Historia del microprocesador amd

11
Jaime Andrés Guerra Ochoa Ingeniería Ambiental Y Sanitaria Evolución de los microprocesadores

Transcript of Historia del microprocesador amd

Jaime Andrés Guerra Ochoa Ingeniería Ambiental Y Sanitaria

Evolución de los microprocesadores

•Historia•Primeros diseños•Cooperación•Diseños actuales•Futuro•Otras plataforma tecnológico•Conclusión

Advanced Micro Devices se fundó el 1 de mayo de 1969 por un grupo de ejecutivos de Fairchild Semiconductor, incluidos Jerry Sanders III, Ed Turney, John Carey, Sven Simonsen, Jack Gifford y 3 miembros del equipo de Gifford, Frank Botte, Jim Giles y Larry Stenger. La compañía empezó a producir circuitos integrados lógicos, luego entró en el negocio de las memorias RAM en 1975. Ese mismo año hizo un clon de microprocesador Intel 8080 mediante técnicas de ingeniería inversa.

Durante este período, AMD también diseñó y produjo una serie de procesadores Bit slicing(Am2901, Am29116, Am293xx) que fueron usados en varios diseños de microcomputadores. Durante ese tiempo, AMD intentó cambiar la percepción que se tenia del RISC con sus procesadores AMD 29k y trató de diversificarlo introduciendo unidades gráficas y de video así como memorias EPROM. Esto tuvo su éxito a mediados de 1980 con el AMD7910 y AMD7911, unas de las primeras unidades que soportaban varios estándares tanto Bell como CCITT en 1200 baudios half duplex o 300/300 full duplex. El AMD 29k sobrevivió como un procesador embebido y AMD Spin-off Spansion pasó a ser líder en la producción de Memorias flash. AMD decide cambiar de rumbo y concentrarse únicamente en los microprocesadores compatibles con Intel, colocándolo directamente en competencia con Intel y las memorias flash destinarlas a mercados secundarios.

AMD anuncia la adquisión de ATI Technologies el 24 de julio de 2006. AMD paga 4,3 mil millones de dólares en efectivo y 58 millones en acciones por un total de 5,4 mil millones. La adquisión se completó el 25 de octubre de 2006 y ahora ATI es parte de AMD.

Se les comunicó en Diciembre de 2006 que AMD, junto con su principal competidor Nvidia, que podrían estar violando leyes antimonopólicas incluyendo la capacidad de fijar precios.

En octubre del 2008, AMD anuncia el plan de escindirse de la compañía de semiconductores GlobalFoundries. Esto le permitiría centrarse únicamente en el diseño de circuitos integrados.

En 1982 AMD firmó un contrato con Intel, convirtiéndose en otro fabricante licenciatario de procesadores 8086 y 8088, esto porque IBM quería usar Intel 8088 en sus IBM PC, pero las políticas de IBM de la época exigían al menos dos proveedores para sus chips. AMD produjo después, bajo el mismo acuerdo, procesadores 80286, o 286, pero Intel canceló el contrato en 1986, reusándose a revelar detalles técnicos del i386. La creciente popularidad del mercado de los clones de PC significaba que Intel podría producir CPUs según sus propios términos y no según los de IBM.

AMD apeló esa decisión y posteriormente ganó bajo arbitraje judicial. Comenzó un largo proceso judicial que solo acabaría en 1991, cuando la Suprema Corte de California finalmente falló a favor de AMD, y forzó a Intel a pagar más de 1000 millones de dólares en compensación por violación de contrato. Disputas legales subsiguientes se centraron en si AMD tenía o no derechos legales de usar derivados del microcódigo de Intel. Los fallos fueron favoreciendo a las dos partes. En vista de la incertidumbre, AMD se vio forzado a desarrollar versiones "en limpio" del código de Intel. Así, mientras un equipo de ingeniería describía las funciones del código, un segundo equipo sin acceso al código original debía desarrollar microcódigo que realizara las mismas funciones.

Llegado este punto, Jerry Sanders bien pudo retirarse del mercado. Pero en 1991 AMD lanza el Am386, su clon del procesador Intel 80386. En menos de un año AMD vendió un millón de unidades. El 386DX-40 de AMD fue muy popular entre los pequeños fabricantes independientes. Luego, en 1993 llegó Am486 que, al igual que su antecesor se vendió a un precio significativamente menor que las versiones de Intel. Am486 fue utilizado en numerosos equipos OEM e incluso por Compaq probando su popularidad. Pero nuevamente se trataba de un clon de la tecnología Intel; y a medida que los ciclos de la industria de las PC se acortaban, seguir clonando productos de Intel era una estrategia cada vez menos viable dado que AMD siempre estaría tras Intel.

