estequiometria crecimiento bacteriano

36
ESTEQUIOMETRÍA DEL CRECIMIENTO MICROBIANO

description

estequiometria de crecimiento bacteriano util para biotecnologos que se dediquen al uso de biorreactores

Transcript of estequiometria crecimiento bacteriano

Page 1: estequiometria crecimiento bacteriano

ESTEQUIOMETRÍA

DEL CRECIMIENTO

MICROBIANO

Page 2: estequiometria crecimiento bacteriano

ESTEQUIOMETRÍA DEL CRECIMIENTO MICROBIANO

La conversión microbiológica de carbohidratos para obtener biomasa y productos de

interés industrial es tema de constante actualidad debido a la creciente dependencia de los

recursos renovables.

Los rendimientos alcanzados en biomasa y productos son de relevancia significativa

debido a que, generalmente, el valor de los sustitutos empleados en la formulación de

medios de cultivo tiene una importancia sustancial en el costo de operación de las plantas

industriales. El grado en que un microorganismo puede transformar los componentes del

medio de cultivo en nueva biomasa y productos juega un papel fundamental, a punto tal que

puede llegar a ser factor determinante de la viabilidad de un proceso en gran escala. Desde

este punto de vista, resulta de sumo interés poder llegar a determinar, estimar o predecir

rendimientos que den cuenta de las transformaciones que se están llevando a cabo en un

biorreactor. Los balances de materia y energía resultan a tal fin de suma utilidad y su

empleo se ha extendido ampliamente en ciencias básicas y aplicadas.

La aparición en el mercado de sensores que permiten medir importantes variables de

los cultivos microbianos y el uso de ordenadores acoplados a los biorreactores (biorreactor =

recipiente en el cual se cultivan los microorganismos) han ampliado el horizonte para la

aplicación de balances de materia y energía. la producción de biomasa (biomasa =

concentración de microorganismos expresada en gramos de células secas / litro de cultivo),

consumo de las fuentes de C y energía, de nitrógeno y Oxígeno y las producción de CO2 y

desprendimiento de calor son algunas de las variables que pueden ser estimadas a partir de

medidas experimentales y utilizadas en el planteo y cálculo de balances de materia y

energía.

Antes de proceder a considerar el sistema de análisis propuesto, es conveniente

introducir algunas definiciones y hacer ciertas consideraciones sobre algunas

“regularidades” observadas experimentalmente en el cultivo de microorganismos.

En primer lugar se ha encontrado que la composición elemental de un importante

número de microorganismos, cultivados bajo diferentes condiciones, se mantiene

prácticamente constante; así podemos definir un “microorganismo promedio” (composición

standard) como aquel cuya composición es (% p/p): C = 46,5; H = 6,94; 0 = 31,0 y N =

10,85, donde el aproximadamente 5 % restante está representado por sales. Es importante

Page 3: estequiometria crecimiento bacteriano

recalcar que si bien la composición elemental promedio de la biomasa se mantiene

prácticamente constante, la concentración intracelular de proteínas, RNA y demás

constituyentes celulares puede variar sensiblemente entre diferentes especies e incluso

entre diferentes estadíos del cultivo de un mismo microorganismo.

Teniendo en cuenta esta composición media, podemos escribir lo que sería la

“fórmula mínima” de nuestro m.o. promedio como C H1,79O0,5N0,2 (en la que está

representada el 95% p/p de la biomasa) y con fines netamente prácticos definir “1 C-mol de

biomasa” como la cantidad de biomasa que contiene 1 átomo gramo de C. Así pues

tenemos que:

1 C - mol de biomasa = x x

= 25,8 g12 1 79 16 0 5 14 0 2

0 95

, , ,

,

Para conocer la cantidad de biomasa que corresponde a n C-moles de biomasa

debemos conocer su composición elemental y en base a dicha composición, el peso de 1

cmol. En términos generales la masa resulta ser: n . Pcmol g de biomasa.

De forma análoga a como lo hicimos con la biomasa, podemos definir 1 C-mol de

sustrato (entiéndase por sustrato fuente de carbono y energía, FCE), 1 C-mol de fuente de

N, etc. Como ejemplo, para la glucosa: C6H12O6, 1 C-mol de glucosa estará representado

por CH2O y pesará 30 g, y para el etanol, 1 C-mol de etanol (CH3O0,5) pesará 23 g.

Otro concepto que debemos introducir es el de “grado de reducción” o “grado de

reductancia”, el cual será de gran utilidad en el momento de plantear nuestros balances de

materia y energía.

Tomemos como ejemplo las siguientes reacciones de oxidación:

C + O2. CO2 = 4

CH4 + 2O2 CO2 + 2H2O = 8

CO + 0,5 O2 CO2 = 2

CH2O + O2 CO2 + H2O = 4

CH3O0,5 + 1,5 O2 CO2 + 1,5 H2O ` = 6

Podemos observar que los distintos valores de que figuran a la derecha de cada

ecuación coinciden con el número de “electrones disponibles” que fueron transferidos desde

el compuesto a oxidar al oxígeno. En general se expresa en términos de n de e-

disponibles / c-mol.

Page 4: estequiometria crecimiento bacteriano

Para calcular el valor de de un determinado compuesto se toman los grados de

reducción 4 para el C; 1 para el H; -2 para el O y -3 para el N. En el caso del CO2, H2O y

NH3 no se tienen e- disponibles (estados de referencia), luego CO2 = H2O = NH3 = 0. Se

considera además que el estado de oxidación predominante del N en la biomasa es -3. En

términos generales para un compuesto de fórmula CHaObNc, su grado de reducción vendrá

dado por:

= 4 + a - 2b - 3c (1)

Si tenemos un compuesto cuya fórmula es Ch Hi Oj Nk, debemos llevarlo a la forma

CH O Ni

h

j

h

k

h

Si tomamos como ejemplo a nuestro m.o. promedio su x (donde el subíndice x indica

biomasa) será:

x = 4,19 e disp.

