INUP Presentation Apr 2012

download INUP Presentation Apr 2012

of 31

Transcript of INUP Presentation Apr 2012

  • 8/10/2019 INUP Presentation Apr 2012

    1/31

    :

    Design,FabricationandTest

    SiddharthaP.Duttagupta

    IndianInstituteofTechnologyBombay

    _

  • 8/10/2019 INUP Presentation Apr 2012

    2/31

    IITBEEMEMSOverview

    Research, Education, Training, Collaboration:

    Crossinstitution research: 2 microfluidics for electronics

    , , ,

    transceiver, Multiferroic RF inductor, Polymer accelerometer,

    also activities in Suman Mashruwala Lab and Biosciences Dept

    MEMS institute elective (EE701), also dept electives in

    Mechanical (P Gandhi) and Biosciences (R Srivastava)

    (May 2012)

    Partners: IITB (Centre Res Nano Tech Science, Earth Sciences,

    Mechanical, Physics, Systems & Control*), Mumbai Univ., VJTI,

    Univ. Pune, CMET, Nanded Univ., SAMEER, IIT Hyderabad, NPCIL,

    , , , ,

    BITS(Dubai)*, Cal Univ*, Joint Science Academies SRF Programme*

  • 8/10/2019 INUP Presentation Apr 2012

    3/31

    GreenEnergyManagementSystems

    Integration

    and

    Optimization

    SourceSolarPVSPV

    FuelCellFC

    Components

    SolarPV

    Array

    DCDC

    ACGridDC

    AC

    Converters

    DC

    to

    DCDCtoAC

    Fuel

    Cell DCLoadDC

    DC DC DC

    StorageBattery

    UltraCapacitorTidal

    Storage

    Battery,AC DC

    DCsource

    Onchip

    LoadVariableDC

    VariableAC

    Power UltraCap

    Generation Conversion Distribution

    DC DC

    Partners:VAgarwal,AGuha,MNGandhi,DRamakrishnan,AAgrawal,SGSingh(IITB),

    KPRay

    (SAMEER),

    SA

    Gangal (U

    Pune),

    GJ

    Phatak (CMET

    ),

    TCS,

    CGL,

    Datar ,

    Sasken

  • 8/10/2019 INUP Presentation Apr 2012

    4/31

    Motivation and Sco e

    u purpose supp y rom on onven ona ources

    MicroscaleEnergySourceforonchippower

    DegradationMonitoringforlowsystemlifetimecost

    ReliablePowerGenerationunderNonOptimalConditions

  • 8/10/2019 INUP Presentation Apr 2012

    5/31

    Background- Fuel Cell

    Electrochemical conversion

    Device (Hydrogen Cell)

    +Fuel (H2)

    at Anode

    Oxidant (O2)

    at CathodeReactants_

    Load

    Bi Cubic

    Fuel Cell

    Stack

    Other Fuels Hydrocarbons, Alcohols [1]

    Other Oxidants Chlorine

    Operational temp. < 1000C

    ApplicationsFuel Cell vehicle create electricity using H2 fuel and O2 from air [1]

    Uninterrupted power supply instant protection from momentary power failure

    Emer enc ower s stems and Co eneration for small scale networks

    [1] Fuel Cell Handbook, Fundamentals and Survey of Systems,John Wiley Publication, ISBN 0-471-49926-9 , 2003, Vol. 1, pp. ix 23

    05 / 30

  • 8/10/2019 INUP Presentation Apr 2012

    6/31

    Fuel Cell Operation

    Ideal (thermodynamic)

    Fuel Cell EMF at No Loadcm2

    Act ivation Loss

    Tafel Equation

    tageV 1. ActivationRegion

    3. Mass Transport or

    Concentration Region

    1.0

    Density

    W

    Power Density Curve

    0lnA

    IV A I

    CellVol

    2. Ohmic Region0.5

    CellPowerm c eg on

    .R

    V R I

    Concentration EThermod namicall

    Current Density A/cm2

    I V CurvePolarization

    Region

    mnI

    C mV mI e

    predicted Fuel cell

    Voltage o/p -

    theoretically

    A system constant

    I0 current density where voltage starts to drop initially

    R Ohmic resistance by polymer electrolyte membrane

    -

    Overall dependence between the

    the voltage and the current density

    ,

    Im start of non-linear region star t of mass transfer0 A R C

  • 8/10/2019 INUP Presentation Apr 2012

    7/31

    Methodology I

    Size, Power Density

    Requirements

    Field Test

    Design

    YES

    CompactModelCellmeets

    Application

    Design

    OK?