El 30 de diciembre de 1994, la Suprema Corte de California finalmente negó a AMD el derecho de usar microcódigo de i386. Posteriormente, un acuerdo entre las dos empresas (cuyos términos aun siguen en el mayor de los secretos) permitió a AMD producir y vender microprocesadores con microcódigo de Intel 286, 386, y 486. El acuerdo parece haber permitido algunos licenciamientos cruzados de patentes, permitiendo a ambas partes el uso de innovaciones tecnológicas sin pago de derechos. Más allá de los detalles concretos del acuerdo, desde entonces no hubo acciones legales significativas entre las empresas.

 

En un caso inusual de cooperación entre las empresas, AMD devolvió a Intel tecnología del Pentium sustraída y supuestamente enviada por Bill Gaede desde la Argentina a AMD en Sunnyvale, California. Ambas empresas cooperaron entre ellas y con el FBI en lograr la convicción de Gaede.[4]

K5, K6, Athlon (K7) El primer procesador completamente propio de AMD, fue lanzado en 1995. La "K" hacía referencia a "Kryptonite", en el mundo de

los cómics la conocida sustancia que podía dañar a Superman (siendo esto una clara referencia a la posición dominante de Intel en el mercado). Estaba pensado para competir directamente con el micro Intel Pentium, presentado al público ya en 1993. Sin embargo, a nivel de arquitectura tenía más en común con el recién lanzado Pentium Pro o con el 6x86 de Cyrix; procesadores que decodifican las instrucciones x86 en micro-instrucciones y las ejecutan en un núcleo estilo RISC. Hubo numerosos inconvenientes de todos modos. Entre ellos la indignación de muchos consumidores al descubrir que la velocidad de reloj del procesador no correspondía al valor indicado en la etiqueta de algunos productos, hecho que era obvio al momento de iniciar el equipo.

Concretamente, el K5 no igualaba el rendimiento del 6x86 ni de la FPU de los Pentium. AMD solía usar pruebas de rendimiento que no implicaban tareas intensivas para la Unidad de Coma Flotante. Todo esto combinado con el tamaño del procesador y la pobre escalabilidad del diseño, condenó al K5 casi al punto del fracaso total en el mercado. Como punto a favor de este procesador puede mencionarse que no tenía los problemas de compatibilidad de 6x86, y no se calentaba tanto como aquel que era microprocesador.

En 1996, AMD compra NexGen especialmente por los derechos sobre su línea de procesadores Nx compatibles con x86. Clara muestra de que AMD carecía de las habilidades técnicas necesarias para desarrollar arquitecturas de procesador originales que compitieran con Intel. Bien se puede decir que la tecnología adquirida salvó a AMD, e irónicamente NexGen fue fundada por ex empleados de Intel.

Jerry Sanders dio al equipo de diseño de NexGen edificio propio, tiempo y dinero para reelaborar el Nx686. El resultado fue bautizado K6. Su diseño incluía un mecanismo retro alimentado de reordenamiento dinámico de instrucciones, instrucciones MMX y agregaba la unidad de coma flotante que faltaba. Fue construido compatible pin a pin con Intel Pentium, de modo que podía ser utilizado en las -por ese entonces- populares placas base con zócalo "Socket 7". Al igual que los anteriores Nx586 y Nx686, el K6 traducía el conjunto de instrucciones x86 a un repertorio RISC. Al año siguiente, AMD lanza el K6-2 que agregó un conjunto de instrucciones multimedia de coma flotante llamado 3DNow! que antecedió las instrucciones SSE de Intel e instauró un nuevo estándar de zócalos, "Super Socket 7" que extendía la velocidad del bus FSB de 66 a 100 MHz.

