Pathogenesis of complicated Staphylococcus aureus infections

26
Pathogenesis of complicated Staphylococcus aureus infections Bhanu Sinha Institute of Hygiene and Microbiology Julius Maximilians University Würzburg

Transcript of Pathogenesis of complicated Staphylococcus aureus infections

Page 1: Pathogenesis of complicated Staphylococcus aureus infections

Pathogenesis

of complicated Staphylococcus aureus infections

Bhanu Sinha

Institute of Hygiene and Microbiology Julius Maximilians University Würzburg

Page 2: Pathogenesis of complicated Staphylococcus aureus infections

S. aureus infections

No specific site

-

Localized:

furuncle, bullous impetigo, infected lesions (atopic dermatitis), surgical wounds, abscess formation, foreign body infection,

pneumonia, ...High potential for systemic spread

-

Hematogenous:

soft tissue, thrombophlebitis, septic arthritis, osteomyelitis, endocarditis,

sepsis, ...

-

Intoxication:

food intoxication, toxic shock syndrome, scalded skin syndrome, ...

Page 3: Pathogenesis of complicated Staphylococcus aureus infections

S. aureus host interaction

ImmunomodulationChemotaxisOpsonisationPhagocytosisComplementAngiogenesisHost cell viability…

PersistenceMetabolic variation (SCV)Altered habitat (i.c.)Biofilm…

AdherenceAdhesinsWTAStress resistance

ComplementAntimicrobial peptidesLow pHOxidative conditions…

Antibiotic resistanceMRSA (β-lactam)

other classes

Redundancy, pleiotropy (variable prevalence/expression)

PlasticityGeneticRegulatory

High colonisation rate: 20-30% permanently, 30-50% transiently

Page 4: Pathogenesis of complicated Staphylococcus aureus infections

Complicated S. aureus infectionsEndocarditis (Chronic) osteomyelitis

(www.thachers.org/ orthopedics.htm;D.P. Lew, Lancet 2004)(escuela.med.puc.cl/.../ patologia067-073.html%7F)

Page 5: Pathogenesis of complicated Staphylococcus aureus infections

Complicated infection

Deep seated Associated with line-sepsis, osteomyelitis, septic arthritis, deep organ abscesses, infective endocarditis

Persistent Repeated positive bloodculture (>3 d therapy)

Recurrent Repeated isolation of same organism from blood culture after documented negative blood culture and/or clinical improvement

F.-Y. Chang, et al., Medicine, 2003. 82: 333 -

339

Page 6: Pathogenesis of complicated Staphylococcus aureus infections

Pathogenesis of infective endocarditis

3.) Replication of micro-organismsGrowth of vegetations

5.) Survival of host defence(and therapy)

1.) Transmission(here: blood)

4.) Dissemination2.) Adherence tohost structures

(platelets, matrix, cells)+/-

invasion

of host cells

Prerequisite: often endothelial damgeApposition of platelets and matrix proteins

Page 7: Pathogenesis of complicated Staphylococcus aureus infections

S. aureus endothelium interaction

Page 8: Pathogenesis of complicated Staphylococcus aureus infections

S. aureus adhesins

2.) Anchorless (secreted/soluble;

back binding):e.g. Emp, Eap,

Ebh/GSSP

3.) Transmembraneous:EbpS, Ebh/GSSP?

1.) Cell wall-anchored(sortase motif

LPXTG ):e.g. FnBPA/B,

Cna, ClfA/B, Protein A, etc.

4.) Wall teichoic acids (WTA), Lipoteichoic acids (LTA)(negatively charged)-> WTA: adherence (nasal epithelia),

nasal colonization; flow interaction (HUVEC), virulence (IE)

C. Weidenmaier et al., Nat. Med. 2004; 10:243-245C. Weidenmaier et al., Infect. Dis. 2005, 191:1771-1777

Redundancy, pleiotropy (variable prevalence/expression)

Page 9: Pathogenesis of complicated Staphylococcus aureus infections

Two fnb genes are more likely associated with invasive infections

Different regulation of fnbA and fnbBD. Li et al., Antimicrob. Agents Chemother. 2005, 49:916-924

⇒ Important for different steps during infection?

