Low Power MCU - SASE · [email protected] ... Vida de la batería vs. Ciclo de actividad 7....

32
Volverine MSP430FR59xx Family Ing. Rafael Charro [email protected] Arrow Argentina 2012

Transcript of Low Power MCU - SASE · [email protected] ... Vida de la batería vs. Ciclo de actividad 7....

VolverineMSP430FR59xx Family

Ing. Rafael Charro

[email protected]

Arrow Argentina

2012

MSP430 New Technologies and Solutions

2

RadioFrequency (RF)

Energy Harvesting

NativeSub 1V

CapacitiveTouch Sense

FerroelectricRAM (FRAM)

ApplicationSpecificDevices(Electricity or Water Meters, Glucose Monitors)

Sub $1Devices

FutureNow

¿A qué llamamos bajo Consumo?

3

¿A qué llamamos bajo Consumo?

4

– Corriente de alimentación 2uA

¿Cómo trabaja un sistema en Ultra Low Power?

5

• Minimize active time• Maximize time in Low Power Modes• Interrupt driven performance on-demand with <1�s wakeup time• Always-On, Zero-Power Brownout Reset (BOR)

Active

Low Power

Average

¿Cómo trabaja un sistema en Ultra Low Power?

6

= LPM3 + RTC_Function

0.60µA + 130µA * 100µs1000000µs

0.60µA + 0.013µA = 0.613µA

Time

1mA

1µA

100µA

10µA

// Partial RTC_Function incrementseconds();incrementminutes();incrementhours();

//

// Partial RTC_Function incrementseconds();incrementminutes();incrementhours();

//

Vida de la batería vs. Ciclo de actividad

7

Puntos Clave

Performance de la CPU

Modos de bajos consumo

Sistema de Clock

Consumo y posibilidades de los periféricos

Sistemas de seguridad del chip

Consumo de corriente de la memoria

Ultra-Low Power Is In Our DNA

9

– MSP430 designed for ULP from ground up

– Peripherals optimized to reduce power and minimize CPU usage

– Intelligent, low power peripherals can operate independently of CPU and let the system stay in a lower power mode longerwww.ti.com/ulp

�Multiple operating modes– 100 nA power down (RAM retained)– 0.6 µA standby– 60 µA / MIPS from RAM – 100 µA / MIPS from Flash

�Instant-on stable high-speed clock

�1.8 - 3.6V single-supply operation

�Zero-power, always-on BOR

�<50nA pin leakage

�CPU that minimizes cycles per task

�Low-power intelligent peripherals– ADC that automatically transfers data– Timers that consume negligible power– 100 nA analog comparators

�Performance over required operating conditions

MSP430 Orthogonal CPU

10

• C-compiler friendly

• Memory address increased up to 1MB

• CPU registers increased to 20-bits

• Address word instructions

• Direct 20-bit CPU register access

• Atomic (memory to memory) Instructions

• Cycle count optimization

• Extension word allows all instructions

• Direct access to 1MB address space

• Bit, byte, word and address-word data

• Repeat instruction function

Modos de funcionamiento y bajo consumo– Active Mode – 100 �A/MHz!

– CPU active – Fast Peripherals Enabled– 32 kHz Peripherals Enabled - RTC

– LPM0 – 40 �A– CPU disabled, Fast Peripherals Enabled – Fast Wake up – HF clock sources available

– LPM3 – 0.6 �A– CPU disabled, Fast Peripherals Disabled– 32 kHz Peripherals Enabled (RTC, Wd & SVS)

– LPM4 – 0.5 �A– All clocks disabled – Wake on interrupt from port

– LPM3.5 – 0.4 �A– Regulator & all system clocks disabled except

for RTC (32768Hz LFXT) – Complete FRAM retention– BOR on nRST/NMI or Port I/O or RTC

– LPM4.5 – 0.1 �A– With SVS enabled – With SVS disabled – 10nA

11

���

����

�������

�� ����

�������������

��������

�����

��� �

���

��������

��� ����

���

���������

���!����

����"���

��������

!��#��"���

��������

!$$�

� ���"�

�����

�� ����

����

����

����

����

����

����

����%&�!!'(

���$��)

!�*��������

*�+�

Clock System

12

Five independent clock sources Low Freq

– LFXT1 32768 Hz crystal – Special low power option

– VLO 10 kHz – LFMODCLK MODCLK/128

High Freq– XT1, 4 – 24 MHz crystal – XT2, 4 – 24 MHz crystal– DCO Specific CAL range– MODCLK Internal 5MHz

•Default DCO = 1MHz •ACLK = Only LF sources•MODOSC provided to ADC12

Review of available clocks

13

Clock Frequency (nominal)