C - mol

-

Este valor, junto a Pcmol = 25,8 son dos de las “regularidades” a las que nos

habíamos referido con anterioridad. Estos valores pueden ser empleados en balances de

materia y energía en aquellos casos en que se desconoce la composición de la biomasa sin

temor de incurrir en errores groseros de cálculo. Otras regularidades observadas en el

cultivo de m.o. es que el calor de reacción por mol de e- transferidos al O2 es relativamente

constante para la oxidación de una amplia variedad de moléculas orgánicas y corresponde a

27 Kcal/mol e- disponibles transferidos al O2.

Estamos ahora en condiciones de plantear una serie de balances de materia y

energía, para lo cual trataremos al cultivo de un m.o. como si fuera una reacción química

simple.

2

r = velocidad de reaccion

2 2 21 + + +y + + ( )X P COCmol S a mol FN b O y X y prod CO w H O q calor

Donde X significa “biomasa”, cualquiera sea su naturaleza.

Debemos hacer notar que los coeficientes estequiométricos están referidos a 1 C-

mol de fuente de C y energía. Así pues:

Page 5: estequiometria crecimiento bacteriano

yC mol de X

C mol de fte de C y Ex

-

- .

lo mismo para yp e yCO2.

El balance de carbono para esta reacción de formación de biomasa y producto será:

y y yx p CO2 + + 1 (2)

De igual forma podemos establecer un balance del grado de reducción:

s + (-4)b = yx . x + yp . p (3)

Reordenando y dividiendo por s obtenemos

41

b . .

s

x x

s

p p

s

y y (4)

o lo que es lo mismo

+ + = 1 (5)

donde = 4b

s (fracción de e- disponibles de la FCE transferidos al O2)

= yx x

s

.

(fracción de e- disp. de la FCE transferidos a la biomasa)

= yp p

s

.

(fracción de e- disp. de la FCE transferidos al producto)

Estos dos balances obedecen directamente al principio de conservación de la masa y

la energía, en el primero de ellos, no puede haber entre los productos más carbono del que

un c-mol de sustrato puede aportar y el en el caso del segundo, los electrones disponibles

del sustrato deben ir obligadamente a los distintos productos.

Si asumimos, como ya se mencionó, que el calor de reacción por mol de e-

disponibles transferidos al oxígeno es constante para un importante número de moléculas

orgánicas, el primer término de la ecuación (4) nos da la fracción de energía del sustrato que

Page 6: estequiometria crecimiento bacteriano

evoluciona como calor. Si llamamos qo a esa constante con qo = 27 Kcal/mol e- disponibles

transferidos al O2, el calor generado en la ecuación l’ vendrá dado por:

q = 4 qo b kcal/C-mol de sustrato (6)

Si conocemos la velocidad de consumo de O2 de nuestro cultivo podemos calcular la

velocidad de producción de calor y por lo tanto los requerimientos de H2O de enfriamiento

para mantener constante la temperatura de nuestro biorreactor.

El concepto de e- disponibles nos brinda un método simple de cálculo para chequear

los resultados obtenidos experimentalmente en lo que se da en llamar “análisis de

consistencia interna”. Empleando las ecuaciones (2) y (4) o (5) con datos obtenidos en el

laboratorio, podemos estimar parámetros no medidos y tener idea de cuán confiables fueron

nuestras determinaciones. Medidas realizadas en el laboratorio deben encontrarse dentro de

los intervalos:

0,94 yx + yp + yCO2 1,06

0,93 + + 1,07

Valores inferiores o superiores a estos límites de aceptabilidad determinados

estadísticamente ponen en evidencia errores en las determinaciones experimentales.

En el trabajo habitual de laboratorio la cuantificación de la biomasa producida se

efectúa gravimétricamente, es decir, se determina el incremento en biomasa expresado en

g/l (x) correspondiente a la utilización de una determinada cantidad de sustrato (s)

(igualmente expresada en g/l) con lo cual definimos nuestro rendimiento en base a sustrato

como Yx

sx

al que tomamos como “rendimiento global” en el que sólo se tienen en

cuenta los valores finales e iniciales de biomasa y sustrato, más rigurosamente Yx debiera

ser expresado por el límite x / s con s 0, esto es: Ydx

dsx (observar que el signo

negativo es introducido porque x y s varían en sentido contrario).

Estamos ahora en condiciones de calcular los valores de yx, yp, y yCO2 conociendo los

respectivos rendimientos globales y los valores de P cmol de X, S, P y CO2 tal cual vemos a

Page 7: estequiometria crecimiento bacteriano

continuación: 2 2x x p CO CO

2

Y ; ; Y

P

P cmol S P cmol S P cmol Sy y Y y

P cmol X P cmol P PM CO (7)

Resulta de gran interés conocer los destinos que toma la fuente de C y energía durante el

crecimiento microbiano y la fracción de la misma empleada por el m.o. para obtener la

energía necesaria para llevar adelante sus funciones metabólicas.

Por balance de sustrato:

s = sx + sp + sE (8)

donde S = Sustrato total consumido

Sx = Fracción de sustrato utilizado en la formación de biomasa

Sp = Fracción de sustrato utilizado en la formación de producto

SE = Fracción de sustrato utilizado para obtener energía

por consiguiente:

SE = S - Sx - Sp

SE = S + X

.. P.

P cmol S P cmol S

P cmol X P cmol P

fE = 1 - yx - yp = yCO2 fE : fracc. de FCE destinada a la obtención de E. (11)

Experimentalmente lo que se hace es determinar la producción global de CO2 y

conociendo la masa de CO2 y sustrato consumido y calcular SE por estequiometría. Este

método presenta dos inconvenientes: en primer lugar existen reacciones enzimáticas que

incorporan O2 a determinados componentes celulares (O2 que no es empleado para obtener

energía) no obstante este consumo puede ser despreciado frente al global para oxidar la fte.

de C y E; y el más importante es que debemos suponer que x s, caso contrario se

introduce un grosero error en el cálculo.

