Hidraulica en tuberias y canales.ppsx

download Hidraulica en tuberias y canales.ppsx

of 84

Transcript of Hidraulica en tuberias y canales.ppsx

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    1/84

    The University of Adelaide, AustraliaSchool of Civil, Environmental & Mining Engineering

    Water Systems and Infrastructure Modelling &Management Group(WaterSIMM)

    Using Genetic Algorithms to OptimiseNetwork Design and System OperationIncluding Consideration of Sustainability

    Professor Angus Simpson

    Victorian Modelling Group

    24 March 2010

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    2/84

    Outline

    1. Simulation of water distribution systems2. Various formulations of equations

    3. Todini and Pilati solution method4. Genetic algorithm optimisation of water

    distribution system networks

    5. Genetic algorithms for optimisingoperations of pumping systems

    6. Optimising for sustainability

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    3/84

    My research interests

    1. Optimisation of the design and operation ofwater distribution systems using geneticalgorithms [including sustainabilityconsiderations (GHGs)]

    2. Monitoring health and assessing conditionof pipes non-invasively in water distributionsystems using small controlled waterhammer events

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    4/84

    My research interests

    3. Steady state computer simulation analysis

    of water distribution systems - improvingsolvers and modelling of PRVs and FCVs

    4. Water hammer modelling in pipelines

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    5/84

    The research team

    Total of 14

    9 academics (local and overseas) 1 Research Post Doc. 4 PhDs

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    6/84

    The research team - academics

    Prof. Angus Simpson Prof. Martin Lambert (condition assessment and

    genetic algorithms) Prof. Holger Maier (genetic algorithms and

    sustainability) Dr. Sylvan Elhay School of Computer Science,

    The University of Adelaide (steady state solution ofpipe networks)

    Prof. Lang White School of Electrical andElectronic Engineering, The University of Adelaide

    (condition assessment)

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    7/84

    International collaboration

    Professor Caren Tischendorf Head of Dept. of Mathematicsand Computer Science, University of Cologne, Germany(steady state solution of pipe networks)

    Dr. Jochen Deuerlein 3S Consult, Germany (steady statesolution of pipe networks, correct modelling of PRVs, FCVs inwater networks) ex-University of Karlsruhe

    Dr. Arris Tijsseling University of Eindhoven, TheNetherlands (condition assessment)

    Prof. Wil Schilders University of Eindhoven, TheNetherlands (speeding up solution of nonlinear steady statepipe network equations)

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    8/84

    Components in a Water Distribution

    System

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    9/84

    Simulation of water distributionsystems

    Solution of a set on non-linear equations for

    flow (Q) and pressure (head or hydraulic grade line H)

    EPANET uses Todini and Pilati (1987)method very fast

    There are many sophisticated commerciallyavailable software packages

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    10/84

    Assumptions

    Fixed demands assumed to be notpressure dependent, for example - 100houses aggregated to a node

    Various water demand loadings cases Peak hour (hottest day in summer) Peak day (extended period simulation usually

    over 24 hours to check tanks do not run empty) Fire demand loading cases Pipe breakage cases

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    11/84

    Decisions to be made

    Diameters and locations of pipes Location of pumps

    Locations and setting of valves (PRVs, FCVs) Locations and elevations of tanks Operation of pumps off-peak electricity rates Minimising carbon footprint Reliability considerations

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    12/84

    Design objectives

    For theeconomic cost component minimisesumof Capital cost of the water distribution system

    (say for a 100 year life) Present value of pump replacement/refurbishment

    (every 20 years) Present value of pump operating costs (100 years)

    )()()(),(11

    pumping NPV pc Ld c P DC k NPUMP

    k k k k

    NPIPE

    k k

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    13/84

    Accounting for Time Present value analysis (PVA)

    Usually the discount ratei is selected tobe cost of capital 6 to 8%

    For social projects, such as WDSs, asocial discount rate should be used, forexample,i = 1.4% (intergenerational

    equity)

    t t iC

    PV 1

    C: Payment/cost on a given future date

    t = Number of time periods

    i = Discount rate

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    14/84

    Design objectives

    Satisfy design criteria for example Minimum/maximum allowable pressures Maximum allowable velocities Tanks must not empty