Endocarditis, osteomyelitis, foreign body infection

Invasive infections: 119

82 %

18 %

Nasal colonisation: 44

63 %

37 %

Fibronectin binding correlates with invasive infectionsR.A. Proctor et al., J. Lab. Clin. Med. 1984; 104:455-469

A. Johansson et al., Clin. Orthop. 2001; 382:241-246

163 clinicalisolates (PCR)

S.J. Peacock et al.,Infect. Immun. 2002,

70:4987-4996

1 fnb

fnbA+ fnbB

Page 10: Pathogenesis of complicated Staphylococcus aureus infections

FnBP-dependent endothelial adherence in vivo

S. Kerdudou et al., Thromb. Haemost. 2006; 96: 183-189

Intravital microscopy (dorsal skinfold, postcapillary/collecting

venules)

Bact

eria

/mm

2

untreated + TNF-α

Cowan 1FnBPA-

Page 11: Pathogenesis of complicated Staphylococcus aureus infections

Direct modulation of fibrinolysis by live staphylococci?

+

-

Pro-

thro

mbo

tic

activity

+

-

Pro-

fibr

inolyt

ic a

ctivity

Based on: B. Haslinger-Löffler et al., Thromb. Haemost. 2007; 98:813-822

24 h

HMC stimulated with conditioned media (MNC treated with ...)

0

0,5

1

1,5

contr

olTN

Falph

aS.

epi. 1

9S.

epi. 2

0044

S. ep

i. 0-4

7Cow

an

8325

-4Woo

d

6850

ST 23

9

HMC

t-PA

/PA

I-1

rati

o

48 h

HMC infected with live staphylococci

Page 12: Pathogenesis of complicated Staphylococcus aureus infections

WTA required for adherence and virulence (IE) in vivo

C. Weidenmaier et al., Infect. Dis. 2005, 191:1771-1777

S. aureus strain SA113 and ΔtagO (WTA-deficient)

Virulence (rabbits, traumatic IE)48 h post challenge (5 x 105 CFU)

CFU

Vegetations

Kidney/SpleenWT

~ 109

~ 107

ΔtagO

~ 106

~ 103

HUVECFlow conditions

Page 13: Pathogenesis of complicated Staphylococcus aureus infections

S. aureus : a facultative intracellular microorganism

Page 14: Pathogenesis of complicated Staphylococcus aureus infections

S. aureus invades host cells in vitro and in vivo

S. Clement et al., J. Infect. Dis. 2005; 192:1023-1028

Nasal epithelium; IF

Green: α-S. aureus (PG)Red: α-Cytoceratin (polyclonal)

Blue: Nuclei (TOTO-III)

B. Sinha et al., Cell. Microbiol. 1999; 1:101-117

293 cells; TEM

+ Tannic acidCowan I, fixed

Page 15: Pathogenesis of complicated Staphylococcus aureus infections

MSSA

B. Sinha, et al., Cell. Microbiol. 1999, 1:101-117M. Grundmeier, et al., Infect. Immun. 2004; 72:7155 -7163

Clinical S. aureus isolates are invasive for host cells

Regulationdefects

293 cells

FnBPdefects

Clinicalisolates(n > 150)

Internalizedbacteria

[% of Cowan(AFU)]

Page 16: Pathogenesis of complicated Staphylococcus aureus infections

Mechanism

of S. aureus cellular invasion

Staphylococcus aureus

Host cellmembrane Integrin (α5

)β1

Fn binding:> D1-D4 and Du

involved

T. Fowler et al., Eur. J. Cell Biol. 2000 79:672-679

R. Massey et al., Cell. Microbiol.2001 3:839-851

[U. Schwarz-Linek et al., Nature 2003, 423:177-181]

FnBPs

Fn

Pls

MRSAPls expression anti-invasive Mechanism?K. Juuti/B. Sinha et al., J. Infect. Dis. 2004,

189:1574-1584 C. Werbick, et al. J. Infect. Dis. 2007, 195:1678-1685

Eap: partially compensatory for

loss of FnBPs (Newman)A. Haggar

et al., Infect. Immun. 2003; 71:2310-2317

Mechanism?

