conditions can all increase

δ15N values (Fig 3) In addition elevated lake productivity without C replenishing

(eg by terrestrial C input) produces shifts towards positive δ13C values whereas C

input from the watershed generates more negative δ13C values

42 Recent evolution of the Laguna Matanzas watershed

Sedimentological compositional and geochemical indicators show three

depositional phases in the lake evolution under the human influence in the Laguna

Matanzas over the last two hundred years Although the record is longer (around

1000 years) we analyzed the last two centuries (unit 2 and 1) to provide a recent

historical context for the large changes detected during the 20th century

The first phase lasted from the beginning of the 19th century until ca 1940

(unit 2a Fig 3 4) and was characterized by moderate productivity with elevated

sediment input from the watershed as indicated by our geochemical proxies (BrTi

= 004 AlTi gt 01 Fig 6) Higher lake levels and dominant anoxic bottom conditions

(MnFe = 001 Fig3) can be related to increased precipitation (mean= 557 mmyr)

and lower temperatures (summer annual temperature lt19ordmC) During the Spanish

colonial period the Laguna Matanzas watershed was used as a livestock farm

(Jesuits 1627-1780 unit 3 followed by the Pedro Balmaceda era 1780-1810- unit

2a) (Contreras-Loacutepez et al 2014) The main buildings and farm facilities at the El

49

Convento village During this period livestock grazing and lumber extraction for

mining would have involved extensive deforestation and loss of native vegetation

(eg Armesto et al 1994 2010) However the Matanzas pollen record does not

show any significant regional deforestation during this period (Villa Martiacutenez 2002)

suggesting that the impact may have been highly localized

Lake productivity sediment input and elevated precipitation (Fig 6) all

suggest that N availability was related to this increased input from the watershed

The N from cow manure and soil particles would have led to higher δ15N values

(Elliot and Brush 2016) In addition anoxic lake bottom conditions would lead to

even further enrichment of buried sediment N The δ13C values lend further support

to our interpretation of increased sediment input -and N- from the watershed

Decreased δ13C values reach their lowest values in the entire record (ndash270permil) at

ca 1910 CE (Fig 4 6)

During most of the 19th century human activities in Laguna Matanzas were

similar to those during the Spanish Colonial period However the appearance of

Pinus radiata and Eucalyptus globulus pollen ca 1890 CE (Gibson 1972) the dune

stabilization-afforestation program which began ca 1900 CE (Albert 1900) and the

application of the Chilean forestry law of 1931 (DFL nordm265) contributed to an

increased capacity of the surrounding vegetation to retain nutrients and sediments

The law subsidized forest plantations in areas devoid of vegetation and prohibited

the cutting of forest on slopes greater than 45ordm These land use changes were coeval

with decreased sediment inputs (AlTi trend) from the watershed slightly increased

lake productivity (BrTi from 001 to 003) and a decrease in annual precipitation

(Fig 6) N isotope values become more negative during this period although they

remained high (from +49permil to +37permil) whereas the δ13C trend towards more

50

positive values reflects changes in the N source from watershed to in-lake dynamics

(e g increased endogenic productivity)

The second phase started after 1940 and is clearly marked by an abrupt

change in the general trend of δ15N that oscillates around +41permil (SD = 04permil) during

the first phase to +24permil (SD = 14permil) during the second These δ15N trends reflect

the lowest watershed nutrient and sediment inputs (based on the AlTi record)

decreased precipitation (mean = 318 mm year) and a slight increase in lake

productivity (increased BrTI) Depositional dynamics in the lake likely crossed a

threshold as human activity intensified throughout the watershed and lake levels

decreased

During the Great Acceleration δ15N values shifted towards higher values to

ca 3permil with an increase in δ13C values that are not reflected either in lake

productivity or lake level As the sediment input from the watershed increased and

precipitation remained as low as the previous decade δ15N values during this period

are likely related to watershed clearance which would have increased both nutrient

and sediment input into the lake

The δ13C trend to more positive values reaching the peaks in the 1960s (ndash

212permil) at the same time as the peaks in temperature (196 ordmC mean annual) with a

downward trend in precipitation A shift in OM origin from macrophytes and

watershed input influences to increased lake productivity could explain this trend

(Fig 4 1b)

In the 1970s the Laguna Matanzasacute watershed was mostly covered by native

forest (36) and grassland areas were intended for livestock grazing (44 Fig 5)

Both soils have δ15NSoil lt 5permil (Fig 4) Farming fields occupied a very small area and

tree plantations were almost nonexistent The decreasing trend in δ15N values seen

51

in our record is interrupted by several large peaks that occurred between ca 1975

and ca 1989 when the native forest and grassland areas fell by 23 and 27

respectively largely due to fires affecting 17 of the forests Agriculture fields

increased by 4 and forest plantations increased by 9 (unit 1a) Concomitantly

sediment ndash and likely N - inputs from the watershed decreased (as indicated by the

trend in AlTi) the precipitation was still relatively low (Fig 6) These changes are

likely related to the increase of vegetation cover especially of tree plantations (which

have more negative δ15N values) The small increase in productivity in the lake could

have been favored by increased temperature (von Gunten et al 2009) After 1989

the increase in agriculture land (17 in 2016) correlates with increasing δ15N δ13C

and TOC trends in spite of declining rainfall The increase of forest plantations was

mostly in response to the implementation of the Law Decree of Forestry

Development (DL 701 of 1974) that subsidized forest plantation After 1989 the

increase in agricultural land (17 in 2016) is synchronous with increasing δ15N

δ13C TOC and MnFe trends despite the decline in rainfall and overall lower lake

levels as more water is used for irrigation

The third phase started c 1990 CE (unit 1a) when OM accumulation rates

increase and δ13C δ15N decreased reaching their lowest values in the sequence

around 2000 CE Afterward during the 21st century δ13C and δ15N values again

began to increase The onset of unit 1 is marked by increased lake productivity and

decreased sediment input (AlTi lt 02) synchronous with intensive farming replacing

forestry and extensive agriculture (Fig 5 6)

A change in the general trend of δ15N values which decreased until 1990

(unit 1a) as the native forest and grassland area fell to 23 and 27 respectively

is most likely due to deforestation and fires Agriculture surface increased to 4 and

52

forest plantations increased by 9 (Fig 5) Concomitantly sediment ndash and likely N

ndash inputs from the watershed decreased probably related to the low precipitation (Fig

1b) and the increase of vegetation cover in the watershed in particularly by tree

plantations (with more negative δ15N Fig 4)

At present agriculture and tree plantations occupy around 34 of the

watershed surface whereas native forests and grassland cover 21 and 25

respectively Lake productivity as indicated by BrTi (Fig6) is higher and generates

OM with lower δ15N and higher δ13C values (about +2permil and ndash20permil ca 2000 CE

respectively) due to in-lake processes (ie biological N fixation and nutrient

recycling) and driven by changes in the arboreal cover which diminishes nutrient

flux into the lake (Fig6)

53

Figure 6 Anthropogenic and climatic forcing and lake dynamics response

(productivity sediment input N and C cycles) at Matanzas Lake over the last two

54

centuries Mean annual precipitation reconstructed and temperatures (von Gunten

et al 2009) Vertical gray bars indicate mega-droughts

5 CONCLUSIONS

Human activities have been the main factor controlling the N and C cycle in

the Laguna Matanzas during the last two centuries The N isotope signature in the

lake sediments reflects changes in the watershed fluxes to the lake but also in-lake

processes such as productivity and post-depositional changes Denitrification could

have been a dominant process during periods of increased anoxic conditions which

were more frequent prior to Great Acceleration (1950 CE) Higher δ15N and lower

δ13C values are associated with increased nutrient input from the watershed due to

increased livestock grazing and agriculture pressure (phase 1 Fig 7a) whereas

lower isotope values occurred during periods of increased forest plantations (phase

3 Fig 7c) During periods of increased lake productivity - such as in the last few

decades - δ15N values increased significantly

The most important change in C and N dynamics in the lake occurred after the

1950s (Phase 2 and 3) as tree plantations dominated the watershed Recent

changes in N dynamics can be explained by the higher nutrient contribution

associated with intensive agriculture (i e fertilizers) since the 1990s Although the

replacement of livestock activities with forestry and farming seems to have reduced

nutrient and soil export from the watershed to the lake the inefficient use of fertilizer

(by agriculture) can be the ultimate responsible for lake productivity increase during

the last decades

55

Figure 7 Schematic diagrams illustrating the main factors controlling the

isotope N signal in sediment OM of Laguna Matanzas N input from watershed

depends on human activities and land cover type Agriculture practices and cattle

(grassland development) contribute more N to the lake than native forest and

plantations Periods of higher productivity tend to deplete the dissolved inorganic N

in 14N resulting in higher δ15N (OM) The denitrification processes are more effective

in anoxic conditions associated with higher lake levels

6 METHODS

Short sediment cores were recovered from Laguna Matanzas using an Uwitec

gravity piston corer in 2011 and 2013 (Fig 1a) Sediment cores (MAT11-6A 129 cm

MAT13-2A 149 cm MAT13-3A 33 cm MAT13-4A 99 cm) were split

photographed sub-sampled and stored at the Pyrenean Institute of Ecology (IPE-

CSIC Spain) Core MAT11-6A was obtained from the central sector of the lake and

56

was selected for detailed multiproxy analyses (including elemental geochemistry C

and N isotope analyses XRF and 14C dating)

The isotope analyses (δ13C and δ15N) were performed at the Laboratory of

Biogeochemistry and Applied Stable Isotopes (LABASI-PUC Chile) using a Delta

V Advantage IRMS coupled to a Thermo Flash 2000 Elemental Analyzer via a

Conflo IV interface Isotope results are expressed in standard delta notation (δ) in

per mil (permil) relative to the standards Pee Dee Belemnite (Vienna Pee Dee

Belemnite) for C and to atmospheric N2 for N (Leng et al 2006) Sediment samples

for δ13Corg were pre-treated with 50 ml of HCl and 50 ml of deionized water and

dried at 60ordmC for 4 hr to remove carbonates (Harris et al 2011)

Total Carbon (TC) Total Organic Carbon (TOC) Total Inorganic Carbon (TIC)

and Total Sulphur (TS) were measured every cm with a LECO SC 144 DR at IPE-

CSIC XRF measurements were carried out every 4 mm in MAT11-1A-1G core using

an AVAATECH X-ray Fluorescence II core scanner at the University of Barcelona

(Spain) Results are expressed as element intensities in counts per second (cps)

Tube voltage was operated at 30 kV and 10 kV to obtain the abundances of 15

elements (Al Si S Cl K Ca Ti V Mn Fe Br Rb Sr Y Zr) with an average at

least of 1600 cps (less for Br=1000)

Biogenic silica content mineralogy and grain size were measured every 4

cm Biogenic silica was measured following Mortlock and Froelich (1989) and

Bernaacuterdez et al (2005) using an Auto Analyzer Technicon AAII for dissolved silicate

analysis Mineralogy was analyzed with a Siemens D-500 X-ray diffractometer (Cu

kα 40 kV 30 mA graphite monochromator) at the ICTJA-CSIC (Spain) Grain size

analyses were performed in a Beckmann Coulter LS 13 320 Particle Size Analyzer

57

at the IPE-CSIC The samples were classified according to textural classes as

follows clay (lt2 μm) silt (20-2 microm) and sand (gt2 microm) fractions

The age-depth model for the Laguna Matanzas sedimentary sequence was

constructed using 210Pb and 137Cs dating techniques (MAT13-4A) as well as two 14C

AMS dates on bulk sediment samples (MAT11-6A fig 2) We dated the dissolved

inorganic carbon (DIC) in the water column and no significant reservoir effect is

present in the modern-day water column (10454 + 035 pcmc Table 2) An age-

depth model was obtained with the Bacon R package to estimate the deposition

rates and associated age uncertainties along the core (Blaauw and Christen 2011)

To estimate LUCC of Laguna Matanzasacutes watershed we use satellite images

Landsat MSS for 1975 Landsat TM for 1989 and Landsat OLI for 2016 all taken in

summer or autumn (Table 1) We performed supervised classification of land uses

(maximum likelihood algorithm) for each year (1975 1989 and 2016) and the results

were mapped using software ArcGIS 102 in 2017

Satellite Images Acquisition Date

Resolution

Landsat MSS 19750322 60 m

Landsat TM 19890217 30 m

Landsat OLI 20160404 30 m

Table 1 Landsat imagery

Surface water samples were filtered for obtained particulate organic matter In

addition soil samples from the main land usecover present in the Laguna Matanzas

watershed were collected Elemental C N and their corresponding isotopes from

POM and soil were obtained at the LABASI and used here as end members

Daily precipitation at Santo Domingo (33ordm39`S 71ordm3 6`W)- the nearest weather

station to Laguna Matanzasndash was compiled using the redPrec R package (Fig1 d

Serrano-Notivoli et al 2017 Sarricolea et al 2019) To extend our precipitation

58

reconstruction back to 1824 we correlated this dataset with that available for

Santiago The Santiago data was compiled from data published in the Anales of

Universidad of Chile (1850) for the years 1824 to 1849 Almeyda (1940) for the years

1849 to 1864 and the Quinta Normal series from 1866 to the present (Direccioacuten

Meteoroloacutegica de Chile) We generated a linear regression model between the

presentday Santo Domingo station and the compiled Santiago data with a Pearson

coefficient of 087 and p-valuelt 001

Acknowledgments This research was funded by grants CONICYT AFB170008

to the Institute of Ecology and Biodiversity (IEB) and FONDECYT 1150763 (to CL)

Doctoral grant Becas Chile 21150224 MEDLANT (Spanish Ministry of Economy

and Competitiveness grant CGL2016-76215-R) Additional funding was provided

by the Laboratorio Internacional de Cambio Global (LINCGlobal PUC-CSIC) We

thank R Lopez E Royo and M Gallegos for help with sample analyses We thank

the Laboratory of Biogeochemistry and Applied Stable Isotopes (LABASI) of the

Department of Ecology (PUC) for sample analyses

References

Albert F 1900 Las dunas o sean arenas volantes voladeros arenas muertas invasion de las arenas playas I meacutedanos del centro de Chile comprendiendo el litoral desde el liacutemite norte de la provincia de Aconcagua hasta el liacutemite sur de la de Arauco Memorias cientiacuteficas I Lit

Anderson NJ W D Fritz SC 2009 Holocene carbon burial by lakes in SW

Greenland Glob Chang Biol httpsdoiorg101111j1365-2486200901942x

Armesto J Villagraacuten C Donoso C 1994 La historia del bosque templado

chileno Ambient y Desarro 66 66ndash72 httpsdoiorg101007BF00385244

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea

AM Marquet PA 2010 From the Holocene to the Anthropocene A

59

historical framework for land cover change in southwestern South America in the past 15000 years Land use policy 27 148ndash160 httpsdoiorg101016jlandusepol200907006

Arnell NW Gosling SN 2013 The impacts of climate change on river flow

regimes at the global scale J Hydrol 486 351ndash364 httpsdoiorg101016JJHYDROL201302010

Bernaacuterdez P Prego R Franceacutes G Gonzaacutelez-Aacutelvarez R 2005 Opal content in

the Riacutea de Vigo and Galician continental shelf Biogenic silica in the muddy fraction as an accurate paleoproductivity proxy Cont Shelf Res httpsdoiorg101016jcsr200412009

Blaauw M Christen JA 2011 Flexible paleoclimate age-depth models using an

autoregressive gamma process Bayesian Anal 6 457ndash474 httpsdoiorg10121411-BA618

Brush GS 2009 Historical land use nitrogen and coastal eutrophication A

paleoecological perspective Estuaries and Coasts 32 18ndash28 httpsdoiorg101007s12237-008-9106-z

Camarero L Catalan J 2012 Atmospheric phosphorus deposition may cause

lakes to revert from phosphorus limitation back to nitrogen limitation Nat Commun httpsdoiorg101038ncomms2125

Carrevedo ML Frugone M Latorre C Maldonado A Bernaacuterdez P Prego

R Caacuterdenas D Valero-Garceacutes B 2015 A 700-year record of climate and environmental change from a high Andean lake Laguna del Maule central Chile (36degS) Holocene 25 956ndash972 httpsdoiorg1011770959683615574584

Catalan J Pla-Rabeacutes S Wolfe AP Smol JP Ruumlhland KM Anderson NJ

Kopaacuteček J Stuchliacutek E Schmidt R Koinig KA Camarero L Flower RJ Heiri O Kamenik C Korhola A Leavitt PR Psenner R Renberg I 2013 Global change revealed by palaeolimnological records from remote lakes A review J Paleolimnol httpsdoiorg101007s10933-013-9681-2

Chen Y Y Huang W Wang W H Juang J Y Hong J S Kato T amp

Luyssaert S (2019) Reconstructing Taiwanrsquos land cover changes between 1904 and 2015 from historical maps and satellite images Scientific Reports 9(1) 3643 httpsdoiorg101038s41598-019-40063-1

Contreras S Werne J P Araneda A Urrutia R amp Conejero C A (2018)

Organic matter geochemical signatures (TOC TN CN ratio δ 13 C and δ 15 N) of surface sediment from lakes distributed along a climatological gradient on the western side of the southern Andes Science of The Total Environment 630 878-888 httpsdoiorg101016jscitotenv201802225

Contreras-Loacutepez M (Playa AUHVC (Universidad de VRFS (Pontificia UC

60

de V 2014 ELEMENTOS DE LA HISTORIA NATURAL DEL An Mus Hist Natulas Vaplaraiso 27 51ndash67

Cuven S Francus P Lamoureux SF 2010 Estimation of grain size variability

with micro X-ray fluorescence in laminated lacustrine sediments Cape Bounty Canadian High Arctic J Paleolimnol 44 803ndash817 httpsdoiorg101007s10933-010-9453-1

Diebel M Vander Zanden MJ 201209 Nitrogen stable isotopes in streams

stable isotopes Nitrogen effects of agricultural sources and transformations Ecol Appl 19 1127ndash1134 httpsdoiorg10189008-03271

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in

freshwater wetlands record long-term changes in watershed nitrogen source and land use SO - Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash2916

Elser J 2011 A world awash with nitrogen Science 334 1504ndash1506 Espizua LE Pitte P 2009 The Little Ice Age glacier advance in the Central

Andes (35degS) Argentina Palaeogeogr Palaeoclimatol Palaeoecol 281 345ndash350 httpsdoiorg101016JPALAEO200810032

Figueroa JA Castro S A Marquet P A Jaksic FM 2004 Exotic plant

invasions to the mediterranean region of Chile  causes history and impacts Invasioacuten de plantas exoacuteticas en la regioacuten mediterraacutenea de Chile  causas historia e impactos Rev Chil Hist Nat 465ndash483 httpsdoiorg104067S0716-078X2004000300006

Fowler D Coyle M Skiba U Sutton MA Cape JN Reis S Sheppard

LJ Jenkins A Grizzetti B Galloway N Vitousek P Leach A Bouwman AF Butterbach-bahl K Dentener F Stevenson D Amann M Voss M 2013 The global nitrogen cycle in the twenty- first century Philisophical Trans R Soc B httpsdoiorghttpdxdoiorg101098rstb20130164

Frank D Reichstein M Bahn M Thonicke K Frank D Mahecha MD

Smith P van der Velde M Vicca S Babst F Beer C Buchmann N Canadell JG Ciais P Cramer W Ibrom A Miglietta F Poulter B Rammig A Seneviratne SI Walz A Wattenbach M Zavala MA Zscheischler J 2015 Effects of climate extremes on the terrestrial carbon cycle Concepts processes and potential future impacts Glob Chang Biol httpsdoiorg101111gcb12916

Fritz SC Anderson NJ 2013 The relative influences of climate and catchment

processes on Holocene lake development in glaciated regions J Paleolimnol httpsdoiorg101007s10933-013-9684-z

Frugone-Aacutelvarez M Latorre C Giralt S Polanco-Martiacutenez J Bernaacuterdez P

61

Oliva-Urcia B Maldonado A Carrevedo ML Moreno A Delgado Huertas A Prego R Barreiro-Lostres F Valero-Garceacutes B 2017 A 7000-year high-resolution lake sediment record from coastal central Chile (Lago Vichuqueacuten 34degS) implications for past sea level and environmental variability J Quat Sci 32 830ndash844 httpsdoiorg101002jqs2936

Galloway JN Townsend AR Erisman JW Bekunda M Cai Z Freney JR

Martinelli LA Seitzinger SP Sutton MA 2008 Transformation of the Nitrogen Cycle  Science (80- ) 320 889ndash892 httpsdoiorg101126science1136674

Gaumllman V Rydberg J Bigler C 2009 Decadal diagenetic effects on δ 13 C and

δ 15 N studied in varved lake sediment Limnol Oceanogr 54 917ndash924 httpsdoiorg104319lo20095430917

Garciacutea-Ruiz JM 2010 The effects of land uses on soil erosion in Spain A

review Catena httpsdoiorg101016jcatena201001001

Garciacutea-Ruiz JM Loacutepez-Moreno JI Lasanta T Vicente-Serrano SM

Gonzaacutelez-Sampeacuteriz P Valero-Garceacutes BL Sanjuaacuten Y Begueriacutea S Nadal-Romero E Lana-Renault N Goacutemez-Villar A 2015 Los efectos geoecoloacutegicos del cambio global en el Pirineo Central espantildeol una revisioacuten a distintas escalas espaciales y temporales Pirineos httpsdoiorg103989Pirineos2015170005

Garciacutea-Ruiz JM Nadal-Romero E Lana-Renault N Begueriacutea S 2013

Erosion in Mediterranean landscapes Changes and future challenges Geomorphology 198 20ndash36 httpsdoiorg101016jgeomorph201305023

Garreaud RD Vuille M Compagnucci R Marengo J 2009 Present-day

South American climate Palaeogeogr Palaeoclimatol Palaeoecol httpsdoiorg101016jpalaeo200710032

Gayo EM Latorre C Jordan TE Nester PL Estay SA Ojeda KF

Santoro CM 2012 Late Quaternary hydrological and ecological changes in the hyperarid core of the northern Atacama Desert (~21degS) Earth-Science Rev httpsdoiorg101016jearscirev201204003

Ge Y Zhang K amp Yang X (2019) A 110-year pollen record of land use and land

cover changes in an anthropogenic watershed landscape eastern China Understanding past human-environment interactions Science of The Total Environment 650 2906-2918 httpsdoiorg101016jscitotenv201810058

Goyette J Bennett EM Howarth RW Maranger R 2016 Global

Biogeochemical Cycles 1000ndash1014 httpsdoiorg1010022016GB005384Received

Granger J Sigman DM Lehmann MF Tortell PD 2008 Nitrogen and

oxygen isotope fractionation during dissimilatory nitrate reduction by

62

denitrifying bacteria 53 2533ndash2545 httpsdoiorg10230740058342

Gruber N Galloway JN 2008 An Earth-system perspective of the global

nitrogen cycle Nature 451 293ndash296 httpsdoiorg101038nature06592

Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater eutrophic lake Limnol Oceanogr 51 2837ndash2848 httpsdoiorg104319lo20065162837

Gurnell AM Petts GE Hannah DM Smith BPG Edwards PJ Kollmann

J Ward J V Tockner K 2001 Effects of historical land use on sediment yield from a lacustrine watershed in central Chile Earth Surf Process Landforms 26 63ndash76 httpsdoiorg1010021096-9837(200101)261lt63AID-ESP157gt30CO2-J

Heathcote A J et al Large increases in carbon burial in northern lakes during the

Anthropocene Nat Commun 610016 doi 101038ncomms10016 (2015) Hollander DJ Smith MA 2001 Microbially mediated carbon cycling as a

control on the δ13C of sedimentary carbon in eutrophic Lake Mendota (USA) New models for interpreting isotopic excursions in the sedimentary record Geochim Cosmochim Acta httpsdoiorg101016S0016-7037(00)00506-8

Holtgrieve GW Schindler DE Hobbs WO Leavitt PR Ward EJ Bunting

L Chen G Finney BP Gregory-Eaves I Holmgren S Lisac MJ Lisi PJ Nydick K Rogers LA Saros JE Selbie DT Shapley MD Walsh PB Wolfe AP 2011 A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere Science (80) 334 1545ndash1548 httpsdoiorg101126science1212267

Hooper DU Adair EC Cardinale BJ Byrnes JEK Hungate BA Matulich

KL Gonzalez A Duffy JE Gamfeldt L Connor MI 2012 A global synthesis reveals biodiversity loss as a major driver of ecosystem change Nature httpsdoiorg101038nature11118

Horvatinčić N Sironić A Barešić J Sondi I Krajcar Bronić I Borković D

2016 Mineralogical organic and isotopic composition as palaeoenvironmental records in the lake sediments of two lakes the Plitvice Lakes Croatia Quat Int httpsdoiorg101016jquaint201701022

Howarth RW 2004 Human acceleration of the nitrogen cycle Drivers

consequences and steps toward solutions Water Sci Technol httpsdoiorg1010382Fscientificamerican0490-56

Jenny B Valero-Garceacutes BL Urrutia R Kelts K Veit H Appleby PG Geyh

M 2002 Moisture changes and fluctuations of the Westerlies in Mediterranean Central Chile during the last 2000 years The Laguna Aculeo record (33deg50primeS) Quat Int 87 3ndash18 httpsdoiorg101016S1040-

63

6182(01)00058-1

Jenny B Wilhelm D Valero-Garceacutes BL 2003 The Southern Westerlies in

Central Chile Holocene precipitation estimates based on a water balance model for Laguna Aculeo (33deg50primeS) Clim Dyn 20 269ndash280 httpsdoiorg101007s00382-002-0267-3

Leng M J Lamb A L Heaton T H Marshall J D Wolfe B B Jones M D

amp Arrowsmith C 2006 Isotopes in lake sediments In Isotopes in palaeoenvironmental research (pp 147-184) Springer Dordrecht

Le Roux JP Nielsen SN Kemnitz H Henriquez Aacute 2008 A Pliocene mega-

tsunami deposit and associated features in the Ranquil Formation southern Chile Sediment Geol 203 164ndash180 httpsdoiorg101016jsedgeo200712002

Lehmann M Bernasconi S Barbieri a McKenzie J 2002 Preservation of

organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis Geochim Cosmochim Acta 66 3573ndash3584 httpsdoiorg101016S0016-7037(02)00968-7

Lenihan JM Drapek R Bachelet D Neilson RP 2003 Climate change

effects on vegetation distribution carbon and fire in California Ecol Appl httpsdoiorg101890025295

McLauchlan K K Gerhart L M Battles J J Craine J M Elmore A J

Higuera P E amp Perakis S S (2017) Centennial-scale reductions in nitrogen availability in temperate forests of the United States Scientific reports 7(1) 7856 httpsdoi101038s41598-017-08170-z

Martel-Cea A Maldonado A Grosjean M Alvial I de Jong R Fritz SC von

Gunten L 2016 Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical Central Chile (32ordmS 3050 masl) Palaeogeogr Palaeoclimatol Palaeoecol 461 44ndash54 httpsdoiorg101016jpalaeo201608003

Martiacuten-Foreacutes I Casado MA Castro I Ovalle C Pozo A Del Acosta-Gallo

B Saacutenchez-Jardoacuten L Miguel JM De 2012 Flora of the mediterranean basin in the chilean ESPINALES Evidence of colonisation Pastos 42 137ndash160

Marzecovaacute A Mikomaumlgi a Koff T Martma T 2011 Sedimentary geochemical

response to human impact on Lake Notildemmejaumlrv Estonia Est J Ecol 60 54 httpsdoiorg103176eco2011105

Matesanz S Valladares F 2014 Ecological and evolutionary responses of

Mediterranean plants to global change Environ Exp Bot httpsdoiorg101016jenvexpbot201309004

64

McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE 2007

Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470 httpsdoiorg101073pnas0701779104

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash1643 httpsdoiorg1011770959683613496289

Menzel P Gaye B Wiesner MG Prasad S Stebich M Das BK Anoop A

Riedel N Basavaiah N 2013 Influence of bottom water anoxia on nitrogen isotopic ratios and amino acid contributions of recent sediments from small eutrophic Lonar Lake central India Limnol Oceanogr 58 1061ndash1074 httpsdoiorg104319lo20135831061

Meyers PA Teranes JL 2001 Sediment organic matter in Tracking

Environmental Change Using Lake Sediments Volume 2 Physical and Geochemical Methods httpsdoiorg1018971551-5028(1999)018lt0231SOMCAAgt23CO2

Michelutti N Wolfe AP Cooke CA Hobbs WO Vuille M Smol JP 2015

Climate change forces new ecological states in tropical Andean lakes PLoS One httpsdoiorg101371journalpone0115338

Muntildeoz-Rojas M De la Rosa D Zavala LM Jordaacuten A Anaya-Romero M

2011 Changes in land cover and vegetation carbon stocks in Andalusia Southern Spain (1956-2007) Sci Total Environ httpsdoiorg101016jscitotenv201104009

Naeher S Gilli A North RP Hamann Y Schubert CJ 2013 Tracing bottom

water oxygenation with sedimentary MnFe ratios in Lake Zurich Switzerland Chem Geol 352 125ndash133 httpsdoiorg101016jchemgeo201306006

Poraj-Goacuterska A I Żarczyński M J Ahrens A Enters D Weisbrodt D amp

Tylmann W (2017) Impact of historical land use changes on lacustrine sedimentation recorded in varved sediments of Lake Jaczno northeastern Poland Catena 153 182-193 httpdxdoiorg101016jcatena201702007

Pongratz J Reick CH Raddatz T Claussen M 2010 Biogeophysical versus

biogeochemical climate response to historical anthropogenic land cover change Geophys Res Lett 37 1ndash5 httpsdoiorg1010292010GL043010

Prudhomme C Giuntoli I Robinson EL Clark DB Arnell NW Dankers R

Fekete BM Franssen W Gerten D Gosling SN Hagemann S Hannah DM Kim H Masaki Y Satoh Y Stacke T Wada Y Wisser D 2014 Hydrological droughts in the 21st century hotspots and uncertainties from a global multimodel ensemble experiment Proc Natl Acad Sci httpsdoiorg101073pnas1222473110

65

Ruumlhland KM Paterson AM Smol JP 2015 Lake diatom responses to

warming reviewing the evidence J Paleolimnol httpsdoiorg101007s10933-

015-9837-3

Sarricolea P Meseguer-Ruiz Oacute Serrano-Notivoli R Soto M V amp Martin-Vide

J (2019) Trends of daily precipitation concentration in Central-Southern Chile Atmospheric research 215 85-98 httpsdoiorg101016jatmosres201809005

Sernageomin 2003 Mapa geologico de chile version digital Publ Geol Digit Serrano-Notivoli R de Luis M Begueriumlia S 2017 An R package for daily

precipitation climate series reconstruction Environ Model Softw httpsdoiorg101016jenvsoft201611005

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98 httpsdoiorg1011772053019614564785

Stine S 1994 Extreme and persistent drought in California and Patagonia during

mediaeval time Nature 369 546ndash549 httpsdoiorg101038369546a0

Stocker TF Dahe Q Plattner G-K Alexander L V Allen SK Bindoff NL

Breacuteon F-M Church JA Cubash U Emori S Forster P Friedlingstein P Talley LD Vaughan DG Xie S-P 2013 Technical Summary in Climate Change 2013 The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change httpsdoiorg101017 CBO9781107415324005

Syvitski JPM Voumlroumlsmarty CJ Kettner AJ Green P 2005 Impact of humans

on the flux of terrestrial sediment to the global coastal ocean Science 308(5720) 376-380 httpsdoiorg101126science1109454

Thomas RQ Zaehle S Templer PH Goodale CL 2013 Global patterns of

nitrogen limitation Confronting two global biogeochemical models with observations Glob Chang Biol httpsdoiorg101111gcb12281

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status J Paleolimnol 47 693ndash706 httpsdoiorg101007s10933-012-9593-6

Urbina Carrasco MX Gorigoitiacutea Abbott N Cisternas Vega M 2016 Aportes a

la historia siacutesmica de Chile el caso del gran terremoto de 1730 Anuario de Estudios Americanos httpsdoiorg103989aeamer2016211

Vargas G Ortlieb L Chapron E Valdes J Marquardt C 2005 Paleoseismic

inferences from a high-resolution marine sedimentary record in northern Chile

66

(23degS) Tectonophysics httpsdoiorg101016jtecto200412031 399(1-4) 381-398httpsdoiorg101016jtecto200412031

Valero-Garceacutes BL Latorre C Morelliacuten M Corella P Maldonado A Frugone M Moreno A 2010 Recent Climate variability and human impact from lacustrine cores in central Chile 2nd International LOTRED-South America Symposium Reconstructing Climate Variations in South America and the Antarctic Peninsula over the last 2000 years Valdivia p 76 (httpwwwpagesunibechproductsmeeting-products1024-2nd-international-lotred-south-america-symposium-reconstructing-climate-variations-in-south-america-and-the-antarctic-peninsula-over-the-last-2000-yearshttpwwwpagesunibechproductsmeeting-products1024-2nd-international-lotred-south-america-symposium-reconstructing-climate-variations-in-south-america-and-the-antarctic-peninsula-over-the-last-2000-years

Vicente-Serrano SM Gouveia C Camarero JJ Begueria S Trigo R

Lopez-Moreno JI Azorin-Molina C Pasho E Lorenzo-Lacruz J Revuelto J Moran-Tejeda E Sanchez-Lorenzo A 2013 Response of vegetation to drought time-scales across global land biomes Proc Natl Acad Sci httpsdoiorg101073pnas1207068110

Villa Martiacutenez R P 2002 Historia del clima y la vegetacioacuten de Chile Central

durante el Holoceno Una reconstruccioacuten basada en el anaacutelisis de polen sedimentos microalgas y carboacuten PhD

Villa-Martiacutenez R Villagraacuten C Jenny B 2003 Pollen evidence for late -

Holocene climatic variability at laguna de Aculeo Central Chile (lat 34o S) The Holocene 3 361ndash367

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Human alteration of the global nitrogen cycle sources and consequences Ecological applications 7(3) 737-750 httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M Rein B Urrutia R amp Appleby P (2009) A

quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo central Chile back to AD 850 The Holocene 19(6) 873-881 httpsdoiorg1011770959683609336573

von Gunten L Grosjean M Eggenberger U Grob P Urrutia R Morales A

2009 Pollution and eutrophication history AD 1800-2005 as recorded in sediments from five lakes in Central Chile Glob Planet Change 68 198ndash208 httpsdoiorg101016jgloplacha200904004

Widory D Kloppmann W Chery L Bonnin J Rochdi H Guinamant JL

2004 Nitrate in groundwater An isotopic multi-tracer approach J Contam Hydrol 72 165ndash188 httpsdoiorg101016jjconhyd200310010

67

Woodward CA Potito AP Beilman DW 2012 Carbon and nitrogen stable isotope ratios in surface sediments from lakes of western Ireland Implications for inferring past lake productivity and nitrogen loading J Paleolimnol 47 167ndash184 httpsdoiorg101007s10933-011-9568-z

68

Supplementary material

Facie Name Description Depositional Environment

F1 Organic-rich

mud

Massive to banded black

organic - rich (TOC up to 14 )

mud with aragonite in dm - thick

layers Slightly banded intervals

contain less OM (TOClt4) and

aragonite than massive

intervals High MnFe (oxic

bottom conditions) High CaTi

BrTi and BioSi (up to 5)

Distal low energy environment

high productivity well oxygenated

and brackish waters and relative

low lake level

F2 Massive to

banded silty clay

to fine silt

cm-thick layers mostly

composed by silicates

(plagioclase quartz cristobalite

up to 65 TOC mean=23)

Some layers have relatively high

pyrite content (up to 25) No

carbonates CaTi BrTi and

BioSi (mean=48) are lower

than F1 higher ZrTi (coarser

grain size)

Deposition during periods of

higher sediment input from the

watershed

69

F3 Banded to

laminated light

brown silty clay

cm-thick layers mostly

composed of clay minerals

quartz and plagioclase (up to

42) low organic matter

(TOC mean=13) low pyrite

and BioSi content

(mean=46) and some

aragonite

Flooding events reworking

coastal deposits

F4 Laminated

coarse silts

Thin massive layers (lt2mm)

dominated by silicates Low

TOC (mean=214 ) BrTi

(mean=002) MnFe (lt02)

TIC (lt034) BioSi

(mean=46) and TS values

(lt064) and high ZrTi

Rapid flooding events

transporting material mostly

from within the watershed

F5 Breccia with

coarse silt

matrix

A 17 cm thick (80-97 cm

depth) layer composed by

irregular mm to cm-long ldquosoft-

clastsrdquo of silty sediment

fragments in a coarse silt

matrix Low CaTi BrTi and

MnFe ratios and BioSi

Rapid high energy flood

events

70

(mean=43) and high ZrTi

(gt018)

Table Sedimentological and compositional characteristics of Laguna Matanzas

facies

71

CAPIacuteTULO 2 STABLE ISOTOPES TRACK LAND USE AND COVER

CHANGES IN A MEDITERRANEAN LAKE IN CENTRAL CHILE OVER THE

LAST 600 YEARS

72

Stable isotopes track land use and cover changes in a mediterranean lake in

central Chile over the last 600 years

Magdalena Fuentealbaabc Claudio Latorreabc Matiacuteas Frugone-Aacutelvarezabc Pablo

Sarricolead Leonardo Villaciacutese M Laura Carrevedob Blas Valero-Garceacutescg

a Departamento de Ecologiacutea Pontificia Universidad Catoacutelica de Chile Alameda 340 Santiago Chile

b Institute of Ecology and Biodiversity (IEB) Las Palmeras 3425 Nuntildeoa Santiago Chile

c Laboratorio Internacional de Cambio Global LINCGlobal PUC-CSIC Spain

d Departamento de Geografiacutea Universidad de Chile Marcoleta 250 Santiago Chile

e Departamento de Ecologiacutea Universidad de ChileLas Palmeras 3425 Nuntildeoa Santiago Chile

f Instituto Pirenaico de Ecologiacutea (IPE-CSIC) Avenida Montantildeana 1005 Zaragoza 50059 Spain

Corresponding authors E-mail addresses clatorrebiopuccl magdalenafuentealbagmailcom

Key words Anthropocene lake sediment δsup1⁵N δsup1sup3C Great Acceleration organic

geochemistry watershedndashlake system Stable Isotope Analyses land usecover

change Nitrogen cycle mediterranean ecosystems central Chile

73

Abstract

Nutrient fluxes in many aquatic ecosystems are currently being overridden by

anthropic controls especially since the industrial revolution (mid-1800s) and the

Great Acceleration (mid-1900s) Land use and cover changes (LUCC) alter the

availability and fluxes of nutrients such as nitrogen that are transferred via runoff

and groundwater into lakes By altering lake productivity and trophic status these

changes are often preserved in the sedimentary record Here we use

geolimnological proxies and stable isotope analyses (δsup1⁵N δsup13C) on lake sediments

to reconstruct the lake-watershed nutrient transfer in a central Chilean lake (Lago

Vichuqueacuten) over the past 600 years We compare our multiproxy record from recent

lake sediments to the soilvegetation relationship across the watershed as well as

land usecover changes from 1975 to 2014 derived from satellite images Our results

show that lake sediment δsup1⁵N values increased with meadow cover but decreased

with tree plantations suggesting increased nitrogen retention when trees dominate

the watershed Our δsup1⁵N record from central Chile can thus be interpreted as a proxy

for nutrient availability over the last 600 years mainly derived from land use changes

coupled with climate drivers Although variable sources of organic matter and in situ

fractionation often hinder straightforward environmental interpretations of stable N

isotope signatures our study shows that lake sediment δsup1⁵N can be a useful tool for

assessing the contribution of past human activities in nutrient and nitrogen cycling

1 Introduction

Nitrogen (N) is a limiting nutrient in terrestrial and aquatic ecosystems (Vitousek

et al 1997) Changes in its availability can drive eutrophication and increase

pollution in these ecosystems (McLauchlan et al 2013) Although recent human

74

impacts on the global N cycle have been significant the consequences of increased

anthropogenic N on these ecosystems are unclear (Gerhart and Mclauchlan 2014

Battye et al 2017) Isotopic signatures are key to understand N dynamics in lakes

nevertheless in situ andor diagenetic fractionation along with multiple sources of

organic matter (OM) often hinder straightforward environmental interpretations from

isotopes Monitoring δ15N and δ13C values as components of the N cycle

specifically those related to the link between terrestrial and aquatic ecosystems can

help differentiate between effects from processes versus sources in stable isotope

values (eg from Particulate Organic Matter -POM- soil and vegetation) and

improve how we interpret variations in δ15N (and δ13C) values at longer temporal

scales

The main processes controlling stable N isotopes in bulk lake OM are source

lake productivity diagenesis and denitrification (Talbot 2001 Leng et al 2006

Fariacuteas et al 2009 Torres et al 2012 Brahney et al 2014) N sources depend on

contributions from the watershed (ie soil and biomass) the transfer of atmospheric

N to the lake (ie atmospheric N2 fixation) and nutrient recycling (Leng et al 2006)

Atmospheric N2 (isotopically defined as δ15N =0) is fixed by cyanobacteria with

minimal fractionation resulting in δ15NOM values that fluctuate from -2 to +2permil (Fogel

and Cifuentes 1993 Talbot 2001 Elliot and Brush 2006) Besides N2 fixation by

cyanobacteria phytoplankton species assimilate dissolved inorganic nitrogen (DIN)

and values typically range from +7 to +10permil (Xu et al 2016 Meyers et al 2003) In

addition seasonal changes in POM occur in the lake water column Gu et al (2006)

sampled the water column of Lake Wauberg (Florida USA) during a hydrologic year

and found a higher development of N fixing species during the summer A major

factor behind this increase are human activities in the watershed which control the

75

inputs of the sediment and nutrients to the lake (Woodward et al 2011) Some

studies have shown higher δ15N values in lake sediments from watersheds that are

highly affected by human activities (Bruland and Mackenzie 2010 Woodward et al

2011) Syntenic fertilizers displayed δ15N values between -4 to +4permil cattle manure

around +8 to +22permil and surface and groundwater OM between 0 to +10permil (Elliott

and Brush 2006 Leng et al 2006) Although relatively low δ15N values from

fertilizers constitute major N input to human-altered watersheds the elevated loss

of 14N via volatilization of ammonia and denitrification leaves the remaining total N

input enriched in 15N (Bruland and Mackenzie 2010)

In addition to the different sources and variations in lake productivity early

diagenesis at the sedimentndashwater interface in the sediment can further alter

sediment OM isotope values (Brahney et al 2014 Galman et al 2009) During

diagenetic loss of N in lacustrine systems kinetic fractionation occurs and the

remaining N is enriched in 15N leading to higher δ15N values (Galman et al 2006

Talbot 2001) Denitrification tends to enrich lake sediments in 15N due to the

assimilation of nitrates by denitrifying bacteria (Granger et al 2008) and is more

prevalent in anoxic environments (Brahney et al 2016 Lehman et al 2002)

Carbon isotopes in lake sediments can also provide useful information about

paleoenvironmental changes OM origin and depositional processes (Meyers et al

2003) Allochthonous organic sources (high CN ratios) produce isotope values

similar to values from catchment vegetation Autochthonous organic matter (low CN

ratio) is influenced by fractionation both in the lake and the watershed leading up to

carbon assimilation by lacustrine biota (Woodward et al 2011) Changes in

productivity greatly affect δ13COM values (Torres et al 2012) as during C uptake

plankton preferentially assimilate 12C leaving the dissolved inorganic carbon (DIC)

76

pool enriched in 13C (Gu et al 2006) with phytoplankton averaging ca 20 permil lower

than the respective δ13CDIC values (Leng et al 2006) Under conditions of low to

moderate primary productivity plankton preferentially uptake the lighter 12C

resulting in low δ13C values displayed by the OM (Torres et al 2012) Conversely

during high primary productivity phytoplankton will uptake 12C until its depletion and

is then forced to assimilate the heavier isotope resulting in an increase in δ13C

values Higher productivity in C-limited lakes due to slow water-atmosphere

exchange of CO2 also results in high δ13C values (Galman et al 2009) In these

cases algae are forced to uptake dissolved bicarbonate with δ13C values between

7 to 10permil higher than those of the atmospheric CO2 dissolved in water (Sun et al

2016 Torres et al 2012 Galman et al 2009)

Stable isotope analyses from lake sediments are thus useful tools to

reconstruct shifts in lake-watershed dynamics caused by changes in limnological

parameters and LUCC Our knowledge of the current processes that can affect

stable isotope signals in a watershed-lake system is limited however as monitoring

studies are scarce Besides in order to use stable isotope signatures to reconstruct

past environmental changes we require a multiproxy approach to understand the

role of the different variables in controlling these values Hence in this study we

carried out a detailed survey of current N dynamics in a coastal central Chilean lake

(Lago Vichuqueacuten) and a multiproxy study of a sediment record spanning the last

600 years The characterization of the recent changes in the watershed since 1970s

is based on satellite images to compare recent changes in the lake and assess how

these are related with climate variability and an ever increasing human footprint

(Lara et al 2012 Gallardo et al 2015 Steffen et al 2015) Our main goal is to

investigate how stable isotope values from lake sediment reflect changes in the lake

77

ndash watershed system during periods of high watershed disruption (eg Spanish

Conquest late XIX century Great Acceleration) and recent climate change (eg

Little Ice Age and current global warming)

2 Study Site

Lago Vichuqueacuten (34ordm49`S 72ordm04W 4 m asl 30 m of depth Fig 1) is a

mesotrophic to eutrophic lake with dominant anoxic bottom conditions that is

stratified year around (Frugone-Aacutelvarez et al 2017) The main inlets are the

Vichuqueacuten and Huintildee rivers and the only outlet is the Llico estuary that drains into

the Pacific Ocean High tides can sporadically shift the flow direction of the Llico

estuary which increases the marine influence in the lake Dune accretion gradually

limited ocean-lake connectivity until the estuary was almost completely closed off

by ca 10 ky BP and the current lake regime formed (Frugone-Aacutelvarez et al 2017)

The area is characterized by a mediterranean climate with cold-wet winters and

hot-dry summers and an annual precipitation of ~650 mm and a mean annual

temperature of 15ordmC During the austral winter months (June - August) precipitation

is modulated by north-west shifts of the South Pacific Anticyclone (SPA) followed by

an increased frequency of storm fronts stemming off the South Westerly Winds

(SWW) A strengthened SPA during austral summers (December - March) which

are typically dry and warm blocks the northward migration of storm tracks stemming

off the SWW (Fig1 Frugone-Aacutelvarez et al 2017)

78

Figure 1 a) The location of the Lago Vichuqueacuten in central Chile b) Map of land

uses and cover in 2016 c) Ombrothermic diagram mediterranean climates are

characterized by cold-wet winters with surplus moisture from June to August and

hot-dry summers d) Lake bathymetry showing location of cores and water sampling

sites used in this study

Although major land cover changes in the area have occurred since 1975 to the

present as the native forests were replaced by tree (Monterey pine and eucalyptus)

plantations the region was settled before the Spanish conquest (Frugone-Alvarez

et al 2018) Historical documents indicate that Vichuqueacuten was occupied by a

Mitimaes colony as part of the Inka empire (Odone 1998) Unlike other Andean

areas during the Inka period the introduction of corn and quinoa in the Vichuqueacuten

watershed do not seem to have intensified land use The Spanish colonial period in

Chile lasted from 1542 CE to the independence in 1810 CE The first historical

document (1550 CE) shows that the areas around Vichuqueacuten were settled by the

Spanish early on as the Vichuqueacuten watershed was given as an ldquoencomiendardquo

system to Juan Cuevas The ldquoencomiendardquo system provided the owners with land

79

and indigenous people to work but also the introduction of wheat wine cattle

grazing and logging of native forests for lumber extraction and increasing land for

agricultural activities (Odone et al 1998 Armesto et al 2010) During the 19th

century (the Republic) the export of wheat to Australia and Canada generated

intensive changes in land cover use The town of Vichuqueacuten became the regional

capital and plans to build a maritime port in the bay of Vichuqueacuten were drawn

However the fall of international markets in 1880 paralyzed these plans During the

20th century the plantation of trees (Pinus radiata and Eucalyptus globulus) in areas

cleared of native forests was subsidized by two national laws DFL nordm265 (1931) and

DFL nordm 701 (1974) both of which provided funds for such plantations During the last

decades the urbanization with summer vacation homes along the shorelines of

Lago Vichuqueacuten has greatly increased Extensive lake eutrophication is currently a

large environmental problem (EULA 2008)

3 Methods

Coring campaigns were organized from 2011 to 2015 (Fig 1d) We recovered

12 short cores and 4 long cores (up to 14 m long) at several sites using a hammer-

modified UWITEC gravity corer Sediment cores (VIC11-2A 170 cm VIC13-2B 170

cm VIC13-2D 1200 cm and VIC15-1A 119 cm) were split photographed sub-

sampled and stored in the Pyrenean Institute of Ecology (IPE-CSIC Spain) Core

VIC13-2B was selected for detailed multiproxy analyses (including elemental

geochemistry C and N isotopes XRF and 14C dating) Stable isotope analyses

(δ13C δ15N) were performed at the Laboratory of Biogeochemistry and Applied

Stable Isotopes (LABASI-PUC Chile) Sediment samples for δ13Corg were pre-

treated with 50 ml of HCl and 50 ml of deionized water and dried at 60ordmC for 4 hr to

remove carbonates (Harris et al 2011) Isotope analyses were conducted using a

80

Delta V Advantage IRMS coupled to a Thermo Flash 2000 Elemental Analyzer via

a Conflo IV interface Isotope results are expressed in standard delta notation (δ)

and expressed in per mil (permil) relative to the Pee Dee Belemnite (Vienna Pee Dee

Belemnite) for C and to atmospheric N2 for N (Leng et al 2006) Total carbon (TC)

Total Organic Carbon (TOC) Total Inorganic Carbon (TIC) and Total Sulfur (TS)

were measured every 2 cm with a LECO SC 144 DR at the IPE-CSIC

An AVAATECH X-Ray Fluorescence II core scanner with a Rh X-ray tube from

the University of Barcelona was used to obtain XRF logs every 4 mm of resolution

Results are expressed as element intensities in counts per second (cps) Tube

voltage was operated at 30 kV and 10 kV to obtain the abundances of 18 elements

(Pb Al Si S Cl K Ca Ti V Mn Fe Co Zn Br Rb Sr Y Zr) with an average of

at least of 1800 cps (less for Pb=437 and Zn=934 cps) Pb was included due to

similar behavior with Co and Fe Element ratios were calculated to describe changes

in redox conditions (MnFe) endogenic productivity (BrTi) carbonate formation

(SrCa and CaTi) and sediment input (ZrTi) (Barreiro-Lostres et al 2014

Carrevedo et al 2015 Frugone-Aacutelvarez et al 2017 Kylander et al 2011 Moreno

et al 2007a)

Several campaigns were carried out to sample the POM from the water column

two per hydrologic year from November 2015 to August 2018 A liter of water was

recovered in three sites through to the lake two are from the shallower areas (with

samples taken at 2 and 5 m depth at each site) and one in the deeper central portion

(at 2 5 and 20 m depth) of the lake (Fig 1d) The samples were filtered using glass

fiber filters (25 m) and then frozen to obtain the stable carbon and nitrogen isotope

signal of lacustrine POM Additionally soil and vegetation samples from the

following communities native species meadow hydrophytic vegetation and

81

Monterrey pine (Pinus radiata) were taken for stable isotope analyses (see in

supplementary material)

The age model for the complete Lago Vichuqueacuten sedimentary sequence is

based on Frugone-Aacutelvarez et al (2017) with the last 1000 years based on

210Pb137Cs dating techniques in VIC15-1A and 14C AMS dates on bulk sediment

samples (Supplementary Table S1) The 14C measurements of lake water DIC show

a moderate reservoir effect of 180 plusmn 25 14C yr) The revised age-depth model used

here includes three more 14C AMS dates performed with the program Bacon to

establish the deposition rates along the core (Blaauw and Christen 2011 Fig 2)

The age-depth model indicates that average resolution between 0 to 87 cm is lt2

cm per year and from 88 to 170 cm it is lt47 cm per year

82

Figure 2 Chronological age-depth model for the Lago Vichuqueacuten sedimentary

sequence spanning the last 1000 yr (see also Frugone-Alvarez et al 2017)

To estimate land use changes in the watershed we use Landsat MSS images

for 1975 and Landsat TM for 1989 and 2014 all taken in either summer or autumn

(Table 1) We performed supervised classification of land uses (maximum likelihood

83

algorithm) for each year (1975 1989 and 2014) and results were mapped using

ArcGIS 102

Table 1 Images using for LUCC reconstruction

Source of LUCC

Acquisition

Date Resolution

Landsat MSS 19750322 60 m

Landsat TM 19890217 30 m

Landsat TM 19991226 30 m

CONAF 2009 30 m

Land cover Chile 2014 30 m

CONAF 2016 30 m

Previous Work on Lago Vichuqueacuten sedimentary sequence

The sediments are organic-poor dark brown to brown laminated silt with some

intercalated thin coarser clastic layers Lacustrine facies have been classified

according to elemental composition (TOC TS TIC and TN) grain size and

sedimentary textures (Frugone-Aacutelvarez et al 2017) Four main types of lacustrine

facies were identified in this short core Facies L1 is a laminated (1cm) black to dark

brown diatom-poor silt with relatively higher TOC percentages (TOC about 185)

TS (about of 18) and TOCTN (about 92) Facies L2 is characterized by a

homogeneous black organic-poor silty clay with low TOC (mean= 13) TS (mean=

13) TOCTN (mean= 88) values Facies L3 is a laminated (1cm) black organic-

poor (TOC mean 14) silts with higher TS (mean= 21) and TOCTN ratios

(mean= 88) Facies L3 is interpreted as ldquobaselinerdquo deposition on the distal areas

84

of Vichuqueacuten lake Mineralogy is dominated by mica (muscovite) clay minerals

(chlorite) and plagioclase (albite) Quartz and calcite occur at the top and pyrite

occurs in the lower part of the sequence Facies T is composed by massive banded

sediments 4 cm thick and coarse grain size It is interpreted as an instantaneous

depositional event (for more detail see Frugone-Aacutelvarez et al 2017) In this work

we identified four subunits based on geochemical and stable isotope signals

4 Results

41 Geochemistry and PCA analysis

High positive correlations exist between Al Si K and Ti (r = 078 ndash 096

supplementary Fig S1) and between Zn Zr Rb and Y (r = 072 - 096) which reflect

the silicate content of the watershed-derived sediments (Marzecoacuteva et al 2011) Zr

is commonly associated with minerals more abundant in coarser deposits Thus the

ZrTi profile could reflect grain size (Cuven et al 2010) showing higher variability

in the upper part of the Lake Vichuqueacuten sequence and in the alternation between

facies L1 and L2 Another group of elements made up of Co Fe and Pb displayed

positive correlations (r = 067ndash 097) and represents the input of heavy metals Br

Cl and Ca show a positive correlation (r = 049 ndash 06 p-value = 00001) BrTi ratio

is interpreted as a productivity indicator due to Br having a strong affinity with humic

and organic compounds (Marzecoacuteva et al 2011 Frugone-Aacutelvarez et al 2017) In

our Lago Vichuqueacuten sequence BrTi values are high from 170 to 132 cm and from

36 cm to the top of core where it shows several sharps peaks (Fig 3) The MnFe

ratio is indicative of lake bottom oxygenation (Naecher et al 2013) as under

reducing conditions Mn tends to become more mobile than Fe leading to a

decreased MnFe (Marzecoacuteva et al 2011) Several sharp peaks in MnFe occurred

85

from 127 to 120 cm and from 57 to 30 cm (MgFegt03) The silicate group and the

Br Cl Ca Mn group are negatively correlated (r= -012 and -066)

Principal Component Analysis (PCA) was undertaken on the XRF

geochemical data to investigate the main factors controlling sediment deposition in

Lago Vichuqueacuten (Fig 3) The four main eigenvectors explain 801 of the variance

(supplementary material Table S2) The principal component (PC1) explain 437

of the total of variance and grouped elements are associated with terrigenous input

to the lake Positive values of the biplot have been attributed to higher heavy metals

deposition (Pb Co and Fe) and negative values to higher silicate input (Al K Ti and

Si) in a high energy catchment environment (Zr) The PC2 explains 198 of the

total of variance and highlights the endogenic productivity in the lake The positive

loading is compound by Br Cl Ca and Sr and to a lesser extent by Y Zn Rb and

Mn The PC2 may explain both the precipitation of carbonates (Ca Sr) and biological

production (Br)

86

Figure 3 Principal Component Analysis of XRF geochemical measurements in

VIC13-2B Lago Vichuqueacuten lake sediments

42 Sedimentary units

Based on geochemical and stable isotope analysis we identified four

lithological subunits in the short core sedimentary sequence Our PCA analyses and

Pearson correlations pointed out which variables were better for characterizing the

subunits (Fig 4) in terms of endogenic productivity heavy metals and terrestrial

input The unit 2c (170-131 cm) is characterized by the occurrence of some clastic

layers (L2 from 160 and 150 cm) high δsup1⁵N values (mean= +59 plusmn 04permil) with

Magnetic Susceptibility (MS) BrTi ZrTi and SrCa values increase towards the top

Also it has relatively low δsup1sup3C values (mean= -265 plusmn 11permil) and CNmolar ratios

(mean=78 plusmn 04) The ZrTi show upwards increasing values reaching the highest

values of the sequence at the top of this unit suggesting a coarsening upward trend

and relatively higher depositional energy The MS trend also indicates higher

erosion in the watershed and enhanced delivery of ferromagnetic minerals likely

from soil particles particularly from 150 to 160 cm (Frugone-Aacutelvarez at al 2017)

The subunit 2b (130-118 cm) is also composed of black silts but it has the

lowest MS values of the whole sequence and its onset is marked by a sharp

decrease in ZrTi This subunit is marked by sharp peaks of MnFe (at 126 and 120

cmgt027) SrCa (at 125 and 120 cmgt033) CaTi (at 124 and 120 cmgt199) TOC

(about 26 at 130 124 122 and 118 cm) and δsup1⁵N (gt+67permil at 126 and 120 cm)

BrTi oscillates around low values (about 01) whereas the δsup1sup3C values range

between -262 and -282permil

87

The unit 2a (58-117 cm) shows increasing and then decreasing MS values

and displayed sharps peaks of δsup1⁵N (gt64 at 102 to 99 87 and 75 cm) and CN

(about 10 at 86 74 66 and 60 cm) SrCa (mean = 04 plusmn 013) BrTi (mean = 008

plusmn 002) MnFe (mean = 002 plusmn 001) and δsup1sup3C (mean = -260 plusmn 07permil) oscillate in

low values The upper part of this unit (72 ndash 57 cm) shows an increase of SrCa

(from 03 to 05)

The upper unit 1a (0 - 57 cm) starts with a fine clastic layer (T at 57 to 54

cm) interpreted as deposition during a high-energy event It is characterized by

lower BrTi (mean = 003 plusmn 002) TOC (mean = 12 plusmn 03) and δsup1sup3C (mean= -

266 plusmn 06permil) higher δsup1⁵N (mean = +55 plusmn 08 permil) This unit is made of alternating

fine (lt 1cm) black and dark brown laminae with carbonate (L1 facies) Recently

deposited sediments show decreasing MS values increasing TOC (mean= 15 plusmn

04 ) sharp peaks of BrTi (gt015 at 33 21 5 and 1 cm) and the lowest δsup1⁵N values

of the entire record (mean= 45 plusmn 06 permil) and δsup1sup3C values (mean= -277 plusmn 09 permil)

Heavy metal content increases abruptly in the upper section of the core (2 - 20 cm)

(peaks of FeTi CoTi and PbTi)

88

Figure 4 Sedimentary units of Lago Vichuqueacuten sedimentary sequence Selected

variables illustrate watershed input (Magnetic Susceptibility ZrTi CoTi and MnFe)

endogenic productivity (SrCa CaTi TS) organic matter source (BrTi TOC

CNmolar and stable isotope records (δ13Corg and δ15Nbulk)

43 Recent seasonal changes of particulate organic matter on water column

The average of δ15NPOM from the three sites across to the lake was +86 plusmn 58

permil oscillating widely from -14 to +193permil (Fig 5) Important seasonal differences

occur at 2 and 5 m depth with more negative values during summer (~53 plusmn 52 permil)

than winter (~122 plusmn 40permil) At 20 m depth δ15NPOM values exhibit small seasonal

ranges (mean = +10permil for winter and +87permil for summer) The δ13CPOM average was

-296 plusmn 33permil with slightly seasonal and water column depth differences However

more positive δ13CPOM values occurred during winter (mean=-290 plusmn 41permil) than in

summer (mean= -301 plusmn 19 permil) Like the δ15NPOM values CNPOM (mean= 83 plusmn 17)

displayed important seasonal and water depth differences Lower CNPOM ratios

89

occurred during summer at 2 and 5 m depth (mean= 95 plusmn 17) and higher and more

constant values during winter (mean = 73 plusmn 09) at the same depth At 20 m CNPOM

shows similar values in both winter (70) and summer (74)

Figure 5 Seasonal POM averages from samples taken of the Lago Vichuqueacuten

water column Samples were taken from 2015 to 2018 at 2 (n=16) 5 (n=14) and 20

(n=8) meters depth

44 Stable isotope values across the Lake Vichuqueacuten watershed

Figure 6 shows modern vegetation soil and sediment isotope values found for

the watershed Huintildee tributary and Vichuqueacuten lake The δsup1⁵NFoliar values from

meadow plantations and macrophytes have similar range values with a mean of

+89 plusmn50 permil (n=18) +74 plusmn 75 permil (n=5) +82 plusmn 36 permil (n=6) respectively Native

vegetation has overall lower δsup1⁵NFoliar values with a mean of 14 plusmn 21 permil (n=28 see

Table 2 in supplementary material) The δsup1sup3CFoliar from terrestrial samples exhibit

similar values across the different plant communities (tree plantation mean=-274 plusmn

13permil meadow mean = -275 plusmn 23 permil native species mean=-272 plusmn 14permil) whereas

macrophytes display slightly more negative values with a mean of -287 plusmn 23permil