    NDEMANDS j NJ it H t H H ji ji ji ,...,1;,...,1,,)(max,,

    min,

    NDEMANDS j NP it V t V ji ji ,...,1;,...,1,,)(max,,

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    15/84

    Trial and error approach

    User has to choose - diameters of pipes,locations of tanks, pumps, and PRVs

    Engineering judgment and experience Run simulation model for demand load cases Check design criteria and compute cost Adjust sizes of elements in response topressures Rerun simulation model

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    16/84

    New York Tunnels problem

    New York City Water Supply Tunnels

    Brooklyn

    Hillview Reservoir

    EL 340 ft

    16

    9 21

    8

    20

    19

    11

    7

    6

    5

    4

    17 18

    13

    14

    3

    2City Tunnel No. 1

    City Tunnel No. 2

    Bronx

    Queens

    Richmond

    Manhattan

    10

    12

    15

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    17/84

    A very very large search space size

    Any one of the 21 existing pipes could beduplicated

    Choose from 16 allowable pipe sizes tomeet demands

    Search space size = 1.43 x 1021 Eliminate 99.99% of possible solutions by

    engineering experience (leaves 1.43 x 1017)

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    18/84

    A very very large search space size

    At 10,000 evaluations per second cancompute 3.15 x 1011 per year

    It will take 454,630 years to fully enumerate0.01% of the total search space (only for 21

    decision variables)

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    19/84

    A typical simple water distribution system

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    20/84

    Simulation Solving for The Unknowns

    q Q1 Q2 Q NP T=

    Only consider systems with pipes and reservoirs The unknown flow vector (10 pipes in examples)

    The unknown head vector (7 nodes in example)(gives pressures)

    h H1 H2 H NJ T=

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    21/84

    A total of 17 unknowns Qs and Hs

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    22/84

    Continuity Equation of Flow at a Junction

    Flow In = Flow Out + Demand (or Withdrawal Discharge) where

    Q j = flow in pipe j (m3/s or ft3/s)

    NPJi = number of pipes attached to node i

    DMi = demand at the node i (m3/s or ft3/s)NJ = total number of nodes in the water distribution system(excluding fixed grade nodes such as reservoirs)

    Q j1=

    NPJi

    DM i+ =

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    23/84

    Pipe Head Loss Equations in Terms of NodalHeads

    H i Hk r Q Q n 1 =

    where = nodal head at node i in the water distribution system (m or ft) r j = resistance coefficient for the pipe j depending on the head loss

    relationship (for example, Darcy Weisbach or Hazen Williams) Q j = flow in pipe j (m3/s or ft3/s) n = exponent of the flow in the head loss equation (Darcy Weisbach n = 2 or

    Hazen Williams n = 1.852)

    H

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    24/84

    Four different non-linear formulations

    #1 Q-Equations #2 H-Equations #3 LF- Equations (Loop Flow Equations) #4 Todini and Pilati H-Q Equations

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    25/84

    #1 - The Q-equations formulation(10 unknowns)

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    26/84

    The Q-equations (10 unknowns)

    q Q1 Q2 Q NP T=

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    27/84

    The Q-equations (Newton iterativesolution technique)

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    28/84

    #4 -Todini and Pilati Q-H formulation

    Define topology matrices Develop block form of equations Use an analytic inverse of block matrices to

    reduce matrix size from 17 unknowns to 7unknowns (same as unknown heads H)