Precision Current Draw Crystal Required

High-Frequency

DCO 100kHz –32MHz

Low 60uA

HFXT1/2 4 - 32MHz High 60uA @ 12MHz X

MODOSC 5MHz n/a n/a

Low-Frequency

LFXT1 32kHz High 300nA X

VLO 12kHz Low 0nA*

* Included in ILPM3, VLO spec (~1.2uA)

Periféricos Inteligentes ADC12B

14

8, 10 o 12 bitsUp to 200KspsSNR>64dB; ENOB 11 bitsSample & hold programableWindow comparatorDifferential or single-endedUp to 32 channelsAuto power downUltra low current consumption

SE 63uA @ 1,8V 200KspsDiff. 95uA @ 1,8V 200Ksps

Temperature sensor

15

MSP430 Portfolio

16

17

MSP430 with FRAM – Future of MCU Memory

18

– FRAM is Universal Memory– Superior Endurance

– Proven data retention to 10 years @ 85°C– Over 100 Trillion write/read cycles– Write Guarantee in case of power loss

– Fast write times (like SRAM)– ~50ns per byte – 1,000x faster than Flash/EEPROM

– Non-Volatile, Reliable– Low Power

– Only 1.5v to write & erase – >10-14v for Flash/EEPROM

– Secure– Fast access times– No charge pump– No perceptible difference in read/write processes

– Radiation Resistance - Terrestrial Soft Error Rate (SER) is below detection limits

– Immune to Magnetic Fields - FRAM does not contain iron

FRAM Applications:– Battery Backed SRAM

Replacement – Digital rights management – Data logging, remote sensing– Low Power Electronics– Energy harvesting

FRAM is Programmed by flip of a Ferro Electric Dipole.

www.ti.com/framTI’s FRAM technology

Photo: Ramtron Corp

Memoria Flash en diferentes marcas

19

Flash Kinetis MC9S08QE PIC24HJ128 PIC24FJ2455 ATtiny24A MSP430

Write Time 20uS a 50uS 20 a 50uS 56uS 2mS 4,5mS 36 a 70uS

Sector Erase 20mS 20mS 26mS 26ms 9mS 10mS

Erase All 160mS 100mS 40mS 22ms a 32mS

Idd_PGM 10mA Max 4mA 10mA 10mA 18mA 1mA

Cycling endurance 10K min 10Kmin 10K min 10K min

10K min –(80K EEPROM) 10K min

Access Time 40nS 40nS ? Max 12Mhz 40nS? 40nS

Operating Voltage 1,7V a 3,6V 1,8v a 3,6V 1,8V a 5,5V 2V a 5,5V 2 a 5V 12V 1,8 a 3,6V

RAM retention 1,2V 0,6 - 1V 1,6V

Idd Run Flash @ 3V 420uA/Mhz 640mA/Mhz 1,8mA 480uA 800uA/Mhz 230uA/Mhz

All-in-one: FRAM MCU delivers max benefitsFRAM SRAM EEPROM Flash

Non-volatile Retains data without power

Write speeds

Average active Power [µA/MHz]

Write endurance

DynamicBit-wise programmable

Unified memoryFlexible code and data partitioning

Yes Yes YesNo

100ns 6ms<100ns 85uS

<60110 230

10,000100,000Unlimited100

Trillion+

YesYes NoNo

Yes NoNoNo

Data is representative of embedded memory performance within device

Unified memory: Another dimension of freedom for software developers

One device supporting multiple options “slide the bar as needed”

Multiple device variants may be required

• Easier, simpler inventory management

• Lower cost of issuance / ownership

• Faster time to market for memory modifications

Before FRAM With FRAM

To get more SRAM you may have to buy 5x the needed FLASH ROM

1kB EEPROM

Often an additional

chipis needed

14kB Flash2kB

SRAM

16kB Flash (Program)

2kB SRAM

24kB Flash5kB

SRAM

16kB Universal FRAM

Data vs. program memorypartitioned as needed

• Use Case Example: MSP430F2274 Vs MSP430FR5739

• Both devices use System clock = 8MHz

• Maximum Speed FRAM = 1.5MBps [100x faster]

• Maximum Speed Flash = 12kBps

FRAM = Ultra-fast Writes

• Use Case Example: MSP430F2274 Vs MSP430FR5739

• Both devices write to NV memory @ 12kBps

• FRAM remains in standby for 99% of the time

• Power savings: >200x of flash

FRAM = Low active write duty cycle

• Use Case Example: MSP430F2274 Vs MSP430FR5739

• Average power FRAM = 720µA @ 1.5Mbps

• Average power Flash = 2200µA @ 12kBps

• 100 times faster in half the power

• Enables more unique energy sources

• FRAM = Non-blocking writes

• CPU is not held

• Interrupts allowed

FRAM = Ultra-low Power

• Use Case Example: EEPROM Vs MSP430FR5739

• Many systems require a backup procedure on power fail

• FRAM IP has built-in circuitry to complete the current 4 word write• Supported by internal FRAM LDO & cap

• In-system backup is an order of magnitude faster with FRAM

+ Source: EE Times Europe, An Engineer’s Guide to FRAM by Duncan Bennett

Write comparison during power fail events+

FRAM = Increased flexibility

• Use Case Example: MSP430F2274 Vs MSP430FR5739

• FRAM Endurance >= 100 Trillion [10^14]

• Flash Endurance < 100,000 [10^5]

• Comparison: write to a 512 byte memory block @ a speed of 12kBps

• Flash = 6 minutes

• FRAM = 100+ years!