Macrophytes substrate displayed the highest δsup1⁵N values with a mean of +60 plusmn

14permil (n=3) Similar and relatively high δsup1⁵N values for soil of plantation (mean= +54

plusmn 13permil n=4) meadow (mean= +49 plusmn 04permil n=8) and surface river sediment

90

(mean= +52 plusmn 17permil n=10) Native forest soils oscillate around slightly more

negative values with a mean of +45 plusmn 12permil (n=4) Slightly more positive soil δsup1sup3C

values occur both underneath native forests and in tree plantations with means of -

284 plusmn 23permil and -298 plusmn 13permil respectively compared to either meadow soils

(mean= -302 plusmn 11permil) aquatic sediments underneath macrophytes (-311 plusmn 10permil)

or from surface river sediments (mean= -312 plusmn 10permil)

Figure 6 Stable isotope content of modern soil river sediment and foliar vegetation

used as end members in the sedimentary sequence of Lago Vichuqueacuten a)

Scatterplot of foliar δsup1⁵N and δsup13C values for vegetation from Lago Vichuqueacuten

watershed (plantation meadow and native species) and macrophytes on Lake

Vichuqueacuten See supplementary material for more detail of vegetation types b)

Scatterplot of soil δsup1⁵N and δsup13C values across the watershed the sediments of the

Huintildee and Vichuqueacuten rivers and the fluvial sediment corresponding to the

macrophyte vegetation

45 Land use and cover change from 1975 to 2014

Major land use changes between 1975 CE and 2016 CE in the Lago

Vichuqueacuten watershed are summarized in Figure 7 The watershed has a surface

area of 535329 km2 of which native vegetation (26) and shrublands (53)

represent 79 of the total surface in 1975 Meadows are confined to the valley and

91

represent 17 of watershed surface Tree plantations initially occupied 1 of the

watershed and were first located along the lake periphery By 1989 the areas of

native forests shrublands and meadows had decreased to 22 31 and 14

respectively whereas tree plantations had expanded to 30 These trends

continued almost invariably until 2016 when shrublands and meadows reached 17

and 5 of the total areas while tree plantations increased to 66 Native forests

had practically disappeared by 1989 and then increased up to 7 of the total area

in 2016 (Fig 6) preferentially occupying the southeastern sector of the watershed

Figure 7 Changes in land use and cover between 1975 and 2016 in the Lago

Vichuqueacuten watershed as measured from satellite images The major change is

represented by the replacement of native forest shrubland and meadows by

plantations of Monterrey pine (Pinus radiata)

Figure 8 shows correlations between lake sediment stable isotope values and

changes in the soil cover from 1975 to 2013 Positive relationships occurred

between sediment δsup1⁵N and δsup13C values from core VIC13-2B (unit 1) and the

92

percentage of native forest (r=089 for δsup1⁵N 082 for δsup13C) shrublands (r = 071 for

δsup1⁵N 057 for δsup13C) and meadow cover (r = 088 for δsup1⁵N 081 for δsup13C) All of these

correlations are significant (p value lt 0001) In contrast significant negative

correlations (p lt0001) occurred between tree plantation cover and lake sediment

stable isotope values (δsup1⁵N r = -082 and δsup13C r = -067) native forest (r = -097)

meadows (r = -086) and shrubland (r =-093)

Figure 8 Correlation plots of land use and cover change versus lake sediment

stable isotope values The δsup1⁵N values are positively correlated with native forests

agricultural fields and meadow cover across the watershed Total Plantation area

increases are negatively correlated with native forest meadow and shrubland total

area Significance levels are indicated by the symbols p-values (0 0001 001

005 01 1) lt=gt symbols ( )

93

5 Discussion

51 Seasonal variability of POM in the water column

The stable isotope values of POM can vary during the annual cycle due to

climate and biologic controls namely temperature and length of the photoperiod

which affect phytoplankton growth rates and isotope fractionation in the water

column (Gu et al 2006 Leng et al 2006) POM from Lago Vichuqueacuten surface

samples (2 and 5 m depth) displayed lower δ13CPOM values during the summer than

in winter During C uptake phytoplankton preferentially utilize 12C leaving the

DICpool enriched in 13C Therefore as temperature increases during the summer

phytoplankton growth generates OM enriched in 12C until this becomes depleted

and then the biomas come to enriched u At the onset of winter the DICpool is now

enriched in 13C and despite an overall decrease in phytoplankton production the

OM produced will also be enriched in 13C In contrast δ13CPOM values at 20 m depth

did not reflect these seasonal differences probably due to water-column

stratification that maintains similar temperatures and biological activity throughout

the year

Lake N availability depends on N sources including inputs from the

watershed and the atmosphere (ie deposition of N compounds and fixation of

atmospheric N2) which varies during the hydrologic year The fixation of atmospheric

N2 is an important natural source of N to the lake occurring mainly during the

summer season associated with higher temperature and light (Gu et al 2006)

Because the δ15NPOM of N2 fixers is close to 0permil with almost no overall isotope

fractionation (Leng et al 2006) when N2 is the major N source δ15NPOM values are

typically low However when DIN concentrations are high or alternatively when little

94

N2 fixation occurs δ15NPOM values will be higher (Gu et al 2006) δ15NPOM values

from summer Lago Vichuqueacuten samples were lower than those from winter with large

differences between the seasons (~5permil Fig 5 and 9) Furthermore δ15NPOM values

were high when monthly average temperature was low and monthly precipitation

was high (Fig 9) This pattern is consistent with the dominance of high N2 fixation

by cyanobacteria associated with increased summer temperatures This correlation

of δ15NPOM values with temperature further suggests a functional group shift i e

from N fixers to phytoplankton that uptake DIN The correlation between wetter

months and higher δ15NPOM values could be caused by increased N input from the

watershed due to increased runoff during the winter season The lack of data of the

δ15NPOM between the 30 mm and the 160 mm of precipitation is due to the

mediterranean-type climate that concentrates precipitations in the winter months

Finally Lago Vichuqueacuten is characterized by pronounced seasonality leading to

higher phytoplankton biomass in summer characterized by low δ15NPOM In winter

low biomass production and increased input from watershed is associated to high

δ15NPOM

95

Figure 9 Seasonal changes can drive δ15NPOM values in Lago Vichuqueacuten Data

correspond to average monthly temperature and total monthly precipitation for the

months when the water samples were taken (years 2015 - 2018) P-valuelt005

52 Stable isotope signatures in the Lake Vichuqueacuten watershed

The natural abundance of 15N14N isotopes of soil and vegetation samples

from the Lago Vichuqueacuten watershed appear to result from a combination of factors

isotope fractionation different N sources for plants and soil microorganisms (eg N2

fixation Nitrates) depth in the soil where N uptake by vegetation occurs and N loss

mechanisms (ie denitrification leaching and ammonia volatilization Hogberg

1997) The lowest δsup1⁵Nfoliar values are associated with native species and are

probably due to the contribution of N-fixing species (eg Sophora) (Fig6 and for

more detail see Table S3 in supplementary material) The number native N-fixers

species present in the Chilean mediterranean vegetation are not well known

however so there could be other N-fixing species in this group Alternatively δsup1⁵Nfoliar

values reflect soil N uptake (Kahmen et al 2008) In environments limited by N

plants have δsup1⁵N values similar to the soil δsup1⁵N values however the denitrification

and volatilization of ammonia can lead to the remain N of soil to come enriched in

15N (Cifuentes et al 1989 Craine et al 2009 Bruland and Mckenzie 2010) Soil N

isotope samples from native species communities tends to display relatively high

δsup1⁵N values respect to foliar samples due to loss of N-soil

The higher foliar and soil δsup1⁵N values obtained from samples of meadows

aquatic macrophytes and tree plantations can be attributed to the presence of

greater amounts of nitrate available for plant uptake (Fig 6) Houmlgberg (1997)

suggests that the availability of different N sources in soils (ie nitrates versus

96

ammonia) with different residence times can also explain these δsup1⁵NFoliar values

Indeed Feigin et al (1974) described differences of up to 20permil between ammonia

and nitrates sources Denitrification and nitrification discriminate much more against

15N than N2 fixation does (Craine et al 2009) leading to soils (and plants after

uptake) enriched in 14N

In general multiple processes that affect the isotopic signal result in similar

δsup1⁵N values between the soil of the watershed and the sediments of the river

However POM isotope fluctuations allow to say that more negative δsup1⁵N values are

associated to lake productivity while more positive δsup1⁵N values are associated with

N input from the watershed

δ13C values in Lago Vichuqueacuten watershed reflect CO2 gas exchange between

C3 plants and algae with the atmosphere During photosynthesis plants

discriminate against the heavier stable isotope of carbon (13C) in favor of the lighter

isotope 12C which results in δ13CFoliar values between -220permil and -320permil (Browman

and Cook 2002 Liu et al 2007) Likewise the δ13CFoliar values from Lago Vichuqueacuten

oscillate around -27permil (Fig 6) Plants transform atmospheric CO2 into soil organic

carbon (C) which in turn reflects this initial discrimination against 13C during C

uptake and post photosynthetic fractionation (Farquhar et al 1982 1989 Badeck

et al 2005 Pausch and Kuzyakov 2017) Slightly more positive δ13CFoliar values

(about 15permil) were measured in comparison with their δ13CSoil values This may be

reflecting the C transference from plants to the soil but also a soil-atmosphere

interchange The preferential assimilation of the light isotopes (12C) during soil

respiration carried by the roots and the microbial biomass that is associated with the

decomposition of litter roots and soil organic matter explain this differential

(Berhardt et al 2006 Blagodatskaya et al 2010 Midwood and Millard 2011)

97

In general the δ13CSoil values from the Lago Vichuqueacuten watershed oscillated

around -290permil and did not vary with our plant classification types Here we use

these values as terrestrial-end members to track changes in source OM (Fig 6)

Thus more negative δ13C values in lake sediment samples are attributed to higher

OM inputs from the terrestrial watershed By the other hand more positive δ13C

values most likely reflect an increased aquatic OM component as indicated by POM

isotope fluctuations (Fig 9)

53 Recently land use and cover change and its influences on N inputs to the lake

Tree plantations in the Lago Vichuqueacuten watershed have increased greatly in

the last few decades (from 1 in 1975 to 66 in 2016 Fig 7) replacing previous

native forests (from 26 to 7) meadows (17 to 5) and shrublands (53 to

17) In 1975 tree plantations were confined to the lake perimeter with discrete

patches distributed throughout the watershed The ldquoForest Lawrdquo (DFL 701- passed

in 1974) allocated state funding to afforestation efforts and management of tree

plantations which greatly favored the replacement native forests by introduced trees

This increase is marked by a sharp and steady decrease in lake sediment δ15N and

δ13C values because tree plantations function as a nutrient sink whereas other land

uses such as meadows favor nutrient loss from the watershed (Fig8) Bruland and

Mackenzie (2014) noted a decrease in wetland δ15N values when watershed

forested cover increased and concluded that N inputs to the wetlands are lower from

the forested areas as they generally do not export as much N as agricultural lands

A positive correlation between native vegetation and δ15Ncore values can be

explained by the relatively scarce arboreal cover in the watershed in 1975 when

native forest occupied just 26 of the watershed surface whereas shrublands and

98

meadows occupied more than the 70 of the surface of the watershed with the

concomitant elevated loss of N (Fig 7 and Fig 8)

54 Nitrogen dynamics in Lago Vichuqueacuten over the last six hundred years

Sedimentological compositional and geochemical indicators all show changes in

the N cycle associated to LUCC lake dynamics and climate changes (Fig 10) From

the pre-Columbian indigenous settlement including the Spanish colonial period up

to the start of the Republic (1300 - 1800 CE) the introduction of crops such as

quinoa and wheat but also the clearing of land for extensive agriculture would have

favored the entry of N into the lake Conversely major changes observed during the

last century were characterized by a sharp decrease of N input that were coeval

with the increase of tree plantations

From 1365 until 1550 CE (unit 2c 2b and half of 2a Fig 3 and Fig 10) pre-

Columbian agricultural societies planted mostly crops of corn and quinoa (Ramirez

and Vidal 1985) This period is characterized by large peaks seen in the δsup1⁵N record

(eg 1403 1452 1476 and 1505) with overall high δsup1⁵N values (up to 5permil) indicating

that N input from watershed was elevated and oscillating to the beat of the NT These

positive δsup1⁵N peaks could be due to several causes including a) the clearing of land

for farming b) N loss via denitrification which would be generally augmented in

anoxic environments (Diebel et al 2009) such as Lago Vichuqueacuten (low MnFe

values about 0001 Fig 4) or c) climate especially cold-wet winters or hot-dry

summers can also exert control on the δsup1⁵N record Indeed tree-ring records and

summer temperature reconstructions show overall wetcold conditions during this

period (Christie et al 2009 Von Gunten et al 2009 Fig 10) Increased

precipitation would bring more sediment (and nutrients) from the watershed into the

99

lake and increase lake productivity which is also detected by the geochemical

proxies for productivity (peaks of BrTi SrCa and TOC Fig 4 and Fig 10) (see also

Frugone-Alvarez et al 2017)

Figure 10 Changes in the N availability during the last six centuries in Lago

Vichuqueacuten a) lake sediment δsup1⁵N values displayed more positive values during the

prehistoric period Spanish Colony and the starting 19th century which is associated

with enhanced N input from the watershed by extensive clearing and crop

plantations The inset shows this relationship between sediment δsup1⁵N and

100

percentage of meadow cover over the last 30 years b) Summer temperature

reconstruction from central Chile (von Gunten et al 2009) showing a

correspondence with cold phases and high δsup1⁵N values at Vichuqueacuten except for the

last 100 years c) Palmer Drought Severity Index (PDSI) is an interannual moisture

variability reconstruction for late springndashearly summer during the last six centuries

(Christie et al 2009) Grey shadow indicating higher precipitation periods

From 1550 and 1810 CE (unit 2a) and during the Colonial period several peaks

of δ15N could be further related not only to high precipitation (Fig 10 grey shadow)

but also pulses of enhanced N input from the watershed linked to human land use

In 1550 CE Juan Cuevas was granted lands and indigenous workers under the

encomienda system for agricultural and mining development of the Vichuqueacuten

village (Ramiacuterez and Vidal 1985) Historical documents show that around 1579 CE

the Vichuqueacuten watershed was occupied by indigenous communities dedicated to

wheat plantations and vineyards wood extraction and gold mining (Odone 1998)

The introduction of the Spanish agricultural system implied not just a change in the

types of crops used (from quinoa to vineyards and wheat) but also a clearing of

native species for the continuous increase of agricultural surface and wood

extraction During the Colonial period wheat from Vichuqueacuten was exported to Peru

(Ramiacuterez and Vidal 1985) Armesto et al (2009) indicate that during the XVIII and

XIX centuries the extraction of wood for mining operations was important enough to

cause extensive loss of native forests The independence and instauration of the

Chilean Republic did not change this prevailing system Increases in the

contributions of N to the lake during the second half of the XIX century (peaks in

δsup1⁵N ca 1870 CE) could be due to expanding farm land dedicated for wheat

101

production and increased commercial trade with California and Canada (Ramiacuterez

and Vidal 1985)

In contrast LUCC in the last century are clearly related to the development of

large-scale tree plantations (Fig 7) The δsup1⁵N record reaches the lowest values of

the entire sequence in the last few decades (Fig 10) A marked increase in lake

productivity NT concentration and decreasing sediment input is synchronous (unit

1 Fig 4) with trees replacing meadows shrublands and areas with native forests

(Fig 7 and 8) The implementation of the lsquoForest Lawrsquo in 1974 had a stronger impact

on the landscape and lake ecosystem dynamics than the impacts of ongoing climate

change in the region which is much more recent (Garreaud et al 2018) although

the prevalence of hot dry summers seen over the last decade would also be

associated with low δsup1⁵N values and increase of NT (Fig 10) Heavy metals ratios

(FeTi CoTi and PbTi) show notable increases in lake sediments from 1992 to 2011

CE (Fig 4) Although this could be related to mining in the El Maule region the

closest mines are 60 Km away (Pencahue and Romeral) so local factors related to

shoreline urbanization for the summer homes and an increase in tourist activity

could also be a major factor

6 Conclusions

The N isotope signal in the watershed depends on the rates of exchange

between vegetation and soil cover (Fig 11) Plants preferentially uptake 14N and the

underlying soils become enriched in 15N especially when the terrestrial ecosystem

is N-limited andor significant N loss occurs (ie denitrification andor ammonia

volatilization) LUCC in the Lago Vichuqueacuten watershed have heavily modified the

links between terrestrial and aquatic ecosystems with agriculture practices

102

contributing more N to the lake than tree plantations or native forests In situ lake

processes can also fractionate N isotopes An increase of N-fixing species results

in OM depleted in 15N which results in POM with lower δsup1⁵N values during these

periods During winter phytoplankton is typically enriched in 15N due to the

decreased abundance of N-fixing species and increased N input from the

watershed This in turn generates the highest δsup1⁵NPOM values in Lago Vichuqueacuten

Periods of elevated productivity tend to deplete the dissolved inorganic N of 14N

resulting in even higher δ15N values

Our study illustrates the usefulness of δsup1⁵N as a tool for reconstructing the past

influence of LUCC on N availability in lake ecosystems To constrain the relative

roles of the diverse forcing mechanisms that can alter N cycling in mediterranean

ecosystems all main components of the N cycle should be monitored seasonally

(or monthly) including the measurements of δ15N values in land samples

(vegetation-soil) as well as POM

103

Figure 11 Summary of human and environmental factors controlling the δ15N

values of lake sediments Particulate organic matter(POM) δ15N values in

mediterranean lakes are driven by N input from the watershed that in turn depend

on land use and cover changes (ie forest plantation agriculture) andor seasonal

changes in N sources andor lake ecosystem processes (ie bioproductivity redox

condition denitrification) Arrows indicate the direction of N fluxes (inputoutput from

the N cycle) N cycle processes that deplete lake sediments of 15N are shown in

blue whereas those that enrich sediments in 15N are shown in red

104

Supplementary material

Figure S1 Pearson correlate coefficient between geochemical variables in core

VIC13-2B Positive and large correlations are in blue whereas negative and small

correlations are in red (p valuelt0001)

Figure S2 Principal Component Analysis of geochemical elements from core

VIC13-2B

105

Table S1 Lago Vichuqueacuten radiocarbon samples

RADIOCARBON

LAB CODE

SAMPLE

CODE

DEPTH

(m)

MATERIAL

DATED

14C AGE ERROR

D-AMS 029287

VIC13-2B-

1 043 Bulk 1520 24

D-AMS 029285

VIC13-2B-

2 085 Bulk 1700 22

D-AMS 029286

VIC13-2B-

2 124 Bulk 1100 29

Poz-63883 Chill-2D-1 191 Bulk 945 30

D-AMS 001133

VIC11-2A-

2 201 Bulk 1150 44

Poz-63884

Chill-2D-

1U 299 Bulk 1935 30

Poz-64089

VIC13-2D-

2U 463 Bulk 1845 30

Poz-64090

VIC13-2A-

3U 469 Bulk 1830 35

D-AMS 010068

VIC13-2D-

4U 667 Bulk 2831 25

Poz-63886

VIC13-2D-

4U 719 Bulk 3375 35

106

D-AMS 010069

VIC13-2D-

5U 775 Bulk 3143 27

Poz-64088

VIC13-2D-

5U 807 Bulk 3835 35

D-AMS-010066

VIC13-2D-

7U 1075 Bulk 6174 31

Poz-63885

VIC13-2D-

7U 1197 Bulk 6440 40

Poz-5782 VIC13-15 DIC 180 25

Table S2 Loadings of the trace chemical elements used in the PCA

Elementos PC1 PC2 PC3 PC4

Zr 0922 0025 -0108 -0007

Zn 0913 -0124 -0212 0001

Rb 0898 -0057 -0228 0016

K 0843 0459 0108 0113

Ti 0827 0497 0060 -0029

Al 0806 0467 0080 0107

Si 0803 0474 0133 0136

Y 0784 -0293 -0174 0262

V 0766 0455 0090 -0057

Br 0422 -0716 -0045 0226

Ca 0316 -0429 0577 0489

Sr 0164 -0420 0342 -0182

Cl 0151 -0781 -0397 0162

107

Mn -0121 -0091 0859 0095

S -0174 -0179 -0051 0714

Pb -0349 0414 -0282 0500

Fe -0700 0584 -0023 0280

Co -0704 0564 -0107 0250

Table S3 Stable Isotope values from vegetation of Lago Vichuqueacutenacutes watershed

Taxa Classification δsup1⁵N δsup1sup3C CN

molar

Poaceae Meadow 1216 -2589 3602

Juncacea Meadow 1404 -2450 3855

Cyperaceae Meadow 1031 -2596 1711

Taraxacum

officinale Meadow 836 -2400 2035

Poaceae Meadow 660 -2779 1583

Poaceae Meadow 453 -2813 1401

Poaceae Meadow 966 -2908 4010

Juncus Meadow 1247 -2418 3892

Poaceae Meadow 747 -3177 6992

Poaceae Meadow 942 -2764 3147

Poaceae Meadow 1479 -2634 2895

Poaceae Meadow 1113 -2776 1795

Poaceae Meadow 2215 -2737 7971

Poaceae Meadow 1121 -2944 2934

Poaceae Meadow 638 -3206 1529

108

Macrophytes Macrophytes 886 -3044 2286

Macrophytes Macrophytes 1056 -2720 2673

Macrophytes Macrophytes 769 -3297 1249

Macrophytes Macrophytes 967 -2763 1442

Macrophytes Macrophytes 959 -2670 2105

Macrophytes Macrophytes 334 -2728 1038

Acacia dealbata

Introduced

species 656 -2696 1296

Acacia dealbata

Introduced

species 487 -2941 1782

Acacia dealbata

Introduced

species 220 -2611 3888

Luma apiculata Native species 433 -2542 4135

Luma apiculata Native species 171 -2664 7634

Luma apiculata Native species -001 -2736 6283

Luma apiculata Native species 029 -2764 6425

Azara sp Native species 159 -2868 8408

Azara sp Native species 101 -2606 2885

Baccharis concava Native species 104 -2699 5779

Baccharis concava Native species 265 -2488 4325

Baccharis concava Native species 287 -2562 7802

Baccharis concava Native species 427 -2781 5204

Baccharis linearis Native species 190 -2610 4414

Baccharis linearis Native species 023 -2825 5647

109

Peumus boldus Native species 042 -2969 6327

Peumus boldus Native species 205 -2746 4110

Peumus boldus Native species 183 -2743 6293

Chusquea quila Native species 482 -2801 4275

Poaceae meadow 217 -2629 7214

Lobelia sp Native species 224 -2645 3963

Lobelia sp Native species -091 -2565 4538

Aristotelia chilensis Native species -035 -2785 5247

Aristotelia chilensis Native species -305 -2889 2305

Aristotelia chilensis Native species 093 -2836 5457

Chusquea quila Native species 173 -2754 3534

Chusquea quila Native species 045 -2950 6739

Quillaja saponaria Native species 223 -2838 9385

Scirpus meadow 018 -2820 7115

Sophora sp Native species -184 -2481 2094

Sophora sp Native species -181 -2717 1721

Pinus radiata

Introduced

trees 1581 -2602 3679

Pinus radiata

Introduced

trees 1431 -2784 4852

Pinus radiata

Introduced

trees -091 -2708 9760

Pinus radiata

Introduced

trees 153 -2568 3470

110

Salix sp

Introduced

trees 632 -2878 1921

LITERATURE CITED

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea

AM Marquet PA 2010 From the Holocene to the Anthropocene A historical

framework for land cover change in southwestern South America in the past 15000

years Land use policy 27 148ndash160

httpsdoiorg101016jlandusepol200907006

Battye W Aneja VP Schlesinger WH 2017 Earth rsquo s Future Is nitrogen the next

carbon  Earthrsquos Future Global Biogeochem Cycles 30 1000ndash1014

httpsdoiorg101002eft2235

Blaauw M Christeny JA 2011 Flexible paleoclimate age-depth models using an

autoregressive gamma process Bayesian Anal 6 457ndash474

httpsdoiorg10121411-BA618

Bowman DMJS Cook GD 2002 Can stable carbon isotopes (δ13C) in soil

carbon be used to describe the dynamics of Eucalyptus savanna-rainforest

boundaries in the Australian monsoon tropics Austral Ecol

httpsdoiorg101046j1442-9993200201158x

Brahney J Ballantyne AP Turner BL Spaulding SA Otu M Neff JC 2014

Separating the influences of diagenesis productivity and anthropogenic nitrogen

deposition on sedimentary δ15N variations Org Geochem 75 140ndash150

httpsdoiorg101016jorggeochem201407003

111

Bruland GL MacKenzie RA 2010 Nitrogen Source Tracking with δN Content

of Coastal Wetland Plants in Hawaii J Environ Qual 39 409

httpsdoiorg102134jeq20090005

Carrevedo ML Frugone M Latorre C Maldonado A Bernaacuterdez P Prego R

Caacuterdenas D Valero-Garceacutes B 2015 A 700-year record of climate and

environmental change from a high Andean lake Laguna del Maule central Chile

(36degS) Holocene 25 956ndash972 httpsdoiorg1011770959683615574584

Christie DA Boninsegna JA Cleaveland MK Lara A Le Quesne C

Morales MS Mudelsee M Stahle DW Villalba R 2009 Aridity changes in the

Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from

tree-rings Clim Dyn 36 1505ndash1521 httpsdoiorg101007s00382-009-0723-4

Craine JM Elmore AJ Aidar MPM Dawson TE Hobbie EA Kahmen A

Mack MC Kendra K Michelsen A Nardoto GB Pardo LH Pentildeuelas J

Reich B Schuur EAG Stock WD Templer PH Virginia RA Welker JM

Wright IJ 2009 Global patterns of foliar nitrogen isotopes and their relationships

with cliamte mycorrhizal fungi foliar nutrient concentrations and nitrogen

availability New Phytol 183 980ndash992 httpsdoiorg101111j1469-

8137200902917x

Cuven S Francus P Lamoureux SF 2010 Estimation of grain size variability

with micro X-ray fluorescence in laminated lacustrine sediments Cape Bounty

Canadian High Arctic J Paleolimnol 44 803ndash817 httpsdoiorg101007s10933-

010-9453-1

Diebel M Vander Zanden MJ 2012 Nitrogen stable isotopes in streams  stable

isotopes Nitrogen effects of agricultural sources and transformations Ecol Appl 19

1127ndash1134 httpsdoiorg10189008-03271

112

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in freshwater

wetlands record long-term changes in watershed nitrogen source and land use SO

- Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash

2916

Fariacuteas L Castro-Gonzales M Cornejo M Charpentier J Faundez J

Boontanon N Yoshida N 2009 Denitrification and nitrous oxide cycling within the

upper oxycline of the oxygen minimum zone off the eastern tropical South Pacific

Limnol Oceanogr 54 132ndash144

Farquhar GD Ehleringer JR Hubick KT 1989 Carbon Isotope Discrimination

and Photosynthesis Annu Rev Plant Physiol Plant Mol Biol

httpsdoiorg101146annurevpp40060189002443

Farquhar GD OrsquoLeary MH Berry JA 1982 On the relationship between

carbon isotope discrimination and the intercellular carbon dioxide concentration in

leaves Aust J Plant Physiol httpsdoiorg101071PP9820121

Fogel ML Cifuentes LA 1993 Isotope fractionation during primary production

Org Geochem httpsdoiorg101007978-1-4615-2890-6_3

Frugone-Aacutelvarez M Latorre C Giralt S Polanco-Martiacutenez J Bernaacuterdez P

Oliva-Urcia B Maldonado A Carrevedo ML Moreno A Delgado Huertas A

Prego R Barreiro-Lostres F Valero-Garceacutes B 2017 A 7000-year high-

resolution lake sediment record from coastal central Chile (Lago Vichuqueacuten 34degS)

implications for past sea level and environmental variability J Quat Sci 32 830ndash

844 httpsdoiorg101002jqs2936

Gaumllman V Rydberg J Bigler C 2009 Decadal diagenetic effects on δ 13 C and

δ 15 N studied in varved lake sediment Limnol Oceanogr 54 917ndash924

httpsdoiorg104319lo20095430917

113

Gerhart LM McLauchlan KK 2014 Reconstructing terrestrial nutrient cycling

using stable nitrogen isotopes in wood Biogeochemistry 120 1ndash21

httpsdoiorg101007s10533-014-9988-8

Granger J Sigman DM Lehmann MF Tortell PD 2008 Nitrogen and oxygen

isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria 53

2533ndash2545 httpsdoiorg10230740058342

Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater

eutrophic lake Limnol Oceanogr 51 2837ndash2848

httpsdoiorg104319lo20065162837

Harris D Horwaacuteth WR van Kessel C 2001 Acid fumigation of soils to remove

carbonates prior to total organic carbon or CARBON-13 isotopic analysis Soil Sci

Soc Am J 65 1853 httpsdoiorg102136sssaj20011853

Houmlgberg P 1997 Tansley review no 95 natural abundance in soil-plant systems

New Phytol httpsdoiorg101046j1469-8137199700808x

Kylander ME Ampel L Wohlfarth B Veres D 2011 High-resolution X-ray

fluorescence core scanning analysis of Les Echets (France) sedimentary sequence

New insights from chemical proxies J Quat Sci 26 109ndash117

httpsdoiorg101002jqs1438

Lara A Solari ME Prieto MDR Pentildea MP 2012 Reconstruccioacuten de la

cobertura de la vegetacioacuten y uso del suelo hacia 1550 y sus cambios a 2007 en la

ecorregioacuten de los bosques valdivianos lluviosos de Chile (35o - 43o 30acute S) Bosque

(Valdivia) 33 03ndash04 httpsdoiorg104067s0717-92002012000100002

Lehmann M Bernasconi S Barbieri A McKenzie J 2002 Preservation of

organic matter and alteration of its carbon and nitrogen isotope composition during

114

simulated and in situ early sedimentary diagenesis Geochim Cosmochim Acta 66

3573ndash3584 httpsdoiorg101016S0016-7037(02)00968-7

Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos Transactions

American Geophysical Union httpsdoiorg1010292007EO070007

Liu G Li M An L 2007 The Environmental Significance Of Stable Carbon

Isotope Composition Of Modern Plant Leaves In The Northern Tibetan Plateau

China Arctic Antarct Alp Res httpsdoiorg1016571523-0430(07-505)[liu-

g]20co2

Marzecovaacute A Mikomaumlgi A Koff T Martma T 2011 Sedimentary geochemical

response to human impact on Lake Notildemmejaumlrv Estonia Est J Ecol 60 54

httpsdoiorg103176eco2011105

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash

1643 httpsdoiorg1011770959683613496289

Meyers PA 2003 Application of organic geochemistry to paleolimnological

reconstruction a summary of examples from the Laurention Great Lakes Org

Geochem 34 261ndash289 httpsdoiorg101016S0146-6380(02)00168-7

Naeher S Gilli A North RP Hamann Y Schubert CJ 2013 Tracing bottom

water oxygenation with sedimentary MnFe ratios in Lake Zurich Switzerland

Chem Geol 352 125ndash133 httpsdoiorg101016jchemgeo201306006

Odone C 1998 El Pueblo de Indios de Vichuqueacuten siglos XVI y XVII Rev Hist

Indiacutegena 3 19ndash67

Pausch J Kuzyakov Y 2018 Carbon input by roots into the soil Quantification of

rhizodeposition from root to ecosystem scale Glob Chang Biol

httpsdoiorg101111gcb13850

115

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98

httpsdoiorg1011772053019614564785

Sun W Zhang E Jones RT Liu E Shen J 2016 Biogeochemical processes

and response to climate change recorded in the isotopes of lacustrine organic

matter southeastern Qinghai-Tibetan Plateau China Palaeogeogr Palaeoclimatol

Palaeoecol httpsdoiorg101016jpalaeo201604013

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of

different trophic status J Paleolimnol 47 693ndash706

httpsdoiorg101007s10933-012-9593-6

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl

httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M 2009 High-resolution quantitative climate

reconstruction over the past 1000 years and pollution history derived from lake

sediments in Central Chile Philos Fak PhD 246

Woodward C Chang J Zawadzki A Shulmeister J Haworth R Collecutt S

Jacobsen G 2011 Evidence against early nineteenth century major European

induced environmental impacts by illegal settlers in the New England Tablelands

south eastern Australia Quat Sci Rev 30 3743ndash3747

httpsdoiorg101016jquascirev201110014

Xu H Yu K Lan J Sheng E Liu B Ye Y Hong B Wu H Zhou K Yeager

KM 2016 Different responses of sedimentary δ15N to climatic changes and

116

anthropogenic impacts in lakes across the Eastern margin of the Tibetan Plateau

J Asian Earth Sci 123 111ndash118 httpsdoiorg101016jjseaes201603024

117

DISCUSION GENERAL

El Nitroacutegeno (N) es un elemento clave que controla la dinaacutemica y

funcionamiento de ecosistemas tanto terrestres como acuaacuteticos (Vitousek et al

1997) Pese a que el N (N2) es muy abundante en la atmoacutesfera (78) es escaso

en los ecosistemas pues la mayoriacutea de la biota no puede acceder a su forma

molecular (Galloway et al 1995 Zaehle et al 2013) En este sentido la entrada

natural de N en los ecosistemas es viacutea fijacioacuten bioloacutegica del N2 por bacterias que lo

convierten en compuestos bioloacutegicamente disponibles (Battye et al 2017) Debido

a que la fijacioacuten es un proceso energeacuteticamente costoso los ecosistemas

comuacutenmente estaacuten limitados por N (Vitousek and Howarth 1991) Los LUCC

contribuyen al incremento del N disponible y son una de las principales causas de

eutroficacioacuten y contaminacioacuten de los cuerpos de agua (Woodward et al 2012)

En Chile central los LUCC principalmente relacionados con las actividades

agriacutecolas y forestales han causado grandes cambios en el ciclo del N debido al

118

reemplazo de la cobertura natural por un monocultivo y al uso de fertilizantes que

modifican los aportes de MO y N a los cuerpos de agua El programa de

estabilizacioacuten de laderas impulsada por el gobierno (Albert 1900) y la ley forestal

de 1974 han fomentado la forestacioacuten con plantaciones de Pinus radiata y

Eucalyptus globulus y en el caso de Lago Vichuqueacuten estas actualmente cubren maacutes

del 60 de su cuenca (Cap2 Fig 5) Ademaacutes en Laguna Matanzas la

sobreexplotacioacuten del agua en conjunto con el cambio climaacutetico actual el que ha

conducido a una de las megasequiacuteas maacutes severas en las uacuteltimas deacutecadas

(Garreaud et al 2017) generoacute una combinacioacuten letal que secoacute el lago en tan solo

10 antildeos (Cap1 Fig1) Las evidencias obtenidas a partir de estos dos lagos

permiten identificar las huellas del Antropoceno en Chile central basadas en el

registro sedimentario lacustre

La transferencia de N desde los ecosistemas terrestres a acuaacuteticos es un

proceso natural con controles bioacuteticos climaacuteticos y geoloacutegicos El enlace

hidroloacutegico entre los ecosistemas terrestres y acuaacuteticos hace que el estado troacutefico

de los lagos esteacute vinculado al de su cuenca (McLauchlan et al 2013) En Chile

central se sabe poco del impacto de los LUCC sobre el ciclo de nutrientes en los

ecosistemas lacustres aunque al menos desde la colonizacioacuten espantildeola se tienen

registros de influencia humana en las cuencas Durante la colonia espantildeola

Laguna Matanzas fue una hacienda ganadera que exportaba productos caacuternicos al

Peruacute (Contreras-Lopez et al 2014) A su vez en el Lago Vichuqueacuten se realizaban

extensas actividades agriacutecolas hasta comienzos del s XX como por ejemplo

cultivos de vid y trigo ademaacutes de extraccioacuten de madera y mineriacutea de oro (Odone

1997) En las uacuteltimas deacutecadas los LUCC han estado vinculados principalmente con

el desarrollo forestal al compaacutes de una estrategia gubernamental de fomentar con

119

incentivos financieros (Ley de Bosques DFL nordm265 de 1931 y DFL 701 de 1974)

esta actividad El incremento de la superficie forestal es especialmente fuerte en

ambos lagos a partir de la deacutecada de 1980 y hasta 2016 (Laguna de Matanzas 0-

17 Lago Vichuqueacuten 1-66) Este aumento habriacutea sido en detrimento del bosque

nativo y los pastizales (Cap 1 Fig 5 y Cap 2 Fig 8) El incremento de la superficie

forestal generariacutea una disminucioacuten de los aportes de sedimentos y nutrientes al lago

y en este sentido un cambio de estado en los flujos de N (e g tipping points) que

a su vez ha quedado registrado en la sentildeal isotoacutepica (δ15N) y la acumulacioacuten de

MO en los sedimentos lacustres

Isoacutetopos estables y la dinaacutemica de N en los lagos de Chile central

Los sedimentos lacustres son verdaderos ldquosumiderosrdquo que pueden llegar a

registrar lo que ocurre en cuanto a la historia ambiental de su cuenca En esta tesis

se utilizan los isoacutetopos estables de N (15N y 14N) en sedimentos lacustres para

reconstruir los cambios en la disponibilidad de N en el tiempo y establecer la

magnitud de impacto generado por actividades humanas El fraccionamiento

cineacutetico en los lagos es mediado por procesos bioloacutegicos que mediante la

asimilacioacuten de N genera un producto (eg fitoplancton) maacutes ldquoligerordquo (valores maacutes

bajos de 15N) que su remanente (eg DIN) (Fogel y Cifuentes 1993) Sin embargo

en periacuteodos en que los lagos estaacuten limitados por N el fitoplancton discrimina menos

y la MO resultante queda enriquecida en 15N (Fig 1 a y b) Ademaacutes la

desnitrificacioacuten acentuada en lagos de fondo anoacutexicos (eg Laguna Matanzas

entre 1800 y 1940 Cap1 Fig 6) conduce a un enriquecimiento en 15N de los

sedimentos y de la columna de agua Esta informacioacuten queda reflejada en la MO

120

de los sedimentos lacustres lo que permite conocer la disponibilidad del N en el

tiempo a partir de las variaciones de 15N

En esta tesis analizamos la MO de los sedimentos lacustres para reconstruir

la influencia de los LUCC en los aportes de sedimentos y N al lago En teacuterminos de

asimilacioacuten de N se puede distinguir entre dos grupos principales de productores

primarios que componen el POM (Fig1)

1 Los que asimilan el DIN compuesto por amonio nitratos y nitritos Aquiacute el

δ15N resultante fluctuaraacute en torno a valores maacutes positivos en la medida que

la productividad se incrementa o no hay reposicioacuten del DIN (Fig 1)

2 Los fijadores de N Dado que es un proceso energeacuteticamente costoso en

ambientes que no estaacuten limitados por N muchas veces son excluiacutedas

competitivamente por el resto del fitoplancton Si el DIN queda agotado por

el incremento de la productividad (o bien si el ambiente estaacute limitado ya sea

por N o por otros nutrientes) los fijadores de N pueden florecer y la MO que

se genera a partir de ello tendraacute un δ15N con valores en torno a 0permil

De este modo la MO en los sedimentos lacustres dependeraacute de la

composicioacuten de productores primarios (ie fijadores vs asimiladores del DIN)

ademaacutes de los aportes desde la cuenca tanto de MO como del N de la cuenca que

pasa a formar parte del DIN (eg fertilizantes estieacutercol) (Fig 1)

La MO de los lagos estudiados en esta tesis ha sido analizada a partir de

variables geoquiacutemicas isotoacutepicas frotis y estaacute compuesta principalmente por

diatomeas y MO amorfa A partir de los datos obtenidos en esta tesis los valores

de δ15N aumentan cuando hay una mayor cobertura agriacutecola o pastizales A su vez

tiende a disminuir cuando aumenta la cobertura arboacuterea independiente si esta es

por plantaciones forestales o por bosque nativo

121

Por otra parte la dinaacutemica del lago tambieacuten imprime caracteriacutesticas

especiales en el POM observaacutendose variaciones estacionales en los valores

δ15NPOM Durante la estacioacuten caacutelida y seca se observan valores maacutes bajos que

durante la estacioacuten friacutea y huacutemeda posiblemente relacionado con el incremento de

la contribucioacuten de especies fijadoras de N (Lago Vichuqueacuten Fig 9 Cap 2) durante

el verano En la estacioacuten friacutea y huacutemeda el DIN seriacutea la principal fuente de N Las

mayores entradas de MO y N terrestre debidos a un incremento del lavado de la

cuenca como consecuencia de las precipitaciones y la mineralizacioacuten de la MO

podriacutean estimular la produccioacuten de MO lacustre por crecimiento del fitoplancton

Como consecuencia se observan tendencias decrecientes de los valores de

δ15N en la MO sedimentaria cuando la productividad en el lago estaacute relacionada

con especies fijadoras de N mientras que el δ15N muestra aumentos cuando la

productividad del lago estaacute asociada principalmente al consumo del DIN pero

tambieacuten cuando predominan procesos de perdida de N (eg desnitrificacioacuten Fig

1)

Hemos identificado tres fases en la dinaacutemica del δ15N para ambos lagos

Entre 1800 y 1940 CE la cuenca de laguna de Matanzas estaba dominada por

actividades agriacutecolas y ganaderas (δ15Nsuelo gt 4permil Cap 1 Fig 4 y 6) Las entradas

de sedimentos y MO desde la cuenca son altas (δ13C lt -209permil ZrTi ~029 AlTi

~013) y coincide con un clima maacutes huacutemedo y friacuteo (Von Gunten et al 2009

Christiansen et al 2011) El lago teniacutea un nivel de agua maacutes profundo dominado

por condiciones anoacutexicas (MnFe ~0013) que contribuiriacutean a mayores valores de

δ15N en la columna de agua y por ende de los sedimentos acumulados en el fondo

debido a la peacuterdida diferencial de 14N viacutea desnitrificacioacuten (Fig 7 Cap1) La baja

122

produccioacuten de MO lacustre (BrTi ~002 TOC~17) coincide con un bajo contenido

de NT (~478 μg) y valores maacutes positivos de δ15N (gt 4permil)

La actividad agriacutecola tambieacuten dominaba en la cuenca del Lago Vichuqueacuten

durante este periacuteodo (δ15Nsuelo gt4permil Cap2 Fig 6) El aporte sedimentario desde la

cuenca es alto (AlTi ~029 ZrTi ~032) y fue favorecido por mayores

precipitaciones a las actuales (Christiansen et al 2011) El Lago Vichuqueacuten es un

lago estratificado anoacutexico (MnFe ~002) y profundo (~30 m) por lo que la

desnitrificacioacuten juega un rol importante en el enriquecimiento de la MO

sedimentaria La baja produccioacuten de MO (BrTi ~007 TOC ~12) de origen

lacustre (δ13C ~ -268permil) coincide con un bajo contenido de NT (~309μg +6) y

valores maacutes positivos de δ15N (56permil +03)

Durante esta fase en ambos lagos los aportes de N de la cuenca parecen

ser los principales responsables en las fluctuaciones del δ15N Esta sentildeal podriacutea

estar amplificada por bajas temperaturas (que afectan la productividad lacustre) y

altas precipitaciones que favorecen el lavado de la cuenca y aumentan el aporte de

sedimentos y MO desde la cuenca predominantemente agriacutecola

Entre 1940 y 1980 CE en Laguna Matanzas se observa un incremento en

la acumulacioacuten de MO algal (TOC ~2 +1 δ13C ~-230+09permil) El ambiente

deposicional es ligeramente menos turbulento que el anterior (AlTi ~011+001

ZrTi ~03+001) y el lago estaacute en una fase de transicioacuten hacia condiciones maacutes

oacutexicas (MnFe ~002+0004) y maacutes productivas (BrTi ~004+0007) A su vez δ15N

tiende hacia valores maacutes negativos (δ15N ~30permil+03) mientras que el NT aumenta

oscilando en antifase con el δ15N

En Lago Vichuqueacuten en cambio se observa un ligero incremento en la

acumulacioacuten de MO (TOC ~13 +02) de origen terrestre (δ13C ~-27permil +04) La

123

productividad es similar al periacuteodo anterior (BrTi ~007+003) y el ambiente

deposicional es menos turbulento (AlTi ~02 +009 Zrti ~033 +007) El δ15N y el

NT oscilan en torno a valores ligeramente maacutes bajos (δ15N ~51permil +04 NT ~292μg

+6) Este periacuteodo se caracteriza por ser maacutes caacutelido que el anterior lo que

posibilitariacutea un incremento en la productividad lacustre en Laguna Matanzas pero

que no es observada en el Lago Vichuqueacuten

Entre 1980 y la actualidad en Laguna Matanzas habriacutea un incremento de la

acumulacioacuten de MO (TOC ~59 + 3) asociada a un incremento en la productividad

del lago (BrTi ~009+005) y a los aportes de MO terrestres (δ13C ~-24 + 2permil) El

lago se vuelve maacutes oacutexico (Mn ~0003 +0006) y las entradas de sedimento

disminuyen (AlTi~ 009 +002) El δ15N tiende a valores maacutes negativos (δ15N ~13permil

+1) y el NT aumenta de 20 a 55 μg (NT ~346 + 9 μg) tomando valores sin

precedentes en todo el registro En los sedimentos lacustres del Lago Vichuqueacuten

tambieacuten se observa un incremento de la acumulacioacuten de MO (TOC ~17 + 05)

asociada a un incremento en la productividad del lago (BrTi ~01 + 003) y las

entradas de sedimento desde la cuenca disminuyen (AlTi ~005 + 005) El δ15N

(~43 + 05permil) tiende a valores maacutes negativos y el NT incrementa de 20 a 55 μg (NT

~346 + 9 μg) oscilando en antifase

Durante esta fase en ambos lagos se observa un aumento en la

acumulacioacuten de MO sedimentaria un incremento en el NT y valores maacutes negativos

de δ15N que coincide con el incremento de la superficie forestal de las cuencas

(Laguna Matanzas gt17 Lago Vichuqueacuten gt60)

124

Figura 2 Comparacioacuten de los cambios del ciclo del N entre Laguna Matanzas y

Lago Vichuqueacuten con los procesos biogeoquiacutemicos contrastantes en rojo En L

Matanzas las condiciones oacutexicas podriacutean estar favoreciendo la nitrificacioacuten del

amonio En Vichuqueacuten las condiciones anoacutexicas favorecen un aumento en δ15N de

la MO en los sedimentos por desnitrificacioacuten y mineralizacioacuten

Los ambientes mediterraacuteneos en el que los lagos del presente estudio se

encuentran insertos estaacuten caracterizados por una estacioacuten seca prolongada y las

precipitaciones ocurren en eventos puntuales alcanzando altos montos

pluviomeacutetricos en poco tiempo Las lluvias favorecen un lavado de la cuenca la

perdida de N y otros nutrientes Por lo que es esperable que los sedimentos del

lago reflejen mejor los valores isotoacutepicos de los suelos de la cuenca durante los

periacuteodos con altos montos pluviomeacutetricos En el Lago Vichuqueacuten por ejemplo el

125

POM superficial (2 y 5 m de profundidad) despliega valores isotoacutepicos maacutes

positivos en invierno presumiblemente como resultado de mayores aportes de MO

y N de su cuenca (Fig 1b) En ambos lagos los valores maacutes positivos en los

sedimentos lacustres ocurren durante periacuteodos con mayores montos pluviomeacutetricos

(Cap1 Fig 6 y Cap 2 Fig 12)

Ademaacutes del efecto de la precipitacioacuten en el aporte de nutrientes al lago en

esta tesis hemos encontrado que los mayores aportes de N desde la cuenca se dan

cuando la cobertura vegetal del suelo es menor En Laguna Matanzas el desarrollo

de la actividad ganadera desde la llegada de los espantildeoles a la cuenca habriacutea

incrementado los aportes de N al lago Los valores de δ15N en los sedimentos

lacustres depositados durante este periacuteodo son los maacutes positivos de todo el registro

(~4permil) A su vez en Lago Vichuqueacuten los valores isotoacutepicos maacutes positivos se

registran entre 1300 y 1900 CE que coinciden con el mayor desarrollo de

actividades agriacutecola y de extraccioacuten de maderas de la cuenca (Fig 10 Cap 2)

Los recientes LUCC (a partir de 1975) en las cuencas de Laguna Matanzas

y Lago Vichuqueacuten estaacuten caracterizados por un incremento de la superficie forestal

y agriacutecola en reemplazo de la cobertura de pastizal (Laguna Matanzas) y bosque

nativo (Lago Vichuqueacuten) Los valores de δ15N en los testigos sedimentarios fueron

maacutes positivos cuanto mayor la superficie agriacutecola de la cuenca y maacutes negativos

cuanto mayor la superficie forestal Aunque por los alcances de esta tesis no

podemos ser concluyentes respecto del origen del NT (aloacutectonoautoacutectono) parece

ser que esta maacutes ligado a los aportes de la cuenca pese a la disminucioacuten del aporte

sedimentario observado en ambos lagos Las plantaciones forestales a diferencia

del bosque nativo son fertilizadas con una mezcla de N P y K (Toral et al 2005)

Por lo que pese a la disminucioacuten del aporte sedimentario la concentracioacuten de

126

nutrientes en el aporte al lago puede verse incrementada por el tipo de manejo

forestal con respecto al bosque nativo

Los resultados del primer capiacutetulo demuestran que 1) las plantaciones

forestales yo bosque nativo retiene maacutes sedimentos y MO mientras que el uso de

suelo agriacutecola y los pastizales destinados al desarrollo de la actividad ganadera lo

libera 2) Al parecer la desnitrificacioacuten es el proceso natural maacutes importante de

perdida de N en lagos costeros y favorece el enriquecimiento de 15N tanto en la

columna de agua (ie 15N-DIN) como en los sedimentos una vez enterrados y 3) la

desnitrificacioacuten depende de los cambios en las condiciones REDOX en el lago La

oxigenacioacuten en lagos poco profundos -como Laguna Matanzas- es altamente

fluctuante a escalas decadal-centenal depende de la profundidad de la laacutemina de

agua y de la variabilidad de la precipitacioacuten En este sentido en Laguna Matanzas

habriacutea condiciones anoacutexicas en ambientes cuando el lago alcanza niveles maacutes

altos Estas condiciones se observan entre 1820 y 1940 CE y son coetaacuteneas con

episodios maacutes huacutemedos y friacuteos (von Gunten et al 2009 Christie et al 2009) pero

tambieacuten con una fuerte actividad ganadera en la cuenca

Las fuentes variables de N y su fluctuacioacuten en el tiempo hacen necesario

contar con un anaacutelogo moderno que permite usar al δ15N de los sedimentos

lacustres como un indicador indirecto de los cambios en la disponibilidad de N en

el tiempo Por ello en el segundo capiacutetulo integramos muestras de suelo-

vegetacioacuten y un monitoreo de POM de la columna de agua en verano e invierno La

composicioacuten isotoacutepica de POM estariacutea reflejando cambios de la fuente de N (fijacioacuten

vs consumo del DIN) que variacutea durante el antildeo hidroloacutegico Durante el verano la

mayor temperatura y horas-luz favoreceriacutean las entradas de N al lago viacutea fijacioacuten

bioloacutegica de N2 atmosfeacuterico resultando en un incremento de la MO con un valor

127

isotoacutepico bajo (POM verano~5permil Fig 1b) El N2 (δ15N = 0permil) es fijado praacutecticamente

sin fraccionamiento isotoacutepico generando un δ15N de la OM cercano a 0permil (Leng et

al 2006) En invierno las precipitaciones pueden estar favoreciendo un incremento

en la entrada de nutrientes al lago El DIN de la columna de agua llega a contener

valores de δ15N maacutes altos reflejando estos mayores aportes de la cuenca y el POM

del Lago Vichuqueacuten queda enriquecido en 15N (δ15N ~11permil Cap 2 Fig 9) Estas

variaciones estacionales pueden estar evidenciando un cambio en la composicioacuten

de especies de POM desde especies fijadoras a especies que consumen el N de la

columna de agua Sin embargo para corroborar esta informacioacuten seriacutea deseable

contar con el anaacutelisis de la composicioacuten de especies de las muestras de agua

extraidas

Entre los resultados maacutes importantes estaacuten los valores isotoacutepicos del suelo

y la biomasa representativa de la cuenca que incluye un listado de las especies

nativas de la zona que hasta ahora no se contaba (Cap 2 Tabla en material

suplementario) Las especies colectadas despliegan valores de δ15Nfoliar maacutes

positivos (plantaciones forestales y pastizal ~89permil) que el suelo (35permil) salvo por

las especies nativas las que oscilan en torno a valores cercanos al atmosfeacuterico

(~14permil) La razoacuten isotoacutepica 15N14N refleja la dinaacutemica de intercambio de N entre la

vegetacioacuten y el suelo (Koba et al 2002) La discriminacioacuten es positiva en la mayoriacutea

de los sistemas bioloacutegicos por lo que las plantas tienen valores de δ15N maacutes bajos

que el suelo (Evans et al 2001) como sucede con las especies nativas en Lago

Vichuqueacuten En consecuencia las plantas quedan empobrecidas en 15N y conducen

a un enriquecimiento en 15N del suelo sobretodo si no hay reposicioacuten de N por otras

viacuteas (eg fijacioacuten de N) Por lo tanto los valores maacutes negativos de δsup1⁵Nfoliar de las

especies nativas pueden estar relacionados con el consumo preferencial de 14N del

128

suelo donde la discriminacioacuten isotoacutepica de la vegetacioacuten contra el 15N conduce a

valores del δsup1⁵Nsuelo maacutes altos (Houmlgberg 1997) Por el contrario los valores maacutes

positivos de δsup1⁵Nfoliar de las plantaciones forestales y pastos con respecto al suelo

puede deberse por una parte que el suelo no cuenta con mecanismos naturales de

reposicioacuten de N salvo por la descomposicioacuten de la hojarasca que puede ser maacutes

lenta en Pinus radiata que en bosque nativo (Lusk et al 2001) y por otra por el alto

impacto de los aportes de N (y otros nutrientes) derivado de las actividades

humanas (eg uso de fertilizantes) en el suelo

El alcance maacutes significativo de esta tesis se relaciona con un cambio en la

tendencia maacutes negativa de δsup1⁵N y el incremento del NT a partir de 1940 y a partir

de 1970 CE en ambos lagos La causa maacutes probable de esta tendencia es el

reemplazo de la cobertura natural o preexistente a 1940 CE por plantaciones

forestales

En la figura 2 se observa una siacutentesis de los principales procesos que

afectan la sentildeal isotoacutepica de la MO en los sedimentos lacustres de L Matanzas y

L Vichuqueacuten La entrada de N y MO desde la cuenca depende del tipo de cobertura

Las plantaciones forestales y el bosque nativo retienen maacutes nutrientes y sedimentos

en la cuenca mientras que la agricultura los favorece Sin embargo las praacutecticas

de manejo que incluyen la aplicacioacuten de N (y otros nutrientes) pueden aportar maacutes

nutrientes al lago que la cobertra de bosque nativo Cuando las actividades

forestales cubren una mayor superficie de la cuenca (1940 en adelante) δsup1⁵N oscila

en valores maacutes negativos y el NT tiende a incrementarse en los sedimentos

lacustres Cabe destacar que los valores de δsup1⁵N observados en los testigos

sedimentarios a fines del s XX no tienen precedente durante la conquista y colonia

espantildeola o durante el resto del periodo de la Repuacuteblica

129

Figura 2 Modelo de transferencia de N entre los ecosistemas terrestres y

acuaacuteticos El δ15N de los sedimentos lacustres depende de la interaccioacuten entre los

aportes de la cuenca y porcesos ldquoin-lakerdquo Flechas indican la direccioacuten del flujo de

N En azul las salidasentradas de 14N en rojo las salidasentradas de 15N δ15N de

la interaccioacuten plantas-suelo depende del tipo de cobertura de suelo

130

CONCLUSIONES GENERALES

La transferencia de N entre cuencas y lagos es un factor de control del ciclo

del N en los lagos y queda reflejado en la sentildeal isotoacutepica de los sedimentos

lacustres (Leng et al 2006 McLauchlan et al 2007) En Laguna Matanzas el

suelo de las especies nativas y las plantaciones forestales despliegan valores de

δ15N maacutes bajos (~1permil) que los de Lago Vichuqueacuten (~35permil) Coincidentemente los

sedimentos lacustres de Laguna Matanzas oscilan con valores de δ15N maacutes bajos

(-15 a +45permil Fig 1) que los de Lago Vichuqueacuten (+3 a +8permil)

Por otra parte el estudio de la MO de los sedimentos lacustres ha permitido

reconstruir los cambios en los aportes de MO y N desde la cuenca Aunque no es

posible afirmar queacute tipo de N estaacute entrando al lago (eg Nitroacutegeno orgaacutenico e

inorganico) si podemos decir que los cambios en las fluctuaciones de δ15N son

coincentes con el crecimiento de la actividad forestal (1980 - hasta 2016 L

Matanzas 0-17 y L Vichuqueacuten 1-66) El δ15N fluctuacutea hacia valores maacutes

negativos Ademaacutes se observa un incremento del NT en los sedimentos lacustres

cuanto mayor es la superficie forestal

Entre 1800-1940 las cuencas eran fundamentalmente agriacutecolas y

ganaderas (Cap1 Fig 7 y Cap 2 Fig 12) el δ15N de los sedimentos lacustres

oscila con valores maacutes positivos (L Matanzas +40 plusmn 05permil y L Vichuqueacuten 56 plusmn

033permil Fig 1) hay una baja bioproductividad en el lago (BrTi ~002 TOC~17)

lo que coincide con un bajo contenido de NT (~478 μg) Este es un periacuteodo de altas

precipitaciones (Christie et al 2009) que tienden a favorecer el lavado de la cuenca

131

y con ello el aporte de MO sedimentos y nutrientes desde la cuenca tiende a verse

favorecido Aunque las principales actividades humanas en estas cuencas son

diferentes (ganaderiacutea en Laguna Matanzas Contreras-Lopez et al 2014

agricultura en Lago Vichuqueacuten Odone 1997) en ambos casos hubo un reemplazo

de la cobertura natural de bosques nativo que favorecioacute mayores aportes de N y

sedimentos desde la cuenca en un efecto sumado con el aumento de las

precipitaciones

A partir de 1980 CE en ambos lagos se observa una disminucioacuten en los

valores de δ15N y un incremento del NT que no tiene precedentes en todo el registro

y pese a que ambos lagos son limnologicamente muy diferentes En Lago

Vichuqueacuten el δ15N tiende a oscilar en antifase con el NT (Fig 1) En el caso de

Laguna Matanzas se observa una tendencia hacia valores maacutes negativos y a partir

de 1990s a valores maacutes positivos mientras que el NT tiende a incrementarse de

manera sostenida Ello podriacutea estar relacionado con el crecimiento de la actividad

forestal habriacutea una mayor retencioacuten de N y sedimentos en la cuenca ligado al

incremento de la superficie forestal Ademaacutes en el caso de L Matanzas el

incremento de la actividad agriacutecola (sumado al de las plantaciones forestales)

podriacutea expicar el cambio en la tendencia en la deacutecada de los 1990s

En el contexto de Antropoceno esta tesis nos permite identificar un gran

impacto de las actividades humanas en Chile central a partir de la deacutecada de 1940

y una Gran Aceleracoacuten a partir de la deacutecada de 1970s En el registro sedimentario

de los lagos en estudio se observa una gran acumulacioacuten de MO el δ15N oscila

hacia valores maacutes negativos y un gran incremento del NT y el crecimiento de la

actividad forestal parece ser la principal responsable Ademaacutes la sobreexplotacioacuten

132

del agua junto al cambio climaacutetico global ha generado una combinacioacuten letal para

los lagos costeros de Chile central

Figura 1 Comparacioacuten de las fluctuaciones de δ15N durante los uacuteltimos 300

antildeos en Laguna Matanzas y Lago Vichuqueacuten

133

Referencias

Battye W Aneja VP Schlesinger WH 2017 Earthrsquos Future Is nitrogen the next carbon Earthrsquos Future Global Biogeochem Cycles 30 1000ndash1014 httpsdoiorg101002eft2235

Christie DA Boninsegna JA Cleaveland MK Lara A Le Quesne C

Morales MS Mudelsee M Stahle DW Villalba R 2009 Aridity changes in the Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from tree-rings Clim Dyn 36 1505ndash1521 httpsdoiorg101007s00382-009-0723-4

Contreras-Loacutepez M (Playa AUHVC (Universidad de VRFS (Pontificia

UC de V 2014 Elementos de la historia natural del An Mus Hist Natulas Vaplaraiso 27 51ndash67

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in

freshwater wetlands record long-term changes in watershed nitrogen source and land use SO - Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash2916

Evans RD Evans RD 2001 Physiological mechanisms influencing

plant nitrogen isotope composition 6 121ndash126 Fogel ML Cifuentes LA 1993 Isotope fractionation during primary

production Org Geochem 73ndash98 httpsdoiorg101007978-1-4615-2890-6_3 Galloway JN Schlesinger WH Ii HL Schnoor L Tg N 1995

Nitrogen fixation Anthropogenic enhancement-environmental response reactive N Global Biogeochem Cycles 9 235ndash252

Garreaud RD Alvarez-Garreton C Barichivich J Pablo Boisier J

Christie D Galleguillos M LeQuesne C McPhee J Zambrano-Bigiarini M 2017 The 2010-2015 megadrought in central Chile Impacts on regional hydroclimate and vegetation Hydrol Earth Syst Sci 21 6307ndash6327 httpsdoiorg105194hess-21-6307-2017

Koba K Koyama LA Kohzu A Nadelhoffer KJ 2003 Natural 15 N

Abundance of Plants Coniferous Forest httpsdoiorg101007s10021-002-0132-6

Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos

Transactions American Geophysical Union httpsdoiorg1010292007EO070007 McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE

2007 Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470 httpsdoiorg101073pnas0701779104

134

Phytologist N Oct N 2006 Tansley Review No 95 15N Natural Abundance in Soil-Plant Systems Peter Hogberg 137 179ndash203

