Espinoza Ramos 1

739
i iiiiiüi;

Transcript of Espinoza Ramos 1

Page 1: Espinoza Ramos 1

i iiii

iüi;

Page 2: Espinoza Ramos 1

ANALISIS MATEMÁTICO I

PARA ESTUDIANTES DE CIENCIA E INGENIERIA (TERCERA EDICION)

♦ SISTEMA DE NUMEROS REALES

♦ RELACIONES Y FUNCIONES

♦ LIMITES Y CONTINUIDAD

♦ DERIVADAS

♦ APLICACIONES DE LA DERIVADA

♦ DIFERENCIALES

EDUARDO ESPINOZA RAMOS

Page 3: Espinoza Ramos 1

IMPRESO EN EL PERÚ 20 - 03 - 2002

39 EDICIÓN

DERECHOS RESERVADOS

W -jtr »■■■*>■'*• >- •• '*t w jr.-tfjr a’-*r-'jr/*r'&seir/jir. -.tv'jr.'jr.-jer*r 'á*rs¿r'jr/jir/*r. -m 'jar tr.*y) ii» Iü t

Este libro no puede reproducirse total ó parc ia lm ente por ningún m étodo \■ íI gráfico, e lectrón ico o m ecán ico , incluyendo los sistemas d e fo tocop ia , f| . ' ...í sni..< An j.

registros m agnéticos o d e alim entación de datos, sin expreso consentim iento f£ * »f i

del autor y Editor.í I* í*- II í

í fRUC N9 10070440607

£ ti i»

Ley de Derechos del Autor N9 13714

Registro com erc ia l Ne 10716

Escritura Pub lica N2 4484

Page 4: Espinoza Ramos 1

PRESENTACION

Eduardo Espinoza Ramos, catedrático en la especialidad de matemática pura, me

hace el honor de pedirme la presentación de su obra Análisis Matemático I para Estudiantes de

Ciencia e Ingeniería.

El objeto principal de la presente obra Análisis Matemático I, es precisamente

llenar el vacío que existe para su fácil y mejor aprendizaje, desarrollando y analizando los

conceptos básicos necesarios y su aplicación hacia las especialidades de Ingeniería, de tal manera

que permita a los estudiantes disponer de una herramienta de trabajo práctico y comprensible.

El método didáctico empleado en todo el libro consta de cinco capítulos: Sistema

de Números Reales; Relaciones y Funciones; Límites y Continuidad; Derivadas y sus

Aplicaciones y Diferenciales.

Para orientación del estudiante, el trabajo llevado a cabo por el autor, en esta

obra, es digno de elogio. Su lenguaje sencillo y desarrollo al alcance del estudiante, producto de

sus años de experiencia como docente Universitario le permiten tratar rigurosamente estos, desde

el punto de vista científico en forma didáctica y amena.

Los ejercicios y/o problemas cuidadosamente seleccionados complementan los

propósitos y métodos empleados en la teoría.

Finalmente, expreso mi felicitación al autor de la obra EDUARDO ESPINOZA

RAMOS, quien ya se suma a la legión de autores nacionales que tienen más conocimiento de

nuestra realidad Universitaria.

ING. EDUARDO BULNES SAMAMEJEFE DE DEPARTAMENTO DE CIENCIAS DE LA UNIVERSIDAD RICARDO PALMA,

i A-SECRETARIO ACADEMICO DE LA FACULTAD DE INGENIERIA

Page 5: Espinoza Ramos 1

PROLOGO

En la presente obra Intitulada “Análisis Matemático I para Estudiantes de

Ciencia e Ingeniería” en su 3ra. Edición, hemos aprovechado de los numerosos y valiosos

comentarios y sugerencias de mis colegas que elaboran en las diversas universidades de la capital,

motivo por el cual se ha ampliado la demostración de propiedades así como los conceptos básicos

teóricos e incluyendo propiedades y teorema de acuerdo a las exigencias de la nueva curricula. Al

igual que su 2da edición se expone en forma teórica y práctica, los conceptos de sistemas de

números reales, relaciones y funciones, límites y continuidad, derivadas y sus aplicaciones, así

como la regla de L’Hospital, las funciones hiperbólicas y la diferencial con sus aplicaciones, así

mismo se ha incluido algunos teorema en cuanto corresponde a las aplicaciones de las derivadas

antes de los Teoremas de Rolle y del Valor Medio, también se han incluido mas ejercicios

desarrollados y propuestos en las practicas y exámenes de las diversas universidades de la capital

proporcionados por mis colegas y en especiales de los coordinadores de área académica.

La parte teórica se desarrolla de manera metódica y con especial cuidado,

tratando de no perder el rigor matemático pero tratando de no caer en el excesivo formulismo que

confunde al lector.

La lectura provechosa del presente trabajo requiere del conocimiento previo del

álgebra elemental, geometría plana y trigonometría.

La presente obra es recomendable para estudiante de ciencias matemáticas,

física, ingeniería, economía y para toda persona interesada en fundamentar sólidamente sus

conocimientos matemáticos del análisis real.

Por ultimo deseo agradecer y expresar mi aprecio a las siguientes personas por

sus valiosos comentarios y sugerencias.

Page 6: Espinoza Ramos 1

DOCTOR PEDRO CONTRERAS CHAM ORROEx-Director de la Escuela Profesional de Matemática Pura de la Universidad Nacional Mayor de San Marcos.Catedrático Principal en Pos-Grado de la Facultad de Matemática Pura de la UNMSM Miembro Fundador de la Academia Nacional de Ciencia y tecnología del Perú.Catedrático de la Universidad Particular Ricardo Palma.DOCTOR EUGENIO CABANILLAS LAPADoctor en matemática Pura, Universidad Federal de Río de Janeiro —Brasil.Director de Pos-Grado en la Universidad Nacional Mayor de San Marcos.Catedrático de la Universidad Nacional del Callao.LIC. ANTONIO CALDERON LEANDROEx-Jefe de Departamento Académico de la Facultad de Ing. Pesquera y Alimentos de la Universidad Nacional del Callao.Jefe de Departamento Académico de la Facultad de Ciencias Naturales y Matemática de la Universidad Nacional del Callao.Coordinador del Area de Matemática en la Facultad de Ingeniería de la Universidad Ricardo Palma.LIC. SERGIO LEYVA HAROEx Jefe del Centro de Computo de la Facultad de Ingeniería Química de la Universidad Nacional del Callao.Catedrático en la Facultad de Ingeniería Ambiental y de Recursos Naturales de la Universidad Nacional del Callao.LIC. JUAN BERNUI BARROSDirector del Instituto de Investigación de la Facultad de Ciencias Naturales y Matemática de la Universidad Nacional del Callao.Catedrático de la Universidad Nacional Mayor de San Marcos.LIC. PALERM O SOTO SOTOCatedrático de la Universidad Nacional Mayor de San Marcos.Catedrático de la Universidad Particular Ricardo Palma.Mg. JOSE QUIKE BRONCANOCatedrático de la Universidad Nacional Mayor de San Marcos.Coordinador del área de matemática en la Facultad de Ciencias Matemáticas Puras.

Lic. GUILLERMO MAS AZAHUANCHE Catedrático de la Universidad Nacional del Callao Catedrático de la Universidad Nacional de Ingeniería.Catedrático de la Universidad Ricardo Palma.

E D U A R D O E S P I N O Z A R A M O S

Page 7: Espinoza Ramos 1

DEDICATORIA

Este libro lo dedico a mis hijos R O N A L D ,

J O R G E y D IA N A , que Dios ilumine sus

caminos para que

Page 8: Espinoza Ramos 1

INDICE

CAPITULO I

[* ■ S í.-» T E M A S D E N U M E R O S R E A L E S

1.1 Introducción 1

1.2 Definición 2

1.3 Axiomas de Sustitución 4

1.4 Axiomas Distributivas 4

1.5 Teorema de Igualdad para la Adición 4

1.6 Teorema de Igualdad para la Multiplicación 4

1.7 Teorema de Cancelación para la Adición 4

1.8 Teorema de Cancelación para la Multiplicación 5

1.9 Sustracción de Números Reales 5

1.10 División de Números Reales 5

1.11 Ejercicios Desarrollados- 6

1.12 Representación de los Números Reales 10

1.13 Desigualdades 11

1.14 Axioma de la Relación de orden 12

1.15 Definición 12

1.16 Teorema 12

1.17 Teorema 13

1.18 Teorema 13

1.19 Teorema 14

1.20 Teorema 14

Page 9: Espinoza Ramos 1

1.21 Teorema 15

1.22 Ejercicios Desarrollados 15

1.23 Ejercicios Propuestos 23

1.24 Inecuaciones 29

1.25 Conjuntos solución de una Inecuación 31

1.26 Resolución de una Inecuación 31

1.27 Inecuación de Primer Grado en una Incógnita 31

1.28 Inecuación de Segundo Grado en una Incógnita 33

1.29 Inecuaciones Polinómicas 38

1.30 Inecuaciones Fraccionarias 42

1.31 Inecuaciones Exponenciales 45

1.32 Inecuaciones Irracionales 47

1.33 Ejercicios Desarrollados 58

1.34 Ejercicios Propuestos 84

1.35 Valor Absoluto 101

1.36 Propiedades Básicas para resolver Ecuaciones e Inecuaciones donde

interviene Valor Absoluto 102

1.37 Máximo Entero 104

1.38 Propiedades del Máximo Entero 106

1.39 Inecuaciones Logarítmicas 111

1.40 Ejercicios Desarrollados 116

1.41 Ejercicios Propuestos 155

1.42 Conjuntos Acotados 176

1.43 Axiomas del Supremo o Axiomas de la mínima cota superior 177

1.44 Principio Arquimediano 178

1.45 Ejercicios Propuestos 180

Page 10: Espinoza Ramos 1

CAPITULO II

2.1 Introducción 182

2.2 Relaciones Binarias 191

2.3 Gráfica de una Relación de R en R 198

2.4 Ejercicios Desarrollados 202

2.5 Ejercicios Propuestos 212

2.6 Funciones 215

2.7 Dominio y Rango de una Función 216

2.8 Criterio para el Calculo del Dominio y Rango de una Función 217

2.9 Aplicaciones de A en B 218

2.10 Funciones Especiales 219

2.11 Evaluación de una Función 224

2.12 Función definida con Varias Reglas de Correspondencia 224

2.13 Trazado de Gráficas Especiales 225

2.14 Ejercicios Desarrollados 229

2.15 Ejercicios Propuestos 247

2.16 Operaciones con Funciones 258

2.17 Composición de Funciones 264

2.18 Propiedades de la Comprensión de Funciones 270

2.19 Ejercicios Desarrollados 270

2.20 Ejercicios Propuestos 282

2.21 Funciones: Inyectivas, Suryectivas y Biyectivas 293

2.22 Funciones Crecientes, Decrecientes y Monotomas 295

2.23 Calculo de Rango de Funciones Inyectivas Monotomas 297

2.24 Función Inversa 298

2.25 Función Inversa de una Composición 300

2.26 Ejercicios Desarrollados 300

2.26 Ejercicios Propuestos 313

Page 11: Espinoza Ramos 1

CAPITULO III

3. LIMITES Y CONTINUIDAD3.1 Introducción 325

3.2 Definición 326

3.3 Ejercicios Propuestos 334

3.4 Proposición 337

3.5 Proposición 337

3.6 Teorema (Unicidad de Limite) 338

3.7 Teorema 339

3.8 Teorema 339

3.9 Propiedades sobre Limite de Funciones 340

3.10 Ejercicios Desarrollados 343

3.11 Ejercicios Propuestos 354

3.12 Limites Laterales 365

3.13 Ejercicios Propuestos 370

3.14 Limites al Infinito 375

3.15 Ejercicios Propuestos 381

3.16 Limites Infinitos 386

3.17 Ejercicios Propuestos 389

3.18 Teorema de Sándwich 390

3.19 Limites Trigonométricos 391

3.20 Ejercicios Propuestos 399

3.21 Función Exponencial y Logarítmica 404

3.22 El Numero e 408

3.23 Calculo de Limites de la forma Uní (/(.v))?í' 'X ->a '

409

3.24 Ejercicios Desarrollados 410

3.25 Ejercicios Propuestos 413

Page 12: Espinoza Ramos 1

418

424

426

427

433

440

446

499

451

453

453

454

455

457

462

464

468

471

474

477

482

484

486

487

Asíntota de una Curva

Ejercicios Propuestos

Continuidad de una Función

Tipos de Continuidad

Ejercicios Propuestos

Problemas Sobre Limite

Problemas Propuestos

CAPITULO IV

L A D E R I V A D A

Definición

Inierpretación Geométrica de la Derivada

Definición

Definición

Derivadas Laterales

Derivabilidad y Continuidad

Algunas Reglas de Derivación

Derivadas de una Función Compuesto (Regla de la Cadena)

Derivación de la Función Exponencial y Logarítmica

Teorema

Derivación de las Funciones Trigonométricas

Teorema (Derivadas de las Funciones Trigonométricas)

Derivación de las Funciones Trigonométricas

Regla de Derivación para las Funciones Trigonométricas Inversas

Derivación Implícita

Derivada de la Función de la Forma y = ( f ( x ) ) s(r)

Ejercicios Desarrollados

Page 13: Espinoza Ramos 1

4.18 Ejercicios Propuestos 511

4.19 Ecuaciones de la Tangente y Normal a una Curva 526

4.20 Ecuaciones Paramétricas 529

4.21 Derivadas de Orden Superior 533

4.22 Ejercicios Desarrollados 538

4.23 Ejercicios Propuestos 555

CAPITULO V

5 . A P L I C A C I O N E S D E L A D E R I V A D A

5.1 Valores Máximos y Mínimos de una Función 565

5.2 Teorema 566

5.3 Extremos de una Función 566

5.4 Teorema (de los valores intermedios) 569

5.5 Teorema de Rolle 570

5.6 Teorema del Valor Medio 573

5.7 Teorema (de la función constante) 574

5.8 Teorema (de la diferencia constante) 575

5.9 Función Creciente y Decreciente 574

5.10 Teorema 580

5.11 Criterio de la Primera Derivada para Extremos Relativos 581

5.12 Criterio de la Segunda Derivada para Extremos Relativos 582

5.13 Concavidad y Punto de Inflexión 583

5.14 Ejercicios Desarrollados 587

5.15 Ejercicios Propuestos 626

5.16 Razón de Cambio Promedio y Razón de Cambio Constante 639

5.17 Formula que Relaciona dos Variables cuya Razón de Cambio es Constante 640

5.18 Razón de Cambio Promedio 641

Page 14: Espinoza Ramos 1

5.19 Razones Instantáneas 641

5.20 Velocidad y Aceleración Rectilínea 642

5.21 Razones de Cambio Relacionadas 642

5.22 Procedimiento Aconsejado para Resolver Problemas de Variables

Relacionadas 642

5.23 Problemas Desarrollados 643

5.24 Problemas Propuestos 651

5.25 Aplicación a la Económica 658

5.26 Ejercicios Desarrollados 661

5.27 Problemas Propuestos 673

5.28 La Regla de L’Hospital 678

5.29 Ejercicios Desarrollados 680

5.30 Ejercicios Propuestos 684

5.31 Funciones Hiperbólicas 687

5.32 Ejercicios Propuestos 693

5.33 Derivadas de las Funciones Hiperbólicas 694

5.34 Ejercicios Propuestos 698

5.35 Funciones Hiperbólicas Inversas 701

5.36 Derivación de las Funciones Hiperbólicas Inversas 704

5.37 Ejercicios Propuestos 706

5.38 Diferenciales 708

5.39 Diferenciales como una Aproximación 710

5.40 Diferenciales de Orden Superior 711

5.41 Ejercicios Propuestos 717

BIBLIOGRAFIA 722

Page 15: Espinoza Ramos 1

Sistema de Números Reales 1

CAPITULO I

1. SISTEMA DE NÚMEROS REALES.-

1.1 flSTROPUCClON.-

E1 sistema de los números reales de los cuales ahora disponemos, es el resultado de una enorme cantidad de reílexión por parte del hombre.

Los enteros positivos, es decir: 1,2,3,..., pueden encontrarse desde el comienzo de nuestra civilización. Los enteros tan grandes como 100,000 se usaban en Egipto en fechas tan tempranas como es 300 A.C.

Los antiguos Egipcios y Babilonios desarrollaron una aritmética con los enteros positivos con los cuales podían efectuarse las operaciones de adición y multiplicación, aunque la división no se desarrolló por completo.

Estos antiguos pueblos usaron ciertas fracciones, tenemos pues, que los números racionales aparecieron también en una temprana etapa de nuestra civilización (un número racional es cociente de dos enteros).

Los Babilonios fueron los que más éxito tuvieron en el desarrollo del aritmética y el álgebra por que tenían una notación para los números muy superior a la de los Egipcios. Esta notación en principio, análoga a nuestro sistema decimal, excepto por el hecho de que su base es 60 en lugar de 10. Una buena notación es el pre-requisito para el desarrollo de los matemáticos.

Nuestro sistema decimal con los números llamados arábigos fue inventado por los Hindúes e introducido en Europa occidental en el siglo XII a través de las traducciones de textos Arabes. Sin embargo, la aceptación generalizada de esta notación demoró mucho en llegar.

Page 16: Espinoza Ramos 1

Eduardo Espinoza Ramos

La espera fue aun mayor para la aceptación de los números negativos, incluso hasta finales del siglo XVI se descartaban las raíces negativas de las ecuaciones.

La aritmética y el álgebra se desarrollaron bajo él estimulo de problemas prácticos en contradicción de la'geometría que desarrollaron los griegos solamente para su satisfacción intelectual y en un modelo del sistema lógico.

Sin embargo, con el desarrollo del cálculo, los números reales especialmente los números

irracionales tales como ~Jl, n, V 5 . tuvieron que sustentarse sobre una firme

fundamentación lógica, esto se logro en la ultima parte del siglo XIX.

Disponemos ahora de un sistema de axiomas que describen completamente los números reales partiendo de estos axiomas podemos derivar todas las propiedades de los números reales.

Esto es el método usado en la geometría Euclidiana, se acepta un cierto número de proposiciones, a las que se llama axiomas o postulados o hipótesis y basándose en esas axiomas se prueban todos los teoremas de la geometría.

1.2 DEFlNÍClQNv-

Llamaremos sistema de los números reales a un conjunto R, provisto de dos operaciones adición (+) y multiplicación (.) (leyes de composición interna) y una relación de orden denotado por “<”, es decir:

Io LEY DE COMPOSICIÓN INTERNA:

+: R x R ----->R

(a,b) -—-> +(a,b) = a + b

Además debe cumplirse los axiomas siguientes:

Af, Cerradura: V a, b e R => a + b e R

Ax Conmutatividad: a + b = b + a , V a . b e R

A-, Asociatividad: (a + b) + c = a + (b + c), V a,b,c e R

Page 17: Espinoza Ramos 1

Sistema de Números Reales»

3

Aj Identidad aditiva: V a e R , 3 0 e R / a + 0 = 0 + a = a

A4 Opuesto Aditivo: V a e R , 3 - a e R, y es único, tal que: a + (-a) = (-a) + a = 0

2o LEY DE COMPOSICIÓN INTERNA: • : R x R - ^ R

Además debe cumplirse los axiomas siguientes:

A/„ Cerradura: V a, b e R => a.b e R

M l Conmutativa: a.b = b.a, V a,b e R

M 2 Asociativa: (a.b).c = a.(b.c), V a,b,c e R

M 3 Identidad Multiplicativa: V a e R, 3 1 * 0, 1 e R, tal que: 1.a = a

M4 Inverso Multiplicativo: V a * 0, 3 a~1 e R, tal que: a.a ~l - a 1 .a = 1

3o RELACIÓN DE ORDEN:

Ox V a.b e R una y solamente una de las relaciones se cumple a < b , a = b, b < a (ley de

tricotomía).

O2 Si a < b y b < c entonces a < c (transitiva).

Oy S i a < b = > a + c < b+ c, V a,b,c e R.

0 4 Sí a < b, c > 0 entonces a.c < b.c

OBSERVACIÓN:

i) A los números a_ y b los llamaremos sumando, y al número a + b suma de a y b.

i¡) En a.b; a los números a y b los llamaremos factores y al número a.b producto de a y b.

iü) El opuesto es único, así mismo cuando existe el inverso es único.

Page 18: Espinoza Ramos 1

4 Eduardo Espinoza Ramos

1,3 AXIOMA DE SI STITÜCION.-

Si a y b pertenecen a un conjunto B y si a = b, entonces en toda relación se puede sustituir al elemento a por el elemento b sin que altere el significado de la relación.

a) a.(b + c) = a.b + a.c, V a, b, c e R distributiva a izquierda

b) (a + b).c = a.c + b.c. V a, b, c e R distributiva a derecha

1.5 TEOREMA PE IGUALDAD PARA LA A PIC IO N ~

Si a = b entonces a + c = b + c, para todo a, b, e e R

Demostración

Io a = b. por hipótesis.

2o a + c = a + c, propiedad reflexiva.

3o a + c = b + c , Io. 2° y axioma 1.3

Sí a = b entonces a.c = b.c, para todo a, b, c e R

Demostración

Io a = b por hipótesis.

2° a.c = a.c. propiedad reflexiva.

3° a.c = b.c, Io, 2° y axioma 1.3

j ,7 TEOREM A DE CANCELACION PARA LA APICFON.-

Sean a,b,c e R ; S ía + c = b + c entonces a = b

Demostración

Io a + c = b + c . por hipótesis.

2o a + c + (-c) = b + c + (-c), Io y teorema 1.4?