Page 8: estequiometria crecimiento bacteriano

CINÉTICA

DEL CRECIMIENTO

Page 9: estequiometria crecimiento bacteriano

CINÉTICA DEL CRECIMIENTO

Hasta aquí hemos visto las relaciones estequiométricas que existen en los cultivos

microbianos, y cómo a través de ellas es posible obtener información del destino que tiene la

fuente de carbono y energía. Las ecuaciones (2) y (4), resumen toda la información que es

posible obtener mediante los balances de materia y energía, pero nada dicen acerca de la

velocidad, r, con que transcurre el proceso; por lo que ahora centraremos la atención en

este aspecto.

Convendrá antes definir la forma en que expresaremos las distintas velocidades. De

este modo llamaremos a:

rx = dx

dt; velocidad de crecimiento microbiano (o, brevemente, velocidad de crecimiento) y

las unidades serán: Cmol biomasa

L . h

del mismo modo:

rs = ds Cmol FCE

dt L . h

= velocidad de consumo de sustrato

rp = dp Cmol de producto

dt L . h

= velocidad de formación de producto.

r 2

2

O 2O

d mol O

dt L . h

= velocidad de consumo de O2

r 2

2

CO 2CO

d mol CO

dt L . h

= velocidad de producción de CO2

Estas velocidades también pueden ser expresadas en g

L . h; y en este caso, para

diferenciarlo del anterior, las denotaremos con R. Por ej.:

Page 10: estequiometria crecimiento bacteriano

Rx = dx gramos de biomasa

; dt L . h

Análogamente tendremos: Rs, R O2, etc.

La conversión entre rx y Rx estará dada por:

Rx = 25,8 . rx

Análogamente:

Rs = g de S

c mol de S . rs

R O O2 2 . r 32. , etc.

Velocidades específicas:

Corresponden alas anteriormente definidas pero referidas a la unidad de biomasa, es

decir:

r

x

x = ; velocidad específica de crecimiento.

r

x

s = qs ; velocidad específica de consumo de sustrato (s puede ser la fuente de carbono y

energía o cualquier otro componente del medio)

r

x q

O

O

2

2 ; velocidad específica de consumo de O2.

r

x q

p

p ; velocidad específica de formación de producto.

etc.

Las velocidades específicas suelen brindar información acerca de cuál es la actividad

metabólica del microorganismo (o de la biomasa) durante el cultivo, ya que el estar referidos

Page 11: estequiometria crecimiento bacteriano

a la unidad de biomasa cualquier modificación en el valor de , qs, etc. estará indicando que

"algo" está ocurriendo en el metabolismo del microorganismo en cuestión.

De hecho es frecuente que las velocidades específicas varíen durante el cultivo, y es

muy común que por ej. el valor de al principio del cultivo difiera del que se encuentra en

estadios posteriores. Lo mismo vale para qs, q O2, etc.

Page 12: estequiometria crecimiento bacteriano

SISTEMAS DE CULTIVO

BATCH

CONTINUO

Y BATCH ALIMENTADO

Page 13: estequiometria crecimiento bacteriano

CULTIVO EN BATCH

La evolución del cultivo en el tiempo, sigue una curva típica la cual recibe el nombre

de “curva de crecimiento en batch”. Los sucesos que tienen lugar durante la misma pueden

separarse en cuatro fases perfectamente diferenciables. En primer lugar existe una fase

donde prácticamente no hay división celular pero sí aumento de la masa individual de los

microorganismos (fase “lag” o fase de retardo). Le sigue una etapa donde el crecimiento

ocurre a velocidad específica () máxima y constante = m (fase exponencial). Al final de

esta fase se alcanza la máxima concentración microbiana. Posteriormente hay un rápido

período de desaceleración donde 0 y se entra en la fase estacionaria la cual es

causada por agotamiento de algún nutriente (el sustrato limitante) o bien por acumulación de

inhibidores. Durante esta fase la concentración microbiana (o de biomasa) permanece

constante. Finalmente se llega a una última etapa donde la concentración de biomasa

disminuye por autolisis o como consecuencia del metabolismo endógeno (fase de

decaimiento).

La duración de cada una de estas fases es función del microorganismo en estudio y

de la composición del medio de cultivo. En particular la fase lag depende además de la fase

de crecimiento en que se encuentran las células en el momento de ser sembradas y de la

composición del medio de cultivo en que fueron crecidas. Si éste es igual a la composición

del medio en que se van a sembrar y las células están en fase exponencial, la duración de la

fase lag, en general se acorta y puede llegar a desaparecer, lo cual es deseable ya que

constituye tiempo perdido.

La descripción matemática (modelado) de las cuatro fases descriptas es sumamente

compleja y escapa a los fines de esta guía, por lo que sólo veremos una más simple que

sólo contempla la fase exponencial y la estacionaria.

De la definición de obtenemos

rx = . x (12)

donde x = concentración de biomasa. Hemos visto que varía durante el cultivo, siendo un

valor constante y máximo en la fase exponencial (m) y nulo en la estacionaria. Monod ha

propuesto una relación muy simple entre el valor de y la concentración de sustrato

limitante, S, entendiéndose por éste al componente del medio de cultivo que esté en menor

Page 14: estequiometria crecimiento bacteriano

proporción respecto de las necesidades del microorganismo. Por tanto S puede ser la fuente

de N, de C, algún aminoácido, etc. La ecuación es:

= m S

K SS (13)

A KS se la conoce como Constante de Saturación, y da una idea de la afinidad que

tiene el microorganismo por el sustrato en cuestión. A menor KS mayor afinidad.