    NO pecs

    Fabrication LabTest

  • 8/10/2019 INUP Presentation Apr 2012

    8/31

    Uniformdistributionof

    fuel

    and

    oxidant

    inside

    cell

    Uniformtemperaturedistributioninsidecell

    Electricalcontactsvs.porosity(GDLinterfacewithelectrode)

    Properselectionofmaterials(electrode,membrane)

  • 8/10/2019 INUP Presentation Apr 2012

    9/31

    Ion Flux Map Micro-PEM Fuel Cell

    es gn arac er s cs Cell length (L) 200 micron

    Channel height 10 micron

    Channel width 70 micron

    Rib width 90 micron

    GDL width 30 micron

    orous e ectro e t c ness m cron

    Membrane thickness 50 micron

    GDL electric conductivity 1000 S/m Inlet H2 mass fraction (anode) 0.743

    Inlet H2O mass fraction (cathode) 0.023

    Inlet oxygen mass fraction (cathode) 0.228

    .

    Cathode inlet flow velocity 0.5m/s

    Permeability (porous electrode) 2.36 E -12 m2

    Membrane conductivity 10 S/m

    AssumptionsMembrane is 100% humidified

    No hydrogen cross over

    9[3] Ramesh P.,S.S Dimble,V Agarwal, S.P Duttagupta ,Performance of miniature fuel cells with segmented contacts attached to the

    GDL,International conference on Electric Power and Energy Systems, Sharjah, 2011

    Reacting gases are ideal

    Water produced is in gaseous state

  • 8/10/2019 INUP Presentation Apr 2012

    10/31

    Conventional PEM Fuel Cell Components

    Proton Exchange Membrane Fuel Cell PEMFC [1]

    Fuel Cell Chemistry Anode

    Anode Side2H2 => 4H+ + 4e-

    Cathode Side Cathode

    Conducts electrons freed fromhydrogen molecules so that the free

    e- can be used in external circuitry

    O2 + 4H+ + 4e- => 2H2O

    Net Reaction

    2H2 + O2 = 2H2o

    Oxidant

    O2

    Catalyst,

    PlatinumProtonExchange

    Anode,

    FuelH2

    Channels etched on anode

    disperses the hydrogen gas equally

    over the surface of the catalyst

    ParticlesMembrane,

    ElectrolyteCathode

    Conducts electrons back fromConducts only +ve ions and blocks electrons. Hydration Reqd.

    Electro lyte (PEM)

    ex erna c rcu ry o ca a ys w erethey recombine with O2 and H+

    Channels etched on cathode

    distribute the ox en to the surface

    NAFION is most widely used proton conductor in fuel cells [[22]]

    Not easily patterned using photolithography, not easy to integrate

    of the catalystBonding with Si is challenging under working Fuel Cell conditions

    [1] Fuel Cell Handbook, Fundamentals and Survey of Systems,John Wiley Publication, ISBN 0-471-49926-9 , 2003, Vol. 1, pp. ix 23

    10 / 30

  • 8/10/2019 INUP Presentation Apr 2012

    11/31

    Nano-Porous Si Membrane [2]

    A) B)

    Prime grade boron doped p type

    double side polished Silicon Post-lithography

    wafer with 100 mm diameter

    and 0.02 ohm - cm resistivity

    w n ows or 3 4 c ng

    Si Membrane Thickness 100 -meter

    C) D)

    Each well area - 0.0625 cm2

    Reactive Ion Etching with SF6 Plasma

    selective removal of Si3N4

    Deep Reactive Ion Etching of Siliconthrough wells to create Silicon Membrane

    [2] Kaun-Lun Chu et al. , A Nanoporous Silicon Membrane Electrode Assembly for On-Chip Micro Fuel Cell Applications, IEEE, Journ. MEMS Syst., Vol .15, (2006) 671

  • 8/10/2019 INUP Presentation Apr 2012

    12/31

    NP Si Membrane Formation [2]

    Removal of native oxide by immersion of

    Silicon Wafer in Buffered Oxide Etch Soln.

