Metodosimplex

12

Click here to load reader

Transcript of Metodosimplex

Page 1: Metodosimplex

METODO SIMPLEX GUIA 11

OBJETIVO: Mostrar como se utiliza el método simplex para resolver un problema de programación lineal estándar este método permite resolver problemas de programación lineal que no pueden resolverse de el metodo grafico cuando el numero de variables es mayor e igual a 3 Este metodo utiliza matrices y operaciones elementales entre filas Se va a considerar problemas de forma ESTÁNDAR o normal es decir que consisten en MAXIMIZAR una funcion (OBJETIVO ) con restricciones del tipo MENOR IGUAL Problema estándar : Maximizar la funcion lineal

nn xcxcxcxcZ ++++= .....332211 Sujeta a las restricciones

11313212111 .... bxaxaxaxa nn ≤+++++

22323222121 .... bxaxaxaxa nn ≤+++++

33333232131 .... bxaxaxaxa nn ≤+++++

mnmnmmm bxaxaxaxa ≤+++++ ....3321211 Donde las variables , , ,… y , , son no negativas 1x 2x 3x nx 1b 2b nb El método simplex empieza con una solucion factible y prueba si es o no optima Si no lo es, el método busca una MEJOR solucion , que se acerque mas a la optimizacion de la funcion objetivo, si esta nueva solucion no es optima, entonces se repite el proceso hasta hallar una solucion optima si existe Se consideran las siguientes fases o etapas : 1. Convertir las desigualdades en igualdades

Page 2: Metodosimplex

Se introduce una variable de holgura , por cada una de las restricciones o limitaciones del tipo ≤, (menor igual )para convertirlas en igualdades

1s 2s 3S

Escribir la tabla inicial simplex o matriz simplex En las columnas aparecerán todas las variables básicas x, y del problema y las

variables de holgura , /exceso. En las filas se observan, para cada restricción las variables de holgura con sus coeficientes de las igualdades obtenidas, y la última fila con los valores resultantes de sustituir el valor de cada variable en la función objetivo,

1s 2s 3S

Como sabemos, el método simplex es un algoritmo iterativo que iniciando en una solución básica factible pero no óptima, genera soluciones básicas factibles cada vez mejores hasta encontrar la solución óptima (sí esta existe). Nótese que la base de su lógica es mantener la factibilidad, mientras busca la optimalidad. EJEMPLO Resolver mediante el método simplex el siguiente problema: Maximizar Z = f(x,y) = 5x + 4ysujeto a: 2x + y ≤ 35 x + y ≤ 20 -3x + y ≤ 12 x ≥ 0 , y ≥ 0 Se consideran las siguientes fases o etapas : 1. Convertir las desigualdades en igualdades Se introduce una variable de holgura por cada una de las restricciones o limitaciones del tipo ≤, (menor igual )para convertirlas en igualdades, como hay n desigualdades se introducen m variables de holgura resultando el sistema de ecuaciones lineales:

Page 3: Metodosimplex

2x + y + = 35 1s

x + y + =20 2s

-3x + y + =12 3S

2. Igualar la función objetivo a cero -5x + 4y + Z = 0 3. Escribir la tabla inicial simplex o matriz En las columnas aparecerán todas las variables básicas x,y del problema y las

variables de holgura , /exceso.1s 2s 3S s En las filas se observan, para cada restricción las variables de holgura con sus coeficientes de las igualdades obtenidas, y la última fila con los valores resultantes de sustituir el valor de cada variable en la función objetivo, y de operar para obtener el resto de valores de la fila: Base 1x 2x 1s 2s 3S Z b COCIENTE

1s 1 1 1 0 0 0 20 20/1=20

2s 2 1 0 1 0 0 35 35/2= 235

3S -3 1 0 0 1 0 12 No hay cociente Z -5 -4 0 0

0 1 0

Indicadores

El indicador mas negativo es -5 y aparece en la columna de por lo tanto 1x

1x es la variable que entra a la base ,el cociente mas pequeño es 2

35 de modo que es la variable que sale ,el elemento pivote es 2 ,haciendo operaciones elementales entre filas se obtiene 1 en la posición del pivote y ceros los demás elementos de la columna pivote entonces se obtiene