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98 httpsdoiorg1011772053019614564785

Turner BL Kasperson RE Matson PA McCarthy JJ Corell RW

Christensen L Eckley N Kasperson JX Luers A Martello ML Polsky C Pulsipher A Schiller A 2003 A framework for vulnerability analysis in sustainability science Proc Natl Acad Sci U S A httpsdoiorg101073pnas1231335100

Vitousek PM Aber JD Howarth RW Likens GE Matson PA

Schindler DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

Vitousek PM Howarth RW 1991 Nitrogen limitation on land and in the

sea How can it occur Biogeochemistry httpsdoiorg101007BF00002772 von Gunten L Grosjean M Rein B Urrutia R Appleby P 2009 A

quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo central Chile back to AD 850 Holocene 19 873ndash881 httpsdoiorg1011770959683609336573

Xu R Tian H Pan S Dangal SRS Chen J Chang J Lu Y Maria

Skiba U Tubiello FN Zhang B 2019 Increased nitrogen enrichment and shifted patterns in the worldrsquos grassland 1860-2016 Earth Syst Sci Data httpsdoiorg105194essd-11-175-2019

Zaehle S 2013 Terrestrial nitrogen-carbon cycle interactions at the global

scale Philos Trans R Soc B Biol Sci 368 httpsdoiorg101098rstb20130125

Page 9: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …

9

RESUMEN

El ldquoAntropocenordquo se caracteriza por pertubaciones de origen humano que

conllevan impactos globales Por ejemplo los cambios de usocobertura del suelo

(LUCC) son conocidos por perturbar el ciclo del N a partir de la Revolucioacuten Industrial

pero especialmente desde la Gran Aceleracioacuten (1950 CE) en adelante Sin

embargo existen incertezas asociadas a la magnitud del impacto y su efecto

acoplado con los cambios climaacuteticos actuales (ie megasequiacutea disminucioacuten de las

precipitaciones) y acoplamientos con otros ciclos biogeoquiacutemicos (eg ciclo del

Carbono) Este impacto ha cambiado la disponibilidad de N en los ecosistemas

terrestres y acuaacuteticos y sus enlaces Los sedimentos lacustres contienen

informacioacuten de las condiciones paleoambientales del lago y su cuenca en el

momento en que se depositaron y el anaacutelisis de los isoacutetopos estables de N (δ15N)

en los sedimentos permiten reconstruir los cambios en la disponibilidad de N a

traveacutes del tiempo En este trabajo usamos una aproximacioacuten multiproxy que incluye

10

anaacutelisis sedimentoloacutegicos geoquiacutemicos e isotoacutepicos (δ15N δ13C) de los sedimentos

lacustres columna de agua y suelo-vegetacioacuten de la cuenca y la reconstruccioacuten de

los LUCC entre 1975 y 2016 a partir de imaacutegenes satelitales El objetivo de esta

tesis fue evaluar el rol de LUCC como principal control del ciclo del N en el sistema

cuenca-lago durante las uacuteltimas centurias en Chile central Nuestros principales

resultados muestran que valores maacutes positivos de δ15N en los sedimentos lacustres

estaacuten relacionados con grandes aportes de N de la cuenca que a su vez son

mayores cuanto mayor la superficie agriacutecola yo los pastizales mientras que tanto

las plantaciones forestales como los bosques favorecen la retencioacuten de nutrientes

en la cuenca (lo que se ve reflejado en un δ15N maacutes negativo) Esta tesis plantea

un cambio de estado en la dinaacutemica del N asociado a la introduccioacuten y expansioacuten

de las plantaciones forestales o bosques los que retienen el Nitroacutegeno en las

cuencas mientras que el clima juega un rol secundario

11

ABSTRACT

The Anthropocene is characterized by human disturbances at the global

scale For example changes in land use are known to disturb the N cycle since the

industrial revolution but especially since the Great Acceleration (1950 CE) onwards

This impact has changed N availability in both terrestrial and aquatic ecosystems

However there are some important uncertainties associated with the extent of this

impact and how it is coupled to ongoing climate change (ie megadroughts rainfall

variability and shifting stationarity) or to other nutrient cycles (e g carbon cycle)

Lake sediments contain paleoenvironmental information regarding the conditions of

the watershed and associated lakes and which the respective sediments are

deposited Nitrogen stable isotope analysis (δ15N) on lake sediments allows us to

reconstruct the changes in N availability through time Here we used a multiproxy

approach that uses sedimentological geochemical and isotopic analyses on

lacustrine sediments water column and soilvegetation from the watershed as well

12

as land use and cover change (LUCC) from 1975 to 2016 obtained from satellite

images The goal of this thesis is to evaluate the role of LUCC as the main driver for

N cycling in a coastal watershed system of central Chile over the last centuries Our

main results show that more positive δ15N values in lake sediments are related to

higher N contributions from the watershed which in turn increase with increased

agricultural andor pasture cover whereas either forest plantations or native forests

can favor nutrient retention in the watershed (δ15N more negative) This thesis

proposes that N dynamics are mainly driven by the introduction and expansion of

forest or tree plantations that retain nitrogen in the watershed whereas climate plays

a secondary role

13

INTRODUCCIOacuteN

El N es un elemento esencial para la vida y limita la productividad en

ecosistemas tanto terrestres como acuaacuteticos (Vitousek et al 1997) Las actividades

humanas han tenido un profundo impacto sobre el ciclo del N global principalmente

a partir la revolucioacuten industrial (IPCC 2013 2007) Las concentraciones de N se

han incrementado por la fijacioacuten industrial de N atmosfeacuterico (viacutea el proceso Haber-

Bosch Erisman et al 2008) por el uso de fertilizantes sobre la base de N para

mejorar el rendimiento de los cultivos la produccioacuten ganadera y ademaacutes de los

cambios en el uso del suelo (abreviado en ingleacutes- LUCC) (Robertson y Vitousek

2009 Galloway et al 2008 Battye et al 2017 Xu et al 2019) Estas actividades

contribuyen significativamente al incremento de la disponibilidad bioloacutegica de N

cuyas consecuencias para los ecosistemas incluye la perdida de diversidad

modificacioacuten de la disponibilidad de nutrientes y acidificacioacuten de los suelos entre

otras Sin embargo se desconoce la cantidad destino y el alcance que ha tenido

14

el N movilizado entre los ecosistemas generado por la influencia de las actividades

humanas (Vitousek et al 1997)

La entrada natural de N en los ecosistemas terrestres y acuaacuteticos es viacutea

fijacioacuten atmosfeacuterica la que es llevada a cabo por microorganismos muchos de ellos

en relaciones simbioacuteticas (eg Rhizobium en leguminosas) y las algas (Vitousek et

al 1997 Battye et al 2017) Las principales salidas estaacuten relacionadas con la

desnitrificacioacuten volatilizacioacuten del amoniaco y por escurrimiento superficial y

subterraacuteneo (Galloway et al 2008 Diacuteaz et al 2016) En el caso de los sistemas

lacustres ademaacutes estaacuten la resuspencioacuten de N del fondo del lago los aportes desde

la cuenca (entradas de N) La depositacioacuten de MO en el fondo del lago que marca

la salida de N de la columna de agua Estas relaciones de intercambio de N tienen

un control geograacutefico (eg latitud exposicioacuten relieve etc) climaacutetico y biotico

(McLauchlan et al 2013) La alteracioacuten provocada por los LUCC no solo genera

las peacuterdidas de nutrientes del suelo por erosioacuten y escurrimiento superficial sino que

tambieacuten modifica la disponibilidad y transferencia de N entre los ecosistemas

terrestres y acuaacuteticos (Elbert et al 2012 McLauchlan et al 2013) Por ejemplo el

reemplazo de la vegetacioacuten nativa por la agricultura yo plantaciones forestales

altera el ciclo del N debido al despeje de los terrenos viacutea quema de la vegetacioacuten

pero tambieacuten debido al reemplazo de la vegetacioacuten preexistente por un

monocultivo (eg trigo pino) y el uso ineficiente de fertilizantes para mejorar el

rendimiento agriacutecola Estas actividades favorecen un incremento de los aportes de

N (y otros nutrientes) viacutea sistemas de drenajes a lagos los que actuacutean como

sumideros El incremento del N derivado de las actividades humanas tanto en los

ecosistemas terrestres como acuaacuteticos genera incertezas relacionados con la

trayectoria y la magnitud de la disponibilidad de N en ambos ecosistemas (Batye et

15

al 2017 Mclauchlan et al 2017) Por lo tanto se requiere de una liacutenea base de

largo plazo para saber coacutemo estas perturbaciones impactan la disponibilidad de N

en las uacuteltimas deacutecadassiglos en los ecosistemas lacustres y por lo tanto el alcance

real que los LUCC han tenido en el ciclo del N

Los ecosistemas mediterraacuteneos y el ciclo del N

Los ecosistemas mediterraacuteneos son especialmente sensibles a los LUCC

pues estos se encuentran sometidos a un estreacutes hiacutedrico durante largas temporadas

estivales y las precipitaciones se concentran en eventos puntuales y a veces con

altos montos pluviomeacutetricos Las precipitaciones tienen un alto potencial de arrastre

de sedimentos y nutrientes los que actuacutean como fertilizantes al llegar a los

ecosistemas lacustres A su vez un incremento en la disponibilidad de N puede

generar un desbalance con otros nutrientes (eg Fosforo) con efectos sobre la

productividad y diversidad de los lagos (Pentildeuelas et al 2012 Sardans et al 2012

McLauchlan 2013) En este sentido en Chile central se observa una disminucioacuten

de las precipitaciones especialmente fuerte en las uacuteltimas deacutecadas por lo que se ha

denoacuteminado como Megasequiacutea (Garreaud et al 2017) y el efecto de las

precipitaciones esporaacutedicas pueden generar un arrastre de nutrientes que no ha

sido evaluado

Los ecosistemas mediterraacuteneos concentran el 20 de la biodiversidad global

(Myers et al 2000) pero existe una escasez de conocimiento respecto a los

efectos del incremento de N en los cuerpos de agua como consecuencia de las

actividades humanas en el pasado histoacuterico (Ochoa-Hueso et al 2011) y coacutemo la

disponibilidad de N ha variado en el tiempo Los LUCC han aumentado el flujo de

N en las cuencas hidrograacuteficas viacutea escurrimiento superficial y lixiviacioacuten

16

favoreciendo la peacuterdida de sedimentos y nutrientes del suelo en el mundo entero

(Elser et al 2011 McLauchlan et al 2013 Xu et al 2017 y 2019) Ello ha

contribuido a la acidificacioacuten y eutrofizacioacuten generalizada de riacuteos y lagos

(McLauchlan et al 2013 Schindler et al 2008)

El ecosistema mediterraacuteneo de Chile central es una regioacuten ampliamente

intervenida desde al menos la colonizacioacuten espantildeola (1600-1800 CE) Los LUCC

han tenido efectos negativos en la disponibilidad de agua especialmente

observados con el desarrollo de las actividades minera (Prieto et al 2019) Aunque

se sabe de los impactos en los ecosistemas de bosque en teacuterminos de cobertura

debidos al desarrollo silvo-agropecuarias (Armesto et al 2010) se desconoce el

impacto de estas actividades sobre el ciclo del N en los cuerpos de agua o en queacute

momento cobran fuerza suficiente para alterar el flujo de N hacia los lagos de Chile

Central Por lo tanto en esta tesis nos centramos en entender coacutemo los LUCC han

afectado la disponibilidad de N en los lagos costeros de Laguna Matanzas y Lago

Vichuqueacuten desde la llegada de los espantildeoles a Chile hasta el presente

Los lagos como sensores ambientales

Los sedimentos lacustres son buenos sensores de cambios en los aportes

de nutrientes contaminacioacuten y eutroficacioacuten de los cuerpos de agua ya que son

capaces de preservar sentildeales quiacutemicas y fiacutesicas al momento de su formacioacuten y

ademaacutes con alta resolucioacuten y a largo plazo (Leng et al 2006) Por lo tanto

constituyen una herramienta uacutetil para reconstruir el flujo de N entre ecosistemas

terrestres y acuaacuteticos en el pasado sus consecuencias (eg incremento de la

productividad lacustre) y el rol del clima y los LUCC en el pasado (McLauchlan et

al 2013 von Gunten et al 2009) Por ejemplo el cultivo de maiacutez por parte de los

17

nativos iroqueses en Canadaacute provocoacute la eutrofizacioacuten del Lago Crawford (43degN)

durante los siglos XII y XV Entre las consecuencias registradas se documentoacute un

claro incremento de la productividad primaria y cambios en la estructura comunitaria

de diatomeas foacutesiles (incremento de Stephanodiscus complex y disminucioacuten de

Cyclotella bodanica en Ekdahl et al 2007) Otro ejemplo demuestra como las

actividades agriacutecolas en la cuenca del riacuteo Mississippi modificaron los patrones de

sedimentacioacuten y aporte de nutrientes al lago Pepin EE UU (44degN) a partir del

asentamiento europeo en 1840 CE y principalmente desde 1940 CE (Engstrom et

al 2009) Para Chile von Gunten et al (2009) a partir de indicadores

limnogeoloacutegicos evidencioacute la contaminacioacuten y eutroficacioacuten de cinco lagos cercanos

a la ciudad de Santiago (33ordmS) como consecuencia de la deposicioacuten atmosfeacuterica

de metales pesados (especialmente Cu) quema de combustible foacutesil y flujo de

nutrientes durante los uacuteltimos 200 antildeos

Caracteriacutesticas limnoloacutegicas de los lagos

Los procesos limnoloacutegicos afectan la distribucioacuten y abundancia de los

organismos en los lagos Estaacuten influenciados por forzamientos externos por

ejemplo la precipitacioacuten o la penetracioacuten de la luz y la morfometriacutea del lago En este

sentido el nivel del lago dependeraacute del balance entre las entradas y salidas de agua

(precipitaciones escurrimiento superficial y subterraacuteneo y la evaporacioacuten) y la forma

de la cuenca (profundidad pendiente aacuterea del espejo de agua)

En funcioacuten de la profundidad de penetracioacuten de la luz es posible diferenciar

dos aacutereas que determinan la distribucioacuten de los organismos la zona foacutetica (donde

penetra la luz y permite la fotosiacutentesis) y la zona afoacutetica (subyacente a la zona

foacutetica) Al depender de la radiacioacuten la zona foacutetica variacutea estacionalmente Ademaacutes

18

puede variar por el grado de turbidez la morfometriacutea del lago y la produccioacuten de

materia orgaacutenica en la columna de agua

Otro factor que influye en la productividad es el reacutegimen de mezcla de la

columna de agua pues favorece la oxigenacioacuten y el reciclado de nutrientes La

mezcla ocurre en condiciones de gran inestabilidad usualmente relacionado con el

reacutegimen de viento Por el contrario un lago estratificado resulta de grandes

diferencias en temperatura o salinidad entre la superficie (epilimnion) y el fondo del

lago (hipolimnion) que separa las masas de agua superficial y de fondo por una

termoclina (si la estratificacioacuten estaacute relacionada con diferencias de temperatura de

las masas de agua) o haloclina (diferencias de salinidad) En funcioacuten del reacutegimen

de mezcla los lagos se pueden clasificar en (Lewis 1983)

1 Amiacutecticos no hay mezcla vertical de la columna de agua

2 Monomiacutecticos friacuteos y caacutelidos se mezcla una vez al antildeo

3 Dimiacutecticos la columna de agua se mezcla dos veces al antildeo

4 Oligomiacutecticos Lagos estratificados la mayor parte del tiempo pero se mezclan a

intervalos irregulares mayores a 1 antildeo

5 Polimiacutecticos friacuteos y caacutelidos la columna de agua se mezcla varias veces al antildeo

El ciclo del N en lagos

Al estar presente en aacutecidos nucleicos aminoaacutecidos y proteiacutenas el N es un

nutriente esencial de los organismos Por lo tanto su disponibilidad en la columna

de agua es clave para la produccioacuten composicioacuten y acumulacioacuten de la MO a traveacutes

del tiempo (Olson 1998 Talbot 2002) Aunque el principal reservorio de N estaacute en

19

la atmosfera (N2) solo unos pocos organismos (eg cianobacterias) pueden fijarlo

directamente Asiacute el Nitroacutegeno Inorgaacutenico Disuelto (DIN) representa la principal

fuente de N disponible para la produccioacuten primaria en los ecosistemas acuaacuteticos

(Talbot et al 2002) El DIN estaacute compuesto por nitrato (NO3-) nitrito (N02

-) y amonio

(NH4+) y los cambios en su disponibilidad condicionan el tipo de produccioacuten primaria

(eg fijadores vs asimiladores de N ver Scott y Grant 2013 Scott 2008)

La Figura 1 resume los principales componentes en lagos del ciclo del N y

sus interacciones La principal entrada natural de N es viacutea fijacioacuten de N atmosfeacuterico

y es llevado a cabo principalmente por bacterias y algas verde-azules capaces de

romper el triple enlace entre los dos aacutetomos de N a un alto costo energeacutetico (Torres

et al 2012) El N fijado es reducido a NH3 Tras la muerte de los organismos el N

es liberado de sus tejidos por hongos y bacterias implicados en la descomposicioacuten

de la MO Una parte se deposita en el fondo del lago y la otra queda disponible para

ser asimilada por el fitoplancton como amonio mediante el proceso de

amonificacioacuten (Talbot 2002) La amonificacioacuten resulta de la reduccioacuten bacteriana

del amoniaco y se da preferentemente en condiciones anoacutexicas La volatizacioacuten del

amoniaco es un proceso por medio este se incorpora a la atmoacutesfera Este proceso

se da preferentemente en lagos aacutecidos (pH gt 85) El nitrato es otra forma de N

bioloacutegicamente disponible para el fitoplancton En los lagos el NO3 del DIN estaacute

compuesto por los aportes desde la cuenca hidrograacutefica en la que se circunscriben

por la resuspensioacuten desde el fondo del lago favorecido por procesos de mezcla

(descrito en seccioacuten anterior) y por los nitratos de la columna de agua Estos uacuteltimos

son el resultado de la nitrificacioacuten proceso realizado por bacterias aeroacutebicas

mediante el cual el amonio se oxida para formar nitrito y nitrato El ciclo se completa

20

con la desnitrificacioacuten que es la reduccioacuten bacteriana de nitrato al N atmosfeacuterico

Este proceso se da preferentemente en condiciones anoacutexicas

Figura 1 Materia Orgaacutenica sedimentaria y su relacioacuten con el ciclo del N y las

variaciones de δ15N (elaborado a partir de Talbot et al 2002) En la figura se

representan los factores clave en la acumulacioacuten de la MO sedimentaria y su

relacioacuten con el ciclo del N El δ15N de la MO es resultado de los aportes de MO

desde la cuenca MO de macroacutefitas y de la productividad bioloacutegica La productividad

en ecosistemas lacustres estaacute condicionada por DIN y la fijacioacuten de N atmosfeacuterico

El δ15N del pool del DIN disponible se va enriqueciendo por la asimilacioacuten

preferencial de 14N por parte del fitoplancton Ademaacutes el DIN remanente se va

enriqueciendo por accioacuten microbiana (amonificacioacuten nitrificacioacuten desnitrificacioacuten)

Reconstruyendo el ciclo del N a partir de variaciones en δ15N

La sentildeal isotoacutepica de N (δ15N) en los sedimentos lacustres puede ser usada

para reconstruir los cambios pasados del ciclo N la transferencia de N entre

ecosistemas terrestres y acuaacuteticos y el estado troacutefico del lago (Bruland y Mackenzie

2015 McLauchlan et al 2013 Woodward et al 2012 von Gunten et al 2009

Leng et al 2006 Meyers y Teranes 2001) La Figura 1 resume los principales

procesos y fuentes que afectan la sentildeal isotoacutepica δ15N (total o ldquobulkrdquo) en la MO de

21

los sedimentos lacustres Entre los que destacan las fuentes de MO (aloacutectona vs

autoacutectona) la bioproductividad lacustre y las entradas de N (ie fijacioacuten bioloacutegica

de N2) (Torres et al 2012) Estos procesos conducen a un fraccionamiento

isotoacutepico cineacutetico que favorece la disociacioacuten entre sus isotopos ldquopesadosrdquo (15N) y

ldquoligerosrdquo (14N) Asiacute por ejemplo los valores de δ15N de la MO se enriquecen en 15N

en la medida que los sedimentos lacustres estaacuten sometidos a perdidas de 14N viacutea

desnitrificacioacuten (Bruland y Mackenzie 2015 Diaz et al 2016 Talbot et al 2002)

Por otra parte el fitoplancton en la medida que aumenta su biomasa (eg

durante la estacioacuten caacutelida) puede llegar a asimilar el DIN hasta agotarse En este

caso el N remanente se va empobreciendo en 14N si no hay reposicioacuten de N (eg

aporte de NO3 de la cuenca) y la MO queda enriquecida en 15N Esta disminucioacuten

induce a una limitacioacuten de fitoplancton por N y los organismos diztroacuteficos pueden

verse estimulados por lo que se incrementa la entrada de N viacutea fijacioacuten de N2 (Scott

y Grantsz 2013) como resultado la MO oscila en valores maacutes bajos (en torno a 0permil)

La cantidad de MO que se deposita en el fondo del lago depende del

predominio de contribuciones provenientes desde la cuenca (aloacutectona) versus las

producidas dentro del mismo lago (autoacutectona) (Torres et al 2012) Aunque en

general los lagos reciben permanentemente aportes de sedimentos y MO desde

su cuenca los lagos pequentildeos tienden a reflejar maacutes los procesos que ocurren

solamente en su cuenca directa y reflejan los valores isotoacutepicos de la misma (Gu et

al 2006) Woodward et al (2012) realizaron un estudio en 50 lagos en Irlanda que

les permitioacute correlacionar diferentes patrones de LUCC (bosques de coniacuteferas

agricultura ganaderiacutea entre otros) con los valores de δ15N (y δ13C) en los

sedimentos superficiales de los lagos Encontraron que los valores de δ15N son maacutes

negativos en cuencas poco impactadas y maacutes positivos en aquellas con alto

22

impacto humano (eg usos de suelo agriacutecola y ganadero) McLauchlan et al (2007)

encontraron valores maacutes positivos de δ15N en los sedimentos del Mirror Lake New

Hampshire (29ordm N) a partir de la desforestacioacuten de su cuenca en 1790 CE (inicio

del asentamiento europeo en el lago) para el desarrollo de la actividad agriacutecola

Estos valores se volvieron maacutes negativos hacia valores similares al pre-

asentamiento europeo despueacutes del cese de la agricultura en la cuenca y la

recuperacioacuten del bosque a partir de 1929 CE

El anaacutelisis de δ15N en los sedimentos lacustres es una herramienta casi sin

explorar en Chile central Proponemos reconstruir la dinaacutemica de transferencia de

N cuenca-lago como consecuencia de los LUCC desde la colonizacioacuten espantildeola en

los lagos costeros de Laguna Matanzas (34ordmS) y Lago Vichuqueacuten (36ordmS) Como son

muacuteltiples los procesos que pueden afectar la sentildeal isotoacutepica de N (medido como

δ15N) en los sedimentos lacustres existen muchos problemas para su

interpretacioacuten paleoambiental (Leng et al 2006) Por ello en esta tesis utilizamos

un enfoque multiproxy que consiste en integrar el anaacutelisis limnoloacutegico y geoquiacutemico

de los sedimentos lacustres con los valores isotoacutepicos modernos de la columna de

agua (mediante monitoreo del POM) la relacioacuten vegetacioacuten-suelo de la cuenca y la

reconstruccioacuten de los principales usos de suelo de las cuencas desde 1975 CE

mediante el uso de imaacutegenes satelitales Considerando estas muacuteltiples liacuteneas de

evidencia nos planteamos utilizar las variaciones del δ15N para reconstruir los

cambios en la disponibilidad de N en los lagos costeros de Chile central y establecer

coacutemo y desde cuaacutendo las actividades humanas en la cuenca son lo suficientemente

importantes como para modificar el ciclo del N en los lagos desde la colonizacioacuten

espantildeola (siglo XVII)

23

Como hipoacutetesis planteamos que la dinaacutemica de transferencia de sedimentos

y nutrientes entre la cuenca y el lago tiene controles geoloacutegicos climaacuteticos y

bioloacutegicos que interactuacutean en el tiempo registraacutendose en la acumulacioacuten de MO de

los sedimentos lacustres (Fig1) Bajo este marco los LUCC modifican esta

dinaacutemica alterando la transferencia de N a los lagos ya que las actividades agriacutecolas

y ganaderas tienden a aportar maacutes N (aumentando δ15N) que la actividad forestal

(la que disminuye δ15N)

En el primer capiacutetulo titulado ldquoA combined approach to establishing the timing

and magnitude of anthropogenic nutrient alteration in a mediterranean coastal lake-

watershed systemrdquo se evaluoacute el rol de los LUCC en el control de la descarga de N

y sedimentos a Laguna Matanzas en un sistema cuenca-lago desde el siglo XVII

Para ello se realizoacute un anaacutelisis de la dinaacutemica sedimentaria lacustre mediante el

anaacutelisis de muacuteltiples proxys sedimentoloacutegicos (ie minerales y textura)

geoquiacutemicos (eg geoquiacutemica orgaacutenica e isotoacutepica) y bioloacutegicos (ie diatomeas) de

Laguna Matanzas que cubren los uacuteltimos 200 antildeos Ademaacutes se realizoacute una

reconstruccioacuten de los usos de suelo entre 1975 y 2016 a partir de imaacutegenes de

sateacutelites y se colectaron muestras de suelo de las principales coberturas de la

cuenca a los cuales se midioacute el δ15N

Entre los principales resultados obtenidos se destaca la influencia de la

ganaderiacutea y la denitrificacioacuten lo que explica los altos valores de δ15N evidenciados

por el registro lacustre durante la colonizacioacuten espantildeola e inicios de la repuacuteblica A

partir de la Gran Aceleracioacuten (1950 CE) la desforestacioacuten y el reemplazo de la

ganaderiacutea por plantaciones forestales tienen un correlato en el registro

sedimentario con valores de δ15N maacutes bajos Estos resultados demuestran que los

LUCC son el factor de primer orden para explicar los cambios observados en

24

nuestro registro de δ15N y a su vez implica un rol secundario del clima como posible

control de la disponibilidad de N en Laguna Matanzas Este capiacutetulo fue sometido

a la revista Scientific Reports y estaacute en revisioacuten desde el 26 de marzo de 2019 En

la elaboracioacuten del mauscrito han colaborado Claudio Latorre Blas Valero-Garceacutes

Matiacuteas Frugone Pablo Sarricolea Santiago Giralt Manuel Contreras-Lopez

Ricardo Prego y Patricia Bernardez

El segundo capiacutetulo se titula ldquoStable isotopes track land use and cover

changes in a mediterranean lake in central Chile over the last 600 yearsrdquo Aquiacute

evaluamos la dinaacutemica del N actual en el sistema cuenca-lago considerando los

valores isotoacutepicos modernos tanto de la vegetacioacuten como del suelo ademaacutes de los

cambios estacionales del POM de la columna de agua Esta informacioacuten se utiliza

como un anaacutelogo moderno para conocer el rol de los LUCC en la disponibilidad de

N en los uacuteltimos 600 antildeos Para ello se colectaron muestras filtradas de la columna

de agua a 2 5 y 20 m dos veces por antildeo entre noviembre de 2015 y julio de 2018

y se obtuvo el δsup1⁵N del POM Ademaacutes se colectoacute muestras de vegetacioacuten y suelo

de la cuenca diferenciando entre especies nativas plantaciones forestales y

vegetacioacuten herbaacutecea Esta informacioacuten se analizoacute en conjunto con la reconstruccioacuten

de los LUCC entre 1975 y 2014 y el anaacutelisis limnoloacutegico del lago Ello nos permitioacute

evaluar coacutemo el δ15N de los sedimentos lacustres refleja los valores δ15N de la

cuenca en el Lago Vichuqueacuten y el control que ejerce el clima en la sentildeal isotoacutepica

de POM Este capiacutetulo seraacute sometido a la revista Science of total environmet

proximamente En la elaboracioacuten del mauscrito han colaborado Claudio Latorre

Blas Valero-Garceacutes Matiacuteas Frugone Pablo Sarricolea Leonardo Villacis y M Laura

Carrevedo

25

Entre los principales resultados encontramos que el δ15N en los sedimentos

lacustres es maacutes positivo con presencia de agricultura en la cuenca y maacutes negativo

cuando esta es reemplazada por cobertura arboacuterea bien sea plantaciones

forestales bien sea bosque nativo A su vez durante la estacioacuten seca y caacutelida la

mayor entrada al lago es viacutea fijacioacuten de N atmosfeacuterico (bajos valores de δ15NPOM)

Durante la estacioacuten huacutemeda en cambio prevalecen los aportes de la cuenca con

altos valores de δ15NPOM Ello estariacutea evidenciando un cambio estacional en la

composicioacuten de especies en verano ligado a especies fijadoras de N y en invierno

las algas y microorganismos que consumen el DIN de la columna de agua

Referencias

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea AM Marquet PA 2010 From the Holocene to the Anthropocene A historical framework for land cover change in southwestern South America in the past 15000 years Land use policy 27 148ndash160 httpsdoiorg101016jlandusepol200907006

Battye W Aneja VP Schlesinger WH 2017 Earth rsquo s Future Is nitrogen the

next carbon  Earth rsquo s Future Global Biogeochem Cycles 30 1000ndash1014 httpsdoiorg101002eft2235

Bruland GL MacKenzie RA 2010 Nitrogen Source Tracking with δN Content

of Coastal Wetland Plants in Hawaii J Environ Qual 39 409 httpsdoiorg102134jeq20090005

Diacuteaz FP Frugone M Gutieacuterrez RA Latorre C 2016 Nitrogen cycling in an

extreme hyperarid environment inferred from δ15 N analyses of plants soils and herbivore diet Sci Rep 6 1ndash11 httpsdoiorg101038srep22226

Ekdahl EJ Teranes JL Wittkop CA Stoermer EF Reavie ED Smol JP

2007 Diatom assemblage response to Iroquoian and Euro-Canadian eutrophication of Crawford Lake Ontario Canada J Paleolimnol 37 233ndash246 httpsdoiorg101007s10933-006-9016-7

Elbert W Weber B Burrows S Steinkamp J Buumldel B Andreae MO

Poumlschl U 2012 Contribution of cryptogamic covers to the global cycles of carbon and nitrogen Nat Geosci 5 459ndash462

26

httpsdoiorg101038ngeo1486 Elser J 2011 A world awash with nitrogen Science 334 1504ndash1506

httpsdoiorg101126science1215567 ARTICLE Engstrom DR Almendinger JE Wolin JA 2009 Historical changes in

sediment and phosphorus loading to the upper Mississippi River Mass-balance reconstructions from the sediments of Lake Pepin J Paleolimnol 41 563ndash588 httpsdoiorg101007s10933-008-9292-5

Erisman J W Sutton M A Galloway J Klimont Z amp Winiwarter W (2008)

How a century of ammonia synthesis changed the world Nature Geoscience 1(10) 636

Galloway JN Townsend AR Erisman JW Bekunda M Cai Z Freney JR

Martinelli LA Seitzinger SP Sutton MA 2008 Transformation of the Nitrogen Cycle  Science (80- ) 320 889ndash892

httpsdoiorg101126science1136674 Garreaud RD Alvarez-Garreton C Barichivich J Pablo Boisier J Christie

D Galleguillos M LeQuesne C McPhee J Zambrano-Bigiarini M 2017 The 2010-2015 megadrought in central Chile Impacts on regional hydroclimate and vegetation Hydrol Earth Syst Sci 21 6307ndash6327 httpsdoiorg105194hess-21-6307-2017

Gruber N Galloway JN 2008 An Earth-system perspective of the global

nitrogen cycle Nature 451 293ndash296 httpsdoiorg101038nature06592 Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater eutrophic lake Limnol Oceanogr 51 2837ndash2848 httpsdoiorg104319lo20065162837

IPCC 2013 Climate Change 2013 The Physical Science BasisContribution of

Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press Cambridge United Kingdom and New York NY USA

httpsdoiorg101017CBO9781107415324 Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos Transactions

American Geophysical Union httpsdoiorg1010292007EO070007 Martel-Cea A Maldonado A Grosjean M Alvial I de Jong R Fritz SC von

Gunten L 2016 Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical Central Chile (32iumliquestfrac12S 3050iumliquestfrac12miumliquestfrac12asl) Palaeogeogr Palaeoclimatol Palaeoecol 461 44ndash54 httpsdoiorg101016jpalaeo201608003

McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE 2007

Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470

27

httpsdoiorg101073pnas0701779104 McLauchlan KK Gerhart LM Battles JJ Craine JM Elmore AJ Higuera

PE Mack MC McNeil BE Nelson DM Pederson N Perakis SS 2017 Centennial-scale reductions in nitrogen availability in temperate forests of the United States Sci Rep 7 1ndash7 httpsdoiorg101038s41598-017-08170-z

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash1643 httpsdoiorg1011770959683613496289

Meyers PA Teranes JL 2001 Sediment organic matter in Tracking

Environmental Change Using Lake Sediments Volume 2 Physical and Geochemical Methods httpsdoiorg1018971551-5028(1999)018lt0231SOMCAAgt23CO2

Myers N Mittermeler RA Mittermeler CG Da Fonseca GAB Kent J

2000 Biodiversity hotspots for conservation priorities Nature httpsdoiorg10103835002501

Pentildeuelas J Poulter B Sardans J Ciais P Van Der Velde M Bopp L

Boucher O Godderis Y Hinsinger P Llusia J Nardin E Vicca S Obersteiner M Janssens IA 2013 Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe Nat Commun 4 httpsdoiorg101038ncomms3934

Prieto M Salazar D Valenzuela MJ 2019 The dispossession of the San

Pedro de Inacaliri river Political Ecology extractivism and archaeology Extr Ind Soc httpsdoiorg101016jexis201902004

Robertson GP Vitousek P 2010 Nitrogen in Agriculture Balancing the Cost of

an Essential Resource Ssrn 34 97ndash125 httpsdoiorg101146annurevenviron032108105046

Sardans J Rivas-Ubach A Pentildeuelas J 2012 The CNP stoichiometry of

organisms and ecosystems in a changing world A review and perspectives Perspect Plant Ecol Evol Syst 14 33ndash47 httpsdoiorg101016jppees201108002

Schindler DW Howarth RW Vitousek PM Tilman DG Schlesinger WH

Matson PA Likens GE Aber JD 2007 Human Alteration of the Global Nitrogen Cycle Sources and Consequences Ecol Appl 7 737ndash750 httpsdoiorg1018901051-0761(1997)007[0737haotgn]20co2

Scott E and EM Grantzs 2013 N2 fixation exceeds internal nitrogen loading as

a phytoplankton nutrient source in perpetually nitrogen-limited reservoirs Freshwater Science 2013 32(3)849ndash861 10189912-1901

28

Stocker TF Dahe Q Plattner G-K Alexander L V Allen SK Bindoff NL Breacuteon F-M Church JA Cubash U Emori S Forster P Friedlingstein P Talley LD Vaughan DG Xie S-P 2013 Technical Summary in Climate Change 2013 The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change httpsdoiorg101017 CBO9781107415324005

Talbot M R (2002) Nitrogen isotopes in palaeolimnology In Tracking

environmental change using lake sediments (pp 401-439) Springer Dordrecht

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status J Paleolimnol 47 693ndash706 httpsdoiorg101007s10933-012-9593-6

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M Eggenberger U Grob P Urrutia R Morales A

2009 Pollution and eutrophication history AD 1800-2005 as recorded in sediments from five lakes in Central Chile Glob Planet Change 68 198ndash208 httpsdoiorg101016jgloplacha200904004

Woodward CA Potito AP Beilman DW 2012 Carbon and nitrogen stable

isotope ratios in surface sediments from lakes of western Ireland Implications for inferring past lake productivity and nitrogen loading J Paleolimnol 47 167ndash184 httpsdoiorg101007s10933-011-9568-z

Xu H Yu K Lan J Sheng E Liu B Ye Y Hong B Wu H Zhou K

Yeager KM 2016 Different responses of sedimentary δ15N to climatic changes and anthropogenic impacts in lakes across the Eastern margin of the Tibetan Plateau J Asian Earth Sci 123 111ndash118 httpsdoiorg101016jjseaes201603024

29

CAPIacuteTULO 1 A COMBINED APPROACH TO ESTABLISHING THE TIMING

AND MAGNITUDE OF ANTHROPOGENIC NUTRIENT ALTERATION IN A

MEDITERRANEAN COASTAL LAKE- WATERSHED SYSTEM

30

A combined approach to establishing the timing and magnitude of anthropogenic

nutrient alteration in a mediterranean coastal lake- watershed system

Magdalena Fuentealbaabc Claudio Latorreabc Matiacuteas Frugoneabc Pablo

Sarricolead Santiago Giralte Manuel Contreras-Lopezf Ricardo Prego g Patricia

Bernaacuterdez g Blas Valero-Garceacutesch

a Departamento de Ecologiacutea Pontificia Universidad Catoacutelica de Chile Alameda 340 Santiago Chile

b Institute of Ecology and Biodiversity (IEB) Las Palmeras 3425 Nuntildeoa Santiago Chile

c Laboratorio Internacional de Cambio Global LINCGlobal PUC-CSIC Spain

d Departamento de Geografiacutea Universidad de Chile Marcoleta 250 Santiago Chile

e Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) CLluis Solegrave Sabaris sn Barcelona E-

08028 Spain

f Facultad de Ingenieriacutea y Centro de Estudios Avanzados Universidad de Playa Ancha Traslavintildea

450 Vintildea del Mar Chile

g Instituto de Investigaciones Marinas (CSIC) CEduardo Cabello 6 36208 Vigo Spain

h Instituto Pirenaico de Ecologiacutea (IPE-CSIC) Avenida Montantildeana 1005 Zaragoza 50059 Spain

Corresponding author

E-mail address

clatorrebiopuccl magdalenafuentealbagmailcom

Abstract

Since the industrial revolution and especially during the Great Acceleration (1950

CE) human activities have profoundly altered the global nutrient cycle through land

use and cover changes (LUCC) However the timing and intensity of recent N

variability together with the extent of its impact in terrestrial and aquatic ecosystems

and coupled effects of regional LUCC and climate are not well understood Here

we used a multiproxy approach (sedimentological geochemical and isotopic

31

analyses historical records climate data and satellite images) to evaluate the role

of LUCC as the main control for N cycling in a coastal watershed system of central

Chile during the last few centuries The largest changes in N dynamics occurred in

the mid-1970s associated with the replacement of native forests and grasslands for

livestock grazing by plantations of introduced Monterey pine (Pinus radiata) and

eucalyptus (Eucalyptus globulus) Lake productivity increased and is evidenced by

an increase trend in δ15N values Our study shows that anthropogenic land

usecover changes are key in controlling nutrient supply and N availability in

Mediterranean watershed ndash lake systems and that large-scale forestry

developments during the mid-1970s likely caused the largest changes in central

Chile

Keywords Anthropocene Organic geochemistry watershedndashlake system Stable

Isotope Analyses Land usecover change Nitrogen cycle Mediterranean

ecosystems central Chile

1 INTRODUCTION

Human activities have become the most important driver of the nutrient cycles in

terrestrial and aquatic ecosystems since the industrial revolution (Gruber and

Galloway 2008 Galloway et al 2008 Holtgrieve et al 2011 Fowler et al 2013

Goyette et al 2016) Among these N is a common nutrient that limits productivity

in terrestrial and aquatic ecosystems (Vitousek and Howarth 1991 McLauchlan et

al 2013) With the advent of the Haber-Bosch industrial N fixation process in the

early 20th century total N fluxes have surpassed previous planetary boundaries

32

(Galloway et al 2008 Elser 2011) reaching unprecedented values (ie tipping

points) in the Earth system especially during what is now termed the Great

Acceleration (which began in the 1950s) which intensified in the 1970s (Howarth

2004 Steffen et al 2015) Yet dramatic changes in LUCC have occurred in the last

few centuries mainly linked to forestry and agro-pastoral activities (Poraj-Goacuterska et

al 2017 Ge et al 2019 Cheng et al 2019) These have had large impacts on N

(and Carbon -C-) availability in terrestrial and aquatic ecosystems but the synergic

effect with climate change and global N dynamics has not been established

(Vitousek et al 1997 Mclauchlan et al 2007 2013 Pongratz et al 2010

Woodward et al 2012 Mclauchlan et al 2017)

The onset of the Anthropocene poses significant challenges in mediterranean

regions that have a strong seasonality of hydrological regimes and an annual water

deficit (Stocker et al 2013) Mediterranean climates occur in all continents

(California central Chile Australia South Africa circum-Mediterranean regions)

providing a unique opportunity to investigate global change processes during the

Anthropocene in similar climate settings but with variable geographic and cultural

contexts The effects of global change in mediterranean watersheds have been

analyzed from different perspectives hydrology (Giorgi 2006 Arnell and Gosling

2013 Prudhomme et al 2014) vegetation dynamics (Lenihan et al 2003 Vicente-

Serrano et al 2013 Matesanz and Valladares 2014) sediment dynamics (Garciacutea-

Ruiz et al 2013 Garciacutea-Ruiz 2010 Syvitski et al 2005) changes in

biogeochemical cycles (Thomas et al 2013 Fowler et al 2013 Frank et al 2015)

carbon storage (Muntildeoz-Rojas et al 2015) and biodiversity (Hooper et al 2012) A

recent review showed an extraordinarily high variability of erosion rates in

mediterranean watersheds positive relationships with slope and annual

33

precipitation and the paramount effect of land use (Garciacutea-Ruiz et al 2015)

However the temporal context and effect of LUCC on nutrient supply to

mediterranean lakes has not been analyzed in much detail

Major LUCC in central Chile occurred during the Spanish Colonial period

(17th-18th centuries) (Armesto 1994 Gurnell et al 2001 Figueroa et al 2004

Martiacuten-Foreacutes et al 2012 Contreras-Loacutepez et al 2014) with the onset of

industrialization and mostly during the mid to late 20th century (von Gunten et al

2009 Gayo et al 2012) Recent copper pollution caused by 20th century mining

and industrial smelters has been documented in cores throughout the Andes

(Laguna el Ocho and Laguna Ensuentildeo von Gunten et al 2009) and also from our

surveys in the central valley (Batuco wetland) coastal range (Cordillera de Name)

and along the coast itself (Bucalemito and Colejuda) (Valero-Garceacutes et al 2010

unpublished data)

Paleolimnological studies have shown how these systems respond to

climate LUCC and anthropogenic impacts during the last millennia (Jenny et al

2002 2003 Villa Martiacutenez et al 2002 Frugone-Aacutelvarez et al 2017 Contreras et

al 2018) Furthermore changes in sediment and nutrient cycles have also been

identified in associated terrestrial ecosystems dating as far back as the Spanish

Conquest and related to fire clearance and wood extraction practices of the native

forests (Armesto 1994 Contreras-Loacutepez et al 2014) Nevertheless pollen and

limnological evidence argue for a more recent timing of the largest anthropogenic

impacts in central Chile For example paleo records show that during the mid-20th

century increased soil erosion followed replacement of native forest by Pinus

radiata and Eucalyptus globulus plantations at Laguna Matanzas Aculeo and

34

Vichuqueacuten lakes (Jenny et al 2002 Villa-Martiacutenez et al 2002 2003 Frugone-

Aacutelvarez et al 2017)

Lakes are a central component of the global carbon cycle Lakes act as a

sink of the carbon cycle both by mineralizing terrestrially derived organic matter and

by storing substantial amounts of organic carbon (OC) in their sediments (Anderson

et al 2009) Paleolimnological studies have shown a large increase in OC burial

rates during the last century (Heathcote et al 2015) however the rates and

controls on OC burial by lakes remain uncertain as do the possible effects of future

global change and the coupled effect with the N cycle LUCC intensification of

agriculture and associated nutrient loading together with atmospheric N-deposition

are expected to enhance OC sequestration by lakes Climate change has been

mainly responsible for the increased algal productivity since the end of the 19th

century and during the late 20th century in lakes from both the northern (Ruumlhland et

al2015) and southern hemispheres (Michelutti et al 2015 Carrevedo et al 2015)

but many studies suggest a complex interaction of global warming and

anthropogenic influences and it remains to be proven if climate is indeed the only

factor controlling these transitions (Catalaacuten et al 2013) Alternative causes for

recent N (Galloway et al 2008) increases in high altitude lakes such as catchment

mediated processes cannot be ruled out (Camarero and Catalan 2012 Fritz and

Anderson 2013) Few lake-watershed systems have robust enough chronologies of

recent changes to compare variations in C and N with regional and local processes

and even fewer of these are from the southern hemisphere (McLauchlan et al

2007 Holtgrieve et al 2011)

In this paper we present a multiproxy lake-watershed study including N and

C stable isotope analyses on a series of short cores from Laguna Matanzas in

35

central Chile focused in the last 200 years We complemented our record with land

use surveys satellite and aerial photograph studies Our major objectives are 1) to

reconstruct the dynamics among climate human activities and changes in the N

cycle over the last two centuries 2) to evaluate how human activities have altered

the N cycle during the Great Acceleration (since the mid-20th century)

2 STUDY SITE

Laguna Matanzas (33ordm45rsquoS 71ordm 40acuteW 7 m asl Fig 1) is a coastal lake located

in central Chile near to a large populated area (Santiago gt6106 inhabitants) The

lake has a surface area of 15 km2 with a max depth of 3 m and a watershed of 30

km2 The lake basin is emplaced over Pleistocene-Holocene aeolian and alluvial fan

deposits (SERNAGEOMIN 2003) A recent phase of dune activity occurred from the

mid to late Holocene which mostly sealed off the basin from the ocean (Villa-

Martinez 2002) Climate in Laguna Matanzas is characterized by cool-wet winters

and hot-dry summers with annual precipitation of ~510 mm and a mean annual

temperature of 12ordmC Central Chile is in the transition zone between the southern

hemisphere mid-latitude westerlies belt and the South Pacific Anticyclone (or SPA)

(Garreaud et al 2009) In winter precipitation is modulated by the north-west

displacement of the SPA the northward shift of the westerlies wind belt and an

increased frequency of storm fronts stemming off the Southern Hemisphere

Westerly Winds (SWW) (Frugone-Aacutelvarez et al 2017) Austral summers are

typically dry and warm as a strong SPA blocks the northward migration of storm

tracks stemming off the SWW

36

Historic land cover changes started after the Spanish conquest with a Jesuit

settlement in 1627 CE near El Convento village and the development of a livestock

ranch that included the Matanzas watershed After the Jesuits were expelled from

South America in 1778 CE the farm was bought by Pedro Balmaceda and had more

than 40000 head of cattle around 1800 CE (Contreras-Lopez et al 2014) The first

Pinus radiata and Eucalyptus globulus trees were planted during the second half of

the 19th century and were mostly used for dune stabilization (Albert 1900 Gibson

1972) However the main plantation phase occurred 60 years ago (Villa-Martinez

2002) as a response to the application of Chilean Forestry Laws promulgated in

1931 and 1974 and associated state subsidies

Major land cover changes occurred recently from 1975 to 2008 as shrublands

were replaced by more intensive land uses practices such as farmland and tree

plantations (Schulz et al 2010) Laguna Matanzas is part of the Reserva Nacional

Humedal El Yali protected area (Ramsar Ndeg 878) Despite this protected status the

lake and its watershed have been heavily affected by intense agricultural and

farming activities during the last decades The main inlet ldquoLas Rosasrdquo has been

diverted for crop irrigation causing a significant loss of water input to the lake

Consequently the flooded area of the lake has greatly decreased in the last couple

of decades (Fig 1b) Exotic tree species cover a large surface area of the

watershed Recently other activities such as farms for intensive chicken production

have been emplaced in the watershed

37

Figure 1 Laguna Matanzas a) Digital Elevation Model showing the watershed and

the surface hydrologic connection with Colejuda and Cabildo lakes b) Climograph

depicting the warm dry season in austral summer c) Annual precipitation from

1965-2015 (arrow shows start of the most recent ldquomega-droughtrdquo- see Garreaud et

al 2017) d) A decline of lake area occurs between 2007 and 2018 Lake surface

area decreased first along the western sector (in 2007) followed by more inland

areas (in 2018)

38

3 RESULTS

31 Age Model

The age model for the Matanzas sequence was developed using Bacon software

to establish the deposition rates and age uncertainty (Blaauw and Christen 2011)

It is based on 210Pb and 137Cs dates and two 14C dates (Table 2) According to this

age model the lake sequence spans the last 1000 years (Fig 2) A major breccia

layer (unit 3b) was deposited during the early 18th century which agrees with

historic documents indicating that a tsunami impacted Laguna Matanzas and its

watershed in 1730 CE (Contreras-Loacutepez et al 2014) Here we focus in the last 200

years were the most important changes occurred in terms of LUCC (after the

sedimentary hiatus caused by the tsunami) The Spanish colonial period (17th -18th

century) brought new forms of territorial management along with an intensification

of watershed use which remained relatively unchanged until the 1900s

39

Figure 2 a) Age-depth model obtained for the Laguna de Matanzas sedimentary

sequence A hiatus occurs at 80 cm depth (unit 3b) The section of core used for our

analysis is highlighted in a red rectangle b) Close up of the age model used for

analysis of recent anthropogenic influences on the N cycle c) Information regarding

the 14C dates used to construct age model

Lab code Sample ID

Depth (cm) Material Fraction of modern C

Radiocarbon age

Pmc Error BP Error

D-AMS 021579

MAT11-6A 104-105 Bulk Sediment

8843 041 988 37

D-AMS 001132

MAT11-6A 1345-1355

Bulk Sediment

8482 024 1268 21

POZ-57285

MAT13-12 DIC Water column 10454 035 Modern

Table 2 Laguna Matanzas radiocarbon dates

32 The sediment sequence

Laguna Matanzas sediments consist of massive to banded mud with some silt

intercalations They are composed of silicate minerals (plagioclase quartz and clay

minerals) with relatively high TOC content (Fig 3) Pyrite is a common mineral

indicating dominant anoxic conditions in the lake sediments whereas aragonite

occurs only in the uppermost section Mineralogical analyses visual descriptions

texture and geochemical composition were used to characterize five main facies

(Fig 3) F1 (organic-rich mud) represents baseline sedimentation in a shallow well-

mixed brackish highly productive lake and F1acute (dark orange) is a less organic facies

than F1 (more details see table in the supplementary material) F2 (massive to

banded silty mud) indicates periods of higher clastic input into the lake but finer

(mostly clay minerals) likely from suspension deposition associated with flooding

40

events Aragonite (up to 15 ) occurs in both facies but only in samples from the

uppermost 30 cm and it is interpreted as endogenic linked to higher MgFe waters

and elevated biologic productivity

Figure 3 Sedimentary facies and units mineralogy grain size elemental geochemical

and isotopic composition of Laguna Matanzas core Values highlighted in gray indicate

that these are above average

The banded to laminated fining upward silty clay layers (F3) reflect

deposition by high energy turbidity currents The presence of aragonite suggests

that littoral sediments were incorporated by these currents Non-graded laminated

coarse silt layers (F4) do not have aragonite indicating a dominant watershed

41

sediment source Both facies are interpreted as more energetic flood deposits but

with different sediment sources A unique breccia layer with coarse silt matrix and

cm-long soft clasts (F5) is interpreted as a high-energy event (ie a tsunami)

capable of eroding the littoral zone and depositing coarse clastic material in the

distal zone of the lake Similar coarse breccia layers have been found at several

coastal sites in Chile and interpreted as tsunami-related deposits (Vargas et al

2005 Le Roux et al 2008)

33 Sedimentary units

Three main units and six subunits have been defined (Fig 3) based on

sedimentary facies and sediment composition We use ZrTi as an indicator of the

mineral fraction transported from the watershed (Marzecoacuteva et al 2011) as higher

ZrTi (F3 and F4) is commonly associated with coarser sediments (Cuven et al

2010) A high correlation among Br BrTi and TOC (r = 046-087 p value=0)

supports the use of BrTi as an indicator of lake productivity (Marzecoacuteva et al 2011

Frugone-Aacutelvarez et al 2017) The MnFe ratio is indicative of lake bottom

oxygenation (Naecher et al 2013) as under reducing conditions Mn mobilizes more

than Fe leading to a decreased MnFe ratio (Marzecoacuteva et al 2011) SrTi indicates

periods of increased aragonite formation as Sr is preferentially included in the

aragonite mineral structure (Veizer et al 1971) (See supplementary material)

The basal unit (3c 129 to 99 cm) is relatively organic-rich (TOC mean=26

BioSi mean=5) and composed by F1 (without aragonite) with some coarser F4

flood layers (ZrTi mean=025) Unit 3b (98 to 80 cm) is interpreted as a tsunami or

storm surge deposit (breccia F5 grading into massive to banded silt F2) Unit 3a

(79 to 73 cm) is characterized by relatively low productivity (TOC=2 BrTi=002

42

BioSi=4) under anoxic conditions (MnFe=001) Unit 2a (72 to 31cm) has

relatively less organic content and more intercalated clastic facies F3 and F4 The

top of this unit (43-30 cm) has elevated TS values The Subunit 1b (30-20 cm)

shows increasing TOC BioSi and BrTi values (TOC mean = 29 BioSi mean =

54 BrTi mean=004) and the upper subunit 1a (19-0 cm) has the highest TOC

(mean = 64) and BioSi (mean = 56) high BrTi mean = 010 and the presence

of aragonite More frequent anoxic conditions (MnFe lower than 001) during units

3 and 2 shifted towards more oxic episodes (MnFe = 003) in unit 1 (Fig 3)

34 Isotopic signatures

Figure 4 shows the isotopic signature from soil samples of the major land

usescover present in the Laguna Matanzas used as an end member in comparison

with the lacustrine sedimentary units δ15N from cropland samples exhibit the

highest values whereas grassland and soil samples from lake shore areas have

intermediate values (Fig 4) Tree plantations and native forests have similarly low

δ15N values (+11 permil SD=24) All samples (except those from the lake shore)

exhibit low δ13C values (from ndash285permil to ndash298permil) CNmolar from agriculture land

lakeshore area and non-vegetation areas samples display the lowest values (about

18) CNmolar from tree plantations and native forest have the highest values (383

and 267 respectively)

43

Figure 4 C-N stable isotope plot showing a comparison of lake sediments grouped

by sedimentary units (MAT11-6A) with the soil end members of present-day (lake

shore and land usecover) from Laguna Matanzas

The δ15N values from sediment samples (MAT11-6A) range from ndash15 and

+53permil (mean= +35 SD=05) δ13C values range from ndash266permil to ndash202permil (mean=

ndash240 SD=14) In unit 3c δ15N and δ13C show relatively high values (mean=

+41permil and ndash233permil respectively) δ15N and δ13C from unit 3b and 3a fluctuate at

slightly lower values than in 3c (mean δ15N from 3a= +38permil and 3b mean= +39permil

mean δ13C from 3a= ndash242permil and 3b mean= ndash244permil) In unit 2a δ15N values are

relatively high (mean= +38permil) but show a slightly decreasing trend (from +52 to

+24permil at 66 cm and 36 cm respectively) δ13C also decreases (mean= ndash242permil)

reaching minimum values at 45 cm (ndash266permil) with a sharp increase towards the top

of this unit with maximum values ca ndash210permil Unit 1 exhibits the lowest δ15N values

(1a mean= +11permil 1b mean= +28permil) with negative values in the uppermost

44

sediments (ndash04permil at 14 cm) δ13C values show a decreasing trend over most of

subunit 1b and increase only near the very top of this unit

35 Recent land use changes in the Laguna Matanzas watershed

Major LUCC from 1975 (unit 1b) to 2016 CE in the Laguna Matanzasacutes

watershed is summarized in Figure 5 The watershed has a surface area of 30 km2

of which native forest (36) and grassland areas (44) represented 80 of the

total surface in 1975 The area occupied by agriculture was only 02 and tree

plantations were absent Isolated burned areas (33) were located mostly in the

northern part of the watershed By 1989 tree plantations surface area had increased

to 5 burned areas to 17 and agricultural fields to 9 (a 45-fold increase) and

native forest and grassland sectors decreased to 23 and 27 respectively By

2016 agricultural land and tree plantations have increased to 17 of the total area

whereas native forests decreased to 21

45

Figure 5 Land uses and cover changes from 1975 to 2016 in Laguna Matanzas

watershed from natural cover and areas for livestock grazing (grassland) to the

expansion of agriculture and forest plantation

4 DISCUSSION

41 N and C dynamics in Laguna Matanzas

Small lakes with relatively large watersheds such as Laguna Matanzas would

be expected to have relatively high contributions of allochthonous C to the sediment

OM (Gu et al 2006) Terrestrial C3 plants (δ13C =ndash26 to ndash28permil Meyers and Terranes

2001 Ku et al 2007) are dominant in the Laguna Matanzas watershed Likewise

our soil samples ranged across similar although slightly more negative values

46

(δ13C = ndash30 to ndash28permil Fig 4) to those proposed by Meyers and Terranes (2001)

and are used here as terrestrial end members oil samples were taken from the lake

shore (δ13C = ndash22permil) and POM from surface water (δ13C = ndash24permil) were more

positive than the terrestrial end member and are used as lacustrine end members

Thus more negative δ13C values in lake sediment samples are attributed to higher

OM inputs from terrestrial vegetation and more positive δ13C values have increased

aquatic OM (Gu et al 2006 Torres et al 2012) Phytoplankton preferentially uptake

12C leaving the DIC pool enriched in 13C (Gu et al 2006) especially when there are

no important external sources of C (eg decreased C input from the watershed)

Therefore during events of elevated primary productivity the phytoplankton uptakes

12C until its depletion and are then obligated to use the heavier isotope resulting in

an increase in δ13C Changes in lake productivity thus greatly affect the C isotope

signal (Torres et al 2012) with high productivity leading to elevated δ13C values

(Torres et al 2012 Gu et al 2006)

In a similar fashion the N isotope signatures in Laguna Matanzas reflect a

combination of factors including different N sources (autochthonousallochthonous)

and lake processes such as productivity isotope fractionation in the water column

and sediment denitrification Elevated δ15N values from a POM sample (+22permil) and

average values from the lake shore (mean=+34permil SD=028) are used as aquatic

end members whereas terrestrial samples have values from +10 +24 (tree species)

to +77permil +35 (agriculture) which we use as terrestrial end members (Fig 4)

Autochthonous OM in aquatic ecosystems typically displays low δ15N values

when the OM comes from N-fixing species Atmospheric fixation of N2 by

cyanobacteria ends in OM with δ15N values close to 0permil (Leng et al 2006)

Phytoplankton preferentially uptake 14N from Dissolved Inorganic Nitrogen (DIN) in

47

the water column and derived OM typically have δ15N values lower than DIN values

When productivity increases the remaining DIN becomes depleted in 14N which in

turn increases the δ15N values of phytoplankton over time especially if the N not

replenished (Torres et al 2012) Thus high POM δ15N values from Laguna

Matanzas reflect elevated phytoplankton productivity with a 14N- depleted DIN In

addition N-watershed inputs also contribute to high δ15N values Heavily impacted

watersheds by human activities are often reflected in isotope values due to land use

changes and associated modified N fluxes For example the input of N runoff

derived from the use of inorganic fertilizers leads to the presence of elevated δ15N

(between ndash4 to +4permil) values in the water bodies (Elliott and Brush 2006 Diebel and

Vander Zanden 2009) Widory et al (2004) reported a direct relationship between

elevated δ15N values and increased nitrate concentration from manure in the

groundwater of Brittany (France) Terranes and Bernasconi (2000) found a good

correlation between augmented nutrient loading and a progressive increase in δ15N

values of sedimentary OM related to agricultural land use

Post-depositional diagenetic processes can further affect C and N isotope

signatures Several studies have shown a decrease in δ13C values of OM in anoxic

environments particularly during the first years of burial related to the selective

preservation of OM depleted in 13C (Hollander and Smith 2001 Lehmann et al

2002 Gӓlman et al 2009 Torres et al 2012) Diagenetic processes can also lead

to post-burial N isotope enrichment of the sediments Indeed 14N is consumed more

rapidly than 15N by denitrifying bacteria which intensifies under anoxic conditions

(Diebel and Vander Zanden 2009) Thus the remaining OM pool will be enriched

in 15N leaving to elevated δ15N values (Granger et al 2008 Menzel et al 2013)

48

In summary the relatively high δ15N values in sediments of Laguna Matanzas

reflect N input from an agriculturegrassland watershed with positive synergetic

effects from increased lake productivity enrichment of DIN in the water column and

most likely denitrification The increase of algal productivity associated with

increased N terrestrial input andor recycling of lake nutrients (and lesser extent

fixing atmospheric N) and denitrification under anoxic conditions can all increase

δ15N values (Fig 3) In addition elevated lake productivity without C replenishing

(eg by terrestrial C input) produces shifts towards positive δ13C values whereas C

input from the watershed generates more negative δ13C values

42 Recent evolution of the Laguna Matanzas watershed

Sedimentological compositional and geochemical indicators show three

depositional phases in the lake evolution under the human influence in the Laguna

Matanzas over the last two hundred years Although the record is longer (around

1000 years) we analyzed the last two centuries (unit 2 and 1) to provide a recent

historical context for the large changes detected during the 20th century

The first phase lasted from the beginning of the 19th century until ca 1940

(unit 2a Fig 3 4) and was characterized by moderate productivity with elevated

sediment input from the watershed as indicated by our geochemical proxies (BrTi

= 004 AlTi gt 01 Fig 6) Higher lake levels and dominant anoxic bottom conditions

(MnFe = 001 Fig3) can be related to increased precipitation (mean= 557 mmyr)

and lower temperatures (summer annual temperature lt19ordmC) During the Spanish

colonial period the Laguna Matanzas watershed was used as a livestock farm

(Jesuits 1627-1780 unit 3 followed by the Pedro Balmaceda era 1780-1810- unit

2a) (Contreras-Loacutepez et al 2014) The main buildings and farm facilities at the El