Eap

Role of WTA:Adherence (HUVEC: flow; nasal

keratinocytes)=> Host cell binding partner?

Required for invasion?

C. Weidenmaier et al., Nat. Med. 2004; 10:243-245C. Weidenmaier et al., . Infect. Dis. 2005, 191:1771-1777

Adapted and updated from B. Sinha et al., Thromb. Haemost. 2005; 94:266-277

F-Actin re-arrangement;Signaling: Tyr-P, Src kinase;

T. Fowler et al. Cell. Microbiol. 2003; 5:417-426; K. Dziewanowska et al. . Infect Immun 1999; 67:4673-4678

F. Agerer et al., J. Biol. Chem. 2003; 278:42524-42531

Cortactin;

F. Agerer et al., J. Cell Sci. 2005; 118:2189-2200

Tensin, nWASP, Rab5

A. Schröder

et al., Mol. Biol. Cell 2006; 17:5198–5210

Page 17: Pathogenesis of complicated Staphylococcus aureus infections

Endocarditis: FnBP-dependent pathogenesis and invasion in vivo

Y.A. Que et al., J. Exp. Med. 2005; 201:1627-1635

Traumatic endocarditis (rats); immuno-histochemistry (24 h p. i.) Heterologous expression of S. aureus adhesins

αClfA F(ab)’2

αFnBPA F(ab)’2

αvWF

αvWF

Invasion of HUVEC in vitro

No

Yes

Disease

Limited

Progression

Page 18: Pathogenesis of complicated Staphylococcus aureus infections

Dircect (extracellular) leukocyte cytotoxicity of S. aureus

Page 19: Pathogenesis of complicated Staphylococcus aureus infections

S. aureus toxins

4.) Pyrogenic toxin-super- antigens (PTSAg):

-

Enterotoxins(SEA, SEB, SEC-SEH,…)

-

Toxic shock syndrome toxin-1(TSST-1)

-

Other enterotoxins (no SAg?)

2.) Hemolysins/cytotoxins: (structurally not related!)

-

α-Toxin (pore-forming)-

β-Toxin/Sphingomyelinase C

-

δ-Toxin/δ-Lysin

Redundancy, pleiotropy (variable prevalence/expression)

1.) Exfoliative toxins:(Proteases: Desmoglein)

- ETA- ETB- ETC- ETD

-> Staphylococcal scalded skin syndrome (SSSS)

3.) Hemolysins/cytotoxins : (Two component toxins,

related, pore-forming)-

γ-Toxins

-

Panton-Valentin Leukocidin (PVL)

Mononuclear leukocytes

Neutrophil granulocytes

Page 20: Pathogenesis of complicated Staphylococcus aureus infections

S. aureus α-toxin•

Pore-forming toxin (homo-heptameric), 33 kDa monomer (homologous to LukF-PVL)

Highly selective small pores at low (< 6 ng/ml) concentrations (K+-permissive, not Ca2+)

Host cell membrane receptor ?•

Highest sensitivity: rabbit RBC;

(other RBC ~ x 10-2, human RBC ~ x 10-3)

A. Valeva, et al. J. Biol. Chem. 2001

Multistep assembly

Page 21: Pathogenesis of complicated Staphylococcus aureus infections

Mitochondria are “targeted“Intact Jurkat T cells (8 h) Isolated mitochondria (30 min)

H. Bantel/B. Sinha, et al., J. Cell. Biol. 2001;, 155:637-647

Mitochondrial transmembrane potential (ΔΨm

): TMRE uptake by FACS (Fl-2H)

Jurkat: WTJurkat Bcl-2 +++

(4 h)10 ng/ml 100 ng/ml

Page 22: Pathogenesis of complicated Staphylococcus aureus infections

Caspase activation byS. aureus α-toxin in mononuclear leukocytes

Casp-8 Pro-Casp-9Apaf1

Bcl-2

Apaf1dATP

DEATH

C LLSubstrates

Casp-3EFFECTORCASPASE

INITIATOR CASPASE Casp-9

Mitochondrium

α-Toxin

JurkatT cellsandMNC

?