Page 19: Espinoza Ramos 1

Sistema de Números Reales 5

3o a + (c + (-c)) = b + (c + (-c)), 2° y A2

4° a + O = b + U, 3° axioma A4

5° a = b. 4o, axioma A¿

J.8 TEOREMA DE CANCELACION PARA LA MULTIPLICACION.-

Sean a,b,c e R; Si a.c = b.e y e * 0, entonces a = b

Demostración

Io a.c = b.c, ... por hipótesis.

2 o c * 0, ... por hipótesis

3o 3 — e R / (a.c).— = (b.c). —, . . .2 o, I o y axioma M Ac c c

4o a.(c.—) =b.(c.—) , . . . 3 o y axioma M-,c c

5o a . l= b . l , . . . 4 o y axioma M 4

6° a = b, ... 5o y axioma M 3

1.9

DEFINICION.- Para cualquier números reales a,b e R, definiremos a la sustracción de números reales por:

a - b = a + (-b)

1.10 DIVISION DE NÚM EROS REALES.-

DEFINICION.- Para cualquier números reales a,b e R, donde b * 0, definiremos al cociente de números reales por:

Page 20: Espinoza Ramos 1

6 Eduardo Espinoza Ramos

1.11 EJERCICIOS DES ARROLLADOS.-

© Para cada número real a e R, demostrar que a + a = 2a

Demostración

1° a = a.l . .. Por

2o a + a = a.l + a.l . .. 1° y axioma 1.4

3o a + a = a .(l+ l) . .. 2o y axioma 1 J .a

4° a + a = a.2 ... 3o y por M •,

5o a + a = 2a ... 4o y por M ,

Para cada número real a e R, demostrar que a.0 = 0

Demostración

1° a.0 = a.0 + 0 ... Por Aj

2o a.0 = a.0 + (a + (-a)) ... 1° y por A4

3o a.0 = (a.0 + a) + (-a) ... 2o y por A2

4° a.0 = (a.0 + a.l) + (-a) ... 3o y por M 3

5o a.0 = a(0 + l) + (-a) ... 4o y por axioma 1.3.a

6° a.0 = a.l + (-a) ... 5o y por A}

7 0 a.0 = a + (-a) ... 6° y por M 3

8o a.0 = 0 ... 7o y por A4

( 3) Para cada número real a e R, demostrar que: -a = (-l).a

Demostración

Basta demostrar que a + (-l)a = 0, porque (-l).a, y - a son inversos aditivos de a por A4

Page 21: Espinoza Ramos 1

Sistema de Números Reales 7

Luego a + (-1 )a = 1 .a + (-l)a, ... por axioma 1.3

a + (-l)a = (1 + (-1 ))a, ... por axioma vfy.b.

a + (-l)a = 0.a, ... por A4

a + (-l)a = 0, ... por ejercicio 2.

.-. -a = (-l)a

( 4) Para cada número real a e R, demostrar que -(-a) = a

Demostración

Io a + (-a) = 0 ... por A4

2 ° (-a) + (-(-a)) = 0 ... por A4

3 0 (-a) + (-(-a)) = a + (-a) ... Io , 2 o

4o -(-a) = a ... 3o y por teorema 1.6

( 5) Para cada número real a,b e R, demostrar que (-a).(-b) = a.b

Demostración

1° (-a).(-b) = [(-1 )a][(-l )b] ... por el ejercicio 3

2o (-a).(-b) = (-1 )[a((-1 )b)] ... 1° y M 2

3o (-a).(-b) = (-1 )[(-1 >a].b ... 2o y M x, M 2

40 (-a).(-b) = (-1 )[(-a)].b ... 3o y ejercicio3

5o (-a).(-b) = [(-1 )(-a)].b ... 4o y M 2

6o (-a).(-b)=a.b ... 5o y ejercicio4

(ó ) V a.b e R, demostrar que a.(-b) = -(a.b)

Demostración

Io a.(-b) = a.((-l).b) ... por ejercicio 3

Page 22: Espinoza Ramos 1

8 Eduardo Espinoza Ramos

©

2° a.(-b) = (a.(-l)).b ... 1° y p o rM ,

3o a.(-b) = ((-1 )a).b ... 2o y por M x

4° a.(-b) = (-l)(a.b) ... 3o y por M 2

5o a.(-b) = -(a.b) ... 4o y ejercicio3

6o -(a-b) = (-1 )(a.b) ... Por el ejercicio 3

?o -(ab) = ((-l)a).b ... 6o y por M 2

8o -(ab) = (-a).b ... T y ejercicio 3.

9° a(-b) = -(ab) = (-a).b

OOCO

V a,b g R, demostrar que a.(b - c) = a .b -a .c

Demostración

1° a.(b - c) = a.(b + (-c)) ... definición de sustracción

2o a.(b - c) = a.b + a.(-c) ... 10 y axioma 1.3 .a

3o a.(b - c) = a.b + (-(a.c)) ... 2o ejercicio 6

40 a.(b - c) = a .b -a .c ... 3o definición de sustracción

Para a e R, demostrar sí a * 0, entonces a "1 =

Demostración

Io a 1 = (a _l).l ... por M-,

2o a~l = l . ( a _l) ... Io y

3o a "1 = — ... 2o definición de división

Page 23: Espinoza Ramos 1

Sistema de Números Reales 9

( 9) V a,b e R, a .b* O, demostrar que (a.b) 1 =a 1 .b

Demostración

I o (a.b).— = 1 {ab)

2° (ab).{aJb)~l =1

por A/4

y definición de división

3° (a.b).(a 1 b 1 ) = (a ) . ( a ) 1 .(b).(b 1 ) por M 2

■ u 1, * 1 . - 1.4° (a.b).(a .h ' ) = (a . - ) . (b . - )a b

3°, M 2 y definición de división.

5° (a.b).(a [.b ‘ ) = (1 )(!) = !

6° (a.b).(a l .b l ) = 1

4° y M 4

de 5°

7° (a.b).(a.b) 1 = (a./>)(a 1 i> 1 )

8° (ai?) 1 1

... de 2° y 6°

... 7° y teorema 1.7

10J V a,b,c,d e R, b * 0, d * 0. demostrar que: —+ — = +- ^'c^ b d b.d

Demostración

Io - + - = a.b 1 + c . d x b d

por definición de división

2° T + Ì7 = ( a . b ì ) . {d . - ) + {c.d-x).(b.-) b d d b

Io y por M a

3° — + — = ( a . b l ).(d.d x) + (c.d 1 ).(b.b ') ... 2o y definición por división.b d

Page 24: Espinoza Ramos 1

10 Eduardo Espinoza Ramos

4o - + - = (a.d) . (b]. d l ) + (b.c).(b1. d l ) ... 3o, A/,b d '

50 — + — = (a.d).(b.d) 1 + (b.c).(b.d)~x ... 4° y ejercicio9h d ’

6" — + — - ( a M + bx;).(bd) 1 ... de 5° y axioma 1.3.b.b d

1° — + — = + — ... 6o y definición de divisiónh d hd

U 2 REPRESENTACION PE LOS NÚMEROS R E A L E sT

Entre los números reales y los puntos de una recta existe una correspondencia, es decir:

51 sobre una recta se fija su origen “O”, una unidad, y un sentido positivo, entonces, a

cada punto de una recta le corresponde un número real y reciprocamente, a cada número

real le corresponde un único punto de la recta, al número real correspondiente a un punto

de la recta se le llama abscisa del punto.

------ 1-------- 1--------1------- 1------- 1------- 1--------1--------1---------1— ►-3 -2 -1 0 1 2 3 4 5

NOTACION PARA LOS CONJUNTOS DE NÜMEROS.-

N: Conjunto de los: números naturales.

Z: Conjunto do los números enteros.

Q: Conjunto de ios números racionales,

í: Conjunto de los números irracionales.

R: Conjun ¡o de los números reales.

C: Conjunto de los números complejos.;

Page 25: Espinoza Ramos 1

Sistema de Números Reales 11

CONJUNTO DE LOS NUMEROS REALES

R

0

racionales

entero positivoN0 = {0,1,2,...,«,...}

Z enteros negativos

Decimales periódicos = 0 .abe =999

Decimales periódico mixto = 0 .abede -abede - ab

99900

Decimales exactos = 0 .abe =abe

1000

Q = { - l a . b e Z , b * 0} b

I f propios: a/2 , -73 ,...V Irracionales! trascendentes = {e, 7t,...}

1.13 DESIGUALDADES.,

La correspondencia entre los números reales y los puntos de una recta pueden usarse para dar una interpretación geométrica de la relación de orden entre los números reales.

La relación a < b significa que sobre una recta numérica el punto A corresponde al número “a”, que se encuentra a la izquierda del punto B correspondiente al número “b” .

A B------------ 1----------------------1-----------►

a b

El símbolo < se lee "Es menor que”. También usaremos los símbolos siguientes:

Page 26: Espinoza Ramos 1

12 Eduardo Espinoza Ramos

1.13.a DEFINICIÓN.-

i) Un número real “a” es positivo sí, a > 0.

¡i) Un número real “a” es negativo sí, a < 0.

1.13.b DEFINICIÓN.-

Llamaremos desigualdad a una expresión que indica que un número es mayor ó menor que otro. Por ejemplo: 5 < 9.

V a,b,c e R., se tiene:

Ox Orden de tricotomía: una y sólo una de las siguientes posibilidades se cumple: a = b v a < b v a > b

O, Orden transitivo: s í a < b a b < c => a < c

0 3 Orden de adición: s í a < b => a + c < b + c

0 4 Orden Multiplicativo: sí a < b y c > 0 => a.c < b.c

En base a estos axiomas daremos las siguientes definiciones:

U 4 AXIOMA DE LA RELACION DE ORDEN.-

L15 DEF1N1CJON.-

i) a < b < = > b - a e s positivo. ii) a > b <=> a — b es positivo.

iii) a < b <=> a = b v a < b iv) a > b <=> a > b v a = b

1.16 TEOREMA.-

V a,b,c,d e R ; Sí a < c A b < d a + b < c + d

Demostración

O a < c por hipótesis

2° a + b < b + c i° y o3.

Page 27: Espinoza Ramos 1

Sistema de Números Reales 13

3 o b < d por hipótesis

4° b + c < c + d 3 °y 0 3

5o a + b < c + d 2o, 4o y O,

L17 TEOREMA.»

Para a.b € R, si a < b => -a > -b

Demostración

1° a < b por hipótesis

2o b - a > 0 1° y definición 1.1$ i.

3o ( b - a ) + (-b) > 0 + (-b) 2o y 0 ,

4° -a + (b + (-b))>-b 3 o, a2 y A

5o -a + 0 > -b 4o y A4

6o -a > -b 5° y a 3

1.18 TEQREM A.-

Sí a, b, c e R, donde a < b a c < 0 => a.c > b.c

Demostración

1 ° a < b por hipótesis

2 o c < 0 por hipótesis

3o 0 *c>( ) 2o y definición 1.14.i)

4o - a.c < -b.c Io, 3o y 0 4 y ejercicio 6

5o a.c > b.c 4o y teorema 1. bfa

Page 28: Espinoza Ramos 1

14 Eduardo Espinoza Ramos

1.19 11LUKIUMA.-

Para a e R, a * 0 => a 2 > 0Demostración

1° a * 0 por hipótesis

2o a> 0 v a< 0 l ° y 0 ,

3o sí a > 0 => a.a > 0.a 2° y 0 4

4o

OAN

3o y ejercicio 2

5o sí a < 0 => -a > 0 2o y definición 1.15i

6o (-a)(-a) > 0. (-a) 5o y o 4

T a 2 > 0 6o, ejercicio 2 y 5

\ M TEOREM A.-

Para a e R. a * O entonces a 1 tiene el mismo signo que “a” es decir:

i) Sí a > 0 => a~x > 0 ¡i) Sí a < 0 => a~l < 0

Demostración

i) Io a > 0 por hipótesis

2o éT ' c O hipótesis auxiliar

3o ¿7.a’1 < 0 Io, 2o y teorema 1.18

4o 1 < 0 3o y M 4 es absurdo

5o íT ' > 0, por 2o y 4o

6o Sí a > 0 => a~x > 0 Io y 5o

ü) Su demostración es en forma similar.

Page 29: Espinoza Ramos 1

Sistema de Números Reales 15

« /« < T C A D C M A

Para a,b e R, donde a y b tienen el mismo signo, sí a < b => a 1 > d 1

Demostración

Como a y b tienen el mismo signo entonces se tiene dos casos:

i) a > 0 a b > 0 i¡) a < 0 a b < 0

i) 1° a < b por hipótesis

2° a > 0 a b > 0 por hipótesis

T a 1 > 0 a b x > 0 2o, teorema 1.20

4o a.a~ < b.a~l 3o y 1°; 0 4

5o (a.a~l )b~l < (b.a x)b~x 3o y 4o; 0 4

6o (a.a~1)b~1 <(b.b~{)a~l 5o y m 2

7° l i T 1 <1 .a~l 6o y A/ 4

8o b~x <a 1 7° y M 3

9o sí a < b => a~l >b~l l ° y 8°V

ii) Su demostración es en forma similar.

1 IT l t ? D C i r i f t C W c A D D A T T A n /Wi ,¿¿ GiJüiKvlv Iva ÜÍ-SAKKULLAUU5.-

© Si a > b > 0, Demostrar que: a 1 > b 2, donde a,b e R.

Demostración

Por hipótesis se tiene a > b > 0 => a > 0 a b > 0

Como a > b => a + b > 2b > 0 => a + b > 0

a > b => a - b > 0

. . . ( a )

.. (ß)

Page 30: Espinoza Ramos 1

16 Eduardo Espinoza Ramos

de (a) y (f¡) se tiene: (a + b)(a — b) > 0.(a — b)

de donde a 1 - b 1 > 0 => a 2 > b 2 Sí a > b > 0 =s> a 2 > b 2

S í a , b >0 y a 2 > b 2 = > a > b

Demostración

Por hipótesis se tiene a 2 > b 2 => a 2 - b 2 > 0 de donde (a + b )(a -b ) > 0 ... (a)

como a > 0 a b > 0 => a + b > 0, de donde —— > o ...<p>a+b

de (a) y (P) se tiene ^ + —— > 0 , de donde a - b > 0 entonces a > b .a + b

® S i b > a > 0 y c > 0. Demostrar: > —3 h-Lr- hb+c b

Demostración

Como b > a > 0 => a . b>0 . ..(1 )

b > a y c > 0 => b .c> a.c . . . ( 2)

en (2) sumando a.b > 0 en ambos lados. a.b + b.c > a.b + a.c

, . v .. . i t 1 d + C Clb.(a + c) > a.(b + c) , de donde: ------ > —b+c b

a c „ a+c c> —® Si a,b,c,d > 0 y — > — Demostrarr» /ib d b + d d

Demostración

a cComo — > — , donde b ,d > 0 => a.d >b.c ... (1)

b d

Además c > 0, d > 0 entonces c.d > 0

Sumando c.d > 0, a ambos miembros en (1): a.d + c.d > b.c + c.d

Page 31: Espinoza Ramos 1

Sistema de Números Reales 17

d.(a + c) > c.(b + d), de donde: a + ° > —b + d d

( ^ ) Para a,b,c números reales. Demostrar que a 2 + b 1 + c 2 >a.b + a£ + b.c

Demostración

V a.b e R, ( a - b ) 2 > 0

V a.c e R, (a - c )2 > 0

V b,c e R, (b - c ) 2 >0

a 2 + b 2 - 2a.b > 0 a 2 + c2 - 2 a r >0 b 2 +c2 - 2b.c > 0

2(a2 + b 2 + c 2 ) -2(a.b + a.c + b.c) > 0

de donde a 2 + b 2 + c2 >a.b + a.c + b.c

( 7 ) V a,b e R ' , demostrar que ü + > -Jali

Solución

Como a,b e R + => -Ja - 4 b e R

Sí 4 a —4b e R => (4a ~ 4 b ) 2 > 0, de donde a + b - 2 4 a 4 b > 0 => a + b > 2 4 a b

a + b- > 4 a h

( l ) Demostrar que sí a < b, Entonces a < ■ < b

Demostración

Como a < b => a + a < a + b => 2 a < a + b . ..(1 )

a < b = > a + b < b + b = ^ a + b < 2b . . - (2)

de ( 1) y (2) por transitividad se tiene: 2a < a + b < 2b a < < b

^ 8) Demostrar que si, a 2 + b 2 = 1, c 2 + d 2 =1, entonces: 1 > a.c + b.d, para a,b,c,d e R

Page 32: Espinoza Ramos 1

18 Eduardo Espinoza Ramos

Demostración

V a,c e R, (cr-c’)2 > 0 => a 2 +c2 >2a¿ . ..(1 )

V b,d e R, ( b - d ) 2 > 0 => b 2 + d 2 >lb.d . ..(2 )

sumando (1) y (2) se tiene: a 2 +b2 + c 2 + d 2 >2(a£ + b.d)

2 > 2(a.c + b.d) 1 > a.c + b.d

V a,b,c,d e R + y n e Z + , demostrar que: a 2" +b2n + c 2n + d 2" > 4 (abcd)"12

Demostración

a,b e R + => a " ,b n e /?+ ,pero a ” - b n e R, entonces:

(an - b n) 2 > 0 => a 2n +b2n > 2anb ” . . . ( 1)

c,d e R^ => c " , d n e R + , pero c " - d " e R, entonces:

(c" - d " ) 2 > 0 => c 2" + ¿ 2n >2cnd" . ..(2 )

Sumando (1) y (2) se tiene: a 2" + ¿>2n + c 2" + d 2n >2(anb" +c"d" ) . ..(3 )

( J a "b n - a / c V "”) 2 > 0 => a nb" +cnd n >2^¡anb nc nd n . . .(4 )

a 2" + />2” + c 2" + ¿ 2n > 4 -Janb nc nd n

... a 2" + 62” + c 2" + í /2n ¿4(a¿>c</)”/2

(lo) Si a + b + c = l , donde a,b,c > 0, Demostrar que (1 — a)(l - b ) ( l - c ) > 8abc

Demostración

Como a,b ,c> 0 => -J~a,-Jb,-Jc > 0 entonces:

Page 33: Espinoza Ramos 1

Sistema de Números Reales 19

©

-Je e R b + c> 2-Jbc

-Je e R => • a+ c> 2-Jac

-Jb e R a + b> 2-Jab

(b + e)(a + c)(a + b ) > 8abe

Pero sí a + b + c = 11 - a = b + c \ - b - a + c \ - c + a + b

. . ( 2)

Reemplazando (2) en (1) se tiene: (1 — a)( 1 — b)( 1 - c) > 8abc

Si a.b.c.d e R" , Demostrar que: (ab + cd)(ac + bd) > 4abcd

Demostración

Como a,b,c,d e R + => ab > 0, cd > 0, ac > 0, bd > 0

De donde -Jai) -~Jcd e R, y -Jac--Jbd e R. entonces:

\(-\fab—Jc d)2 > 0 \ab + cd > 2-Jabcd

\(4ac- - J b d ) 1 > 0 I ac + bd > 2-Jabcd

multiplicando se tiene: (ab + cd)(ac + bd) > 4abcd

a c , a a+c cSean a,b,c,d e R tal que — < —. demostrar que: — < -------< —b d b b + d d

Demostración

Como — < — => a.d < b.c por que b,d e R 1 a.d < b.c, sumando a.b, a ambosb d

miembros ad + ab < be + ab, factorizando

a(b + d) < b(a + c), de donde ~ . . . ( 1)

En ad < be sumando cd, a ambos miembros ad + cd < be + cd,

Page 34: Espinoza Ramos 1

20 Eduardo Espinoza Ramos

Factorizando d(a + c) < c(b + d), de donde: Ü í £ < £ b + d d

. . . ( 2)

^ . a a + c a + c cDe (1) y (2) se tiene: — < ---------- a ----------< —

b b + d b + d d

_ , , . a a + c cDe donde por transitividad se tiene: — < ------- < —

b b + d d

Si a,b,c y d, son números reales cualesquiera. Demostrar que: a 4 +b4 + c 4 + d 4 > Aabcd

Demostración

Como a,b,c,d e R => a 2, b 2, c 2, d 2 e R, además:

\ a 2 - b 2 e R

\c~ —d~ e R

(a2 - b 2) 2 > 0 (c2 - d 2) 2 > 0

de donde al efectuar se tiene: a 4 +b4 > l a 2b 2

c A+ d A > l c 2d 2 ... (2)

Sumando (1) y (2) miembro a miembro se tiene:

a 4 +b4 + c 4 + d A > l ( a 2b 2 + c 2d 2) . ..(3 )

Como ab. cd e R => ab - cd s R, entonces:

a~b2 +c2d 2 >2abcd => 2(a2b 2 + c2d 2)> 4abcd

( a b - c d ) ' > 0 de donde

. ..(4 )

de (3) y (4) por transitividad se tiene: a 4 +bA +c4 + d 4 > 4abcd

Si a > 0, a e R, demostrar que: a + — > 2a

Demostración

Como a > 0 => -Ja > 0 , de donde 4 a — e R por lo tanto

Page 35: Espinoza Ramos 1

Sistema de Números Reales 21

(Va — 7=)2 ^ 0 , desarrollando se tiene: a - 2 + —> 0 de donde a + — > 2 Va a a

, „+ , bc ac ab ,Si a,b,c, e , demostrar que: — + ------1- — >a + b + c

a b c

Demostración

Por hipótesis se tiene que a,b,c > 0, entonces

— > 0 , —> 0 , —>0 entonces aplicando el ejercicio 14). b c c

Ahora a (1) multiplicamos por c,a,b respectivamente.

ac bc ^ _— + — >2c b aab a c . - - a c „bc - a b— + — > 2 a => 2 — + 2 — + 2 — >2c + 2a + 2bc b b a c

ab— + — > 2 b c a

. h e ac ab s -, , ,2(-----h — + — ) > 2(a + b + c)

a b cbc ac ab ,— + — + — >a + b + c a b c

r.- ^ i rv j a + b _ a bSi a > 0, b > 0, demostrar que: -----:— - < -— - + -a + b + 1 6+1 a + l

Demostración

Como a > 0, b > 0, entonces a + 1 > 1, b + 1 > 1 luego se tiene:

a + l > 1 Z> + 1 > 1

a + è + 1> è + 1 a + b + \> a + l

ahora inviniendo cada una de las desigualdades: ----- ---- < —— y ----- ----- < — —a+b + 1 ¿> + 1 a + b + 1 a + l

Page 36: Espinoza Ramos 1

22 Eduardo Espinoza Ramos

multiplicando a las desigualdades por a y b respectivamente.

a a b _ b---------- < ------ y ---------- < -------o + b +1 b +1 ¿7 + ¿> + l +1

• a + b a bSumado estas dos desigualdades se t i e n e : ---------- < ------ +

a + b +1 b +1 a +1

1 417) Si a,b e R, b * 0, demostrar que: —

a 2 +ab + b2 3 b 2

Demostración

Completando cuadrado en a +ab + b se tiene: c r + a b + b = (a + — (1)

Como a.b e R => a + — e R, de donde (a + —)2 > 02 2

o J 3t>2 ■ , b ■, 3b2 3b 2Sumando ------ se tiene: (a + —) ' + -------> ------ . ..(2 )4 2 4 4

Ahora de (1) y (2) se tiene.