Normalmente KS tiene valores muy pequeños (10-2 - 10-3 g/l) por lo que concentraciones

relativamente pequeñas de S son suficientes para hacer que:

= m (14)

Reemplazando la ec. (13) en (12) queda:

rx = m S

K SS . x (15)

Al principio del cultivo todos los nutrientes estarán en exceso, y en particular el sustrato

limitante también, por lo que la ex. (15) se reduce a (fase exponencial)

rx = m x ; o bien: dx

dt = m . x (16)

La ec. (16) es fácilmente integrable y si hacemos a t = 0; x = xo (concentración inicial de

microorganismos) queda:

ln x = ln xo + m t (17)

o bien

x = xo em t (18)

Por tanto en esta fase la concentración de biomasa aumenta exponencialmente, y

también lo hace rx ya que reemplazando: rx = m xo e m t

Page 15: estequiometria crecimiento bacteriano

A partir de la ec. (17) se puede calcular el tiempo de generación del microorganismo

(período de tiempo en que la biomasa se duplica) haciendo x = 2 xo y nos queda tg = ln 2

m

A medida que transcurre el tiempo de cultivo, S va disminuyendo (y por tanto rx)

hasta que finalmente S = 0 (fase estacionaria), y

rx = 0 (19)

lo que implica:

x = cte = xf (20)

xf = concentración final de biomasa.

Si graficamos ln x vs. t se obtiene un gráfico como el de la fig.

µ max

tiempo

Ln X

Ln Xf

Ln X0

t L

De la fase exponencial se calcula m mediante la ecuación (17). La duración de la

fase lag, tL, se puede calcular del gráfico, o bien haciendo una corrección en la ec. (17).

Page 16: estequiometria crecimiento bacteriano

ln x = ln xo + m (t - tL)

Si tomamos un valor cualquiera de x que corresponda a la fase exponencial, xe,

podemos calcular tL.

tL = te - l

ln x

xm

e

o

Consumo de Sustrato

Hemos visto que el rendimiento se definía como yx = -dx

ds

dx / dt

ds / dt

r

r q

x

s s

por tanto

rs = r

y

x

x

(22)

reemplazando en la ec. (22) la ec. (15) queda:

rs = m

x Sy

S

k S . x.

(23)

A medida que S tiende a cero, rs también.

En fase exponencial será S ks y además x estará dado por la ec. (18), por tanto:

ds

dt

x e

y

m o

x

mt

(24)

Si a t = 0 es S = So implica:

S = So - x

yeo

x

mt1 (25)

La ec. (25) da la variación de S en función de t durante la fase exponencial.

Page 17: estequiometria crecimiento bacteriano

Si se conoce de antemano el rendimiento yx (o Yx) y las concentraciones iniciales de

sustrato y biomasa, es fácil estimar el valor de xf ya que:

x = -Yx . S (26)

x - xo = Yx (S - So) (27)

Si S es el sustrato limitante, se tendrá que para x = xf será Sf = 0, por tanto:

xf = xo + Yx. So (28)

La ec. (27) permite calcular S para un x dado (o viceversa) en cualquier parte de la

curva de crecimiento, siempre y cuando Yx (o yx) se mantenga constante. Alternativamente

la ec. (27) puede emplearse para verificar si tal supuesto se cumple ya que la gráfica de (x -

xo) en función de (So - S) deberá ajustarse a una recta. De todos modos siempre es posible

calcular un rendimiento global, independientemente de las variaciones que pueda tener

durante el cultivo, empleando sólo valores iniciales y finales:

Yx = -

x x

S S

f o

f o

(29)

Consumo de O2

Hemos visto que realizando un balance entre la composición de los gases que

ingresan y salen del biorreactor se puede calcular r O2. Con este valor y el de la

concentración de biomasa, x, se puede calcular a distintos tiempos el valor de qr

xO

O

2

2 ,

con lo cual tendremos una idea de lo que ocurre con la capacidad respiratoria de los

microorganismos durante el cultivo. Al respecto es útil estudiar cuáles son las posibles

causas de variación de qO2.

1) Sea yx/o = x

O r dt2o

t

(30) yx/o = rendimiento de biomasa base a O2 consumido

Page 18: estequiometria crecimiento bacteriano

Al igual que en la ec. (21) podemos hacer:

yx/o = r

r q

x

O O2 2

(31)

de donde reemplazando por la ec. (13)

qy

S

k SO

m

x/o s2

(32)

En fase exponencial es S ks y

qy

qOm

x/o

O2 2

m (33)

es decir que en esta fase qO2 se mantiene constante y con un valor máximo. A medida que

S disminuye, qO2 también hasta que virtualmente se hace nulo en la fase estacionaria. Esto

es particularmente válido cuando el sustrato limitante es la fuente de carbono y energía, ya

que al agotarse ésta, los microorganismos se quedan sin “combustible” y por tanto el

consumo de O2 cesa. No ocurre lo mismo cuando el sustrato limitante es por ej. la fuente de

nitrógeno, pues si bien cuando ésta se agote se detendrá el crecimiento, nada impide que

los microorganismos sigan respirando ya que cuentan con “combustible” en exceso.

2) Otra causa que afecta el valor de qO2 es la concentración de O2 disuelto. Por analogía

con la ecuación de Monod, se ha propuesto la ecuación:

q qC

k CO O

o2 2

m (34)

donde C = concentración de Os disuelto.

Page 19: estequiometria crecimiento bacteriano

Al igual que ks, se encuentra que ko es pequeño, y en general valores de C del orden

de 0,8 mg/l (10% de saturación) son normalmente suficientes para que qO2 = qO2

m. A la

concentración de O2 disuelto por encima de la cual el valor de qO2 se mantiene constante,

se la conoce como concentración crítica (Cc).