    Fast algorithm

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    29/84

    Todini and Pilati Q-H formulation

    Unknownsh H1 H2 H NJ

    T=

    q Q1 Q2 Q NP T=

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    30/84

    Todini and Pilati Q-Hformulation - Define

    topology matrices

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    31/84

    Todini and Pilati Q-Hformulation - Define

    topology matrices

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    32/84

    Todini and Pilati Q-Hformulation- continuity at nodes

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    33/84

    Todini and Pilati Q-Hformulation head lossequations for pipes

    Note that later on theinverse of this matrixwill give problems forzero flows

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    34/84

    Todini and Pilati Q-H formulation head lossequations for pipes

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    35/84

    Todini and Pilati Q-H formulation two sets of equations

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    36/84

    The Todini and Pilati equations

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    37/84

    Research Issues

    Improving solution speed Making solution algorithms more robust zero

    flows cause Todini and Pilati method to fail aregularization method has been developed tocontrol the condition number

    An improved convergence criterion for stoppinghas been developed

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    38/84

    Research Issues

    Decomposing networks into trees, blocks andbridges to speed up analysis

    Growing typical networks that have correct mixof loops, links and junctions

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    39/84

    GENETIC ALGORITHMS FOR OPTIMISATIONOF WATER DISTRIBUTION SYSTEMS

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    40/84

    Types of Evolutionary Algorithms

    Genetic algorithms(Holland 1976; Goldberg 1989)

    Ant Colony Optimisation (ACO) Tabu search Simulated annealing Particle swarm optimisation (PSO) Evolutionary strategy (Germany)

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    41/84

    History of genetic algorithms applied towater distribution systems

    Pioneered at the University of Adelaide by LaurieMurphy under my supervision in an honours project in1990 and a PhD starting in 1991

    Initial focus was on the optimisation of the design ofwater distribution systems

    A spinoff company of Optimatics Pty Ltd formed byUniversity of Adelaide in 1996 operates in Australia,NZ, USA and UK (employs 20 people)

    Research focus is now on optimising operations andaccounting for multiple objectives (sustainability,reliability)

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    42/84

    Genetic algorithm optimisation

    Population orientated technique (select apopulation size of say 500)

    Based on mechanisms of natural selection

    and genetics Selection, crossover and mutation operators

    produce new generations of designs

    Fitness of strings drives process Uses EPANET type simulation model to

    assess performance of all trial waterdistribution networks in each generation

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    43/84

    Creating a string from sub-strings -an example

    BINARY CODING

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    44/84

    Chromosome of decision variables

    Choice tables are required for eachdecision variable

    Chromosome

    Existing pipe [3] (binary)00 = no change, e = 2.5 mm01 = clean/line, e = 0.3 mm10 = duplicate 306 mm11 = close the pipe

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    45/84

    Model Operation

    Optimisation-Simulation Model Link

    GA OPTIMISATION MODEL

    HYDRAULIC SIMULATION MODEL

    Configuration of water distribution andperformance passes back and forth

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    46/84

    Simulate hydraulics of waterdistribution system

    Decode each string using the choice tables Run a computer simulation model Simulate demand loading cases

    consecutively peak hour, fire, extended period simulation

    Record any violation of constraints(e.g. pressures too low, velocities too high)

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    47/84

    Choices for the decision variables

    A decoding lookup table NominalDiameter

    (mm)

    Actual orInternal

    Diameter(mm)

    BinaryCoding

    IntegerCoding

    Roughness height(mm) for Darcy-Weisbach friction

    factor

    Unit Cost($/m)

    150 151 000 1 0.25 49200 199 001 2 0.25 63250 252 010 3 0.25 95300 305 011 4 0.25 133

    375 384 100 5 0.25 171450 464 101 6 0.25 220500 516 110 7 0.25 270600 615 111 8 0.25 330

    l d d f

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    48/84

    Total cost and corresponding fitnessof the string

    Total cost is the: example1. Real cost of the water distribution system

    design

    PLUS 2. A penalty pseudo-cost (or costs) if the

    constraint(s) are not met For example

    =K*Maximum pressure deficitwhere K=$50,000 per metre

    Fitness is often taken as the inverse of the totalcost

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    49/84

    Steps in a genetic algorithm

    optimisation

    Select a population size (e.g. N=100 or N=500) Select a reproduction or selection operator Select a probability of crossover (Pc) Select a probability of mutation (P

    m)