2 . , t 3b2 , . . 1 4a ' +ab + b~ como b * 0 invertimos — ----- -—a 2 +ab + b2 3b2

18) Si a > 0 y b < 0, Demostrar que: < —' a a

Demostración

Como a > 0, b < 0 => ab < 0, sumando “a” a ambos miembros se tiene:

a + b.a < a, de donde a(b + 1) < a ... (1)

Como a > 0 => -X- > 0 , ahora multiplicamos a (1) por - \ -a~ a~

. . . a(b + l) a . , ¿ + 1 1Obten íendose ----- < —r- simplificando .'. ----- < —

a a a a

Page 37: Espinoza Ramos 1

Sistema de Números Reales 23

19j Si a > 0 . b > 0 tal que a + b = l , demostrar que: a^ - ~

Demostración

Como a > 0, b > 0 => a - b e R, de donde:

( a - b ) 2 > 0 => a 2 -2 a b + b 2 > 0 sumando 4ab.

a 2 +2ab + b 2 > 4 ab de donde: (a + b)2 > 4 ab

pero como a + b = l , se tiene l >4ab , por lo tanto a^>-~

20j Si a > 0 , b > 0 , 3a * 5b, demostrar que: — + — > 25b 3a

Demostración

Como 3 a * 5 b => 3 a - 5 b * 0 y 3 a - 5 b e R entonces (3 a -5 6 )2 > 0

Desarrollando se tiene: 9a 2 -30ab + 25b2 > 0

Sumando 30ab, a ambos miembros: 9a 2 +25b 2 > 30ab multiplicando por

9 a2 +25Z>2 30ab . . . 3a 5b ,-------------- > ------- , de donde: — + — >2

15ab 15ab 5b 3a

15 ab

i . 23 EJERCICIOS PROPUESTOS.-

© Si a y b son números reales positivos, demostrar que: (— + —)(a + b) > 4a b

(T ) Si a,b,c son números reales positivos, demostrar que: (— + — + - ) (a + b + c) > 9a b e

© Si a,b,c,d son números reales positivos, demostrar

( - + — + - + — )(a + b + c + d)> 16 a b c d

que:

Page 38: Espinoza Ramos 1

24 Eduardo Espinoza Ramos

( 4) Si a y b dos números reales positivos tal que a > b, demostrar que: — + — > — + 3b a a 2

( J ) V a e R. a * 0, demostrar que: a 2 + — > 6

Si a,b,c e R* , demostrar que: (b + c)(a + c)(a + b) > 8abc

(T ) Si a,b e R, demostrar que: a^b + ab* < a 4 + b A

Si a,b,c e R, demostrar que: a 2 +b2 + c 2 +3 > 2(a + b + c)

® Si 0 < a < 1, demostrar que a 2 <a

^ 0) Si a,b,c son números reales positivos y . Demostrar que:a b e

d d + e + f fa a + b + c c

Demostrar que si a,b,c son números positivos y no iguales entre si, entonces: (a + b + c)(a2 +b2 + c 2) >9abc

© Si a.b.c son números positivos y no iguales entre si. Demostrar que:(a + b + c)(a~l + ¿ _1 + c _1) > 9

13J Si a y b son números reales diferentes de cero. Demostrar que:a 2 16Z>2 8a 32 b— + — — + 24>— +----b~ a b a

¿4) Si a 2 +b2 = 1. Demostrar que: - ^ ¡ 2 < a + b < 4 l

Sug. ( x - y ) 2 > 0 => 2(x2 +>’2) > (x + y ) 2

15) Si a + b = c, a > 0, b > 0, demostrar que: a 2,i +b2,3 > c 2li

® Si a + b > c > 0, demostrar que: —— +l + o \ + b 1 + c

Page 39: Espinoza Ramos 1

Sistema de Números Reales 25

© Si a,b,c > O, demostrar que: 3abe < a 3 + 63 + c 3

® Si c > 0, d > 0, 2d * 3c, demostrar que: — > 13 c 4 d

( í? ) Si a > 0, b > 0, a * b, demostrar que: 24 b -Ja

(20) Si a,b,c e R, demostrar que: b 2c 2 + c 2a 2 + a 2b 2 > abc(a + h + c)

2 l) Sea a + b = 2, donde a y b son números reales, demostrar que: a 4 + b 4 > 2

\ 7 7 ? 9 9 9221 Si a~ +b~ +c~ = 1 y x +>> + z =1, demostrar que: ax + b y + c z < l

b 1 1 "23) Si a > 0, b >0, demostrar que: — + —— > — + —‘ J 4 b2 a 2 a b

24) Si 0 < a < l , demostrar que: a 2 < a

25) Si a,b > 0, demostrar que: -Jab >a + b

26) Si a > 0, b > 0, demostrar que: ° > (—í ) 3

(27) Si a > 0 , a * 1, demostrar que: a l + ^— > a 2 + ~a a~

28) S i a > 0 y b > 0, demostrar que: 4(a +b )>(a + b)

29) Si a y b son números reales, demostrar que: ~J(a~+ c )2 +(b + d ) 2 < -Ja2 +b 2 + -Je2 + d 2

3(y Si a.b,c e R T, demostrar que: (a + ¿> + c)3 >21abc

(31) Si a,b,c y d son números reales cualesquiera. Demostrar (ab + cd )2 < (a2 + c 2)(b2 + d 2)

Page 40: Espinoza Ramos 1

26 Eduardo Espinoza Ramos

2) Si a.b e R, demostrar que: a 4 + b 4 > — (a + b)48

33) Si a > 0 y b > 0 , demostrar que: (g + —) 2 + (b + —)2 + +¿*) 2“■ a h 2 a + b

1 1 25^ Si a > 0 , b > 0 tal que a + b = l , demostrar que: (a + — ) 2 + (b + — ) 2 >-^-

(35) Si a,b.t\d e R, demostrar que: ac+bd < ^ ( a 2 + b 2)(c2 + d 2)

(3ó) Si a,b e R tal que a + b = 1, demostrar que: a 4 +bA > ^

® 8 jSi a,b e R tal que a + b = 3, demostrar que: a 4 + b 4 > —

38) Si a,b.c,d e R +, demostrar que: ~ ( a + b + c + d)>^J a bed

9) Si a: ,a 2,...,a„. bx,b2,...,b„ eR tal que: a 2 + a 2 +...+a2 = \ , b 2 +b2 +...+b2 =1

demostrar que: axbx + a2b2 +...+a„b„ <1

40) Demostrar que si -1 < a < 0 entonces a 3 > a

Si - a > 0 y ( a - b ) 2 > {a + b)2 , entonces b >0

(42) Si a, b e R, tal que 2a +4b = 1, Demostrar que: a 2 + b2 >

.43) Si a > 0. b > 0 =? a 3 +bl > a 2b + ab2

X1 + x2 +X1 + — +xn44) Si jc,,x,,...,jcn e R y si p =^Jxxj c2..jc„ y a = —-2-----— —— demostrar^ - V nque: p < a.

Í Í ) Si a,b,c,m,n,p e R / m > 0 , n > 0 , p >0 : — < — < — entonces: — < + a + c <^ m n p m m + n + p p

Page 41: Espinoza Ramos 1

Sistema de Números Reales 27

® _ , . Qi + di + ...+ a„Probar que si al < a 2 < — <a„ entonces ax < —-----P----------- < a „

a 3 - b l47) Demostrar que si 0 < a < b < c entonces: — --------<a + b+cs*-' 3 c ( b - a )

(4?) Probar que: a 4 +bA + c 4 + d 4 > A\abcd\ para a,b,c,d e R

(49) Si a,b,c > 0, demostrar que: 2 (a3 +lr + c:3) > bc(b + c) + ac(c + a) + ab(a + b)

(501 Demostrar que: <j2b 2 +b2c 2 + a 2c 2 > abc(a + b + c) V a,b,c e R

x" 151) V x e R y n par, demostrar que: —-------< —“ 7 x 2n+l 2

52) Demostrar que si r > 0 y a < b entonces a a < - - - - -- < b' 1 + r

531 Si a y b son números positivos y distintos, demostrar que: ~ + ~ > — + —b2 a 2 a b

54) Consideremos x, y, z, w números reales, demostrar que:

■ > 2 2 ' > ^ 2 x + y + z + w > — (xy + xz + xw + yz + yw + zw)

a2 b255) Si a y b son números desiguales positivos demostrar que: a + b< — + — •b a

56) Si a,b y c son números positivos distintos. Demostrar que: (a + b + c) 2 < 3 (a1 +b2 +c2)

51) Si a y b son números positivos distintos, demostrar que: (a 3 +b 3)(a + b)> (a2 +b2)2

,58) Si x,y son números distintos, demostrar que: (x4 + y 4 )(x2 +>’2) > (x 3 +>'3) 2

59) Si x,y,z son números positivos distintos, demostrar que:

xy(x + y) + yz(y + z) + xz(x + z) > 6xyz

Page 42: Espinoza Ramos 1

28 Eduardo Espinoza Ramos

a - 2 b - 2(£0) Demostrar que: a < b < 1 => —---- <a - 1 b - 1

61J Sean a,b,c,x,y,z números positivos distintos, demostrar que:

(a2 +b2 + c 2 )(x2 + y 2 + z 2) > (ax + by + cz) 2

(62) Demostrar que: 0 < d < c => ^ — ^ - > d 2 ( c - d )

_ 4 .3@ Si 0< d < c => d 3( c - d ) < — - — < c 2( c - d )

(64) Si x > 0 , y > 0, z > 0, demostrar que:

a) xyz = 1 => x + y + z > 3

b) xyz =1 a x + y + z = 3 o x = y = z = 1

® x y z x y zDemostrar que: x > 0 , y > 0 , z > 0 = > — + — + —>3 ( s u g :----- — = 1 y ejercicio 64)

y z x y z x

(óó) Demostrar para todo a y b real \[ab < -~= \¡a2 +b2

(ó?) Si x e y e R, demuestre que: |x| + |y| > |x + y|

(68) Si x 1, x 2,...,x „ e R~ tal que x¡ = 1 . Entonces x x + x2 > 1

(69^ Si a,b e R, demostrar que: (a + b)4 < 8(a4 + b 4)

2 i(70) Si a > 0, probar que: X . + +a > a + 1

x +a

J i ) Si a,b,c ei?* ,y si a 2 +b2 + c2 =8 . demostrar que: a 3 +b3 + c 3 > 1 6 ^

72) Si a > 0 , b > 0, demostrar que: (-^- + -^ -)(a2 +Z>2) > 4

Page 43: Espinoza Ramos 1

Sistema de Números Reates 29

73) Demostrar que sí a,b,c nos números reales positivos entonces a+ +C > Ifabc

^ 4) Sí V a,be R talque a > 0 A b > 0 y a < x 2 <b => - J a < x < 4 b v - - Jb < x < —Ja

^ 5) Si JC], x 2, —, x„ e R, talque x¡ jc2...jc„ =1. Demostrar que xx + x 2 +...+x„ > n

Si a,h e. R ' , Demostrar que (a2 +b2)(a + b)2 >&a2b 2

77) Si a + b + c = 0, Demostrar que: (—+ —+ —)2 = ——+ - Î - + —^ a b c a - b 2 c 2

1 178) Si a,b g R , Demostrar que —— + —— >

a 2 b 2 (a + b)2

1.24 JNECUACÏONES.-

1.24.1 DEFINICION.- Una inecuación es una desigualdad en las que hay una o máscantidades desconocidas (incógnita) y que sólo se verifica para

determinados valores de la incógnita o incógnitas.

Ejemplo.- La desigualdad: 2x + 1 > x + 5, es una inecuación por que tiene unaincógnita “x” que se verifica para valores mayores que 4.

1.24.2 INTERVALOS.- Los intervalos son sub-conjuntos de los números reales que sirvenpara expresar la solución de las inecuaciones, estos intervalos sé

representan gráficamente en la recta numérica real.

Consideremos los siguientes tipos de intervalos:

a) Intervalo cerrado.- a < b

[a,b] = {x e R / a < x < b } a b

b) Intervalo abierto.- a < b— otymtMtmtyé)

<a,b> = {x e R / a < x < b} a b

Page 44: Espinoza Ramos 1

30 Eduardo Espinoza Ramos

c) Intervalo cerrado en a y abierto en b.-

[a,b>= {x e R / a < x < b [ „

d) Intervalo abierto en a y cerrado en b.-

<a,b] = {x e R / a < x < b}

e) Intervalo infínitos.-

[a,+oo>= {x e R / x > a } a

<a,+*> = {x e R / x > a} < OHHmHHiHHMtHtttttt *•a

<-oo,b] = { x e R / x < b ¡b

<-oo,b> = {x e R / x < b} * m m m m m t m m Q ------1b

<-oo,+oo> = {x/x g R}

<-», a> u <a,+oo> = {x e R / x * a} mmHtHHHmHMMtto mmmtHHmwmmma

Nota.- ( l ) S ix e [a,b] <3 > a s x ¿ b

Ejemplo.- Demostrar que: s íx e[2,4] entonces 2x + 3 € [7,11]

Solución

x e [2,4] => 2 < x < 4, multiplicando por 2

4 < 2x < 8, sumando 3

7 < 2x + 3 < 11

Sí 7 < 2 x + 3 < l l => 2x + 3 e [7,11]

Por lo tanto, sí x e [2,4] => 2x + 3 g [7,11]

Page 45: Espinoza Ramos 1

Sistema de Números Reales 31

© I S j Q g L <=> &<x<b

Ejemplo.- Demostrar que: Sí 2x — 6 e <-4,4> => x e <1,5>

Solución

2x — 6 e <-4,4> =?> -4 < 2x — 6 < 4, sumando 6

2 < 2x < 10 dividiendo entre 2

l < x < 5 , entonces x e <1,5>

Por lo tanto, sí 2x - 6 <= <-4,4> => x e < 1,5>

1,25 CONJUNTO SOLUCION DE UNA INECUACION.-:

Se llama conjunto solución de una inecuación a todos los números reales que la verifiquen, es decir, que dichos números reales dan la desigualdad en el sentido prefijado.

1.26 RESOLUCION DE UNA INECUACION.»:

El resolver una inecuación consiste en hallar un conjunto solución; es decir, encontrar el intervalo donde están los valores que puede tomar la incógnita para que verifique la inecuación.

1.27 INECUACION DE PRIMER GRADO EN UNA INCOGNITA.-

Las inecuaciones de primer grado en una incógnita, son de la forma:

Para resolver estas inecuaciones se debe considerar a > 0, es decir, sí a > 0, entonces:

b . bX > ------ O X < —

a a

Su representación gráfica es

O M M tM H H M H m tm ► Ó ■ ■tHM tm tHftHHHtHtHiO

ax + b>0 ó ax + b < 0 , a=£Q

b X X ba a

Page 46: Espinoza Ramos 1

32 Eduardo Espinoza Ramos

Luego la solución es dado en la forma: x e < — ,+oo > ó x e < -oo,— >a a

Ejemplos.- Resolver las siguientes inecuaciones.

0 3x —4 < x + 6Solución

Las inecuaciones de primer grado en una incógnita, se resuelve, expresando la inecuación en la forma:

En un sólo miembro se pone la incógnita, en el otro miembro los números, es decir:

3x - x < 6 + 4, simplificando se tiene: x < 5, es decir: x e <-oo,5>

m m H H M H t M m m t O ------► La solución es: x e <-oo,5>5

0 3(x —4) + 4x < 7x + 2Solución

Poniendo en un sólo miembro la incógnita y en el otro miembro los números:

3x - 12 + 4x < 7x + 2 => 3x + 4x - 7x < 2 + 12 simplificando 0 < 14

esta desigualdad obtenida es cierta, entonces la solución de la inecuación dada , es el conjunto de todos los números reales (x e R).

0 5x — 4(x + 5) < x — 24Solución

En forma análoga a los ejemplos anteriores en un sólo miembro ponemos las incógnitas y en el otro miembro los números: 5x — 4x — x < -24 + 20 simplificando 0 < - 4

Como la desigualdad obtenida no es correcta, entonces no hay ningún valor de x, que verifique que la inecuación dada. Por lo tanto la solución es el vacío (<¡>).

0 2 < 5 —3x < 11Solución

Aplicando la propiedad de transitividad: a < b < c o a < b A b < c

Page 47: Espinoza Ramos 1

Sistema de Números Reales 33

2 < 5 - 3 x < 11 <=> 2 < 5 - 3 x a 5 - 3 x < 11

» 3 x < 5 —2 a 5 —l l < 3 x

o x < 1 a -2 < x -- O/////////////////////////////!-2 1

La solución es: x e < - 2 , l ] -----------------------

1.28 ÍINECUACION DE SEGÜNOD GRADO E3\ U NA INCOGNITA,,

Las inecuaciones de segundo grado en una incógnita son de la forma:

ax2 +bx + c> 0 ó aje2 + e <Q, a * Oí

donde a,b,c e R, siendo a * 0, la solución de estas inecuaciones, se obtiene mediante las propiedades de los números reales ó también por medio de la naturaleza de las raíces del

trinomio ax2 + b x + c - 0 .

a) CARÁCTER DE LAS RAICES DEL TRINOMIO DE SEGUNDO GRADO.

Consideremos el trinomio de segundo grado

al analizar el valor numérico de la ecuación (1) dando valores reales a x se presentan tres casos:

Io Caso.- Si A = b 2 - 4 ac > 0, entonces hay dos valores diferentes rx < r2 que

anulan el trinomio ax1 +bx + c = 0 .

Es decir: a(x - rx )(x - r2) = 0 , si se hace variar x a lo largo de la recta real resulta:

i) Cuando x toma valores menores que r , , los factores ( x - r ¡ ) y ( x - r 2) son

negativos, luego el trinomio ax2 +bx + c , tiene el mismo signo del coeficientede “a”.

¡i) Cuando x toma valores intermedio entre i\ y r2 ; entonces el factor (x ) es

positivo y el factor ( x - r 2) es negativo, luego el trinomio ax2 +bx+c , tiene

signo opuesto del coeficiente de “a”.

Page 48: Espinoza Ramos 1

34 Eduardo Espinoza Ramos

iii) Cuando x toma valores mayores que r2 , entonces los factores ( x - r ¡ ) ,

( x - r 2) son positivos, luego el trinomio ax1 + bx + c , tiene el mismo signo

del coeficiente de “a”.

2o Caso.- Si A = b2 -Aac = 0 , entonces hay un solo valor real >\ =r2 = r , que

anulan el trinomio ax2 + bx + c , luego como ( x - r ) 1 es positivo, el

signo del trinomio ax2 + bx + c es el mismo del coeficiente de “a”.

3o Caso.- Si A = b 2 - 4ac < 0 , entonces se tiene dos valores no reales

-■ r¡ = a + fíi y r2 = a - fii que anulan el trinomio ax1 + bx + c , y para i » / J * ' ' -

cualquier valor de x, el trinomio: ax2 + bx + c tiene el mismo signo del

coeficiente de “a”.

NOTA.- Sí ax2 + bx + c = 0 entonces x = —- ----- ------2a

b) RESOLUCION DE UNA INECUACION DE SEGUNDO GRADO.-

Para resolver una inecuación cuadrática de las formas ax1 +bx + c > 0 ó

ax2 + bx + c < 0 , donde a,b,c e R , a # 0 , por medio de la naturaleza de las raíces

primero se resuelve la ecuación ax2 + bx+c = 0 , y de acuerdo a la naturaleza de las raíces se presenta tres casos:

Io Caso.- Si la ecuación ax2 +bx+c = 0 , tiene dos raíces reales diferentes

< ri ' " + v 7 v ~

*---------------© — :— e -------------

i) Si la inecuación es de la forma ax2 + bx + c > 0 , con a > 0, la solución es todos

los valores de x que pertenecen al intervalo < - o o , > U < r¡ ,+ao >.