49

Convento village During this period livestock grazing and lumber extraction for

mining would have involved extensive deforestation and loss of native vegetation

(eg Armesto et al 1994 2010) However the Matanzas pollen record does not

show any significant regional deforestation during this period (Villa Martiacutenez 2002)

suggesting that the impact may have been highly localized

Lake productivity sediment input and elevated precipitation (Fig 6) all

suggest that N availability was related to this increased input from the watershed

The N from cow manure and soil particles would have led to higher δ15N values

(Elliot and Brush 2016) In addition anoxic lake bottom conditions would lead to

even further enrichment of buried sediment N The δ13C values lend further support

to our interpretation of increased sediment input -and N- from the watershed

Decreased δ13C values reach their lowest values in the entire record (ndash270permil) at

ca 1910 CE (Fig 4 6)

During most of the 19th century human activities in Laguna Matanzas were

similar to those during the Spanish Colonial period However the appearance of

Pinus radiata and Eucalyptus globulus pollen ca 1890 CE (Gibson 1972) the dune

stabilization-afforestation program which began ca 1900 CE (Albert 1900) and the

application of the Chilean forestry law of 1931 (DFL nordm265) contributed to an

increased capacity of the surrounding vegetation to retain nutrients and sediments

The law subsidized forest plantations in areas devoid of vegetation and prohibited

the cutting of forest on slopes greater than 45ordm These land use changes were coeval

with decreased sediment inputs (AlTi trend) from the watershed slightly increased

lake productivity (BrTi from 001 to 003) and a decrease in annual precipitation

(Fig 6) N isotope values become more negative during this period although they

remained high (from +49permil to +37permil) whereas the δ13C trend towards more

50

positive values reflects changes in the N source from watershed to in-lake dynamics

(e g increased endogenic productivity)

The second phase started after 1940 and is clearly marked by an abrupt

change in the general trend of δ15N that oscillates around +41permil (SD = 04permil) during

the first phase to +24permil (SD = 14permil) during the second These δ15N trends reflect

the lowest watershed nutrient and sediment inputs (based on the AlTi record)

decreased precipitation (mean = 318 mm year) and a slight increase in lake

productivity (increased BrTI) Depositional dynamics in the lake likely crossed a

threshold as human activity intensified throughout the watershed and lake levels

decreased

During the Great Acceleration δ15N values shifted towards higher values to

ca 3permil with an increase in δ13C values that are not reflected either in lake

productivity or lake level As the sediment input from the watershed increased and

precipitation remained as low as the previous decade δ15N values during this period

are likely related to watershed clearance which would have increased both nutrient

and sediment input into the lake

The δ13C trend to more positive values reaching the peaks in the 1960s (ndash

212permil) at the same time as the peaks in temperature (196 ordmC mean annual) with a

downward trend in precipitation A shift in OM origin from macrophytes and

watershed input influences to increased lake productivity could explain this trend

(Fig 4 1b)

In the 1970s the Laguna Matanzasacute watershed was mostly covered by native

forest (36) and grassland areas were intended for livestock grazing (44 Fig 5)

Both soils have δ15NSoil lt 5permil (Fig 4) Farming fields occupied a very small area and

tree plantations were almost nonexistent The decreasing trend in δ15N values seen

51

in our record is interrupted by several large peaks that occurred between ca 1975

and ca 1989 when the native forest and grassland areas fell by 23 and 27

respectively largely due to fires affecting 17 of the forests Agriculture fields

increased by 4 and forest plantations increased by 9 (unit 1a) Concomitantly

sediment ndash and likely N - inputs from the watershed decreased (as indicated by the

trend in AlTi) the precipitation was still relatively low (Fig 6) These changes are

likely related to the increase of vegetation cover especially of tree plantations (which

have more negative δ15N values) The small increase in productivity in the lake could

have been favored by increased temperature (von Gunten et al 2009) After 1989

the increase in agriculture land (17 in 2016) correlates with increasing δ15N δ13C

and TOC trends in spite of declining rainfall The increase of forest plantations was

mostly in response to the implementation of the Law Decree of Forestry

Development (DL 701 of 1974) that subsidized forest plantation After 1989 the

increase in agricultural land (17 in 2016) is synchronous with increasing δ15N

δ13C TOC and MnFe trends despite the decline in rainfall and overall lower lake

levels as more water is used for irrigation

The third phase started c 1990 CE (unit 1a) when OM accumulation rates

increase and δ13C δ15N decreased reaching their lowest values in the sequence

around 2000 CE Afterward during the 21st century δ13C and δ15N values again

began to increase The onset of unit 1 is marked by increased lake productivity and

decreased sediment input (AlTi lt 02) synchronous with intensive farming replacing

forestry and extensive agriculture (Fig 5 6)

A change in the general trend of δ15N values which decreased until 1990

(unit 1a) as the native forest and grassland area fell to 23 and 27 respectively

is most likely due to deforestation and fires Agriculture surface increased to 4 and

52

forest plantations increased by 9 (Fig 5) Concomitantly sediment ndash and likely N

ndash inputs from the watershed decreased probably related to the low precipitation (Fig

1b) and the increase of vegetation cover in the watershed in particularly by tree

plantations (with more negative δ15N Fig 4)

At present agriculture and tree plantations occupy around 34 of the

watershed surface whereas native forests and grassland cover 21 and 25

respectively Lake productivity as indicated by BrTi (Fig6) is higher and generates

OM with lower δ15N and higher δ13C values (about +2permil and ndash20permil ca 2000 CE

respectively) due to in-lake processes (ie biological N fixation and nutrient

recycling) and driven by changes in the arboreal cover which diminishes nutrient

flux into the lake (Fig6)

53

Figure 6 Anthropogenic and climatic forcing and lake dynamics response

(productivity sediment input N and C cycles) at Matanzas Lake over the last two

54

centuries Mean annual precipitation reconstructed and temperatures (von Gunten

et al 2009) Vertical gray bars indicate mega-droughts

5 CONCLUSIONS

Human activities have been the main factor controlling the N and C cycle in

the Laguna Matanzas during the last two centuries The N isotope signature in the

lake sediments reflects changes in the watershed fluxes to the lake but also in-lake

processes such as productivity and post-depositional changes Denitrification could

have been a dominant process during periods of increased anoxic conditions which

were more frequent prior to Great Acceleration (1950 CE) Higher δ15N and lower

δ13C values are associated with increased nutrient input from the watershed due to

increased livestock grazing and agriculture pressure (phase 1 Fig 7a) whereas

lower isotope values occurred during periods of increased forest plantations (phase

3 Fig 7c) During periods of increased lake productivity - such as in the last few

decades - δ15N values increased significantly

The most important change in C and N dynamics in the lake occurred after the

1950s (Phase 2 and 3) as tree plantations dominated the watershed Recent

changes in N dynamics can be explained by the higher nutrient contribution

associated with intensive agriculture (i e fertilizers) since the 1990s Although the

replacement of livestock activities with forestry and farming seems to have reduced

nutrient and soil export from the watershed to the lake the inefficient use of fertilizer

(by agriculture) can be the ultimate responsible for lake productivity increase during

the last decades

55

Figure 7 Schematic diagrams illustrating the main factors controlling the

isotope N signal in sediment OM of Laguna Matanzas N input from watershed

depends on human activities and land cover type Agriculture practices and cattle

(grassland development) contribute more N to the lake than native forest and

plantations Periods of higher productivity tend to deplete the dissolved inorganic N

in 14N resulting in higher δ15N (OM) The denitrification processes are more effective

in anoxic conditions associated with higher lake levels

6 METHODS

Short sediment cores were recovered from Laguna Matanzas using an Uwitec

gravity piston corer in 2011 and 2013 (Fig 1a) Sediment cores (MAT11-6A 129 cm

MAT13-2A 149 cm MAT13-3A 33 cm MAT13-4A 99 cm) were split

photographed sub-sampled and stored at the Pyrenean Institute of Ecology (IPE-

CSIC Spain) Core MAT11-6A was obtained from the central sector of the lake and

56

was selected for detailed multiproxy analyses (including elemental geochemistry C

and N isotope analyses XRF and 14C dating)

The isotope analyses (δ13C and δ15N) were performed at the Laboratory of

Biogeochemistry and Applied Stable Isotopes (LABASI-PUC Chile) using a Delta

V Advantage IRMS coupled to a Thermo Flash 2000 Elemental Analyzer via a

Conflo IV interface Isotope results are expressed in standard delta notation (δ) in

per mil (permil) relative to the standards Pee Dee Belemnite (Vienna Pee Dee

Belemnite) for C and to atmospheric N2 for N (Leng et al 2006) Sediment samples

for δ13Corg were pre-treated with 50 ml of HCl and 50 ml of deionized water and

dried at 60ordmC for 4 hr to remove carbonates (Harris et al 2011)

Total Carbon (TC) Total Organic Carbon (TOC) Total Inorganic Carbon (TIC)

and Total Sulphur (TS) were measured every cm with a LECO SC 144 DR at IPE-

CSIC XRF measurements were carried out every 4 mm in MAT11-1A-1G core using

an AVAATECH X-ray Fluorescence II core scanner at the University of Barcelona

(Spain) Results are expressed as element intensities in counts per second (cps)

Tube voltage was operated at 30 kV and 10 kV to obtain the abundances of 15

elements (Al Si S Cl K Ca Ti V Mn Fe Br Rb Sr Y Zr) with an average at

least of 1600 cps (less for Br=1000)

Biogenic silica content mineralogy and grain size were measured every 4

cm Biogenic silica was measured following Mortlock and Froelich (1989) and

Bernaacuterdez et al (2005) using an Auto Analyzer Technicon AAII for dissolved silicate

analysis Mineralogy was analyzed with a Siemens D-500 X-ray diffractometer (Cu

kα 40 kV 30 mA graphite monochromator) at the ICTJA-CSIC (Spain) Grain size

analyses were performed in a Beckmann Coulter LS 13 320 Particle Size Analyzer

57

at the IPE-CSIC The samples were classified according to textural classes as

follows clay (lt2 μm) silt (20-2 microm) and sand (gt2 microm) fractions

The age-depth model for the Laguna Matanzas sedimentary sequence was

constructed using 210Pb and 137Cs dating techniques (MAT13-4A) as well as two 14C

AMS dates on bulk sediment samples (MAT11-6A fig 2) We dated the dissolved

inorganic carbon (DIC) in the water column and no significant reservoir effect is

present in the modern-day water column (10454 + 035 pcmc Table 2) An age-

depth model was obtained with the Bacon R package to estimate the deposition

rates and associated age uncertainties along the core (Blaauw and Christen 2011)

To estimate LUCC of Laguna Matanzasacutes watershed we use satellite images

Landsat MSS for 1975 Landsat TM for 1989 and Landsat OLI for 2016 all taken in

summer or autumn (Table 1) We performed supervised classification of land uses

(maximum likelihood algorithm) for each year (1975 1989 and 2016) and the results

were mapped using software ArcGIS 102 in 2017

Satellite Images Acquisition Date

Resolution

Landsat MSS 19750322 60 m

Landsat TM 19890217 30 m

Landsat OLI 20160404 30 m

Table 1 Landsat imagery

Surface water samples were filtered for obtained particulate organic matter In

addition soil samples from the main land usecover present in the Laguna Matanzas

watershed were collected Elemental C N and their corresponding isotopes from

POM and soil were obtained at the LABASI and used here as end members

Daily precipitation at Santo Domingo (33ordm39`S 71ordm3 6`W)- the nearest weather

station to Laguna Matanzasndash was compiled using the redPrec R package (Fig1 d

Serrano-Notivoli et al 2017 Sarricolea et al 2019) To extend our precipitation

58

reconstruction back to 1824 we correlated this dataset with that available for

Santiago The Santiago data was compiled from data published in the Anales of

Universidad of Chile (1850) for the years 1824 to 1849 Almeyda (1940) for the years

1849 to 1864 and the Quinta Normal series from 1866 to the present (Direccioacuten

Meteoroloacutegica de Chile) We generated a linear regression model between the

presentday Santo Domingo station and the compiled Santiago data with a Pearson

coefficient of 087 and p-valuelt 001

Acknowledgments This research was funded by grants CONICYT AFB170008

to the Institute of Ecology and Biodiversity (IEB) and FONDECYT 1150763 (to CL)

Doctoral grant Becas Chile 21150224 MEDLANT (Spanish Ministry of Economy

and Competitiveness grant CGL2016-76215-R) Additional funding was provided

by the Laboratorio Internacional de Cambio Global (LINCGlobal PUC-CSIC) We

thank R Lopez E Royo and M Gallegos for help with sample analyses We thank

the Laboratory of Biogeochemistry and Applied Stable Isotopes (LABASI) of the

Department of Ecology (PUC) for sample analyses

References

Albert F 1900 Las dunas o sean arenas volantes voladeros arenas muertas invasion de las arenas playas I meacutedanos del centro de Chile comprendiendo el litoral desde el liacutemite norte de la provincia de Aconcagua hasta el liacutemite sur de la de Arauco Memorias cientiacuteficas I Lit

Anderson NJ W D Fritz SC 2009 Holocene carbon burial by lakes in SW

Greenland Glob Chang Biol httpsdoiorg101111j1365-2486200901942x

Armesto J Villagraacuten C Donoso C 1994 La historia del bosque templado

chileno Ambient y Desarro 66 66ndash72 httpsdoiorg101007BF00385244

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea

AM Marquet PA 2010 From the Holocene to the Anthropocene A

59

historical framework for land cover change in southwestern South America in the past 15000 years Land use policy 27 148ndash160 httpsdoiorg101016jlandusepol200907006

Arnell NW Gosling SN 2013 The impacts of climate change on river flow

regimes at the global scale J Hydrol 486 351ndash364 httpsdoiorg101016JJHYDROL201302010

Bernaacuterdez P Prego R Franceacutes G Gonzaacutelez-Aacutelvarez R 2005 Opal content in

the Riacutea de Vigo and Galician continental shelf Biogenic silica in the muddy fraction as an accurate paleoproductivity proxy Cont Shelf Res httpsdoiorg101016jcsr200412009

Blaauw M Christen JA 2011 Flexible paleoclimate age-depth models using an

autoregressive gamma process Bayesian Anal 6 457ndash474 httpsdoiorg10121411-BA618

Brush GS 2009 Historical land use nitrogen and coastal eutrophication A

paleoecological perspective Estuaries and Coasts 32 18ndash28 httpsdoiorg101007s12237-008-9106-z

Camarero L Catalan J 2012 Atmospheric phosphorus deposition may cause

lakes to revert from phosphorus limitation back to nitrogen limitation Nat Commun httpsdoiorg101038ncomms2125

Carrevedo ML Frugone M Latorre C Maldonado A Bernaacuterdez P Prego

R Caacuterdenas D Valero-Garceacutes B 2015 A 700-year record of climate and environmental change from a high Andean lake Laguna del Maule central Chile (36degS) Holocene 25 956ndash972 httpsdoiorg1011770959683615574584

Catalan J Pla-Rabeacutes S Wolfe AP Smol JP Ruumlhland KM Anderson NJ

Kopaacuteček J Stuchliacutek E Schmidt R Koinig KA Camarero L Flower RJ Heiri O Kamenik C Korhola A Leavitt PR Psenner R Renberg I 2013 Global change revealed by palaeolimnological records from remote lakes A review J Paleolimnol httpsdoiorg101007s10933-013-9681-2

Chen Y Y Huang W Wang W H Juang J Y Hong J S Kato T amp

Luyssaert S (2019) Reconstructing Taiwanrsquos land cover changes between 1904 and 2015 from historical maps and satellite images Scientific Reports 9(1) 3643 httpsdoiorg101038s41598-019-40063-1

Contreras S Werne J P Araneda A Urrutia R amp Conejero C A (2018)

Organic matter geochemical signatures (TOC TN CN ratio δ 13 C and δ 15 N) of surface sediment from lakes distributed along a climatological gradient on the western side of the southern Andes Science of The Total Environment 630 878-888 httpsdoiorg101016jscitotenv201802225

Contreras-Loacutepez M (Playa AUHVC (Universidad de VRFS (Pontificia UC

60

de V 2014 ELEMENTOS DE LA HISTORIA NATURAL DEL An Mus Hist Natulas Vaplaraiso 27 51ndash67

Cuven S Francus P Lamoureux SF 2010 Estimation of grain size variability

with micro X-ray fluorescence in laminated lacustrine sediments Cape Bounty Canadian High Arctic J Paleolimnol 44 803ndash817 httpsdoiorg101007s10933-010-9453-1

Diebel M Vander Zanden MJ 201209 Nitrogen stable isotopes in streams

stable isotopes Nitrogen effects of agricultural sources and transformations Ecol Appl 19 1127ndash1134 httpsdoiorg10189008-03271

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in

freshwater wetlands record long-term changes in watershed nitrogen source and land use SO - Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash2916

Elser J 2011 A world awash with nitrogen Science 334 1504ndash1506 Espizua LE Pitte P 2009 The Little Ice Age glacier advance in the Central

Andes (35degS) Argentina Palaeogeogr Palaeoclimatol Palaeoecol 281 345ndash350 httpsdoiorg101016JPALAEO200810032

Figueroa JA Castro S A Marquet P A Jaksic FM 2004 Exotic plant

invasions to the mediterranean region of Chile  causes history and impacts Invasioacuten de plantas exoacuteticas en la regioacuten mediterraacutenea de Chile  causas historia e impactos Rev Chil Hist Nat 465ndash483 httpsdoiorg104067S0716-078X2004000300006

Fowler D Coyle M Skiba U Sutton MA Cape JN Reis S Sheppard

LJ Jenkins A Grizzetti B Galloway N Vitousek P Leach A Bouwman AF Butterbach-bahl K Dentener F Stevenson D Amann M Voss M 2013 The global nitrogen cycle in the twenty- first century Philisophical Trans R Soc B httpsdoiorghttpdxdoiorg101098rstb20130164

Frank D Reichstein M Bahn M Thonicke K Frank D Mahecha MD

Smith P van der Velde M Vicca S Babst F Beer C Buchmann N Canadell JG Ciais P Cramer W Ibrom A Miglietta F Poulter B Rammig A Seneviratne SI Walz A Wattenbach M Zavala MA Zscheischler J 2015 Effects of climate extremes on the terrestrial carbon cycle Concepts processes and potential future impacts Glob Chang Biol httpsdoiorg101111gcb12916

Fritz SC Anderson NJ 2013 The relative influences of climate and catchment

processes on Holocene lake development in glaciated regions J Paleolimnol httpsdoiorg101007s10933-013-9684-z

Frugone-Aacutelvarez M Latorre C Giralt S Polanco-Martiacutenez J Bernaacuterdez P

61

Oliva-Urcia B Maldonado A Carrevedo ML Moreno A Delgado Huertas A Prego R Barreiro-Lostres F Valero-Garceacutes B 2017 A 7000-year high-resolution lake sediment record from coastal central Chile (Lago Vichuqueacuten 34degS) implications for past sea level and environmental variability J Quat Sci 32 830ndash844 httpsdoiorg101002jqs2936

Galloway JN Townsend AR Erisman JW Bekunda M Cai Z Freney JR

Martinelli LA Seitzinger SP Sutton MA 2008 Transformation of the Nitrogen Cycle  Science (80- ) 320 889ndash892 httpsdoiorg101126science1136674

Gaumllman V Rydberg J Bigler C 2009 Decadal diagenetic effects on δ 13 C and

δ 15 N studied in varved lake sediment Limnol Oceanogr 54 917ndash924 httpsdoiorg104319lo20095430917

Garciacutea-Ruiz JM 2010 The effects of land uses on soil erosion in Spain A

review Catena httpsdoiorg101016jcatena201001001

Garciacutea-Ruiz JM Loacutepez-Moreno JI Lasanta T Vicente-Serrano SM

Gonzaacutelez-Sampeacuteriz P Valero-Garceacutes BL Sanjuaacuten Y Begueriacutea S Nadal-Romero E Lana-Renault N Goacutemez-Villar A 2015 Los efectos geoecoloacutegicos del cambio global en el Pirineo Central espantildeol una revisioacuten a distintas escalas espaciales y temporales Pirineos httpsdoiorg103989Pirineos2015170005

Garciacutea-Ruiz JM Nadal-Romero E Lana-Renault N Begueriacutea S 2013

Erosion in Mediterranean landscapes Changes and future challenges Geomorphology 198 20ndash36 httpsdoiorg101016jgeomorph201305023

Garreaud RD Vuille M Compagnucci R Marengo J 2009 Present-day

South American climate Palaeogeogr Palaeoclimatol Palaeoecol httpsdoiorg101016jpalaeo200710032

Gayo EM Latorre C Jordan TE Nester PL Estay SA Ojeda KF

Santoro CM 2012 Late Quaternary hydrological and ecological changes in the hyperarid core of the northern Atacama Desert (~21degS) Earth-Science Rev httpsdoiorg101016jearscirev201204003

Ge Y Zhang K amp Yang X (2019) A 110-year pollen record of land use and land

cover changes in an anthropogenic watershed landscape eastern China Understanding past human-environment interactions Science of The Total Environment 650 2906-2918 httpsdoiorg101016jscitotenv201810058

Goyette J Bennett EM Howarth RW Maranger R 2016 Global

Biogeochemical Cycles 1000ndash1014 httpsdoiorg1010022016GB005384Received

Granger J Sigman DM Lehmann MF Tortell PD 2008 Nitrogen and

oxygen isotope fractionation during dissimilatory nitrate reduction by

62

denitrifying bacteria 53 2533ndash2545 httpsdoiorg10230740058342

Gruber N Galloway JN 2008 An Earth-system perspective of the global

nitrogen cycle Nature 451 293ndash296 httpsdoiorg101038nature06592

Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater eutrophic lake Limnol Oceanogr 51 2837ndash2848 httpsdoiorg104319lo20065162837

Gurnell AM Petts GE Hannah DM Smith BPG Edwards PJ Kollmann

J Ward J V Tockner K 2001 Effects of historical land use on sediment yield from a lacustrine watershed in central Chile Earth Surf Process Landforms 26 63ndash76 httpsdoiorg1010021096-9837(200101)261lt63AID-ESP157gt30CO2-J

Heathcote A J et al Large increases in carbon burial in northern lakes during the

Anthropocene Nat Commun 610016 doi 101038ncomms10016 (2015) Hollander DJ Smith MA 2001 Microbially mediated carbon cycling as a

control on the δ13C of sedimentary carbon in eutrophic Lake Mendota (USA) New models for interpreting isotopic excursions in the sedimentary record Geochim Cosmochim Acta httpsdoiorg101016S0016-7037(00)00506-8

Holtgrieve GW Schindler DE Hobbs WO Leavitt PR Ward EJ Bunting

L Chen G Finney BP Gregory-Eaves I Holmgren S Lisac MJ Lisi PJ Nydick K Rogers LA Saros JE Selbie DT Shapley MD Walsh PB Wolfe AP 2011 A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere Science (80) 334 1545ndash1548 httpsdoiorg101126science1212267

Hooper DU Adair EC Cardinale BJ Byrnes JEK Hungate BA Matulich

KL Gonzalez A Duffy JE Gamfeldt L Connor MI 2012 A global synthesis reveals biodiversity loss as a major driver of ecosystem change Nature httpsdoiorg101038nature11118

Horvatinčić N Sironić A Barešić J Sondi I Krajcar Bronić I Borković D

2016 Mineralogical organic and isotopic composition as palaeoenvironmental records in the lake sediments of two lakes the Plitvice Lakes Croatia Quat Int httpsdoiorg101016jquaint201701022

Howarth RW 2004 Human acceleration of the nitrogen cycle Drivers

consequences and steps toward solutions Water Sci Technol httpsdoiorg1010382Fscientificamerican0490-56

Jenny B Valero-Garceacutes BL Urrutia R Kelts K Veit H Appleby PG Geyh

M 2002 Moisture changes and fluctuations of the Westerlies in Mediterranean Central Chile during the last 2000 years The Laguna Aculeo record (33deg50primeS) Quat Int 87 3ndash18 httpsdoiorg101016S1040-

63

6182(01)00058-1

Jenny B Wilhelm D Valero-Garceacutes BL 2003 The Southern Westerlies in

Central Chile Holocene precipitation estimates based on a water balance model for Laguna Aculeo (33deg50primeS) Clim Dyn 20 269ndash280 httpsdoiorg101007s00382-002-0267-3

Leng M J Lamb A L Heaton T H Marshall J D Wolfe B B Jones M D

amp Arrowsmith C 2006 Isotopes in lake sediments In Isotopes in palaeoenvironmental research (pp 147-184) Springer Dordrecht

Le Roux JP Nielsen SN Kemnitz H Henriquez Aacute 2008 A Pliocene mega-

tsunami deposit and associated features in the Ranquil Formation southern Chile Sediment Geol 203 164ndash180 httpsdoiorg101016jsedgeo200712002

Lehmann M Bernasconi S Barbieri a McKenzie J 2002 Preservation of

organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis Geochim Cosmochim Acta 66 3573ndash3584 httpsdoiorg101016S0016-7037(02)00968-7

Lenihan JM Drapek R Bachelet D Neilson RP 2003 Climate change

effects on vegetation distribution carbon and fire in California Ecol Appl httpsdoiorg101890025295

McLauchlan K K Gerhart L M Battles J J Craine J M Elmore A J

Higuera P E amp Perakis S S (2017) Centennial-scale reductions in nitrogen availability in temperate forests of the United States Scientific reports 7(1) 7856 httpsdoi101038s41598-017-08170-z

Martel-Cea A Maldonado A Grosjean M Alvial I de Jong R Fritz SC von

Gunten L 2016 Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical Central Chile (32ordmS 3050 masl) Palaeogeogr Palaeoclimatol Palaeoecol 461 44ndash54 httpsdoiorg101016jpalaeo201608003

Martiacuten-Foreacutes I Casado MA Castro I Ovalle C Pozo A Del Acosta-Gallo

B Saacutenchez-Jardoacuten L Miguel JM De 2012 Flora of the mediterranean basin in the chilean ESPINALES Evidence of colonisation Pastos 42 137ndash160

Marzecovaacute A Mikomaumlgi a Koff T Martma T 2011 Sedimentary geochemical

response to human impact on Lake Notildemmejaumlrv Estonia Est J Ecol 60 54 httpsdoiorg103176eco2011105

Matesanz S Valladares F 2014 Ecological and evolutionary responses of

Mediterranean plants to global change Environ Exp Bot httpsdoiorg101016jenvexpbot201309004

64

McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE 2007

Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470 httpsdoiorg101073pnas0701779104

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash1643 httpsdoiorg1011770959683613496289

Menzel P Gaye B Wiesner MG Prasad S Stebich M Das BK Anoop A

Riedel N Basavaiah N 2013 Influence of bottom water anoxia on nitrogen isotopic ratios and amino acid contributions of recent sediments from small eutrophic Lonar Lake central India Limnol Oceanogr 58 1061ndash1074 httpsdoiorg104319lo20135831061

Meyers PA Teranes JL 2001 Sediment organic matter in Tracking

Environmental Change Using Lake Sediments Volume 2 Physical and Geochemical Methods httpsdoiorg1018971551-5028(1999)018lt0231SOMCAAgt23CO2

Michelutti N Wolfe AP Cooke CA Hobbs WO Vuille M Smol JP 2015

Climate change forces new ecological states in tropical Andean lakes PLoS One httpsdoiorg101371journalpone0115338

Muntildeoz-Rojas M De la Rosa D Zavala LM Jordaacuten A Anaya-Romero M

2011 Changes in land cover and vegetation carbon stocks in Andalusia Southern Spain (1956-2007) Sci Total Environ httpsdoiorg101016jscitotenv201104009

Naeher S Gilli A North RP Hamann Y Schubert CJ 2013 Tracing bottom

water oxygenation with sedimentary MnFe ratios in Lake Zurich Switzerland Chem Geol 352 125ndash133 httpsdoiorg101016jchemgeo201306006

Poraj-Goacuterska A I Żarczyński M J Ahrens A Enters D Weisbrodt D amp

Tylmann W (2017) Impact of historical land use changes on lacustrine sedimentation recorded in varved sediments of Lake Jaczno northeastern Poland Catena 153 182-193 httpdxdoiorg101016jcatena201702007

Pongratz J Reick CH Raddatz T Claussen M 2010 Biogeophysical versus

biogeochemical climate response to historical anthropogenic land cover change Geophys Res Lett 37 1ndash5 httpsdoiorg1010292010GL043010

Prudhomme C Giuntoli I Robinson EL Clark DB Arnell NW Dankers R

Fekete BM Franssen W Gerten D Gosling SN Hagemann S Hannah DM Kim H Masaki Y Satoh Y Stacke T Wada Y Wisser D 2014 Hydrological droughts in the 21st century hotspots and uncertainties from a global multimodel ensemble experiment Proc Natl Acad Sci httpsdoiorg101073pnas1222473110

65

Ruumlhland KM Paterson AM Smol JP 2015 Lake diatom responses to

warming reviewing the evidence J Paleolimnol httpsdoiorg101007s10933-

015-9837-3

Sarricolea P Meseguer-Ruiz Oacute Serrano-Notivoli R Soto M V amp Martin-Vide

J (2019) Trends of daily precipitation concentration in Central-Southern Chile Atmospheric research 215 85-98 httpsdoiorg101016jatmosres201809005

Sernageomin 2003 Mapa geologico de chile version digital Publ Geol Digit Serrano-Notivoli R de Luis M Begueriumlia S 2017 An R package for daily

precipitation climate series reconstruction Environ Model Softw httpsdoiorg101016jenvsoft201611005

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98 httpsdoiorg1011772053019614564785

Stine S 1994 Extreme and persistent drought in California and Patagonia during

mediaeval time Nature 369 546ndash549 httpsdoiorg101038369546a0

Stocker TF Dahe Q Plattner G-K Alexander L V Allen SK Bindoff NL

Breacuteon F-M Church JA Cubash U Emori S Forster P Friedlingstein P Talley LD Vaughan DG Xie S-P 2013 Technical Summary in Climate Change 2013 The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change httpsdoiorg101017 CBO9781107415324005

Syvitski JPM Voumlroumlsmarty CJ Kettner AJ Green P 2005 Impact of humans

on the flux of terrestrial sediment to the global coastal ocean Science 308(5720) 376-380 httpsdoiorg101126science1109454

Thomas RQ Zaehle S Templer PH Goodale CL 2013 Global patterns of

nitrogen limitation Confronting two global biogeochemical models with observations Glob Chang Biol httpsdoiorg101111gcb12281

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status J Paleolimnol 47 693ndash706 httpsdoiorg101007s10933-012-9593-6

Urbina Carrasco MX Gorigoitiacutea Abbott N Cisternas Vega M 2016 Aportes a

la historia siacutesmica de Chile el caso del gran terremoto de 1730 Anuario de Estudios Americanos httpsdoiorg103989aeamer2016211

Vargas G Ortlieb L Chapron E Valdes J Marquardt C 2005 Paleoseismic

inferences from a high-resolution marine sedimentary record in northern Chile

66

(23degS) Tectonophysics httpsdoiorg101016jtecto200412031 399(1-4) 381-398httpsdoiorg101016jtecto200412031

Valero-Garceacutes BL Latorre C Morelliacuten M Corella P Maldonado A Frugone M Moreno A 2010 Recent Climate variability and human impact from lacustrine cores in central Chile 2nd International LOTRED-South America Symposium Reconstructing Climate Variations in South America and the Antarctic Peninsula over the last 2000 years Valdivia p 76 (httpwwwpagesunibechproductsmeeting-products1024-2nd-international-lotred-south-america-symposium-reconstructing-climate-variations-in-south-america-and-the-antarctic-peninsula-over-the-last-2000-yearshttpwwwpagesunibechproductsmeeting-products1024-2nd-international-lotred-south-america-symposium-reconstructing-climate-variations-in-south-america-and-the-antarctic-peninsula-over-the-last-2000-years

Vicente-Serrano SM Gouveia C Camarero JJ Begueria S Trigo R

Lopez-Moreno JI Azorin-Molina C Pasho E Lorenzo-Lacruz J Revuelto J Moran-Tejeda E Sanchez-Lorenzo A 2013 Response of vegetation to drought time-scales across global land biomes Proc Natl Acad Sci httpsdoiorg101073pnas1207068110

Villa Martiacutenez R P 2002 Historia del clima y la vegetacioacuten de Chile Central

durante el Holoceno Una reconstruccioacuten basada en el anaacutelisis de polen sedimentos microalgas y carboacuten PhD

Villa-Martiacutenez R Villagraacuten C Jenny B 2003 Pollen evidence for late -

Holocene climatic variability at laguna de Aculeo Central Chile (lat 34o S) The Holocene 3 361ndash367

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Human alteration of the global nitrogen cycle sources and consequences Ecological applications 7(3) 737-750 httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M Rein B Urrutia R amp Appleby P (2009) A

quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo central Chile back to AD 850 The Holocene 19(6) 873-881 httpsdoiorg1011770959683609336573

von Gunten L Grosjean M Eggenberger U Grob P Urrutia R Morales A

2009 Pollution and eutrophication history AD 1800-2005 as recorded in sediments from five lakes in Central Chile Glob Planet Change 68 198ndash208 httpsdoiorg101016jgloplacha200904004

Widory D Kloppmann W Chery L Bonnin J Rochdi H Guinamant JL

2004 Nitrate in groundwater An isotopic multi-tracer approach J Contam Hydrol 72 165ndash188 httpsdoiorg101016jjconhyd200310010

67

Woodward CA Potito AP Beilman DW 2012 Carbon and nitrogen stable isotope ratios in surface sediments from lakes of western Ireland Implications for inferring past lake productivity and nitrogen loading J Paleolimnol 47 167ndash184 httpsdoiorg101007s10933-011-9568-z

68

Supplementary material

Facie Name Description Depositional Environment

F1 Organic-rich

mud

Massive to banded black

organic - rich (TOC up to 14 )

mud with aragonite in dm - thick

layers Slightly banded intervals

contain less OM (TOClt4) and

aragonite than massive

intervals High MnFe (oxic

bottom conditions) High CaTi

BrTi and BioSi (up to 5)

Distal low energy environment

high productivity well oxygenated

and brackish waters and relative

low lake level

F2 Massive to

banded silty clay

to fine silt

cm-thick layers mostly

composed by silicates

(plagioclase quartz cristobalite

up to 65 TOC mean=23)

Some layers have relatively high

pyrite content (up to 25) No

carbonates CaTi BrTi and

BioSi (mean=48) are lower

than F1 higher ZrTi (coarser

grain size)

Deposition during periods of

higher sediment input from the

watershed

69

F3 Banded to

laminated light

brown silty clay

cm-thick layers mostly

composed of clay minerals

quartz and plagioclase (up to

42) low organic matter

(TOC mean=13) low pyrite

and BioSi content

(mean=46) and some

aragonite

Flooding events reworking

coastal deposits

F4 Laminated

coarse silts

Thin massive layers (lt2mm)

dominated by silicates Low

TOC (mean=214 ) BrTi

(mean=002) MnFe (lt02)

TIC (lt034) BioSi

(mean=46) and TS values

(lt064) and high ZrTi

Rapid flooding events

transporting material mostly

from within the watershed

F5 Breccia with

coarse silt

matrix

A 17 cm thick (80-97 cm

depth) layer composed by

irregular mm to cm-long ldquosoft-

clastsrdquo of silty sediment

fragments in a coarse silt

matrix Low CaTi BrTi and

MnFe ratios and BioSi

Rapid high energy flood

events

70

(mean=43) and high ZrTi

(gt018)

Table Sedimentological and compositional characteristics of Laguna Matanzas

facies

71

CAPIacuteTULO 2 STABLE ISOTOPES TRACK LAND USE AND COVER

CHANGES IN A MEDITERRANEAN LAKE IN CENTRAL CHILE OVER THE

LAST 600 YEARS

72

Stable isotopes track land use and cover changes in a mediterranean lake in

central Chile over the last 600 years

Magdalena Fuentealbaabc Claudio Latorreabc Matiacuteas Frugone-Aacutelvarezabc Pablo

Sarricolead Leonardo Villaciacutese M Laura Carrevedob Blas Valero-Garceacutescg

a Departamento de Ecologiacutea Pontificia Universidad Catoacutelica de Chile Alameda 340 Santiago Chile

b Institute of Ecology and Biodiversity (IEB) Las Palmeras 3425 Nuntildeoa Santiago Chile

c Laboratorio Internacional de Cambio Global LINCGlobal PUC-CSIC Spain

d Departamento de Geografiacutea Universidad de Chile Marcoleta 250 Santiago Chile

e Departamento de Ecologiacutea Universidad de ChileLas Palmeras 3425 Nuntildeoa Santiago Chile

f Instituto Pirenaico de Ecologiacutea (IPE-CSIC) Avenida Montantildeana 1005 Zaragoza 50059 Spain

Corresponding authors E-mail addresses clatorrebiopuccl magdalenafuentealbagmailcom

Key words Anthropocene lake sediment δsup1⁵N δsup1sup3C Great Acceleration organic

geochemistry watershedndashlake system Stable Isotope Analyses land usecover

change Nitrogen cycle mediterranean ecosystems central Chile

73

Abstract

Nutrient fluxes in many aquatic ecosystems are currently being overridden by

anthropic controls especially since the industrial revolution (mid-1800s) and the

Great Acceleration (mid-1900s) Land use and cover changes (LUCC) alter the

availability and fluxes of nutrients such as nitrogen that are transferred via runoff

and groundwater into lakes By altering lake productivity and trophic status these

changes are often preserved in the sedimentary record Here we use

geolimnological proxies and stable isotope analyses (δsup1⁵N δsup13C) on lake sediments

to reconstruct the lake-watershed nutrient transfer in a central Chilean lake (Lago

Vichuqueacuten) over the past 600 years We compare our multiproxy record from recent

lake sediments to the soilvegetation relationship across the watershed as well as

land usecover changes from 1975 to 2014 derived from satellite images Our results

show that lake sediment δsup1⁵N values increased with meadow cover but decreased

with tree plantations suggesting increased nitrogen retention when trees dominate

the watershed Our δsup1⁵N record from central Chile can thus be interpreted as a proxy

for nutrient availability over the last 600 years mainly derived from land use changes

coupled with climate drivers Although variable sources of organic matter and in situ

fractionation often hinder straightforward environmental interpretations of stable N

isotope signatures our study shows that lake sediment δsup1⁵N can be a useful tool for

assessing the contribution of past human activities in nutrient and nitrogen cycling

1 Introduction

Nitrogen (N) is a limiting nutrient in terrestrial and aquatic ecosystems (Vitousek

et al 1997) Changes in its availability can drive eutrophication and increase

pollution in these ecosystems (McLauchlan et al 2013) Although recent human

74

impacts on the global N cycle have been significant the consequences of increased

anthropogenic N on these ecosystems are unclear (Gerhart and Mclauchlan 2014

Battye et al 2017) Isotopic signatures are key to understand N dynamics in lakes

nevertheless in situ andor diagenetic fractionation along with multiple sources of

organic matter (OM) often hinder straightforward environmental interpretations from

isotopes Monitoring δ15N and δ13C values as components of the N cycle

specifically those related to the link between terrestrial and aquatic ecosystems can

help differentiate between effects from processes versus sources in stable isotope

values (eg from Particulate Organic Matter -POM- soil and vegetation) and

improve how we interpret variations in δ15N (and δ13C) values at longer temporal

scales

The main processes controlling stable N isotopes in bulk lake OM are source

lake productivity diagenesis and denitrification (Talbot 2001 Leng et al 2006

Fariacuteas et al 2009 Torres et al 2012 Brahney et al 2014) N sources depend on

contributions from the watershed (ie soil and biomass) the transfer of atmospheric

N to the lake (ie atmospheric N2 fixation) and nutrient recycling (Leng et al 2006)

Atmospheric N2 (isotopically defined as δ15N =0) is fixed by cyanobacteria with

minimal fractionation resulting in δ15NOM values that fluctuate from -2 to +2permil (Fogel

and Cifuentes 1993 Talbot 2001 Elliot and Brush 2006) Besides N2 fixation by

cyanobacteria phytoplankton species assimilate dissolved inorganic nitrogen (DIN)

and values typically range from +7 to +10permil (Xu et al 2016 Meyers et al 2003) In

addition seasonal changes in POM occur in the lake water column Gu et al (2006)

sampled the water column of Lake Wauberg (Florida USA) during a hydrologic year

and found a higher development of N fixing species during the summer A major

factor behind this increase are human activities in the watershed which control the

75

inputs of the sediment and nutrients to the lake (Woodward et al 2011) Some

studies have shown higher δ15N values in lake sediments from watersheds that are

highly affected by human activities (Bruland and Mackenzie 2010 Woodward et al

2011) Syntenic fertilizers displayed δ15N values between -4 to +4permil cattle manure

around +8 to +22permil and surface and groundwater OM between 0 to +10permil (Elliott

and Brush 2006 Leng et al 2006) Although relatively low δ15N values from

fertilizers constitute major N input to human-altered watersheds the elevated loss

of 14N via volatilization of ammonia and denitrification leaves the remaining total N

input enriched in 15N (Bruland and Mackenzie 2010)

In addition to the different sources and variations in lake productivity early

diagenesis at the sedimentndashwater interface in the sediment can further alter

sediment OM isotope values (Brahney et al 2014 Galman et al 2009) During

diagenetic loss of N in lacustrine systems kinetic fractionation occurs and the

remaining N is enriched in 15N leading to higher δ15N values (Galman et al 2006

Talbot 2001) Denitrification tends to enrich lake sediments in 15N due to the

assimilation of nitrates by denitrifying bacteria (Granger et al 2008) and is more

prevalent in anoxic environments (Brahney et al 2016 Lehman et al 2002)

Carbon isotopes in lake sediments can also provide useful information about

paleoenvironmental changes OM origin and depositional processes (Meyers et al

2003) Allochthonous organic sources (high CN ratios) produce isotope values

similar to values from catchment vegetation Autochthonous organic matter (low CN

ratio) is influenced by fractionation both in the lake and the watershed leading up to

carbon assimilation by lacustrine biota (Woodward et al 2011) Changes in

productivity greatly affect δ13COM values (Torres et al 2012) as during C uptake

plankton preferentially assimilate 12C leaving the dissolved inorganic carbon (DIC)

76

pool enriched in 13C (Gu et al 2006) with phytoplankton averaging ca 20 permil lower

than the respective δ13CDIC values (Leng et al 2006) Under conditions of low to

moderate primary productivity plankton preferentially uptake the lighter 12C

resulting in low δ13C values displayed by the OM (Torres et al 2012) Conversely

during high primary productivity phytoplankton will uptake 12C until its depletion and

is then forced to assimilate the heavier isotope resulting in an increase in δ13C

values Higher productivity in C-limited lakes due to slow water-atmosphere

exchange of CO2 also results in high δ13C values (Galman et al 2009) In these

cases algae are forced to uptake dissolved bicarbonate with δ13C values between

7 to 10permil higher than those of the atmospheric CO2 dissolved in water (Sun et al

2016 Torres et al 2012 Galman et al 2009)

Stable isotope analyses from lake sediments are thus useful tools to

reconstruct shifts in lake-watershed dynamics caused by changes in limnological

parameters and LUCC Our knowledge of the current processes that can affect

stable isotope signals in a watershed-lake system is limited however as monitoring

studies are scarce Besides in order to use stable isotope signatures to reconstruct

past environmental changes we require a multiproxy approach to understand the

role of the different variables in controlling these values Hence in this study we

carried out a detailed survey of current N dynamics in a coastal central Chilean lake

(Lago Vichuqueacuten) and a multiproxy study of a sediment record spanning the last

600 years The characterization of the recent changes in the watershed since 1970s

is based on satellite images to compare recent changes in the lake and assess how

these are related with climate variability and an ever increasing human footprint

(Lara et al 2012 Gallardo et al 2015 Steffen et al 2015) Our main goal is to

investigate how stable isotope values from lake sediment reflect changes in the lake

77

ndash watershed system during periods of high watershed disruption (eg Spanish

Conquest late XIX century Great Acceleration) and recent climate change (eg

Little Ice Age and current global warming)

2 Study Site

Lago Vichuqueacuten (34ordm49`S 72ordm04W 4 m asl 30 m of depth Fig 1) is a

mesotrophic to eutrophic lake with dominant anoxic bottom conditions that is

stratified year around (Frugone-Aacutelvarez et al 2017) The main inlets are the

Vichuqueacuten and Huintildee rivers and the only outlet is the Llico estuary that drains into

the Pacific Ocean High tides can sporadically shift the flow direction of the Llico

estuary which increases the marine influence in the lake Dune accretion gradually

limited ocean-lake connectivity until the estuary was almost completely closed off

by ca 10 ky BP and the current lake regime formed (Frugone-Aacutelvarez et al 2017)

The area is characterized by a mediterranean climate with cold-wet winters and

hot-dry summers and an annual precipitation of ~650 mm and a mean annual

temperature of 15ordmC During the austral winter months (June - August) precipitation

is modulated by north-west shifts of the South Pacific Anticyclone (SPA) followed by

an increased frequency of storm fronts stemming off the South Westerly Winds

(SWW) A strengthened SPA during austral summers (December - March) which

are typically dry and warm blocks the northward migration of storm tracks stemming

off the SWW (Fig1 Frugone-Aacutelvarez et al 2017)

78

Figure 1 a) The location of the Lago Vichuqueacuten in central Chile b) Map of land

uses and cover in 2016 c) Ombrothermic diagram mediterranean climates are

characterized by cold-wet winters with surplus moisture from June to August and

hot-dry summers d) Lake bathymetry showing location of cores and water sampling

sites used in this study

Although major land cover changes in the area have occurred since 1975 to the

present as the native forests were replaced by tree (Monterey pine and eucalyptus)

plantations the region was settled before the Spanish conquest (Frugone-Alvarez

et al 2018) Historical documents indicate that Vichuqueacuten was occupied by a

Mitimaes colony as part of the Inka empire (Odone 1998) Unlike other Andean

areas during the Inka period the introduction of corn and quinoa in the Vichuqueacuten

watershed do not seem to have intensified land use The Spanish colonial period in

Chile lasted from 1542 CE to the independence in 1810 CE The first historical

document (1550 CE) shows that the areas around Vichuqueacuten were settled by the

Spanish early on as the Vichuqueacuten watershed was given as an ldquoencomiendardquo

system to Juan Cuevas The ldquoencomiendardquo system provided the owners with land

79

and indigenous people to work but also the introduction of wheat wine cattle

grazing and logging of native forests for lumber extraction and increasing land for

agricultural activities (Odone et al 1998 Armesto et al 2010) During the 19th

century (the Republic) the export of wheat to Australia and Canada generated

intensive changes in land cover use The town of Vichuqueacuten became the regional

capital and plans to build a maritime port in the bay of Vichuqueacuten were drawn

However the fall of international markets in 1880 paralyzed these plans During the

20th century the plantation of trees (Pinus radiata and Eucalyptus globulus) in areas

cleared of native forests was subsidized by two national laws DFL nordm265 (1931) and

DFL nordm 701 (1974) both of which provided funds for such plantations During the last

decades the urbanization with summer vacation homes along the shorelines of

Lago Vichuqueacuten has greatly increased Extensive lake eutrophication is currently a

large environmental problem (EULA 2008)

3 Methods

Coring campaigns were organized from 2011 to 2015 (Fig 1d) We recovered

12 short cores and 4 long cores (up to 14 m long) at several sites using a hammer-

modified UWITEC gravity corer Sediment cores (VIC11-2A 170 cm VIC13-2B 170

cm VIC13-2D 1200 cm and VIC15-1A 119 cm) were split photographed sub-

sampled and stored in the Pyrenean Institute of Ecology (IPE-CSIC Spain) Core

VIC13-2B was selected for detailed multiproxy analyses (including elemental

geochemistry C and N isotopes XRF and 14C dating) Stable isotope analyses

(δ13C δ15N) were performed at the Laboratory of Biogeochemistry and Applied

Stable Isotopes (LABASI-PUC Chile) Sediment samples for δ13Corg were pre-

treated with 50 ml of HCl and 50 ml of deionized water and dried at 60ordmC for 4 hr to

remove carbonates (Harris et al 2011) Isotope analyses were conducted using a

80

Delta V Advantage IRMS coupled to a Thermo Flash 2000 Elemental Analyzer via

a Conflo IV interface Isotope results are expressed in standard delta notation (δ)

and expressed in per mil (permil) relative to the Pee Dee Belemnite (Vienna Pee Dee

Belemnite) for C and to atmospheric N2 for N (Leng et al 2006) Total carbon (TC)

Total Organic Carbon (TOC) Total Inorganic Carbon (TIC) and Total Sulfur (TS)

were measured every 2 cm with a LECO SC 144 DR at the IPE-CSIC

An AVAATECH X-Ray Fluorescence II core scanner with a Rh X-ray tube from

the University of Barcelona was used to obtain XRF logs every 4 mm of resolution

Results are expressed as element intensities in counts per second (cps) Tube

voltage was operated at 30 kV and 10 kV to obtain the abundances of 18 elements

(Pb Al Si S Cl K Ca Ti V Mn Fe Co Zn Br Rb Sr Y Zr) with an average of

at least of 1800 cps (less for Pb=437 and Zn=934 cps) Pb was included due to

similar behavior with Co and Fe Element ratios were calculated to describe changes

in redox conditions (MnFe) endogenic productivity (BrTi) carbonate formation

(SrCa and CaTi) and sediment input (ZrTi) (Barreiro-Lostres et al 2014

Carrevedo et al 2015 Frugone-Aacutelvarez et al 2017 Kylander et al 2011 Moreno

et al 2007a)

Several campaigns were carried out to sample the POM from the water column

two per hydrologic year from November 2015 to August 2018 A liter of water was

recovered in three sites through to the lake two are from the shallower areas (with

samples taken at 2 and 5 m depth at each site) and one in the deeper central portion

(at 2 5 and 20 m depth) of the lake (Fig 1d) The samples were filtered using glass

fiber filters (25 m) and then frozen to obtain the stable carbon and nitrogen isotope

signal of lacustrine POM Additionally soil and vegetation samples from the

following communities native species meadow hydrophytic vegetation and

81

Monterrey pine (Pinus radiata) were taken for stable isotope analyses (see in

supplementary material)

The age model for the complete Lago Vichuqueacuten sedimentary sequence is

based on Frugone-Aacutelvarez et al (2017) with the last 1000 years based on

210Pb137Cs dating techniques in VIC15-1A and 14C AMS dates on bulk sediment

samples (Supplementary Table S1) The 14C measurements of lake water DIC show

a moderate reservoir effect of 180 plusmn 25 14C yr) The revised age-depth model used

here includes three more 14C AMS dates performed with the program Bacon to

establish the deposition rates along the core (Blaauw and Christen 2011 Fig 2)

The age-depth model indicates that average resolution between 0 to 87 cm is lt2

cm per year and from 88 to 170 cm it is lt47 cm per year

82

Figure 2 Chronological age-depth model for the Lago Vichuqueacuten sedimentary

sequence spanning the last 1000 yr (see also Frugone-Alvarez et al 2017)

To estimate land use changes in the watershed we use Landsat MSS images

for 1975 and Landsat TM for 1989 and 2014 all taken in either summer or autumn

(Table 1) We performed supervised classification of land uses (maximum likelihood

83

algorithm) for each year (1975 1989 and 2014) and results were mapped using

ArcGIS 102

Table 1 Images using for LUCC reconstruction

Source of LUCC

Acquisition

Date Resolution

Landsat MSS 19750322 60 m

Landsat TM 19890217 30 m

Landsat TM 19991226 30 m

CONAF 2009 30 m

Land cover Chile 2014 30 m

CONAF 2016 30 m

Previous Work on Lago Vichuqueacuten sedimentary sequence

The sediments are organic-poor dark brown to brown laminated silt with some

intercalated thin coarser clastic layers Lacustrine facies have been classified

according to elemental composition (TOC TS TIC and TN) grain size and

sedimentary textures (Frugone-Aacutelvarez et al 2017) Four main types of lacustrine

facies were identified in this short core Facies L1 is a laminated (1cm) black to dark

brown diatom-poor silt with relatively higher TOC percentages (TOC about 185)

TS (about of 18) and TOCTN (about 92) Facies L2 is characterized by a

homogeneous black organic-poor silty clay with low TOC (mean= 13) TS (mean=

13) TOCTN (mean= 88) values Facies L3 is a laminated (1cm) black organic-

poor (TOC mean 14) silts with higher TS (mean= 21) and TOCTN ratios

(mean= 88) Facies L3 is interpreted as ldquobaselinerdquo deposition on the distal areas

84

of Vichuqueacuten lake Mineralogy is dominated by mica (muscovite) clay minerals

(chlorite) and plagioclase (albite) Quartz and calcite occur at the top and pyrite

occurs in the lower part of the sequence Facies T is composed by massive banded

sediments 4 cm thick and coarse grain size It is interpreted as an instantaneous

depositional event (for more detail see Frugone-Aacutelvarez et al 2017) In this work

we identified four subunits based on geochemical and stable isotope signals

4 Results

41 Geochemistry and PCA analysis

High positive correlations exist between Al Si K and Ti (r = 078 ndash 096

supplementary Fig S1) and between Zn Zr Rb and Y (r = 072 - 096) which reflect

the silicate content of the watershed-derived sediments (Marzecoacuteva et al 2011) Zr

is commonly associated with minerals more abundant in coarser deposits Thus the

ZrTi profile could reflect grain size (Cuven et al 2010) showing higher variability

in the upper part of the Lake Vichuqueacuten sequence and in the alternation between

facies L1 and L2 Another group of elements made up of Co Fe and Pb displayed

positive correlations (r = 067ndash 097) and represents the input of heavy metals Br

Cl and Ca show a positive correlation (r = 049 ndash 06 p-value = 00001) BrTi ratio

is interpreted as a productivity indicator due to Br having a strong affinity with humic

and organic compounds (Marzecoacuteva et al 2011 Frugone-Aacutelvarez et al 2017) In

our Lago Vichuqueacuten sequence BrTi values are high from 170 to 132 cm and from

36 cm to the top of core where it shows several sharps peaks (Fig 3) The MnFe

ratio is indicative of lake bottom oxygenation (Naecher et al 2013) as under

reducing conditions Mn tends to become more mobile than Fe leading to a

decreased MnFe (Marzecoacuteva et al 2011) Several sharp peaks in MnFe occurred

85

from 127 to 120 cm and from 57 to 30 cm (MgFegt03) The silicate group and the

Br Cl Ca Mn group are negatively correlated (r= -012 and -066)

Principal Component Analysis (PCA) was undertaken on the XRF

geochemical data to investigate the main factors controlling sediment deposition in

Lago Vichuqueacuten (Fig 3) The four main eigenvectors explain 801 of the variance

(supplementary material Table S2) The principal component (PC1) explain 437

of the total of variance and grouped elements are associated with terrigenous input

to the lake Positive values of the biplot have been attributed to higher heavy metals

deposition (Pb Co and Fe) and negative values to higher silicate input (Al K Ti and

Si) in a high energy catchment environment (Zr) The PC2 explains 198 of the

total of variance and highlights the endogenic productivity in the lake The positive

loading is compound by Br Cl Ca and Sr and to a lesser extent by Y Zn Rb and

Mn The PC2 may explain both the precipitation of carbonates (Ca Sr) and biological

production (Br)

86

Figure 3 Principal Component Analysis of XRF geochemical measurements in

VIC13-2B Lago Vichuqueacuten lake sediments

42 Sedimentary units

Based on geochemical and stable isotope analysis we identified four

lithological subunits in the short core sedimentary sequence Our PCA analyses and

Pearson correlations pointed out which variables were better for characterizing the

subunits (Fig 4) in terms of endogenic productivity heavy metals and terrestrial

input The unit 2c (170-131 cm) is characterized by the occurrence of some clastic

layers (L2 from 160 and 150 cm) high δsup1⁵N values (mean= +59 plusmn 04permil) with

Magnetic Susceptibility (MS) BrTi ZrTi and SrCa values increase towards the top

Also it has relatively low δsup1sup3C values (mean= -265 plusmn 11permil) and CNmolar ratios

(mean=78 plusmn 04) The ZrTi show upwards increasing values reaching the highest

values of the sequence at the top of this unit suggesting a coarsening upward trend

and relatively higher depositional energy The MS trend also indicates higher

erosion in the watershed and enhanced delivery of ferromagnetic minerals likely

from soil particles particularly from 150 to 160 cm (Frugone-Aacutelvarez at al 2017)

The subunit 2b (130-118 cm) is also composed of black silts but it has the

lowest MS values of the whole sequence and its onset is marked by a sharp

decrease in ZrTi This subunit is marked by sharp peaks of MnFe (at 126 and 120

cmgt027) SrCa (at 125 and 120 cmgt033) CaTi (at 124 and 120 cmgt199) TOC

(about 26 at 130 124 122 and 118 cm) and δsup1⁵N (gt+67permil at 126 and 120 cm)

BrTi oscillates around low values (about 01) whereas the δsup1sup3C values range

between -262 and -282permil

87

The unit 2a (58-117 cm) shows increasing and then decreasing MS values

and displayed sharps peaks of δsup1⁵N (gt64 at 102 to 99 87 and 75 cm) and CN

(about 10 at 86 74 66 and 60 cm) SrCa (mean = 04 plusmn 013) BrTi (mean = 008

plusmn 002) MnFe (mean = 002 plusmn 001) and δsup1sup3C (mean = -260 plusmn 07permil) oscillate in

low values The upper part of this unit (72 ndash 57 cm) shows an increase of SrCa

(from 03 to 05)

The upper unit 1a (0 - 57 cm) starts with a fine clastic layer (T at 57 to 54

cm) interpreted as deposition during a high-energy event It is characterized by

lower BrTi (mean = 003 plusmn 002) TOC (mean = 12 plusmn 03) and δsup1sup3C (mean= -

266 plusmn 06permil) higher δsup1⁵N (mean = +55 plusmn 08 permil) This unit is made of alternating

fine (lt 1cm) black and dark brown laminae with carbonate (L1 facies) Recently

deposited sediments show decreasing MS values increasing TOC (mean= 15 plusmn

04 ) sharp peaks of BrTi (gt015 at 33 21 5 and 1 cm) and the lowest δsup1⁵N values

of the entire record (mean= 45 plusmn 06 permil) and δsup1sup3C values (mean= -277 plusmn 09 permil)

Heavy metal content increases abruptly in the upper section of the core (2 - 20 cm)

(peaks of FeTi CoTi and PbTi)

88

Figure 4 Sedimentary units of Lago Vichuqueacuten sedimentary sequence Selected

variables illustrate watershed input (Magnetic Susceptibility ZrTi CoTi and MnFe)

endogenic productivity (SrCa CaTi TS) organic matter source (BrTi TOC

CNmolar and stable isotope records (δ13Corg and δ15Nbulk)

43 Recent seasonal changes of particulate organic matter on water column

The average of δ15NPOM from the three sites across to the lake was +86 plusmn 58

permil oscillating widely from -14 to +193permil (Fig 5) Important seasonal differences

occur at 2 and 5 m depth with more negative values during summer (~53 plusmn 52 permil)

than winter (~122 plusmn 40permil) At 20 m depth δ15NPOM values exhibit small seasonal

ranges (mean = +10permil for winter and +87permil for summer) The δ13CPOM average was

-296 plusmn 33permil with slightly seasonal and water column depth differences However

more positive δ13CPOM values occurred during winter (mean=-290 plusmn 41permil) than in

summer (mean= -301 plusmn 19 permil) Like the δ15NPOM values CNPOM (mean= 83 plusmn 17)

displayed important seasonal and water depth differences Lower CNPOM ratios

89

occurred during summer at 2 and 5 m depth (mean= 95 plusmn 17) and higher and more

constant values during winter (mean = 73 plusmn 09) at the same depth At 20 m CNPOM

shows similar values in both winter (70) and summer (74)

Figure 5 Seasonal POM averages from samples taken of the Lago Vichuqueacuten

water column Samples were taken from 2015 to 2018 at 2 (n=16) 5 (n=14) and 20

(n=8) meters depth

44 Stable isotope values across the Lake Vichuqueacuten watershed

Figure 6 shows modern vegetation soil and sediment isotope values found for

the watershed Huintildee tributary and Vichuqueacuten lake The δsup1⁵NFoliar values from

meadow plantations and macrophytes have similar range values with a mean of

+89 plusmn50 permil (n=18) +74 plusmn 75 permil (n=5) +82 plusmn 36 permil (n=6) respectively Native

vegetation has overall lower δsup1⁵NFoliar values with a mean of 14 plusmn 21 permil (n=28 see

Table 2 in supplementary material) The δsup1sup3CFoliar from terrestrial samples exhibit

similar values across the different plant communities (tree plantation mean=-274 plusmn

13permil meadow mean = -275 plusmn 23 permil native species mean=-272 plusmn 14permil) whereas

macrophytes display slightly more negative values with a mean of -287 plusmn 23permil

Macrophytes substrate displayed the highest δsup1⁵N values with a mean of +60 plusmn

14permil (n=3) Similar and relatively high δsup1⁵N values for soil of plantation (mean= +54

plusmn 13permil n=4) meadow (mean= +49 plusmn 04permil n=8) and surface river sediment

90

(mean= +52 plusmn 17permil n=10) Native forest soils oscillate around slightly more

negative values with a mean of +45 plusmn 12permil (n=4) Slightly more positive soil δsup1sup3C

values occur both underneath native forests and in tree plantations with means of -

284 plusmn 23permil and -298 plusmn 13permil respectively compared to either meadow soils

(mean= -302 plusmn 11permil) aquatic sediments underneath macrophytes (-311 plusmn 10permil)

or from surface river sediments (mean= -312 plusmn 10permil)

Figure 6 Stable isotope content of modern soil river sediment and foliar vegetation

used as end members in the sedimentary sequence of Lago Vichuqueacuten a)

Scatterplot of foliar δsup1⁵N and δsup13C values for vegetation from Lago Vichuqueacuten

watershed (plantation meadow and native species) and macrophytes on Lake

Vichuqueacuten See supplementary material for more detail of vegetation types b)

Scatterplot of soil δsup1⁵N and δsup13C values across the watershed the sediments of the