Page 20: estequiometria crecimiento bacteriano

PARTE EXPERIMENTAL

Microorganismo: Saccharomyces cerevisiae.

Medio de cultivo:

Glucosa ..............................................................................10,00 g/l

Urea ................................................................................... 1,50 g/l

K2HPO4 ............................................................................. 1,00 g/l

MgSO4.7H2O ..................................................................... 0,60 g/l

CaCl2.2H2O ........................................................................ 0,10 g/l

ácido cítrico ........................................................................ 0,45 g/l

H3BO3 ................................................................................. 0,10 mg/l

CuSO4 ................................................................................. 0,10 mg/l

KI ........................................................................................ 0,10 mg/l

FeCl3 ................................................................................... 0,10 mg/l

Na2MoO4 ............................................................................. 0,10 mg/l

inositol ................................................................................. 6,00 g/l

biotina .................................................................................. 6,00 g/l

acido fólico .......................................................................... 6,00 g/l

pantotenato de calcio ............................................................ 0,80 mg/l

tiamina .................................................................................. 0,80 mg/l

ácido nicotínico ..................................................................... 0,80 mg/l

ácido p-amino benzoico ......................................................... 0,40 mg/l

riboflavina ............................................................................. 0,40 mg/l

piridoxina .............................................................................. 1,60 mg/l

antiespumante ....................................................................... 3 gotas

pH 5,50 (ajustado con HCl o H2SO4 1N)

Volumen de cultivo: 4,0 l

Page 21: estequiometria crecimiento bacteriano

Los fosfatos se esterilizan por calor húmedo (autoclave), fraccionados en un

erlenmeyer con salida lateral, disolviendo la cantidad necesaria para preparar 3,7 l de medio

de cultivo, en 500 ml de H2O y se ajusta el pH en 5,50. El resto de los componentes

(excepto la urea y la solución de vitaminas) se disuelven en 3,2 l. de H2O, los

microelementos se agregan en solución concentrada 1000 veces a razón de 1 ml/l, se ajusta

el pH en 5,50 y se esterilizan, en autoclave, en el biorreactor.

El tiempo de esterilización será en ambos casos de 15 minutos. La urea se esteriliza

por filtración. Se prepara una solución madre con 500 g/l de urea y se esteriliza con

membrana absoluta. Esta solución se adiciona en proporción de 6,0- ml por litro de medio de

cultivo.

Las vitaminas se preparan en solución concentrada 1000 veces, se esterilizan por

filtración y se adicionan a razon de 1 ml/l de medio.

Inóculo: Tres erlenmeyers de 1000 ml conteniendo 100 ml de medio de cultivo diluido 2,5

veces se esterilizan por calor durante 10 min. En este caso para mayor simplicidad se

esterilizará el medio de cultivo completo (excepto la urea y las vitaminas que se adicionarán

en proporción de 0,5 ml y de 0,1 ml de las soluciones madres). Los erlenmeyers serán

sembrados el día anterior a la realización de trabajo práctico con células de levaduras

provenientes de un cultivo en agar inclinado. Las mismas se resuspenden fácilmente en

agua. La temperatura de incubación será en todos los casos de 30C.

Procedimiento:

1.- Termostatizar el biorreactor a 30C

2.- Conectar el sistema de aireación al filtro estéril del biorreactor.

3.- Conectar el sistema de agitación del biorreactor. Fijar la agitación en 600 rpm.

4.- Adicionar en forma estéril los fosfatos, la urea y las vitaminas al resto del medio de

cultivo contenido en el biorreactor.

5.- Calibrar el electrodo para medir O2 disuelto haciendo pasar por el biorreactor, primero

una corriente de nitrógeno y ajustando la lectura a 0% de saturación (ajuste del cero) y

luego aire a un caudal de 2 l/min., ajustando con la perilla de calibración a 100% de

saturación. En ambos casos, antes de realizar los ajustes, se debe dejar transcurrir 10 a

15 minutos.

Los gases que ingresen al biorreactor deberán pasar por el filtro estéril.

Page 22: estequiometria crecimiento bacteriano

6.- Calibrar los instrumentos de medida para efectuar el análisis de los gases a la salida del

biorreactor (analizador de O2 y de CO2).

7.- Trasvasar, en forma estéril, los tres erlenmeyers de inóculo a otro con salida lateral.

8.- Sembrar el biorreactor y aguardar 2 a 3 minutos

9.- Tomar 15 mL de muestra (descartar antes 2 o 3 mL) y tomar el tiempo CERO. Anotar en

cada caso el volumen de muestra y el de descarte.

10.-Medir el porcentaje de O2 y CO2 en lo gases de salida del biorreactor

Análisis de las muestras

11.- 10 mL se centrifugan 10 minutos. Guardar el sobrenadante para determinar

concentración de FCE y producto. Lavar (una vez) con agua destilada el pellet de

levaduras, centrifugar, resuspender las células con más agua destilada y hacer peso

seco a 105°C.

12.- Al resto de la muestra medirle:

12.1.- pH

12.2.- DO a 620. La muestra deberá diluirse de forma tal de obtener lecturas entre 0,1 y

0,6.

12.3.- Control de contaminación por observación microscópica.

13.- Repetir los pasos 9 a 12 cada hora.

14.- Finalizado el cultivo, medir el volumen remanente. Con este dato y los de volumen de

muestra y lavado calcular el volumen de cultivo a la hora CERO, 1; 2, 3; etc. El volumen

obtenido en cada caso será el utilizado para el cálculo de rO2 y rCO2

a los

correspondientes tiempos.

Resultados

Los datos se volcarán en una tabla del siguiente formato y luego se harán las graficas

correspondientes en función del tiempo

Hora T pH DO620 X S Vextr Vrem rO2 rCO2

C.R.

Page 23: estequiometria crecimiento bacteriano

I.- Graficar ln x vs. t. y DO vs. t. Calcular µmax .