¡i) Si la inecuación es de la forma ax2 + bx + c < 0 con a > 0, la solución es todos

lo valores de x que pertenece al intervalo < r¡, r2 > .

Page 49: Espinoza Ramos 1

Sistema de Números Reales 35

2° Caso.- Si la ecuación ax2 + bx+c = 0 , tiene una raíz real única rx =r2 = r .

+— 1 6 ' > r

i) Si la inecuación es de la forma: ax2 +bx + c> 0 , con a > 0.

La solución es todos los valores de x * r, es decir: x e <-oo,r> U <r,+oo>

ii) Si la inecuación es de la forma: ax2 + bx + c < 0 , con a > 0.

No se verifica para ningún valor real de x.

3o Caso.- Si la ecuación ax2 + bx+c = 0 , tiene dos raíces no reales.

i) Si la inecuación es de la forma: ax2 + bx + c > 0, con a > 0.

La solución es todos los valores reales de x.

ii) Si la inecuación es de la forma: ax2 +bx+c < 0 , con a> 0.

No se verifica para ningún valor real de x.

RESUMIENDO EN EL SIGUIENTE CUADRO.

Forma de la InecuaciónRaíces de la Ecuación

ax2 +bx + c = 0Conjunto Solución

ax2 +bx + c> 0 , a > 0Raíces diferentes

r\ <r2< —oo, r, > U <r-, ,+oo >

Raíz Real Unica r R — {r}

Raíces no reales R

ax2 +bx + c < 0 , a > 0

Raíces diferentes

r\ < r2<rx, r2 >

Raíz Real Unica <t>Raíces no reales <l>

Page 50: Espinoza Ramos 1

36 Eduardo Espinoza Ramos

©Ejemplos.- Resolver las siguientes inecuaciones.

2 x 2 —jc-10 > 0Solución

Resolveremos la inecuación usando propiedades de los números reales:

a,b > 0 o Ca>ÖA b > 0 ) v {a < 0 a b < 0)

2;t“ - ; t - 1 0 > 0 => (x + 2)(2x — 5)> 0

(x + 2)(2x- 5 ) > 0 <=> (x + 2 > 0 a 2 x — 5 > 0 ) v ( x + 2 < 0 a 2 x — 5 < 0 )

©

O-

<=> (x > -2 a x > 5/2) v (x < -2 a x < 5/2)

----------------- ► -«--------------- O

-2

O---------------Q//////////A52

-O« / / / / / / / / / / / O

-2-6 — ► 52

La solución es: x e < —oo,—2 >U < — ,+oo>2

Otra forma de resolver esta inecuación, es por la-naturaleza de sus raíces de la ecuación, 5 ,

2x~ - jc- 1 0 = 0 , de donde = - 2 , r2 = — , luego < r2 y como 2x — je: — 1 0 > 0 ,

de acuerdo al cuadro la solución es: 7¥

x e < - 00,-2 >U < — ,+«>>2

;t2 +8jc-6 5 < OSolución

Usando propiedades de los números reales.

¡ s r < ¿ > , b > f l O - ^ h < a < - 4 b

completando cuadrados en x 2 + 8x-6 5 < O, se tiene:

Page 51: Espinoza Ramos 1

Sistema de Números Reales 37

x 2 + 8x + 16 < 65 + 16 => (x + 4) 2 <81, aplicando la propiedad

(x + 4)2 <81 o - ^ | 8 Í < x + 4<4%Í

<=> - 9 < x + 4 < 9 o - 1 3 < x < 5

La solución es x e <-13,5>

Ahora resolveremos la inecuación por medio de la naturaleza de las raíces de

x 2 + 8 x -6 5 = 0 , es decir: (x + 13)(x — 5) = 0 de donde rj = —13, r-, =5

de acuerdo al cuadro es: x e <-13,5> "* O / / / / / / / / / / / / / / /O *"- lo o

0 x 2 + 20x + 100>0Solución

Mediante propiedad de los números reales se tiene:

x 2 + 2 0 jc + 1 0 0 > 0 => (x + 1 0 ) 2 > 0 entonces:

V x e R; x *-10, (x + 10)2 > 0 , por lo tanto la solución es; x s R -{ -1 0 ¡

Ahora veremos de acuerdo a la naturaleza de las raíces: x 2 + 20x +100 = 0 => r = -10,

multiplicidad 2, y como x 2 + 20x +100 > 0 , de acuerdo al cuadro de solución es:

x g R — {-10}

® , 3 9x ~ + —jc + — < 0 innSolución

Aplicando la propiedad de los números reales: V x e R , x 2 > 0

3 9 3 'i 3luego x 2 + —x + -----< 0 => (x + — )2 < 0 pero ( xh-------)2 > 0 , entonces no existe

5 100 10 F 10

ningún valor real para x que verifique a la inecuación, es decir: <j>.

Page 52: Espinoza Ramos 1

3 9Ahora resolvemos mediante la naturaleza de las raíces de la ecuación x~ +—x + -—- = 0 ,

5 100

3 9 3 9de donde r = ----- de multiplicidad dos, pero se tiene que x~ + — x +-------- < 0 y de

10 5 100

acuerdo al cuadro la solución es: (|).

38 Eduardo Espinoza Ramos

I M INECUACIONES POLINOM ÍCAS.-

Una inecuación polinómica en una incógnita, es de la forma siguiente:

P { x } - a nx n +,..+atx + a $ > 0 ó ' . P{x) ~ a„xn + < 0

donde o0, s o n constantes y a„ * 0 , n e Z 4 .

a) RESOLUCION DE UNA INECUACION POLINOMICAS.-

Una inecuación polinómicas de la forma P(x) > 0 ó P(x) < 0, se resuelve de acuerdo a la naturaleza de sus raíces de la ecuación polinómica P(x) = 0, en una forma sencilla y rápida, considerando a„> 0 .

Para esto hallaremos primero las raíces del polinomio

P(x) = a„xn +...+£7lx + a 0 = 0, y como éste polinomio es de grado n entonces tiene

n raíces, lo cual pueden ser reales diferentes, reales de multiplicidad y no reales.

I o Caso.- Cuando las raíces de la ecuación polinómica p(x) = 0, son reales diferentes. Es decir: rx < r, < ...< rn_x < rn

a) En los intervalos consecutivos determinados por las raíces del polinomio

P(x) = 0, se alternan los signos “+” y reemplazando por asignar el signo

(+) al intervalo < rn ,<x> > .

^ A A ^ A ^ T A A ^ A A ^ r■ ■ ■ ■ ■ rn-3 rn -2 rn - l rn

Page 53: Espinoza Ramos 1

Sistema de Números Reales 39

b) Si la inecuación polinómica es de la forma: P(x) = anx n +...+alx + a0 > 0 ,

an > 0 ; al conjunto solución será la unión de los intervalos a los cuales se le

ha asignado el signo

c) Si la inecuación polinómica es de la forma: P(x) = anx" +...+axx + a0 < 0 ,

a„ > 0 ; el conjunto solución, será la unión de los intervalos a los cuales se le

ha asignado el signo

NOTA.- Explicar el método de Ruffini

Ejemplo: Resolver las inecuaciones siguientes:

© jc5 +3x4 - 5 x 3 - 1 5 x 2 + 4 jc + 12>0

Solución

Expresamos el I o miembro de la inecuación en forma factorizada

(x + 3)(x + 2)(x— l)(x + 1 )(x — 2) = 0

1 3 -5 -15 4 12 1

1 4 -1 -16 -12

1 4 -1 -16 -12 0 2

2 12 22 12

1 6 11 6 0 -1

-1 -5 -6

1 5 6 0 -2

-2 -6

1 3 0 -3

-3

1 0

Page 54: Espinoza Ramos 1

40 Eduardo Espinoza Ramos

Luego las raíces son: /•, = - 3 , r2 = - 2 , r3 = - l , rA = 1, /-5 = 2

©

-3 - 2 - 1 1 2

Como P(x) > 0, la solución es la unión de los intervalos donde aparecen el signo (+).

Es decir: x e <-3,-2> U < -l,l> U <2,+oo>

2x3 -3 jr2 -1 l.v + 6 < 0Solución

Hall aremos las raíces de la ecuación 2x3 - 3x2 -1 Le + 6 = 0

2 -3 -11 6 -2

-4 14 -6

2 -7 3 0 3

6 -3

2 -1 0 '/2

1

2 0

Luego las raíces del polinomio son: r, = - 2 , r2 = —, r, = 3

Como la inecuación es de la forma P(x) < 0, la solución es la unión de los intervalos

donde aparecen el signo (-). Es decir: x e < -oo,-2 > { / < — ,3 > 2

2° Caso.- Si algunas de las raíces del polinomio P(x) = 0 son reales de multiplicidad de orden mayor que 1 se tiene:

Page 55: Espinoza Ramos 1

Sistema de Números Reales 41

a) Cuando el orden de la multiplicidad de una de las raíces del polinomio P(x) = 0 es par, en este caso a la raíz no se considera para la determinación de los intervalos y para dar la solución se sigue el mismo proceso del I o caso.

b) Cuando el orden de la multiplicidad de una de las raíces del polinomio P(x) = 0, es impar, en este caso a la raíz se considera para la determinación de los intervalos y para dar la solución se sigue el mismo proceso del Io caso.

Ejemplo.- Resolver las inecuaciones siguientes.

0 ( x - l ) 2(x + 2)(x + 4) > 0Solución

Resolviendo la ecuación (x -1 ) 2 (x + 2)(x + 4) = 0 , de donde rx = - 4 , r, = - 2 , y

= 1, de multiplicidad 2.

-4 -2 1Como la inecuación es de la forma P(x) > 0, la solución es la unión de los intervalos

donde aparecen el signo (+), es decir: x e <-co,-4> U <-2,+co> - {1}

© (2x +1 )(3x - 2)3 (2x - 5) < 0Solución

1 2Resolviendo la ecuación (2x + l)(3 x -2 )3(2 x -5 ) = 0 , de donde ri = y de

multiplicidad 3, r, = —

-1/2 2/3 5/2

Como la inecuación es de la forma P(x) < 0, la solución es la unión de los intervalos1 2 5

donde aparecen el signo (-). Es decir: x e < -oo,- — > U < —, — >

3o Caso.- Cuando alguna de las raíces del polinomio P(x) = 0 no son reales, en este caso a estas raíces no se consideran en la determinación de los intervalos y para dar la solución se sigue el mismo procedimiento de los casos anteriores.

Page 56: Espinoza Ramos 1

42 Eduardo Espinoza Ramos

©

Ejemplo.- Resolver las siguientes inecuaciones.

(.v2 -7 ) (x 2 +16)(.v2 — 16)(jc2 + 1) < 0

Solución

Resolviendo la ecuación: (x 2 - l ) ( x 2 + 16)(x2 -16 )(x2 +1) = 0 , de donde

rx = - 4 , r2 =—j 7 , i\ = ^ 7 , r4 =4, r¡¡ =- 4 / , r6 = 4 i , r-¡ = /,

+ A A T - i

-4 -V7 V7 4

Como la inecuación es de la forma P(x) < 0, la solución es de la unión de los intervalos

donde aparecen el signo (-), es decir: x e < - 4 - - J l > U < -Jl,4 >

( ? ) (1+x + x 2)(2 - x - x 2) > 0Solución

La inecuación la expresaremos así: (x2 + x + 1)(jc 2 + x - 2) < 0

ahora resolviendo la ecuación (x 1 + x + \){x2 + x - 2 ) = 0 de donde: r¡ = - 2 , r 2 =1,

-1 + V3i -1 -V 3 ; -----r 3 = ----r ----, # 4 = ---- ----- • AA~rA/' +

-2 1Como la inecuación es de la forma P(x) < 0, la solución es la unión de los intervalos donde aparecen el signo (-), es decir: x e [-2,1]

L30 INECUACIONES FRACCIONAR! AS.-

Una inecuación fraccionaria en una incógnita es de la forma:

donde P(x) y Q(x) son monomios o polinomios diferente de cero.

Page 57: Espinoza Ramos 1

Sistema de Números Reates 43

©

Para resolver una inecuación fraccionaria debe tenerse en cuenta que las inecuaciones:

P(x) . . P(x) _ . , ,----- - > 0 o ------- < 0 , son equivalentes a las inecuacionesQ(x) Q(x) M

P(x).Q(x)>0 ó P(x).Q(x)<0 es decir: Si Q( x) *0=> Q 2(x)> 0 , de donde se tiene:

Si ^ > 0 =* P(x)n f ' ( x ) >0.Q2(x) =¡> P(x).Q(x) > 0 Q(x) O(x)

Si ^ > < 0 => P(X)Q (X)< 0 .Q2(x) => P(x).Q(x)< 0 Q(x) Q(x) V ’ w v w

Ejemplo.- Resolver las inecuaciones siguientes:

(.t2 -1)(x + 3)(jc-2 );> u

Solución

/ ^ \ (-Y- -1 )(jc +3)(* - 2 ) Q^ ( x —5)(x + 7)

, • (*2 - l)(* + 3 )(* -2 ) , • • • ■■La inecuación----------- ——---------- > 0 , es equivalente a la siguiente inecuación.(x -5 )( x + 7) H B

(jc2 — 1)(jc+3)(jc—2)(jc—5)(jc-»- 7) > 0 , para x * -7 ,5

ahora hallaremos las raíces de la ecuación (x 2 — 1 )(jc -i- 3)(jc — 2)(jc — 5)(jch- 7) = 0 .

De donde r, = -7 , r2 - 3 , = -1 , r4 = 1, rs =2 , r6 = 5 , que son reales diferentes.

- 7 - 3 - 1 1 2 5

P(x)Como la inecuación es de la forma ------ > 0, la solución es la unión de los intervalosQ(x)

donde aparecen el signo (+) es decir: x e <-»,-7> U <-3,-l> U <1,2> U <5,+oo>

x - 2 jc + 1<-x + 3 x

Page 58: Espinoza Ramos 1

44 Eduardo Espinoza Ramos

Solución

La inecuación dada se expresa en la forma, mayor que cero o menor que cero, es decir:

x - 2 .r + 1 x ( x - 2 ) - ( x + l)(x+3)--------------- <0 => —------- — --------------- < 0 , de donde:x + 3 x x(x + 3)

6 x —3 2x +1 .<0 => ---------- > 0 , que es equivalente a:

x(x + 3) a'(x + 3)

x(2x + 1 )(x + 3 )x > 0, para x * -3,0 ahora encontramos las raíces de la ecuación.

(2x + l)(x + 3)x = 0, de donde r, = - 3 , r2 = — , r3 = 0

-3 -1/2 0

Como la inecuación es de la forma: (2x + l)(x + 3)x > 0,

la solución es la unión de los intervalos donde aparecen el signo (+). es decir:

x e < —3,— >U < 0 .+ » >2

x x - \ 2x - + -----<-x -1 X X + 1

Solución

x x — 1 2.xLa inecuación dada expresaremos en la f o r m a : ------- h:--------- -— < 0

jc -1 .v x +1

x'(.v + l) + ( .í- lK .r - l) (x + l ) - 2 x ‘ f x - l ) .----------------------------------------------------- < 0 , simplificando

( x -DxU + l)

2 x2 - x + l < 0 , que es equivalente a la inecuación.( a- - 1 ) . v( a- + 1)

(2x2 - x + l)(x-l).v(.v +1) < 0 , para x * -1,0,1

Page 59: Espinoza Ramos 1

Sistema de Números Reales 45

ahora encontramos las raíces de (2x2 - x + l)(x- \)x(x + 1) = 0 , de donde sus raíces son:

. - V + \ / ~ V + “ „

-1 0 1

P(x)Como la inecuación es de la forma ------ < 0 , la solución es la unión de los intervalos

Q(x)

donde aparecen el signo (-), es decir: x e <-*>,-1> U <0. 1>

1,31 INECUACIONES E X P ( Í Ü Í I Ü M C

Las inecuaciones exponenciales en una incógnita son de la forma:

donde f(x) y g(x) son expresiones en x, a e R + , a 1.

Para resolver estas inecuaciones, se consideran dos casos:

1 ° Caso.- Si a > 1, entonces los exponentes de la inecuación dada son desiguales en el mismo sentido prefijado, es decir:

Si > a ^ y. <=> f[x)>g& }

Sí a ri' ^ < a s M o f|x)<g(&)

2o Caso.- Si 0 < a < 1, entonces los exponentes de la inecuación dada son desiguales en sentido contrario al prefijado, es decir:

Sí a f í x )> a ^ o f(x)<g(x>

Si a f i A < a ^ <=> fíx) > gíx)

Ejemplos.- Resolver las siguientes inecuaciones:

Page 60: Espinoza Ramos 1

46 Eduardo Espinoza Ramos

0 3/3(S,-l>/3Solución

5jr-t-l 3(x + l) 5x+l 6x+6

La inecuación dada es equivalente a: 3 9 < 9 10 => 3 9 < 3 10

, ^ , 5jr + l 6.v + 6como a = 3 > 1 entonces ------- < ---------9 10

50.y + 1 0 < 54.r + 54 =?> —44<4.v => x > - l l => x e <- l l , +o o >

La solución es: x e <-11 ,+»>

0 [(0,2>tv1K' 2) ]A 3 > (0,°123jr-l

Solución

La inecuación dada se puede escribir en la forma:

(jr-j-'Xjr -2) . (x+l)(.r-2)( 0 ,2 ) * - 3 > ( u - ^ z o )3 x -i d e d o n d e : (0<2) v-3 > ( 0 , 2 ) 12a- 4 ,

8

, . (x + \) (x-2) (jc + 1)(jc — 2)como a = 0.2 < 1, se tiene:--------------- < 1 2 - 4 => ------- ------ - -1 2 * + 4 <0

x - 3 jc—3

1 l x 2 -3 9 x + 14efectuando operaciones y simplificando tenemos: --------------------> 0 , esta inecuación esx - 3

equivalente a: (1 be2 -3 9x + 14)(j c - 3) > 0 p arax * 3 .

Ahora hallando las raíces de : (1 lx 2 -3 9x + 14)0c-3) = 0 , de donde:

3 9 -^9 0 5 , 39+^905r, = ------------- , r7 = 3 , = -------------1 22 2 3 22

39-V905 3 39 + 90522 22

Page 61: Espinoza Ramos 1

Sistema de Números Reales 47

P(x)Como la inecuación es de la forma ------ > 0 , la solución es la unión de los intervalos

Q(x)

, ■ . ■ 3 9 -^ 9 0 5 , „ 39 + 905donde aparece el signo (+) es decir: x e < -------------- j > U <-------------- ,+w >22 22

1.32 INECUACIONES IRRACIONALES.»

Las inecuaciones irracionales en una incógnita son de la forma:

.....Ó .............................0

donde P2 (x),P-¡ (x),...,P„ (x) son monomios o polinomios diferentes de cero.

Para que la solución de la inecuación sea valida debe resolverse antes la condición P¡(x)> 0 , i = 2,3,...,n en las expresiones con una radical par, cuyo conjunto solución

constituirá el universo o dentro del cual se resuelve la inecuación dada. Debe observarse

que quiere decir, (+^P(x) ) y si se desea la raíz negativa se escribirá

expresamente como ( - -JPfx )) ; es decir:

i) V P(x) > 0 , ^P (x ) > 0 ii) -JP(x) = 0 <» P(x) = 0

para resolver las inecuaciones radicales se debe tener en cuenta las siguientes propiedades:

O 0 < x < y <=> 0 < 4 x < © 0 < x < y o 0 < 4 x < J y

© 0 < x < y <=> 0 < 4 x < ^ y

Si n es un entero positivo par.

ax) V P(x) > 0 !{¡P(x) > 0 <=> P(x)>()

a2) H¡P(x)= 0 <=> P(x) = 0

ö3) » 0 < P(x) < Q(x)

Page 62: Espinoza Ramos 1

48 Eduardo Espinoza Ramos

Jii) Si n es entero positivo impar.

bx) ^jP(x) > 0 <=> P(x) > 0

b2 ) '-{]P(x) < 0 o P(x) < 0

bi) !{[PM<!{lQM » P(x) < Q(x)

Las propiedades 6, ) , b2 ) indican que '-{jP(x) tienen el mismo signo que P(x) si n es

impar.

OBSERVACION.- Cuando en una expresión existen k radicales par entonces se

calculan los universos relativos UX,U 2,...,U k para cada radical

y el universo general será U = Ul n U 2 n . . . n U k .

Daremos algunos ejemplos de ilustración de estas propiedades, para después estudiar las diversas formas de inecuaciones irracionales.

Ejemplos.- Resolver las siguientes inecuaciones

Q -Jx + 5 > -2Solución

Como -Jx + 5 > -2 es valida para todo x tal que x e U : x + 5 > 0 => x > - 5

=> U = [-5,+»>, luego el conjunto solución es [-5,+*»

© -Jx + 1 > 0Solución

Como -Jx + 7 > 0 entonces el conjunto universal es x + 7 > 0 => x > - 7 U = [-7,+co>

Además -Jx + l > 0 <=>x + 7 > 0 = > x e <-7,+oo>.

Luego el conjunto solución es x g [-7,+*>> A <-7,+oo> x g <-7,+oo>

@ -Jx 5 <0

Page 63: Espinoza Ramos 1

Sistema de Números Reales 49

Solución

Como sjx- 5 < 0, el conjunto universal es x - 5 > 0 => x > 5 => U = [5,+oo> y como

0 < -Jx-5 < 0 0 '/i-5 = 0 => x—5 =0 => x = 5 e U, luego el conjunto solución es {5}.