En enero de 1999, tuvo lugar el último lanzamiento de la serie K6-x, el K6-III de 450 MHz, que compitió muy bien con los mejores productos de Intel. El chip era esencialmente un K6-2 con 256KB de caché Nivel 2 de alta velocidad integrados al núcleo, y una unidad mejorada de predicción de saltos lógicos. Aun cuando alcanzó (y en general superó) a los procesadores Pentium II/III en operaciones con enteros, el diseño de su FPU (serial non-pipeline) no podía competir con la de Intel, más avanzada. A pesar que las extensiones 3DNow! podrían en teoría compensar esa diferencia, pocos juegos la aprovecharon. La excepción más notable fue Quake 2 de Id Software.

A lo largo de su vida, el procesador K6 se acercó mucho al rendimiento de Intel, pero no llegó a superarlo. Y en los momentos en que anunció ventajas en la velocidad de reloj, afrontó problemas de manufactura que resultaron en la poca disponibilidad de sus productos. Y una vez desviado del estándar con el formato Super Socket 7, el abanico de calidad de las placas base que soportaron K6 fue muy variado, especialmente en lo que se refiere a la implementación de las especificaciones AGP

Con todo, K6 fue muy popular entre los consumidores, en especial fuera de Norteamérica, ofreciendo un rendimiento decente a un precio comparativamente bajo. Pero los pequeños inconvenientes técnicos alrededor de la plataforma y la falta de disponibilidad de los componentes de alto rendimiento anunciados, evitaron la entrada de los productos de AMD al mercado corporativo. Intel respondió a los precios bajos de AMD con su versión de "bajo presupuesto" de Pentium, los procesadores Celeron. Y aunque estos no fueron tan populares como Intel esperaba, efectivamente acorralaron a AMD en el sector del mercado de "ganancias pequeñas".

En 2001, Intel lanza su arquitectura Pentium 4 (código Willamette) que tenía una micro arquitectura radicalmente distinta a la de los núcleos Athlon y P6. Mientras Pentium 4 soporta velocidades de reloj más altas, el rendimiento de su arquitectura por ciclo de reloj es inferior. Las velocidades más altas llevaron a muchos a creer que el rendimiento de Pentium 4 es superior, aún contra los resultados de las pruebas de rendimiento.

Mientras varios analistas de la industria predijeron que P4 volvería a restringir a AMD al mercado de bajo rendimiento/bajo costo, AMD respondió con revisiones incrementales de su núcleo básico K7. Palomino introdujo un mecanismo inteligente de pre-fetching de memoria, compatibilidad con SSE de Intel y cache L2 en el chip, con una mejora en velocidad de alrededor del 10%.

El procesador K7, mejor conocido como Athlon, representó un gran avance para AMD ya que por primera vez consiguió ponerlo a la delantera (aunque brevemente) de Intel: el Athlon ofrecía mayor rendimiento que un Pentium III a la misma frecuencia. Inicialmente se ofreció el Athlon en un empaquetamiento similar a los primeros Pentium III (de cartucho) pero eventualmente se adaptaron nuevo zócalo de AMD: el Socket A. AMD con su procesador Athlon fue la primera en alcanzar la meta de 1GHz.

AMD volvió a adoptar entonces la nomenclatura PR, que proyectaría el rendimiento relativo del reloj en estos nuevos Athlon contra las versiones anteriores. Para un número de modelo determinado, un procesador Pentium 4 con velocidad de reloj correspondiente al número muestra un rendimiento equiparable en una amplia variedad de pruebas. Por esta razón, el etiquetado PR fue ampliamente aceptado a diferencia de lo ocurrido en los sistemas K5. AMD se aseguró también, que las pantallas de inicio de los equipos exhibieran el número de modelo y no los MHz reales.

Intel contraatacó a AMD elevando la velocidad de sus procesadores, y por un tiempo AMD tuvo que luchar. En particular, el núcleo "Thoroughbred" con tecnología de 130nm (2002) sufrió inesperados problemas de calentamiento y debió ser puesto en una revisión B, con una capa de metal extra que mejoró la disipación de calor. Posteriormente se presentó el núcleo "Barton" que incrementó el caché L2 a 512KB. En cada revisión AMD hizo lo suficiente para superar el rendimiento de sus Athlon en niveles de competitividad y evitar el retroceso al mercado del bajo costo.

AMD64 / K8 K8 es una gran revisión de la arquitectura K7, cuya mejora más notable es el agregado de extensiones de 64 bit sobre el

conjunto de instrucciones x86. Esto es importante para AMD puesto que marca un intento de definir el estándar x86 e imponerse, en vez de seguir los estándares marcados por Intel. Y al respecto, AMD ha tenido éxito. La historia ha dado un giro y Microsoft adoptó el conjunto de instrucciones de AMD, dejando a Intel el trabajo de ingeniería inversa de las especificaciones de AMD (EM64T). Otras características notables de K8 son el aumento de los registros de propósito general (de 8 a 16 registros), la arquitectura Direct Connect Architecture y el uso de HyperTransport.