Huintildee and Vichuqueacuten rivers and the fluvial sediment corresponding to the

macrophyte vegetation

45 Land use and cover change from 1975 to 2014

Major land use changes between 1975 CE and 2016 CE in the Lago

Vichuqueacuten watershed are summarized in Figure 7 The watershed has a surface

area of 535329 km2 of which native vegetation (26) and shrublands (53)

represent 79 of the total surface in 1975 Meadows are confined to the valley and

91

represent 17 of watershed surface Tree plantations initially occupied 1 of the

watershed and were first located along the lake periphery By 1989 the areas of

native forests shrublands and meadows had decreased to 22 31 and 14

respectively whereas tree plantations had expanded to 30 These trends

continued almost invariably until 2016 when shrublands and meadows reached 17

and 5 of the total areas while tree plantations increased to 66 Native forests

had practically disappeared by 1989 and then increased up to 7 of the total area

in 2016 (Fig 6) preferentially occupying the southeastern sector of the watershed

Figure 7 Changes in land use and cover between 1975 and 2016 in the Lago

Vichuqueacuten watershed as measured from satellite images The major change is

represented by the replacement of native forest shrubland and meadows by

plantations of Monterrey pine (Pinus radiata)

Figure 8 shows correlations between lake sediment stable isotope values and

changes in the soil cover from 1975 to 2013 Positive relationships occurred

between sediment δsup1⁵N and δsup13C values from core VIC13-2B (unit 1) and the

92

percentage of native forest (r=089 for δsup1⁵N 082 for δsup13C) shrublands (r = 071 for

δsup1⁵N 057 for δsup13C) and meadow cover (r = 088 for δsup1⁵N 081 for δsup13C) All of these

correlations are significant (p value lt 0001) In contrast significant negative

correlations (p lt0001) occurred between tree plantation cover and lake sediment

stable isotope values (δsup1⁵N r = -082 and δsup13C r = -067) native forest (r = -097)

meadows (r = -086) and shrubland (r =-093)

Figure 8 Correlation plots of land use and cover change versus lake sediment

stable isotope values The δsup1⁵N values are positively correlated with native forests

agricultural fields and meadow cover across the watershed Total Plantation area

increases are negatively correlated with native forest meadow and shrubland total

area Significance levels are indicated by the symbols p-values (0 0001 001

005 01 1) lt=gt symbols ( )

93

5 Discussion

51 Seasonal variability of POM in the water column

The stable isotope values of POM can vary during the annual cycle due to

climate and biologic controls namely temperature and length of the photoperiod

which affect phytoplankton growth rates and isotope fractionation in the water

column (Gu et al 2006 Leng et al 2006) POM from Lago Vichuqueacuten surface

samples (2 and 5 m depth) displayed lower δ13CPOM values during the summer than

in winter During C uptake phytoplankton preferentially utilize 12C leaving the

DICpool enriched in 13C Therefore as temperature increases during the summer

phytoplankton growth generates OM enriched in 12C until this becomes depleted

and then the biomas come to enriched u At the onset of winter the DICpool is now

enriched in 13C and despite an overall decrease in phytoplankton production the

OM produced will also be enriched in 13C In contrast δ13CPOM values at 20 m depth

did not reflect these seasonal differences probably due to water-column

stratification that maintains similar temperatures and biological activity throughout

the year

Lake N availability depends on N sources including inputs from the

watershed and the atmosphere (ie deposition of N compounds and fixation of

atmospheric N2) which varies during the hydrologic year The fixation of atmospheric

N2 is an important natural source of N to the lake occurring mainly during the

summer season associated with higher temperature and light (Gu et al 2006)

Because the δ15NPOM of N2 fixers is close to 0permil with almost no overall isotope

fractionation (Leng et al 2006) when N2 is the major N source δ15NPOM values are

typically low However when DIN concentrations are high or alternatively when little

94

N2 fixation occurs δ15NPOM values will be higher (Gu et al 2006) δ15NPOM values

from summer Lago Vichuqueacuten samples were lower than those from winter with large

differences between the seasons (~5permil Fig 5 and 9) Furthermore δ15NPOM values

were high when monthly average temperature was low and monthly precipitation

was high (Fig 9) This pattern is consistent with the dominance of high N2 fixation

by cyanobacteria associated with increased summer temperatures This correlation

of δ15NPOM values with temperature further suggests a functional group shift i e

from N fixers to phytoplankton that uptake DIN The correlation between wetter

months and higher δ15NPOM values could be caused by increased N input from the

watershed due to increased runoff during the winter season The lack of data of the

δ15NPOM between the 30 mm and the 160 mm of precipitation is due to the

mediterranean-type climate that concentrates precipitations in the winter months

Finally Lago Vichuqueacuten is characterized by pronounced seasonality leading to

higher phytoplankton biomass in summer characterized by low δ15NPOM In winter

low biomass production and increased input from watershed is associated to high

δ15NPOM

95

Figure 9 Seasonal changes can drive δ15NPOM values in Lago Vichuqueacuten Data

correspond to average monthly temperature and total monthly precipitation for the

months when the water samples were taken (years 2015 - 2018) P-valuelt005

52 Stable isotope signatures in the Lake Vichuqueacuten watershed

The natural abundance of 15N14N isotopes of soil and vegetation samples

from the Lago Vichuqueacuten watershed appear to result from a combination of factors

isotope fractionation different N sources for plants and soil microorganisms (eg N2

fixation Nitrates) depth in the soil where N uptake by vegetation occurs and N loss

mechanisms (ie denitrification leaching and ammonia volatilization Hogberg

1997) The lowest δsup1⁵Nfoliar values are associated with native species and are

probably due to the contribution of N-fixing species (eg Sophora) (Fig6 and for

more detail see Table S3 in supplementary material) The number native N-fixers

species present in the Chilean mediterranean vegetation are not well known

however so there could be other N-fixing species in this group Alternatively δsup1⁵Nfoliar

values reflect soil N uptake (Kahmen et al 2008) In environments limited by N

plants have δsup1⁵N values similar to the soil δsup1⁵N values however the denitrification

and volatilization of ammonia can lead to the remain N of soil to come enriched in

15N (Cifuentes et al 1989 Craine et al 2009 Bruland and Mckenzie 2010) Soil N

isotope samples from native species communities tends to display relatively high

δsup1⁵N values respect to foliar samples due to loss of N-soil

The higher foliar and soil δsup1⁵N values obtained from samples of meadows

aquatic macrophytes and tree plantations can be attributed to the presence of

greater amounts of nitrate available for plant uptake (Fig 6) Houmlgberg (1997)

suggests that the availability of different N sources in soils (ie nitrates versus

96

ammonia) with different residence times can also explain these δsup1⁵NFoliar values

Indeed Feigin et al (1974) described differences of up to 20permil between ammonia

and nitrates sources Denitrification and nitrification discriminate much more against

15N than N2 fixation does (Craine et al 2009) leading to soils (and plants after

uptake) enriched in 14N

In general multiple processes that affect the isotopic signal result in similar

δsup1⁵N values between the soil of the watershed and the sediments of the river

However POM isotope fluctuations allow to say that more negative δsup1⁵N values are

associated to lake productivity while more positive δsup1⁵N values are associated with

N input from the watershed

δ13C values in Lago Vichuqueacuten watershed reflect CO2 gas exchange between

C3 plants and algae with the atmosphere During photosynthesis plants

discriminate against the heavier stable isotope of carbon (13C) in favor of the lighter

isotope 12C which results in δ13CFoliar values between -220permil and -320permil (Browman

and Cook 2002 Liu et al 2007) Likewise the δ13CFoliar values from Lago Vichuqueacuten

oscillate around -27permil (Fig 6) Plants transform atmospheric CO2 into soil organic

carbon (C) which in turn reflects this initial discrimination against 13C during C

uptake and post photosynthetic fractionation (Farquhar et al 1982 1989 Badeck

et al 2005 Pausch and Kuzyakov 2017) Slightly more positive δ13CFoliar values

(about 15permil) were measured in comparison with their δ13CSoil values This may be

reflecting the C transference from plants to the soil but also a soil-atmosphere

interchange The preferential assimilation of the light isotopes (12C) during soil

respiration carried by the roots and the microbial biomass that is associated with the

decomposition of litter roots and soil organic matter explain this differential

(Berhardt et al 2006 Blagodatskaya et al 2010 Midwood and Millard 2011)

97

In general the δ13CSoil values from the Lago Vichuqueacuten watershed oscillated

around -290permil and did not vary with our plant classification types Here we use

these values as terrestrial-end members to track changes in source OM (Fig 6)

Thus more negative δ13C values in lake sediment samples are attributed to higher

OM inputs from the terrestrial watershed By the other hand more positive δ13C

values most likely reflect an increased aquatic OM component as indicated by POM

isotope fluctuations (Fig 9)

53 Recently land use and cover change and its influences on N inputs to the lake

Tree plantations in the Lago Vichuqueacuten watershed have increased greatly in

the last few decades (from 1 in 1975 to 66 in 2016 Fig 7) replacing previous

native forests (from 26 to 7) meadows (17 to 5) and shrublands (53 to

17) In 1975 tree plantations were confined to the lake perimeter with discrete

patches distributed throughout the watershed The ldquoForest Lawrdquo (DFL 701- passed

in 1974) allocated state funding to afforestation efforts and management of tree

plantations which greatly favored the replacement native forests by introduced trees

This increase is marked by a sharp and steady decrease in lake sediment δ15N and

δ13C values because tree plantations function as a nutrient sink whereas other land

uses such as meadows favor nutrient loss from the watershed (Fig8) Bruland and

Mackenzie (2014) noted a decrease in wetland δ15N values when watershed

forested cover increased and concluded that N inputs to the wetlands are lower from

the forested areas as they generally do not export as much N as agricultural lands

A positive correlation between native vegetation and δ15Ncore values can be

explained by the relatively scarce arboreal cover in the watershed in 1975 when

native forest occupied just 26 of the watershed surface whereas shrublands and

98

meadows occupied more than the 70 of the surface of the watershed with the

concomitant elevated loss of N (Fig 7 and Fig 8)

54 Nitrogen dynamics in Lago Vichuqueacuten over the last six hundred years

Sedimentological compositional and geochemical indicators all show changes in

the N cycle associated to LUCC lake dynamics and climate changes (Fig 10) From

the pre-Columbian indigenous settlement including the Spanish colonial period up

to the start of the Republic (1300 - 1800 CE) the introduction of crops such as

quinoa and wheat but also the clearing of land for extensive agriculture would have

favored the entry of N into the lake Conversely major changes observed during the

last century were characterized by a sharp decrease of N input that were coeval

with the increase of tree plantations

From 1365 until 1550 CE (unit 2c 2b and half of 2a Fig 3 and Fig 10) pre-

Columbian agricultural societies planted mostly crops of corn and quinoa (Ramirez

and Vidal 1985) This period is characterized by large peaks seen in the δsup1⁵N record

(eg 1403 1452 1476 and 1505) with overall high δsup1⁵N values (up to 5permil) indicating

that N input from watershed was elevated and oscillating to the beat of the NT These

positive δsup1⁵N peaks could be due to several causes including a) the clearing of land

for farming b) N loss via denitrification which would be generally augmented in

anoxic environments (Diebel et al 2009) such as Lago Vichuqueacuten (low MnFe

values about 0001 Fig 4) or c) climate especially cold-wet winters or hot-dry

summers can also exert control on the δsup1⁵N record Indeed tree-ring records and

summer temperature reconstructions show overall wetcold conditions during this

period (Christie et al 2009 Von Gunten et al 2009 Fig 10) Increased

precipitation would bring more sediment (and nutrients) from the watershed into the

99

lake and increase lake productivity which is also detected by the geochemical

proxies for productivity (peaks of BrTi SrCa and TOC Fig 4 and Fig 10) (see also

Frugone-Alvarez et al 2017)

Figure 10 Changes in the N availability during the last six centuries in Lago

Vichuqueacuten a) lake sediment δsup1⁵N values displayed more positive values during the

prehistoric period Spanish Colony and the starting 19th century which is associated

with enhanced N input from the watershed by extensive clearing and crop

plantations The inset shows this relationship between sediment δsup1⁵N and

100

percentage of meadow cover over the last 30 years b) Summer temperature

reconstruction from central Chile (von Gunten et al 2009) showing a

correspondence with cold phases and high δsup1⁵N values at Vichuqueacuten except for the

last 100 years c) Palmer Drought Severity Index (PDSI) is an interannual moisture

variability reconstruction for late springndashearly summer during the last six centuries

(Christie et al 2009) Grey shadow indicating higher precipitation periods

From 1550 and 1810 CE (unit 2a) and during the Colonial period several peaks

of δ15N could be further related not only to high precipitation (Fig 10 grey shadow)

but also pulses of enhanced N input from the watershed linked to human land use

In 1550 CE Juan Cuevas was granted lands and indigenous workers under the

encomienda system for agricultural and mining development of the Vichuqueacuten

village (Ramiacuterez and Vidal 1985) Historical documents show that around 1579 CE

the Vichuqueacuten watershed was occupied by indigenous communities dedicated to

wheat plantations and vineyards wood extraction and gold mining (Odone 1998)

The introduction of the Spanish agricultural system implied not just a change in the

types of crops used (from quinoa to vineyards and wheat) but also a clearing of

native species for the continuous increase of agricultural surface and wood

extraction During the Colonial period wheat from Vichuqueacuten was exported to Peru

(Ramiacuterez and Vidal 1985) Armesto et al (2009) indicate that during the XVIII and

XIX centuries the extraction of wood for mining operations was important enough to

cause extensive loss of native forests The independence and instauration of the

Chilean Republic did not change this prevailing system Increases in the

contributions of N to the lake during the second half of the XIX century (peaks in

δsup1⁵N ca 1870 CE) could be due to expanding farm land dedicated for wheat

101

production and increased commercial trade with California and Canada (Ramiacuterez

and Vidal 1985)

In contrast LUCC in the last century are clearly related to the development of

large-scale tree plantations (Fig 7) The δsup1⁵N record reaches the lowest values of

the entire sequence in the last few decades (Fig 10) A marked increase in lake

productivity NT concentration and decreasing sediment input is synchronous (unit

1 Fig 4) with trees replacing meadows shrublands and areas with native forests

(Fig 7 and 8) The implementation of the lsquoForest Lawrsquo in 1974 had a stronger impact

on the landscape and lake ecosystem dynamics than the impacts of ongoing climate

change in the region which is much more recent (Garreaud et al 2018) although

the prevalence of hot dry summers seen over the last decade would also be

associated with low δsup1⁵N values and increase of NT (Fig 10) Heavy metals ratios

(FeTi CoTi and PbTi) show notable increases in lake sediments from 1992 to 2011

CE (Fig 4) Although this could be related to mining in the El Maule region the

closest mines are 60 Km away (Pencahue and Romeral) so local factors related to

shoreline urbanization for the summer homes and an increase in tourist activity

could also be a major factor

6 Conclusions

The N isotope signal in the watershed depends on the rates of exchange

between vegetation and soil cover (Fig 11) Plants preferentially uptake 14N and the

underlying soils become enriched in 15N especially when the terrestrial ecosystem

is N-limited andor significant N loss occurs (ie denitrification andor ammonia

volatilization) LUCC in the Lago Vichuqueacuten watershed have heavily modified the

links between terrestrial and aquatic ecosystems with agriculture practices

102

contributing more N to the lake than tree plantations or native forests In situ lake

processes can also fractionate N isotopes An increase of N-fixing species results

in OM depleted in 15N which results in POM with lower δsup1⁵N values during these

periods During winter phytoplankton is typically enriched in 15N due to the

decreased abundance of N-fixing species and increased N input from the

watershed This in turn generates the highest δsup1⁵NPOM values in Lago Vichuqueacuten

Periods of elevated productivity tend to deplete the dissolved inorganic N of 14N

resulting in even higher δ15N values

Our study illustrates the usefulness of δsup1⁵N as a tool for reconstructing the past

influence of LUCC on N availability in lake ecosystems To constrain the relative

roles of the diverse forcing mechanisms that can alter N cycling in mediterranean

ecosystems all main components of the N cycle should be monitored seasonally

(or monthly) including the measurements of δ15N values in land samples

(vegetation-soil) as well as POM

103

Figure 11 Summary of human and environmental factors controlling the δ15N

values of lake sediments Particulate organic matter(POM) δ15N values in

mediterranean lakes are driven by N input from the watershed that in turn depend

on land use and cover changes (ie forest plantation agriculture) andor seasonal

changes in N sources andor lake ecosystem processes (ie bioproductivity redox

condition denitrification) Arrows indicate the direction of N fluxes (inputoutput from

the N cycle) N cycle processes that deplete lake sediments of 15N are shown in

blue whereas those that enrich sediments in 15N are shown in red

104

Supplementary material

Figure S1 Pearson correlate coefficient between geochemical variables in core

VIC13-2B Positive and large correlations are in blue whereas negative and small

correlations are in red (p valuelt0001)

Figure S2 Principal Component Analysis of geochemical elements from core

VIC13-2B

105

Table S1 Lago Vichuqueacuten radiocarbon samples

RADIOCARBON

LAB CODE

SAMPLE

CODE

DEPTH

(m)

MATERIAL

DATED

14C AGE ERROR

D-AMS 029287

VIC13-2B-

1 043 Bulk 1520 24

D-AMS 029285

VIC13-2B-

2 085 Bulk 1700 22

D-AMS 029286

VIC13-2B-

2 124 Bulk 1100 29

Poz-63883 Chill-2D-1 191 Bulk 945 30

D-AMS 001133

VIC11-2A-

2 201 Bulk 1150 44

Poz-63884

Chill-2D-

1U 299 Bulk 1935 30

Poz-64089

VIC13-2D-

2U 463 Bulk 1845 30

Poz-64090

VIC13-2A-

3U 469 Bulk 1830 35

D-AMS 010068

VIC13-2D-

4U 667 Bulk 2831 25

Poz-63886

VIC13-2D-

4U 719 Bulk 3375 35

106

D-AMS 010069

VIC13-2D-

5U 775 Bulk 3143 27

Poz-64088

VIC13-2D-

5U 807 Bulk 3835 35

D-AMS-010066

VIC13-2D-

7U 1075 Bulk 6174 31

Poz-63885

VIC13-2D-

7U 1197 Bulk 6440 40

Poz-5782 VIC13-15 DIC 180 25

Table S2 Loadings of the trace chemical elements used in the PCA

Elementos PC1 PC2 PC3 PC4

Zr 0922 0025 -0108 -0007

Zn 0913 -0124 -0212 0001

Rb 0898 -0057 -0228 0016

K 0843 0459 0108 0113

Ti 0827 0497 0060 -0029

Al 0806 0467 0080 0107

Si 0803 0474 0133 0136

Y 0784 -0293 -0174 0262

V 0766 0455 0090 -0057

Br 0422 -0716 -0045 0226

Ca 0316 -0429 0577 0489

Sr 0164 -0420 0342 -0182

Cl 0151 -0781 -0397 0162

107

Mn -0121 -0091 0859 0095

S -0174 -0179 -0051 0714

Pb -0349 0414 -0282 0500

Fe -0700 0584 -0023 0280

Co -0704 0564 -0107 0250

Table S3 Stable Isotope values from vegetation of Lago Vichuqueacutenacutes watershed

Taxa Classification δsup1⁵N δsup1sup3C CN

molar

Poaceae Meadow 1216 -2589 3602

Juncacea Meadow 1404 -2450 3855

Cyperaceae Meadow 1031 -2596 1711

Taraxacum

officinale Meadow 836 -2400 2035

Poaceae Meadow 660 -2779 1583

Poaceae Meadow 453 -2813 1401

Poaceae Meadow 966 -2908 4010

Juncus Meadow 1247 -2418 3892

Poaceae Meadow 747 -3177 6992

Poaceae Meadow 942 -2764 3147

Poaceae Meadow 1479 -2634 2895

Poaceae Meadow 1113 -2776 1795

Poaceae Meadow 2215 -2737 7971

Poaceae Meadow 1121 -2944 2934

Poaceae Meadow 638 -3206 1529

108

Macrophytes Macrophytes 886 -3044 2286

Macrophytes Macrophytes 1056 -2720 2673

Macrophytes Macrophytes 769 -3297 1249

Macrophytes Macrophytes 967 -2763 1442

Macrophytes Macrophytes 959 -2670 2105

Macrophytes Macrophytes 334 -2728 1038

Acacia dealbata

Introduced

species 656 -2696 1296

Acacia dealbata

Introduced

species 487 -2941 1782

Acacia dealbata

Introduced

species 220 -2611 3888

Luma apiculata Native species 433 -2542 4135

Luma apiculata Native species 171 -2664 7634

Luma apiculata Native species -001 -2736 6283

Luma apiculata Native species 029 -2764 6425

Azara sp Native species 159 -2868 8408

Azara sp Native species 101 -2606 2885

Baccharis concava Native species 104 -2699 5779

Baccharis concava Native species 265 -2488 4325

Baccharis concava Native species 287 -2562 7802

Baccharis concava Native species 427 -2781 5204

Baccharis linearis Native species 190 -2610 4414

Baccharis linearis Native species 023 -2825 5647

109

Peumus boldus Native species 042 -2969 6327

Peumus boldus Native species 205 -2746 4110

Peumus boldus Native species 183 -2743 6293

Chusquea quila Native species 482 -2801 4275

Poaceae meadow 217 -2629 7214

Lobelia sp Native species 224 -2645 3963

Lobelia sp Native species -091 -2565 4538

Aristotelia chilensis Native species -035 -2785 5247

Aristotelia chilensis Native species -305 -2889 2305

Aristotelia chilensis Native species 093 -2836 5457

Chusquea quila Native species 173 -2754 3534

Chusquea quila Native species 045 -2950 6739

Quillaja saponaria Native species 223 -2838 9385

Scirpus meadow 018 -2820 7115

Sophora sp Native species -184 -2481 2094

Sophora sp Native species -181 -2717 1721

Pinus radiata

Introduced

trees 1581 -2602 3679

Pinus radiata

Introduced

trees 1431 -2784 4852

Pinus radiata

Introduced

trees -091 -2708 9760

Pinus radiata

Introduced

trees 153 -2568 3470

110

Salix sp

Introduced

trees 632 -2878 1921

LITERATURE CITED

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea

AM Marquet PA 2010 From the Holocene to the Anthropocene A historical

framework for land cover change in southwestern South America in the past 15000

years Land use policy 27 148ndash160

httpsdoiorg101016jlandusepol200907006

Battye W Aneja VP Schlesinger WH 2017 Earth rsquo s Future Is nitrogen the next

carbon  Earthrsquos Future Global Biogeochem Cycles 30 1000ndash1014

httpsdoiorg101002eft2235

Blaauw M Christeny JA 2011 Flexible paleoclimate age-depth models using an

autoregressive gamma process Bayesian Anal 6 457ndash474

httpsdoiorg10121411-BA618

Bowman DMJS Cook GD 2002 Can stable carbon isotopes (δ13C) in soil

carbon be used to describe the dynamics of Eucalyptus savanna-rainforest

boundaries in the Australian monsoon tropics Austral Ecol

httpsdoiorg101046j1442-9993200201158x

Brahney J Ballantyne AP Turner BL Spaulding SA Otu M Neff JC 2014

Separating the influences of diagenesis productivity and anthropogenic nitrogen

deposition on sedimentary δ15N variations Org Geochem 75 140ndash150

httpsdoiorg101016jorggeochem201407003

111

Bruland GL MacKenzie RA 2010 Nitrogen Source Tracking with δN Content

of Coastal Wetland Plants in Hawaii J Environ Qual 39 409

httpsdoiorg102134jeq20090005

Carrevedo ML Frugone M Latorre C Maldonado A Bernaacuterdez P Prego R

Caacuterdenas D Valero-Garceacutes B 2015 A 700-year record of climate and

environmental change from a high Andean lake Laguna del Maule central Chile

(36degS) Holocene 25 956ndash972 httpsdoiorg1011770959683615574584

Christie DA Boninsegna JA Cleaveland MK Lara A Le Quesne C

Morales MS Mudelsee M Stahle DW Villalba R 2009 Aridity changes in the

Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from

tree-rings Clim Dyn 36 1505ndash1521 httpsdoiorg101007s00382-009-0723-4

Craine JM Elmore AJ Aidar MPM Dawson TE Hobbie EA Kahmen A

Mack MC Kendra K Michelsen A Nardoto GB Pardo LH Pentildeuelas J

Reich B Schuur EAG Stock WD Templer PH Virginia RA Welker JM

Wright IJ 2009 Global patterns of foliar nitrogen isotopes and their relationships

with cliamte mycorrhizal fungi foliar nutrient concentrations and nitrogen

availability New Phytol 183 980ndash992 httpsdoiorg101111j1469-

8137200902917x

Cuven S Francus P Lamoureux SF 2010 Estimation of grain size variability

with micro X-ray fluorescence in laminated lacustrine sediments Cape Bounty

Canadian High Arctic J Paleolimnol 44 803ndash817 httpsdoiorg101007s10933-

010-9453-1

Diebel M Vander Zanden MJ 2012 Nitrogen stable isotopes in streams  stable

isotopes Nitrogen effects of agricultural sources and transformations Ecol Appl 19

1127ndash1134 httpsdoiorg10189008-03271

112

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in freshwater

wetlands record long-term changes in watershed nitrogen source and land use SO

- Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash

2916

Fariacuteas L Castro-Gonzales M Cornejo M Charpentier J Faundez J

Boontanon N Yoshida N 2009 Denitrification and nitrous oxide cycling within the

upper oxycline of the oxygen minimum zone off the eastern tropical South Pacific

Limnol Oceanogr 54 132ndash144

Farquhar GD Ehleringer JR Hubick KT 1989 Carbon Isotope Discrimination

and Photosynthesis Annu Rev Plant Physiol Plant Mol Biol

httpsdoiorg101146annurevpp40060189002443

Farquhar GD OrsquoLeary MH Berry JA 1982 On the relationship between

carbon isotope discrimination and the intercellular carbon dioxide concentration in

leaves Aust J Plant Physiol httpsdoiorg101071PP9820121

Fogel ML Cifuentes LA 1993 Isotope fractionation during primary production

Org Geochem httpsdoiorg101007978-1-4615-2890-6_3

Frugone-Aacutelvarez M Latorre C Giralt S Polanco-Martiacutenez J Bernaacuterdez P

Oliva-Urcia B Maldonado A Carrevedo ML Moreno A Delgado Huertas A

Prego R Barreiro-Lostres F Valero-Garceacutes B 2017 A 7000-year high-

resolution lake sediment record from coastal central Chile (Lago Vichuqueacuten 34degS)

implications for past sea level and environmental variability J Quat Sci 32 830ndash

844 httpsdoiorg101002jqs2936

Gaumllman V Rydberg J Bigler C 2009 Decadal diagenetic effects on δ 13 C and

δ 15 N studied in varved lake sediment Limnol Oceanogr 54 917ndash924

httpsdoiorg104319lo20095430917

113

Gerhart LM McLauchlan KK 2014 Reconstructing terrestrial nutrient cycling

using stable nitrogen isotopes in wood Biogeochemistry 120 1ndash21

httpsdoiorg101007s10533-014-9988-8

Granger J Sigman DM Lehmann MF Tortell PD 2008 Nitrogen and oxygen

isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria 53

2533ndash2545 httpsdoiorg10230740058342

Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater

eutrophic lake Limnol Oceanogr 51 2837ndash2848

httpsdoiorg104319lo20065162837

Harris D Horwaacuteth WR van Kessel C 2001 Acid fumigation of soils to remove

carbonates prior to total organic carbon or CARBON-13 isotopic analysis Soil Sci

Soc Am J 65 1853 httpsdoiorg102136sssaj20011853

Houmlgberg P 1997 Tansley review no 95 natural abundance in soil-plant systems

New Phytol httpsdoiorg101046j1469-8137199700808x

Kylander ME Ampel L Wohlfarth B Veres D 2011 High-resolution X-ray

fluorescence core scanning analysis of Les Echets (France) sedimentary sequence

New insights from chemical proxies J Quat Sci 26 109ndash117

httpsdoiorg101002jqs1438

Lara A Solari ME Prieto MDR Pentildea MP 2012 Reconstruccioacuten de la

cobertura de la vegetacioacuten y uso del suelo hacia 1550 y sus cambios a 2007 en la

ecorregioacuten de los bosques valdivianos lluviosos de Chile (35o - 43o 30acute S) Bosque

(Valdivia) 33 03ndash04 httpsdoiorg104067s0717-92002012000100002

Lehmann M Bernasconi S Barbieri A McKenzie J 2002 Preservation of

organic matter and alteration of its carbon and nitrogen isotope composition during

114

simulated and in situ early sedimentary diagenesis Geochim Cosmochim Acta 66

3573ndash3584 httpsdoiorg101016S0016-7037(02)00968-7

Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos Transactions

American Geophysical Union httpsdoiorg1010292007EO070007

Liu G Li M An L 2007 The Environmental Significance Of Stable Carbon

Isotope Composition Of Modern Plant Leaves In The Northern Tibetan Plateau

China Arctic Antarct Alp Res httpsdoiorg1016571523-0430(07-505)[liu-

g]20co2

Marzecovaacute A Mikomaumlgi A Koff T Martma T 2011 Sedimentary geochemical

response to human impact on Lake Notildemmejaumlrv Estonia Est J Ecol 60 54

httpsdoiorg103176eco2011105

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash

1643 httpsdoiorg1011770959683613496289

Meyers PA 2003 Application of organic geochemistry to paleolimnological

reconstruction a summary of examples from the Laurention Great Lakes Org

Geochem 34 261ndash289 httpsdoiorg101016S0146-6380(02)00168-7

Naeher S Gilli A North RP Hamann Y Schubert CJ 2013 Tracing bottom

water oxygenation with sedimentary MnFe ratios in Lake Zurich Switzerland

Chem Geol 352 125ndash133 httpsdoiorg101016jchemgeo201306006

Odone C 1998 El Pueblo de Indios de Vichuqueacuten siglos XVI y XVII Rev Hist

Indiacutegena 3 19ndash67

Pausch J Kuzyakov Y 2018 Carbon input by roots into the soil Quantification of

rhizodeposition from root to ecosystem scale Glob Chang Biol

httpsdoiorg101111gcb13850

115

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98

httpsdoiorg1011772053019614564785

Sun W Zhang E Jones RT Liu E Shen J 2016 Biogeochemical processes

and response to climate change recorded in the isotopes of lacustrine organic

matter southeastern Qinghai-Tibetan Plateau China Palaeogeogr Palaeoclimatol

Palaeoecol httpsdoiorg101016jpalaeo201604013

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of

different trophic status J Paleolimnol 47 693ndash706

httpsdoiorg101007s10933-012-9593-6

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl

httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M 2009 High-resolution quantitative climate

reconstruction over the past 1000 years and pollution history derived from lake

sediments in Central Chile Philos Fak PhD 246

Woodward C Chang J Zawadzki A Shulmeister J Haworth R Collecutt S

Jacobsen G 2011 Evidence against early nineteenth century major European

induced environmental impacts by illegal settlers in the New England Tablelands

south eastern Australia Quat Sci Rev 30 3743ndash3747

httpsdoiorg101016jquascirev201110014

Xu H Yu K Lan J Sheng E Liu B Ye Y Hong B Wu H Zhou K Yeager

KM 2016 Different responses of sedimentary δ15N to climatic changes and

116

anthropogenic impacts in lakes across the Eastern margin of the Tibetan Plateau

J Asian Earth Sci 123 111ndash118 httpsdoiorg101016jjseaes201603024

117

DISCUSION GENERAL

El Nitroacutegeno (N) es un elemento clave que controla la dinaacutemica y

funcionamiento de ecosistemas tanto terrestres como acuaacuteticos (Vitousek et al

1997) Pese a que el N (N2) es muy abundante en la atmoacutesfera (78) es escaso

en los ecosistemas pues la mayoriacutea de la biota no puede acceder a su forma

molecular (Galloway et al 1995 Zaehle et al 2013) En este sentido la entrada

natural de N en los ecosistemas es viacutea fijacioacuten bioloacutegica del N2 por bacterias que lo

convierten en compuestos bioloacutegicamente disponibles (Battye et al 2017) Debido

a que la fijacioacuten es un proceso energeacuteticamente costoso los ecosistemas

comuacutenmente estaacuten limitados por N (Vitousek and Howarth 1991) Los LUCC

contribuyen al incremento del N disponible y son una de las principales causas de

eutroficacioacuten y contaminacioacuten de los cuerpos de agua (Woodward et al 2012)

En Chile central los LUCC principalmente relacionados con las actividades

agriacutecolas y forestales han causado grandes cambios en el ciclo del N debido al

118

reemplazo de la cobertura natural por un monocultivo y al uso de fertilizantes que

modifican los aportes de MO y N a los cuerpos de agua El programa de

estabilizacioacuten de laderas impulsada por el gobierno (Albert 1900) y la ley forestal

de 1974 han fomentado la forestacioacuten con plantaciones de Pinus radiata y

Eucalyptus globulus y en el caso de Lago Vichuqueacuten estas actualmente cubren maacutes

del 60 de su cuenca (Cap2 Fig 5) Ademaacutes en Laguna Matanzas la

sobreexplotacioacuten del agua en conjunto con el cambio climaacutetico actual el que ha

conducido a una de las megasequiacuteas maacutes severas en las uacuteltimas deacutecadas

(Garreaud et al 2017) generoacute una combinacioacuten letal que secoacute el lago en tan solo

10 antildeos (Cap1 Fig1) Las evidencias obtenidas a partir de estos dos lagos

permiten identificar las huellas del Antropoceno en Chile central basadas en el

registro sedimentario lacustre

La transferencia de N desde los ecosistemas terrestres a acuaacuteticos es un

proceso natural con controles bioacuteticos climaacuteticos y geoloacutegicos El enlace

hidroloacutegico entre los ecosistemas terrestres y acuaacuteticos hace que el estado troacutefico

de los lagos esteacute vinculado al de su cuenca (McLauchlan et al 2013) En Chile

central se sabe poco del impacto de los LUCC sobre el ciclo de nutrientes en los

ecosistemas lacustres aunque al menos desde la colonizacioacuten espantildeola se tienen

registros de influencia humana en las cuencas Durante la colonia espantildeola

Laguna Matanzas fue una hacienda ganadera que exportaba productos caacuternicos al

Peruacute (Contreras-Lopez et al 2014) A su vez en el Lago Vichuqueacuten se realizaban

extensas actividades agriacutecolas hasta comienzos del s XX como por ejemplo

cultivos de vid y trigo ademaacutes de extraccioacuten de madera y mineriacutea de oro (Odone

1997) En las uacuteltimas deacutecadas los LUCC han estado vinculados principalmente con

el desarrollo forestal al compaacutes de una estrategia gubernamental de fomentar con

119

incentivos financieros (Ley de Bosques DFL nordm265 de 1931 y DFL 701 de 1974)

esta actividad El incremento de la superficie forestal es especialmente fuerte en

ambos lagos a partir de la deacutecada de 1980 y hasta 2016 (Laguna de Matanzas 0-

17 Lago Vichuqueacuten 1-66) Este aumento habriacutea sido en detrimento del bosque

nativo y los pastizales (Cap 1 Fig 5 y Cap 2 Fig 8) El incremento de la superficie

forestal generariacutea una disminucioacuten de los aportes de sedimentos y nutrientes al lago

y en este sentido un cambio de estado en los flujos de N (e g tipping points) que

a su vez ha quedado registrado en la sentildeal isotoacutepica (δ15N) y la acumulacioacuten de

MO en los sedimentos lacustres

Isoacutetopos estables y la dinaacutemica de N en los lagos de Chile central

Los sedimentos lacustres son verdaderos ldquosumiderosrdquo que pueden llegar a

registrar lo que ocurre en cuanto a la historia ambiental de su cuenca En esta tesis

se utilizan los isoacutetopos estables de N (15N y 14N) en sedimentos lacustres para

reconstruir los cambios en la disponibilidad de N en el tiempo y establecer la

magnitud de impacto generado por actividades humanas El fraccionamiento

cineacutetico en los lagos es mediado por procesos bioloacutegicos que mediante la

asimilacioacuten de N genera un producto (eg fitoplancton) maacutes ldquoligerordquo (valores maacutes

bajos de 15N) que su remanente (eg DIN) (Fogel y Cifuentes 1993) Sin embargo

en periacuteodos en que los lagos estaacuten limitados por N el fitoplancton discrimina menos

y la MO resultante queda enriquecida en 15N (Fig 1 a y b) Ademaacutes la

desnitrificacioacuten acentuada en lagos de fondo anoacutexicos (eg Laguna Matanzas

entre 1800 y 1940 Cap1 Fig 6) conduce a un enriquecimiento en 15N de los

sedimentos y de la columna de agua Esta informacioacuten queda reflejada en la MO

120

de los sedimentos lacustres lo que permite conocer la disponibilidad del N en el

tiempo a partir de las variaciones de 15N

En esta tesis analizamos la MO de los sedimentos lacustres para reconstruir

la influencia de los LUCC en los aportes de sedimentos y N al lago En teacuterminos de

asimilacioacuten de N se puede distinguir entre dos grupos principales de productores

primarios que componen el POM (Fig1)

1 Los que asimilan el DIN compuesto por amonio nitratos y nitritos Aquiacute el

δ15N resultante fluctuaraacute en torno a valores maacutes positivos en la medida que

la productividad se incrementa o no hay reposicioacuten del DIN (Fig 1)

2 Los fijadores de N Dado que es un proceso energeacuteticamente costoso en

ambientes que no estaacuten limitados por N muchas veces son excluiacutedas

competitivamente por el resto del fitoplancton Si el DIN queda agotado por

el incremento de la productividad (o bien si el ambiente estaacute limitado ya sea

por N o por otros nutrientes) los fijadores de N pueden florecer y la MO que

se genera a partir de ello tendraacute un δ15N con valores en torno a 0permil

De este modo la MO en los sedimentos lacustres dependeraacute de la

composicioacuten de productores primarios (ie fijadores vs asimiladores del DIN)

ademaacutes de los aportes desde la cuenca tanto de MO como del N de la cuenca que

pasa a formar parte del DIN (eg fertilizantes estieacutercol) (Fig 1)

La MO de los lagos estudiados en esta tesis ha sido analizada a partir de

variables geoquiacutemicas isotoacutepicas frotis y estaacute compuesta principalmente por

diatomeas y MO amorfa A partir de los datos obtenidos en esta tesis los valores

de δ15N aumentan cuando hay una mayor cobertura agriacutecola o pastizales A su vez

tiende a disminuir cuando aumenta la cobertura arboacuterea independiente si esta es

por plantaciones forestales o por bosque nativo

121

Por otra parte la dinaacutemica del lago tambieacuten imprime caracteriacutesticas

especiales en el POM observaacutendose variaciones estacionales en los valores

δ15NPOM Durante la estacioacuten caacutelida y seca se observan valores maacutes bajos que

durante la estacioacuten friacutea y huacutemeda posiblemente relacionado con el incremento de

la contribucioacuten de especies fijadoras de N (Lago Vichuqueacuten Fig 9 Cap 2) durante

el verano En la estacioacuten friacutea y huacutemeda el DIN seriacutea la principal fuente de N Las

mayores entradas de MO y N terrestre debidos a un incremento del lavado de la

cuenca como consecuencia de las precipitaciones y la mineralizacioacuten de la MO

podriacutean estimular la produccioacuten de MO lacustre por crecimiento del fitoplancton

Como consecuencia se observan tendencias decrecientes de los valores de

δ15N en la MO sedimentaria cuando la productividad en el lago estaacute relacionada

con especies fijadoras de N mientras que el δ15N muestra aumentos cuando la

productividad del lago estaacute asociada principalmente al consumo del DIN pero

tambieacuten cuando predominan procesos de perdida de N (eg desnitrificacioacuten Fig

1)

Hemos identificado tres fases en la dinaacutemica del δ15N para ambos lagos

Entre 1800 y 1940 CE la cuenca de laguna de Matanzas estaba dominada por

actividades agriacutecolas y ganaderas (δ15Nsuelo gt 4permil Cap 1 Fig 4 y 6) Las entradas

de sedimentos y MO desde la cuenca son altas (δ13C lt -209permil ZrTi ~029 AlTi

~013) y coincide con un clima maacutes huacutemedo y friacuteo (Von Gunten et al 2009

Christiansen et al 2011) El lago teniacutea un nivel de agua maacutes profundo dominado

por condiciones anoacutexicas (MnFe ~0013) que contribuiriacutean a mayores valores de

δ15N en la columna de agua y por ende de los sedimentos acumulados en el fondo

debido a la peacuterdida diferencial de 14N viacutea desnitrificacioacuten (Fig 7 Cap1) La baja

122

produccioacuten de MO lacustre (BrTi ~002 TOC~17) coincide con un bajo contenido

de NT (~478 μg) y valores maacutes positivos de δ15N (gt 4permil)

La actividad agriacutecola tambieacuten dominaba en la cuenca del Lago Vichuqueacuten

durante este periacuteodo (δ15Nsuelo gt4permil Cap2 Fig 6) El aporte sedimentario desde la

cuenca es alto (AlTi ~029 ZrTi ~032) y fue favorecido por mayores

precipitaciones a las actuales (Christiansen et al 2011) El Lago Vichuqueacuten es un

lago estratificado anoacutexico (MnFe ~002) y profundo (~30 m) por lo que la

desnitrificacioacuten juega un rol importante en el enriquecimiento de la MO

sedimentaria La baja produccioacuten de MO (BrTi ~007 TOC ~12) de origen

lacustre (δ13C ~ -268permil) coincide con un bajo contenido de NT (~309μg +6) y

valores maacutes positivos de δ15N (56permil +03)

Durante esta fase en ambos lagos los aportes de N de la cuenca parecen

ser los principales responsables en las fluctuaciones del δ15N Esta sentildeal podriacutea

estar amplificada por bajas temperaturas (que afectan la productividad lacustre) y

altas precipitaciones que favorecen el lavado de la cuenca y aumentan el aporte de

sedimentos y MO desde la cuenca predominantemente agriacutecola

Entre 1940 y 1980 CE en Laguna Matanzas se observa un incremento en

la acumulacioacuten de MO algal (TOC ~2 +1 δ13C ~-230+09permil) El ambiente

deposicional es ligeramente menos turbulento que el anterior (AlTi ~011+001

ZrTi ~03+001) y el lago estaacute en una fase de transicioacuten hacia condiciones maacutes

oacutexicas (MnFe ~002+0004) y maacutes productivas (BrTi ~004+0007) A su vez δ15N

tiende hacia valores maacutes negativos (δ15N ~30permil+03) mientras que el NT aumenta

oscilando en antifase con el δ15N

En Lago Vichuqueacuten en cambio se observa un ligero incremento en la

acumulacioacuten de MO (TOC ~13 +02) de origen terrestre (δ13C ~-27permil +04) La

123

productividad es similar al periacuteodo anterior (BrTi ~007+003) y el ambiente

deposicional es menos turbulento (AlTi ~02 +009 Zrti ~033 +007) El δ15N y el

NT oscilan en torno a valores ligeramente maacutes bajos (δ15N ~51permil +04 NT ~292μg

+6) Este periacuteodo se caracteriza por ser maacutes caacutelido que el anterior lo que

posibilitariacutea un incremento en la productividad lacustre en Laguna Matanzas pero

que no es observada en el Lago Vichuqueacuten

Entre 1980 y la actualidad en Laguna Matanzas habriacutea un incremento de la

acumulacioacuten de MO (TOC ~59 + 3) asociada a un incremento en la productividad

del lago (BrTi ~009+005) y a los aportes de MO terrestres (δ13C ~-24 + 2permil) El

lago se vuelve maacutes oacutexico (Mn ~0003 +0006) y las entradas de sedimento

disminuyen (AlTi~ 009 +002) El δ15N tiende a valores maacutes negativos (δ15N ~13permil

+1) y el NT aumenta de 20 a 55 μg (NT ~346 + 9 μg) tomando valores sin

precedentes en todo el registro En los sedimentos lacustres del Lago Vichuqueacuten

tambieacuten se observa un incremento de la acumulacioacuten de MO (TOC ~17 + 05)

asociada a un incremento en la productividad del lago (BrTi ~01 + 003) y las

entradas de sedimento desde la cuenca disminuyen (AlTi ~005 + 005) El δ15N

(~43 + 05permil) tiende a valores maacutes negativos y el NT incrementa de 20 a 55 μg (NT

~346 + 9 μg) oscilando en antifase

Durante esta fase en ambos lagos se observa un aumento en la

acumulacioacuten de MO sedimentaria un incremento en el NT y valores maacutes negativos

de δ15N que coincide con el incremento de la superficie forestal de las cuencas

(Laguna Matanzas gt17 Lago Vichuqueacuten gt60)

124

Figura 2 Comparacioacuten de los cambios del ciclo del N entre Laguna Matanzas y

Lago Vichuqueacuten con los procesos biogeoquiacutemicos contrastantes en rojo En L

Matanzas las condiciones oacutexicas podriacutean estar favoreciendo la nitrificacioacuten del

amonio En Vichuqueacuten las condiciones anoacutexicas favorecen un aumento en δ15N de

la MO en los sedimentos por desnitrificacioacuten y mineralizacioacuten

Los ambientes mediterraacuteneos en el que los lagos del presente estudio se

encuentran insertos estaacuten caracterizados por una estacioacuten seca prolongada y las

precipitaciones ocurren en eventos puntuales alcanzando altos montos

pluviomeacutetricos en poco tiempo Las lluvias favorecen un lavado de la cuenca la

perdida de N y otros nutrientes Por lo que es esperable que los sedimentos del

lago reflejen mejor los valores isotoacutepicos de los suelos de la cuenca durante los

periacuteodos con altos montos pluviomeacutetricos En el Lago Vichuqueacuten por ejemplo el

125

POM superficial (2 y 5 m de profundidad) despliega valores isotoacutepicos maacutes

positivos en invierno presumiblemente como resultado de mayores aportes de MO

y N de su cuenca (Fig 1b) En ambos lagos los valores maacutes positivos en los

sedimentos lacustres ocurren durante periacuteodos con mayores montos pluviomeacutetricos

(Cap1 Fig 6 y Cap 2 Fig 12)

Ademaacutes del efecto de la precipitacioacuten en el aporte de nutrientes al lago en

esta tesis hemos encontrado que los mayores aportes de N desde la cuenca se dan

cuando la cobertura vegetal del suelo es menor En Laguna Matanzas el desarrollo

de la actividad ganadera desde la llegada de los espantildeoles a la cuenca habriacutea

incrementado los aportes de N al lago Los valores de δ15N en los sedimentos

lacustres depositados durante este periacuteodo son los maacutes positivos de todo el registro

(~4permil) A su vez en Lago Vichuqueacuten los valores isotoacutepicos maacutes positivos se

registran entre 1300 y 1900 CE que coinciden con el mayor desarrollo de

actividades agriacutecola y de extraccioacuten de maderas de la cuenca (Fig 10 Cap 2)

Los recientes LUCC (a partir de 1975) en las cuencas de Laguna Matanzas

y Lago Vichuqueacuten estaacuten caracterizados por un incremento de la superficie forestal

y agriacutecola en reemplazo de la cobertura de pastizal (Laguna Matanzas) y bosque

nativo (Lago Vichuqueacuten) Los valores de δ15N en los testigos sedimentarios fueron

maacutes positivos cuanto mayor la superficie agriacutecola de la cuenca y maacutes negativos

cuanto mayor la superficie forestal Aunque por los alcances de esta tesis no

podemos ser concluyentes respecto del origen del NT (aloacutectonoautoacutectono) parece

ser que esta maacutes ligado a los aportes de la cuenca pese a la disminucioacuten del aporte

sedimentario observado en ambos lagos Las plantaciones forestales a diferencia

del bosque nativo son fertilizadas con una mezcla de N P y K (Toral et al 2005)

Por lo que pese a la disminucioacuten del aporte sedimentario la concentracioacuten de

126

nutrientes en el aporte al lago puede verse incrementada por el tipo de manejo

forestal con respecto al bosque nativo

Los resultados del primer capiacutetulo demuestran que 1) las plantaciones

forestales yo bosque nativo retiene maacutes sedimentos y MO mientras que el uso de

suelo agriacutecola y los pastizales destinados al desarrollo de la actividad ganadera lo

libera 2) Al parecer la desnitrificacioacuten es el proceso natural maacutes importante de

perdida de N en lagos costeros y favorece el enriquecimiento de 15N tanto en la

columna de agua (ie 15N-DIN) como en los sedimentos una vez enterrados y 3) la

desnitrificacioacuten depende de los cambios en las condiciones REDOX en el lago La

oxigenacioacuten en lagos poco profundos -como Laguna Matanzas- es altamente

fluctuante a escalas decadal-centenal depende de la profundidad de la laacutemina de

agua y de la variabilidad de la precipitacioacuten En este sentido en Laguna Matanzas

habriacutea condiciones anoacutexicas en ambientes cuando el lago alcanza niveles maacutes

altos Estas condiciones se observan entre 1820 y 1940 CE y son coetaacuteneas con

episodios maacutes huacutemedos y friacuteos (von Gunten et al 2009 Christie et al 2009) pero

tambieacuten con una fuerte actividad ganadera en la cuenca

Las fuentes variables de N y su fluctuacioacuten en el tiempo hacen necesario

contar con un anaacutelogo moderno que permite usar al δ15N de los sedimentos

lacustres como un indicador indirecto de los cambios en la disponibilidad de N en

el tiempo Por ello en el segundo capiacutetulo integramos muestras de suelo-

vegetacioacuten y un monitoreo de POM de la columna de agua en verano e invierno La

composicioacuten isotoacutepica de POM estariacutea reflejando cambios de la fuente de N (fijacioacuten

vs consumo del DIN) que variacutea durante el antildeo hidroloacutegico Durante el verano la

mayor temperatura y horas-luz favoreceriacutean las entradas de N al lago viacutea fijacioacuten

bioloacutegica de N2 atmosfeacuterico resultando en un incremento de la MO con un valor

127

isotoacutepico bajo (POM verano~5permil Fig 1b) El N2 (δ15N = 0permil) es fijado praacutecticamente

sin fraccionamiento isotoacutepico generando un δ15N de la OM cercano a 0permil (Leng et

al 2006) En invierno las precipitaciones pueden estar favoreciendo un incremento

en la entrada de nutrientes al lago El DIN de la columna de agua llega a contener

valores de δ15N maacutes altos reflejando estos mayores aportes de la cuenca y el POM

del Lago Vichuqueacuten queda enriquecido en 15N (δ15N ~11permil Cap 2 Fig 9) Estas

variaciones estacionales pueden estar evidenciando un cambio en la composicioacuten

de especies de POM desde especies fijadoras a especies que consumen el N de la

columna de agua Sin embargo para corroborar esta informacioacuten seriacutea deseable

contar con el anaacutelisis de la composicioacuten de especies de las muestras de agua

extraidas

Entre los resultados maacutes importantes estaacuten los valores isotoacutepicos del suelo

y la biomasa representativa de la cuenca que incluye un listado de las especies

nativas de la zona que hasta ahora no se contaba (Cap 2 Tabla en material

suplementario) Las especies colectadas despliegan valores de δ15Nfoliar maacutes

positivos (plantaciones forestales y pastizal ~89permil) que el suelo (35permil) salvo por

las especies nativas las que oscilan en torno a valores cercanos al atmosfeacuterico

(~14permil) La razoacuten isotoacutepica 15N14N refleja la dinaacutemica de intercambio de N entre la

vegetacioacuten y el suelo (Koba et al 2002) La discriminacioacuten es positiva en la mayoriacutea

de los sistemas bioloacutegicos por lo que las plantas tienen valores de δ15N maacutes bajos

que el suelo (Evans et al 2001) como sucede con las especies nativas en Lago

Vichuqueacuten En consecuencia las plantas quedan empobrecidas en 15N y conducen

a un enriquecimiento en 15N del suelo sobretodo si no hay reposicioacuten de N por otras

viacuteas (eg fijacioacuten de N) Por lo tanto los valores maacutes negativos de δsup1⁵Nfoliar de las

especies nativas pueden estar relacionados con el consumo preferencial de 14N del

128

suelo donde la discriminacioacuten isotoacutepica de la vegetacioacuten contra el 15N conduce a

valores del δsup1⁵Nsuelo maacutes altos (Houmlgberg 1997) Por el contrario los valores maacutes

positivos de δsup1⁵Nfoliar de las plantaciones forestales y pastos con respecto al suelo

puede deberse por una parte que el suelo no cuenta con mecanismos naturales de

reposicioacuten de N salvo por la descomposicioacuten de la hojarasca que puede ser maacutes

lenta en Pinus radiata que en bosque nativo (Lusk et al 2001) y por otra por el alto

impacto de los aportes de N (y otros nutrientes) derivado de las actividades

humanas (eg uso de fertilizantes) en el suelo

El alcance maacutes significativo de esta tesis se relaciona con un cambio en la

tendencia maacutes negativa de δsup1⁵N y el incremento del NT a partir de 1940 y a partir

de 1970 CE en ambos lagos La causa maacutes probable de esta tendencia es el

reemplazo de la cobertura natural o preexistente a 1940 CE por plantaciones

forestales

En la figura 2 se observa una siacutentesis de los principales procesos que

afectan la sentildeal isotoacutepica de la MO en los sedimentos lacustres de L Matanzas y

L Vichuqueacuten La entrada de N y MO desde la cuenca depende del tipo de cobertura

Las plantaciones forestales y el bosque nativo retienen maacutes nutrientes y sedimentos

en la cuenca mientras que la agricultura los favorece Sin embargo las praacutecticas

de manejo que incluyen la aplicacioacuten de N (y otros nutrientes) pueden aportar maacutes

nutrientes al lago que la cobertra de bosque nativo Cuando las actividades

forestales cubren una mayor superficie de la cuenca (1940 en adelante) δsup1⁵N oscila

en valores maacutes negativos y el NT tiende a incrementarse en los sedimentos

lacustres Cabe destacar que los valores de δsup1⁵N observados en los testigos

sedimentarios a fines del s XX no tienen precedente durante la conquista y colonia

espantildeola o durante el resto del periodo de la Repuacuteblica

129

Figura 2 Modelo de transferencia de N entre los ecosistemas terrestres y

acuaacuteticos El δ15N de los sedimentos lacustres depende de la interaccioacuten entre los

aportes de la cuenca y porcesos ldquoin-lakerdquo Flechas indican la direccioacuten del flujo de

N En azul las salidasentradas de 14N en rojo las salidasentradas de 15N δ15N de

la interaccioacuten plantas-suelo depende del tipo de cobertura de suelo

130

CONCLUSIONES GENERALES

La transferencia de N entre cuencas y lagos es un factor de control del ciclo

del N en los lagos y queda reflejado en la sentildeal isotoacutepica de los sedimentos

lacustres (Leng et al 2006 McLauchlan et al 2007) En Laguna Matanzas el

suelo de las especies nativas y las plantaciones forestales despliegan valores de

δ15N maacutes bajos (~1permil) que los de Lago Vichuqueacuten (~35permil) Coincidentemente los

sedimentos lacustres de Laguna Matanzas oscilan con valores de δ15N maacutes bajos

(-15 a +45permil Fig 1) que los de Lago Vichuqueacuten (+3 a +8permil)

Por otra parte el estudio de la MO de los sedimentos lacustres ha permitido

reconstruir los cambios en los aportes de MO y N desde la cuenca Aunque no es

posible afirmar queacute tipo de N estaacute entrando al lago (eg Nitroacutegeno orgaacutenico e

inorganico) si podemos decir que los cambios en las fluctuaciones de δ15N son

coincentes con el crecimiento de la actividad forestal (1980 - hasta 2016 L

Matanzas 0-17 y L Vichuqueacuten 1-66) El δ15N fluctuacutea hacia valores maacutes

negativos Ademaacutes se observa un incremento del NT en los sedimentos lacustres

cuanto mayor es la superficie forestal

Entre 1800-1940 las cuencas eran fundamentalmente agriacutecolas y

ganaderas (Cap1 Fig 7 y Cap 2 Fig 12) el δ15N de los sedimentos lacustres

oscila con valores maacutes positivos (L Matanzas +40 plusmn 05permil y L Vichuqueacuten 56 plusmn

033permil Fig 1) hay una baja bioproductividad en el lago (BrTi ~002 TOC~17)

lo que coincide con un bajo contenido de NT (~478 μg) Este es un periacuteodo de altas

precipitaciones (Christie et al 2009) que tienden a favorecer el lavado de la cuenca

131

y con ello el aporte de MO sedimentos y nutrientes desde la cuenca tiende a verse

favorecido Aunque las principales actividades humanas en estas cuencas son

diferentes (ganaderiacutea en Laguna Matanzas Contreras-Lopez et al 2014

agricultura en Lago Vichuqueacuten Odone 1997) en ambos casos hubo un reemplazo

de la cobertura natural de bosques nativo que favorecioacute mayores aportes de N y

sedimentos desde la cuenca en un efecto sumado con el aumento de las

precipitaciones

A partir de 1980 CE en ambos lagos se observa una disminucioacuten en los

valores de δ15N y un incremento del NT que no tiene precedentes en todo el registro

y pese a que ambos lagos son limnologicamente muy diferentes En Lago

Vichuqueacuten el δ15N tiende a oscilar en antifase con el NT (Fig 1) En el caso de

Laguna Matanzas se observa una tendencia hacia valores maacutes negativos y a partir

de 1990s a valores maacutes positivos mientras que el NT tiende a incrementarse de

manera sostenida Ello podriacutea estar relacionado con el crecimiento de la actividad

forestal habriacutea una mayor retencioacuten de N y sedimentos en la cuenca ligado al

incremento de la superficie forestal Ademaacutes en el caso de L Matanzas el

incremento de la actividad agriacutecola (sumado al de las plantaciones forestales)

podriacutea expicar el cambio en la tendencia en la deacutecada de los 1990s

En el contexto de Antropoceno esta tesis nos permite identificar un gran

impacto de las actividades humanas en Chile central a partir de la deacutecada de 1940

y una Gran Aceleracoacuten a partir de la deacutecada de 1970s En el registro sedimentario

de los lagos en estudio se observa una gran acumulacioacuten de MO el δ15N oscila

hacia valores maacutes negativos y un gran incremento del NT y el crecimiento de la

actividad forestal parece ser la principal responsable Ademaacutes la sobreexplotacioacuten

132

del agua junto al cambio climaacutetico global ha generado una combinacioacuten letal para

los lagos costeros de Chile central

Figura 1 Comparacioacuten de las fluctuaciones de δ15N durante los uacuteltimos 300

antildeos en Laguna Matanzas y Lago Vichuqueacuten

133

Referencias

Battye W Aneja VP Schlesinger WH 2017 Earthrsquos Future Is nitrogen the next carbon Earthrsquos Future Global Biogeochem Cycles 30 1000ndash1014 httpsdoiorg101002eft2235

Christie DA Boninsegna JA Cleaveland MK Lara A Le Quesne C

Morales MS Mudelsee M Stahle DW Villalba R 2009 Aridity changes in the Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from tree-rings Clim Dyn 36 1505ndash1521 httpsdoiorg101007s00382-009-0723-4

Contreras-Loacutepez M (Playa AUHVC (Universidad de VRFS (Pontificia

UC de V 2014 Elementos de la historia natural del An Mus Hist Natulas Vaplaraiso 27 51ndash67

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in

freshwater wetlands record long-term changes in watershed nitrogen source and land use SO - Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash2916

Evans RD Evans RD 2001 Physiological mechanisms influencing

plant nitrogen isotope composition 6 121ndash126 Fogel ML Cifuentes LA 1993 Isotope fractionation during primary

production Org Geochem 73ndash98 httpsdoiorg101007978-1-4615-2890-6_3 Galloway JN Schlesinger WH Ii HL Schnoor L Tg N 1995

Nitrogen fixation Anthropogenic enhancement-environmental response reactive N Global Biogeochem Cycles 9 235ndash252

Garreaud RD Alvarez-Garreton C Barichivich J Pablo Boisier J

Christie D Galleguillos M LeQuesne C McPhee J Zambrano-Bigiarini M 2017 The 2010-2015 megadrought in central Chile Impacts on regional hydroclimate and vegetation Hydrol Earth Syst Sci 21 6307ndash6327 httpsdoiorg105194hess-21-6307-2017

Koba K Koyama LA Kohzu A Nadelhoffer KJ 2003 Natural 15 N

Abundance of Plants Coniferous Forest httpsdoiorg101007s10021-002-0132-6

Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos

Transactions American Geophysical Union httpsdoiorg1010292007EO070007 McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE

2007 Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470 httpsdoiorg101073pnas0701779104

134

Phytologist N Oct N 2006 Tansley Review No 95 15N Natural Abundance in Soil-Plant Systems Peter Hogberg 137 179ndash203

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98 httpsdoiorg1011772053019614564785

Turner BL Kasperson RE Matson PA McCarthy JJ Corell RW

Christensen L Eckley N Kasperson JX Luers A Martello ML Polsky C Pulsipher A Schiller A 2003 A framework for vulnerability analysis in sustainability science Proc Natl Acad Sci U S A httpsdoiorg101073pnas1231335100

Vitousek PM Aber JD Howarth RW Likens GE Matson PA

Schindler DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

Vitousek PM Howarth RW 1991 Nitrogen limitation on land and in the

sea How can it occur Biogeochemistry httpsdoiorg101007BF00002772 von Gunten L Grosjean M Rein B Urrutia R Appleby P 2009 A

quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo central Chile back to AD 850 Holocene 19 873ndash881 httpsdoiorg1011770959683609336573

Xu R Tian H Pan S Dangal SRS Chen J Chang J Lu Y Maria

Skiba U Tubiello FN Zhang B 2019 Increased nitrogen enrichment and shifted patterns in the worldrsquos grassland 1860-2016 Earth Syst Sci Data httpsdoiorg105194essd-11-175-2019