@ <0Solución

Como -Jx-H < 0 es absurdo entonces la solución es (|).

© V-v + 9 >0Solución

Como a/-í + 9 > 0 es verdadero V x e U: x + 9 > 0 es decir U = [-9,+°o>, luego el

conjunto solución es x e [-9,+oo>.

© V8-2.v <VÍ3Solución

El conjunto universal es 8 — 2x > 0 => x < 4 de donde U = <-oo,4],

-Jü-2x < ~ j v í o 8 - 2 x < 1 3 => de donde j c g [ - ^ , + o o > . Luego el

conjunto solución es: U n [ — -,+«>>=[-—,4]

© -VAT3" -4- > -3Solución

Calculando los universos relativos.

L\ : x + 3 > 0 => x > -3 => x e [-3,+oo>

U 2'. 4 — x > 0 x < 4 x e <-»,4]

U = í/j nt/2 = [-3 .+oo> n< -oo,4] = [-3,4]

como la suma de dos positivos es siempre mayor que un negativo.

-Jx + 3 +-J4-X > -3 es valido V x g U = [-3,4],

Page 64: Espinoza Ramos 1

50 Eduardo Espinoza Ramos

® - J x ^ 7 >3Solución

Sea U: x — 7 > 0 => x > 7 = > x e [7,+*>

-Jx—7 >3 o x - 7 > 9 = > x > 1 6 => x e <16,+*>

el conjunto solución es x e U n < 1 6,+oo> = < 16,+*>

( ? ) -V -v -5 >0Solución

- V-v- 5 > 0 o - J x -5 < 0 el conjunto solución es <j>.

©

V-í2 - x - 1 2 <-Jx2 - 6x + 5Solución

Calculando los universos relativos.

U] : x 2 - x - 1 2 > 0 => (x — 4)(x + 3) > 0 + \ / . \ / +

-3 4Ul =< -oo,-3] U [4,+x> >

U2 '■ x 2 - 6 x + 5 > 0 => (x —5)(x —1 )> 0 + +

U 2 =< -oo,l] U [5 ,+*> 1 5

U = Ul n U 2 = < - « - 3 ] U [5,+co >

Vx2 - x —12 <-Jx2 -6 x + 5 <=> x 2 - x - 1 2 < x 2 -6 x + 5

17 17de donde 5x< 17 => x < — => x e< - 00,— ]

5 5

17Luego el conjunto solución es: x e V A < - 00,— ] = < -oo,-3]

Vx2 - 4 (x - 2 ) 2(x3 -13x + 12) ^ ^

(x + 4)3(x3 + 8 x 2 + 4 x -4 8 ) “

Page 65: Espinoza Ramos 1

Sistema de Números Reales 51

Solución

Como t/x 2 - 4 tiene el mismo signo que x 2 - 4 y (x + 4 )3 tiene el mismo signo que x + 4 entonces la inecuación dada es equivalente.

\¡x2 - 4 ( x - 2 ) 2(x3 -13x + 12) (x2 - 4 ) ( x - 2 ) 2(x3 -13x + 12) _---------¿ U <=> ---------------:------------------------ > U

(x + 4)3(x3 + 8x 2 + 4 x -4 8 ) (x + 4)(xi + 8.x2 + 4 x - 48)

Como V x e R, ( x - 2 ) 2 > 0 entonces

(x2 — 4)(.v — 2)2( r 1 -13,v + 12) (x2 -4 ) (x 3 -13x + 12)■ U O ----------- ;-------;--------------¿ U

(x + 4)(x3 + 8x2 + 4 x -4 8 ) (x + 4)(x3 + 8x2 + 4 x -4 8 )

(x + 2 )(x -2 )(x - l)(x2 + x -1 2 ) (x + 4 )(x -2 )(x + 6)(x + 4)

> 0 , para x * 2, - 4

(x + 2 )(x -l)(x + 4 )(x -3 ) (x + 6)

> 0 , para x * 2, - 4

-6 -4 -2

Luego el conjunto solución es: x e <-6,-4] U [-2,1] U [3,+oo>

Vx + 7 (x + 2 )4 (.v + 3);l íx 2 7x + 12 Vh T I

fyx + 9 (x - 8 ) 3(x 3 -2 7 ) ( x 2 -1 4 x + 48)<0

Solución

Los radicales pares nos da el universo U. 1 0 - x > 0 A x + 9 > 0 => x < 1 0 A x > -9

x e <-9.10] => U = <-9,10]

(no se incluye el -9 por que anula al denominador)

como los radicales pares son positivos la inecuación es equivalente a:

Page 66: Espinoza Ramos 1

52 Eduardo Espinoza Ramos

Vx + 7(x + 2 ) 4 (x + 3)^Jx2 - 7 x + \ 2 $ ] \ 0 - x < ^ $ J x + 7 ( x + 2 ) 4J t f + 3 ) ^ j x 2 —7jc+12

^ + 9 ( j c - 8 ) 3(x 3 - 2 7 ) ( x 2 - 1 4 x + 48) ~ (jc-8>3(jc3 -2 7 ) (x 2 -14x+ 48) ~

como los radicales impares tienen el mismo signo que las cantidades subradicales entonces:

(x + 7)(x + 2)4(x + 3)(x2 -7 x + 12) „ , _ . 4 „- < 0 , como para todo x e R (x + 2) > 0

(or—8)3 ( x —3)(x' ) + 3 x + 9 ) (x -6 ) (x - 8 )

(x + 7)(x + 3 )(x -3 )(x -4 ) .-— , ------------- ----- —-< 0, para x * 3, 8 simplificando tenemos(x —8) (x —3 )(x -6 )(x -8 )

(x + 7)(x + 3 )(x -4 ) ^ A + \ A ~ ^ ~ ~ V + _»--------- — ---------< 0 , x * 3,8 - 7 - 3 4 6

x e [-7,-3] U [4,6> luego el conjunto solución es: x e U n ([-7,-3] U [4,6>)

/. x e [-7,-3] U [4,6>

ahora veremos como resolver diversas formas de la inecuación con radicales aplicando criterios de acuerdo a cada tipo de inecuación irracional.

1 ° Para las inecuaciones irracionales de las formas:

a) J P M > Q(x) . La solución se obtiene así:

J P Ü j > Q(x) o (P(x) > 0 A [Q(x) < 0 V (P(x) > 0 A P(x) > Q 2(x))])

b) sJP(x) > O(x) ; la solución se obtiene así:

J P M > Q(x) o [P(x) > 0 A (Q(x) < 0 V [P(x) > 0 A P(x) > Q 2 (x)])]

2o Para las inecuaciones irracionales de las formas:

a) -JP(x) < Q(x ) ; la solución se obtiene así:

J püc) < Q(x) « • [(P(x) > 0 A (Q(x) > 0 A P(x) < Q 2(x ))]

Page 67: Espinoza Ramos 1

Sistema de Números Reales 53

b) -JP(x) < Q(x) ; la solución se obtiene así: /

JP(x ) < Q(x) <=> P(x) > 0 A [Q(.x) > 0 A P(x) < Q 2(x)]

3o Para las inecuaciones irracionales de la forma:

a) -JP(x) +^¡Q(x) > 0 ; La solución se obtiene así:

4 P (x )+ 4Q (x ) > 0 => P(x) > 0 A Q(x) > 0

b) ,JP(x) + ~JQ (x) > 0 ; La solución se obtiene así:

^ P ( x ) + ^ Q ( x ) > 0 => P(x) > 0 A Q(x) > 0

4o Para la inecuación irracional de la forma:

s¡P(x) +s[Q(x) > K , K > 0; La solución se obtiene así:

-¡FV¡)+4Q(x ) > K ^ [ (P U )> 0 A Q(x)> 0) A P(x) > ( k ~ 4 0 M ) 2]

5o Para las inecuaciones irracionales de la forma:

-JP(x) +^¡Q(x) < 0 ; La solución se obtiene así:

^ P ( X ) + ^ Q ^ j < 0 => P(x) = 0 A Q(x) = 0

OBSERVACION.-

C’onsíderemos otros casos más generales.

Io Caso.- Si n es impar positivo mayor que uno.

P í » ) # w >0 o f w . e w >0R(x) R(x)

b) _ < 0 « — <oR(x)'i¡Q(x) R(x)Q(x)

Page 68: Espinoza Ramos 1

54 Eduardo Espinoza Ramos

c) ’-ljP(x) <H¡Q(x) o P(x) < Q(x)

2o Caso.- Si n es par positivo

, P(x) C)

d)

’<¡QWR(x)

P(x)

A O 2 IV o

A

oVIÓ

A P U ) > oR( x)

A P W < 0R(x)'4q (x )R(x) ~

e) nJP(x) > Q ( x ) o ( P ( x ) > 0 A [Q(x) < 0 V (P(x) > 0 A Q(x) > 0 A P(x) > Q" (*))]

f) !{fPÜ) < Q(x) o P(x) > 0 A [Q(x) > 0) A P(x) < Qn (jc)]

Ejemplo.- Resolver las siguientes inecuaciones

(7) -n/.v2 — 14jc-i-13 > x - 3Solución

V-v2 -14.V + 13 > .v -3 <=> x~ -1 4 .v + 13> 0 A [jt — 3 < 0 V

(a-2 -14.V + 13 > 0 A .v2 -14.V + 13 > (jc- 3 ) 2) ]

o jc2 - 1 4 . V + 1 3 > 0 A [x<3 V (jc2 - 1 4jc + 1 3 > 0 A x < ~ ) ]

o jc2 - 1 4 a + 1 3 > 0 A [ j[ : < 3 v x g < —* ,1 ] U [ 1 3 , oo> A x < —]

o x 2 -14x + 13> 0 A [jc <3 V x < —12

o A 2 - 1 4 . r + 1 3 > 0 A x < 3

Page 69: Espinoza Ramos 1

Sistema de Números Reales 55

o (x —13)(x — 1) > 0 A x < 3 x

» x e <-oo,l]U[13,+oo> A x < 3 x e < -* ,l]

-Jx2 -14* + 13 < x + lSolución

Aplicando la parte b) del Io caso:

■\¡x2 -1 4 X + 13 < x + l <=>(.v2 -14.V + 13 > 0 A [jc +1 > 0) A (x2 - 1 4 * + 13 < (x + l )2 ])

<=> ((jc — 1 3)(jc —1>> 0 A [ . v > -1 ) A ( ( jc - 1 3 ) ( .v - 1 ) < ( .y + 1)2 ])

<=> ((jc-13)(x-1) > 0 A [x > — l) A jc > —]4

<=> x e <-1,1] U [13,+*» A x > - ]4

o x e < —.1] U[13.+oo>4

2x - 8 5-.v¿ il

Solución

Aplicando la parte b), del 3o caso: -JP(x) +s]Q(x) > 0 P (x)>0 A Q (x )> 0

Í 5 ^ > 0 0 A — 2 0i x - i ]¡x + 3 -v-1 x + 3

o ( x - 4 ) ( x - 1) > 0, x * 1 A (5 -x )(x + 3 ) > 0, x * 3

» (x —4)(x—1) > 0, x * 1 A (x —5)(x + 3) < 0, x * -3

~ + \ / - V + „ yV ____ ~IA / - ,1 4 -3 5

Page 70: Espinoza Ramos 1

56 Eduardo Espinoza Ramos

x e <-oo,l> U [4,oo> A x e <-3,5] /

---------------------------- o • -------------------------

-----------e / / / / / / / / / / e -----------------------------3 1 4 5

O ---------------------------------------------------------------------- •

La solución es: x e <-3,l> U [4,5]

OBSERVACION.- Si n es un numero positivo impar, entonces:

© 'jJP(x) <'ifQ(x) » P(x) < Q(x) © # W < # W « P (x)<0(x)

© o P(x) > Q(x) © '4poT)>'4q Ü) o P(x) > Q(x)

3 j 2 _ j.Ejemplo.- Resolver la inecuación __*------------> 0

Solución

El conjunto de referencia o conjunto universal se obtiene del radical par y diferente de

cero: x 2 -1 > 0 , dé donde x 2 > 1 => x > 1 v x < -1 x e <-oo,-l> u <l,+oo>

luego el radical par resulta positivo y puede simplificar quedando la inecuación

> 0 , que de acuerdo a las observaciones, las expresiones del subradical tiene el\¡x + 5

mismo signo - —— > 0 , de donde ——- < 0 ------ - .....^ ..................x + 5 .v + 5 .5 3

x e <-5,3>

Luego la solución de la inecuación es: x e <-5.3> n (< -» .-1> u < 1 ,+oc>)

.-. x e <-5,-l> u < l ,3 >

n i i • •• V A -A .(x 3 + 8x2 + 4 x -4 8 )Ejemplo.- Resolver la inecuación--------------— ------------------- >0(* + 4)5(x -1 3 jc + 12)

Page 71: Espinoza Ramos 1

Sistema de Números Reales 57

Solución

De acuerdo a las observaciones indicadas se tiene que ^ x 2 - 9 tiene el mismo signo que

x 2 - 9 y que (x + 4)5 tiene el mismo signo que x + 4, por lo tanto la inecuación dada

resulta equivalente a la inecuación:

( x2 - 9 ) ( x 3 +8x2 + 4 x -4 8 ) .---------------- -------------------- > 0 factorizando el numerador y el denominador(x + 4)(x -13x + 12)

(.v + 3 )(x - 3 )(x - 2 )(x + 6)(a + 4) (a + 3 )(a -2 )(a + 6)(a + 4)— ---------------------------—----- —> 0 o ---------------- -----------------> 0 , x * 3

<a + 4)(a-1)(a + 4 )(a-3 ) (x + 4) (a —1)

(a + 3)(a--2 )(a46Xx + 4) ~ + V ' V + V 1 V + ■

x-1 " - 6 - 4 - 3 1 2

x u [-6,-4] u [-3,1 > u [2,+oo> - -¡3}

OBSERVACION.- Si n es un numero positivo par, entonces:

O ¡(/PW < ’4 Q ( x ) « 0 < P(x) < Q(x) © o O < P (x )< 0 (x )

132-2v i -Ejemplo.- J --------- >V-VV x + 2

Solución

Aplicando la observación a) se tiene:

r 3 2 - 2 a „ 3 2 - 2 aa/ x < — ------ O ()< x < — —

V x + 2 x+ 2

3 2 - 2 a

x + 2

<=> X > 0 A a - 32 - 2x <0 . a + 2

r 2 + 4x - 32<=> x > 0 a --------------— < 0

a + 2

Page 72: Espinoza Ramos 1

58 Eduardo Espinoza Ramos

„ x > o a í í ± w £ z í ) < o Z 2 ¿ Z 2 ¿ H 2 ¿ - +x + 2

<» x > 0 a x e <-oo,-8] u <-2,4]

-8 -2 4

x e [0,4]

1.33 EJERCICIOS DESARROLI.ADOS.-

o Resolver la inecuación cuadrática: - 4 x 2 + 4x + 3 > 0

Solución

La inecuación dada expresaremos en la forma: 4x2 - 4 x - 3 < 0

faclorizando (2x + l)(2x - 3) < 0, aplicando la propiedad de números reales:

(2x + 1 )(2x — 3) < 0 <=> (2x + 1 > 0 A 2x — 3 < 0) V (2x + 1 < 0 A 2x — 3 > 0)

1 3 1 3 *«■ ( * > - - A x <•— ) V ( x < — A x > - )

2 2 2 2

O -------------------------*

--------------------------O--> V-1/2 3/2

-O O

- 1/2 3/2

La solución es: x e < - — ,— >2 2

Ahora resolvemos mediante la naturaleza de las raíces la ecuación 4x2 - 4x - 3 = 0 , de

donde r, = —- , r-, = — + +

-1/2 3/2

Como la inecuación es de la forma 4x2 —4jr —3 < 0 . la solución es la unión de los

intervalos donde aparece el signo (-), es decir: 1 1W M

© x 5 +8x4 +12x3 - x 2 — 8jc — 12 > 0

Page 73: Espinoza Ramos 1

Sistema de Números Reales 59

Solución

Aplicaremos el criterio de las raíces de la ecuación: .r + 8x4 +12*3 - x 2 -8 .Í -1 2 = 0

La ecuación que queda es: x 2 + x +1 = 0 , cuyas raíces son:

/• = —* ■ Luego las raíces reales son: /•, = - 6 , r2 = - 2 , r-, = 1

-6 -2 1

Como la inecuación es de la forma P(x) > 0, la solución es la unión de los intervalos

donde aparece el signo (+). es decir: x e í i <L+<o>

( ? ) 12 x 4 - 56x3 + 89x 2 - 56x +12 < 0Solución

Encontrando las raíces de la ecuación

12x4 -5 6 x 3 +89x2 -5 6 x + 12 = 0 dividiendo entrex2

Page 74: Espinoza Ramos 1

60 Eduardo Espinoza Ramos

Reemplazando en la ecuación (1) se tiene:y

12(r2 - 2 ) - 5 6 - + 89 = 0 . entonces: 12r2 -5 6 r + 65 = 0 => (6 r -1 3 )(2 r -5 ) = 0

de donde r = — . r = —6 2

13 1 1 3 3 2para : = — => ,v + — = —• => 6x -13x + 6 = 0 , de donde r-> = —

6 x 6 2 " 3

para r = — => x + — = — => 2x2 - 5 x + 2 = 0 , de donde r3 = — , r4 = 22 A' 2 ' 2

ordenando las raíces en la recta numérica

+

1/2 2/3 3/2 2

Como la inecuación es de la forma P(x) < 0. la solución es la unión de los intervalos

donde aparece el signo (-), es decir:

x(2x + 1 )(x — 2)(2x — 3) > 63Solución

Hallaremos las raíces de la ecuación:

x(2x + 1 )(x — 2)(2x — 3) — 63 = 0, entonces x(2x-3)(2x + 1 )(x — 2) — 63 = 0

(2 x 2 - 3x)(2x2 - 3.v - 2) - 63 = 0

Sea r = 2.\'2 -3 x z ( z - 2 )-6 3 = 0

r 2 - 2 r -6 3 = 0 => ( ; - 9 ) ( r + 7) = 0 , dedonde z = 9, z = -7, entonces:

Para z = 9 => 9 = 2.y2 -3.y => 2.t2 — 3jc—9 = 0 , dedonde: r, = — . r-, =3i 2 .

Page 75: Espinoza Ramos 1

Sistema de Números Reales 61

Para z = -7 => --7 = 2x — 3jc => 2 j r -3 jc + 7 = 0 , dedonde: r = 3 + V47i

+

-3/2 3

Como la inecuación es de la forma P(x) > 0, la solución es la unión de los intervalos

donde aparecen el signo (+), es decir: I !X > U <3„+0t>

©x < x - 3

1- x 2 - xSolución

La inecuación dada se escribe en la forma:

.v x - 31 — x 2 - x

-2 x + 3 ( l - x ) ( 2 - x )

2 x - 3

< 0 x ( 2 - x ) - ( x - 3 ) ( l - x ) ( l - x ) (2 -x )

< 0 , simplificando

< 02 x -3

(x-l)(x-2)

> 0 , es equivalente a la inecuación

> 0 , entonces la inecuación

( x - l ) ( x - 2 )

(2x — 3)(x — 1 )(x -2 ) > 0 para x ^ 1,2 encontrando las raíces de la ecuación

( 2 x - 3 ) (x - l ) ( x —2) = 0, se tiene: r, = 1, r, = —, r-, = 21 . 2 3

3/2

como la inecuación es de la forma ------ > 0 , la solución es la unión de los intervalosQ(x)

donde aparecen el signo (+), es decir: XC< ! ,- } £ / < >

Page 76: Espinoza Ramos 1

62 Eduardo Espinoza Ramos

©x - 2 x + 1■ < ----x + 3

Solución

La inecuación dada se escribe en la forma:

x - 2 x + 1 A x(x - 2) - (x + \)(x + 3) .-------- — < 0 => ----------;-------------------< 0 , simplificandox + 3 x x(x + 3)

-6 x —3 n 2x +1 „ . . ., 2x +1 _ . ,---------- <0 => -----------> 0 , entonces la inecuación -----------> 0 es equivalente a lax(x + 3) x(x + 3) x (x +3)

inecuación (2x + l)x(x + 3) > 0, para x * -3,0, ahora encontraremos las raices de la

ecuación: (2x + 1 )(x + 3)x = 0, de donde rx = -3 , r2 = —~ , r3 = 0.

-3 -1/2 0

Como la inecuación P(x) > 0, la solución es la unión de los intervalos donde aparecen el

signo (+) es decir:i

______ 2_______

x 1 -5 x + 6¿ u

Solución

0 * ; - 5 » + 6 > o^ x + x -4 2

x -5 x + 6 „ (x -2 ) (x -3 ) ,— > 0 <=> ------------------> 0 , esta inecuación es equivalente a:x + x -4 2 (x + 7)(x - 6)

(x—2)(x—3)(x + 7)(x - 6) > 0 para x * -7,6, ahora encontraremos las raíces de la ecuación,

(x — 2)(x — 3)(x + 7)(x — 6) = 0, donde i\ = - 7 , r2 = 2 , r3 = 3 , r4 = 6 .