FRAM = High Endurance

Ultra-low-power data logging

27

Write Endurance

Trillions

10,000 cycles

> 100,000,000,000,000 cycles

Supports more than 150,000 years of continuous data logging (vs. less than 7 minutes with Flash)

– Data logging, remote sensor applications (High Write endurance, Fast writes)

– Digital rights management (High Write Endurance – need >10M write cycles)

– Battery powered consumer/mobile Electronics (low power)

– Energy harvesting, especially Wireless (Low Power & Fast Memory Access, especially Writes)

– Battery Backed SRAM Replacement (Non- Volatility, High Write Endurance, Low power, Fast Writes)

Target Applications

Value Line – Portfolio & Roadmap

29TI Confidential – Maximum Restrictions

���

���

���

���

�����

� � ������

�������

�����

� ��

�������

�����

� � ������

�������

����

������ ��

� ���

!����

� ��

�������

MSP430G2001*

MSP430G21X1*

MSP430G22X1*

ADC

SC

Available now In Development

MSP430G21X2

UART

�����

� � �

�������

MSP430G22X2

MSP430G23X2

MSP430G24X2

MSP430G21X3

MSP430G22X3

MSP430G23X3

MSP430G24X3

MSP430G25X3

SC ADC

SC ADC UART

* 8-pin SOIC package under evaluation

SC ADC

SC ADC

SC ADC

SC ADC

SC ADC

SC ADC UART

SC ADC UART

SC ADC UART

SC ADC UART

Meet the new MSP430 LaunchPad

30

����������� ���������� ����� ��������������

�� ��������� ������"�#$��% �& ��'�(��

���������������� ��!�� #��)*+������, ��!��-��#��.��$�/"��

��� �����"�# ��$���������, ��!����!��0 �, ��!������

��� ��� �����

�������

%&�����'�( ����)�� �����*��� ��')$��')% �)��*� +#$)�-�* �������������������������������

�12�3% (�$$�$�4 )*5(�"�

+�,$������������������� ���

��������������

MSP430 with RF – CC430

31

eZ430-ChronosDevelopment tool• Based on CC430, MSP430 w/

integrated <1GHz RF• Integrated 3-axis

accelerometer, altimeter, & temperature sensor

• Includes USB RF access point• Low cost ($49)

CC430

MSP430MCU

Application and protocol

processor

Lowest Power MonolithicRF SoC

Low Power RF

Radio frequency

The Best of Both Worlds

• High sensitivity• Low current consumption• Excellent blocking

performance• Flexible data rate &

modulation format• Backwards compatible

• Market’s lowest power MCU• High analog performance• High level of integration• Ease of development• Sensor interface

MSP430 MCULow Power RF Transceiver

Small Package:

9.1mm x 9.1mm

Wireless Made Easy• Free RF libraries and stacks

• SimpliciTI (Star Network protocol) -www.ti.com/simpliciti

• TIMAC – IEEE 802.15.4 Medium Access Control (MAC)

• Z-Stack – Free ZigBee Stack. Compliant with 2006 ZigBee™ spec (www.ti.com/zigbee)

• Third party partners with mesh network stacks – coming soon!

• SmartRF® Studio - Automatically generates register values

MSP430 : It´s Easy to Get Started

32

• Embedded Emulation enables powerful, low cost development tools

• Real-time, in-system debug – No application resources– Full speed execution – H/W– Single stepping– Complex triggering– Trace capability

• Powerful, easy to use tools

Development Software• Free IDEs available• CCS4 $495 for MCU Edition

eZ430 Development Tools• Complete development Tool• USB Stick form factor• Real-time, in-system debug • Removable target board• Available for wireless development• Starting at $20

Solar Energy Harvesting Kit• Based on eZ430-RF2500• Works in low ambient light; 400+

transmissions in dark• Adaptable to any sensor or RF network

• $149 for complete toolMSP430 Flash Emulation

Tool• 1 programming tool for all devices• $99 for USB FET• $49 target boards available for all

devices

MSP430 Experimenter Boards

• Fully features prototyping system• Available for FG4618 & F5438• Starting at $99