Cytochrome c

MNConly

EndogenousTNF

Bid?

tBid?

?

?FADD

TNF-R1

Pro-Casp-8

Similar data in PMN:

PVLA.L. Genestier, et al., 2005; 115:3117-3127 Based on H. Bantel/B. Sinha, et al., J. Cell. Biol. 2001; 155:637-647

B. Haslinger, et al., Cell. Microbiol. 2003; 5:729-741

Page 23: Pathogenesis of complicated Staphylococcus aureus infections

Caspase inhibition prevents α-toxin- induced cell death in Jurkat T cells

Trypan blue exclusion (light microscopy)

B. Haslinger, et al., Cell. Microbiol. 2003; 5:729-741

Page 24: Pathogenesis of complicated Staphylococcus aureus infections

Invasiveness required for induction of apoptosis

Correlation of S. aureus properties

Based on B. Haslinger-Löffler et al., Cell. Microbiol. 2005; 7:1087-1097

-

Invasion and hemolysis

required-

Invasion not

sufficient-

Hemolysis

not

sufficient

HUVEC

Supernatants (6850), α-toxin (100 µg/ml):

No effect

in HUVEC

(Jurkat: 3-10 ng/ml sufficient)

B. Haslinger-Löffler, et al. (unpublished data)

Page 25: Pathogenesis of complicated Staphylococcus aureus infections

Summary- S. aureus : facultative intracellular pathogen-

Endothelial adherence WTA-

and FnBP-dependent

(in vivo flow conditions)- Proinflammatory

stimulation of HMC (and EC?) indirect

-

Cellular invasiveness crucial for pathogenesis of complicated S. aureus infections (IE) in vivo

-

Cytotoxicity

for leukocytes by pore-forming toxins (α-toxin, PVL); apparently different mechanism in EC

-

Leucocyte

cell death occurs via mitochondrial pathway

=> Both aspects may contribute to pathogenesis of complicated infections

Page 26: Pathogenesis of complicated Staphylococcus aureus infections

Acknowledgements•

Institut of Hygiene and Microbiology, Würzburg

Karina Lamprecht, Nadine LeitschuhAnke HellrungJohanna Priller, Matthias RaspeDaniel SchäferThiên-Trí

LâmDeepak Chikkaballi

Matthias Frosch

and co-workers

Theodor-Boveri-Institut Biozentrum, Würzburg

Georg Krohne

and co-workers

Institute of Medical Microbiology, Münster

Katrin Strangfeld, Michaela BrückCornelia WerbickMatthias GrundmeierBettina Haslinger-LöfflerMuzaffar

HussainGeorg Peters and co-workers

Division of Infectious Diseases, GenevaSabine Couzinet

(formerly

Bern)Daniel Lew and co-workers

Department for Pathology, GenevaKarl-Heinz Krause and co-workers

Institut of Bacteriology and Hygiene, Homburg

Mathias Herrmann and co-workers

University of DüsseldorfHeike Bantel

(now

Hannover)Klaus Schulze-Osthoff

and co-workers

University of HelsinkiKatri

Juuti-Savolainen, Pentti

Kuusela

University of LausanneYok-Ai

Que, Philippe Moreillon

Funding (cumulative)DFG (Deutsche Forschungsgemeinschaft),

IZKF and IMF Münster, Else-Kröner-

Fresenius-Stiftung, DKFZ-Scholarship