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    50/84

    A Simple Genetic Algorithm

    ThisGeneration

    N=500

    Selection Crossover&

    Mutation

    The NextGeneration

    MatingPool

    N=500

    l

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    51/84

    Tournament selection

    Randomly selectpairs of

    chromosomes

    versus

    Evaluationof the fittest

    Forming theMating Pool

    1 1 1 1 1

    1 11 11 11

    1 11 1

    1 1

    1

    1111

    1 1 1

    11 1

    1 11

    1

    1

    11 1 1

    1 11 11

    1 1

    11 1 1 1 1 1

    11 1 1

    1

    1

    11

    1

    00 0 0

    0

    0

    0 0

    00

    00 0 0 0

    00

    0 00

    0000 0

    00000

    00000

    00000

    0

    00

    0

    0 0

    0

    0 0

    0

    1 11 1 11 1 000

    65

    112

    94

    8398

    143

    87

    130

    Fittest strings win

    Two sets of tournament selection are required

    versus

    versus

    versus

    FITNESS

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    52/84

    Crossover (one-point)

    Chromosome A

    Chromosome B Parents

    Chromosome A`

    Chromosome BOffspring

    1 1 1 1 1 1

    1 1 1 1 1 1 1

    1 1 1

    1 1 11 1 1

    1 1 1 1

    0 0 0 0 0 0

    0 0 0 0 0

    0 0 0 0 0

    0 0 0 0 0 0

    Randomly select acrossover point

    Interchange the tails

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    53/84

    The mutation operator

    Mutation occurs with a very small probability One bit switches to a new value

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    54/84

    Produce many generations

    Continue to create a series of newgenerations (say 100,000 differentnetworks)

    Repeat selection, crossover andmutation

    Increasingly fit solutions are

    generated The 10 or so lowest cost solutions

    must be remembered along the way

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    55/84

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    56/84

    Optimisation of pumping plant operations

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    57/84

    Murray Bridge operations

    optimisation United Utilities Riverland water treatment

    plant project at Murray Bridge, South Australia

    GA optimisation minimises operationselectricity costs by

    maximizing off-peak pumping and minimizing static pump head

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    58/84

    Background

    Pumps

    ElevatedStorage

    Water TreatmentPlant

    Clear WaterStorage

    Case study Murray Bridge system

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    59/84

    Case study Murray Bridge systemlayout

    White HillStorage Tank (WHS)

    OffTakes

    MurrayBridge

    OnkaparingaPipeline

    Murray Bridge WaterTreatment Plant

    Clear WaterStorage Tank (CWS)

    3 Parallel FixedSpeed Pumps

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    60/84

    Traditional approach to control

    Trigger levels in storage tanksOR Pump scheduling

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    61/84

    Controls based on trigger levels

    Lower Trigger Level (Minimum Allowable Level)

    Upper Trigger Level (Maximum Allowable Level) More Peak

    Pumping thanNecessary

    Time

    T a n

    k L e v e

    l

    Peak Tariff Period

    Tank not Fullfor Next

    Peak TariffPeriod

    Tank not Full atStart of PeakTariff Period

    Off-Peak Tariff Period

    7am 7am 9pm

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    62/84

    Optimisation-Simulation Model Link

    GA OPTIMISATION MODEL

    HYDRAULIC SIMULATION MODEL

    Operating policies for pumpingsystem - trigger levels, schedules for

    pumps turning on and turning off

    Model operation

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    63/84

    Decision variables - operationsoptimisation at Murray Bridge

    Used a combination of real-value and integer valuerepresentation of the decision variables

    Four decision variable for final formulation: Pump start time to fill tank Pump stop time to drain tank to minimum level Reduced upper trigger level for tank Initial level in CWS tank

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    64/84

    A system controlled with original trigger

    levels and schedules

    Lower Trigger Level(Minimum Allowable Level)

    Upper Trigger Level (Maximum Allowable Level)

    Time

    Peak Tariff Period

    Tank Full atStart of Peak

    Tariff Period

    Off-Peak Tariff Period

    7am 7am9pm

    Start PrimaryPump

    Stop PrimaryPump

    Tank at Minimum Level atEnd of Peak Tariff Period

    T a n

    k L e v e

    l

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    65/84

    A system controlled with both schedulesand a reduced upper trigger level (1)