Zaehle S 2013 Terrestrial nitrogen-carbon cycle interactions at the global

scale Philos Trans R Soc B Biol Sci 368 httpsdoiorg101098rstb20130125

Page 10: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …

10

anaacutelisis sedimentoloacutegicos geoquiacutemicos e isotoacutepicos (δ15N δ13C) de los sedimentos

lacustres columna de agua y suelo-vegetacioacuten de la cuenca y la reconstruccioacuten de

los LUCC entre 1975 y 2016 a partir de imaacutegenes satelitales El objetivo de esta

tesis fue evaluar el rol de LUCC como principal control del ciclo del N en el sistema

cuenca-lago durante las uacuteltimas centurias en Chile central Nuestros principales

resultados muestran que valores maacutes positivos de δ15N en los sedimentos lacustres

estaacuten relacionados con grandes aportes de N de la cuenca que a su vez son

mayores cuanto mayor la superficie agriacutecola yo los pastizales mientras que tanto

las plantaciones forestales como los bosques favorecen la retencioacuten de nutrientes

en la cuenca (lo que se ve reflejado en un δ15N maacutes negativo) Esta tesis plantea

un cambio de estado en la dinaacutemica del N asociado a la introduccioacuten y expansioacuten

de las plantaciones forestales o bosques los que retienen el Nitroacutegeno en las

cuencas mientras que el clima juega un rol secundario

11

ABSTRACT

The Anthropocene is characterized by human disturbances at the global

scale For example changes in land use are known to disturb the N cycle since the

industrial revolution but especially since the Great Acceleration (1950 CE) onwards

This impact has changed N availability in both terrestrial and aquatic ecosystems

However there are some important uncertainties associated with the extent of this

impact and how it is coupled to ongoing climate change (ie megadroughts rainfall

variability and shifting stationarity) or to other nutrient cycles (e g carbon cycle)

Lake sediments contain paleoenvironmental information regarding the conditions of

the watershed and associated lakes and which the respective sediments are

deposited Nitrogen stable isotope analysis (δ15N) on lake sediments allows us to

reconstruct the changes in N availability through time Here we used a multiproxy

approach that uses sedimentological geochemical and isotopic analyses on

lacustrine sediments water column and soilvegetation from the watershed as well

12

as land use and cover change (LUCC) from 1975 to 2016 obtained from satellite

images The goal of this thesis is to evaluate the role of LUCC as the main driver for

N cycling in a coastal watershed system of central Chile over the last centuries Our

main results show that more positive δ15N values in lake sediments are related to

higher N contributions from the watershed which in turn increase with increased

agricultural andor pasture cover whereas either forest plantations or native forests

can favor nutrient retention in the watershed (δ15N more negative) This thesis

proposes that N dynamics are mainly driven by the introduction and expansion of

forest or tree plantations that retain nitrogen in the watershed whereas climate plays

a secondary role

13

INTRODUCCIOacuteN

El N es un elemento esencial para la vida y limita la productividad en

ecosistemas tanto terrestres como acuaacuteticos (Vitousek et al 1997) Las actividades

humanas han tenido un profundo impacto sobre el ciclo del N global principalmente

a partir la revolucioacuten industrial (IPCC 2013 2007) Las concentraciones de N se

han incrementado por la fijacioacuten industrial de N atmosfeacuterico (viacutea el proceso Haber-

Bosch Erisman et al 2008) por el uso de fertilizantes sobre la base de N para

mejorar el rendimiento de los cultivos la produccioacuten ganadera y ademaacutes de los

cambios en el uso del suelo (abreviado en ingleacutes- LUCC) (Robertson y Vitousek

2009 Galloway et al 2008 Battye et al 2017 Xu et al 2019) Estas actividades

contribuyen significativamente al incremento de la disponibilidad bioloacutegica de N

cuyas consecuencias para los ecosistemas incluye la perdida de diversidad

modificacioacuten de la disponibilidad de nutrientes y acidificacioacuten de los suelos entre

otras Sin embargo se desconoce la cantidad destino y el alcance que ha tenido

14

el N movilizado entre los ecosistemas generado por la influencia de las actividades

humanas (Vitousek et al 1997)

La entrada natural de N en los ecosistemas terrestres y acuaacuteticos es viacutea

fijacioacuten atmosfeacuterica la que es llevada a cabo por microorganismos muchos de ellos

en relaciones simbioacuteticas (eg Rhizobium en leguminosas) y las algas (Vitousek et

al 1997 Battye et al 2017) Las principales salidas estaacuten relacionadas con la

desnitrificacioacuten volatilizacioacuten del amoniaco y por escurrimiento superficial y

subterraacuteneo (Galloway et al 2008 Diacuteaz et al 2016) En el caso de los sistemas

lacustres ademaacutes estaacuten la resuspencioacuten de N del fondo del lago los aportes desde

la cuenca (entradas de N) La depositacioacuten de MO en el fondo del lago que marca

la salida de N de la columna de agua Estas relaciones de intercambio de N tienen

un control geograacutefico (eg latitud exposicioacuten relieve etc) climaacutetico y biotico

(McLauchlan et al 2013) La alteracioacuten provocada por los LUCC no solo genera

las peacuterdidas de nutrientes del suelo por erosioacuten y escurrimiento superficial sino que

tambieacuten modifica la disponibilidad y transferencia de N entre los ecosistemas

terrestres y acuaacuteticos (Elbert et al 2012 McLauchlan et al 2013) Por ejemplo el

reemplazo de la vegetacioacuten nativa por la agricultura yo plantaciones forestales

altera el ciclo del N debido al despeje de los terrenos viacutea quema de la vegetacioacuten

pero tambieacuten debido al reemplazo de la vegetacioacuten preexistente por un

monocultivo (eg trigo pino) y el uso ineficiente de fertilizantes para mejorar el

rendimiento agriacutecola Estas actividades favorecen un incremento de los aportes de

N (y otros nutrientes) viacutea sistemas de drenajes a lagos los que actuacutean como

sumideros El incremento del N derivado de las actividades humanas tanto en los

ecosistemas terrestres como acuaacuteticos genera incertezas relacionados con la

trayectoria y la magnitud de la disponibilidad de N en ambos ecosistemas (Batye et

15

al 2017 Mclauchlan et al 2017) Por lo tanto se requiere de una liacutenea base de

largo plazo para saber coacutemo estas perturbaciones impactan la disponibilidad de N

en las uacuteltimas deacutecadassiglos en los ecosistemas lacustres y por lo tanto el alcance

real que los LUCC han tenido en el ciclo del N

Los ecosistemas mediterraacuteneos y el ciclo del N

Los ecosistemas mediterraacuteneos son especialmente sensibles a los LUCC

pues estos se encuentran sometidos a un estreacutes hiacutedrico durante largas temporadas

estivales y las precipitaciones se concentran en eventos puntuales y a veces con

altos montos pluviomeacutetricos Las precipitaciones tienen un alto potencial de arrastre

de sedimentos y nutrientes los que actuacutean como fertilizantes al llegar a los

ecosistemas lacustres A su vez un incremento en la disponibilidad de N puede

generar un desbalance con otros nutrientes (eg Fosforo) con efectos sobre la

productividad y diversidad de los lagos (Pentildeuelas et al 2012 Sardans et al 2012

McLauchlan 2013) En este sentido en Chile central se observa una disminucioacuten

de las precipitaciones especialmente fuerte en las uacuteltimas deacutecadas por lo que se ha

denoacuteminado como Megasequiacutea (Garreaud et al 2017) y el efecto de las

precipitaciones esporaacutedicas pueden generar un arrastre de nutrientes que no ha

sido evaluado

Los ecosistemas mediterraacuteneos concentran el 20 de la biodiversidad global

(Myers et al 2000) pero existe una escasez de conocimiento respecto a los

efectos del incremento de N en los cuerpos de agua como consecuencia de las

actividades humanas en el pasado histoacuterico (Ochoa-Hueso et al 2011) y coacutemo la

disponibilidad de N ha variado en el tiempo Los LUCC han aumentado el flujo de

N en las cuencas hidrograacuteficas viacutea escurrimiento superficial y lixiviacioacuten

16

favoreciendo la peacuterdida de sedimentos y nutrientes del suelo en el mundo entero

(Elser et al 2011 McLauchlan et al 2013 Xu et al 2017 y 2019) Ello ha

contribuido a la acidificacioacuten y eutrofizacioacuten generalizada de riacuteos y lagos

(McLauchlan et al 2013 Schindler et al 2008)

El ecosistema mediterraacuteneo de Chile central es una regioacuten ampliamente

intervenida desde al menos la colonizacioacuten espantildeola (1600-1800 CE) Los LUCC

han tenido efectos negativos en la disponibilidad de agua especialmente

observados con el desarrollo de las actividades minera (Prieto et al 2019) Aunque

se sabe de los impactos en los ecosistemas de bosque en teacuterminos de cobertura

debidos al desarrollo silvo-agropecuarias (Armesto et al 2010) se desconoce el

impacto de estas actividades sobre el ciclo del N en los cuerpos de agua o en queacute

momento cobran fuerza suficiente para alterar el flujo de N hacia los lagos de Chile

Central Por lo tanto en esta tesis nos centramos en entender coacutemo los LUCC han

afectado la disponibilidad de N en los lagos costeros de Laguna Matanzas y Lago

Vichuqueacuten desde la llegada de los espantildeoles a Chile hasta el presente

Los lagos como sensores ambientales

Los sedimentos lacustres son buenos sensores de cambios en los aportes

de nutrientes contaminacioacuten y eutroficacioacuten de los cuerpos de agua ya que son

capaces de preservar sentildeales quiacutemicas y fiacutesicas al momento de su formacioacuten y

ademaacutes con alta resolucioacuten y a largo plazo (Leng et al 2006) Por lo tanto

constituyen una herramienta uacutetil para reconstruir el flujo de N entre ecosistemas

terrestres y acuaacuteticos en el pasado sus consecuencias (eg incremento de la

productividad lacustre) y el rol del clima y los LUCC en el pasado (McLauchlan et

al 2013 von Gunten et al 2009) Por ejemplo el cultivo de maiacutez por parte de los

17

nativos iroqueses en Canadaacute provocoacute la eutrofizacioacuten del Lago Crawford (43degN)

durante los siglos XII y XV Entre las consecuencias registradas se documentoacute un

claro incremento de la productividad primaria y cambios en la estructura comunitaria

de diatomeas foacutesiles (incremento de Stephanodiscus complex y disminucioacuten de

Cyclotella bodanica en Ekdahl et al 2007) Otro ejemplo demuestra como las

actividades agriacutecolas en la cuenca del riacuteo Mississippi modificaron los patrones de

sedimentacioacuten y aporte de nutrientes al lago Pepin EE UU (44degN) a partir del

asentamiento europeo en 1840 CE y principalmente desde 1940 CE (Engstrom et

al 2009) Para Chile von Gunten et al (2009) a partir de indicadores

limnogeoloacutegicos evidencioacute la contaminacioacuten y eutroficacioacuten de cinco lagos cercanos

a la ciudad de Santiago (33ordmS) como consecuencia de la deposicioacuten atmosfeacuterica

de metales pesados (especialmente Cu) quema de combustible foacutesil y flujo de

nutrientes durante los uacuteltimos 200 antildeos

Caracteriacutesticas limnoloacutegicas de los lagos

Los procesos limnoloacutegicos afectan la distribucioacuten y abundancia de los

organismos en los lagos Estaacuten influenciados por forzamientos externos por

ejemplo la precipitacioacuten o la penetracioacuten de la luz y la morfometriacutea del lago En este

sentido el nivel del lago dependeraacute del balance entre las entradas y salidas de agua

(precipitaciones escurrimiento superficial y subterraacuteneo y la evaporacioacuten) y la forma

de la cuenca (profundidad pendiente aacuterea del espejo de agua)

En funcioacuten de la profundidad de penetracioacuten de la luz es posible diferenciar

dos aacutereas que determinan la distribucioacuten de los organismos la zona foacutetica (donde

penetra la luz y permite la fotosiacutentesis) y la zona afoacutetica (subyacente a la zona

foacutetica) Al depender de la radiacioacuten la zona foacutetica variacutea estacionalmente Ademaacutes

18

puede variar por el grado de turbidez la morfometriacutea del lago y la produccioacuten de

materia orgaacutenica en la columna de agua

Otro factor que influye en la productividad es el reacutegimen de mezcla de la

columna de agua pues favorece la oxigenacioacuten y el reciclado de nutrientes La

mezcla ocurre en condiciones de gran inestabilidad usualmente relacionado con el

reacutegimen de viento Por el contrario un lago estratificado resulta de grandes

diferencias en temperatura o salinidad entre la superficie (epilimnion) y el fondo del

lago (hipolimnion) que separa las masas de agua superficial y de fondo por una

termoclina (si la estratificacioacuten estaacute relacionada con diferencias de temperatura de

las masas de agua) o haloclina (diferencias de salinidad) En funcioacuten del reacutegimen

de mezcla los lagos se pueden clasificar en (Lewis 1983)

1 Amiacutecticos no hay mezcla vertical de la columna de agua

2 Monomiacutecticos friacuteos y caacutelidos se mezcla una vez al antildeo

3 Dimiacutecticos la columna de agua se mezcla dos veces al antildeo

4 Oligomiacutecticos Lagos estratificados la mayor parte del tiempo pero se mezclan a

intervalos irregulares mayores a 1 antildeo

5 Polimiacutecticos friacuteos y caacutelidos la columna de agua se mezcla varias veces al antildeo

El ciclo del N en lagos

Al estar presente en aacutecidos nucleicos aminoaacutecidos y proteiacutenas el N es un

nutriente esencial de los organismos Por lo tanto su disponibilidad en la columna

de agua es clave para la produccioacuten composicioacuten y acumulacioacuten de la MO a traveacutes

del tiempo (Olson 1998 Talbot 2002) Aunque el principal reservorio de N estaacute en

19

la atmosfera (N2) solo unos pocos organismos (eg cianobacterias) pueden fijarlo

directamente Asiacute el Nitroacutegeno Inorgaacutenico Disuelto (DIN) representa la principal

fuente de N disponible para la produccioacuten primaria en los ecosistemas acuaacuteticos

(Talbot et al 2002) El DIN estaacute compuesto por nitrato (NO3-) nitrito (N02

-) y amonio

(NH4+) y los cambios en su disponibilidad condicionan el tipo de produccioacuten primaria

(eg fijadores vs asimiladores de N ver Scott y Grant 2013 Scott 2008)

La Figura 1 resume los principales componentes en lagos del ciclo del N y

sus interacciones La principal entrada natural de N es viacutea fijacioacuten de N atmosfeacuterico

y es llevado a cabo principalmente por bacterias y algas verde-azules capaces de

romper el triple enlace entre los dos aacutetomos de N a un alto costo energeacutetico (Torres

et al 2012) El N fijado es reducido a NH3 Tras la muerte de los organismos el N

es liberado de sus tejidos por hongos y bacterias implicados en la descomposicioacuten

de la MO Una parte se deposita en el fondo del lago y la otra queda disponible para

ser asimilada por el fitoplancton como amonio mediante el proceso de

amonificacioacuten (Talbot 2002) La amonificacioacuten resulta de la reduccioacuten bacteriana

del amoniaco y se da preferentemente en condiciones anoacutexicas La volatizacioacuten del

amoniaco es un proceso por medio este se incorpora a la atmoacutesfera Este proceso

se da preferentemente en lagos aacutecidos (pH gt 85) El nitrato es otra forma de N

bioloacutegicamente disponible para el fitoplancton En los lagos el NO3 del DIN estaacute

compuesto por los aportes desde la cuenca hidrograacutefica en la que se circunscriben

por la resuspensioacuten desde el fondo del lago favorecido por procesos de mezcla

(descrito en seccioacuten anterior) y por los nitratos de la columna de agua Estos uacuteltimos

son el resultado de la nitrificacioacuten proceso realizado por bacterias aeroacutebicas

mediante el cual el amonio se oxida para formar nitrito y nitrato El ciclo se completa

20

con la desnitrificacioacuten que es la reduccioacuten bacteriana de nitrato al N atmosfeacuterico

Este proceso se da preferentemente en condiciones anoacutexicas

Figura 1 Materia Orgaacutenica sedimentaria y su relacioacuten con el ciclo del N y las

variaciones de δ15N (elaborado a partir de Talbot et al 2002) En la figura se

representan los factores clave en la acumulacioacuten de la MO sedimentaria y su

relacioacuten con el ciclo del N El δ15N de la MO es resultado de los aportes de MO

desde la cuenca MO de macroacutefitas y de la productividad bioloacutegica La productividad

en ecosistemas lacustres estaacute condicionada por DIN y la fijacioacuten de N atmosfeacuterico

El δ15N del pool del DIN disponible se va enriqueciendo por la asimilacioacuten

preferencial de 14N por parte del fitoplancton Ademaacutes el DIN remanente se va

enriqueciendo por accioacuten microbiana (amonificacioacuten nitrificacioacuten desnitrificacioacuten)

Reconstruyendo el ciclo del N a partir de variaciones en δ15N

La sentildeal isotoacutepica de N (δ15N) en los sedimentos lacustres puede ser usada

para reconstruir los cambios pasados del ciclo N la transferencia de N entre

ecosistemas terrestres y acuaacuteticos y el estado troacutefico del lago (Bruland y Mackenzie

2015 McLauchlan et al 2013 Woodward et al 2012 von Gunten et al 2009

Leng et al 2006 Meyers y Teranes 2001) La Figura 1 resume los principales

procesos y fuentes que afectan la sentildeal isotoacutepica δ15N (total o ldquobulkrdquo) en la MO de

21

los sedimentos lacustres Entre los que destacan las fuentes de MO (aloacutectona vs

autoacutectona) la bioproductividad lacustre y las entradas de N (ie fijacioacuten bioloacutegica

de N2) (Torres et al 2012) Estos procesos conducen a un fraccionamiento

isotoacutepico cineacutetico que favorece la disociacioacuten entre sus isotopos ldquopesadosrdquo (15N) y

ldquoligerosrdquo (14N) Asiacute por ejemplo los valores de δ15N de la MO se enriquecen en 15N

en la medida que los sedimentos lacustres estaacuten sometidos a perdidas de 14N viacutea

desnitrificacioacuten (Bruland y Mackenzie 2015 Diaz et al 2016 Talbot et al 2002)

Por otra parte el fitoplancton en la medida que aumenta su biomasa (eg

durante la estacioacuten caacutelida) puede llegar a asimilar el DIN hasta agotarse En este

caso el N remanente se va empobreciendo en 14N si no hay reposicioacuten de N (eg

aporte de NO3 de la cuenca) y la MO queda enriquecida en 15N Esta disminucioacuten

induce a una limitacioacuten de fitoplancton por N y los organismos diztroacuteficos pueden

verse estimulados por lo que se incrementa la entrada de N viacutea fijacioacuten de N2 (Scott

y Grantsz 2013) como resultado la MO oscila en valores maacutes bajos (en torno a 0permil)

La cantidad de MO que se deposita en el fondo del lago depende del

predominio de contribuciones provenientes desde la cuenca (aloacutectona) versus las

producidas dentro del mismo lago (autoacutectona) (Torres et al 2012) Aunque en

general los lagos reciben permanentemente aportes de sedimentos y MO desde

su cuenca los lagos pequentildeos tienden a reflejar maacutes los procesos que ocurren

solamente en su cuenca directa y reflejan los valores isotoacutepicos de la misma (Gu et

al 2006) Woodward et al (2012) realizaron un estudio en 50 lagos en Irlanda que

les permitioacute correlacionar diferentes patrones de LUCC (bosques de coniacuteferas

agricultura ganaderiacutea entre otros) con los valores de δ15N (y δ13C) en los

sedimentos superficiales de los lagos Encontraron que los valores de δ15N son maacutes

negativos en cuencas poco impactadas y maacutes positivos en aquellas con alto

22

impacto humano (eg usos de suelo agriacutecola y ganadero) McLauchlan et al (2007)

encontraron valores maacutes positivos de δ15N en los sedimentos del Mirror Lake New

Hampshire (29ordm N) a partir de la desforestacioacuten de su cuenca en 1790 CE (inicio

del asentamiento europeo en el lago) para el desarrollo de la actividad agriacutecola

Estos valores se volvieron maacutes negativos hacia valores similares al pre-

asentamiento europeo despueacutes del cese de la agricultura en la cuenca y la

recuperacioacuten del bosque a partir de 1929 CE

El anaacutelisis de δ15N en los sedimentos lacustres es una herramienta casi sin

explorar en Chile central Proponemos reconstruir la dinaacutemica de transferencia de

N cuenca-lago como consecuencia de los LUCC desde la colonizacioacuten espantildeola en

los lagos costeros de Laguna Matanzas (34ordmS) y Lago Vichuqueacuten (36ordmS) Como son

muacuteltiples los procesos que pueden afectar la sentildeal isotoacutepica de N (medido como

δ15N) en los sedimentos lacustres existen muchos problemas para su

interpretacioacuten paleoambiental (Leng et al 2006) Por ello en esta tesis utilizamos

un enfoque multiproxy que consiste en integrar el anaacutelisis limnoloacutegico y geoquiacutemico

de los sedimentos lacustres con los valores isotoacutepicos modernos de la columna de

agua (mediante monitoreo del POM) la relacioacuten vegetacioacuten-suelo de la cuenca y la

reconstruccioacuten de los principales usos de suelo de las cuencas desde 1975 CE

mediante el uso de imaacutegenes satelitales Considerando estas muacuteltiples liacuteneas de

evidencia nos planteamos utilizar las variaciones del δ15N para reconstruir los

cambios en la disponibilidad de N en los lagos costeros de Chile central y establecer

coacutemo y desde cuaacutendo las actividades humanas en la cuenca son lo suficientemente

importantes como para modificar el ciclo del N en los lagos desde la colonizacioacuten

espantildeola (siglo XVII)

23

Como hipoacutetesis planteamos que la dinaacutemica de transferencia de sedimentos

y nutrientes entre la cuenca y el lago tiene controles geoloacutegicos climaacuteticos y

bioloacutegicos que interactuacutean en el tiempo registraacutendose en la acumulacioacuten de MO de

los sedimentos lacustres (Fig1) Bajo este marco los LUCC modifican esta

dinaacutemica alterando la transferencia de N a los lagos ya que las actividades agriacutecolas

y ganaderas tienden a aportar maacutes N (aumentando δ15N) que la actividad forestal

(la que disminuye δ15N)

En el primer capiacutetulo titulado ldquoA combined approach to establishing the timing

and magnitude of anthropogenic nutrient alteration in a mediterranean coastal lake-

watershed systemrdquo se evaluoacute el rol de los LUCC en el control de la descarga de N

y sedimentos a Laguna Matanzas en un sistema cuenca-lago desde el siglo XVII

Para ello se realizoacute un anaacutelisis de la dinaacutemica sedimentaria lacustre mediante el

anaacutelisis de muacuteltiples proxys sedimentoloacutegicos (ie minerales y textura)

geoquiacutemicos (eg geoquiacutemica orgaacutenica e isotoacutepica) y bioloacutegicos (ie diatomeas) de

Laguna Matanzas que cubren los uacuteltimos 200 antildeos Ademaacutes se realizoacute una

reconstruccioacuten de los usos de suelo entre 1975 y 2016 a partir de imaacutegenes de

sateacutelites y se colectaron muestras de suelo de las principales coberturas de la

cuenca a los cuales se midioacute el δ15N

Entre los principales resultados obtenidos se destaca la influencia de la

ganaderiacutea y la denitrificacioacuten lo que explica los altos valores de δ15N evidenciados

por el registro lacustre durante la colonizacioacuten espantildeola e inicios de la repuacuteblica A

partir de la Gran Aceleracioacuten (1950 CE) la desforestacioacuten y el reemplazo de la

ganaderiacutea por plantaciones forestales tienen un correlato en el registro

sedimentario con valores de δ15N maacutes bajos Estos resultados demuestran que los

LUCC son el factor de primer orden para explicar los cambios observados en

24

nuestro registro de δ15N y a su vez implica un rol secundario del clima como posible

control de la disponibilidad de N en Laguna Matanzas Este capiacutetulo fue sometido

a la revista Scientific Reports y estaacute en revisioacuten desde el 26 de marzo de 2019 En

la elaboracioacuten del mauscrito han colaborado Claudio Latorre Blas Valero-Garceacutes

Matiacuteas Frugone Pablo Sarricolea Santiago Giralt Manuel Contreras-Lopez

Ricardo Prego y Patricia Bernardez

El segundo capiacutetulo se titula ldquoStable isotopes track land use and cover

changes in a mediterranean lake in central Chile over the last 600 yearsrdquo Aquiacute

evaluamos la dinaacutemica del N actual en el sistema cuenca-lago considerando los

valores isotoacutepicos modernos tanto de la vegetacioacuten como del suelo ademaacutes de los

cambios estacionales del POM de la columna de agua Esta informacioacuten se utiliza

como un anaacutelogo moderno para conocer el rol de los LUCC en la disponibilidad de

N en los uacuteltimos 600 antildeos Para ello se colectaron muestras filtradas de la columna

de agua a 2 5 y 20 m dos veces por antildeo entre noviembre de 2015 y julio de 2018

y se obtuvo el δsup1⁵N del POM Ademaacutes se colectoacute muestras de vegetacioacuten y suelo

de la cuenca diferenciando entre especies nativas plantaciones forestales y

vegetacioacuten herbaacutecea Esta informacioacuten se analizoacute en conjunto con la reconstruccioacuten

de los LUCC entre 1975 y 2014 y el anaacutelisis limnoloacutegico del lago Ello nos permitioacute

evaluar coacutemo el δ15N de los sedimentos lacustres refleja los valores δ15N de la

cuenca en el Lago Vichuqueacuten y el control que ejerce el clima en la sentildeal isotoacutepica

de POM Este capiacutetulo seraacute sometido a la revista Science of total environmet

proximamente En la elaboracioacuten del mauscrito han colaborado Claudio Latorre

Blas Valero-Garceacutes Matiacuteas Frugone Pablo Sarricolea Leonardo Villacis y M Laura

Carrevedo

25

Entre los principales resultados encontramos que el δ15N en los sedimentos

lacustres es maacutes positivo con presencia de agricultura en la cuenca y maacutes negativo

cuando esta es reemplazada por cobertura arboacuterea bien sea plantaciones

forestales bien sea bosque nativo A su vez durante la estacioacuten seca y caacutelida la

mayor entrada al lago es viacutea fijacioacuten de N atmosfeacuterico (bajos valores de δ15NPOM)

Durante la estacioacuten huacutemeda en cambio prevalecen los aportes de la cuenca con

altos valores de δ15NPOM Ello estariacutea evidenciando un cambio estacional en la

composicioacuten de especies en verano ligado a especies fijadoras de N y en invierno

las algas y microorganismos que consumen el DIN de la columna de agua

Referencias

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea AM Marquet PA 2010 From the Holocene to the Anthropocene A historical framework for land cover change in southwestern South America in the past 15000 years Land use policy 27 148ndash160 httpsdoiorg101016jlandusepol200907006

Battye W Aneja VP Schlesinger WH 2017 Earth rsquo s Future Is nitrogen the

next carbon  Earth rsquo s Future Global Biogeochem Cycles 30 1000ndash1014 httpsdoiorg101002eft2235

Bruland GL MacKenzie RA 2010 Nitrogen Source Tracking with δN Content

of Coastal Wetland Plants in Hawaii J Environ Qual 39 409 httpsdoiorg102134jeq20090005

Diacuteaz FP Frugone M Gutieacuterrez RA Latorre C 2016 Nitrogen cycling in an

extreme hyperarid environment inferred from δ15 N analyses of plants soils and herbivore diet Sci Rep 6 1ndash11 httpsdoiorg101038srep22226

Ekdahl EJ Teranes JL Wittkop CA Stoermer EF Reavie ED Smol JP

2007 Diatom assemblage response to Iroquoian and Euro-Canadian eutrophication of Crawford Lake Ontario Canada J Paleolimnol 37 233ndash246 httpsdoiorg101007s10933-006-9016-7

Elbert W Weber B Burrows S Steinkamp J Buumldel B Andreae MO

Poumlschl U 2012 Contribution of cryptogamic covers to the global cycles of carbon and nitrogen Nat Geosci 5 459ndash462

26

httpsdoiorg101038ngeo1486 Elser J 2011 A world awash with nitrogen Science 334 1504ndash1506

httpsdoiorg101126science1215567 ARTICLE Engstrom DR Almendinger JE Wolin JA 2009 Historical changes in

sediment and phosphorus loading to the upper Mississippi River Mass-balance reconstructions from the sediments of Lake Pepin J Paleolimnol 41 563ndash588 httpsdoiorg101007s10933-008-9292-5

Erisman J W Sutton M A Galloway J Klimont Z amp Winiwarter W (2008)

How a century of ammonia synthesis changed the world Nature Geoscience 1(10) 636

Galloway JN Townsend AR Erisman JW Bekunda M Cai Z Freney JR

Martinelli LA Seitzinger SP Sutton MA 2008 Transformation of the Nitrogen Cycle  Science (80- ) 320 889ndash892

httpsdoiorg101126science1136674 Garreaud RD Alvarez-Garreton C Barichivich J Pablo Boisier J Christie

D Galleguillos M LeQuesne C McPhee J Zambrano-Bigiarini M 2017 The 2010-2015 megadrought in central Chile Impacts on regional hydroclimate and vegetation Hydrol Earth Syst Sci 21 6307ndash6327 httpsdoiorg105194hess-21-6307-2017

Gruber N Galloway JN 2008 An Earth-system perspective of the global

nitrogen cycle Nature 451 293ndash296 httpsdoiorg101038nature06592 Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater eutrophic lake Limnol Oceanogr 51 2837ndash2848 httpsdoiorg104319lo20065162837

IPCC 2013 Climate Change 2013 The Physical Science BasisContribution of

Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press Cambridge United Kingdom and New York NY USA

httpsdoiorg101017CBO9781107415324 Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos Transactions

American Geophysical Union httpsdoiorg1010292007EO070007 Martel-Cea A Maldonado A Grosjean M Alvial I de Jong R Fritz SC von

Gunten L 2016 Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical Central Chile (32iumliquestfrac12S 3050iumliquestfrac12miumliquestfrac12asl) Palaeogeogr Palaeoclimatol Palaeoecol 461 44ndash54 httpsdoiorg101016jpalaeo201608003

McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE 2007

Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470

27

httpsdoiorg101073pnas0701779104 McLauchlan KK Gerhart LM Battles JJ Craine JM Elmore AJ Higuera

PE Mack MC McNeil BE Nelson DM Pederson N Perakis SS 2017 Centennial-scale reductions in nitrogen availability in temperate forests of the United States Sci Rep 7 1ndash7 httpsdoiorg101038s41598-017-08170-z

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash1643 httpsdoiorg1011770959683613496289

Meyers PA Teranes JL 2001 Sediment organic matter in Tracking

Environmental Change Using Lake Sediments Volume 2 Physical and Geochemical Methods httpsdoiorg1018971551-5028(1999)018lt0231SOMCAAgt23CO2

Myers N Mittermeler RA Mittermeler CG Da Fonseca GAB Kent J

2000 Biodiversity hotspots for conservation priorities Nature httpsdoiorg10103835002501

Pentildeuelas J Poulter B Sardans J Ciais P Van Der Velde M Bopp L

Boucher O Godderis Y Hinsinger P Llusia J Nardin E Vicca S Obersteiner M Janssens IA 2013 Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe Nat Commun 4 httpsdoiorg101038ncomms3934

Prieto M Salazar D Valenzuela MJ 2019 The dispossession of the San

Pedro de Inacaliri river Political Ecology extractivism and archaeology Extr Ind Soc httpsdoiorg101016jexis201902004

Robertson GP Vitousek P 2010 Nitrogen in Agriculture Balancing the Cost of

an Essential Resource Ssrn 34 97ndash125 httpsdoiorg101146annurevenviron032108105046

Sardans J Rivas-Ubach A Pentildeuelas J 2012 The CNP stoichiometry of

organisms and ecosystems in a changing world A review and perspectives Perspect Plant Ecol Evol Syst 14 33ndash47 httpsdoiorg101016jppees201108002

Schindler DW Howarth RW Vitousek PM Tilman DG Schlesinger WH

Matson PA Likens GE Aber JD 2007 Human Alteration of the Global Nitrogen Cycle Sources and Consequences Ecol Appl 7 737ndash750 httpsdoiorg1018901051-0761(1997)007[0737haotgn]20co2

Scott E and EM Grantzs 2013 N2 fixation exceeds internal nitrogen loading as

a phytoplankton nutrient source in perpetually nitrogen-limited reservoirs Freshwater Science 2013 32(3)849ndash861 10189912-1901

28

Stocker TF Dahe Q Plattner G-K Alexander L V Allen SK Bindoff NL Breacuteon F-M Church JA Cubash U Emori S Forster P Friedlingstein P Talley LD Vaughan DG Xie S-P 2013 Technical Summary in Climate Change 2013 The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change httpsdoiorg101017 CBO9781107415324005

Talbot M R (2002) Nitrogen isotopes in palaeolimnology In Tracking

environmental change using lake sediments (pp 401-439) Springer Dordrecht

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status J Paleolimnol 47 693ndash706 httpsdoiorg101007s10933-012-9593-6

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M Eggenberger U Grob P Urrutia R Morales A

2009 Pollution and eutrophication history AD 1800-2005 as recorded in sediments from five lakes in Central Chile Glob Planet Change 68 198ndash208 httpsdoiorg101016jgloplacha200904004

Woodward CA Potito AP Beilman DW 2012 Carbon and nitrogen stable

isotope ratios in surface sediments from lakes of western Ireland Implications for inferring past lake productivity and nitrogen loading J Paleolimnol 47 167ndash184 httpsdoiorg101007s10933-011-9568-z

Xu H Yu K Lan J Sheng E Liu B Ye Y Hong B Wu H Zhou K

Yeager KM 2016 Different responses of sedimentary δ15N to climatic changes and anthropogenic impacts in lakes across the Eastern margin of the Tibetan Plateau J Asian Earth Sci 123 111ndash118 httpsdoiorg101016jjseaes201603024

29

CAPIacuteTULO 1 A COMBINED APPROACH TO ESTABLISHING THE TIMING

AND MAGNITUDE OF ANTHROPOGENIC NUTRIENT ALTERATION IN A

MEDITERRANEAN COASTAL LAKE- WATERSHED SYSTEM

30

A combined approach to establishing the timing and magnitude of anthropogenic

nutrient alteration in a mediterranean coastal lake- watershed system

Magdalena Fuentealbaabc Claudio Latorreabc Matiacuteas Frugoneabc Pablo

Sarricolead Santiago Giralte Manuel Contreras-Lopezf Ricardo Prego g Patricia

Bernaacuterdez g Blas Valero-Garceacutesch

a Departamento de Ecologiacutea Pontificia Universidad Catoacutelica de Chile Alameda 340 Santiago Chile

b Institute of Ecology and Biodiversity (IEB) Las Palmeras 3425 Nuntildeoa Santiago Chile

c Laboratorio Internacional de Cambio Global LINCGlobal PUC-CSIC Spain

d Departamento de Geografiacutea Universidad de Chile Marcoleta 250 Santiago Chile

e Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) CLluis Solegrave Sabaris sn Barcelona E-

08028 Spain

f Facultad de Ingenieriacutea y Centro de Estudios Avanzados Universidad de Playa Ancha Traslavintildea

450 Vintildea del Mar Chile

g Instituto de Investigaciones Marinas (CSIC) CEduardo Cabello 6 36208 Vigo Spain

h Instituto Pirenaico de Ecologiacutea (IPE-CSIC) Avenida Montantildeana 1005 Zaragoza 50059 Spain

Corresponding author

E-mail address

clatorrebiopuccl magdalenafuentealbagmailcom

Abstract

Since the industrial revolution and especially during the Great Acceleration (1950

CE) human activities have profoundly altered the global nutrient cycle through land

use and cover changes (LUCC) However the timing and intensity of recent N

variability together with the extent of its impact in terrestrial and aquatic ecosystems

and coupled effects of regional LUCC and climate are not well understood Here

we used a multiproxy approach (sedimentological geochemical and isotopic

31

analyses historical records climate data and satellite images) to evaluate the role

of LUCC as the main control for N cycling in a coastal watershed system of central

Chile during the last few centuries The largest changes in N dynamics occurred in

the mid-1970s associated with the replacement of native forests and grasslands for

livestock grazing by plantations of introduced Monterey pine (Pinus radiata) and

eucalyptus (Eucalyptus globulus) Lake productivity increased and is evidenced by

an increase trend in δ15N values Our study shows that anthropogenic land

usecover changes are key in controlling nutrient supply and N availability in

Mediterranean watershed ndash lake systems and that large-scale forestry

developments during the mid-1970s likely caused the largest changes in central

Chile

Keywords Anthropocene Organic geochemistry watershedndashlake system Stable

Isotope Analyses Land usecover change Nitrogen cycle Mediterranean

ecosystems central Chile

1 INTRODUCTION

Human activities have become the most important driver of the nutrient cycles in

terrestrial and aquatic ecosystems since the industrial revolution (Gruber and

Galloway 2008 Galloway et al 2008 Holtgrieve et al 2011 Fowler et al 2013

Goyette et al 2016) Among these N is a common nutrient that limits productivity

in terrestrial and aquatic ecosystems (Vitousek and Howarth 1991 McLauchlan et

al 2013) With the advent of the Haber-Bosch industrial N fixation process in the

early 20th century total N fluxes have surpassed previous planetary boundaries

32

(Galloway et al 2008 Elser 2011) reaching unprecedented values (ie tipping

points) in the Earth system especially during what is now termed the Great

Acceleration (which began in the 1950s) which intensified in the 1970s (Howarth

2004 Steffen et al 2015) Yet dramatic changes in LUCC have occurred in the last

few centuries mainly linked to forestry and agro-pastoral activities (Poraj-Goacuterska et

al 2017 Ge et al 2019 Cheng et al 2019) These have had large impacts on N

(and Carbon -C-) availability in terrestrial and aquatic ecosystems but the synergic

effect with climate change and global N dynamics has not been established

(Vitousek et al 1997 Mclauchlan et al 2007 2013 Pongratz et al 2010

Woodward et al 2012 Mclauchlan et al 2017)

The onset of the Anthropocene poses significant challenges in mediterranean

regions that have a strong seasonality of hydrological regimes and an annual water

deficit (Stocker et al 2013) Mediterranean climates occur in all continents

(California central Chile Australia South Africa circum-Mediterranean regions)

providing a unique opportunity to investigate global change processes during the

Anthropocene in similar climate settings but with variable geographic and cultural

contexts The effects of global change in mediterranean watersheds have been

analyzed from different perspectives hydrology (Giorgi 2006 Arnell and Gosling

2013 Prudhomme et al 2014) vegetation dynamics (Lenihan et al 2003 Vicente-

Serrano et al 2013 Matesanz and Valladares 2014) sediment dynamics (Garciacutea-

Ruiz et al 2013 Garciacutea-Ruiz 2010 Syvitski et al 2005) changes in

biogeochemical cycles (Thomas et al 2013 Fowler et al 2013 Frank et al 2015)

carbon storage (Muntildeoz-Rojas et al 2015) and biodiversity (Hooper et al 2012) A

recent review showed an extraordinarily high variability of erosion rates in

mediterranean watersheds positive relationships with slope and annual

33

precipitation and the paramount effect of land use (Garciacutea-Ruiz et al 2015)

However the temporal context and effect of LUCC on nutrient supply to

mediterranean lakes has not been analyzed in much detail

Major LUCC in central Chile occurred during the Spanish Colonial period

(17th-18th centuries) (Armesto 1994 Gurnell et al 2001 Figueroa et al 2004

Martiacuten-Foreacutes et al 2012 Contreras-Loacutepez et al 2014) with the onset of

industrialization and mostly during the mid to late 20th century (von Gunten et al

2009 Gayo et al 2012) Recent copper pollution caused by 20th century mining

and industrial smelters has been documented in cores throughout the Andes

(Laguna el Ocho and Laguna Ensuentildeo von Gunten et al 2009) and also from our

surveys in the central valley (Batuco wetland) coastal range (Cordillera de Name)

and along the coast itself (Bucalemito and Colejuda) (Valero-Garceacutes et al 2010

unpublished data)

Paleolimnological studies have shown how these systems respond to

climate LUCC and anthropogenic impacts during the last millennia (Jenny et al

2002 2003 Villa Martiacutenez et al 2002 Frugone-Aacutelvarez et al 2017 Contreras et

al 2018) Furthermore changes in sediment and nutrient cycles have also been

identified in associated terrestrial ecosystems dating as far back as the Spanish

Conquest and related to fire clearance and wood extraction practices of the native

forests (Armesto 1994 Contreras-Loacutepez et al 2014) Nevertheless pollen and

limnological evidence argue for a more recent timing of the largest anthropogenic

impacts in central Chile For example paleo records show that during the mid-20th

century increased soil erosion followed replacement of native forest by Pinus

radiata and Eucalyptus globulus plantations at Laguna Matanzas Aculeo and

34

Vichuqueacuten lakes (Jenny et al 2002 Villa-Martiacutenez et al 2002 2003 Frugone-

Aacutelvarez et al 2017)

Lakes are a central component of the global carbon cycle Lakes act as a

sink of the carbon cycle both by mineralizing terrestrially derived organic matter and

by storing substantial amounts of organic carbon (OC) in their sediments (Anderson

et al 2009) Paleolimnological studies have shown a large increase in OC burial

rates during the last century (Heathcote et al 2015) however the rates and

controls on OC burial by lakes remain uncertain as do the possible effects of future

global change and the coupled effect with the N cycle LUCC intensification of

agriculture and associated nutrient loading together with atmospheric N-deposition

are expected to enhance OC sequestration by lakes Climate change has been

mainly responsible for the increased algal productivity since the end of the 19th

century and during the late 20th century in lakes from both the northern (Ruumlhland et

al2015) and southern hemispheres (Michelutti et al 2015 Carrevedo et al 2015)

but many studies suggest a complex interaction of global warming and

anthropogenic influences and it remains to be proven if climate is indeed the only

factor controlling these transitions (Catalaacuten et al 2013) Alternative causes for

recent N (Galloway et al 2008) increases in high altitude lakes such as catchment

mediated processes cannot be ruled out (Camarero and Catalan 2012 Fritz and

Anderson 2013) Few lake-watershed systems have robust enough chronologies of

recent changes to compare variations in C and N with regional and local processes

and even fewer of these are from the southern hemisphere (McLauchlan et al

2007 Holtgrieve et al 2011)

In this paper we present a multiproxy lake-watershed study including N and

C stable isotope analyses on a series of short cores from Laguna Matanzas in

35

central Chile focused in the last 200 years We complemented our record with land

use surveys satellite and aerial photograph studies Our major objectives are 1) to

reconstruct the dynamics among climate human activities and changes in the N

cycle over the last two centuries 2) to evaluate how human activities have altered

the N cycle during the Great Acceleration (since the mid-20th century)

2 STUDY SITE

Laguna Matanzas (33ordm45rsquoS 71ordm 40acuteW 7 m asl Fig 1) is a coastal lake located

in central Chile near to a large populated area (Santiago gt6106 inhabitants) The

lake has a surface area of 15 km2 with a max depth of 3 m and a watershed of 30

km2 The lake basin is emplaced over Pleistocene-Holocene aeolian and alluvial fan

deposits (SERNAGEOMIN 2003) A recent phase of dune activity occurred from the

mid to late Holocene which mostly sealed off the basin from the ocean (Villa-

Martinez 2002) Climate in Laguna Matanzas is characterized by cool-wet winters

and hot-dry summers with annual precipitation of ~510 mm and a mean annual

temperature of 12ordmC Central Chile is in the transition zone between the southern

hemisphere mid-latitude westerlies belt and the South Pacific Anticyclone (or SPA)

(Garreaud et al 2009) In winter precipitation is modulated by the north-west

displacement of the SPA the northward shift of the westerlies wind belt and an

increased frequency of storm fronts stemming off the Southern Hemisphere

Westerly Winds (SWW) (Frugone-Aacutelvarez et al 2017) Austral summers are

typically dry and warm as a strong SPA blocks the northward migration of storm

tracks stemming off the SWW

36

Historic land cover changes started after the Spanish conquest with a Jesuit

settlement in 1627 CE near El Convento village and the development of a livestock

ranch that included the Matanzas watershed After the Jesuits were expelled from

South America in 1778 CE the farm was bought by Pedro Balmaceda and had more

than 40000 head of cattle around 1800 CE (Contreras-Lopez et al 2014) The first

Pinus radiata and Eucalyptus globulus trees were planted during the second half of

the 19th century and were mostly used for dune stabilization (Albert 1900 Gibson

1972) However the main plantation phase occurred 60 years ago (Villa-Martinez

2002) as a response to the application of Chilean Forestry Laws promulgated in

1931 and 1974 and associated state subsidies

Major land cover changes occurred recently from 1975 to 2008 as shrublands

were replaced by more intensive land uses practices such as farmland and tree

plantations (Schulz et al 2010) Laguna Matanzas is part of the Reserva Nacional

Humedal El Yali protected area (Ramsar Ndeg 878) Despite this protected status the

lake and its watershed have been heavily affected by intense agricultural and

farming activities during the last decades The main inlet ldquoLas Rosasrdquo has been

diverted for crop irrigation causing a significant loss of water input to the lake

Consequently the flooded area of the lake has greatly decreased in the last couple

of decades (Fig 1b) Exotic tree species cover a large surface area of the

watershed Recently other activities such as farms for intensive chicken production

have been emplaced in the watershed

37

Figure 1 Laguna Matanzas a) Digital Elevation Model showing the watershed and

the surface hydrologic connection with Colejuda and Cabildo lakes b) Climograph

depicting the warm dry season in austral summer c) Annual precipitation from

1965-2015 (arrow shows start of the most recent ldquomega-droughtrdquo- see Garreaud et

al 2017) d) A decline of lake area occurs between 2007 and 2018 Lake surface

area decreased first along the western sector (in 2007) followed by more inland

areas (in 2018)

38

3 RESULTS

31 Age Model

The age model for the Matanzas sequence was developed using Bacon software

to establish the deposition rates and age uncertainty (Blaauw and Christen 2011)

It is based on 210Pb and 137Cs dates and two 14C dates (Table 2) According to this

age model the lake sequence spans the last 1000 years (Fig 2) A major breccia

layer (unit 3b) was deposited during the early 18th century which agrees with

historic documents indicating that a tsunami impacted Laguna Matanzas and its

watershed in 1730 CE (Contreras-Loacutepez et al 2014) Here we focus in the last 200

years were the most important changes occurred in terms of LUCC (after the

sedimentary hiatus caused by the tsunami) The Spanish colonial period (17th -18th

century) brought new forms of territorial management along with an intensification

of watershed use which remained relatively unchanged until the 1900s

39

Figure 2 a) Age-depth model obtained for the Laguna de Matanzas sedimentary

sequence A hiatus occurs at 80 cm depth (unit 3b) The section of core used for our

analysis is highlighted in a red rectangle b) Close up of the age model used for

analysis of recent anthropogenic influences on the N cycle c) Information regarding

the 14C dates used to construct age model

Lab code Sample ID

Depth (cm) Material Fraction of modern C

Radiocarbon age

Pmc Error BP Error

D-AMS 021579

MAT11-6A 104-105 Bulk Sediment

8843 041 988 37

D-AMS 001132

MAT11-6A 1345-1355

Bulk Sediment

8482 024 1268 21

POZ-57285

MAT13-12 DIC Water column 10454 035 Modern

Table 2 Laguna Matanzas radiocarbon dates

32 The sediment sequence

Laguna Matanzas sediments consist of massive to banded mud with some silt

intercalations They are composed of silicate minerals (plagioclase quartz and clay

minerals) with relatively high TOC content (Fig 3) Pyrite is a common mineral

indicating dominant anoxic conditions in the lake sediments whereas aragonite

occurs only in the uppermost section Mineralogical analyses visual descriptions

texture and geochemical composition were used to characterize five main facies

(Fig 3) F1 (organic-rich mud) represents baseline sedimentation in a shallow well-

mixed brackish highly productive lake and F1acute (dark orange) is a less organic facies

than F1 (more details see table in the supplementary material) F2 (massive to

banded silty mud) indicates periods of higher clastic input into the lake but finer

(mostly clay minerals) likely from suspension deposition associated with flooding

40

events Aragonite (up to 15 ) occurs in both facies but only in samples from the

uppermost 30 cm and it is interpreted as endogenic linked to higher MgFe waters

and elevated biologic productivity

Figure 3 Sedimentary facies and units mineralogy grain size elemental geochemical

and isotopic composition of Laguna Matanzas core Values highlighted in gray indicate

that these are above average

The banded to laminated fining upward silty clay layers (F3) reflect

deposition by high energy turbidity currents The presence of aragonite suggests

that littoral sediments were incorporated by these currents Non-graded laminated

coarse silt layers (F4) do not have aragonite indicating a dominant watershed

41

sediment source Both facies are interpreted as more energetic flood deposits but

with different sediment sources A unique breccia layer with coarse silt matrix and

cm-long soft clasts (F5) is interpreted as a high-energy event (ie a tsunami)

capable of eroding the littoral zone and depositing coarse clastic material in the

distal zone of the lake Similar coarse breccia layers have been found at several

coastal sites in Chile and interpreted as tsunami-related deposits (Vargas et al

2005 Le Roux et al 2008)

33 Sedimentary units

Three main units and six subunits have been defined (Fig 3) based on

sedimentary facies and sediment composition We use ZrTi as an indicator of the

mineral fraction transported from the watershed (Marzecoacuteva et al 2011) as higher

ZrTi (F3 and F4) is commonly associated with coarser sediments (Cuven et al

2010) A high correlation among Br BrTi and TOC (r = 046-087 p value=0)

supports the use of BrTi as an indicator of lake productivity (Marzecoacuteva et al 2011

Frugone-Aacutelvarez et al 2017) The MnFe ratio is indicative of lake bottom

oxygenation (Naecher et al 2013) as under reducing conditions Mn mobilizes more

than Fe leading to a decreased MnFe ratio (Marzecoacuteva et al 2011) SrTi indicates

periods of increased aragonite formation as Sr is preferentially included in the

aragonite mineral structure (Veizer et al 1971) (See supplementary material)

The basal unit (3c 129 to 99 cm) is relatively organic-rich (TOC mean=26

BioSi mean=5) and composed by F1 (without aragonite) with some coarser F4

flood layers (ZrTi mean=025) Unit 3b (98 to 80 cm) is interpreted as a tsunami or

storm surge deposit (breccia F5 grading into massive to banded silt F2) Unit 3a

(79 to 73 cm) is characterized by relatively low productivity (TOC=2 BrTi=002

42

BioSi=4) under anoxic conditions (MnFe=001) Unit 2a (72 to 31cm) has

relatively less organic content and more intercalated clastic facies F3 and F4 The

top of this unit (43-30 cm) has elevated TS values The Subunit 1b (30-20 cm)

shows increasing TOC BioSi and BrTi values (TOC mean = 29 BioSi mean =

54 BrTi mean=004) and the upper subunit 1a (19-0 cm) has the highest TOC

(mean = 64) and BioSi (mean = 56) high BrTi mean = 010 and the presence

of aragonite More frequent anoxic conditions (MnFe lower than 001) during units

3 and 2 shifted towards more oxic episodes (MnFe = 003) in unit 1 (Fig 3)

34 Isotopic signatures

Figure 4 shows the isotopic signature from soil samples of the major land

usescover present in the Laguna Matanzas used as an end member in comparison

with the lacustrine sedimentary units δ15N from cropland samples exhibit the

highest values whereas grassland and soil samples from lake shore areas have

intermediate values (Fig 4) Tree plantations and native forests have similarly low

δ15N values (+11 permil SD=24) All samples (except those from the lake shore)

exhibit low δ13C values (from ndash285permil to ndash298permil) CNmolar from agriculture land

lakeshore area and non-vegetation areas samples display the lowest values (about

18) CNmolar from tree plantations and native forest have the highest values (383

and 267 respectively)

43

Figure 4 C-N stable isotope plot showing a comparison of lake sediments grouped

by sedimentary units (MAT11-6A) with the soil end members of present-day (lake

shore and land usecover) from Laguna Matanzas

The δ15N values from sediment samples (MAT11-6A) range from ndash15 and

+53permil (mean= +35 SD=05) δ13C values range from ndash266permil to ndash202permil (mean=

ndash240 SD=14) In unit 3c δ15N and δ13C show relatively high values (mean=

+41permil and ndash233permil respectively) δ15N and δ13C from unit 3b and 3a fluctuate at

slightly lower values than in 3c (mean δ15N from 3a= +38permil and 3b mean= +39permil

mean δ13C from 3a= ndash242permil and 3b mean= ndash244permil) In unit 2a δ15N values are

relatively high (mean= +38permil) but show a slightly decreasing trend (from +52 to

+24permil at 66 cm and 36 cm respectively) δ13C also decreases (mean= ndash242permil)

reaching minimum values at 45 cm (ndash266permil) with a sharp increase towards the top

of this unit with maximum values ca ndash210permil Unit 1 exhibits the lowest δ15N values

(1a mean= +11permil 1b mean= +28permil) with negative values in the uppermost

44

sediments (ndash04permil at 14 cm) δ13C values show a decreasing trend over most of

subunit 1b and increase only near the very top of this unit

35 Recent land use changes in the Laguna Matanzas watershed

Major LUCC from 1975 (unit 1b) to 2016 CE in the Laguna Matanzasacutes

watershed is summarized in Figure 5 The watershed has a surface area of 30 km2

of which native forest (36) and grassland areas (44) represented 80 of the

total surface in 1975 The area occupied by agriculture was only 02 and tree

plantations were absent Isolated burned areas (33) were located mostly in the

northern part of the watershed By 1989 tree plantations surface area had increased

to 5 burned areas to 17 and agricultural fields to 9 (a 45-fold increase) and

native forest and grassland sectors decreased to 23 and 27 respectively By

2016 agricultural land and tree plantations have increased to 17 of the total area

whereas native forests decreased to 21

45

Figure 5 Land uses and cover changes from 1975 to 2016 in Laguna Matanzas

watershed from natural cover and areas for livestock grazing (grassland) to the

expansion of agriculture and forest plantation

4 DISCUSSION

41 N and C dynamics in Laguna Matanzas

Small lakes with relatively large watersheds such as Laguna Matanzas would

be expected to have relatively high contributions of allochthonous C to the sediment

OM (Gu et al 2006) Terrestrial C3 plants (δ13C =ndash26 to ndash28permil Meyers and Terranes

2001 Ku et al 2007) are dominant in the Laguna Matanzas watershed Likewise

our soil samples ranged across similar although slightly more negative values

46

(δ13C = ndash30 to ndash28permil Fig 4) to those proposed by Meyers and Terranes (2001)

and are used here as terrestrial end members oil samples were taken from the lake

shore (δ13C = ndash22permil) and POM from surface water (δ13C = ndash24permil) were more

positive than the terrestrial end member and are used as lacustrine end members

Thus more negative δ13C values in lake sediment samples are attributed to higher

OM inputs from terrestrial vegetation and more positive δ13C values have increased

aquatic OM (Gu et al 2006 Torres et al 2012) Phytoplankton preferentially uptake

12C leaving the DIC pool enriched in 13C (Gu et al 2006) especially when there are

no important external sources of C (eg decreased C input from the watershed)

Therefore during events of elevated primary productivity the phytoplankton uptakes

12C until its depletion and are then obligated to use the heavier isotope resulting in

an increase in δ13C Changes in lake productivity thus greatly affect the C isotope

signal (Torres et al 2012) with high productivity leading to elevated δ13C values

(Torres et al 2012 Gu et al 2006)

In a similar fashion the N isotope signatures in Laguna Matanzas reflect a

combination of factors including different N sources (autochthonousallochthonous)

and lake processes such as productivity isotope fractionation in the water column

and sediment denitrification Elevated δ15N values from a POM sample (+22permil) and

average values from the lake shore (mean=+34permil SD=028) are used as aquatic

end members whereas terrestrial samples have values from +10 +24 (tree species)

to +77permil +35 (agriculture) which we use as terrestrial end members (Fig 4)

Autochthonous OM in aquatic ecosystems typically displays low δ15N values

when the OM comes from N-fixing species Atmospheric fixation of N2 by

cyanobacteria ends in OM with δ15N values close to 0permil (Leng et al 2006)

Phytoplankton preferentially uptake 14N from Dissolved Inorganic Nitrogen (DIN) in

47

the water column and derived OM typically have δ15N values lower than DIN values

When productivity increases the remaining DIN becomes depleted in 14N which in

turn increases the δ15N values of phytoplankton over time especially if the N not

replenished (Torres et al 2012) Thus high POM δ15N values from Laguna

Matanzas reflect elevated phytoplankton productivity with a 14N- depleted DIN In

addition N-watershed inputs also contribute to high δ15N values Heavily impacted

watersheds by human activities are often reflected in isotope values due to land use

changes and associated modified N fluxes For example the input of N runoff

derived from the use of inorganic fertilizers leads to the presence of elevated δ15N

(between ndash4 to +4permil) values in the water bodies (Elliott and Brush 2006 Diebel and

Vander Zanden 2009) Widory et al (2004) reported a direct relationship between

elevated δ15N values and increased nitrate concentration from manure in the

groundwater of Brittany (France) Terranes and Bernasconi (2000) found a good

correlation between augmented nutrient loading and a progressive increase in δ15N

values of sedimentary OM related to agricultural land use

Post-depositional diagenetic processes can further affect C and N isotope

signatures Several studies have shown a decrease in δ13C values of OM in anoxic

environments particularly during the first years of burial related to the selective

preservation of OM depleted in 13C (Hollander and Smith 2001 Lehmann et al

2002 Gӓlman et al 2009 Torres et al 2012) Diagenetic processes can also lead

to post-burial N isotope enrichment of the sediments Indeed 14N is consumed more

rapidly than 15N by denitrifying bacteria which intensifies under anoxic conditions

(Diebel and Vander Zanden 2009) Thus the remaining OM pool will be enriched

in 15N leaving to elevated δ15N values (Granger et al 2008 Menzel et al 2013)

48

In summary the relatively high δ15N values in sediments of Laguna Matanzas

reflect N input from an agriculturegrassland watershed with positive synergetic

effects from increased lake productivity enrichment of DIN in the water column and

most likely denitrification The increase of algal productivity associated with

increased N terrestrial input andor recycling of lake nutrients (and lesser extent

fixing atmospheric N) and denitrification under anoxic conditions can all increase

δ15N values (Fig 3) In addition elevated lake productivity without C replenishing

(eg by terrestrial C input) produces shifts towards positive δ13C values whereas C

input from the watershed generates more negative δ13C values

42 Recent evolution of the Laguna Matanzas watershed

Sedimentological compositional and geochemical indicators show three

depositional phases in the lake evolution under the human influence in the Laguna

Matanzas over the last two hundred years Although the record is longer (around

1000 years) we analyzed the last two centuries (unit 2 and 1) to provide a recent

historical context for the large changes detected during the 20th century

The first phase lasted from the beginning of the 19th century until ca 1940

(unit 2a Fig 3 4) and was characterized by moderate productivity with elevated

sediment input from the watershed as indicated by our geochemical proxies (BrTi

= 004 AlTi gt 01 Fig 6) Higher lake levels and dominant anoxic bottom conditions

(MnFe = 001 Fig3) can be related to increased precipitation (mean= 557 mmyr)

and lower temperatures (summer annual temperature lt19ordmC) During the Spanish

colonial period the Laguna Matanzas watershed was used as a livestock farm

(Jesuits 1627-1780 unit 3 followed by the Pedro Balmaceda era 1780-1810- unit

2a) (Contreras-Loacutepez et al 2014) The main buildings and farm facilities at the El

49

Convento village During this period livestock grazing and lumber extraction for

mining would have involved extensive deforestation and loss of native vegetation

(eg Armesto et al 1994 2010) However the Matanzas pollen record does not

show any significant regional deforestation during this period (Villa Martiacutenez 2002)

suggesting that the impact may have been highly localized

Lake productivity sediment input and elevated precipitation (Fig 6) all

suggest that N availability was related to this increased input from the watershed

The N from cow manure and soil particles would have led to higher δ15N values

(Elliot and Brush 2016) In addition anoxic lake bottom conditions would lead to

even further enrichment of buried sediment N The δ13C values lend further support

to our interpretation of increased sediment input -and N- from the watershed

Decreased δ13C values reach their lowest values in the entire record (ndash270permil) at

ca 1910 CE (Fig 4 6)

During most of the 19th century human activities in Laguna Matanzas were

similar to those during the Spanish Colonial period However the appearance of

Pinus radiata and Eucalyptus globulus pollen ca 1890 CE (Gibson 1972) the dune

stabilization-afforestation program which began ca 1900 CE (Albert 1900) and the

application of the Chilean forestry law of 1931 (DFL nordm265) contributed to an

increased capacity of the surrounding vegetation to retain nutrients and sediments

The law subsidized forest plantations in areas devoid of vegetation and prohibited

the cutting of forest on slopes greater than 45ordm These land use changes were coeval

with decreased sediment inputs (AlTi trend) from the watershed slightly increased

lake productivity (BrTi from 001 to 003) and a decrease in annual precipitation

(Fig 6) N isotope values become more negative during this period although they

remained high (from +49permil to +37permil) whereas the δ13C trend towards more

50

positive values reflects changes in the N source from watershed to in-lake dynamics

(e g increased endogenic productivity)

The second phase started after 1940 and is clearly marked by an abrupt

change in the general trend of δ15N that oscillates around +41permil (SD = 04permil) during

the first phase to +24permil (SD = 14permil) during the second These δ15N trends reflect

the lowest watershed nutrient and sediment inputs (based on the AlTi record)

decreased precipitation (mean = 318 mm year) and a slight increase in lake

productivity (increased BrTI) Depositional dynamics in the lake likely crossed a

threshold as human activity intensified throughout the watershed and lake levels

decreased

During the Great Acceleration δ15N values shifted towards higher values to

ca 3permil with an increase in δ13C values that are not reflected either in lake

productivity or lake level As the sediment input from the watershed increased and

precipitation remained as low as the previous decade δ15N values during this period

are likely related to watershed clearance which would have increased both nutrient

and sediment input into the lake

The δ13C trend to more positive values reaching the peaks in the 1960s (ndash

212permil) at the same time as the peaks in temperature (196 ordmC mean annual) with a

downward trend in precipitation A shift in OM origin from macrophytes and

watershed input influences to increased lake productivity could explain this trend