2x

Page 4: Metodosimplex

Se divide la fila 2 por ½ Base 1x 2x 1s 2s 3S Z b

1s 1 1 1 0 0 0 20

1x 1 0 0 0 21

21

235

3S -3 1 0 0 1 0 12

Z -5 -4 0 0

0 1 0

2121 FF +−

323 FF + 425 FF +

Base 2x 1x 1s 2s 3S Z b

1s 0 1 -21 0 0 2

125

1x 1 0 0 0 21

21

235

3S 0 1 0 0 25

23

2129

Z 0 -

23 0 2

5 0 1 2

175

Base 2x 1x 1s 2s 3S Z b COCIENTE

1s 0 21 1 -

21 0 0 2

5 25 /dividido

21 =5

1x 1 21 0 2

1 0 0 235

235 dividido

21 =35

1 0 0 0 25

3S23

2129

2129 dividido

25 =25

54

Z 0 -

23 0

0 1 25

2175

Observe que reemplazo a porque -1x 2s

23 es el indicador mas negativo

Page 5: Metodosimplex

Se continua el proceso y la variable que entra es , el cociente mas pequeño es 5de modo que es la variable que sale ,el elemento pivote es

2x

1s21 ,haciendo

operaciones elementales entre filas se obtiene 1 en la posición del pivote y ceros los demas elementos de la columna pivote entonces se obtiene

41

31

21

351

FFFF

FF

++−+−

Base 1x 2x 1s 2s 3S Z b

1s 0 1 -21 0 0 2

125

1x 1 0 -1 1 0 0 15 3S 0 0 -5 4 1 0 52

Z 0 0 3 1

0 1 95

12 F Base 1x 2x 1s 2s Z b 3S

2x 0 1 2 -1 0 0 5

1x 1 0 -1 1 0 0 15 3S 0 0 -5 4 1 0 52

Z 0 0 3 1

0 1 95

como todos los indicadores son positivos se termina el proceso y el valor máximo de Z es 95 que ocurre cuando =5 y =15 2x 1x 4. Condición de parada Cuando en la fila Z no existe ningún valor negativo, se ha alcanzado la solución óptima del problema. En tal caso, se ha llegado al final del algoritmo. De no ser así, se ejecutan los siguientes pasos. 5. Condición de entrada y salida de una variable de la base A.Primero debemos saber la variable que entra en la base. Para ello escogemos la columna de aquel valor que en la fila Z sea el menor numero de los negativos. En este caso sería la variable x de coeficiente -5

Page 6: Metodosimplex

Si existiesen dos o más coeficientes iguales que cumplan la condición anterior (caso de empate), entonces se optará por aquella variable que sea básica. La columna de la variable que entra en la base se llama columna pivote (En color verde). 6-Una vez obtenida la variable que entra en la base, estamos en condiciones de deducir cual será la variable que sale. Para ello se divide cada término independiente (b) entre el elemento correspondiente de la columna pivote, siempre que el resultado sea mayor que cero, y se escoge el mínimo de ellos. Si hubiera algún elemento menor o igual a cero no se realiza dicho cociente, y caso de que todos los elementos de la columna pivote fueran de ésta condición tendríamos una solución no acotada y terminaríamos el problema 7- El término de la columna pivote que en la división anterior dé lugar al menor cociente positivo, indica la fila de la variable de holgura que sale de la base, Esta fila se llama fila pivote (En color). Si al calcular los cocientes, dos o más son iguales (caso de empate), se escoge aquella que no sea variable básica (si es posible). En la intersección de la fila pivote y columna pivote tenemos el elemento pivote, . 6. Encontrar los coeficientes de la nueva tabla. Los nuevos coeficientes de la fila pivote, , se obtienen dividiendo todos los coeficientes de dicha fila entre el elemento pivote, , que es el que hay que convertir en 1. A continuación mediante la reducción gaussiana hacemos ceros los restantes términos de su columna, con lo que obtenemos los nuevos coeficientes de las otras filas incluyendo los de la función objetivo Z. También se puede hacer de la siguiente manera: Se puede observar que no hemos alcanzado la condición de parada ya que en los elementos de la última fila, Z, hay uno negativo, -1. Hay que repetir el proceso:

A. La variable que entra en la base es y Y), por ser la variable que corresponde a la columna donde se encuentra el coeficiente -1.

