Hidrodinamica de Los Cojinetes

download Hidrodinamica de Los Cojinetes

of 24

Transcript of Hidrodinamica de Los Cojinetes

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    1/24

    Hydrodynamic BearingsHydrodynamic Bearings --DesignDesign

    Lecture 26Lecture 26

    Engineering 473Engineering 473

    Machine DesignMachine Design

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    2/24

    Governing EquationGoverning Equation

    ( ) ( ) ( )

    dx

    xdh6U

    dz

    dp

    xh

    zdx

    dp

    xh

    x

    33

    =

    In the previous lecture, the momentum and continuity

    equations were used to develop the following equation

    This equation was generalized to include lubricant flowin both the circumferential and longitudinal directions

    ( ) ( )dx

    xdh6U

    dx

    dp

    xh

    x

    3

    =

    This equation is generally solved using

    specialty computer programs.

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    3/24

    Design VariablesDesign Variables

    Independent VariablesIndependent Variables Dependent VariablesDependent Variables

    Viscosity, Load, P (W/projected Area)

    Speed, NDimensions r, c, , and L

    Friction, f

    Temperature rise, T

    Volumetric flow rate, QMinimum film thickness, ho

    The objective of the design engineer is to select the

    independent variables necessary to achieve desired

    performance criteria. The dependent variables will

    be dictated by the selections made for the

    independent variables.

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    4/24

    Graphical DataGraphical Data

    Albert Raimondi and John Boyd, A Solution for the Finite

    Journal Bearing and Its Application to Analysis and Design,Parts I, II, and III, Transactions of American Society of

    Lubrication Engineers, Vol. 1, No. 1, in Lubrication Science

    and Technology, Pergamon, New York, 1958, 159-209.

    Raimondi and Boyd (1958) did extensive numerical studies

    on the relationships between the various parameters that

    govern the design of fluid film bearings and publishedgraphical data to facilitate the design of such bearings.

    The charts presented in this lecture are for long bearings

    with =360o

    (full bearings).

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    5/24

    ViscosityViscosity--Temperature ChartsTemperature Charts

    Shigley, Fig. 12-11

    The viscosity of lubricants

    used in fluid-film bearings

    are very temperaturedependent.

    As work is done on the fluid

    as it moves through thebearing it heats up.

    The viscosity used in the

    design/analysis of a fluid-

    film bearing should be based

    on the average temperature.

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    6/24

    Average TemperatureAverage Temperature

    2

    TTT

    2

    TTT

    TTT

    inave

    outinave

    inout

    +=

    +=

    +=

    An initial T is estimated

    at the start of an analysis.

    Iteration will be required

    based on the actual T.Shigley, Fig. 12-11

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    7/24

    SommerfeldSommerfeld NumberNumber

    P

    N

    c

    rS

    2

    =

    The Sommerfeld Number is used extensively

    in journal bearing design.

    A. Sommerfeld, Zur Hdrodynamischen Theorie der Schmiermittel-

    Reibung, Z. Math. Physik, vol. 50, 1904, pp 97-155.

    r journal radius

    c clearance

    dynamic viscosityN rotational speed (rev/sec)

    P bearing load/projected area

    Note that consistent units must be used. Theunit for the Sommerfeld number is Rev.

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    8/24

    Example ProblemExample Problem

    Given design parameters:

    SAE 30 OilTin = 150

    oF (oil inlet temperature)

    N = 30 rev/sec (journal rotational speed)

    W = 500 lb (total load acting on bearing)

    r = 0.75 in (journal radius)c = 0.0015 in (clearance between journal and bearing)

    L = 1.50 in (length of bearing)

    Use the Raimondi-Boyd charts to determine the

    bearing performance parameters.

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    9/24

    Step 1Step 1Estimate AverageEstimate Average

    Lubricant TemperatureLubricant Temperature

    Assume a temperature rise in the oil of 34oF.