    Deposition on both s ides of wafer

    ICPCVD or LPCVD

    AB) II AB) III

    Applicat ion of photoresist coating

    On Silicon Nitride surface Photolithography

    Silicon Substrate Silicon Nitride Insulator Photoresist Photo Mask

    [2] Kaun-Lun Chu et al. , A Nanoporous Silicon Membrane Electrode Assembly for On-Chip Micro Fuel Cell Applications, IEEE, Journ. MEMS Syst., Vol .15, (2006) 671

  • 8/10/2019 INUP Presentation Apr 2012

    13/31

    SEM TOP View of Silicon WellFormed after DRIE of Substrate [2]

    Low Magnification - 500 Micro Meters Side View of Well Walls in Silicon

    High Magnification - 100 Nano Meters

    [2] Kaun-Lun Chu et al. , A Nanoporous Silicon Membrane Electrode Assembly for On-Chip Micro Fuel Cell Applications, IEEE, Journ. MEMS Syst., Vol .15, (2006) 671

  • 8/10/2019 INUP Presentation Apr 2012

    14/31

    NP Si Membrane Formation [2]Nanoporous Si membrane

    E)

    -

    at wafer back for electrical contact generation.

    AZ 4903 photoresist spin coated on Cr-Au

    layer to protect from acid etching

    - chemical etching.

    Cr - Au and Photoresist still existing

    G)

    r - u ayer an otores st remove yPiranha solution and Chrome etchant

    Piranha solution - 1:3 volume ratio of 30 wt. % H2O2 (aq.) : 98 wt.% H2SO4

    AZ 4903 Photoresist Cr-Au Layer Porous Si licon Membrane

    [2] Kaun-Lun Chu et al. , A Nanoporous Silicon Membrane Electrode Assembly for On-Chip Micro Fuel Cell Applications, IEEE, Journ. MEMS Syst., Vol .15, (2006) 671

  • 8/10/2019 INUP Presentation Apr 2012

    15/31

    Setup for Nano Porous

    Electrolyte is constantly stirred by magnetic rotor, constant current of 40 mA/cm2

    PlatinumSilicon

    Cathode

    Electrolyte-

    Nanopores are

    formed by

    Ethanol and

    49wt.% HF 1:1

    etching of Silicon

    Membrane

    [2] Kaun-Lun Chu et al. , A Nanoporous Silicon Membrane Electrode Assembly for On-Chip Micro Fuel Cell Applications, IEEE, Journ. MEMS Syst., Vol .15, (2006) 671

  • 8/10/2019 INUP Presentation Apr 2012

    16/31

    Porous Silicon Membrane

    [2] Kaun-Lun Chu et al. , A Nanoporous Silicon Membrane Electrode Assembly for On-Chip Micro Fuel Cell Applications, IEEE, Journ. MEMS Syst., Vol .15, (2006) 671

  • 8/10/2019 INUP Presentation Apr 2012

    17/31

    Nano Porous (DFAFC)

    This TiO la er makes anode

    u l

    5 M Formic Acid and

    0.5 M H2SO4 is Fuel

    catalyst layer surface hydrophilic.

    Hence, fuel gets attracted tocatalyst to ease anode reaction

    Reactions

    Load Current

    Silicon Bulk

    Voltage

    Silicon Nitride Insulator Gold Contact LayerPorous Silicon Membrane

    Platinum Cathode Palladium AnodeInsulation (TiO2 or SiO2)

    Prevents short circuit

    between anode and cathode

    [2] Kaun-Lun Chu et al. , A Nanoporous Silicon Membrane Electrode Assembly for On-Chip Micro Fuel Cell Applications, IEEE, Journ. MEMS Syst., Vol .15, (2006) 671

  • 8/10/2019 INUP Presentation Apr 2012

    18/31

    Mi r F l ll T P r m r

    Dynamic

    Impedance

    Spectroscopy

    Ion uxmapping

    Transient

    impact,

    fuel/oxidant

    contaminants

    Transientimpact,downstreampowerconverternoise

    Degradation(fueldepletion,hotspotformation,catalystpoison)

  • 8/10/2019 INUP Presentation Apr 2012

    19/31

    Fuel Cell Test Setup

  • 8/10/2019 INUP Presentation Apr 2012

    20/31

    References PEMFC Design & Fabrication

    [1] Fuel Cell Handbook , Fundamentals and Survey of Systems, John Wiley

    , - - - , , . , .