    Time

    Lower Trigger Level(Minimum Allowable Level)

    Upper Trigger Level (Maximum Allowable Level)

    Peak Tariff Period

    Tank Full at Start of PeakTariff Period

    Off-Peak Tariff Period

    7am 7am9pm

    Start PumpReduced Upper Trigger Level

    Tank at Minimum Level at

    End of Peak Tariff Period

    T a n

    k L e v e

    l

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    66/84

    T a n

    k L e v e

    l

    Lower Trigger Level(Minimum Allowable Level)

    Upper Trigger Level (Maximum Allowable Level)

    Time

    Peak Tariff Period

    Tank Full at Start ofPeak Tariff Period

    Off-Peak Tariff Period

    7am 7am9pm

    Start Pump

    Reduced Upper Trigger LevelExtended into Off-Peak Tariff Period

    Tank at Minimum Levelat End of Peak Tariff Period

    Switch Time

    A system controlled with both schedulesand a reduced upper trigger level (2)

    Modelled System - Original Trigger

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    67/84

    Modelled System Original TriggerLevels

    L e v e

    l ( m )

    4

    5

    6

    7

    Daily electricity cost (averaged over 28 days) = $313.65

    Time (hrs)

    Daily peak pumping(averaged over 28 days): $286.05

    Initial Level in CWS = 3.4m

    Lower trigger level = 5.49m

    Upper trigger level = 6.98m

    0

    1

    2

    3

    8

    11 am 9 am 7 am 7 am 5 am 3 am 1 am 11 pm 9 pm 7 pm 5 pm 3 pm 1 pm

    Daily off-peak pumping(averaged over 28 days): $27.60

    WHS (m)

    CWS (m)

    WHS and CWS tank levels for first 24hours of a 28-day simulation under fixedtrigger level control for a 7.17 ML/D flow

    Optimised system new approach

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    68/84

    Optimised system - new approach

    Initial Level in CWS = 3.675 m

    Lower trigger level = 5.49 m

    Reduced trigger level = 5.76 m

    Upper trigger level = 6.98m

    WHS and CWS tank levels after optimisationfor a 7.17 ML/D flow

    0

    1

    2

    3

    4

    5

    6

    7

    8

    Time (hrs)

    L e v e

    l ( m )

    WHS

    CWS

    Pump on at 1:54:13 am

    Peak Pumping: $189.51 Off-peak Pumping: $67.63

    Total electricity cost = $257.14. Hence a $56.51 or 18.0%

    11 am 9 am 7 am 7 am 5 am 3 am 1 am 11 pm 9 pm 7 pm 5 pm 3 pm 1 pm

    Switch time 2:15 am

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    69/84

    Results - savings from new approach

    18.284.34378.76463.110

    13.646.3293.02339.328

    18.056.48257.16313.647.17

    22.459.72207.13266.866

    22.936.17121.57157.744

    54.950.6141.6592.262

    (%)($)ImprovedControlsCurrent

    Controls

    SavingsPumping Cost($/Day)DailyDemand(ML/Day)

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    70/84

    Accounting for Sustainability in theDesign and Operation of WaterDistribution Pumping Systems

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    71/84

    Research Objectives

    To construct a sustainability integratedmulti-objective genetic algorithmoptimisation model for the planning,design and evaluation of WDSs

    To explore the impacts different

    sustainability criteria (Greenhouse Gasemissions) will have on the results ofWDS optimisation

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    72/84

    Aspects of Sustainability-

    Social

    Environmental

    Economic Technical

    1: Total cost ofthe system

    2: GHGemissions

    3:Systemreliability 4: Robustness ofPareto-optimal Front

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    73/84

    Two of the Main Conflicting Objectives

    Minimisation of thetotal life cyclesystem costs

    Minimisation of thetotal life cycle systemGHG emissions

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    74/84

    Higher CostLower GHG

    Lower Cost

    Higher GHG

    Big pumpSmall pipe

    Small pumpBig pipe

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    75/84

    Evaluating multi-objective optimisation

    results using a Pareto tradeoff curve

    Cost

    GHG

    TradeoffCurve

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    76/84

    Determining life cycle economic costs

    Total Cost

    Capital CostsPump

    Refurbishment

    Costs (PVA)