II.-1 Verificar si YX se mantuvo constante durante el cultivo.

II-2 Calcular YX e yX globales.

II-3 Calcular el consumo global de O2 y el CO2 total producido. Con estos valores calcular b

e yCO2 respectivamente.

III- Verificar si se cumplen los balances de carbono y de grado de reducción.

+ + = 1

yx + yCO2 = 1

Page 24: estequiometria crecimiento bacteriano

CULTIVO CONTINUO

De los tres métodos usuales para el cultivo de microorganismos, batch, batch alimentado y

continuo, es este último el que ofrece mayores posibilidades de control. Por sus

características especiales permite controlar el proceso a un valor de velocidad específica de

crecimiento () prefijado de manera muy simple. Este punto es de suma importancia ya que

el comportamiento de la mayoría de los microorganismos se ve afectado por el valor de al

que están creciendo.

Mediante el cultivo continuo es posible estudiar el efecto de variables como PH,

temperatura, concentración de nutrientes, etc., a valores constantes el valor de , o bien,

fijadas las anteriores, analizar el efecto de sobre la estequiometría del crecimiento. De

este modo es posible separar los distintos efectos y obtener información valiosa para la

mejora del proceso.

Para poner en marcha un cultivo continuo, se realiza previamente un cultivo batch y

en un momento dado, normalmente antes que se agote el substrato limitante, se comienza a

alimentar con medio de cultivo fresco a un caudal F (Fig. 1).

Fig. 1

El volumen del cultivo se mantiene constante. El líquido que sale del biorreactor, a un

caudal F tendrá células, y la concentración de nutrientes será menor que en el caudal de

entrada debido a que en parte fueron consumidos por los microorganismos. Eventualmente

se encontrará también algún producto(s) proveniente de la actividad metabólica de los

microorganismos.

Una de las variables de operación fundamental en este tipo de cultivos es la

velocidad de dilución, D, la cuál se define como la relación entre el caudal de alimentación,

F, y el volumen de cultivo, V.

F, SR

X S

P

F , S , X , P

Page 25: estequiometria crecimiento bacteriano

V

FD (1)

Teniendo en cuenta las unidades usuales de F (L. h-1) y de V (L), las de D serán de h-1. El

valor de D corresponde a las veces que se renueva el volumen del biorreactor por unidad de

tiempo, así un valor de D= 0.25 h-1 indica que en una hora se renovó un 25 % del volumen

de cultivo, o bien que al cabo de 16 h se habrá renovado cuatro veces el volumen de cultivo.

Podría pensarse que luego de la renovación reiterada del volumen de cultivo ya no quedan

microorganismos dentro del biorreactor, pero no es así; debe tenerse en cuenta que estos

se están multiplicando activamente lo cual compensa las “perdidas” debidas a los

microorganismos que son arrastrados fuera del biorreactor por el caudal de salida. Bajo

ciertas condiciones ambos procesos se compensan de modo tal que la concentración de

microorganismos se mantiene constante en el tiempo, es decir que se habrá alcanzado un

estado estacionario. En estas condiciones también se mantendrán constantes en el tiempo

las concentraciones de nutrientes, en particular la del substrato limitante del crecimiento, y la

de producto(s).

Balances de materia:

De acuerdo al esquema de la Fig. 1 podemos plantear los siguientes balances de

materia para la concentración de microorganismos ( X ) , de substrato ( S ) y de producto

(P).

XFx

rVdt

dXV ... ( 2 )

srVSF

RSF

dt

dSV .~ . . . ( 3 )

PFP

rVdt

dPV ... ( 4 )

Cuando se alcanza el estado estacionario, X, S y P ya no varían con el tiempo, lo

que equivale a igualar a cero las Ecs. (2), (3) y (4), de donde resulta:

Page 26: estequiometria crecimiento bacteriano

XDX

r ~ . ( 5 )

)~( . SR

SDSr ( 6 )

PDP

r ~ . ( 7 )

donde P~ ,S~ ,X~ representan las respectivas concentraciones en estado estacionario. La Ec.

(6) es válida para cualquier nutriente del medio de cultivo, sea el substrato limitante o no, ya

que la misma surge de un balance de materia en el que no se ha hecho ninguna

consideración con relación a la naturaleza del substrato considerado.

Lo primero que debe destacarse en este tipo de cultivo es que permite determinar

experimentalmente y de modo muy simple las velocidades de crecimiento, consumo de

substrato y de formación de producto, tal como se desprende de las Eqs. (5), (6) y (7). Del

mismo modo permite calcular los rendimientos. Por ej. Si suponemos que S representa a la

fuente de carbono y energía, el rendimiento celular se calcula fácilmente:

)~(

~

/ SR

S

X

sxY

( 8 )

De modo similar puede calcularse YP/S , o bien las velocidades específicas. Por ej. Para qs

será:

x

SSD

x

rq RS

S ~

)~.( ( 9 )

mientras que para la velocidad específica de crecimiento será:

DX

XD

X

rX ~

~. ( 10 )

La Ec. (10) es de suma importancia pues significa que en estado estacionario es = D, y

como D puede ser variado a voluntad por el operador (variable de operación) resulta que el

Page 27: estequiometria crecimiento bacteriano

cultivo continuo permite “ imponerle” externamente a los microorganismos el valor de al

que deben crecer.

El estado estacionario

En el estado estacionario = D. ¿Cuanto tiempo demora el sistema en alcanzar este

estado?. En rigor, la respuesta surge de la misma definición de estado estacionario, es decir

cuando todas las variables del cultivo (X, S, P, concentración de O2 disuelto y composición

de la biomasa) no varían en el tiempo. El criterio práctico que se suele seguir es que, una

vez fijado el valor de D, debe esperarse al menos 4.tR, donde tR se conoce como tiempo de

retención medio y puede demostrarse que :

tR = 1 / D

Por tanto si se fija un valor de D= 0.15 h-1, habrá que esperar 26,7 hs. para suponer que se

ha alcanzado el estado estacionario, lo que deberá ser corroborado experimentalmente

midiendo las concentraciones de X, S, P hasta observar que no varían con el tiempo.