    [2] Kaun-Lun Chu et al. , A Nanoporous Silicon Membrane Electrode

    Assembly for On-Chip Micro Fuel Cell Applications, IEEE, Journal of

    Michroelectro-mechanical Systems, Vol.15, No.- 3, June 2006, pp. 671 -677

    [3] Ramesh P., S.S Dimble, V. Agarwal, S.P Duttagupta, Performance ,

    International conference on Electric Power and Energy Systems,

    Sharjah, 2011

    20 / 30

  • 8/10/2019 INUP Presentation Apr 2012

    21/31

    Methodology-II

    MEMSSensorNetworkforReliableOperation

    MarkettrendinFCresearchistoreducecomponentcost

    Researchcanreducesystemcostinthelongrunbyreverting

    de radationinFCincreasesh brid sourceli etime

    WSNbasedpredictivecontrolhelpstostabilizeFCpoweroutput

  • 8/10/2019 INUP Presentation Apr 2012

    22/31

  • 8/10/2019 INUP Presentation Apr 2012

    23/31

    FuelCellPerformanceParameters

    Studyofoutputpowerdropbecauseof

    Degradationof

    electrode

    and

    ion

    mass

    transport

    through

    membrane

    2

    poisonsthenanoPtcrystalsofelectrodeirreversibledamage

    CO contaminant

    anode

    reduces

    O of

    fuel

    reversible

    dama e

    Impactofpowerconvertersonelectrodeelectrochemicalsurfacearea

    LowfrequencyreverseripplefromDCACconverters

    High

    switching

    frequency

    and

    load

    fluctuation

    of

    DC

    DC

    converters

    Localizedvariationinhumidityandtemperature(hotspots)

    Impactsnearelectrodemembranemorphology(ionflow)

  • 8/10/2019 INUP Presentation Apr 2012

    24/31

    Field Deployed Air PEMFC-Reliable Operation

    air in

    range sensing through

    backscattering

    air fuel cell

    protecting chamberlaser

    diodeCO sensor grid- proximity plume

    tracking and

    nozz e ap

    control

    air out

    air

    orecas ng

    cell

    CO sensor

    compressed

    electricheater

    coil

    vaporwater

    2 s orage

    25 / 34

  • 8/10/2019 INUP Presentation Apr 2012

    25/31

    CO Estimation in Dynamic Smoke Plume

    Assumption: No air velocity network of 8 CO sensors placed elliptically

    vertical

    profilehorizontalprofile

    mean

    CO Gaussian dispersion profile

    - to be estimated

    Localization of CO dispersion profile

    - estimated using ML estimation

    CO propagation constant determined experimentally 2.65

    CO2 propagation constant 2.3 25 / 30

  • 8/10/2019 INUP Presentation Apr 2012

    26/31

    Optimization of Proton Transport in Membrane

    PerFluoroSulfonic polymer (NAFION) membrane in

    NAFION in hydrophilic domain responsible for

    proton transport

    Membrane fully hydrated to maintain continuous

    ionconductivity through hopping mechanism

    reducing ion conductivity, lower fuel cell power output

    Optimizationofmembranehumidityformaximum

    ionconductivity

    is

    to

    be

    studied

  • 8/10/2019 INUP Presentation Apr 2012

    27/31

    Multi-parameter FC Degradation

    Fuel Cell

    Power Density

    water vapor mass

    fraction at cathode CO2 mass fraction

    at cathode

    dynamicmembrane

    impedance

    dynamic change inelectrode impedance

    for change in CO

    densit at cathode air

    time (minutes)

  • 8/10/2019 INUP Presentation Apr 2012

    28/31

  • 8/10/2019 INUP Presentation Apr 2012

    29/31

    References Fuel Cell Optimization1) S.Mitra,K.Tuckley,andS.P.Duttagupta,2DLocalizationandthreatestimationofnoxiousgassource

    originatingfromburiedlandfills,ProceedingsofInternationalConference,USCUDAR2011,Prague,Czech

    Republic,Sep.2011,pp.148 154.

    2) S.Mitra,S.P.Duttagupta,K.Tuckley,andS.Ekram,Wirelesssensornetworkbasedlocalizationandthreat

    estimationofhazardouslandfillgassource, InPressProceedingsofIEEEInternationalConference,ICIT

    2012,

    Athens,

    Greece,

    March

    2012.3) S.Mitra,S.P.Duttagupta,K.Tuckley,andS.Ekram,3Dadhocsensornetworksbasedlocalizationandrisk

    assessmentofburiedlandfillgassource,NAUN/WSEASInternationalJournalofCircuits,Systemsand

    , . , , , . .

    4) S.Mitra,Ramesh P.,M.Bhattacharyya,andS.P.Duttagupta,Multimodesensingtechniqueforcarbon

    monoxideplumetrackingandforecastingforreliablefielddeployedairbreathingPEMfuelcelloperation,

    InPressProceedingsofISPTS1,Pune,India,March2012.