El proyecto AMD64 puede ser la culminación de la visionaria estrategia de Jerry Sanders, cuya meta corporativa para AMD fue la de convertirla en una poderosa empresa de investigación por derecho propio, y no sólo una fábrica de clones de bajo precio, con estrechos márgenes de ganancia.

AMD Opteron es la versión para servidores corporativos de K8; y aunque fue concebida por la compañía para competir contra la línea IA-64 Itanium de Intel, dados los bajos volúmenes de venta y producción de esta última, compite actualmente con la línea Xeon de Intel. El liderazgo tecnológico de AMD ha mejorado considerablemente su credibilidad y su llegada en el sector corporativo del mercado.

Dual-core Athlon 64 X2 El procesador AMD Turion 64 es una versión de bajo consumo del procesador AMD Athlon 64 destinada a los

ordenadores portátiles, que salieron a competir contra la tecnología Centrino de Intel. Se presentan en dos series, ML con un consumo máximo de 35 W y MT con un consumo de 25 W, frente a los 27 W del Intel Pentium M.

Phenom (K10) En noviembre de 2006, AMD hace público el desarrollo de su nuevo procesador con nombre código "Barcelona", que

sería lanzado a mediados del 2007. Con este procesador se da inicio a la arquitectura K8L. Tras el dominio total de Intel con su arquitectura "CORE", AMD tuvo que re-diseñar su tecnología de producción y

finalmente dar el salto a los 65nm y a los Quad Core nativos, a diferencia de los Quad FX, que son 2 dual core en una misma placa madre. Un Quad core nativo (Monolítico), quiere decir que los cuatro núcleos del procesador son totalmente independientes entre sí, a diferencia de los "Kentsfield" (2 "Conroe") y los "Clovertown" (2 Kentsfield) de Intel, y de los Quad FX del propio AMD. Los primeros procesadores en usar el núcleo Barcelona, serán los Quad Core Opteron.

Las nuevas innovaciones que trae consigo la arquitectura K8L (Barcelona) son: Proceso de fabricación de 65nm. Configuración y compatibilidad para plataformas multi-socket (4x4). 2MB de cache L3. (Compartido para los 4 núcleos). 512KB de cache L2. (Para cada núcleo). Hyper Transport 3.0 Soporte para memorias DDR3. Soporte para instrucciones extendidas SSE4. Con la arquitectura K8L, a parte de los Barcelona, también están en desarrollo los núcleos: Barcelona (Próxima generación de los Opteron, versión Quad Core). Rana (Próxima generación de los Sempron, versión Dual Core). Bariloche (Dual Core 65nm). Agena (Próxima generación de los Phenom X2 y X4, versión Quad Core). Agena FX (Próxima generación de los Phenom FX, versión Quad Core). Después de Barcelona (3Q-2007), seguirá "Budapest" (1Q-2008), después "Shanghai" (3Q-2008) y por

último "Montreal". Athlon II y Phenom II

Finalmente, AMD dio el salto de los 65nm a los 45nm en la fabricación con sus nuevos AMD Athlon II y Phenom II. Lanzandos a principios del 2009, estos chips están a la par de las últimas versiones de los chips de Intel Core i5 y Core i7, a la vez que los Athlon II son superiores a los Core 2 Duo y Core 2 Quad de Intel. Podría decirse que es el mejor procesador del mercado en cuanto a la relación precio / beneficio o precio / rendimiento se refiere. Ambos emplean tanto Socket AM2+ como AM3, teniendo de esta manera,

soporte para DDR3.

Bulldozer y Bobcat Después de la arquitectura AMD Quad Core, AMD realizará una metodología de diseño

modular llamado "M-Space", donde 2 nuevos procesadores, Bobcat y Bulldozer, que en un principio saldrían a la venta en el 2009, aunque luego se postergó su salida para el 2011. Si bien hay muy poca información preliminar, ambos núcleos se construirán desde cero.