Usualmente con 4.tR es suficiente.

Page 28: estequiometria crecimiento bacteriano

PARTE EXPERIMENTAL

Microorganismo y condiciones de cultivo

Los géneros Rhizobium, Shinorhizobium y Bradyrhizobium en relación simbiótica con

plantas leguminosas infectan las raíces de las mismas y estimulan la producción de nódulos,

dentro de los cuales las bacterias fijan Nitrógeno (bacterias diazótrofas) y la planta responde

entregando a la bacteria nutrientes orgánicos que produce durante la fotosíntesis. La cepa

2011 de Sinorhizobium meliloti, que es capáz de colonizar y nodular plantas de alfalfa es la

que utilizaremos para realizar el experimento de cultivo continuo bajo dos condiciones de

limitación: - limitado en Carbono, donde esperamos obtener los mayores rendimientos en

biomasa y – limitado en Nitrógeno, donde esperamos obtener rendimientos menores ya que

estamos frente a un exceso de fuente de Carbono y hay formación de producto extracelular,

el exopolisacárido.

Las condiciones bajo las cuales se realizarán los cultivos serán:

T=30C pH (controlado automáticamente)=6.8 D (velocidad de dilución)= 0.10 h-1

La velocidad de agitación se mantendrá a un valor tal que asegure alrededor de 25% de

oxígeno disuelto en el cultivo (esta condición es sólo para asegurarnos que el cultivo no se

limite en Oxígeno). La concentración de O2 disuelto se medirá continuamente empleando un

electrodo polarográfico Ingold (Wilmington, MA, USA).

Los pasos a seguir son:

Preparar los reactores. Chequear todo el sistema de mangueras para agregado de medio

de cultivo, de álcali, de antiespumante, entrada y salida de gases, toma de muestra,

inoculación, etc..

Preparar el medio de cultivo y esterilizarlo dentro del biorreactor (30 minutos, 121 oC)

junto con los electrodos de pH y oxígeno disuelto. Conjuntamente esterilizar los reservorios

con medio fresco que se emplearán para alimentar el reactor.

Page 29: estequiometria crecimiento bacteriano

Realizar todas las conexiones necesarias (eléctricas y de tubería), llevar los reactores a

temperatura y calibrar el electrodo de oxígeno disuelto.

Inocular el reactor con aproximadamente 50 ml de un cultivo de Sinorhizobium meliloti

crecido durante 12-18 h en frascos agitados en agitador rotatorio.

Calibrar el caudal de las bombas peristálticas a un valor tal que satisfaga el valor de D

preestablecido. Nota: los cultivos deben conducirse al mismo valor de D para su posterior

comparación.

Los cultivos serán chequeados periódicamente (una o dos veces por día). Se

determinará: el contenido de O2 y CO2 en los gases de salida del reactor, que el valor de pH

y de O2 disuelto sean los requeridos, los caudales de aire y medio fresco que están

ingresando al reactor y el consumo de álcali. Se tomarán muestras (alrededor de 30 ml) a

las que se les determinará: densidad óptica (650 nm), peso seco por duplicado y se

conservarán congeladas muestras de los sobrenadantes de los cultivos para luego

determinar en los mismos la concentración residual de fuente de carbono y de nitrógeno.

También se deberán tomar muestras de los reservorios para determinar la concentración

real de glucosa utilizada en la alimentación de los reactores.

Estas determinaciones se realizarán hasta obtener condiciones de estado estacionario en

los parámetros medidos y calculados.

Durante las dos semanas de curso se llevarán a cabo cultivos bajo 2 condiciones de

limitación diferentes:

1er. semana: Cultivo limitado en C (glucosa)

2da. semana: Cultivo limitado en N (amonio)

Medios de cultivo

El medio mínimo definido que se utilizará para realizar el C. C. será el medio de Evans,

que limitado en C tiene la siguiente composición:

Page 30: estequiometria crecimiento bacteriano

glucosa 5.0 g

KCl 0.3725 g

NaH2PO4.2H2O 0.78 g

(NH4)Cl 2.675 g

Na2SO4 0.142 g

ácido cítrico 0.21 g

MgCl2.2H2O 0.127 g

Oligoelementos 5 ml

H2O csp 1000 ml

El medio que se empleará para la condición de limitación por Nitrógeno tiene los mimos

nutrientes pero la concentración de glucosa se triplicó (15 g.l-1) y la de (NH4)Cl se bajó a 0.8

g.l-1 .

Page 31: estequiometria crecimiento bacteriano

CULTIVO DISCONTINUO ALIMENTADO (BATCH ALIMENTADO)

Otro modo de operar un biorreactor es empleando la técnica de batch alimentado

(BA) o fed batch. Esta técnica se define como un cultivo en batch donde se alimenta

continuamente medio nutritivo fresco o alguno de sus componentes. Si el nutriente que se

alimenta es el limitante del crecimiento, esta técnica permite controlar la velocidad de

crecimiento () del microorganismo.

El BA es particularmente útil en procesos en los que el crecimiento celular y/o la

formación de producto son sensibles a la concentración del sustrato limitante, es decir

cuando el rendimiento celular o la poductividad de la biomasa o del metabolito buscado se

ven afectados. Así, este método se emplea cuando se quieren evitar fenómenos de

inhibición por sustrato y se requiere alcanzar una alta concentración de biomasa.