-7 2 3 6

Page 77: Espinoza Ramos 1

Sistema de Números Reales 63

P(x)Como la ecuación es de la forma ------> 0 la solución es la unión de los intervalosQ(x)donde aparecen el signo (+), es decir: x £ -7> U [2,3

®- x 3 + J 2 +22.V--40

x(x + 7)> 0

Solución

La inecuación dada escribiremos en la forma:

x 1 - .v 2 - 22x + 40 (x -2 )(x -4 ) (x + 5)< 0 => ------- :----------------- < 0

x{x + 7) x{x + 7 )

, -, (x- 2 ) ( x- 4 ) (a: + 5) . ,La inecuación --------- -— ......... < 0 , es equivalente a:x(x + 7)

(x — 2)(x — 4)(x + 5)x(x + 7 ) < 0, para x * -7,0

ahora encontramos las raíces de la ecuación

(x -2 )(x -4 )(x + 5)x(x + 7) = 0 de donde: rx = - 7 , r2 = - 5 , r3 = 0 , r4 =2 , r5 = 4

P(x )Como la inecuación es de la forma ------ < 0 , la solución es la unión de los intervalosQ(x)donde aparecen el signo (-), es decir: x 6 <-aj,-7> t í U [2,4]

©i 24~ 4x n1 + —------------- > 0

x 2 — 2jc —15Solución

La inecuación dada escribiremos en la forma: — — 6x + 9 ^ ^ ^a-2 - 2a--1 5

( x -3 y(,r-5)(.r + 3)

> 0

Page 78: Espinoza Ramos 1

64 Eduardo Espinoza Ramos

i ( t —3)“pero (x - 3 ) 2 > 0 , x * 3 , entonces: — —— — — > 0 <=>

1(x-5Kor+3) U-5KX+3)

> 0 para 3

1(.r-5)(.t + 3)

> 0 . x * -3 ,5 •» (x — 5)(x + 3) > 0. para x * -3, 5,

ahora encontraremos las raíces de (x — 5)(x + 3) = 0, de donde jj = - 3 , r2 = 5 .

A A ~ ^ A A-3

Pi Jr)Como la inecuación es de la forma —— > 0 , la solución es la unión de los intervalos

donde aparecen el signo (+). es decir: | x 6 <-se,t3> U <5v*>> - f$f

3.V + 5 <3 2x + l

Solución

A la inecuación dada escribiremos en la forma:

---------- 3 < 0 o ---------- < 0 C3> ---------> 0Z t + 1 2x +1 2x+ l

— —— > 0 o (3x — 2)(2x + 1) = > 0 , para x * —— 2 x + 1 2

I 2ahora encontramos las raíces de: (;3x —2> (2x + I) = 0, donde ri = —*r2 = y

-1/2 2/3

P{x}Como la inecuación es de la forras —— > 0 , la solución es la unión de los intervalos

Qix)

donde aparecen el signo (+>, es decir

Page 79: Espinoza Ramos 1

Sistema de Números Reales 65

©(2.v2 -8 x + 8)(x + 3)

x + 6

(2x2 -8 x + 8)(x + 3) x + 6

x + 3

> 0

Solución

x + 6> 0 , (x -2 ) > 0 , V x e R

x + 6> 0 <=> (x + 3)(x + 6) > 0, para x * -6

Luego las raíces de (x + 3)(x + 6) = 0 son rx = - 6 , r2 = -3

-6 -3P{x)Como la inecuación es de la forma ------ > 0 , la solución es la unión de los intervalosQ(x)

donde aparecen el signo (+), es decir: X, e <~to,~6> U

( l - x - x ~ ) ( 2 - x - x ) (3 -x ) (2 -x )

( l - x - x 2) (2 -x - -x 2)(3 -x ) (2 -x )

(x2 + x - l ) ( x 2 + x - 2 )

>0

> 0 <=>

Solución

(x + x - l ) ( x ~ + x - 2 )>0

(x -3 )(x -2 )

>0<=>(x2 + x - l ) ( x 2 + x - 2 ) ( x - 3 ) ( x - 2 ) > 0 , p a rax * 2 ,3(x -3 ) (x -2 )

ahora encontramos las raíces de: (x2 + x - l ) ( x 2 + x -2 ) (x -3 ) (x -2 ) = 0 , dé donde

- 1 - V 5 -1 + ^ 5 , 0 ,rx = - 2 , r2 = ---- ----- , r3 = — - — , r4 = 1 , /-5 = 2 , r6 =3

-2 — 1 —v/5 -1 + V5 1 2 3

Page 80: Espinoza Ramos 1

66 Eduardo Espinoza Ramos

Como la inecuación es de la formaP(x)

Q(x)> 0, la solución es la unión de los intervalos

donde aparecen el signo (+), es decir:

2 lili5 i 5 ->x -1 x - 2

x 4 + l x + 2Solución

V x e R, x 4 + l > 0 , x 4 + 2 > 0 , entonces la inecuación dada se puede escribir en la

forma: (x5 - l ) ( x 4 + 2 )< (x 5 -2 ) (x 4 +1), efectuando operaciones y simplificando se

tiene: x 4(x + l ) < 0 , luego encontrando las raíces de

x 4(x + l )= 0 se tiene /¡ = - 1 , r2 = 0 , multiplicidad 4.

- i punto critico de multiplicidad par.

Como la inecuación es de la forma p(x) < 0, la solución es:

(x¿ - 2x + 4)(x-1)(2x + l)(x + 4)

<0

Solución

(x2 - 2 r + 4 )(x - l)La inecuación --------- :-------------- < 0 , es equivalente a:

(2x + l)(x + 4) M

(x2 -2 x + 4 )(x -l)(2x + l)(x + 4) <0 , para x * - 4 , - -

ahora encontramos las raíces de la ecuación.

(x2 - 2x + 4)(x - l)(2x + l)(x + 4) = 0 , de donde.

Page 81: Espinoza Ramos 1

Sistema de Números Reales 67Á------------------

= - 4 , r2 = — , r3 = 1, r4 = l+^¡3i, r5 = 1 -^ 3 /

- 1/2

P (X )Como la inecuación es de la forma — — < 0, la solución es la unión de los intervalosQ(x)

donde aparece el signo (-), es decir: ,t € < - » , - 4 > U < i >

x + 5 x -1x —6 x - 3

Solución

x + 5 x — 1 x + 5 x —1------ < ------- c? ----- -------- - < 0 , efectuando operaciones se tiene:x - 6 x - 3

3x - 7

x - 6 x - 3

< 0 <=> (3x — 7)(x — 6 )(x -3 ) < 0, x * 3,6(x -6 ) (x -3 )

ahora encontramos las raíces de la ecuación

(3x - 7)(x - 6)(x -3 )= 0, de donde r, = — , /•, = 3 , r-, = 63

+

7/3

P(x)Como la inecuación es de la forma — — < 0 , la solución es la unión de los intervalosQ(x)

donde aparece el signo (-), es decir: x €< -*> ,-] V <3,6 > 3

Page 82: Espinoza Ramos 1

68 Eduardo Espinoza Ramos------------------------------------------------------------------------------------------------------------ ^ -----------------

Solución

(x + 2)2 > 0 , para x * -2, la inecuación dada es equivalente.

(x -3 )(x + l)(x + 4) ,---------------------- —= —----p - > 0 , la cual es equivalente a:(jc+ 2)x(x + 3)(x + V 3)(x -V 3)

(x -3 )(x + l)(x -4 )x (x + 3)(x + - j3) (x- -j3)(x + 2) > 0 , x ^ O ,-3,-2, -^3 , —73

ahora encontramos las raíces de la ecuación,

(x + 2 )(x - 3)(x +1 )(x - 4)x(x + 3 )(x + V3 )(x - V3) = 0 , de donde

/•, = -3 , r2 = - 2 , /-3 = —s/3 , r4 = - 1 , r5 = 0 , r6 = -y/3 , r7 = 3 , r8 = 4

-3 -2 -V3 -1 0 -73 3 4

P(x)Como la inecuación es de la forma -— - > 0, la solución es la unión de los intervalos

Q(x)donde aparecen el signo (+), es decir:

x e < > U < -2 ,-7 3 > l / < - ! ,ü > t / < a/3,3> £/ < 4,+^o>

17) *x + 2 x" + 2

Solución

^ 2 2 X - 2 X x - 2 X n j j------ < —------- <=>--------------------------------------- --< 0 , de dondex + 2 x + 2 x + 2 x '+ 2

- 4 x 2 + 2 x - 4 2x2 - x + 2 a----------- ------<0 ------------ ------->0(x + 2)(x +2) (x + 2)(x +2)

V xeR , 2x2 -x - t 2 > 0 y x 2 + 2 > 0 , entonces se simplifica la inecuación------ > 0x + 2

Page 83: Espinoza Ramos 1

Sistema de Números Reales 69

L uego------ >0 o x + 2 > 0, para x * -2. La solución es:x+ 2

x + 4 x■ > -x - 7 x+ l

Solución

x+ 4 x x + 4 x . , , ,• > ----- -—---r > 0 , de donde

x - 7 x + l

12x + 4

x - 7 x + l

>0 o (3x + l)(x -7 )(x + 1) > 0, para x *-1,7(x -7 )(x + l)

ahora encontramos las raíces de la ecuación (3x + l)(x — 7)(x + 1) = 0, de donde

r2 — ■r . r3 - 7-3 -1/3

P(x)Como la solución es de la forma ------ > 0 , la solución es la unión de los intervalosQ(X)

donde aparecen los intervalos donde aparece el signo (+), es decir:

x £< < 7,+üG >

2 x ' - 6 x + 3 x 2 -5 x + 4

2x2 -6 x + 3 x 2 -5 x + 4

x 2 — x — 1

Solución

> 1 <=>2x - 6x + 3 x 2 -5 x + 4

-1 > 0 , de donde

> 0 <=> (x 2 — x — 1 )(x2 — 5x + 4) > 0 p a r a x * l ,4 ;x 2 - 5x + 4

ahora hallaremos las raíces de la ecuación.

(x2 - x - l ) ( x 2 -5 x + 4) = 0 , dedonde r2 = 1 , r3 = ~ , r4 = 4

Page 84: Espinoza Ramos 1

70 Eduardo Espinoza Ramos

i + SI - V5

P(x)Como la inecuación es de la forma ------ > 0, la solución es la unión de los intervalosQ(x)

donde aparecen el signo (+), es decir:

2jc -1 x x + \< ------ <

I - -s/5 „ l + $ 5 r , „

x e < - í s , -------- >U <1.--------- >U <4,+30>a : 2 2

x + 4 x + 4 x + 4Solución

2 x - l x x + 1 2 x - l x< - — - < <=>

x + 4 x + 4 x + 4 x + 4 x + 4 x + 4 x + 4

- — — < 0 A — ---- - ^ - < 0 , de donde !-<0 Ax + 4 x + 4 x + 4 x + 4 x - 4 x + 4

> 0 , estas

ecuaciones son equivalentes a:

(x — 1 )(x + 4) < 0 A x + 4 > 0, para x * -4 ahora encontraron las raices de las

ecuaciones, (x —2)(x + 4) = 0 A x + 4 = 0 , de donde t \ = - 4 , r2 = 1 A r3 = —4

A +-4

de acuerdo a la forma de la inecuación la solución es: x e <-4,l> A x e [-4,+to>

4 x 2 - x - 2 < 5 - xSolución

Aplicando la propiedad: ^jP(x) < Q(x) <=> (P(x) > 0 A [Q(x) > 0) A (P(x) < Q 2 (x)])

4 x 2 - x - 2 < 5 - x <=> ( x 2 - x - 2 > 0 A [5 -x > 0 A x 2 - x - 2 < ( 5 - x ) 2 ])

Page 85: Espinoza Ramos 1

Sistema de Números Reales 71

<=> (x2 - x - 2 ) >0 A [ 5 - x > 0 A j:2 —jc — 2 < 2 5 —1 Ojc-hjc2])

<=> (jc - 2)(x +1) > 0 A (x<5 A x<3)

-1

x e <-oo,-l ] U [2,5] A x e <-*>,3>

5-o

/W/iWWiWO--------- QW////////////zO-1 2 3

----------------o

La solución es: x 6 <-'/„,-! j U [2,3>

3.V-4

22J y(0.8) 4 > v(0.64) 52 .V -2

Solución

3j -4 4x-4

La inecuación dada es equivalente a: (0.8) 16 >(0.8) 40

como a = 0.8 < 1, entonces los exponentes son desiguales en sentido contrario, es decir:

3.V-4 4.t - 416 40

3 * -4 x - 1

■, efectuando y simplificando.

8< - 12

=> x< — , la solución es: 5 7

12X <£< >

-\ ¡ 2 4 - 2 x - x 2 <xSolución

Aplicando la propiedad siguiente:

-JP(x) < Q(x) <=> (P(x) > 0 A [Q(x) > 0 A P(x) < Q 2 (*)])

Page 86: Espinoza Ramos 1

72 Eduardo Espinoza Ramos

V 24 — 2x — jc2 < x <=> ( 2 4 - 2 x - x 2 > 0 A [x > 0 A 2 4 - 2 x - x 2 < x 2 ])

<=> (x + 2x < 24 A [x > 0 A 2x + 2x > 24])

<=> ((x + 1)2 <25 A [x > 0 A(x + y ) 2 > —~\)

« (-6 < x < 4 A [x > 0 A (x > 3 V x < -4)])

<=> x e [0,4] A x e <-oo, -4> U <3,+*>

x r <3,4

6.V- 4 2*-3 3.V-4 4.V-2

( 0 . 2 5 ) ~ . ( 0 . 5 ) ~ < (0.0625) .(0.125) ^

Solución

12*-» 2*-3 6x-8 4x-2

La inecuación dada es equivalente a: (0.5) 3 .(0.5) 4 <(0.5) 3 .(0.5) 3

12*-» 2.V-3

Operando tenemos: (0.5)6.t-8 4.V-2

4 <(0.5) 3 ' 3

Como a = 0.5 < 1, entonces los exponentes son desiguales en sentido contrario a la

. ., , . 1 2x -8 2 x -3 6 x -8 4 x -2inecuación, es decir: --------- + -------- > ----------b--------

12x-8 2 x -3 10x-10 . 2x + 2 2 x -3 8x + 8 + 6 x -9---------+ — — - > -------------------------------------------------------------------- , sim plificando:-----------+ ---------> 0 => -----------> 0

3 4 3 3 4 12

1 4 x - l > 0 => x > — ; la solución es:14

32-^2**^ > (42A.8Jr~3)2/5Solución

jr+lLa inecuación dada es equivalente a: 25.2 2 > (24a.23a~9)2' 5 , de donde

Page 87: Espinoza Ramos 1

Sistema de Números Reales 73

A-+U 14.V-18

2 2 > 2 5 , como a = 2 > 0, entonces:

x + 11 1 4jc —18------- > ----------- 5 x + 5 5 > 2 8 x -3 6 => x <91_23

La solución

o- 1 i * 3 x + 2 ^Si — < x < 1, Demostrar que: — < ------ < —2 8 jc + 3 7

x + 2 x + 3

= 1 —

x + 3

Solución

(se obtiene dividiendo)

, 1 1 A 1 1- < jc < 1 => — < x + 3 < 4 => — <4 x + 3 < 7

_ 2 7 x + 3

1 1— < —

41- - < 1-

7-----------------<1 —

x + 3 4

5 x + 2 3— < ---- < —7 x + 3 4

3 x + 2 68 x + 3 7

27) - J l ^ x < ^ 5 + xSolución

91 •X € < ~tXJ ~~~ >

23

V T A á V s + I <=> ( l - x > 0 A x + 5 > 0 ) A (V T A )2 <(V* + 5 )2

<=> (x < l A x > -5 ) A ( l - x < ~Jx + 5)

-Jx + 5 > 1 -x o [x + 5 > 0 A (1 - x < 0 v (x + 5 > OAx + 5 > (1—x 2))]

[x > -5 A(x > 1 v (x > -5Ax + 5 > 1 - 2x + x 2 ))]

o [x > -5A(x > 1 v (x > -5A x2 - 3 x - 4 < 0 ) ) ]

. . . ( 1 )

Page 88: Espinoza Ramos 1

74 Eduardo Espinoza Ramos

• (2)

o [jc > - 5 A (je > 1 v (jc > - 5 A jc e [ -1 ,4 ] ) ) ]

<=> [ jc > -5 A ( x > 1 v x e [-1,4])]

<=> [ x > - 5 A x > -1 ] => x > - l => x e [ - l ,o o >

ahora (2 ) en (1) se tiene: (x < 1 A x > -5) A x e [- l,+ o o>

x e [-5, 1] A x e [-l,+oo>

V3jc + 7 - V * r 2 >9Solución

7C a lcu lando el cam po de existencia 3.r + 7 > 0 a .v - 2 > 0 o x > A x > 2

po r lo tan to x e [ 2 ,+oo> es el cam po de existencia

~j3x + l > 9 + V * -2 <=> jce[2,+oo> A [3jc + 7 <81 + 18V *-2 + x - 2 ]

<=> Jce[2,+oo> A (jc- 3 6 < 9 V * -2 )

<=> jte[2,+oo> A x 2 -153jc + 1458<0

r~ A . 153 2 17577<=> x € [2 ,+ oo > A ( jc -------) ' < ------—2 4

„ 153-^17577 153 + Vi 7577jc e [ 2 ,+oo > a --------------------------< jc < ------------------------

2 2

1S3-V17577 153+VÍ7577 m

-Jx +1 + V*-2 V9-JC2 -Vjc

> 0

Solución

Calculando el campo de existencia

Page 89: Espinoza Ramos 1

Sistema de Números Reales 75

(x — 1 > 0 A x - 2 > 0) A ( 9 - x > 0 A x > 0)

(x > 1 a x > 2 ) a ( x 2 <9 a x > 0)

(x > 1 a x > 2) a (-3 < x < 3 a x > 0)

x > 2 a 0 < x < 3 , de donde x e [2 ,3] es el campo de existencia.

Como - J x - l + V x -2 > 0 , V x e [2,3]

a/ x - 1 + y l x - 2

■J9-X2 - 4 x: 0

-s/x-l +ylx~ 2 l

-J9 - X 2 —s[x V x-1 + V x -2 V x-1 + V x -2>0.-

simplificando , .-------> 0 <=> - j 9 - x 2 ~ 4 x > 0-J9 - X 2 —sjx

de donde Vx < ^ ¡ 9 - x 2 => x < 9 —x 2

x + x - 9 < 0 1 2 37(x + — ) < — (completando cuadrados)

. 1 , 37(* + —) ' < —

2 4

Luego la solución es:

^37 1 ^37---------< X H-----< ---------

2 2 2V37+1 «y/3 7 - l

-------- — < x < ----------

Solución

■y]2-^[T+x <-j4 + x » ( 2 - ^ 3 + x >0 A 4 + x > 0 ) A (2 - ^ 3 + x < 4 + x)

<=> (a/3 + x < 2 A x > -4 ) A (a/3 + x > - x - 2 ) ... (1)

Page 90: Espinoza Ramos 1

76 Eduardo Espinoza Ramos

-s/3 + jc < 2 <=> (3-t-jc> O A 3 + x < 4 )

o ( x > - 3 A x < l ) => x e[-3,l]

a/3 + jc > —x — 2 <=> x + 3 > 0 A \—x — 2 < 0 V (x + 3 > 0 A x + 3 > (x + 2 ) 2 ) ]

<=> x> -3 A [x > - 2 V (jc > -3 A .x2 + 3.r + l < 0 )]

(2)

”5 C<=> i > - 3 A [ i > - 2 v ( i > 3 A ( j t + - ) 2 < - ) ]

o i > - 3 a [ i > - 2 v (x > 3 a2 2

, r i/ + 3 ^ “3 io i > - 3 a i > - 2 V x e < -----------, --------->12 2

-v/5+3o x > 3 a x e < -----------,+oo>2

^ 5 + 3x e < ---------- ,+00 >2 ... (3)

Luego de (2), (3 ) en (1) se tiene:

■^2—\[¡^+3 <-^A + x <=> (x e [-3,1] a x > —4) a x e< - ’+0° >

r 1 n ^ 5 + 3<=> x e [-3,1] a x e < ----- -—- ,+00 >

<=> ■J$+3 „jr €< - - - - - - J]

3 13 1x 4(x - 1) 4jc + 12

Solución

Page 91: Espinoza Ramos 1

Sistema de Números Reales 77

A la inecuación dada expresaremos así:

313 1> 0 , efectuando operaciones 1 3(x+ 3)+ x (x -l)-1 2 (x -l)(x + 3 )

4(jc — 1) 4(jc + 3) x

I3x2 + 39x + x 2 ~ x - \ 2 ( x 2 + 2 x -3 )

4(x -1)(jc + 3)x> 0

4x(x - l ) (x+3)> 0 , simplificando

2 x 2 +14JC + 36 4jc(jc-1 )( jc + 3)

> 0x + 7x + 18

x(jc-l)(jt+3)>0

VJ n 1 -i i o n » X~+7X+18V x e R, j r + 7x + 18 > 0 entonces: ----------------- «1

1

jc( j c —1 )(x 3 ) x(x - 1)(jc + 3)

> 0 o jc(jc — 1)(j c 3 )> 0 , para x * 1,-3, 0

>0

x (x - l) (x + 3)

resolviendo la ecuación x(x — l)(x + 3) = 0, de donde, i\ = -3 , r2 - 0 , r3 -1

-3

como la ecuación es de la forma

0 1

P(x)Q(x)

> 0 la solución es la unión de los intervalos donde

aparecen los signos (+), es decir:

3 1 3- + ------>-j t - l x + l x

Solución

La inecuación dada escribiremos en la forma:

3 1 3 3x2 +3x + x 2 — x ~ 3 x 2 +3 ^ n- + -----------> 0 o ----------------------------------- >0x — 1 X + l X x(x — l)(x + 1)

x +2x + 3 ^ „<=> ----------------- > 0x (x -l)(x + l)