El Bulldozer se basa en productos de 10 W a 100 W, con optimización de rendimiento ratio-vatio y aplicaciones de Computación de alto rendimiento y recientemente se anunció la incorporación de las instrucciones SSE5, mientras que el Bobcat se enfoca a productos de 1 W a 10 W, usa un núcleo simplificado de x86 para reducir el consumo de energía. Los 2 núcleos traerán compatibilidad plena de DirectX en GPU, bajo el procesador Fusion, u otras CPU de propósitos generales.

AMD Fusion La nueva iniciativa de AMD para el próximo lustro consiste en implantar las capacidades

de las GPU's en el mismo chip de silicio de los microprocesadores y así dotarlos de poder extra en aplicaciones de gráficos principalmente para la computación móvil. Incluyendo el PCI-Express de 16x, y eliminando la necesidad del puente norte completamente de la placa madre. Espera ser lanzado en el 2009

AMD Danubio AMD planea sacar al mercado en verano del año 2010 unos procesadores de 3 y 4 nucleos

para portatiles que competiran con los i7 QM de intel

Iniciativa 50X15 Consiste en que la mitad de la población cuente con la capacidad de conectarse a internet para el

2015; esto se logra a través de concursos entre universidades de varios países donde desarrollan las mejores soluciones para cada región del planeta basadas en la tecnología de AMD. Además se cuenta con prestigiosos organismos multilaterales entre los que podemos encontrar a la FAO y UNICEF

AMD / ATI Después de completar la compra de ATI en 2006, AMD se reestructura como la única empresa en

el mundo que provee un abanico de soluciones en todos los ramos de microprocesadores, tarjetas gráficas y chipsets. Así también se convierte en el mayor productor mundial de chips para TV, consolas y telefonía móvil en el mundo, con esto AMD se convierte hoy en día en el mayor rival de Intel en cuanto a soluciones en semiconductores se refiere.[cita requerida]

Sistemas integrados En agosto de 2003 AMD compra también la empresa Geode (originalmente Cyrix MediaGX) a

National Semiconductor para extender su línea, ya existente, de productos x86 para sistemas integrados. A mediados de 2004, lanzó sus procesadores Geode de bajo consumo con velocidad máxima de 1,4 GHz y consumo máximo de 19W.

Existen 3 familias de procesadores dentro de la gama de procesadores Geode: AMD Geode LX, especialmente pensado para "Cliente liviano" basados en plataformas x86, "set-

top boxes" interactivos, ordenadores "single-board", Agendas personales (PDAs), y dispositivos móviles para Internet y de entretenimiento.

AMD Geode NX, pensado para "Cliente liviano", terminales punto de venta (TPV), kioskos, impresoras de alto rendimiento y sistemas multimedia para el hogar.

AMD Geode GX [email protected] Processor, especialmente pensado para aplicaciones de Internet de banda ancha, y además con un consumo de tan solo 1,1 W.

 

Podemos concluir que la evolución el microprocesador uno de los logros más sobresalientes del siglo XX. Esas son palabras atrevidas, y hace un cuarto de siglo tal afirmación habría parecido absurda. Pero cada año, el microprocesador se acerca más al centro de nuestras vidas, forjándose un sitio en el núcleo de una máquina tras otra. Su presencia ha comenzado a cambiar la forma en que percibimos el mundo e incluso a nosotros mismos. Cada vez se hace más difícil pasar por alto el microprocesador como otro simple producto en una larga línea de innovaciones tecnológicas.Ninguna otra invención en la historiase ha diseminado tan aprisa por todo el mundo o ha tocado tan profundamente tantos aspectos de la existencia humana. Hoy existen casi 15,000 millones de microchips de alguna clase en uso (el equivalente de dos computadoras poderosas para cada hombre, mujer y niño del planeta). De cara a esa realidad, ¿quién puede dudar que el microprocesador no sólo está transformando los productos que usamos, sino también nuestra forma de vivir y, por último, la forma en que percibimos la realidad?No obstante que reconocemos la penetración del microprocesador en nuestras vidas, ya estamos creciendo indiferentes a la presencia de esos miles de máquinas diminutas que nos encontramos sin saberlo todos los días. Así que, antes de que se integre de manera demasiado imperceptible en nuestra diaria existencia, es el momento de celebrar al microprocesador y la revolución que ha originado, para apreciar el milagro que es en realidad cada uno de esos chips de silicio diminutos y meditar acerca de su significado para nuestras vidas y las de nuestros descendientes.