    Operating Costs

    (PVA)

    Pipes andPump Stations

    Pumps Pumping

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    77/84

    Determining life cycle GHG emissions(no discounting i = 0% IPCC)

    Total Emissions

    Capital Emissions Operating Emissions

    Embodied Energyof Pipes

    Electricity Consumptionof Pumping

    Emission Factor Analysis

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    78/84

    Optimisation Framework

    Generate Options

    M O GA

    Simulation

    Evaluation

    Comparison& Selection

    WDS Optimisation

    O b j e c t i v e s

    Minimisationof total cost

    Minimisation ofGHG emissions

    Maximisation ofsystem reliability

    Maximisationof robustness

    of Pareto-optimal

    solutions

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    79/84

    Multi-objective optimisation using genetic

    algorithms MOGA: NSGA-II Generate initial population Objectiveevaluation

    Simulationmodels

    Ranking

    Generate globalpopulation

    Non-dominatedsorting

    Crowding

    distance

    Comparison &selection

    Constrainthandling

    Generate child population

    Crossover

    Mutation

    Stoppingcriteria met?

    Stop

    Yes

    No

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    80/84

    Case Study The network consistsof a lower reservoir

    (water source), onepump, one rising main

    and an upper reservoir

    1,500,000

    951,500120100

    Average peakday flow (L/s)Design life (years)

    Design conditions of case 1 Annual demand (m 3)

    Static headPipe length

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    81/84

    Pareto optimal tradeoff curve

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    82/84

    Pareto optimal tradeoff curve multi-objective optimisation i = 6%

    6% discount rate for costs

    A

    B

    G H

    C D E F

    87.0

    91.0

    95.0

    99.0

    103.0

    4.3 4.7 5.1 5.5

    System cost (M$)

    G H G

    ( k - t

    o n n e )

    $21.8/tonneCO 2-e

    $134/tonneCO 2-e

    $371/tonne CO 2-e

    (300)

    (450)(375)

    6% discount rate for costs

    A

    B

    G H

    C D E F

    87.0

    91.0

    95.0

    99.0

    103.0

    4.3 4.7 5.1 5.5

    System cost (M$)

    G H G

    ( k - t

    o n n e )

    $21.8/tonneCO 2-e

    $134/tonneCO 2-e

    $371/tonne CO 2-e

    (300)

    (450)(375)

    Diameter for lowest cost solution

    Tradeoff for i = 1.4%

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    83/84

    1.4% discount rate for costs

    B

    C DE

    H

    FG

    88.5

    89.5

    90.5

    91.5

    92.5

    10.1 10.3 10.5 10.7 10.9 11.1

    System cost (M$)

    G H G

    ( k - t o n n e

    ) $72.1/tonneCO2-e

    $376/tonne

    CO2-e $1,468/tonne CO2-e

    (375)

    (450)

    1.4% discount rate for costs

    B

    C DE

    H

    FG

    88.5

    89.5

    90.5

    91.5

    92.5

    10.1 10.3 10.5 10.7 10.9 11.1

    System cost (M$)

    G H G

    ( k - t o n n e

    ) $72.1/tonneCO2-e

    $376/tonne

    CO2-e $1,468/tonne CO2-e

    (375)

    (450)

    Lowest cost

    Lowest GHGs

    Conclusions

  • 8/14/2019 Hidraulica en tuberias y canales.ppsx

    84/84

    Conclusions

    Evolutionary algorithm optimisation hasapplication in design and operation of waterdistribution systems

    It is relatively easy to tack on an evolutionaryalgorithm optimisation onto existing simulationmodels

    Capital costs and operating costs can bereduced significantly Sustainability can be optimised