Page 92: Espinoza Ramos 1

78 Eduardo Espinoza Ramos

como V x e R, x 2 +2x + 3 > 0 , entonces

x 2 + 2 x + 3 . 1 .> 0 <=> ----------------- > 0

x(jc-1)(x + 1) x (x -l)(jt + l)

-------- —------> 0 <=> x(x — l)(x + 1) > 0, para x * -1,0,1x ( x - \ ) ( x + l)

Ahora resolviendo x(x — 1 )(x + 1) = 0, de donde t\ = -1 , r2 = 0 , r3 = l

-1 0 1

P(x)Como la inecuación es de la forma —---- > 0 la solución es la unión de los intervalos

Q(x)

donde aparecen el signo (+), es decir: * « l í

2 x - 2 5 2x + l l 1 33) ------------------+ ----- ------ >

2(x2 + 2 x - 3 ) 2(x2 -1 ) * + 3Solución

La inecuación dada escribiremos en la forma:

2 x - 2 5 2x + l 1 1 A . . , . .- + ----- -------- —— > 0 , factorizando en el denominador2(x2 + 2 x -3 ) 2(x -1 ) * + 3

2 x - 2 5 2x + U 1 A , J .+ ---------------------------> 0 , efectuando operaciones

2(jc + 3)(x-1) 2(x-1)(jc + 1) x+3

(2x - 25)(x + \) + (2x + l 1)(-t + 3) - 2(x - l)(x +1) 2 (.r-l)(x + l)(x+3)

,v” -3 x + 5

> 0 , simplificando se tiene:

(.y-1)(jc + 1)(jc+3)> 0 , como V x e R, x -3 x + 5 > 0 , entonces:

x ¿ - 3 x + 5 n 1 „■>0 o ------------------------ >0

(x - 1)( x + 1)(jc + 3) (x - l)(x + l)(x + 3)

Page 93: Espinoza Ramos 1

Sistema de Números Reales 79

1(jc-1)(x + 1)(jc + 3)

> 0 «> ( x - l ) ( x + l)(x + 3 )> 0 , x * -3, -1,1

encontrando las raíces de (x - l)(x + l)(x + 3) = 0, donde rx = -3 , r2 = - 1 , r3 = 1

-3

P(x)Como la inecuación es de la forma - — - > 0 la solución es la unión de los intervalosQ(x)

donde aparece el signo (+), es decir: x e < -3 ,-^ U O ,+x»

( x - \ ) - - ( x + 2)¿

( x - 2 ) 2 - ( x + l)2> 0

Solución

Por medio de la diferencia de cuadrados se tiene:

[( x - l ) - ( x + 2 )] [ ( r - l) + (x + 2 ) ] ^ 0 | simpliricand0. [(.v - 2) - (x + l)][(x - 2) + (x +1)]

- > 0 <=> (2x + 1 )(2x - 1) > 0 para x * —-3 (2 jc-1) 2

encontrando las raíces de (2x + l)(2x - 1) = 0, de donde, /¡ = , 72 = y

- 1/2 1/2

P(x)Como la inecuación es de la forma ------ > 0 la solución es la unión de los intervalosQ(x)

donde aparecen el signo (+), es decir:

Page 94: Espinoza Ramos 1

80 Eduardo Espinoza Ramos

35) * 4 + 5* ’ -2 0 * — 1K< 0x + 2.x -1 3 jc + 10

Solución

Factorizando tanto en el numerador y denominador.

(x -2 ) ( x + 2)(x 4 1 )(x + 4)---------------------------------< 0 , para x * -5,1,2

(jc+5)(x—2)(x—\)

la inecuación dada es equivalente a:

(x —2)(x + 2)(x + l)(x + 4)(x + 5)(x -2 )(x - 1) < 0 para x * -5 ,l ,2

( x - 2 ) 2(x + 2)(x + 1)(x + 4)(jt + 5)(.v + 1) < 0 para x * -5,1,2

como V x e R, x * 2, ( x - 2 ) 2 > 0 entonces

(x + 2)(x + l)(x + 4)(x + 5 ) ( x - 1) < 0 , para x * -5,1,2

encontrando las raíces de (x + 2)(x + l)(x + 4)(x + 5)(x - 1) = 0 , de donde:

rx = - 5 , r2 = - 4 , r, = -2 , r4 = -1 , r5 = 1

-5 -4 -2 -1 1

P(x)Como la inecuación es de la forma ------ < 0 la solución es la unión de los intervalos

Q(x)

donde aparecen el signo (-), es decir: x € < -$> O < -4, -2> U < -I , 1>

2-v—1 -j4-.v

Solución

La inecuación dada expresaremos en la forma

3 2 , - 1+4-.r—6*+l > 3 (2 ^ 1 K --2 ) ) d e d o n d e ; y S x + 4 > 3 2x>-3x-2

Page 95: Espinoza Ramos 1

Sistema de Números Reales 81

como a = 3 > 0 => - 5 jc + 4 > 2jc‘ - 3 x - 2 , de donde

2x2 - 2 jc - 6 < 0 <=> x 2 + x - 3 < 0 , completando cuadrados x 2 + x + -^-<3 + -

, 1 , 13 -JÍ3 l o/¡3( * + — ) " < ---- v = > ---------------- < X + — < ---------

2 4 2 2 2

VÍ3+1 V Í3 -1 , , ,-----------< x < ---------- , de donde

2 • 2

1+ --- > 2x

x 2 - 5 x + 6 2x 3 - 4 x + x 2Solución

A la inecuación dada expresaremos en la forma

2x

,v2 -5 .y + 6 2.y 3 - 4 x + x 2

2 x2( x - \ ) + ( x - 2)(x - 3)(x -1 ) - 4x2 (x - 2) 2x(x -3)(x - 2){x - \)

> 0 , efectuando las operaciones:

> 0 , desarrollando:

2x ' - 2 x ¿ + x ' - 6 x 2 + l l x - 6 - 4 x 3 +%x2 x ( x - 3 ) ( x - 2 ) ( x - \ )

x~ -1Ly + 6

■ > 0 , simplificando

, ,4, , 3-o/Í7w , 3+VÍ7\(x - 3)(x + ---- ----- )(x + ---------- )

.y(.v - 3 ) ( x - 2 ) ( a--1)< 0 <=>

x ( x - 3 ) ( x - 2 ) ( x - l )<0

para x * 3 se tiene

, , 3 - V n ^ . 3 + -Jn (x + — - — )(x + ---- ---- )

x(x - 2)(x - 1)<0

- 3- 0/7 - 3+ 0/7 o

Page 96: Espinoza Ramos 1

82 Eduardo Espinoza Ramos

P(x)Como la inecuación es de la forma — — < 0 la solución es la unión de los intervalos

Q(x)

donde aparece el signo (-) es decir: 3 + VÌ7 ,T - 3 + ^1? *— >U < $ > f ] <i¿>>2 S l l l i l l ^ ! *

@1 x - 3 2— < -----< —5 x + l 3

Solución

Aplicaremos la propiedad siguiente: a < b < c o a < b A b < c

1 x - 3 2 1 x - 3 . x - 3 2— < -----< — o —< ------- A -------- < —5 x + l 3 5 x + l x + l 3

x - 3 1 . . x - 3 2o ----------- >0 A ------------ <0jc + l 5 x + l 3

»5jc —15—jc—1 n . 3 x - 9 - 2 x - 2■ > 0 A ------------------ <0

5(jc + 1) 3(jc +1)

<=> x ~ 4 a * n•>0 A ------- <0x + l x + l

<=> (x — 4)(x+ 1 )> 0 , x * - l A ( x - l l ) ( x + 1)< 0, x * - l

ahora encontrando las raíces de (x — 4)(x + 1) = 0, de donde r, = —1, r, = 4 ,

r3 = - 1 , r4 =11

-1 4A -i 11

de acuerdo a la forma de la inecuación la solución es:

x g <-oo,-1> U <4,+oo> A x e <-1,11>

Page 97: Espinoza Ramos 1

Sistema de Números Reales 83

-1o-

4 11--------------- o

x 4 5x2 +36<-x 4 -1 6 x 4 -1 6

Solución

A la inecuación dada escribiremos en la forma

x 4 5 x2 +36x 4 -1 6 x 4 -16

(x2 -9 ) (x 2 +4)

<0 <=> x 4 - 5 x 2 -1 6 x 4 -1 6

< 0 , factorizando

<0 <=> x 2 - 9 x 2 - 4

< 0(x2 — 4)(x +4)

+ ~^'r—^1 < 0 <=> (x + 3)(x — 3)(x + 2)(x — 2)< 0, p a rax *-2,2 (x + 2 )(x -2 )

ahora encontrando las raíces de:

(x + 3)(x - 3)(x + 2)(x - 2 ) = 0 de donde rx = - 3 , r, = - 2 , r3 = 2 , r4 = 3

+

como la inecuación es de la forma P(x)Q(x)

< 0 , la solución es la unión de los intervalos

donde aparecen los signos (-), es decir:

( x - 9 ) 2'' (1 —x 3 ) 2 n (x4 -9 ) < 0 , si n > 1, n e N

Solución

Para x * 9, ( x - 9 ) 2" > 0 . ( 1 -x 3)2" > 0 , p a rax * 1.

Entonces a la inecuación dado se puede simplificar, es decir: (1 - x 3)(x4 -9 ) < 0

Page 98: Espinoza Ramos 1

84 Eduardo Espinoza Ramos

Factorizando ( x - l ) ( x 2 +x + \)(x -^J3)(x + 43)(x 2 +3)> 0, x * l ,9

como V x e R , x 2 +jc + 1 > 0 , j r + 3 > 0

entonces ( x - \ ) ( x - - j 3 ) ( x + -Jí) > 0 , x * l ,9

ahora encontrando las raíces de: (x - I ) (x ~ j3 ) (x + -J í) = 0

de donde: t \ = - ^ ¡ 3 , r2 = 1, r3 = -\¡3 *_____ \ / ^ \ / ^ »—73 1 43

Como la inecuación es de la forma P(x) > 0, la solución es la unión de los intervalos

donde aparece el signo (+), es decir: X €< -~V-U > U < Vi,+ » > -**j

1.34 EJERCICIOS PROPUESTOS.

I. Resolver las siguientes inecuaciones

© -1 <-3 + 3 x < 22 5 Rpta. [ - , - >3 3

© í - i > 2 í + i2 4 3

Rpta. < -oo,----- >18

© -3x + 4 < 4x +5 Rpta. [ -y ,+ o o >

©

©

©

©

2x + 6 x ,------------- <53 4

5x — 2 < 1 Ox + 8 < 2x — 8

1 , 1 1— <3.r — < ­5 4 3

a ~ -b ~ a + b a - b

D * 36Rpta. <-oo,— >

Rpta. <¡>

1 7Rpta. ]60 36

„ . 5a + 5bRpta. < -o o ,----— — >\ + 3 a -3 b

Page 99: Espinoza Ramos 1

Sistema de Números Reales 85

©

©

11.

©

©

©

©

©

©

©

©

©

— + 4 > — + 2 x , a > b > 0 3 a 6 b

_ 6 - 3 x .2x + --------< 4

X X . X , „— + — > 1 + —, c > b > a > 0 a h c

Rpta. <-oo. 24 ah

2x - 6 •3.V + 8

3(x — 5) — 4(4-3 x ) > 2(7 — x) —3 (x - 5)

Resolver las inecuaciones siguientes:

2x2 - 6jc + 3 < 0

2.v2 + 6.v - 9 < 0

9.y 2 + 54.y > -76

- 4 x 2 + 4x + 3 >0

4x~ + 9.y + 9 < 0

4 x2 - 4.y + 7 > 0

x 4 - 2 x 2 - 8 < 0

-4.V2 - 8 < -12.Y

.y2 - 2-j3x- 2 > 0

5a + \2 a b -4 b

Rpta. < -oo,2 >

Rpta. < a heac + bc - ab

-.+00 >

» 38Rpta. < oo,— >

Rpta. <3,+»>

„ , 3 - ^ 3 3 + ^3Rpta. < -------- . --------- >

_ . - 3 - 3V3 - 3 + 3V3Rpta. < ------------ , ------------->

„ . 9+V5 V 5 -9Rpta. < - 0 0,-----------> U <--------- , + 0 0 >

Rpta. (|>

Rpta. V x e R - {— \

Rpta. <-2,2>

Rpta. <-oo,l> U <2,+oo>

Rpta. < -oc.^3 —s/5 > U <-j3 + V5,+oo >

Page 100: Espinoza Ramos 1

Eduardo Espinoza Ramos

10) 3x~ -S .v + 11 > 4<x-l) Rpta. V x g R

© 3x2 - iOx+3 < o Rpta. < — 3 >

12) x(3x + 2) < (x + 2) Rpta. <-oo,-1> U <2,+oo>

13) 4a -8 x + l < O _ , 2 - ^ 3 2 + 3Rpta. < -------- , --------- >

© 5 a - — 14x + 9 < O Rpta. [1.—]

15) .v2 + 3a + 2 > O Rpta. <-oo,-2> U <-1 ,+*>

-2 x -3 x >0 Rpta. [ - 1 , - ]

17) 3x2 -5 x —2 > O Rpta. < —oo,— > U < 2,+oo > 3

18) (x2 +2x)(x2 —1) —24 > O

19) x(x — 3 )(x — l)(x +■ 2)> 16

Rpta. <-oo,-3 > U <2,+oo>

„ „ 1 -^3 3 - 1 + ^33Rpta. < -oo,—— — > U < ----------- ,+oc>

( j y

©

x 4 + 2x3 - x 2 + 4x — 6 < O

(x" + x - 6 ) ( 4 x - 4 - x _ ) < O

Rpta. <-3,l>

Rpta. <-oo,-3] U [2,+»>

22) 2x3 +3x2 — 1 l x - 6 > O Rpta. [-3,-y]í/[2,+oo >

23) x 3 - 3 x 2 -13x + 15>0 Rpta. <-3,l> IJ <5,+oo>

(24) x 4 - 4 x \ - x 2r+ 1 6 x -1 2 > 0 Rpta. <-oo,-2> U <1,2> U <3,+x>

25) x 5 + 3x4 — 5x3 - 1 5x2 + 4x +12 > O Rpta. <-3,-2>U < -U > U<2,+oo>

Page 101: Espinoza Ramos 1

Sistema de Números Reales ) 87

@ x 5 - 6 x 4 - x 3 + 2 9 x 2 + 8 x - 1 5 < 0

R p ta . < -oc,z l z j l > [ / < - i , ~ 1 + 5 > < 3 >2 2

@ ( x 2 - 2 x - 5 ) ( x 2 - 2 x - 7 ) ( x 2 - 2 x - 4 ) > 0

R p ta . < -oo, 1 - 2 V2 > t / < l - V ó , 1 - 0 /5 > t / < I + a/5 , 1 + a/ 6 >

@ x 5 - 2 x 4 - 1 5 x 3 > 0 R p ta . < -3 ,0> U <5,+oo>

@ ( x 3 - 5 x 2 + 7 x - 3 ) ( 2 - x ) > 0 R p ta . [2 ,3 ]

^ 0 ) ( x - a ) ( x —b ) ( x - c ) ( x —d ) < 0, si a < b < c < d R p ta . <a,b> U <c,d>

@ ( x 2 + 6 x - l ) ( x 3 - 2 x 2 - 2 x + 4 )(x + 5 )5 > 0

R p ta . < -00.-/3 -a/ÌO > U < - 5 - 0/2 > U < -3 + o/T(),o/2 >U< 2,+00 >

(3 2 ) ( 6 x + 3 )2 (x J - 1 ) j (3x - 5 )7 < 0 R p ta . < - o o , - l > £ / < 1, - >

(33) ( 3 - x ) 3( x 2 - l ) 2( l - x ) 5x > 0 R p ta . <-0,l>U<3,+oo>

(3 4 ) x 4 - 2 x 2 - 3 x - 2 > 0 R p ta . <-oo,-l]U[2,+oo>

(3 5 ) x4 - 3x3 + 5x2 - 27x - 36 < 0 R p ta . < -1 ,4>

@ x 4 < x 2 R p ta . < - l , l > - {0 }

(3 7 ) ( 2 x 2 - 4 x - l ) ( 3 x 2 - 6x + 4 ) ( x 2 + 4 x - 2 ) > 0

R p ta . < - 00,-2 - 0/6 > V < 2- - 2 + 0/6 > U < -2- - - — ,+00 >

(38 ) x 5 + 8x 4 + 1 2 x 3 - x 2 - 8 x - 1 2 > 0 R p ta . < -6 ,-2 > U <1,+qo>

(3^ ( X 2 — 1 )(x2 +9)(x + 4)(x-5) > 0 R p ta . <-oo,-4> U<-1,1> U <5,+oo>

Page 102: Espinoza Ramos 1

88 Eduardo Espinoza Ramos

(4iy

©

©

(43)

{46

©

III.

O

©

©

©

©

©

(x + 2)(x + 3)(x - 4)(x — 5) > 44

x 6 +6.v4 +9x2 + 4 > 0

x 4 ~ 3 x 2 - 6 x - 2 < 0

x 5 - 6 x 4 - 1 7x3 + 17x2 + 6 x - l > 0

—3 — -Js — 3 + -\¡5 .. .Rpta. < --------— ,-------— > U < 4 ­

2 2

x 4 - 2 x 2 + 8 x -3 > 0

x 4 - 2 x3 - 5 x 2 + 10 x -3 < 0

(x — 7)(x — 3)(x + 5)(x + 1) > 1680

(x + 9)(x — 3)(x -7 )(x + 5) <385

Resolver las ecuaciones siguientes:

X + 1 X------ <2 - x 3 + x

1 ^ 43 x - 7 '" 3 - 2 x

x 2 +2x - 2 ?x~

X

x + 4 x - 2

x 3 - 4 x 2 +2

x - 2< --------x 2 +1

2x x

Rpta. V x e R

Rpta. V x e R

Rpta. < 1 - a/2 ,1+V 2>

-715,1 > U < 4 + VÍ5,-+ * >

Rpta. < —oo.— l --\Í2 > U < —1+-J2 ,+00 >

1-V Í3 3 —s/5 — 1 —s/3 3 -a /5 ,Rpta. [-------,2 2 2 2

Rpta. <-00,-7] U [9,+oc>

Rpta. [- l-V 7 l,-4 ] t/[2 ,- l+ V 7 T ]

Rpta. <-00,-3> U <2,+oo>

3 31i r , 7Rpta. < —,— lt /< — ,+00 >2 14 3

-]

x +1 x -1

Rpta. <2,+oo>

Rpta. < -00,-4 > t/[— ,2 >

Rpta. <-2,0> U <0,+oo>

Rpta. < —oo,—l > U < 0,1 >

Page 103: Espinoza Ramos 1

Sistema de Números Reales 89

©

©

©

©

x 2 + 2 x 2 +l■ > -

x 4 +1 x 4 +1

x ' — 2x ^ ,t+ 8 x —4 ~ 2

I 3.V + 1< 4

X X

x 1 +8 5,v-8x + 4 ~ 5

x + 4 x - 2>

x 2 +4x + 4 x 2 — 4

1 2• < •

x+1 3 x - ì

2 x 2 - 3 x + 3— < .