    F1672

    F34F150T

    2

    TTT

    ave

    inave

    =

    +=

    +=

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    10/24

    Step 2Step 2Find Average ViscosityFind Average Viscosity

    reyn2.2 =

    Shigley, Fig. 12-11

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    11/24

    Step 3Step 3Compute Force/ProjectedCompute Force/Projected

    Area (P)Area (P)

    2lb/in222P

    in1.5in0.752

    lb500

    Lr2

    WP

    =

    ==

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    12/24

    Step 4Step 4Compute L/D and BearingCompute L/D and Bearing

    Characteristic NumberCharacteristic Number

    ( )( )

    0.0743S

    lb/in222

    rev/sec30sec/inlb2.2x10

    in0.0015

    in0.75

    P

    N

    c

    rS

    0.1in)2(0.75

    in1.5L/D

    2

    262

    2

    =

    =

    =

    ==

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    13/24

    Step 5Step 5Find Minimum FilmFind Minimum Film

    Thickness and EccentricityThickness and Eccentricity

    Shigley, Fig. 12-14

    7.0c

    e

    28.0c

    h0

    ==

    =

    ContactContact Light LoadLight Load

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    14/24

    Step 5Step 5ContinuedContinued

    ( )

    ( ) in00108.0in0.00150.72e

    72.0c

    e

    in0.00042in0.00150.28h

    28.0c

    h

    0

    0

    ===>

    ==

    ===>

    =

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    15/24

    Step 6Step 6Find Position of MinimumFind Position of Minimum

    Film ThicknessFilm Thickness

    degrees44 =

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    16/24

    Step 7Step 7Find the Maximum FilmFind the Maximum Film

    PressurePressure

    psi617222/0.36P

    0.36P

    P

    max

    max

    ==

    =

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    17/24

    Step 8Step 8Find Location of MaximumFind Location of Maximum

    PressurePressure

    =

    =

    56

    18

    o

    max

    p

    p

    Shigley Fig 12-21

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    18/24

    Step 9Step 9Find Coefficient of FrictionFind Coefficient of Friction

    0.005f

    in0.75

    in0.00152.5f

    2.5fc

    r

    =

    =

    =

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    19/24

    Step 10Step 10Find Horsepower RequiredFind Horsepower Required

    to Overcome Frictionto Overcome Friction

    ( )

    ( )

    ( ) ( )

    63,000

    rev/minNlbinTPwr(hp)

    rev/minN

    Pwr(hp)63,000lb-inT

    rWfT

    =

    =

    =

    ( )( )

    hp0.054Pwr

    63,000

    60301.88Pwr

    lb-in1.88T

    in0.75lb5000.005T

    =

    =

    =

    =

    W

    Wfff =

    r

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    20/24

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    21/24

    Step 12Step 12Find Side Flow LeakageFind Side Flow Leakage

    secin0.142Q

    secin0.1770.8Q

    0.8Q

    Q

    3

    s

    3

    s

    s

    =

    =

    =

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    22/24

    Step 13Step 13Find Temperature Rise ofFind Temperature Rise of

    LubricantLubricant

    It is assumed that all of the frictional energy is

    converted to heat and carried away by the lubricant.

    p

    f

    p

    ff

    f

    cm

    TT

    TcmQTW

    QW

    =

    ==

    =

    p

    f

    cQNrWf2T

    Qm

    N2

    rWfT

    =

    =

    =

    =

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    23/24

    Temperature RiseTemperature Rise(Continued)(Continued)

    pcQ

    NrWf2T

    =

    =

    =

    =

    ==

    =

    =

    3

    3

    3f

    OH

    fp

    f

    in1728

    ft

    ftlb

    62.4

    0.86

    RlbBTU0.42c

    rev/sec30Nin0.75r

    lb500W

    0.005f

    2

    F.416T

    BTUin9,338lb

    secin0.177Q

    f

    3

    =

    =

    =

    Note that a temperature rise

    of 34 oF was assumed when

    the average temperature was

    estimated.

    The analysis needs to be

    repeated with an improved

    estimate for Tave.

  • 7/27/2019 Hidrodinamica de Los Cojinetes

    24/24

    AssignmentAssignment

    A journal bearing has a diameter of 3 in and is 1.5 in

    long; it supports a load of 800 lbf. The journal speed is

    600 rev/min and the radial clearance is 0.0025 in. Findthe minimum oil-film thickness and the maximum film

    pressure for both SAE 10 and SAE 40 lubricants if the

    operating temperature is 150 oF.

    Discuss why one has a larger film thickness than the

    other.