ESQUEMA

RESERVORIO BOMBA

BIORREACTOR

F(t)

SR(t)

VR = Vf - V0

V0, X0, S0

Vf, Xf

Donde F(t): caudal de alimentación

Sr(t):concentración de sustrato de la alimentación

Vf: volumen final de trabajo

Vo: volumen al inicio de la alimentación

Xo: concentración de biomasa al inicio de la alimentación

So: concentración de sustrato limitante al inicio de la alimentación

Page 32: estequiometria crecimiento bacteriano

El cultivo BA se inicia a partir de un cultivo en batch, por lo que Vo, Xo y So son las

condiciones finales de dicho batch.

Es posible elegir distintas condiciones de alimentación, ya sea mediante el empleo

de caudales variables (F = F(t)), o bien mediante la variación de la concentración de sustrato

limitante (Sr=Sr(t)). En el caso del Trabajo Práctico se utilizará el sistema más simple, es

decir F=cte y Sr=cte.

PRODUCCION DE BIOMASA: ECUACIONES Y DISEÑO

El cultivo puede describirse matemáticamente. La resolución de las ecuaciones así

obtenidas permitirá calcular la evolución de la biomasa durante el cultivo, la velocidad

específica de crecimiento, y la productividad. Asimismo se podrán determinar parámetros de

diseño, tales como F y Sr.

Para estudiar la evolución de X durante el cultivo se deben plantear las ecuaciones

de balance de materia.

Sustrato

acumulación = suministro - consumo

(1) d(S.V)

d t F S

x V

YR

x/s

En este caso el volumen no es constante, como ocurre en cultivos en batch o en

continuo. Por lo tanto la expresión (1) quedará:

(2) VdS

dtS

dV

dtF.S

x V

YR

x/s

La condición final del batch es S = 0, pues, como se intenta controlar µ, S no puede

ser saturante (recordar a Monod).

Si S~ 0, dS/dt = 0, con lo que (2) se transforma en

(3) F . SR - x V

Yx/s

0

Page 33: estequiometria crecimiento bacteriano

de aquí, y recordando que rx = µ . X

(4) F . SR = r V

Y

x

x/s

esta ecuación indica que la velocidad de producción de biomasa se acomoda a la velocidad

de suministro de sustrato, es decir que rx puede controlarse “externamente”, modificando F

y/o Sr.

La ecuación (3) es en realidad un límite superior ya que dados µ, X y V, cualquier par

de valores F, Sr que satisfagan la condición

(4) F . SR x V

Yx/s

harán que la velocidad de crecimiento esté limitada por la velocidad de alimentación. Esta

ecuación (3) será muy útil en el momento de diseñar la alimentación.

Biomasa

La velocidad de acumulación de biomasa será:

(5) d(xV)

d t x V o bien

d (xV)

d t r Vx

o, reordenando,

(6) rx = 1

V

d(xV)

d t

Si se reemplaza en (4) se obtiene

(7) F . SR = 1

Y

d (x V)

d tx/s

que indica que la velocidad de acumulación de biomasa depende de la velocidad de

alimentación de sustrato.

Integrando (7), se llega a

(8) X V = xo Vo + Yx/s F SR t

Page 34: estequiometria crecimiento bacteriano

Uno de los objetivos planteados es conocer cómo varía la concentración de biomasa

con el tiempo. En cultivo en batch, al ser V = cte, X.V es proporcional a X. En BA V no es

constante, sino que varía con el tiempo (F = dV/dt). Integrando se tiene

(9) V = Vo + F t

reemplazando en (8) y despejando X, se tendrá

(10) X = x V

Ft + V

Y F S t

Ft + V

o o

o

x/s R

o

expresión que describe la variación de X con t a lo largo del cultivo alimentado. Puede darse

el caso en que el aumento de V sea tal que haya un efecto de dilución que provoque la

disminución de la concentración de biomasa. Así, puede ocurrir que la concentración final

alcanzada sea menor que la inicial, pero no así la cantidad total X.V.

DISEÑO

Se desea obtener una concentración final de biomasa Xf, con un volumen final Vf. El

volumen total adicionado durante el BA será:

(11) Vf - Vo = F.t

donde tf es el tiempo total de alimentación. Cuando t = tf, la ecuación (8) se transforma en

(12) XfVf = XoVo + Yx s SR F.tf

Reemplazando (11) en (12), y despejando Sr queda

(13) SR = X V X V

Y V V

f f o o

x s f o

( )

Page 35: estequiometria crecimiento bacteriano

La ecuación (13) permite calcular la concentración de sustrato limitante en el

reservorio. Resta calcular F, cuyo valor debe ser tal que satisfaga la ecuación (4). En

particular, para t = 0 (inicio de la alimentación )será:

(14) F SRo o o

x s

X V

Y``

El valor de tf se calcula a partir de la ecuación (11).

NOTA: o puede ser igual a max si la alimentación se inicia el final de la fase exponencial del

batch.

Debe destacarse que si F.Sr fuera mayor que la velocidad de consumo de sustrato,

habría una acumulación de sustrato en el medio, y el crecimiento no sería limitado.

Es interesante conocer la variación de durante el batch alimentado. Recordando el

balance de materia para la biomasa

d xV

dt

( ) xV =

1

xV

d xV

dt

( )

d xV

dtY FSx s R

( )

Por lo tanto se obtiene

(15) = Y FSxV

x s R

1

Si se reemplaza (8) en (15), será

(16) = FS Y

X V FS Y t

R x s

o o R x s

Page 36: estequiometria crecimiento bacteriano

expresión que indica que disminuye con t a lo largo del batch alimentado.

Puede representarse un cultivo en batch alimentado operando en las condiciones

halladas.

Al obtener valores de Sr y F, se ha DISEÑADO una alimentación para el cultivo en

batch alimentado. El caso descrito hasta aquí tiene en cuenta que tanto F como Sr sean

constantes. Es claro que en caso de ser F = F(t) y/o Sr = Sr(t), dicha funcionalidad habrá de

ser tenida en cuenta para resolver las ecuaciones planteadas.