    5) M.W.Elis,M.R.VSpakovsky,D.J.Nelson,Fuelcellsystems:efficient,flexibleenergyconversionforthe21st

    century,ProceedingsofIEEE,InvitedPaper,Vol.89,No.12,December2001,pp.18081818.

    6) W.P.Teagan,J.Bentley,andB.Barnett,Costreductionsoffuelcellsfortransportapplications:fuelprocessing

    options,JournalofPowerSources,Vol.71,No.12,1998,pp.8085.

    7 Y. Gao M. Ehsani S stematic desi n of fuel cell owered h brid vehicle drive train Electric Machines and

    DrivesConference,

    IEMDC

    2001,

    Cambridge,

    America,

    2001,

    pp.

    604611.

    8) C.Changsong,D.Shanxu,Y.Jinjun,Researchofenergymanagementsystemofdistributedgenerationbased

    onpowerforecasting,inProceedingofInternationalconferenceonElectricalMachinesandSystems,ICEMS

    2008,October2008,pp.27342737.

    . . c ae, . . u p, ac scattera sorpt ongas mag ng:anewtec n que orgasv sua zat on, ourna o

    AppliedOptics,Vol.32,Issue21,1993,pp.40374050.

  • 8/10/2019 INUP Presentation Apr 2012

    30/31

    References- II10) I.JSimpson,BorealforestfireemissionsinfreshCanadiansmokeplumes:C1C10volatileorganiccompounds

    (VOCs),CO2,CO,NO2,NO,HCN,andCH3CN,JournalofAtmos.Chem.Phys.,Vol.11,2011,pp.64456463.

    11) T.Zhou,H.Liu,A3DmodelforPEMfuelcellsoperatedonreformate,JournalofPowerSources,Vol.138,

    2004,pp.101110.

    12) A.Rodrigues,J.C.Amphlett,R.F.Mann,B.A.Peppley,P.R.Roberge,Carbonmonoxidepoisoningofproton

    exchange

    membrane

    fuel

    cells,

    Proceedings

    of

    32nd

    Intersociety,

    IEEE

    Energy

    Conversion

    Engineering

    Conference,IECEC97,Honululu,Howai,USA,July1997,pp.768773.

    13) K.K.Bhatia,CY.Wang,Transientcarbonmonoxidepoisoningofapolymerelectrolytefuelcelloperatingon

    , , . , , . .

    14) L.A.M.Riascos,M.G.Simoes, P.E.Miyagi,ControllingPEMfuelcellsapplyingaconstanthumiditytechnique,

    inofABCMSymposiumSeriesinMechatronics,Vol.3,2008,pp.774783.

    15) B.A.McCain,A.G.Stefanopoulou,I.V.Kolmanovsky,Stabilityanalysisforliquidwateraccumulationinlow

    temperaturefuel

    cells

    in

    Proceedings

    of

    IEEE

    Conference

    on

    Decision

    and

    Control,

    Mexico,

    December

    2008,

    pp.859864.

    16) A.Lavrov,A.B.Utkin,R.Vilar,A.Fernandes,EvaluationofsmokedispersionfromforestfireplumesusingLIDAR

    experimentsandmodelingElsevierInt.tional JournalofThermalSciences,Vol.45,2006,pp.848859.

    17) Y.Zhang,L.Wang,Aparticlefilteringmethodforodorsourcelocalizationinwirelesssensornetworkwith

    mobile robot in Proceedin s of the IEEE 8th World Con ress on Intelli ent Control and Automation China Jul

    2010,pp.

    70327036.

    18) S.Sundhar,V.V.Veeravalli,Localizationandintensitytrackingofdiffusingpointsourcesusingsensor

    networks,inProceedingsofIEEEGLOBECOM,Washington,DC,USA,November2007,pp.14.

    19) P.Wang,D.W.Coit,Reliabilitypredictionbasedondegradationmodelingforsystemswithmultiple

    egra a onmeasures, n rocee ngs e nnua e a yan a n a na y ympos um, os nge es,

    USA,January2004,pp.302307.

    30 / 30

  • 8/10/2019 INUP Presentation Apr 2012

    31/31

    Dr. M. Bhattacharyya, Dr. A.V. Kshirsagar,

    Dr. S. Mehta (Post-doctoral Research Scholar)

    B Patnaik, SS Dimble, Ramesh P, A Das,

    U Chatterjee, R Rashmi, S Mitra, K Ghosh,, , , ,

    B Somaiah, S Roy (Ph.D. Research Scholar)

    S Shyamsundar, J Mohod, H Manaswala, N Patel,P Chafekar, D Soni (M.Tech. Research Scholar)