B. Para calcular la variable que sale, dividimos los términos de la última columna entre los términos correspondientes de la nueva columna pivote: El elemento pivote, que ahora hay que hacer 1,.Operando de forma análoga a la anterior obtenemos la tabla:

Page 7: Metodosimplex

Como en los elementos de la fila Z hay uno negativo, , significa que no hemos llegado todavía a la solución óptima. Hay que repetir el proceso:

A. La variable que entra en la base epor ser la variable que corresponde al coeficiente

B. Para calcular la variable que sale, dividimos los términos de la última columna entre los términos correspondientes de la nueva columna pivote: y como el menor cociente positivo es la variable que sale es s

C. El elemento pivote, que ahora hay que hacer 1, Obtenemos la tabla: Se observa que en la última fila todos los coeficientes son positivos, por lo tanto se cumple la condición de parada, obteniendo la solución óptima. La solución óptima viene dada por el valor de Z en la columna de los valores solución, . En la misma columna se puede observar el punto donde se alcanza, observando las filas correspondientes a las variables de decisión que han entrado en la base: (x,y)

El método Simplex se basa en la siguiente propiedad: si la función objetivo, f, no toma su valor máximo en el vértice A, entonces hay una arista que parte de A, a lo largo de la cual f aumenta.

Deberá tenerse en cuenta que este método sólo trabaja para restricciones que tengan un tipo de desigualdad "≤" y coeficientes independientes mayores o iguales a 0, y habrá que estandarizar las mismas para el algoritmo. En caso de que después de éste proceso, aparezcan (o no varíen) restricciones del tipo "≥" o "=" habrá que emplear otros métodos, siendo el más común el método de las Dos Fases.

EJEMPLO Maximizar 321 2

343 xxxZ ++=

Sujeta a : 10

232 321 −≥+−− xxx

1022 321 ≤++ xxx 0,, 321 ≥xxx

La primera desigualdad se multiplica por -1 102 21 ≤+ xx

Page 8: Metodosimplex

Se hace la tabla simplex los cocientes son . 52

10= y tambien 5

210

=

Tabla I Base 1x Z b 3x2x 1s 2s

1s 1 2 0 1 0 0 10

2s 2 2 1 0 1 0 10

z -3 -4 23

− 0 0 1 0

Dado que existe un empate en el menor cociente, se puede elegir cualquiera de los dos, 1s o s2, como la variable saliente. Se escoge sr Se encierra en un círculo el pivote. Utilizando operaciones elementales sobre renglones, se obtiene la Tabla II. TABLA SIMPLEX II No hay cocientes porque 0 no es positivo y . 0

10=

Tabla II Base 1x 2x 3x 1s 2s Z b

2x 1 0 21

21 0 0 5

2s 1 0 1 -1 1 0 0

z -1 -0 23

− 2 0 1 20

indicadores La Tabla II corresponde a una S.F.B. en la que una variable básica s2 es cero. Por ello, la S.F.B. es degenerada. Ya que existen indicadores negativos, se continua el proceso. La variable entrante es ahora x3, la variable saliente es s2 y el pivote se encuentra encerrado en un círculo. Utilizando operaciones elementales sobre renglones, se obtiene la Tabla III.

Page 9: Metodosimplex

TABLA SIMPLEX III

Tabla III Base 1x 2x 3x 1s 2s Z b

2x 1 0 21

21 0 0 5

3x 1 0 1 -1 1 0 0

z 0 0 21

21

23 1 20

indicadores En virtud de que todos los indicadores son no negativos, Z es máxima cuando x2 = 5 y x3 = O, y xl = sl = s2 = 0. El máximo valor es Z = 20. Obsérvese que este valor es igual al valor de Z correspondiente a la Tabla II. En problemas con degeneración es posible llegar al mismo valor de Z en varias etapas del proceso simplex. Debido a su naturaleza mecánica, el procedimiento simplex se adapta con facilidad a las computadoras, y permite resolver problemas de programación lineal que implican muchas variables y muchas restricciones

OBJETIVOS • Maximizar por el método SIMPLEX la funcion objetivo limitada a la

restricciones 1. 2. 3.

0,02

601210

≥≥−≤+

+=

yxyx

yxyxP

0,2103222023

8065

≥≤+≤+

≤++=

yxyxyx

yxyxP

0,7

335

64

≥≤

≤−≥+−=

yxy

yxyx

yxZ

Page 10: Metodosimplex

0,4422104

≥≥−≤−−=

yxyxyx

yxZ

0,28242

3.05.0

≥−≥−=+≤−−=

yxyx

yxyx

yxZ

Page 11: Metodosimplex
Page 12: Metodosimplex