(Fig 4 1b)

In the 1970s the Laguna Matanzasacute watershed was mostly covered by native

forest (36) and grassland areas were intended for livestock grazing (44 Fig 5)

Both soils have δ15NSoil lt 5permil (Fig 4) Farming fields occupied a very small area and

tree plantations were almost nonexistent The decreasing trend in δ15N values seen

51

in our record is interrupted by several large peaks that occurred between ca 1975

and ca 1989 when the native forest and grassland areas fell by 23 and 27

respectively largely due to fires affecting 17 of the forests Agriculture fields

increased by 4 and forest plantations increased by 9 (unit 1a) Concomitantly

sediment ndash and likely N - inputs from the watershed decreased (as indicated by the

trend in AlTi) the precipitation was still relatively low (Fig 6) These changes are

likely related to the increase of vegetation cover especially of tree plantations (which

have more negative δ15N values) The small increase in productivity in the lake could

have been favored by increased temperature (von Gunten et al 2009) After 1989

the increase in agriculture land (17 in 2016) correlates with increasing δ15N δ13C

and TOC trends in spite of declining rainfall The increase of forest plantations was

mostly in response to the implementation of the Law Decree of Forestry

Development (DL 701 of 1974) that subsidized forest plantation After 1989 the

increase in agricultural land (17 in 2016) is synchronous with increasing δ15N

δ13C TOC and MnFe trends despite the decline in rainfall and overall lower lake

levels as more water is used for irrigation

The third phase started c 1990 CE (unit 1a) when OM accumulation rates

increase and δ13C δ15N decreased reaching their lowest values in the sequence

around 2000 CE Afterward during the 21st century δ13C and δ15N values again

began to increase The onset of unit 1 is marked by increased lake productivity and

decreased sediment input (AlTi lt 02) synchronous with intensive farming replacing

forestry and extensive agriculture (Fig 5 6)

A change in the general trend of δ15N values which decreased until 1990

(unit 1a) as the native forest and grassland area fell to 23 and 27 respectively

is most likely due to deforestation and fires Agriculture surface increased to 4 and

52

forest plantations increased by 9 (Fig 5) Concomitantly sediment ndash and likely N

ndash inputs from the watershed decreased probably related to the low precipitation (Fig

1b) and the increase of vegetation cover in the watershed in particularly by tree

plantations (with more negative δ15N Fig 4)

At present agriculture and tree plantations occupy around 34 of the

watershed surface whereas native forests and grassland cover 21 and 25

respectively Lake productivity as indicated by BrTi (Fig6) is higher and generates

OM with lower δ15N and higher δ13C values (about +2permil and ndash20permil ca 2000 CE

respectively) due to in-lake processes (ie biological N fixation and nutrient

recycling) and driven by changes in the arboreal cover which diminishes nutrient

flux into the lake (Fig6)

53

Figure 6 Anthropogenic and climatic forcing and lake dynamics response

(productivity sediment input N and C cycles) at Matanzas Lake over the last two

54

centuries Mean annual precipitation reconstructed and temperatures (von Gunten

et al 2009) Vertical gray bars indicate mega-droughts

5 CONCLUSIONS

Human activities have been the main factor controlling the N and C cycle in

the Laguna Matanzas during the last two centuries The N isotope signature in the

lake sediments reflects changes in the watershed fluxes to the lake but also in-lake

processes such as productivity and post-depositional changes Denitrification could

have been a dominant process during periods of increased anoxic conditions which

were more frequent prior to Great Acceleration (1950 CE) Higher δ15N and lower

δ13C values are associated with increased nutrient input from the watershed due to

increased livestock grazing and agriculture pressure (phase 1 Fig 7a) whereas

lower isotope values occurred during periods of increased forest plantations (phase

3 Fig 7c) During periods of increased lake productivity - such as in the last few

decades - δ15N values increased significantly

The most important change in C and N dynamics in the lake occurred after the

1950s (Phase 2 and 3) as tree plantations dominated the watershed Recent

changes in N dynamics can be explained by the higher nutrient contribution

associated with intensive agriculture (i e fertilizers) since the 1990s Although the

replacement of livestock activities with forestry and farming seems to have reduced

nutrient and soil export from the watershed to the lake the inefficient use of fertilizer

(by agriculture) can be the ultimate responsible for lake productivity increase during

the last decades

55

Figure 7 Schematic diagrams illustrating the main factors controlling the

isotope N signal in sediment OM of Laguna Matanzas N input from watershed

depends on human activities and land cover type Agriculture practices and cattle

(grassland development) contribute more N to the lake than native forest and

plantations Periods of higher productivity tend to deplete the dissolved inorganic N

in 14N resulting in higher δ15N (OM) The denitrification processes are more effective

in anoxic conditions associated with higher lake levels

6 METHODS

Short sediment cores were recovered from Laguna Matanzas using an Uwitec

gravity piston corer in 2011 and 2013 (Fig 1a) Sediment cores (MAT11-6A 129 cm

MAT13-2A 149 cm MAT13-3A 33 cm MAT13-4A 99 cm) were split

photographed sub-sampled and stored at the Pyrenean Institute of Ecology (IPE-

CSIC Spain) Core MAT11-6A was obtained from the central sector of the lake and

56

was selected for detailed multiproxy analyses (including elemental geochemistry C

and N isotope analyses XRF and 14C dating)

The isotope analyses (δ13C and δ15N) were performed at the Laboratory of

Biogeochemistry and Applied Stable Isotopes (LABASI-PUC Chile) using a Delta

V Advantage IRMS coupled to a Thermo Flash 2000 Elemental Analyzer via a

Conflo IV interface Isotope results are expressed in standard delta notation (δ) in

per mil (permil) relative to the standards Pee Dee Belemnite (Vienna Pee Dee

Belemnite) for C and to atmospheric N2 for N (Leng et al 2006) Sediment samples

for δ13Corg were pre-treated with 50 ml of HCl and 50 ml of deionized water and

dried at 60ordmC for 4 hr to remove carbonates (Harris et al 2011)

Total Carbon (TC) Total Organic Carbon (TOC) Total Inorganic Carbon (TIC)

and Total Sulphur (TS) were measured every cm with a LECO SC 144 DR at IPE-

CSIC XRF measurements were carried out every 4 mm in MAT11-1A-1G core using

an AVAATECH X-ray Fluorescence II core scanner at the University of Barcelona

(Spain) Results are expressed as element intensities in counts per second (cps)

Tube voltage was operated at 30 kV and 10 kV to obtain the abundances of 15

elements (Al Si S Cl K Ca Ti V Mn Fe Br Rb Sr Y Zr) with an average at

least of 1600 cps (less for Br=1000)

Biogenic silica content mineralogy and grain size were measured every 4

cm Biogenic silica was measured following Mortlock and Froelich (1989) and

Bernaacuterdez et al (2005) using an Auto Analyzer Technicon AAII for dissolved silicate

analysis Mineralogy was analyzed with a Siemens D-500 X-ray diffractometer (Cu

kα 40 kV 30 mA graphite monochromator) at the ICTJA-CSIC (Spain) Grain size

analyses were performed in a Beckmann Coulter LS 13 320 Particle Size Analyzer

57

at the IPE-CSIC The samples were classified according to textural classes as

follows clay (lt2 μm) silt (20-2 microm) and sand (gt2 microm) fractions

The age-depth model for the Laguna Matanzas sedimentary sequence was

constructed using 210Pb and 137Cs dating techniques (MAT13-4A) as well as two 14C

AMS dates on bulk sediment samples (MAT11-6A fig 2) We dated the dissolved

inorganic carbon (DIC) in the water column and no significant reservoir effect is

present in the modern-day water column (10454 + 035 pcmc Table 2) An age-

depth model was obtained with the Bacon R package to estimate the deposition

rates and associated age uncertainties along the core (Blaauw and Christen 2011)

To estimate LUCC of Laguna Matanzasacutes watershed we use satellite images

Landsat MSS for 1975 Landsat TM for 1989 and Landsat OLI for 2016 all taken in

summer or autumn (Table 1) We performed supervised classification of land uses

(maximum likelihood algorithm) for each year (1975 1989 and 2016) and the results

were mapped using software ArcGIS 102 in 2017

Satellite Images Acquisition Date

Resolution

Landsat MSS 19750322 60 m

Landsat TM 19890217 30 m

Landsat OLI 20160404 30 m

Table 1 Landsat imagery

Surface water samples were filtered for obtained particulate organic matter In

addition soil samples from the main land usecover present in the Laguna Matanzas

watershed were collected Elemental C N and their corresponding isotopes from

POM and soil were obtained at the LABASI and used here as end members

Daily precipitation at Santo Domingo (33ordm39`S 71ordm3 6`W)- the nearest weather

station to Laguna Matanzasndash was compiled using the redPrec R package (Fig1 d

Serrano-Notivoli et al 2017 Sarricolea et al 2019) To extend our precipitation

58

reconstruction back to 1824 we correlated this dataset with that available for

Santiago The Santiago data was compiled from data published in the Anales of

Universidad of Chile (1850) for the years 1824 to 1849 Almeyda (1940) for the years

1849 to 1864 and the Quinta Normal series from 1866 to the present (Direccioacuten

Meteoroloacutegica de Chile) We generated a linear regression model between the

presentday Santo Domingo station and the compiled Santiago data with a Pearson

coefficient of 087 and p-valuelt 001

Acknowledgments This research was funded by grants CONICYT AFB170008

to the Institute of Ecology and Biodiversity (IEB) and FONDECYT 1150763 (to CL)

Doctoral grant Becas Chile 21150224 MEDLANT (Spanish Ministry of Economy

and Competitiveness grant CGL2016-76215-R) Additional funding was provided

by the Laboratorio Internacional de Cambio Global (LINCGlobal PUC-CSIC) We

thank R Lopez E Royo and M Gallegos for help with sample analyses We thank

the Laboratory of Biogeochemistry and Applied Stable Isotopes (LABASI) of the

Department of Ecology (PUC) for sample analyses

References

Albert F 1900 Las dunas o sean arenas volantes voladeros arenas muertas invasion de las arenas playas I meacutedanos del centro de Chile comprendiendo el litoral desde el liacutemite norte de la provincia de Aconcagua hasta el liacutemite sur de la de Arauco Memorias cientiacuteficas I Lit

Anderson NJ W D Fritz SC 2009 Holocene carbon burial by lakes in SW

Greenland Glob Chang Biol httpsdoiorg101111j1365-2486200901942x

Armesto J Villagraacuten C Donoso C 1994 La historia del bosque templado

chileno Ambient y Desarro 66 66ndash72 httpsdoiorg101007BF00385244

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea

AM Marquet PA 2010 From the Holocene to the Anthropocene A

59

historical framework for land cover change in southwestern South America in the past 15000 years Land use policy 27 148ndash160 httpsdoiorg101016jlandusepol200907006

Arnell NW Gosling SN 2013 The impacts of climate change on river flow

regimes at the global scale J Hydrol 486 351ndash364 httpsdoiorg101016JJHYDROL201302010

Bernaacuterdez P Prego R Franceacutes G Gonzaacutelez-Aacutelvarez R 2005 Opal content in

the Riacutea de Vigo and Galician continental shelf Biogenic silica in the muddy fraction as an accurate paleoproductivity proxy Cont Shelf Res httpsdoiorg101016jcsr200412009

Blaauw M Christen JA 2011 Flexible paleoclimate age-depth models using an

autoregressive gamma process Bayesian Anal 6 457ndash474 httpsdoiorg10121411-BA618

Brush GS 2009 Historical land use nitrogen and coastal eutrophication A

paleoecological perspective Estuaries and Coasts 32 18ndash28 httpsdoiorg101007s12237-008-9106-z

Camarero L Catalan J 2012 Atmospheric phosphorus deposition may cause

lakes to revert from phosphorus limitation back to nitrogen limitation Nat Commun httpsdoiorg101038ncomms2125

Carrevedo ML Frugone M Latorre C Maldonado A Bernaacuterdez P Prego

R Caacuterdenas D Valero-Garceacutes B 2015 A 700-year record of climate and environmental change from a high Andean lake Laguna del Maule central Chile (36degS) Holocene 25 956ndash972 httpsdoiorg1011770959683615574584

Catalan J Pla-Rabeacutes S Wolfe AP Smol JP Ruumlhland KM Anderson NJ

Kopaacuteček J Stuchliacutek E Schmidt R Koinig KA Camarero L Flower RJ Heiri O Kamenik C Korhola A Leavitt PR Psenner R Renberg I 2013 Global change revealed by palaeolimnological records from remote lakes A review J Paleolimnol httpsdoiorg101007s10933-013-9681-2

Chen Y Y Huang W Wang W H Juang J Y Hong J S Kato T amp

Luyssaert S (2019) Reconstructing Taiwanrsquos land cover changes between 1904 and 2015 from historical maps and satellite images Scientific Reports 9(1) 3643 httpsdoiorg101038s41598-019-40063-1

Contreras S Werne J P Araneda A Urrutia R amp Conejero C A (2018)

Organic matter geochemical signatures (TOC TN CN ratio δ 13 C and δ 15 N) of surface sediment from lakes distributed along a climatological gradient on the western side of the southern Andes Science of The Total Environment 630 878-888 httpsdoiorg101016jscitotenv201802225

Contreras-Loacutepez M (Playa AUHVC (Universidad de VRFS (Pontificia UC

60

de V 2014 ELEMENTOS DE LA HISTORIA NATURAL DEL An Mus Hist Natulas Vaplaraiso 27 51ndash67

Cuven S Francus P Lamoureux SF 2010 Estimation of grain size variability

with micro X-ray fluorescence in laminated lacustrine sediments Cape Bounty Canadian High Arctic J Paleolimnol 44 803ndash817 httpsdoiorg101007s10933-010-9453-1

Diebel M Vander Zanden MJ 201209 Nitrogen stable isotopes in streams

stable isotopes Nitrogen effects of agricultural sources and transformations Ecol Appl 19 1127ndash1134 httpsdoiorg10189008-03271

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in

freshwater wetlands record long-term changes in watershed nitrogen source and land use SO - Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash2916

Elser J 2011 A world awash with nitrogen Science 334 1504ndash1506 Espizua LE Pitte P 2009 The Little Ice Age glacier advance in the Central

Andes (35degS) Argentina Palaeogeogr Palaeoclimatol Palaeoecol 281 345ndash350 httpsdoiorg101016JPALAEO200810032

Figueroa JA Castro S A Marquet P A Jaksic FM 2004 Exotic plant

invasions to the mediterranean region of Chile  causes history and impacts Invasioacuten de plantas exoacuteticas en la regioacuten mediterraacutenea de Chile  causas historia e impactos Rev Chil Hist Nat 465ndash483 httpsdoiorg104067S0716-078X2004000300006

Fowler D Coyle M Skiba U Sutton MA Cape JN Reis S Sheppard

LJ Jenkins A Grizzetti B Galloway N Vitousek P Leach A Bouwman AF Butterbach-bahl K Dentener F Stevenson D Amann M Voss M 2013 The global nitrogen cycle in the twenty- first century Philisophical Trans R Soc B httpsdoiorghttpdxdoiorg101098rstb20130164

Frank D Reichstein M Bahn M Thonicke K Frank D Mahecha MD

Smith P van der Velde M Vicca S Babst F Beer C Buchmann N Canadell JG Ciais P Cramer W Ibrom A Miglietta F Poulter B Rammig A Seneviratne SI Walz A Wattenbach M Zavala MA Zscheischler J 2015 Effects of climate extremes on the terrestrial carbon cycle Concepts processes and potential future impacts Glob Chang Biol httpsdoiorg101111gcb12916

Fritz SC Anderson NJ 2013 The relative influences of climate and catchment

processes on Holocene lake development in glaciated regions J Paleolimnol httpsdoiorg101007s10933-013-9684-z

Frugone-Aacutelvarez M Latorre C Giralt S Polanco-Martiacutenez J Bernaacuterdez P

61

Oliva-Urcia B Maldonado A Carrevedo ML Moreno A Delgado Huertas A Prego R Barreiro-Lostres F Valero-Garceacutes B 2017 A 7000-year high-resolution lake sediment record from coastal central Chile (Lago Vichuqueacuten 34degS) implications for past sea level and environmental variability J Quat Sci 32 830ndash844 httpsdoiorg101002jqs2936

Galloway JN Townsend AR Erisman JW Bekunda M Cai Z Freney JR

Martinelli LA Seitzinger SP Sutton MA 2008 Transformation of the Nitrogen Cycle  Science (80- ) 320 889ndash892 httpsdoiorg101126science1136674

Gaumllman V Rydberg J Bigler C 2009 Decadal diagenetic effects on δ 13 C and

δ 15 N studied in varved lake sediment Limnol Oceanogr 54 917ndash924 httpsdoiorg104319lo20095430917

Garciacutea-Ruiz JM 2010 The effects of land uses on soil erosion in Spain A

review Catena httpsdoiorg101016jcatena201001001

Garciacutea-Ruiz JM Loacutepez-Moreno JI Lasanta T Vicente-Serrano SM

Gonzaacutelez-Sampeacuteriz P Valero-Garceacutes BL Sanjuaacuten Y Begueriacutea S Nadal-Romero E Lana-Renault N Goacutemez-Villar A 2015 Los efectos geoecoloacutegicos del cambio global en el Pirineo Central espantildeol una revisioacuten a distintas escalas espaciales y temporales Pirineos httpsdoiorg103989Pirineos2015170005

Garciacutea-Ruiz JM Nadal-Romero E Lana-Renault N Begueriacutea S 2013

Erosion in Mediterranean landscapes Changes and future challenges Geomorphology 198 20ndash36 httpsdoiorg101016jgeomorph201305023

Garreaud RD Vuille M Compagnucci R Marengo J 2009 Present-day

South American climate Palaeogeogr Palaeoclimatol Palaeoecol httpsdoiorg101016jpalaeo200710032

Gayo EM Latorre C Jordan TE Nester PL Estay SA Ojeda KF

Santoro CM 2012 Late Quaternary hydrological and ecological changes in the hyperarid core of the northern Atacama Desert (~21degS) Earth-Science Rev httpsdoiorg101016jearscirev201204003

Ge Y Zhang K amp Yang X (2019) A 110-year pollen record of land use and land

cover changes in an anthropogenic watershed landscape eastern China Understanding past human-environment interactions Science of The Total Environment 650 2906-2918 httpsdoiorg101016jscitotenv201810058

Goyette J Bennett EM Howarth RW Maranger R 2016 Global

Biogeochemical Cycles 1000ndash1014 httpsdoiorg1010022016GB005384Received

Granger J Sigman DM Lehmann MF Tortell PD 2008 Nitrogen and

oxygen isotope fractionation during dissimilatory nitrate reduction by

62

denitrifying bacteria 53 2533ndash2545 httpsdoiorg10230740058342

Gruber N Galloway JN 2008 An Earth-system perspective of the global

nitrogen cycle Nature 451 293ndash296 httpsdoiorg101038nature06592

Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater eutrophic lake Limnol Oceanogr 51 2837ndash2848 httpsdoiorg104319lo20065162837

Gurnell AM Petts GE Hannah DM Smith BPG Edwards PJ Kollmann

J Ward J V Tockner K 2001 Effects of historical land use on sediment yield from a lacustrine watershed in central Chile Earth Surf Process Landforms 26 63ndash76 httpsdoiorg1010021096-9837(200101)261lt63AID-ESP157gt30CO2-J

Heathcote A J et al Large increases in carbon burial in northern lakes during the

Anthropocene Nat Commun 610016 doi 101038ncomms10016 (2015) Hollander DJ Smith MA 2001 Microbially mediated carbon cycling as a

control on the δ13C of sedimentary carbon in eutrophic Lake Mendota (USA) New models for interpreting isotopic excursions in the sedimentary record Geochim Cosmochim Acta httpsdoiorg101016S0016-7037(00)00506-8

Holtgrieve GW Schindler DE Hobbs WO Leavitt PR Ward EJ Bunting

L Chen G Finney BP Gregory-Eaves I Holmgren S Lisac MJ Lisi PJ Nydick K Rogers LA Saros JE Selbie DT Shapley MD Walsh PB Wolfe AP 2011 A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere Science (80) 334 1545ndash1548 httpsdoiorg101126science1212267

Hooper DU Adair EC Cardinale BJ Byrnes JEK Hungate BA Matulich

KL Gonzalez A Duffy JE Gamfeldt L Connor MI 2012 A global synthesis reveals biodiversity loss as a major driver of ecosystem change Nature httpsdoiorg101038nature11118

Horvatinčić N Sironić A Barešić J Sondi I Krajcar Bronić I Borković D

2016 Mineralogical organic and isotopic composition as palaeoenvironmental records in the lake sediments of two lakes the Plitvice Lakes Croatia Quat Int httpsdoiorg101016jquaint201701022

Howarth RW 2004 Human acceleration of the nitrogen cycle Drivers

consequences and steps toward solutions Water Sci Technol httpsdoiorg1010382Fscientificamerican0490-56

Jenny B Valero-Garceacutes BL Urrutia R Kelts K Veit H Appleby PG Geyh

M 2002 Moisture changes and fluctuations of the Westerlies in Mediterranean Central Chile during the last 2000 years The Laguna Aculeo record (33deg50primeS) Quat Int 87 3ndash18 httpsdoiorg101016S1040-

63

6182(01)00058-1

Jenny B Wilhelm D Valero-Garceacutes BL 2003 The Southern Westerlies in

Central Chile Holocene precipitation estimates based on a water balance model for Laguna Aculeo (33deg50primeS) Clim Dyn 20 269ndash280 httpsdoiorg101007s00382-002-0267-3

Leng M J Lamb A L Heaton T H Marshall J D Wolfe B B Jones M D

amp Arrowsmith C 2006 Isotopes in lake sediments In Isotopes in palaeoenvironmental research (pp 147-184) Springer Dordrecht

Le Roux JP Nielsen SN Kemnitz H Henriquez Aacute 2008 A Pliocene mega-

tsunami deposit and associated features in the Ranquil Formation southern Chile Sediment Geol 203 164ndash180 httpsdoiorg101016jsedgeo200712002

Lehmann M Bernasconi S Barbieri a McKenzie J 2002 Preservation of

organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis Geochim Cosmochim Acta 66 3573ndash3584 httpsdoiorg101016S0016-7037(02)00968-7

Lenihan JM Drapek R Bachelet D Neilson RP 2003 Climate change

effects on vegetation distribution carbon and fire in California Ecol Appl httpsdoiorg101890025295

McLauchlan K K Gerhart L M Battles J J Craine J M Elmore A J

Higuera P E amp Perakis S S (2017) Centennial-scale reductions in nitrogen availability in temperate forests of the United States Scientific reports 7(1) 7856 httpsdoi101038s41598-017-08170-z

Martel-Cea A Maldonado A Grosjean M Alvial I de Jong R Fritz SC von

Gunten L 2016 Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical Central Chile (32ordmS 3050 masl) Palaeogeogr Palaeoclimatol Palaeoecol 461 44ndash54 httpsdoiorg101016jpalaeo201608003

Martiacuten-Foreacutes I Casado MA Castro I Ovalle C Pozo A Del Acosta-Gallo

B Saacutenchez-Jardoacuten L Miguel JM De 2012 Flora of the mediterranean basin in the chilean ESPINALES Evidence of colonisation Pastos 42 137ndash160

Marzecovaacute A Mikomaumlgi a Koff T Martma T 2011 Sedimentary geochemical

response to human impact on Lake Notildemmejaumlrv Estonia Est J Ecol 60 54 httpsdoiorg103176eco2011105

Matesanz S Valladares F 2014 Ecological and evolutionary responses of

Mediterranean plants to global change Environ Exp Bot httpsdoiorg101016jenvexpbot201309004

64

McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE 2007

Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470 httpsdoiorg101073pnas0701779104

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash1643 httpsdoiorg1011770959683613496289

Menzel P Gaye B Wiesner MG Prasad S Stebich M Das BK Anoop A

Riedel N Basavaiah N 2013 Influence of bottom water anoxia on nitrogen isotopic ratios and amino acid contributions of recent sediments from small eutrophic Lonar Lake central India Limnol Oceanogr 58 1061ndash1074 httpsdoiorg104319lo20135831061

Meyers PA Teranes JL 2001 Sediment organic matter in Tracking

Environmental Change Using Lake Sediments Volume 2 Physical and Geochemical Methods httpsdoiorg1018971551-5028(1999)018lt0231SOMCAAgt23CO2

Michelutti N Wolfe AP Cooke CA Hobbs WO Vuille M Smol JP 2015

Climate change forces new ecological states in tropical Andean lakes PLoS One httpsdoiorg101371journalpone0115338

Muntildeoz-Rojas M De la Rosa D Zavala LM Jordaacuten A Anaya-Romero M

2011 Changes in land cover and vegetation carbon stocks in Andalusia Southern Spain (1956-2007) Sci Total Environ httpsdoiorg101016jscitotenv201104009

Naeher S Gilli A North RP Hamann Y Schubert CJ 2013 Tracing bottom

water oxygenation with sedimentary MnFe ratios in Lake Zurich Switzerland Chem Geol 352 125ndash133 httpsdoiorg101016jchemgeo201306006

Poraj-Goacuterska A I Żarczyński M J Ahrens A Enters D Weisbrodt D amp

Tylmann W (2017) Impact of historical land use changes on lacustrine sedimentation recorded in varved sediments of Lake Jaczno northeastern Poland Catena 153 182-193 httpdxdoiorg101016jcatena201702007

Pongratz J Reick CH Raddatz T Claussen M 2010 Biogeophysical versus

biogeochemical climate response to historical anthropogenic land cover change Geophys Res Lett 37 1ndash5 httpsdoiorg1010292010GL043010

Prudhomme C Giuntoli I Robinson EL Clark DB Arnell NW Dankers R

Fekete BM Franssen W Gerten D Gosling SN Hagemann S Hannah DM Kim H Masaki Y Satoh Y Stacke T Wada Y Wisser D 2014 Hydrological droughts in the 21st century hotspots and uncertainties from a global multimodel ensemble experiment Proc Natl Acad Sci httpsdoiorg101073pnas1222473110

65

Ruumlhland KM Paterson AM Smol JP 2015 Lake diatom responses to

warming reviewing the evidence J Paleolimnol httpsdoiorg101007s10933-

015-9837-3

Sarricolea P Meseguer-Ruiz Oacute Serrano-Notivoli R Soto M V amp Martin-Vide

J (2019) Trends of daily precipitation concentration in Central-Southern Chile Atmospheric research 215 85-98 httpsdoiorg101016jatmosres201809005

Sernageomin 2003 Mapa geologico de chile version digital Publ Geol Digit Serrano-Notivoli R de Luis M Begueriumlia S 2017 An R package for daily

precipitation climate series reconstruction Environ Model Softw httpsdoiorg101016jenvsoft201611005

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98 httpsdoiorg1011772053019614564785

Stine S 1994 Extreme and persistent drought in California and Patagonia during

mediaeval time Nature 369 546ndash549 httpsdoiorg101038369546a0

Stocker TF Dahe Q Plattner G-K Alexander L V Allen SK Bindoff NL

Breacuteon F-M Church JA Cubash U Emori S Forster P Friedlingstein P Talley LD Vaughan DG Xie S-P 2013 Technical Summary in Climate Change 2013 The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change httpsdoiorg101017 CBO9781107415324005

Syvitski JPM Voumlroumlsmarty CJ Kettner AJ Green P 2005 Impact of humans

on the flux of terrestrial sediment to the global coastal ocean Science 308(5720) 376-380 httpsdoiorg101126science1109454

Thomas RQ Zaehle S Templer PH Goodale CL 2013 Global patterns of

nitrogen limitation Confronting two global biogeochemical models with observations Glob Chang Biol httpsdoiorg101111gcb12281

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status J Paleolimnol 47 693ndash706 httpsdoiorg101007s10933-012-9593-6

Urbina Carrasco MX Gorigoitiacutea Abbott N Cisternas Vega M 2016 Aportes a

la historia siacutesmica de Chile el caso del gran terremoto de 1730 Anuario de Estudios Americanos httpsdoiorg103989aeamer2016211

Vargas G Ortlieb L Chapron E Valdes J Marquardt C 2005 Paleoseismic

inferences from a high-resolution marine sedimentary record in northern Chile

66

(23degS) Tectonophysics httpsdoiorg101016jtecto200412031 399(1-4) 381-398httpsdoiorg101016jtecto200412031

Valero-Garceacutes BL Latorre C Morelliacuten M Corella P Maldonado A Frugone M Moreno A 2010 Recent Climate variability and human impact from lacustrine cores in central Chile 2nd International LOTRED-South America Symposium Reconstructing Climate Variations in South America and the Antarctic Peninsula over the last 2000 years Valdivia p 76 (httpwwwpagesunibechproductsmeeting-products1024-2nd-international-lotred-south-america-symposium-reconstructing-climate-variations-in-south-america-and-the-antarctic-peninsula-over-the-last-2000-yearshttpwwwpagesunibechproductsmeeting-products1024-2nd-international-lotred-south-america-symposium-reconstructing-climate-variations-in-south-america-and-the-antarctic-peninsula-over-the-last-2000-years

Vicente-Serrano SM Gouveia C Camarero JJ Begueria S Trigo R

Lopez-Moreno JI Azorin-Molina C Pasho E Lorenzo-Lacruz J Revuelto J Moran-Tejeda E Sanchez-Lorenzo A 2013 Response of vegetation to drought time-scales across global land biomes Proc Natl Acad Sci httpsdoiorg101073pnas1207068110

Villa Martiacutenez R P 2002 Historia del clima y la vegetacioacuten de Chile Central

durante el Holoceno Una reconstruccioacuten basada en el anaacutelisis de polen sedimentos microalgas y carboacuten PhD

Villa-Martiacutenez R Villagraacuten C Jenny B 2003 Pollen evidence for late -

Holocene climatic variability at laguna de Aculeo Central Chile (lat 34o S) The Holocene 3 361ndash367

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Human alteration of the global nitrogen cycle sources and consequences Ecological applications 7(3) 737-750 httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M Rein B Urrutia R amp Appleby P (2009) A

quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo central Chile back to AD 850 The Holocene 19(6) 873-881 httpsdoiorg1011770959683609336573

von Gunten L Grosjean M Eggenberger U Grob P Urrutia R Morales A

2009 Pollution and eutrophication history AD 1800-2005 as recorded in sediments from five lakes in Central Chile Glob Planet Change 68 198ndash208 httpsdoiorg101016jgloplacha200904004

Widory D Kloppmann W Chery L Bonnin J Rochdi H Guinamant JL

2004 Nitrate in groundwater An isotopic multi-tracer approach J Contam Hydrol 72 165ndash188 httpsdoiorg101016jjconhyd200310010

67

Woodward CA Potito AP Beilman DW 2012 Carbon and nitrogen stable isotope ratios in surface sediments from lakes of western Ireland Implications for inferring past lake productivity and nitrogen loading J Paleolimnol 47 167ndash184 httpsdoiorg101007s10933-011-9568-z

68

Supplementary material

Facie Name Description Depositional Environment

F1 Organic-rich

mud

Massive to banded black

organic - rich (TOC up to 14 )

mud with aragonite in dm - thick

layers Slightly banded intervals

contain less OM (TOClt4) and

aragonite than massive

intervals High MnFe (oxic

bottom conditions) High CaTi

BrTi and BioSi (up to 5)

Distal low energy environment

high productivity well oxygenated

and brackish waters and relative

low lake level

F2 Massive to

banded silty clay

to fine silt

cm-thick layers mostly

composed by silicates

(plagioclase quartz cristobalite

up to 65 TOC mean=23)

Some layers have relatively high

pyrite content (up to 25) No

carbonates CaTi BrTi and

BioSi (mean=48) are lower

than F1 higher ZrTi (coarser

grain size)

Deposition during periods of

higher sediment input from the

watershed

69

F3 Banded to

laminated light

brown silty clay

cm-thick layers mostly

composed of clay minerals

quartz and plagioclase (up to

42) low organic matter

(TOC mean=13) low pyrite

and BioSi content

(mean=46) and some

aragonite

Flooding events reworking

coastal deposits

F4 Laminated

coarse silts

Thin massive layers (lt2mm)

dominated by silicates Low

TOC (mean=214 ) BrTi

(mean=002) MnFe (lt02)

TIC (lt034) BioSi

(mean=46) and TS values

(lt064) and high ZrTi

Rapid flooding events

transporting material mostly

from within the watershed

F5 Breccia with

coarse silt

matrix

A 17 cm thick (80-97 cm

depth) layer composed by

irregular mm to cm-long ldquosoft-

clastsrdquo of silty sediment

fragments in a coarse silt

matrix Low CaTi BrTi and

MnFe ratios and BioSi

Rapid high energy flood

events

70

(mean=43) and high ZrTi

(gt018)

Table Sedimentological and compositional characteristics of Laguna Matanzas

facies

71

CAPIacuteTULO 2 STABLE ISOTOPES TRACK LAND USE AND COVER

CHANGES IN A MEDITERRANEAN LAKE IN CENTRAL CHILE OVER THE

LAST 600 YEARS

72

Stable isotopes track land use and cover changes in a mediterranean lake in

central Chile over the last 600 years

Magdalena Fuentealbaabc Claudio Latorreabc Matiacuteas Frugone-Aacutelvarezabc Pablo

Sarricolead Leonardo Villaciacutese M Laura Carrevedob Blas Valero-Garceacutescg

a Departamento de Ecologiacutea Pontificia Universidad Catoacutelica de Chile Alameda 340 Santiago Chile

b Institute of Ecology and Biodiversity (IEB) Las Palmeras 3425 Nuntildeoa Santiago Chile

c Laboratorio Internacional de Cambio Global LINCGlobal PUC-CSIC Spain

d Departamento de Geografiacutea Universidad de Chile Marcoleta 250 Santiago Chile

e Departamento de Ecologiacutea Universidad de ChileLas Palmeras 3425 Nuntildeoa Santiago Chile

f Instituto Pirenaico de Ecologiacutea (IPE-CSIC) Avenida Montantildeana 1005 Zaragoza 50059 Spain

Corresponding authors E-mail addresses clatorrebiopuccl magdalenafuentealbagmailcom

Key words Anthropocene lake sediment δsup1⁵N δsup1sup3C Great Acceleration organic

geochemistry watershedndashlake system Stable Isotope Analyses land usecover

change Nitrogen cycle mediterranean ecosystems central Chile

73

Abstract

Nutrient fluxes in many aquatic ecosystems are currently being overridden by

anthropic controls especially since the industrial revolution (mid-1800s) and the

Great Acceleration (mid-1900s) Land use and cover changes (LUCC) alter the

availability and fluxes of nutrients such as nitrogen that are transferred via runoff

and groundwater into lakes By altering lake productivity and trophic status these

changes are often preserved in the sedimentary record Here we use

geolimnological proxies and stable isotope analyses (δsup1⁵N δsup13C) on lake sediments

to reconstruct the lake-watershed nutrient transfer in a central Chilean lake (Lago

Vichuqueacuten) over the past 600 years We compare our multiproxy record from recent

lake sediments to the soilvegetation relationship across the watershed as well as

land usecover changes from 1975 to 2014 derived from satellite images Our results

show that lake sediment δsup1⁵N values increased with meadow cover but decreased

with tree plantations suggesting increased nitrogen retention when trees dominate

the watershed Our δsup1⁵N record from central Chile can thus be interpreted as a proxy

for nutrient availability over the last 600 years mainly derived from land use changes

coupled with climate drivers Although variable sources of organic matter and in situ

fractionation often hinder straightforward environmental interpretations of stable N

isotope signatures our study shows that lake sediment δsup1⁵N can be a useful tool for

assessing the contribution of past human activities in nutrient and nitrogen cycling

1 Introduction

Nitrogen (N) is a limiting nutrient in terrestrial and aquatic ecosystems (Vitousek

et al 1997) Changes in its availability can drive eutrophication and increase

pollution in these ecosystems (McLauchlan et al 2013) Although recent human

74

impacts on the global N cycle have been significant the consequences of increased

anthropogenic N on these ecosystems are unclear (Gerhart and Mclauchlan 2014

Battye et al 2017) Isotopic signatures are key to understand N dynamics in lakes

nevertheless in situ andor diagenetic fractionation along with multiple sources of

organic matter (OM) often hinder straightforward environmental interpretations from

isotopes Monitoring δ15N and δ13C values as components of the N cycle

specifically those related to the link between terrestrial and aquatic ecosystems can

help differentiate between effects from processes versus sources in stable isotope

values (eg from Particulate Organic Matter -POM- soil and vegetation) and

improve how we interpret variations in δ15N (and δ13C) values at longer temporal

scales

The main processes controlling stable N isotopes in bulk lake OM are source

lake productivity diagenesis and denitrification (Talbot 2001 Leng et al 2006

Fariacuteas et al 2009 Torres et al 2012 Brahney et al 2014) N sources depend on

contributions from the watershed (ie soil and biomass) the transfer of atmospheric

N to the lake (ie atmospheric N2 fixation) and nutrient recycling (Leng et al 2006)

Atmospheric N2 (isotopically defined as δ15N =0) is fixed by cyanobacteria with

minimal fractionation resulting in δ15NOM values that fluctuate from -2 to +2permil (Fogel

and Cifuentes 1993 Talbot 2001 Elliot and Brush 2006) Besides N2 fixation by

cyanobacteria phytoplankton species assimilate dissolved inorganic nitrogen (DIN)

and values typically range from +7 to +10permil (Xu et al 2016 Meyers et al 2003) In

addition seasonal changes in POM occur in the lake water column Gu et al (2006)

sampled the water column of Lake Wauberg (Florida USA) during a hydrologic year

and found a higher development of N fixing species during the summer A major

factor behind this increase are human activities in the watershed which control the

75

inputs of the sediment and nutrients to the lake (Woodward et al 2011) Some

studies have shown higher δ15N values in lake sediments from watersheds that are

highly affected by human activities (Bruland and Mackenzie 2010 Woodward et al

2011) Syntenic fertilizers displayed δ15N values between -4 to +4permil cattle manure

around +8 to +22permil and surface and groundwater OM between 0 to +10permil (Elliott

and Brush 2006 Leng et al 2006) Although relatively low δ15N values from

fertilizers constitute major N input to human-altered watersheds the elevated loss

of 14N via volatilization of ammonia and denitrification leaves the remaining total N

input enriched in 15N (Bruland and Mackenzie 2010)

In addition to the different sources and variations in lake productivity early

diagenesis at the sedimentndashwater interface in the sediment can further alter

sediment OM isotope values (Brahney et al 2014 Galman et al 2009) During

diagenetic loss of N in lacustrine systems kinetic fractionation occurs and the

remaining N is enriched in 15N leading to higher δ15N values (Galman et al 2006

Talbot 2001) Denitrification tends to enrich lake sediments in 15N due to the

assimilation of nitrates by denitrifying bacteria (Granger et al 2008) and is more

prevalent in anoxic environments (Brahney et al 2016 Lehman et al 2002)

Carbon isotopes in lake sediments can also provide useful information about

paleoenvironmental changes OM origin and depositional processes (Meyers et al

2003) Allochthonous organic sources (high CN ratios) produce isotope values

similar to values from catchment vegetation Autochthonous organic matter (low CN

ratio) is influenced by fractionation both in the lake and the watershed leading up to

carbon assimilation by lacustrine biota (Woodward et al 2011) Changes in

productivity greatly affect δ13COM values (Torres et al 2012) as during C uptake

plankton preferentially assimilate 12C leaving the dissolved inorganic carbon (DIC)

76

pool enriched in 13C (Gu et al 2006) with phytoplankton averaging ca 20 permil lower

than the respective δ13CDIC values (Leng et al 2006) Under conditions of low to

moderate primary productivity plankton preferentially uptake the lighter 12C

resulting in low δ13C values displayed by the OM (Torres et al 2012) Conversely

during high primary productivity phytoplankton will uptake 12C until its depletion and

is then forced to assimilate the heavier isotope resulting in an increase in δ13C

values Higher productivity in C-limited lakes due to slow water-atmosphere

exchange of CO2 also results in high δ13C values (Galman et al 2009) In these

cases algae are forced to uptake dissolved bicarbonate with δ13C values between

7 to 10permil higher than those of the atmospheric CO2 dissolved in water (Sun et al

2016 Torres et al 2012 Galman et al 2009)

Stable isotope analyses from lake sediments are thus useful tools to

reconstruct shifts in lake-watershed dynamics caused by changes in limnological

parameters and LUCC Our knowledge of the current processes that can affect

stable isotope signals in a watershed-lake system is limited however as monitoring

studies are scarce Besides in order to use stable isotope signatures to reconstruct

past environmental changes we require a multiproxy approach to understand the

role of the different variables in controlling these values Hence in this study we

carried out a detailed survey of current N dynamics in a coastal central Chilean lake

(Lago Vichuqueacuten) and a multiproxy study of a sediment record spanning the last

600 years The characterization of the recent changes in the watershed since 1970s

is based on satellite images to compare recent changes in the lake and assess how

these are related with climate variability and an ever increasing human footprint

(Lara et al 2012 Gallardo et al 2015 Steffen et al 2015) Our main goal is to

investigate how stable isotope values from lake sediment reflect changes in the lake

77

ndash watershed system during periods of high watershed disruption (eg Spanish

Conquest late XIX century Great Acceleration) and recent climate change (eg

Little Ice Age and current global warming)

2 Study Site

Lago Vichuqueacuten (34ordm49`S 72ordm04W 4 m asl 30 m of depth Fig 1) is a

mesotrophic to eutrophic lake with dominant anoxic bottom conditions that is

stratified year around (Frugone-Aacutelvarez et al 2017) The main inlets are the

Vichuqueacuten and Huintildee rivers and the only outlet is the Llico estuary that drains into

the Pacific Ocean High tides can sporadically shift the flow direction of the Llico

estuary which increases the marine influence in the lake Dune accretion gradually

limited ocean-lake connectivity until the estuary was almost completely closed off

by ca 10 ky BP and the current lake regime formed (Frugone-Aacutelvarez et al 2017)

The area is characterized by a mediterranean climate with cold-wet winters and

hot-dry summers and an annual precipitation of ~650 mm and a mean annual

temperature of 15ordmC During the austral winter months (June - August) precipitation

is modulated by north-west shifts of the South Pacific Anticyclone (SPA) followed by

an increased frequency of storm fronts stemming off the South Westerly Winds

(SWW) A strengthened SPA during austral summers (December - March) which

are typically dry and warm blocks the northward migration of storm tracks stemming

off the SWW (Fig1 Frugone-Aacutelvarez et al 2017)

78

Figure 1 a) The location of the Lago Vichuqueacuten in central Chile b) Map of land

uses and cover in 2016 c) Ombrothermic diagram mediterranean climates are

characterized by cold-wet winters with surplus moisture from June to August and

hot-dry summers d) Lake bathymetry showing location of cores and water sampling

sites used in this study

Although major land cover changes in the area have occurred since 1975 to the

present as the native forests were replaced by tree (Monterey pine and eucalyptus)

plantations the region was settled before the Spanish conquest (Frugone-Alvarez

et al 2018) Historical documents indicate that Vichuqueacuten was occupied by a

Mitimaes colony as part of the Inka empire (Odone 1998) Unlike other Andean

areas during the Inka period the introduction of corn and quinoa in the Vichuqueacuten

watershed do not seem to have intensified land use The Spanish colonial period in

Chile lasted from 1542 CE to the independence in 1810 CE The first historical

document (1550 CE) shows that the areas around Vichuqueacuten were settled by the

Spanish early on as the Vichuqueacuten watershed was given as an ldquoencomiendardquo

system to Juan Cuevas The ldquoencomiendardquo system provided the owners with land

79

and indigenous people to work but also the introduction of wheat wine cattle

grazing and logging of native forests for lumber extraction and increasing land for

agricultural activities (Odone et al 1998 Armesto et al 2010) During the 19th

century (the Republic) the export of wheat to Australia and Canada generated

intensive changes in land cover use The town of Vichuqueacuten became the regional

capital and plans to build a maritime port in the bay of Vichuqueacuten were drawn

However the fall of international markets in 1880 paralyzed these plans During the

20th century the plantation of trees (Pinus radiata and Eucalyptus globulus) in areas

cleared of native forests was subsidized by two national laws DFL nordm265 (1931) and

DFL nordm 701 (1974) both of which provided funds for such plantations During the last

decades the urbanization with summer vacation homes along the shorelines of

Lago Vichuqueacuten has greatly increased Extensive lake eutrophication is currently a

large environmental problem (EULA 2008)

3 Methods

Coring campaigns were organized from 2011 to 2015 (Fig 1d) We recovered

12 short cores and 4 long cores (up to 14 m long) at several sites using a hammer-

modified UWITEC gravity corer Sediment cores (VIC11-2A 170 cm VIC13-2B 170

cm VIC13-2D 1200 cm and VIC15-1A 119 cm) were split photographed sub-

sampled and stored in the Pyrenean Institute of Ecology (IPE-CSIC Spain) Core

VIC13-2B was selected for detailed multiproxy analyses (including elemental

geochemistry C and N isotopes XRF and 14C dating) Stable isotope analyses

(δ13C δ15N) were performed at the Laboratory of Biogeochemistry and Applied

Stable Isotopes (LABASI-PUC Chile) Sediment samples for δ13Corg were pre-

treated with 50 ml of HCl and 50 ml of deionized water and dried at 60ordmC for 4 hr to

remove carbonates (Harris et al 2011) Isotope analyses were conducted using a

80

Delta V Advantage IRMS coupled to a Thermo Flash 2000 Elemental Analyzer via

a Conflo IV interface Isotope results are expressed in standard delta notation (δ)

and expressed in per mil (permil) relative to the Pee Dee Belemnite (Vienna Pee Dee

Belemnite) for C and to atmospheric N2 for N (Leng et al 2006) Total carbon (TC)

Total Organic Carbon (TOC) Total Inorganic Carbon (TIC) and Total Sulfur (TS)

were measured every 2 cm with a LECO SC 144 DR at the IPE-CSIC

An AVAATECH X-Ray Fluorescence II core scanner with a Rh X-ray tube from

the University of Barcelona was used to obtain XRF logs every 4 mm of resolution

Results are expressed as element intensities in counts per second (cps) Tube

voltage was operated at 30 kV and 10 kV to obtain the abundances of 18 elements

(Pb Al Si S Cl K Ca Ti V Mn Fe Co Zn Br Rb Sr Y Zr) with an average of

at least of 1800 cps (less for Pb=437 and Zn=934 cps) Pb was included due to

similar behavior with Co and Fe Element ratios were calculated to describe changes

in redox conditions (MnFe) endogenic productivity (BrTi) carbonate formation

(SrCa and CaTi) and sediment input (ZrTi) (Barreiro-Lostres et al 2014

Carrevedo et al 2015 Frugone-Aacutelvarez et al 2017 Kylander et al 2011 Moreno

et al 2007a)

Several campaigns were carried out to sample the POM from the water column

two per hydrologic year from November 2015 to August 2018 A liter of water was

recovered in three sites through to the lake two are from the shallower areas (with

samples taken at 2 and 5 m depth at each site) and one in the deeper central portion

(at 2 5 and 20 m depth) of the lake (Fig 1d) The samples were filtered using glass

fiber filters (25 m) and then frozen to obtain the stable carbon and nitrogen isotope

signal of lacustrine POM Additionally soil and vegetation samples from the

following communities native species meadow hydrophytic vegetation and

81

Monterrey pine (Pinus radiata) were taken for stable isotope analyses (see in

supplementary material)

The age model for the complete Lago Vichuqueacuten sedimentary sequence is

based on Frugone-Aacutelvarez et al (2017) with the last 1000 years based on

210Pb137Cs dating techniques in VIC15-1A and 14C AMS dates on bulk sediment

samples (Supplementary Table S1) The 14C measurements of lake water DIC show

a moderate reservoir effect of 180 plusmn 25 14C yr) The revised age-depth model used

here includes three more 14C AMS dates performed with the program Bacon to

establish the deposition rates along the core (Blaauw and Christen 2011 Fig 2)

The age-depth model indicates that average resolution between 0 to 87 cm is lt2

cm per year and from 88 to 170 cm it is lt47 cm per year

82

Figure 2 Chronological age-depth model for the Lago Vichuqueacuten sedimentary

sequence spanning the last 1000 yr (see also Frugone-Alvarez et al 2017)

To estimate land use changes in the watershed we use Landsat MSS images

for 1975 and Landsat TM for 1989 and 2014 all taken in either summer or autumn

(Table 1) We performed supervised classification of land uses (maximum likelihood

83

algorithm) for each year (1975 1989 and 2014) and results were mapped using

ArcGIS 102

Table 1 Images using for LUCC reconstruction

Source of LUCC

Acquisition

Date Resolution

Landsat MSS 19750322 60 m

Landsat TM 19890217 30 m

Landsat TM 19991226 30 m

CONAF 2009 30 m

Land cover Chile 2014 30 m

CONAF 2016 30 m

Previous Work on Lago Vichuqueacuten sedimentary sequence

The sediments are organic-poor dark brown to brown laminated silt with some

intercalated thin coarser clastic layers Lacustrine facies have been classified

according to elemental composition (TOC TS TIC and TN) grain size and

sedimentary textures (Frugone-Aacutelvarez et al 2017) Four main types of lacustrine

facies were identified in this short core Facies L1 is a laminated (1cm) black to dark

brown diatom-poor silt with relatively higher TOC percentages (TOC about 185)

TS (about of 18) and TOCTN (about 92) Facies L2 is characterized by a

homogeneous black organic-poor silty clay with low TOC (mean= 13) TS (mean=

13) TOCTN (mean= 88) values Facies L3 is a laminated (1cm) black organic-

poor (TOC mean 14) silts with higher TS (mean= 21) and TOCTN ratios

(mean= 88) Facies L3 is interpreted as ldquobaselinerdquo deposition on the distal areas

84

of Vichuqueacuten lake Mineralogy is dominated by mica (muscovite) clay minerals

(chlorite) and plagioclase (albite) Quartz and calcite occur at the top and pyrite

occurs in the lower part of the sequence Facies T is composed by massive banded

sediments 4 cm thick and coarse grain size It is interpreted as an instantaneous

depositional event (for more detail see Frugone-Aacutelvarez et al 2017) In this work

we identified four subunits based on geochemical and stable isotope signals

4 Results

41 Geochemistry and PCA analysis

High positive correlations exist between Al Si K and Ti (r = 078 ndash 096

supplementary Fig S1) and between Zn Zr Rb and Y (r = 072 - 096) which reflect

the silicate content of the watershed-derived sediments (Marzecoacuteva et al 2011) Zr

is commonly associated with minerals more abundant in coarser deposits Thus the

ZrTi profile could reflect grain size (Cuven et al 2010) showing higher variability

in the upper part of the Lake Vichuqueacuten sequence and in the alternation between

facies L1 and L2 Another group of elements made up of Co Fe and Pb displayed

positive correlations (r = 067ndash 097) and represents the input of heavy metals Br

Cl and Ca show a positive correlation (r = 049 ndash 06 p-value = 00001) BrTi ratio

is interpreted as a productivity indicator due to Br having a strong affinity with humic

and organic compounds (Marzecoacuteva et al 2011 Frugone-Aacutelvarez et al 2017) In

our Lago Vichuqueacuten sequence BrTi values are high from 170 to 132 cm and from

36 cm to the top of core where it shows several sharps peaks (Fig 3) The MnFe

ratio is indicative of lake bottom oxygenation (Naecher et al 2013) as under

reducing conditions Mn tends to become more mobile than Fe leading to a

decreased MnFe (Marzecoacuteva et al 2011) Several sharp peaks in MnFe occurred

85

from 127 to 120 cm and from 57 to 30 cm (MgFegt03) The silicate group and the

Br Cl Ca Mn group are negatively correlated (r= -012 and -066)

Principal Component Analysis (PCA) was undertaken on the XRF

geochemical data to investigate the main factors controlling sediment deposition in

Lago Vichuqueacuten (Fig 3) The four main eigenvectors explain 801 of the variance

(supplementary material Table S2) The principal component (PC1) explain 437

of the total of variance and grouped elements are associated with terrigenous input

to the lake Positive values of the biplot have been attributed to higher heavy metals

deposition (Pb Co and Fe) and negative values to higher silicate input (Al K Ti and

Si) in a high energy catchment environment (Zr) The PC2 explains 198 of the

total of variance and highlights the endogenic productivity in the lake The positive

loading is compound by Br Cl Ca and Sr and to a lesser extent by Y Zn Rb and

Mn The PC2 may explain both the precipitation of carbonates (Ca Sr) and biological

production (Br)

86

Figure 3 Principal Component Analysis of XRF geochemical measurements in

VIC13-2B Lago Vichuqueacuten lake sediments

42 Sedimentary units

Based on geochemical and stable isotope analysis we identified four

lithological subunits in the short core sedimentary sequence Our PCA analyses and

Pearson correlations pointed out which variables were better for characterizing the

subunits (Fig 4) in terms of endogenic productivity heavy metals and terrestrial

input The unit 2c (170-131 cm) is characterized by the occurrence of some clastic

layers (L2 from 160 and 150 cm) high δsup1⁵N values (mean= +59 plusmn 04permil) with

Magnetic Susceptibility (MS) BrTi ZrTi and SrCa values increase towards the top

Also it has relatively low δsup1sup3C values (mean= -265 plusmn 11permil) and CNmolar ratios

(mean=78 plusmn 04) The ZrTi show upwards increasing values reaching the highest

values of the sequence at the top of this unit suggesting a coarsening upward trend

and relatively higher depositional energy The MS trend also indicates higher

erosion in the watershed and enhanced delivery of ferromagnetic minerals likely

from soil particles particularly from 150 to 160 cm (Frugone-Aacutelvarez at al 2017)

The subunit 2b (130-118 cm) is also composed of black silts but it has the

lowest MS values of the whole sequence and its onset is marked by a sharp

decrease in ZrTi This subunit is marked by sharp peaks of MnFe (at 126 and 120

cmgt027) SrCa (at 125 and 120 cmgt033) CaTi (at 124 and 120 cmgt199) TOC

(about 26 at 130 124 122 and 118 cm) and δsup1⁵N (gt+67permil at 126 and 120 cm)

BrTi oscillates around low values (about 01) whereas the δsup1sup3C values range

between -262 and -282permil

87

The unit 2a (58-117 cm) shows increasing and then decreasing MS values

and displayed sharps peaks of δsup1⁵N (gt64 at 102 to 99 87 and 75 cm) and CN

(about 10 at 86 74 66 and 60 cm) SrCa (mean = 04 plusmn 013) BrTi (mean = 008

plusmn 002) MnFe (mean = 002 plusmn 001) and δsup1sup3C (mean = -260 plusmn 07permil) oscillate in

low values The upper part of this unit (72 ndash 57 cm) shows an increase of SrCa

(from 03 to 05)

The upper unit 1a (0 - 57 cm) starts with a fine clastic layer (T at 57 to 54

cm) interpreted as deposition during a high-energy event It is characterized by

lower BrTi (mean = 003 plusmn 002) TOC (mean = 12 plusmn 03) and δsup1sup3C (mean= -

266 plusmn 06permil) higher δsup1⁵N (mean = +55 plusmn 08 permil) This unit is made of alternating

fine (lt 1cm) black and dark brown laminae with carbonate (L1 facies) Recently

deposited sediments show decreasing MS values increasing TOC (mean= 15 plusmn

04 ) sharp peaks of BrTi (gt015 at 33 21 5 and 1 cm) and the lowest δsup1⁵N values

of the entire record (mean= 45 plusmn 06 permil) and δsup1sup3C values (mean= -277 plusmn 09 permil)

Heavy metal content increases abruptly in the upper section of the core (2 - 20 cm)

(peaks of FeTi CoTi and PbTi)

88

Figure 4 Sedimentary units of Lago Vichuqueacuten sedimentary sequence Selected

variables illustrate watershed input (Magnetic Susceptibility ZrTi CoTi and MnFe)

endogenic productivity (SrCa CaTi TS) organic matter source (BrTi TOC

CNmolar and stable isotope records (δ13Corg and δ15Nbulk)

43 Recent seasonal changes of particulate organic matter on water column

The average of δ15NPOM from the three sites across to the lake was +86 plusmn 58

permil oscillating widely from -14 to +193permil (Fig 5) Important seasonal differences

occur at 2 and 5 m depth with more negative values during summer (~53 plusmn 52 permil)

than winter (~122 plusmn 40permil) At 20 m depth δ15NPOM values exhibit small seasonal

ranges (mean = +10permil for winter and +87permil for summer) The δ13CPOM average was

-296 plusmn 33permil with slightly seasonal and water column depth differences However

more positive δ13CPOM values occurred during winter (mean=-290 plusmn 41permil) than in

summer (mean= -301 plusmn 19 permil) Like the δ15NPOM values CNPOM (mean= 83 plusmn 17)

displayed important seasonal and water depth differences Lower CNPOM ratios

89

occurred during summer at 2 and 5 m depth (mean= 95 plusmn 17) and higher and more

constant values during winter (mean = 73 plusmn 09) at the same depth At 20 m CNPOM

shows similar values in both winter (70) and summer (74)

Figure 5 Seasonal POM averages from samples taken of the Lago Vichuqueacuten

water column Samples were taken from 2015 to 2018 at 2 (n=16) 5 (n=14) and 20

(n=8) meters depth

44 Stable isotope values across the Lake Vichuqueacuten watershed

Figure 6 shows modern vegetation soil and sediment isotope values found for

the watershed Huintildee tributary and Vichuqueacuten lake The δsup1⁵NFoliar values from

meadow plantations and macrophytes have similar range values with a mean of

+89 plusmn50 permil (n=18) +74 plusmn 75 permil (n=5) +82 plusmn 36 permil (n=6) respectively Native

vegetation has overall lower δsup1⁵NFoliar values with a mean of 14 plusmn 21 permil (n=28 see

Table 2 in supplementary material) The δsup1sup3CFoliar from terrestrial samples exhibit

similar values across the different plant communities (tree plantation mean=-274 plusmn

13permil meadow mean = -275 plusmn 23 permil native species mean=-272 plusmn 14permil) whereas

macrophytes display slightly more negative values with a mean of -287 plusmn 23permil

Macrophytes substrate displayed the highest δsup1⁵N values with a mean of +60 plusmn

14permil (n=3) Similar and relatively high δsup1⁵N values for soil of plantation (mean= +54

plusmn 13permil n=4) meadow (mean= +49 plusmn 04permil n=8) and surface river sediment

90

(mean= +52 plusmn 17permil n=10) Native forest soils oscillate around slightly more

negative values with a mean of +45 plusmn 12permil (n=4) Slightly more positive soil δsup1sup3C

values occur both underneath native forests and in tree plantations with means of -

284 plusmn 23permil and -298 plusmn 13permil respectively compared to either meadow soils

(mean= -302 plusmn 11permil) aquatic sediments underneath macrophytes (-311 plusmn 10permil)

or from surface river sediments (mean= -312 plusmn 10permil)

Figure 6 Stable isotope content of modern soil river sediment and foliar vegetation

used as end members in the sedimentary sequence of Lago Vichuqueacuten a)

Scatterplot of foliar δsup1⁵N and δsup13C values for vegetation from Lago Vichuqueacuten

watershed (plantation meadow and native species) and macrophytes on Lake

Vichuqueacuten See supplementary material for more detail of vegetation types b)

Scatterplot of soil δsup1⁵N and δsup13C values across the watershed the sediments of the

Huintildee and Vichuqueacuten rivers and the fluvial sediment corresponding to the

macrophyte vegetation

45 Land use and cover change from 1975 to 2014

Major land use changes between 1975 CE and 2016 CE in the Lago

Vichuqueacuten watershed are summarized in Figure 7 The watershed has a surface

area of 535329 km2 of which native vegetation (26) and shrublands (53)

represent 79 of the total surface in 1975 Meadows are confined to the valley and

91

represent 17 of watershed surface Tree plantations initially occupied 1 of the

watershed and were first located along the lake periphery By 1989 the areas of

native forests shrublands and meadows had decreased to 22 31 and 14

respectively whereas tree plantations had expanded to 30 These trends

continued almost invariably until 2016 when shrublands and meadows reached 17

and 5 of the total areas while tree plantations increased to 66 Native forests

had practically disappeared by 1989 and then increased up to 7 of the total area

in 2016 (Fig 6) preferentially occupying the southeastern sector of the watershed

Figure 7 Changes in land use and cover between 1975 and 2016 in the Lago

Vichuqueacuten watershed as measured from satellite images The major change is

represented by the replacement of native forest shrubland and meadows by

plantations of Monterrey pine (Pinus radiata)

Figure 8 shows correlations between lake sediment stable isotope values and

changes in the soil cover from 1975 to 2013 Positive relationships occurred

between sediment δsup1⁵N and δsup13C values from core VIC13-2B (unit 1) and the

92

percentage of native forest (r=089 for δsup1⁵N 082 for δsup13C) shrublands (r = 071 for

δsup1⁵N 057 for δsup13C) and meadow cover (r = 088 for δsup1⁵N 081 for δsup13C) All of these

correlations are significant (p value lt 0001) In contrast significant negative

correlations (p lt0001) occurred between tree plantation cover and lake sediment

stable isotope values (δsup1⁵N r = -082 and δsup13C r = -067) native forest (r = -097)

meadows (r = -086) and shrubland (r =-093)

Figure 8 Correlation plots of land use and cover change versus lake sediment

stable isotope values The δsup1⁵N values are positively correlated with native forests

agricultural fields and meadow cover across the watershed Total Plantation area

increases are negatively correlated with native forest meadow and shrubland total

area Significance levels are indicated by the symbols p-values (0 0001 001

005 01 1) lt=gt symbols ( )

93

5 Discussion

51 Seasonal variability of POM in the water column

The stable isotope values of POM can vary during the annual cycle due to

climate and biologic controls namely temperature and length of the photoperiod

which affect phytoplankton growth rates and isotope fractionation in the water

column (Gu et al 2006 Leng et al 2006) POM from Lago Vichuqueacuten surface

samples (2 and 5 m depth) displayed lower δ13CPOM values during the summer than

in winter During C uptake phytoplankton preferentially utilize 12C leaving the

DICpool enriched in 13C Therefore as temperature increases during the summer

phytoplankton growth generates OM enriched in 12C until this becomes depleted

and then the biomas come to enriched u At the onset of winter the DICpool is now

enriched in 13C and despite an overall decrease in phytoplankton production the

OM produced will also be enriched in 13C In contrast δ13CPOM values at 20 m depth

did not reflect these seasonal differences probably due to water-column

stratification that maintains similar temperatures and biological activity throughout

the year

Lake N availability depends on N sources including inputs from the

watershed and the atmosphere (ie deposition of N compounds and fixation of

atmospheric N2) which varies during the hydrologic year The fixation of atmospheric

N2 is an important natural source of N to the lake occurring mainly during the

summer season associated with higher temperature and light (Gu et al 2006)

Because the δ15NPOM of N2 fixers is close to 0permil with almost no overall isotope

fractionation (Leng et al 2006) when N2 is the major N source δ15NPOM values are

typically low However when DIN concentrations are high or alternatively when little

94

N2 fixation occurs δ15NPOM values will be higher (Gu et al 2006) δ15NPOM values

from summer Lago Vichuqueacuten samples were lower than those from winter with large

differences between the seasons (~5permil Fig 5 and 9) Furthermore δ15NPOM values

were high when monthly average temperature was low and monthly precipitation

was high (Fig 9) This pattern is consistent with the dominance of high N2 fixation

by cyanobacteria associated with increased summer temperatures This correlation

of δ15NPOM values with temperature further suggests a functional group shift i e

from N fixers to phytoplankton that uptake DIN The correlation between wetter

months and higher δ15NPOM values could be caused by increased N input from the

watershed due to increased runoff during the winter season The lack of data of the

δ15NPOM between the 30 mm and the 160 mm of precipitation is due to the

mediterranean-type climate that concentrates precipitations in the winter months

Finally Lago Vichuqueacuten is characterized by pronounced seasonality leading to

higher phytoplankton biomass in summer characterized by low δ15NPOM In winter

low biomass production and increased input from watershed is associated to high

δ15NPOM

95

Figure 9 Seasonal changes can drive δ15NPOM values in Lago Vichuqueacuten Data

correspond to average monthly temperature and total monthly precipitation for the

months when the water samples were taken (years 2015 - 2018) P-valuelt005

52 Stable isotope signatures in the Lake Vichuqueacuten watershed

The natural abundance of 15N14N isotopes of soil and vegetation samples

from the Lago Vichuqueacuten watershed appear to result from a combination of factors

isotope fractionation different N sources for plants and soil microorganisms (eg N2

fixation Nitrates) depth in the soil where N uptake by vegetation occurs and N loss

mechanisms (ie denitrification leaching and ammonia volatilization Hogberg

1997) The lowest δsup1⁵Nfoliar values are associated with native species and are

probably due to the contribution of N-fixing species (eg Sophora) (Fig6 and for

more detail see Table S3 in supplementary material) The number native N-fixers

species present in the Chilean mediterranean vegetation are not well known

however so there could be other N-fixing species in this group Alternatively δsup1⁵Nfoliar

values reflect soil N uptake (Kahmen et al 2008) In environments limited by N

plants have δsup1⁵N values similar to the soil δsup1⁵N values however the denitrification

and volatilization of ammonia can lead to the remain N of soil to come enriched in

15N (Cifuentes et al 1989 Craine et al 2009 Bruland and Mckenzie 2010) Soil N

isotope samples from native species communities tends to display relatively high

δsup1⁵N values respect to foliar samples due to loss of N-soil

The higher foliar and soil δsup1⁵N values obtained from samples of meadows

aquatic macrophytes and tree plantations can be attributed to the presence of

greater amounts of nitrate available for plant uptake (Fig 6) Houmlgberg (1997)

suggests that the availability of different N sources in soils (ie nitrates versus

96

ammonia) with different residence times can also explain these δsup1⁵NFoliar values

Indeed Feigin et al (1974) described differences of up to 20permil between ammonia

and nitrates sources Denitrification and nitrification discriminate much more against

15N than N2 fixation does (Craine et al 2009) leading to soils (and plants after

uptake) enriched in 14N

In general multiple processes that affect the isotopic signal result in similar

δsup1⁵N values between the soil of the watershed and the sediments of the river

However POM isotope fluctuations allow to say that more negative δsup1⁵N values are

associated to lake productivity while more positive δsup1⁵N values are associated with

N input from the watershed

δ13C values in Lago Vichuqueacuten watershed reflect CO2 gas exchange between

C3 plants and algae with the atmosphere During photosynthesis plants

discriminate against the heavier stable isotope of carbon (13C) in favor of the lighter

isotope 12C which results in δ13CFoliar values between -220permil and -320permil (Browman

and Cook 2002 Liu et al 2007) Likewise the δ13CFoliar values from Lago Vichuqueacuten

oscillate around -27permil (Fig 6) Plants transform atmospheric CO2 into soil organic

carbon (C) which in turn reflects this initial discrimination against 13C during C

uptake and post photosynthetic fractionation (Farquhar et al 1982 1989 Badeck

et al 2005 Pausch and Kuzyakov 2017) Slightly more positive δ13CFoliar values

(about 15permil) were measured in comparison with their δ13CSoil values This may be

reflecting the C transference from plants to the soil but also a soil-atmosphere

interchange The preferential assimilation of the light isotopes (12C) during soil

respiration carried by the roots and the microbial biomass that is associated with the

decomposition of litter roots and soil organic matter explain this differential

(Berhardt et al 2006 Blagodatskaya et al 2010 Midwood and Millard 2011)

97

In general the δ13CSoil values from the Lago Vichuqueacuten watershed oscillated

around -290permil and did not vary with our plant classification types Here we use

these values as terrestrial-end members to track changes in source OM (Fig 6)

Thus more negative δ13C values in lake sediment samples are attributed to higher

OM inputs from the terrestrial watershed By the other hand more positive δ13C

values most likely reflect an increased aquatic OM component as indicated by POM

isotope fluctuations (Fig 9)

53 Recently land use and cover change and its influences on N inputs to the lake

Tree plantations in the Lago Vichuqueacuten watershed have increased greatly in

the last few decades (from 1 in 1975 to 66 in 2016 Fig 7) replacing previous

native forests (from 26 to 7) meadows (17 to 5) and shrublands (53 to

17) In 1975 tree plantations were confined to the lake perimeter with discrete

patches distributed throughout the watershed The ldquoForest Lawrdquo (DFL 701- passed

in 1974) allocated state funding to afforestation efforts and management of tree

plantations which greatly favored the replacement native forests by introduced trees

This increase is marked by a sharp and steady decrease in lake sediment δ15N and

δ13C values because tree plantations function as a nutrient sink whereas other land

uses such as meadows favor nutrient loss from the watershed (Fig8) Bruland and

Mackenzie (2014) noted a decrease in wetland δ15N values when watershed

forested cover increased and concluded that N inputs to the wetlands are lower from

the forested areas as they generally do not export as much N as agricultural lands

A positive correlation between native vegetation and δ15Ncore values can be

explained by the relatively scarce arboreal cover in the watershed in 1975 when

native forest occupied just 26 of the watershed surface whereas shrublands and

98

meadows occupied more than the 70 of the surface of the watershed with the

concomitant elevated loss of N (Fig 7 and Fig 8)

54 Nitrogen dynamics in Lago Vichuqueacuten over the last six hundred years

Sedimentological compositional and geochemical indicators all show changes in

the N cycle associated to LUCC lake dynamics and climate changes (Fig 10) From

the pre-Columbian indigenous settlement including the Spanish colonial period up

to the start of the Republic (1300 - 1800 CE) the introduction of crops such as

quinoa and wheat but also the clearing of land for extensive agriculture would have

favored the entry of N into the lake Conversely major changes observed during the

last century were characterized by a sharp decrease of N input that were coeval

with the increase of tree plantations

From 1365 until 1550 CE (unit 2c 2b and half of 2a Fig 3 and Fig 10) pre-

Columbian agricultural societies planted mostly crops of corn and quinoa (Ramirez

and Vidal 1985) This period is characterized by large peaks seen in the δsup1⁵N record

(eg 1403 1452 1476 and 1505) with overall high δsup1⁵N values (up to 5permil) indicating

that N input from watershed was elevated and oscillating to the beat of the NT These

positive δsup1⁵N peaks could be due to several causes including a) the clearing of land

for farming b) N loss via denitrification which would be generally augmented in

anoxic environments (Diebel et al 2009) such as Lago Vichuqueacuten (low MnFe

values about 0001 Fig 4) or c) climate especially cold-wet winters or hot-dry

summers can also exert control on the δsup1⁵N record Indeed tree-ring records and

summer temperature reconstructions show overall wetcold conditions during this

period (Christie et al 2009 Von Gunten et al 2009 Fig 10) Increased

precipitation would bring more sediment (and nutrients) from the watershed into the

99

lake and increase lake productivity which is also detected by the geochemical

proxies for productivity (peaks of BrTi SrCa and TOC Fig 4 and Fig 10) (see also

Frugone-Alvarez et al 2017)

Figure 10 Changes in the N availability during the last six centuries in Lago

Vichuqueacuten a) lake sediment δsup1⁵N values displayed more positive values during the

prehistoric period Spanish Colony and the starting 19th century which is associated

with enhanced N input from the watershed by extensive clearing and crop

plantations The inset shows this relationship between sediment δsup1⁵N and

100

percentage of meadow cover over the last 30 years b) Summer temperature

reconstruction from central Chile (von Gunten et al 2009) showing a

correspondence with cold phases and high δsup1⁵N values at Vichuqueacuten except for the

last 100 years c) Palmer Drought Severity Index (PDSI) is an interannual moisture

variability reconstruction for late springndashearly summer during the last six centuries

(Christie et al 2009) Grey shadow indicating higher precipitation periods

From 1550 and 1810 CE (unit 2a) and during the Colonial period several peaks

of δ15N could be further related not only to high precipitation (Fig 10 grey shadow)

but also pulses of enhanced N input from the watershed linked to human land use

In 1550 CE Juan Cuevas was granted lands and indigenous workers under the

encomienda system for agricultural and mining development of the Vichuqueacuten

village (Ramiacuterez and Vidal 1985) Historical documents show that around 1579 CE

the Vichuqueacuten watershed was occupied by indigenous communities dedicated to

wheat plantations and vineyards wood extraction and gold mining (Odone 1998)

The introduction of the Spanish agricultural system implied not just a change in the

types of crops used (from quinoa to vineyards and wheat) but also a clearing of

native species for the continuous increase of agricultural surface and wood

extraction During the Colonial period wheat from Vichuqueacuten was exported to Peru

(Ramiacuterez and Vidal 1985) Armesto et al (2009) indicate that during the XVIII and

XIX centuries the extraction of wood for mining operations was important enough to

cause extensive loss of native forests The independence and instauration of the

Chilean Republic did not change this prevailing system Increases in the

contributions of N to the lake during the second half of the XIX century (peaks in

δsup1⁵N ca 1870 CE) could be due to expanding farm land dedicated for wheat

101

production and increased commercial trade with California and Canada (Ramiacuterez

and Vidal 1985)

In contrast LUCC in the last century are clearly related to the development of

large-scale tree plantations (Fig 7) The δsup1⁵N record reaches the lowest values of

the entire sequence in the last few decades (Fig 10) A marked increase in lake

productivity NT concentration and decreasing sediment input is synchronous (unit

1 Fig 4) with trees replacing meadows shrublands and areas with native forests

(Fig 7 and 8) The implementation of the lsquoForest Lawrsquo in 1974 had a stronger impact

on the landscape and lake ecosystem dynamics than the impacts of ongoing climate

change in the region which is much more recent (Garreaud et al 2018) although

the prevalence of hot dry summers seen over the last decade would also be

associated with low δsup1⁵N values and increase of NT (Fig 10) Heavy metals ratios

(FeTi CoTi and PbTi) show notable increases in lake sediments from 1992 to 2011

CE (Fig 4) Although this could be related to mining in the El Maule region the

closest mines are 60 Km away (Pencahue and Romeral) so local factors related to

shoreline urbanization for the summer homes and an increase in tourist activity

could also be a major factor

6 Conclusions

The N isotope signal in the watershed depends on the rates of exchange

between vegetation and soil cover (Fig 11) Plants preferentially uptake 14N and the

underlying soils become enriched in 15N especially when the terrestrial ecosystem

is N-limited andor significant N loss occurs (ie denitrification andor ammonia

volatilization) LUCC in the Lago Vichuqueacuten watershed have heavily modified the

links between terrestrial and aquatic ecosystems with agriculture practices

102

contributing more N to the lake than tree plantations or native forests In situ lake

processes can also fractionate N isotopes An increase of N-fixing species results

in OM depleted in 15N which results in POM with lower δsup1⁵N values during these

periods During winter phytoplankton is typically enriched in 15N due to the

decreased abundance of N-fixing species and increased N input from the

watershed This in turn generates the highest δsup1⁵NPOM values in Lago Vichuqueacuten

Periods of elevated productivity tend to deplete the dissolved inorganic N of 14N

resulting in even higher δ15N values

Our study illustrates the usefulness of δsup1⁵N as a tool for reconstructing the past

influence of LUCC on N availability in lake ecosystems To constrain the relative

roles of the diverse forcing mechanisms that can alter N cycling in mediterranean

ecosystems all main components of the N cycle should be monitored seasonally

(or monthly) including the measurements of δ15N values in land samples

(vegetation-soil) as well as POM

103

Figure 11 Summary of human and environmental factors controlling the δ15N

values of lake sediments Particulate organic matter(POM) δ15N values in

mediterranean lakes are driven by N input from the watershed that in turn depend

on land use and cover changes (ie forest plantation agriculture) andor seasonal

changes in N sources andor lake ecosystem processes (ie bioproductivity redox

condition denitrification) Arrows indicate the direction of N fluxes (inputoutput from

the N cycle) N cycle processes that deplete lake sediments of 15N are shown in

blue whereas those that enrich sediments in 15N are shown in red

104

Supplementary material

Figure S1 Pearson correlate coefficient between geochemical variables in core

VIC13-2B Positive and large correlations are in blue whereas negative and small

correlations are in red (p valuelt0001)

Figure S2 Principal Component Analysis of geochemical elements from core

VIC13-2B

105

Table S1 Lago Vichuqueacuten radiocarbon samples

RADIOCARBON

LAB CODE

SAMPLE

CODE

DEPTH

(m)

MATERIAL

DATED

14C AGE ERROR

D-AMS 029287

VIC13-2B-

1 043 Bulk 1520 24

D-AMS 029285

VIC13-2B-

2 085 Bulk 1700 22

D-AMS 029286

VIC13-2B-

2 124 Bulk 1100 29

Poz-63883 Chill-2D-1 191 Bulk 945 30

D-AMS 001133

VIC11-2A-

2 201 Bulk 1150 44

Poz-63884

Chill-2D-

1U 299 Bulk 1935 30

Poz-64089

VIC13-2D-

2U 463 Bulk 1845 30

Poz-64090

VIC13-2A-

3U 469 Bulk 1830 35

D-AMS 010068

VIC13-2D-

4U 667 Bulk 2831 25

Poz-63886

VIC13-2D-

4U 719 Bulk 3375 35

106

D-AMS 010069

VIC13-2D-

5U 775 Bulk 3143 27

Poz-64088

VIC13-2D-

5U 807 Bulk 3835 35

D-AMS-010066

VIC13-2D-

7U 1075 Bulk 6174 31

Poz-63885

VIC13-2D-

7U 1197 Bulk 6440 40

Poz-5782 VIC13-15 DIC 180 25

Table S2 Loadings of the trace chemical elements used in the PCA

Elementos PC1 PC2 PC3 PC4

Zr 0922 0025 -0108 -0007

Zn 0913 -0124 -0212 0001

Rb 0898 -0057 -0228 0016

K 0843 0459 0108 0113

Ti 0827 0497 0060 -0029

Al 0806 0467 0080 0107

Si 0803 0474 0133 0136

Y 0784 -0293 -0174 0262

V 0766 0455 0090 -0057

Br 0422 -0716 -0045 0226

Ca 0316 -0429 0577 0489

Sr 0164 -0420 0342 -0182

Cl 0151 -0781 -0397 0162

107

Mn -0121 -0091 0859 0095

S -0174 -0179 -0051 0714

Pb -0349 0414 -0282 0500

Fe -0700 0584 -0023 0280

Co -0704 0564 -0107 0250

Table S3 Stable Isotope values from vegetation of Lago Vichuqueacutenacutes watershed

Taxa Classification δsup1⁵N δsup1sup3C CN

molar

Poaceae Meadow 1216 -2589 3602

Juncacea Meadow 1404 -2450 3855

Cyperaceae Meadow 1031 -2596 1711

Taraxacum

officinale Meadow 836 -2400 2035

Poaceae Meadow 660 -2779 1583

Poaceae Meadow 453 -2813 1401

Poaceae Meadow 966 -2908 4010

Juncus Meadow 1247 -2418 3892

Poaceae Meadow 747 -3177 6992

Poaceae Meadow 942 -2764 3147

Poaceae Meadow 1479 -2634 2895

Poaceae Meadow 1113 -2776 1795

Poaceae Meadow 2215 -2737 7971

Poaceae Meadow 1121 -2944 2934

Poaceae Meadow 638 -3206 1529

108

Macrophytes Macrophytes 886 -3044 2286

Macrophytes Macrophytes 1056 -2720 2673

Macrophytes Macrophytes 769 -3297 1249

Macrophytes Macrophytes 967 -2763 1442

Macrophytes Macrophytes 959 -2670 2105

Macrophytes Macrophytes 334 -2728 1038

Acacia dealbata

Introduced

species 656 -2696 1296

Acacia dealbata

Introduced

species 487 -2941 1782

Acacia dealbata

Introduced

species 220 -2611 3888

Luma apiculata Native species 433 -2542 4135

Luma apiculata Native species 171 -2664 7634

Luma apiculata Native species -001 -2736 6283

Luma apiculata Native species 029 -2764 6425

Azara sp Native species 159 -2868 8408

Azara sp Native species 101 -2606 2885

Baccharis concava Native species 104 -2699 5779

Baccharis concava Native species 265 -2488 4325

Baccharis concava Native species 287 -2562 7802

Baccharis concava Native species 427 -2781 5204

Baccharis linearis Native species 190 -2610 4414

Baccharis linearis Native species 023 -2825 5647

109

Peumus boldus Native species 042 -2969 6327

Peumus boldus Native species 205 -2746 4110

Peumus boldus Native species 183 -2743 6293

Chusquea quila Native species 482 -2801 4275

Poaceae meadow 217 -2629 7214

Lobelia sp Native species 224 -2645 3963

Lobelia sp Native species -091 -2565 4538

Aristotelia chilensis Native species -035 -2785 5247

Aristotelia chilensis Native species -305 -2889 2305

Aristotelia chilensis Native species 093 -2836 5457

Chusquea quila Native species 173 -2754 3534

Chusquea quila Native species 045 -2950 6739

Quillaja saponaria Native species 223 -2838 9385

Scirpus meadow 018 -2820 7115

Sophora sp Native species -184 -2481 2094

Sophora sp Native species -181 -2717 1721

Pinus radiata

Introduced

trees 1581 -2602 3679

Pinus radiata

Introduced

trees 1431 -2784 4852

Pinus radiata

Introduced

trees -091 -2708 9760

Pinus radiata

Introduced

trees 153 -2568 3470

110

Salix sp

Introduced

trees 632 -2878 1921

LITERATURE CITED

Armesto JJ Manuschevich D Mora A Smith-Ramirez C Rozzi R Abarzuacutea

AM Marquet PA 2010 From the Holocene to the Anthropocene A historical

framework for land cover change in southwestern South America in the past 15000

years Land use policy 27 148ndash160

httpsdoiorg101016jlandusepol200907006

Battye W Aneja VP Schlesinger WH 2017 Earth rsquo s Future Is nitrogen the next

carbon  Earthrsquos Future Global Biogeochem Cycles 30 1000ndash1014

httpsdoiorg101002eft2235

Blaauw M Christeny JA 2011 Flexible paleoclimate age-depth models using an

autoregressive gamma process Bayesian Anal 6 457ndash474

httpsdoiorg10121411-BA618

Bowman DMJS Cook GD 2002 Can stable carbon isotopes (δ13C) in soil

carbon be used to describe the dynamics of Eucalyptus savanna-rainforest

boundaries in the Australian monsoon tropics Austral Ecol

httpsdoiorg101046j1442-9993200201158x

Brahney J Ballantyne AP Turner BL Spaulding SA Otu M Neff JC 2014

Separating the influences of diagenesis productivity and anthropogenic nitrogen

deposition on sedimentary δ15N variations Org Geochem 75 140ndash150

httpsdoiorg101016jorggeochem201407003

111

Bruland GL MacKenzie RA 2010 Nitrogen Source Tracking with δN Content

of Coastal Wetland Plants in Hawaii J Environ Qual 39 409

httpsdoiorg102134jeq20090005

Carrevedo ML Frugone M Latorre C Maldonado A Bernaacuterdez P Prego R

Caacuterdenas D Valero-Garceacutes B 2015 A 700-year record of climate and

environmental change from a high Andean lake Laguna del Maule central Chile

(36degS) Holocene 25 956ndash972 httpsdoiorg1011770959683615574584

Christie DA Boninsegna JA Cleaveland MK Lara A Le Quesne C

Morales MS Mudelsee M Stahle DW Villalba R 2009 Aridity changes in the

Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from

tree-rings Clim Dyn 36 1505ndash1521 httpsdoiorg101007s00382-009-0723-4

Craine JM Elmore AJ Aidar MPM Dawson TE Hobbie EA Kahmen A

Mack MC Kendra K Michelsen A Nardoto GB Pardo LH Pentildeuelas J

Reich B Schuur EAG Stock WD Templer PH Virginia RA Welker JM

Wright IJ 2009 Global patterns of foliar nitrogen isotopes and their relationships

with cliamte mycorrhizal fungi foliar nutrient concentrations and nitrogen

availability New Phytol 183 980ndash992 httpsdoiorg101111j1469-

8137200902917x

Cuven S Francus P Lamoureux SF 2010 Estimation of grain size variability

with micro X-ray fluorescence in laminated lacustrine sediments Cape Bounty

Canadian High Arctic J Paleolimnol 44 803ndash817 httpsdoiorg101007s10933-

010-9453-1

Diebel M Vander Zanden MJ 2012 Nitrogen stable isotopes in streams  stable

isotopes Nitrogen effects of agricultural sources and transformations Ecol Appl 19

1127ndash1134 httpsdoiorg10189008-03271

112

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in freshwater

wetlands record long-term changes in watershed nitrogen source and land use SO

- Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash

2916

Fariacuteas L Castro-Gonzales M Cornejo M Charpentier J Faundez J

Boontanon N Yoshida N 2009 Denitrification and nitrous oxide cycling within the

upper oxycline of the oxygen minimum zone off the eastern tropical South Pacific

Limnol Oceanogr 54 132ndash144

Farquhar GD Ehleringer JR Hubick KT 1989 Carbon Isotope Discrimination

and Photosynthesis Annu Rev Plant Physiol Plant Mol Biol

httpsdoiorg101146annurevpp40060189002443

Farquhar GD OrsquoLeary MH Berry JA 1982 On the relationship between

carbon isotope discrimination and the intercellular carbon dioxide concentration in

leaves Aust J Plant Physiol httpsdoiorg101071PP9820121

Fogel ML Cifuentes LA 1993 Isotope fractionation during primary production

Org Geochem httpsdoiorg101007978-1-4615-2890-6_3

Frugone-Aacutelvarez M Latorre C Giralt S Polanco-Martiacutenez J Bernaacuterdez P

Oliva-Urcia B Maldonado A Carrevedo ML Moreno A Delgado Huertas A

Prego R Barreiro-Lostres F Valero-Garceacutes B 2017 A 7000-year high-

resolution lake sediment record from coastal central Chile (Lago Vichuqueacuten 34degS)

implications for past sea level and environmental variability J Quat Sci 32 830ndash

844 httpsdoiorg101002jqs2936

Gaumllman V Rydberg J Bigler C 2009 Decadal diagenetic effects on δ 13 C and

δ 15 N studied in varved lake sediment Limnol Oceanogr 54 917ndash924

httpsdoiorg104319lo20095430917

113

Gerhart LM McLauchlan KK 2014 Reconstructing terrestrial nutrient cycling

using stable nitrogen isotopes in wood Biogeochemistry 120 1ndash21

httpsdoiorg101007s10533-014-9988-8

Granger J Sigman DM Lehmann MF Tortell PD 2008 Nitrogen and oxygen

isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria 53

2533ndash2545 httpsdoiorg10230740058342

Gu B Chapman AD Schelske CL 2006 Factors controlling seasonal

variations in stable isotope composition of particulate organic matter in a softwater

eutrophic lake Limnol Oceanogr 51 2837ndash2848

httpsdoiorg104319lo20065162837

Harris D Horwaacuteth WR van Kessel C 2001 Acid fumigation of soils to remove

carbonates prior to total organic carbon or CARBON-13 isotopic analysis Soil Sci

Soc Am J 65 1853 httpsdoiorg102136sssaj20011853

Houmlgberg P 1997 Tansley review no 95 natural abundance in soil-plant systems

New Phytol httpsdoiorg101046j1469-8137199700808x

Kylander ME Ampel L Wohlfarth B Veres D 2011 High-resolution X-ray

fluorescence core scanning analysis of Les Echets (France) sedimentary sequence

New insights from chemical proxies J Quat Sci 26 109ndash117

httpsdoiorg101002jqs1438

Lara A Solari ME Prieto MDR Pentildea MP 2012 Reconstruccioacuten de la

cobertura de la vegetacioacuten y uso del suelo hacia 1550 y sus cambios a 2007 en la

ecorregioacuten de los bosques valdivianos lluviosos de Chile (35o - 43o 30acute S) Bosque

(Valdivia) 33 03ndash04 httpsdoiorg104067s0717-92002012000100002

Lehmann M Bernasconi S Barbieri A McKenzie J 2002 Preservation of

organic matter and alteration of its carbon and nitrogen isotope composition during

114

simulated and in situ early sedimentary diagenesis Geochim Cosmochim Acta 66

3573ndash3584 httpsdoiorg101016S0016-7037(02)00968-7

Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos Transactions

American Geophysical Union httpsdoiorg1010292007EO070007

Liu G Li M An L 2007 The Environmental Significance Of Stable Carbon

Isotope Composition Of Modern Plant Leaves In The Northern Tibetan Plateau

China Arctic Antarct Alp Res httpsdoiorg1016571523-0430(07-505)[liu-

g]20co2

Marzecovaacute A Mikomaumlgi A Koff T Martma T 2011 Sedimentary geochemical

response to human impact on Lake Notildemmejaumlrv Estonia Est J Ecol 60 54

httpsdoiorg103176eco2011105

McLauchlan KK Williams JJ Engstrom DR 2013 Nutrient cycling in the

palaeorecord Fluxes from terrestrial to aquatic ecosystems Holocene 23 1635ndash

1643 httpsdoiorg1011770959683613496289

Meyers PA 2003 Application of organic geochemistry to paleolimnological

reconstruction a summary of examples from the Laurention Great Lakes Org

Geochem 34 261ndash289 httpsdoiorg101016S0146-6380(02)00168-7

Naeher S Gilli A North RP Hamann Y Schubert CJ 2013 Tracing bottom

water oxygenation with sedimentary MnFe ratios in Lake Zurich Switzerland

Chem Geol 352 125ndash133 httpsdoiorg101016jchemgeo201306006

Odone C 1998 El Pueblo de Indios de Vichuqueacuten siglos XVI y XVII Rev Hist

Indiacutegena 3 19ndash67

Pausch J Kuzyakov Y 2018 Carbon input by roots into the soil Quantification of

rhizodeposition from root to ecosystem scale Glob Chang Biol

httpsdoiorg101111gcb13850

115

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98

httpsdoiorg1011772053019614564785

Sun W Zhang E Jones RT Liu E Shen J 2016 Biogeochemical processes

and response to climate change recorded in the isotopes of lacustrine organic

matter southeastern Qinghai-Tibetan Plateau China Palaeogeogr Palaeoclimatol

Palaeoecol httpsdoiorg101016jpalaeo201604013

Torres IC Inglett PW Brenner M Kenney WF Reddy KR 2012 Stable

isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of

different trophic status J Paleolimnol 47 693ndash706

httpsdoiorg101007s10933-012-9593-6

Vitousek PM Aber JD Howarth RW Likens GE Matson PA Schindler

DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl

httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

von Gunten L Grosjean M 2009 High-resolution quantitative climate

reconstruction over the past 1000 years and pollution history derived from lake

sediments in Central Chile Philos Fak PhD 246

Woodward C Chang J Zawadzki A Shulmeister J Haworth R Collecutt S

Jacobsen G 2011 Evidence against early nineteenth century major European

induced environmental impacts by illegal settlers in the New England Tablelands

south eastern Australia Quat Sci Rev 30 3743ndash3747

httpsdoiorg101016jquascirev201110014

Xu H Yu K Lan J Sheng E Liu B Ye Y Hong B Wu H Zhou K Yeager

KM 2016 Different responses of sedimentary δ15N to climatic changes and

116

anthropogenic impacts in lakes across the Eastern margin of the Tibetan Plateau

J Asian Earth Sci 123 111ndash118 httpsdoiorg101016jjseaes201603024

117

DISCUSION GENERAL

El Nitroacutegeno (N) es un elemento clave que controla la dinaacutemica y

funcionamiento de ecosistemas tanto terrestres como acuaacuteticos (Vitousek et al

1997) Pese a que el N (N2) es muy abundante en la atmoacutesfera (78) es escaso

en los ecosistemas pues la mayoriacutea de la biota no puede acceder a su forma

molecular (Galloway et al 1995 Zaehle et al 2013) En este sentido la entrada

natural de N en los ecosistemas es viacutea fijacioacuten bioloacutegica del N2 por bacterias que lo

convierten en compuestos bioloacutegicamente disponibles (Battye et al 2017) Debido

a que la fijacioacuten es un proceso energeacuteticamente costoso los ecosistemas

comuacutenmente estaacuten limitados por N (Vitousek and Howarth 1991) Los LUCC

contribuyen al incremento del N disponible y son una de las principales causas de

eutroficacioacuten y contaminacioacuten de los cuerpos de agua (Woodward et al 2012)

En Chile central los LUCC principalmente relacionados con las actividades

agriacutecolas y forestales han causado grandes cambios en el ciclo del N debido al

118

reemplazo de la cobertura natural por un monocultivo y al uso de fertilizantes que

modifican los aportes de MO y N a los cuerpos de agua El programa de

estabilizacioacuten de laderas impulsada por el gobierno (Albert 1900) y la ley forestal

de 1974 han fomentado la forestacioacuten con plantaciones de Pinus radiata y

Eucalyptus globulus y en el caso de Lago Vichuqueacuten estas actualmente cubren maacutes

del 60 de su cuenca (Cap2 Fig 5) Ademaacutes en Laguna Matanzas la

sobreexplotacioacuten del agua en conjunto con el cambio climaacutetico actual el que ha

conducido a una de las megasequiacuteas maacutes severas en las uacuteltimas deacutecadas

(Garreaud et al 2017) generoacute una combinacioacuten letal que secoacute el lago en tan solo

10 antildeos (Cap1 Fig1) Las evidencias obtenidas a partir de estos dos lagos

permiten identificar las huellas del Antropoceno en Chile central basadas en el

registro sedimentario lacustre

La transferencia de N desde los ecosistemas terrestres a acuaacuteticos es un

proceso natural con controles bioacuteticos climaacuteticos y geoloacutegicos El enlace

hidroloacutegico entre los ecosistemas terrestres y acuaacuteticos hace que el estado troacutefico

de los lagos esteacute vinculado al de su cuenca (McLauchlan et al 2013) En Chile

central se sabe poco del impacto de los LUCC sobre el ciclo de nutrientes en los

ecosistemas lacustres aunque al menos desde la colonizacioacuten espantildeola se tienen

registros de influencia humana en las cuencas Durante la colonia espantildeola

Laguna Matanzas fue una hacienda ganadera que exportaba productos caacuternicos al

Peruacute (Contreras-Lopez et al 2014) A su vez en el Lago Vichuqueacuten se realizaban

extensas actividades agriacutecolas hasta comienzos del s XX como por ejemplo

cultivos de vid y trigo ademaacutes de extraccioacuten de madera y mineriacutea de oro (Odone

1997) En las uacuteltimas deacutecadas los LUCC han estado vinculados principalmente con

el desarrollo forestal al compaacutes de una estrategia gubernamental de fomentar con

119

incentivos financieros (Ley de Bosques DFL nordm265 de 1931 y DFL 701 de 1974)

esta actividad El incremento de la superficie forestal es especialmente fuerte en

ambos lagos a partir de la deacutecada de 1980 y hasta 2016 (Laguna de Matanzas 0-

17 Lago Vichuqueacuten 1-66) Este aumento habriacutea sido en detrimento del bosque

nativo y los pastizales (Cap 1 Fig 5 y Cap 2 Fig 8) El incremento de la superficie

forestal generariacutea una disminucioacuten de los aportes de sedimentos y nutrientes al lago

y en este sentido un cambio de estado en los flujos de N (e g tipping points) que

a su vez ha quedado registrado en la sentildeal isotoacutepica (δ15N) y la acumulacioacuten de

MO en los sedimentos lacustres

Isoacutetopos estables y la dinaacutemica de N en los lagos de Chile central

Los sedimentos lacustres son verdaderos ldquosumiderosrdquo que pueden llegar a

registrar lo que ocurre en cuanto a la historia ambiental de su cuenca En esta tesis

se utilizan los isoacutetopos estables de N (15N y 14N) en sedimentos lacustres para

reconstruir los cambios en la disponibilidad de N en el tiempo y establecer la

magnitud de impacto generado por actividades humanas El fraccionamiento

cineacutetico en los lagos es mediado por procesos bioloacutegicos que mediante la

asimilacioacuten de N genera un producto (eg fitoplancton) maacutes ldquoligerordquo (valores maacutes

bajos de 15N) que su remanente (eg DIN) (Fogel y Cifuentes 1993) Sin embargo

en periacuteodos en que los lagos estaacuten limitados por N el fitoplancton discrimina menos

y la MO resultante queda enriquecida en 15N (Fig 1 a y b) Ademaacutes la

desnitrificacioacuten acentuada en lagos de fondo anoacutexicos (eg Laguna Matanzas

entre 1800 y 1940 Cap1 Fig 6) conduce a un enriquecimiento en 15N de los

sedimentos y de la columna de agua Esta informacioacuten queda reflejada en la MO

120

de los sedimentos lacustres lo que permite conocer la disponibilidad del N en el

tiempo a partir de las variaciones de 15N

En esta tesis analizamos la MO de los sedimentos lacustres para reconstruir

la influencia de los LUCC en los aportes de sedimentos y N al lago En teacuterminos de

asimilacioacuten de N se puede distinguir entre dos grupos principales de productores

primarios que componen el POM (Fig1)

1 Los que asimilan el DIN compuesto por amonio nitratos y nitritos Aquiacute el

δ15N resultante fluctuaraacute en torno a valores maacutes positivos en la medida que

la productividad se incrementa o no hay reposicioacuten del DIN (Fig 1)

2 Los fijadores de N Dado que es un proceso energeacuteticamente costoso en

ambientes que no estaacuten limitados por N muchas veces son excluiacutedas

competitivamente por el resto del fitoplancton Si el DIN queda agotado por

el incremento de la productividad (o bien si el ambiente estaacute limitado ya sea

por N o por otros nutrientes) los fijadores de N pueden florecer y la MO que

se genera a partir de ello tendraacute un δ15N con valores en torno a 0permil

De este modo la MO en los sedimentos lacustres dependeraacute de la

composicioacuten de productores primarios (ie fijadores vs asimiladores del DIN)

ademaacutes de los aportes desde la cuenca tanto de MO como del N de la cuenca que

pasa a formar parte del DIN (eg fertilizantes estieacutercol) (Fig 1)

La MO de los lagos estudiados en esta tesis ha sido analizada a partir de

variables geoquiacutemicas isotoacutepicas frotis y estaacute compuesta principalmente por

diatomeas y MO amorfa A partir de los datos obtenidos en esta tesis los valores

de δ15N aumentan cuando hay una mayor cobertura agriacutecola o pastizales A su vez

tiende a disminuir cuando aumenta la cobertura arboacuterea independiente si esta es

por plantaciones forestales o por bosque nativo

121

Por otra parte la dinaacutemica del lago tambieacuten imprime caracteriacutesticas

especiales en el POM observaacutendose variaciones estacionales en los valores

δ15NPOM Durante la estacioacuten caacutelida y seca se observan valores maacutes bajos que

durante la estacioacuten friacutea y huacutemeda posiblemente relacionado con el incremento de

la contribucioacuten de especies fijadoras de N (Lago Vichuqueacuten Fig 9 Cap 2) durante

el verano En la estacioacuten friacutea y huacutemeda el DIN seriacutea la principal fuente de N Las

mayores entradas de MO y N terrestre debidos a un incremento del lavado de la

cuenca como consecuencia de las precipitaciones y la mineralizacioacuten de la MO

podriacutean estimular la produccioacuten de MO lacustre por crecimiento del fitoplancton

Como consecuencia se observan tendencias decrecientes de los valores de

δ15N en la MO sedimentaria cuando la productividad en el lago estaacute relacionada

con especies fijadoras de N mientras que el δ15N muestra aumentos cuando la

productividad del lago estaacute asociada principalmente al consumo del DIN pero

tambieacuten cuando predominan procesos de perdida de N (eg desnitrificacioacuten Fig

1)

Hemos identificado tres fases en la dinaacutemica del δ15N para ambos lagos

Entre 1800 y 1940 CE la cuenca de laguna de Matanzas estaba dominada por

actividades agriacutecolas y ganaderas (δ15Nsuelo gt 4permil Cap 1 Fig 4 y 6) Las entradas

de sedimentos y MO desde la cuenca son altas (δ13C lt -209permil ZrTi ~029 AlTi

~013) y coincide con un clima maacutes huacutemedo y friacuteo (Von Gunten et al 2009

Christiansen et al 2011) El lago teniacutea un nivel de agua maacutes profundo dominado

por condiciones anoacutexicas (MnFe ~0013) que contribuiriacutean a mayores valores de

δ15N en la columna de agua y por ende de los sedimentos acumulados en el fondo

debido a la peacuterdida diferencial de 14N viacutea desnitrificacioacuten (Fig 7 Cap1) La baja

122

produccioacuten de MO lacustre (BrTi ~002 TOC~17) coincide con un bajo contenido

de NT (~478 μg) y valores maacutes positivos de δ15N (gt 4permil)

La actividad agriacutecola tambieacuten dominaba en la cuenca del Lago Vichuqueacuten

durante este periacuteodo (δ15Nsuelo gt4permil Cap2 Fig 6) El aporte sedimentario desde la

cuenca es alto (AlTi ~029 ZrTi ~032) y fue favorecido por mayores

precipitaciones a las actuales (Christiansen et al 2011) El Lago Vichuqueacuten es un

lago estratificado anoacutexico (MnFe ~002) y profundo (~30 m) por lo que la

desnitrificacioacuten juega un rol importante en el enriquecimiento de la MO

sedimentaria La baja produccioacuten de MO (BrTi ~007 TOC ~12) de origen

lacustre (δ13C ~ -268permil) coincide con un bajo contenido de NT (~309μg +6) y

valores maacutes positivos de δ15N (56permil +03)

Durante esta fase en ambos lagos los aportes de N de la cuenca parecen

ser los principales responsables en las fluctuaciones del δ15N Esta sentildeal podriacutea

estar amplificada por bajas temperaturas (que afectan la productividad lacustre) y

altas precipitaciones que favorecen el lavado de la cuenca y aumentan el aporte de

sedimentos y MO desde la cuenca predominantemente agriacutecola

Entre 1940 y 1980 CE en Laguna Matanzas se observa un incremento en

la acumulacioacuten de MO algal (TOC ~2 +1 δ13C ~-230+09permil) El ambiente

deposicional es ligeramente menos turbulento que el anterior (AlTi ~011+001

ZrTi ~03+001) y el lago estaacute en una fase de transicioacuten hacia condiciones maacutes

oacutexicas (MnFe ~002+0004) y maacutes productivas (BrTi ~004+0007) A su vez δ15N

tiende hacia valores maacutes negativos (δ15N ~30permil+03) mientras que el NT aumenta

oscilando en antifase con el δ15N

En Lago Vichuqueacuten en cambio se observa un ligero incremento en la

acumulacioacuten de MO (TOC ~13 +02) de origen terrestre (δ13C ~-27permil +04) La

123

productividad es similar al periacuteodo anterior (BrTi ~007+003) y el ambiente

deposicional es menos turbulento (AlTi ~02 +009 Zrti ~033 +007) El δ15N y el

NT oscilan en torno a valores ligeramente maacutes bajos (δ15N ~51permil +04 NT ~292μg

+6) Este periacuteodo se caracteriza por ser maacutes caacutelido que el anterior lo que

posibilitariacutea un incremento en la productividad lacustre en Laguna Matanzas pero

que no es observada en el Lago Vichuqueacuten

Entre 1980 y la actualidad en Laguna Matanzas habriacutea un incremento de la

acumulacioacuten de MO (TOC ~59 + 3) asociada a un incremento en la productividad

del lago (BrTi ~009+005) y a los aportes de MO terrestres (δ13C ~-24 + 2permil) El

lago se vuelve maacutes oacutexico (Mn ~0003 +0006) y las entradas de sedimento

disminuyen (AlTi~ 009 +002) El δ15N tiende a valores maacutes negativos (δ15N ~13permil

+1) y el NT aumenta de 20 a 55 μg (NT ~346 + 9 μg) tomando valores sin

precedentes en todo el registro En los sedimentos lacustres del Lago Vichuqueacuten

tambieacuten se observa un incremento de la acumulacioacuten de MO (TOC ~17 + 05)

asociada a un incremento en la productividad del lago (BrTi ~01 + 003) y las

entradas de sedimento desde la cuenca disminuyen (AlTi ~005 + 005) El δ15N

(~43 + 05permil) tiende a valores maacutes negativos y el NT incrementa de 20 a 55 μg (NT

~346 + 9 μg) oscilando en antifase

Durante esta fase en ambos lagos se observa un aumento en la

acumulacioacuten de MO sedimentaria un incremento en el NT y valores maacutes negativos

de δ15N que coincide con el incremento de la superficie forestal de las cuencas

(Laguna Matanzas gt17 Lago Vichuqueacuten gt60)

124

Figura 2 Comparacioacuten de los cambios del ciclo del N entre Laguna Matanzas y

Lago Vichuqueacuten con los procesos biogeoquiacutemicos contrastantes en rojo En L

Matanzas las condiciones oacutexicas podriacutean estar favoreciendo la nitrificacioacuten del

amonio En Vichuqueacuten las condiciones anoacutexicas favorecen un aumento en δ15N de

la MO en los sedimentos por desnitrificacioacuten y mineralizacioacuten

Los ambientes mediterraacuteneos en el que los lagos del presente estudio se

encuentran insertos estaacuten caracterizados por una estacioacuten seca prolongada y las

precipitaciones ocurren en eventos puntuales alcanzando altos montos

pluviomeacutetricos en poco tiempo Las lluvias favorecen un lavado de la cuenca la

perdida de N y otros nutrientes Por lo que es esperable que los sedimentos del

lago reflejen mejor los valores isotoacutepicos de los suelos de la cuenca durante los

periacuteodos con altos montos pluviomeacutetricos En el Lago Vichuqueacuten por ejemplo el

125

POM superficial (2 y 5 m de profundidad) despliega valores isotoacutepicos maacutes

positivos en invierno presumiblemente como resultado de mayores aportes de MO

y N de su cuenca (Fig 1b) En ambos lagos los valores maacutes positivos en los

sedimentos lacustres ocurren durante periacuteodos con mayores montos pluviomeacutetricos

(Cap1 Fig 6 y Cap 2 Fig 12)

Ademaacutes del efecto de la precipitacioacuten en el aporte de nutrientes al lago en

esta tesis hemos encontrado que los mayores aportes de N desde la cuenca se dan

cuando la cobertura vegetal del suelo es menor En Laguna Matanzas el desarrollo

de la actividad ganadera desde la llegada de los espantildeoles a la cuenca habriacutea

incrementado los aportes de N al lago Los valores de δ15N en los sedimentos

lacustres depositados durante este periacuteodo son los maacutes positivos de todo el registro

(~4permil) A su vez en Lago Vichuqueacuten los valores isotoacutepicos maacutes positivos se

registran entre 1300 y 1900 CE que coinciden con el mayor desarrollo de

actividades agriacutecola y de extraccioacuten de maderas de la cuenca (Fig 10 Cap 2)

Los recientes LUCC (a partir de 1975) en las cuencas de Laguna Matanzas

y Lago Vichuqueacuten estaacuten caracterizados por un incremento de la superficie forestal

y agriacutecola en reemplazo de la cobertura de pastizal (Laguna Matanzas) y bosque

nativo (Lago Vichuqueacuten) Los valores de δ15N en los testigos sedimentarios fueron

maacutes positivos cuanto mayor la superficie agriacutecola de la cuenca y maacutes negativos

cuanto mayor la superficie forestal Aunque por los alcances de esta tesis no

podemos ser concluyentes respecto del origen del NT (aloacutectonoautoacutectono) parece

ser que esta maacutes ligado a los aportes de la cuenca pese a la disminucioacuten del aporte

sedimentario observado en ambos lagos Las plantaciones forestales a diferencia

del bosque nativo son fertilizadas con una mezcla de N P y K (Toral et al 2005)

Por lo que pese a la disminucioacuten del aporte sedimentario la concentracioacuten de

126

nutrientes en el aporte al lago puede verse incrementada por el tipo de manejo

forestal con respecto al bosque nativo

Los resultados del primer capiacutetulo demuestran que 1) las plantaciones

forestales yo bosque nativo retiene maacutes sedimentos y MO mientras que el uso de

suelo agriacutecola y los pastizales destinados al desarrollo de la actividad ganadera lo

libera 2) Al parecer la desnitrificacioacuten es el proceso natural maacutes importante de

perdida de N en lagos costeros y favorece el enriquecimiento de 15N tanto en la

columna de agua (ie 15N-DIN) como en los sedimentos una vez enterrados y 3) la

desnitrificacioacuten depende de los cambios en las condiciones REDOX en el lago La

oxigenacioacuten en lagos poco profundos -como Laguna Matanzas- es altamente

fluctuante a escalas decadal-centenal depende de la profundidad de la laacutemina de

agua y de la variabilidad de la precipitacioacuten En este sentido en Laguna Matanzas

habriacutea condiciones anoacutexicas en ambientes cuando el lago alcanza niveles maacutes

altos Estas condiciones se observan entre 1820 y 1940 CE y son coetaacuteneas con

episodios maacutes huacutemedos y friacuteos (von Gunten et al 2009 Christie et al 2009) pero

tambieacuten con una fuerte actividad ganadera en la cuenca

Las fuentes variables de N y su fluctuacioacuten en el tiempo hacen necesario

contar con un anaacutelogo moderno que permite usar al δ15N de los sedimentos

lacustres como un indicador indirecto de los cambios en la disponibilidad de N en

el tiempo Por ello en el segundo capiacutetulo integramos muestras de suelo-

vegetacioacuten y un monitoreo de POM de la columna de agua en verano e invierno La

composicioacuten isotoacutepica de POM estariacutea reflejando cambios de la fuente de N (fijacioacuten

vs consumo del DIN) que variacutea durante el antildeo hidroloacutegico Durante el verano la

mayor temperatura y horas-luz favoreceriacutean las entradas de N al lago viacutea fijacioacuten

bioloacutegica de N2 atmosfeacuterico resultando en un incremento de la MO con un valor

127

isotoacutepico bajo (POM verano~5permil Fig 1b) El N2 (δ15N = 0permil) es fijado praacutecticamente

sin fraccionamiento isotoacutepico generando un δ15N de la OM cercano a 0permil (Leng et

al 2006) En invierno las precipitaciones pueden estar favoreciendo un incremento

en la entrada de nutrientes al lago El DIN de la columna de agua llega a contener

valores de δ15N maacutes altos reflejando estos mayores aportes de la cuenca y el POM

del Lago Vichuqueacuten queda enriquecido en 15N (δ15N ~11permil Cap 2 Fig 9) Estas

variaciones estacionales pueden estar evidenciando un cambio en la composicioacuten

de especies de POM desde especies fijadoras a especies que consumen el N de la

columna de agua Sin embargo para corroborar esta informacioacuten seriacutea deseable

contar con el anaacutelisis de la composicioacuten de especies de las muestras de agua

extraidas

Entre los resultados maacutes importantes estaacuten los valores isotoacutepicos del suelo

y la biomasa representativa de la cuenca que incluye un listado de las especies

nativas de la zona que hasta ahora no se contaba (Cap 2 Tabla en material

suplementario) Las especies colectadas despliegan valores de δ15Nfoliar maacutes

positivos (plantaciones forestales y pastizal ~89permil) que el suelo (35permil) salvo por

las especies nativas las que oscilan en torno a valores cercanos al atmosfeacuterico

(~14permil) La razoacuten isotoacutepica 15N14N refleja la dinaacutemica de intercambio de N entre la

vegetacioacuten y el suelo (Koba et al 2002) La discriminacioacuten es positiva en la mayoriacutea

de los sistemas bioloacutegicos por lo que las plantas tienen valores de δ15N maacutes bajos

que el suelo (Evans et al 2001) como sucede con las especies nativas en Lago

Vichuqueacuten En consecuencia las plantas quedan empobrecidas en 15N y conducen

a un enriquecimiento en 15N del suelo sobretodo si no hay reposicioacuten de N por otras

viacuteas (eg fijacioacuten de N) Por lo tanto los valores maacutes negativos de δsup1⁵Nfoliar de las

especies nativas pueden estar relacionados con el consumo preferencial de 14N del

128

suelo donde la discriminacioacuten isotoacutepica de la vegetacioacuten contra el 15N conduce a

valores del δsup1⁵Nsuelo maacutes altos (Houmlgberg 1997) Por el contrario los valores maacutes

positivos de δsup1⁵Nfoliar de las plantaciones forestales y pastos con respecto al suelo

puede deberse por una parte que el suelo no cuenta con mecanismos naturales de

reposicioacuten de N salvo por la descomposicioacuten de la hojarasca que puede ser maacutes

lenta en Pinus radiata que en bosque nativo (Lusk et al 2001) y por otra por el alto

impacto de los aportes de N (y otros nutrientes) derivado de las actividades

humanas (eg uso de fertilizantes) en el suelo

El alcance maacutes significativo de esta tesis se relaciona con un cambio en la

tendencia maacutes negativa de δsup1⁵N y el incremento del NT a partir de 1940 y a partir

de 1970 CE en ambos lagos La causa maacutes probable de esta tendencia es el

reemplazo de la cobertura natural o preexistente a 1940 CE por plantaciones

forestales

En la figura 2 se observa una siacutentesis de los principales procesos que

afectan la sentildeal isotoacutepica de la MO en los sedimentos lacustres de L Matanzas y

L Vichuqueacuten La entrada de N y MO desde la cuenca depende del tipo de cobertura

Las plantaciones forestales y el bosque nativo retienen maacutes nutrientes y sedimentos

en la cuenca mientras que la agricultura los favorece Sin embargo las praacutecticas

de manejo que incluyen la aplicacioacuten de N (y otros nutrientes) pueden aportar maacutes

nutrientes al lago que la cobertra de bosque nativo Cuando las actividades

forestales cubren una mayor superficie de la cuenca (1940 en adelante) δsup1⁵N oscila

en valores maacutes negativos y el NT tiende a incrementarse en los sedimentos

lacustres Cabe destacar que los valores de δsup1⁵N observados en los testigos

sedimentarios a fines del s XX no tienen precedente durante la conquista y colonia

espantildeola o durante el resto del periodo de la Repuacuteblica

129

Figura 2 Modelo de transferencia de N entre los ecosistemas terrestres y

acuaacuteticos El δ15N de los sedimentos lacustres depende de la interaccioacuten entre los

aportes de la cuenca y porcesos ldquoin-lakerdquo Flechas indican la direccioacuten del flujo de

N En azul las salidasentradas de 14N en rojo las salidasentradas de 15N δ15N de

la interaccioacuten plantas-suelo depende del tipo de cobertura de suelo

130

CONCLUSIONES GENERALES

La transferencia de N entre cuencas y lagos es un factor de control del ciclo

del N en los lagos y queda reflejado en la sentildeal isotoacutepica de los sedimentos

lacustres (Leng et al 2006 McLauchlan et al 2007) En Laguna Matanzas el

suelo de las especies nativas y las plantaciones forestales despliegan valores de

δ15N maacutes bajos (~1permil) que los de Lago Vichuqueacuten (~35permil) Coincidentemente los

sedimentos lacustres de Laguna Matanzas oscilan con valores de δ15N maacutes bajos

(-15 a +45permil Fig 1) que los de Lago Vichuqueacuten (+3 a +8permil)

Por otra parte el estudio de la MO de los sedimentos lacustres ha permitido

reconstruir los cambios en los aportes de MO y N desde la cuenca Aunque no es

posible afirmar queacute tipo de N estaacute entrando al lago (eg Nitroacutegeno orgaacutenico e

inorganico) si podemos decir que los cambios en las fluctuaciones de δ15N son

coincentes con el crecimiento de la actividad forestal (1980 - hasta 2016 L

Matanzas 0-17 y L Vichuqueacuten 1-66) El δ15N fluctuacutea hacia valores maacutes

negativos Ademaacutes se observa un incremento del NT en los sedimentos lacustres

cuanto mayor es la superficie forestal

Entre 1800-1940 las cuencas eran fundamentalmente agriacutecolas y

ganaderas (Cap1 Fig 7 y Cap 2 Fig 12) el δ15N de los sedimentos lacustres

oscila con valores maacutes positivos (L Matanzas +40 plusmn 05permil y L Vichuqueacuten 56 plusmn

033permil Fig 1) hay una baja bioproductividad en el lago (BrTi ~002 TOC~17)

lo que coincide con un bajo contenido de NT (~478 μg) Este es un periacuteodo de altas

precipitaciones (Christie et al 2009) que tienden a favorecer el lavado de la cuenca

131

y con ello el aporte de MO sedimentos y nutrientes desde la cuenca tiende a verse

favorecido Aunque las principales actividades humanas en estas cuencas son

diferentes (ganaderiacutea en Laguna Matanzas Contreras-Lopez et al 2014

agricultura en Lago Vichuqueacuten Odone 1997) en ambos casos hubo un reemplazo

de la cobertura natural de bosques nativo que favorecioacute mayores aportes de N y

sedimentos desde la cuenca en un efecto sumado con el aumento de las

precipitaciones

A partir de 1980 CE en ambos lagos se observa una disminucioacuten en los

valores de δ15N y un incremento del NT que no tiene precedentes en todo el registro

y pese a que ambos lagos son limnologicamente muy diferentes En Lago

Vichuqueacuten el δ15N tiende a oscilar en antifase con el NT (Fig 1) En el caso de

Laguna Matanzas se observa una tendencia hacia valores maacutes negativos y a partir

de 1990s a valores maacutes positivos mientras que el NT tiende a incrementarse de

manera sostenida Ello podriacutea estar relacionado con el crecimiento de la actividad

forestal habriacutea una mayor retencioacuten de N y sedimentos en la cuenca ligado al

incremento de la superficie forestal Ademaacutes en el caso de L Matanzas el

incremento de la actividad agriacutecola (sumado al de las plantaciones forestales)

podriacutea expicar el cambio en la tendencia en la deacutecada de los 1990s

En el contexto de Antropoceno esta tesis nos permite identificar un gran

impacto de las actividades humanas en Chile central a partir de la deacutecada de 1940

y una Gran Aceleracoacuten a partir de la deacutecada de 1970s En el registro sedimentario

de los lagos en estudio se observa una gran acumulacioacuten de MO el δ15N oscila

hacia valores maacutes negativos y un gran incremento del NT y el crecimiento de la

actividad forestal parece ser la principal responsable Ademaacutes la sobreexplotacioacuten

132

del agua junto al cambio climaacutetico global ha generado una combinacioacuten letal para

los lagos costeros de Chile central

Figura 1 Comparacioacuten de las fluctuaciones de δ15N durante los uacuteltimos 300

antildeos en Laguna Matanzas y Lago Vichuqueacuten

133

Referencias

Battye W Aneja VP Schlesinger WH 2017 Earthrsquos Future Is nitrogen the next carbon Earthrsquos Future Global Biogeochem Cycles 30 1000ndash1014 httpsdoiorg101002eft2235

Christie DA Boninsegna JA Cleaveland MK Lara A Le Quesne C

Morales MS Mudelsee M Stahle DW Villalba R 2009 Aridity changes in the Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from tree-rings Clim Dyn 36 1505ndash1521 httpsdoiorg101007s00382-009-0723-4

Contreras-Loacutepez M (Playa AUHVC (Universidad de VRFS (Pontificia

UC de V 2014 Elementos de la historia natural del An Mus Hist Natulas Vaplaraiso 27 51ndash67

Elliott EM Brush GS 2006 Sedimented organic nitrogen isotopes in

freshwater wetlands record long-term changes in watershed nitrogen source and land use SO - Environmental Science amp Technology 40(9)2910-2916 2006 May 1 40 2910ndash2916

Evans RD Evans RD 2001 Physiological mechanisms influencing

plant nitrogen isotope composition 6 121ndash126 Fogel ML Cifuentes LA 1993 Isotope fractionation during primary

production Org Geochem 73ndash98 httpsdoiorg101007978-1-4615-2890-6_3 Galloway JN Schlesinger WH Ii HL Schnoor L Tg N 1995

Nitrogen fixation Anthropogenic enhancement-environmental response reactive N Global Biogeochem Cycles 9 235ndash252

Garreaud RD Alvarez-Garreton C Barichivich J Pablo Boisier J

Christie D Galleguillos M LeQuesne C McPhee J Zambrano-Bigiarini M 2017 The 2010-2015 megadrought in central Chile Impacts on regional hydroclimate and vegetation Hydrol Earth Syst Sci 21 6307ndash6327 httpsdoiorg105194hess-21-6307-2017

Koba K Koyama LA Kohzu A Nadelhoffer KJ 2003 Natural 15 N

Abundance of Plants Coniferous Forest httpsdoiorg101007s10021-002-0132-6

Leng MJ 2006 Isotopes in Palaeoenvironmental Research Eos

Transactions American Geophysical Union httpsdoiorg1010292007EO070007 McLauchlan KK Craine JM Oswald WW Leavitt PR Likens GE

2007 Changes in nitrogen cycling during the past century in a northern hardwood forest Proc Natl Acad Sci 104 7466ndash7470 httpsdoiorg101073pnas0701779104

134

Phytologist N Oct N 2006 Tansley Review No 95 15N Natural Abundance in Soil-Plant Systems Peter Hogberg 137 179ndash203

Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The

trajectory of the anthropocene The great acceleration Anthr Rev 2 81ndash98 httpsdoiorg1011772053019614564785

Turner BL Kasperson RE Matson PA McCarthy JJ Corell RW

Christensen L Eckley N Kasperson JX Luers A Martello ML Polsky C Pulsipher A Schiller A 2003 A framework for vulnerability analysis in sustainability science Proc Natl Acad Sci U S A httpsdoiorg101073pnas1231335100

Vitousek PM Aber JD Howarth RW Likens GE Matson PA

Schindler DW Schlesinger WH Tilman DG 1997 Vitousek et al 1997 Ecol Appl httpsdoiorg1018901051-0761(1997)007[0737HAOTGN]20CO2

Vitousek PM Howarth RW 1991 Nitrogen limitation on land and in the

sea How can it occur Biogeochemistry httpsdoiorg101007BF00002772 von Gunten L Grosjean M Rein B Urrutia R Appleby P 2009 A

quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo central Chile back to AD 850 Holocene 19 873ndash881 httpsdoiorg1011770959683609336573

Xu R Tian H Pan S Dangal SRS Chen J Chang J Lu Y Maria

Skiba U Tubiello FN Zhang B 2019 Increased nitrogen enrichment and shifted patterns in the worldrsquos grassland 1860-2016 Earth Syst Sci Data httpsdoiorg105194essd-11-175-2019

Zaehle S 2013 Terrestrial nitrogen-carbon cycle interactions at the global

scale Philos Trans R Soc B Biol Sci 368 httpsdoiorg101098rstb20130125

Page 11: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 12: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 13: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 14: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 15: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 16: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 17: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 18: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 19: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 20: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 21: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 22: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 23: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 24: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 25: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 26: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 27: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 28: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 29: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 30: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 31: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 32: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 33: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 34: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 35: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 36: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 37: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 38: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 39: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 40: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 41: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 42: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 43: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 44: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 45: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 46: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 47: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 48: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 49: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 50: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 51: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 52: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 53: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 54: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 55: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 56: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 57: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 58: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 59: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 60: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 61: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 62: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 63: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 64: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 65: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 66: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 67: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 68: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 69: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 70: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 71: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 72: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 73: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 74: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 75: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 76: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 77: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 78: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 79: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 80: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 81: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 82: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 83: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 84: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 85: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 86: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 87: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 88: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 89: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 90: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 91: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 92: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 93: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 94: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 95: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 96: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 97: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 98: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 99: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 100: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 101: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 102: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 103: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 104: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 105: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 106: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 107: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 108: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 109: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 110: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 111: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 112: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 113: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 114: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 115: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 116: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 117: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 118: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 119: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 120: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 121: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 122: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 123: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 124: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 125: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 126: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 127: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 128: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 129: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 130: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 131: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 132: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 133: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …
Page 134: PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INFLUENCIA DE …