2 (x -2 ) (2 x + 3)

jc + 1 x + 2 jc —1

x x - 3x 2 + 4 x 2 +x + 4

{x2 - 2)(x + 5)(x- 3)>0

x(x- +2K.V + 3)

(6 .y + 3)2(.t2 +1)3 (3jc — 5 )7

Rpta. V x € R

Rpta. <-oo,4>

Rpta. <-oo,0> U < 1 ,+oo>

Rpta. <-4.6]

Rpta. V x e R - {-2,2}

Rpta. < -oo.-l > [ / < - 3 >

(.y + 6 )-(2 a- + 3) 17

3 7Rpta. < -oo,— > £ /< () ,— >U < 2,+oo > 2 6

Rpta. < -2 ,— > u <

Rpta. (fi

Rpta. < -oo,-5 > U < -3 ,- ^ 2 >U < 0 , ^ 2 >U < 3,+oo >

3 5> 0 Rpta. < - 0 0 ,-6 > U < - 6 ,— > U < — ,+oo >

2 3

(4.Y + 2)2(.r2 + 2 )5(2.y - 8 ) 9

(.v + 1)2(2,v + 5)13

x + 4 x - 2____ < ____x —5 x+3

<0 Rpta. < - - , 4 > - { - l , - - }2 2

Page 104: Espinoza Ramos 1

90 Eduardo Espinoza Ramos

20) - J — + A L < - 2 Rpta. <-3,-2> U <1,4>" J x - 4 x + 2

U 2 + ! ~ 6)(J:; ~ J:~ 6) > 0 Rpta. < -to,-3 > U < - J l M > U < 3 .4* •(v — 4)(x - 2)

_ -y 222) ——— < —------ Rpta. <-2,+oo>^ x + 2 x + 2

23) - A _ + - i - > 2 Rpta. < -3 ,-l> U < l,2>‘ J jc + 3 x - l

24) 2 > > -L Rpta. [ - 1 ,0 >

y~ — ?v4-3 325) > -3 Rpta. < -oo,l > U < — , 2 > U < 3,+» >" x~ —4*+3 2

, 2jc4 7jc3 + 8 x 2 + 6 x + 126) — -— -——— ■— -------- ---------- > 06x + 17x + 23x + 18x + l x + \

_ „ - 5 —yry . . . i i - 5 + V nRpta. < ------------ ,-1 > £/ < -----,— > U < -------------,+oo >2 2 3 2

7 f. "22 7 ) —— < 5 Rpta. < -oo ,-l >(J < — ,1 > {/ < 2,+oo >^ x - l x l 5

2g> 12x5 -3 5 x 4 -5 3 x 3 + 53x2 + 35x-12x 6 +15x5 +78x4 +155x3 +78x2 +15x + l <

Rpta. < -oo ,~ 5~ - > ¿ / < - l , - 2 > t / < - -5 ^ A -.2 -7 3 > ¿ / < l,2 + V3 >2 3 4 2

2x ~1 A' + 2 A' — l29) ——— h---- > -------- Rpta. <-ao,-4> U <-3,3>^ x + 4 3 - x .í + 3

(30) ■ .......> +9( l - x - ) d - x ) ( l - x ) - ( l + x)

Rpta. < - o o - l - V3 > U < -1 + -s/3,1 > 1/ < 1,2 > í / < 2,+oc >

Page 105: Espinoza Ramos 1

Sistema de Números Reales 91

4x-----20jc2 + 8 <8 ^ 2 >U < —1,1 > t / < 2 ,-Jó >W x — 5x + 4

® ( x - l ) 2(x 2 — 1)(a 4 -1 ) A------------------ ---------- > 0 Rpta. <2,+oo>(x + \ ) (x -2 )

/ ^ \ ( x 2 + 5x + 6)(x4 -16)(x2 - 4x - 1 2) Q(1 — 3 jc )3 (.v — 1 )( j: 2 +1)

Rpta. < -oo,-3 > U < -2 , j > U < 1,2 > U < 6,+oo >

34 ) —-------- X- ^ - < - Rpta. <0,2> U <4,+oo>" J 4 - x 5 x

35) - , -+- 7--+- < 2 Rpta. <-2,-l>k x~ +3x + 2

36) --Y- - - - - - - - v--T~ —- < 0 Rpta. <-4,-3]U [3,4>" (x — 4)(x -16)

(1 +x + x 2) ( 2 - x - x 2)(x4 - 2 x 2 —3 x -2 ) < ß

(2x~ -4 x - l ) (3 x 2 -6 x + 4 ) (x 2 + 4 x -2 )(x 2 -7 )

[7 [7Rpta. < -* ,-V 7 > U < - l - ~ - , - 2 y j [ - l , ~ j 6 + 2 > U < ^ j — U > U [ 2 , ^ f > U < ^ 6 + 2,+oo>

® x 12 x +1 „ 5 12— < — < — — Rpta. < —, — >x + l 19 x + 2 P 7 7

/£ > (x - 3)(x + 2)2 (x +1 )(x - 4) ; 0^ x(x + 2)(x2 -3 )(x + 3)(x2 +4)

Rpta. < -00,-3 }U < -2 ,-7 3 > t/[- l ,0 >U < -73,3]i/[4,+oo >

40) A + ~ > X * ~ Rpta. <2,+oo>

Page 106: Espinoza Ramos 1

92 Eduardo Espinoza Ramos

©

2 3 a + 5- + ------>

A + l X — 1 1 -X 2

x 2 2a

c2 - 5 a + 6 2 - x ( 3 - x ) ( l - x )

Rpta. <l,+oc>

Rpta. <-oo,-6] U <2,3>

l < .x 4( .y — 1) 4x + 12

13 1- + - Rpta.

(a-- +4x + 4 ) ( x - 9)'

(1 \ - x ) ( x 2 + 5)

3 1 3---- + ------ >

< 0

X — 1 X +1 X

x - \ -<1a + 2

(x2 ~5)(x2 + 7)___

( x 2 +.v + l)(x2 - 3 x + 2)> 0

3a

a 2 - x - 6

x 2 - 3 a + 2

a 2 - 4 a + 3

2a - 2 5

> 1

<2

2a + 1 1 1- + -------------------- ----------- >

2(a 2 + 2 a - 3 ) 2(a 2 -1 ) x + 3

x 2 + 4a + 4

a 2 - 4A - 5

2 a - a 2 -1A2 - A 4

>0

<0

(2a - 8a + 8)(a -i- 3) a + 6

>0

r 31+ a/889 . . V889 — 31 „ . .[--------------- ,-3 > U[--------------,0 > U < 1,+» >

Rpta. <11 ,+oo>

Rpta. <-1,0> U < 1 ,+oo>

Rpta. <-2,+oo>

Rpta. < - oo, - V 5 ] í / < 1 ,2 > C / [ - n/5 ,+ oo>

Rpta. <-2, 2-VÍO >C/<3, 2+VÍO >

Rpta. <-oo,3> U <4,+oo> - {1}

Rpta. <-3,-l> U <l,+oo>

Rpta. <-oc,-l> U <5,+oo>

Rpta. <-l,0>U«),l>

Rpta. <-oo,-6> U [-3,+oo>

Page 107: Espinoza Ramos 1

Sistema de Números Reales 93

©

x~ -2-y + I x — 1

2x + \

> 0

>3x + 1

x2 +4.Í + 9

x 2 —4 x —5

x 2 + a + 2

x (x2 —x —2)

< 0

< 0

2 3< -3jc — 2 x + 2

32 _ x

x 2 —4 x - 2 x + 2

2 + x - x 2> 0

x 2 - 2 x + \

jc3 — x~ —8a + 12

x 2 + 5 a -1 4< 0

a-- +X.V-12—jf l x - x 2 - 6

3>0

a + 3x + 2 a - 2 a - 2 a + 2

1 2 3- + ------ > ■

A +l a +3 a + 2

A +1 , 1-A-------- 2 < ------1 —x X

X 2 + 8a + 24a + 2

> 8

Rpta. < 1 ,+oo>

Rpta. [-2,-l>

Rpta. <-l,5>

Rpta. <-oo,-1> U <0,2>

„ 2 rr 10 Rpta. < - 2 , — >U < — .+oo >3 7

Rpta. t-4.-2> U <2,6]

Rpta. [-1,1> U <1,2]

Rpta. <-oo,-7> U [-3,2>

Rpta. [-3,1> U <6,+oo> U {2}

Rpta. <-oo,-2> u <0,2>

Rpta. <-3,-2> u <-!,!>

Rpta. < -o o ,- l > u < 0,

Rpta. <-2,+oo>

1

Page 108: Espinoza Ramos 1

94 Eduardo Espinoza Ramos

x - 2 2 x - 3■ > -

x + 2 Ax -1

6 3 7< 0

x -1 x +1 a + 2

x 4 -3.v3 - 6 x 2 -2 8 x - 2 4 40 + (x - 1)(.y - 3 )(x + 4)(x + 6)

■<0

7 30 7. + ------ < .x - 4 x + 2 .y + 1

2x2 - 6 x + 3 ,. >] x~ - 5 x + 4

Rpta. < -oo,-2 1 ,l]u[4,+oo>

Rpta. < -2 ,— > u < 4

©

3x>1

x 1 —x — 6

1 7- + ---------<2x - 2 x + 4

, x - 2 x - 32 -------- > -------

x - l x - 2

(79)

iV .

©

©

©

©

©

2 x2 + 7x + 5 x 2 + 6x + 5

-3x + 2>0

x 2 + 3x + 2

3x 2 - 4 ^ £----------< x + 6

x - 6

Resolver las ecuaciones siguientes:

4.V-3 l x - 2

(0.5)“ > ( 0 .0 6 2 5 ) ~

27-V-! < 9 .v+3

2**1 2.V -2

(0.2) 2 <(0.0016)

2 5'" 8 <16Jt+5

2x 3 ->4 .v3----- 3 ----- 32,M)(.v-2)

l5.v I ' ’

x +1 Ox +16 x - l

>10

x - 2- + 4 > x + 1 0

Rpta. < — ,+oc> 4

Rpta. <-oo,9>

Rpta. <-oo,—>

Rpta. <-oo,12>

4 4„ . -1 —733 -1 + 33Rpta. < ---------- — -------- — >

Page 109: Espinoza Ramos 1

Sistema de Números Reales 95

© t ( 0 . 5 ) ' ! (0 .5 ) ‘ r ' - , < í ^8 '

©

@

9x*i .3

x ) < X~-IÍ3222x4-5

V81A"1S < V243A w

Mx-zy(n) (256) 2 > 29(jJ~,)\83j;+1.2565(

729A\243A' 2436.275jr_6

812x

3A’ .3 2 v > 27

x-5 x-9

2 ~ > 8 ~

5 +3

27

2x+l

Rpta. V x g R

Rpta. V x e R

Rpta. <-oo,-1> U <l,+oo>

Rpta. < 110,+oo>

XM6, u , . 42293 +33 a/2293-33Rpta. < -------- —------, -------— — >86

Rpta. <-oo,-1 > U <2,+oo>

Rpta. <l,+oo>

Rpta. <-oo,13>

o * 131Rpta. < -oo,-------->217

86

(16) (42 ) »"-1 >(64)-'~1

17; [(0.3)ív“1)(a:~2)]v"3 >[(0.09)vi-4]r2~9

18) /(0.00032)5' 2 < "y (0.2)2 a-+1

Rpta. < -oo,-l > U < 1,— >

Rpta. V x g R

43Rpta. < — ,+oo > 94

Rpta. <-oo,-3> U <-2,-1 ]

Page 110: Espinoza Ramos 1

96 Eduardo Espinoza Ramos

__________ ___________ *Jx-120) (0.16) .'í*Z¡ j m ) 2 5 6 ) ^ ) ~ < ^ / o . 004096

2j) (O.OOS)-'“1 > l /(0.04)jr*3 Rpta. < 1,2> U [3,5]

22) x+l¡(0.G4)2x~l > V(°-2)2v l Rpta. <-3,0>t/[|,3]

Jf+ (0.0016)jr+3 > x ^(0 .2 )4x+1 Rpta. < - — -2 > í / < 5,+oo >

X~^¡4X~4 > X+J ¡2 ^ Rpta. < —1,2] [ / < 5,+00 >

@ ^(O .O l) ^ 2 < x ^¡(0A)lx i Rpta. <-3,-1 > u [3,+oo>

(2ó) x+ ¡(0.04)2x~1 >^(0.2)2x~1 Rpta. < - 3 , 0 > u < - ,3 >

® (— ) ' ( - ) 4jr2+1 < ( - ) í+2(— J*2“3* Rpta. < —oo,-2]u[—— ,+00 >250 5 5 625 2

28) - ^ p x ( j )~ ¿ < - ' ^ 9 ( - ) x Rpta. <-3,3>

29) á xy j )2x2 Rpta- <_* ’*3> u

® ( 2 - 9-57 T---- - < x+ 2 2x+í Rpta. < - l ,+0o > - { - i }

@ 15a"1 <lj(0.2)x+l @ (0.1) v~3 < 1 0 v+3

@ 2x-jj(0.00032)'"2 < J ( - ) 3jr_1 @ [(0.5)^ .(0.5)6](r2~3) >V 5 gv

@ V(0.5)4*-3 > a/(0.625)3v-2

Page 111: Espinoza Ramos 1

Sistema de Números Reales 97

V.

©

©

©

©

©

©

©

©

©

©

i ¡ y

Resolver las ecuaciones siguientes:

-J3x + 1 —\Jx-2 > 3

-Jx +5 +^fx < 5

■\¡x2 - x - 2 < 5 - x

- J x - 9 Í ¡ x + n X > 0

x + 2 < \ [ )x 3 +8

a/x - 4 -V 8 -X > 1

-Jx2 -1 < -\Jx + \

- j 2 x - 9 < 3 - x

-%/3x +1 - -Jx — 2 > 9

( x - 4 ) s j x 2 - 2 x + 2<0

x l + 2

-Jx1 - 2x - 15 > x + 1

V3x - 6 > -V 4jc —12

^ 5 x - 3 - 4 x ^ ->0

■\J\fx - 4 - 4 xx — 1

> 0

> 0V x -T + o /x -2

V 9 -x 2 - a/x

-Jx-3 +^¡6-x <^Jx + l

Rpta. [2,3> U <6,+oo>

Rpta. [0,4>

Rpta. < -o o - l] £/ [2,3 >

Rpta. [0,81] U [1296,+oo>

Rpta. <-2,0>

V7Rpta. [— - + 6 ,8 ]

Rpta. [1,2>

Rpta. 4>

Rpta.

Rpta. <-oo,4]

Rpta. <-oo,-3 ]

Rpta. [3,+oo>

Rpta. [ 1 ,+oo>

Rpta. [64,+oo>

Rpta. [2 .^ Ä - - 1 >

Rpta. <3,+oo>

Page 112: Espinoza Ramos 1

98 Eduardo Espinoza Ramos

© a /x - 1 + a / * - 3 >^Jx + 1 R p ta . < y , 5 ]

©o / V * ~ 3 + V 6 - V *

^ +1R p ta . [9, 84 + 16^ ]

R p ta .© a/4 - V i - X - a / 2 - X > 0

© A¡X1 - 1 4 x + 13 > jc —3 R p ta . <-oo,3 ]

©a /a 2 + 3 a + 4

a /ÏT + a /x 2 - 4R p ta . <-oo,-2] U [2,+oo>

R p ta . < - o o ,^ ]©

■\l~x + 2 < a / - 4 x + 2 + a / - 9 x + 6

©a /ó 2 5 - x 2 V a 2 - 4 ( a + 4 ) * ( x 2 - l )2

a 3 - 2x 2 - x + 2R p ta . [-2 5 ,-2 ] u < - l , l > u { 2 5 }

© —= i— > a/a +1■Jx - 1

R p ta . <1 ,2>

©lx+6 lx + 2

V A' ' V JC-1R p ta . <-oo,- 6] u < l , 2 >

© a /a 2 - 1 4 a - 1 3 < a + 1 R p ta . < | , l ] i / [ 1 3 ,+ o o >

©J x 2 - 4 l j x + 4

a /a 2 - 4 a ' + 3 "R p ta . <-oo,-4 ] u [2 ,3>

© l ^ S , - 4 y 2 - A / A + 4

R p ta . (|)

©1 A' A - 2------ < ------- < ---------

A - 2 X + 4 A + lR p ta . <8,+oo>

Page 113: Espinoza Ramos 1

Sistema de Números Reales 99

©

@

(33

®

Í39)

{42)

(43)

I x - 9 1 -2 x I jc + 5 1 +5

< 0

4 x + 4< ------ < 2

x - 4 x - 4

3x*4(3x~a -1 ) <3* - 8 !

■n/a-2 - 3 a - 4

y -J2 I - Va2 - 4>0

a - 3 a - 4

[5 - V 16- A 2> a 2 - 2a - 2 9

32 - 2 a a + 2

>-Jx

N x 2 - X - 2 - :> a - 5

v 2 — 4 x — 4

V a2 - 6 a + 5 + a /a 2 - 7 a + 10 <0

V a2 - 6 a + 5 + V x 2 - 7 a + 10 > 0

V 4 -V a + 13 < V r + 5

V a2 - 2 a - 1 5 ( a 3 - 6 a 2 +9a)

(x -1 ) (a - 2 )<0

a + 4> 4 x

x - 2

V 3 -3 a < ^ 2 l + 4 x - x 2

Va 2 - a -1 2 ( a -5 )(2 a 2 - 3 x - 2 ) < 0

Rpta. < V Ì0 -1 , l+-JÍ0>

Rpta. <18,+oo>

Rpta. <0,4>

Rpta. <-5,-2] U [4,5>

Rpta. [-4,-1] U {4}

Rpta. [0,4]

Rpta. [-4,-2] U [2,3]

Rpta. x = 5

Rpta. <-0 0 ,1] U <5,+oo>

Rpta. [-5,3]

Rpta. [-3,0] u <2.5]

Rpta. <2,4]

Rpta. [-2,1]

Rpta. <-oo,-3] u [4,5]

Page 114: Espinoza Ramos 1

100 Eduardo Espinoza Ramos

44) ^j4~y¡í—X —\¡2 - X > 0

@

®

*- -1 6>0

V U - 4 I - U -

J x 2 - 3 x + 2 > 2 - x

lx + 4

Í x - 2

y ¡ 2 4 - 2 x - x 2<1

3JL i l+ l z l > ox+ 2 Vx+1

■^4—J l ^ x —j 2 - x > O

4jc- 5> x - 6

V 4 - V x 2 - 9

'Jx2~ - x —l2 (x ~5)(2x2 - 3 x - 2 ) < O

+ * - 2 + 3

V 9 -x 2 -1

l ^ x 2 - 5 x + 4 - 2I 2 - - J x - 2

> x - 4

> x - 6

Í £ z * + í í z £ > ox -1 ^ x + 3

(56) V x2 — JC + 1 < V 4 - j

Rpta. < - 2 , - —>

Rpta. <-0 0,-4>

Rpta. <2,+oo>

Rpta. <2,4]

Rpta. [-6,3]

Rpta. <-2,l> U [3,5]

Rpta. < - 2 , - — >

Rpta. [-5,-3] U {5}

Rpta. <-00,-3] U [4,5]

Rpta. < -2 ^ 2 , —2] £/ [1, 2^2 >

Rpta. [-2,0] U [4,5]

Rpta. <-3,l> U [4,5]

Rpta. < - t/3 , a/3 >

Page 115: Espinoza Ramos 1

Sistema de Números Reales 101

V'x 2 + l (x2 - 4 x + l) 4x + 4

■Jx-Ì +-Jx + 2

■\¡9-x2 -o /x

>0

> 0

5?) -Jx + 3 + a/x - 6 > a /6 - j

6Ì) V2x — 1 + a/3x - 2 > a/4x - 3 + a/5x - 4

Rpta. <-1, 2 - 0 / 3 > u < 2 + a/3 , 00 >

Rpta. [ 1 , ^ — !->

óo) 0/x 2 -2 x - a /x 2 + 4x > 2

a/x2 -2 x - a/x 2 +4x > 2

63) a/2 x + 3 + a/3x - 2 - a/ 2 x + 5 < a/3x

a/ö - x 2 - a/x

(i? ) V 2 x + 3 + a/3x - 2 ~ a/2 x + 5 < a/3x

1.35 VALOR ABSOLUTO.-

a) DEFINICION.- Al valor absoluto del número real x denotaremos por |x|, y se define por la regla.

lilix sí x > 0

-X si x < 0

Ejemplo.- |7| = 7. |-7| = -(-7) = 7

b) PROPIEDADES DEL VALOR ABSOLUTO.-

(T ) |a| > 0, V a e R ( 2) |a| > a V a e R

Q |a| = |-a| @ |ab| = |a||b|

b * 06 1*1

Demostraremos la 6o propiedad, las demás dejamos para el lector.

© |a+b|<|a| + |b| (desigualdad triangular)

Page 116: Espinoza Ramos 1

102 Eduardo Espinoza Ramos

\ a + b \ 2= | (a+b)2 \ = (a + b)2 = a 2 +2ab + b 2

< | a | 2 + 2 |f l ||¿)| + |¿)t2= (\a\ + \b \)2

|fl + ¿>|2< ( |a | + |f>|)2 entonces /. |a + b{< |a| + |b|

IM PROPIEDADES BASICAS PARA RESOLVER ECUACIONES" 1 INECUACIONES DONDE INTERVIENE VALOR ABSOLUTO»

(7 ) [a| = 0 <=> a = 0

|a| = b <=> [ b > 0 A ¡a = b v a = -b)J

^ 3 ) |a| = |b) <=> a = b v a = -b

© Si b > 0, entonces:

i) |a| < b o -b < a < b B) |áf < b o -b < a < b

© Si a, b e R se verifica

i) |a| > b <=> a > b v a < -b ü) |a| > b <=> a > b v a < -b

La demostración de estas propiedades dejamos paira el lector.

Ejemplo.- Resolver la ecuación |4x + 3| = 7

Solución „

|4x + 3{=7 <=> 4x + 3 = 7 v 4x + 3 = -7

. 5O X = l V X = ------

2

Luego para x = 1, .1 = - — son soluciones para la ecuación dada.

Page 117: Espinoza Ramos 1

Sistema de Números Reales 103

Ejemplo.- Resolver la ecuación |2x + 2| = 6x - 1 8

Solución

|2x + 2| = 6x —18 o [6x —18 > 0 A (2x + 2 = 6x—18 v 2x + 2 = -6x + 18)]

<=> [x > 3 A (x = 5 v x = 2)]

Luego la solución de la ecuación es x = 5.

Ejemplo.- Resolver la ecuación |x — 2| = |3 — 2x|

Solución

|x - 2 | = |3 -2 x | <=> x — 2= 3 — 2x v x —2 = -3 + 2x

<=> x = — v x = l , la solución es: {1,—}3 3

. t» ,, , , j , •. |4x + l | —| jc- 1 | , . ,Ejemplo.- Hallar el valor de la expresión:---------------------, si x e <0,1>

>

2 3 5

X

Solución

4x +1 , x > —41

14x + 11 =■- 4 x - l , x < —

4

si x e <0,1> => |4x + 11 = 4x + 1 , |x — 11 = 1 — x

Luego:14x + 1 1 — | x — 11 _ 4x + l —(1 -x ) _ 5x

— = 5x X X

|4x + l | - | x - l | — 5 , para x e <0,1>x

Page 118: Espinoza Ramos 1

104 Eduardo Espinoza Ramos

Ejemplo.- Resolver la inecuación |2x — 5| < 3

Solución

|2x - 5| < 3 <=> -3 < 2x - 5 < 3 » 2 < 2 x < 8

<=> 1 < x < 4 <=> x e <1,4>

Luego la solución es x e <1,4>

2 x - 5Ejemplo.- Resolver la inecuación: | --------1 <3

x - 6

Solución

2 x - 5 2 x - 5 2 x - 5 2 x - 5--------1<3 <=> - 3 < ---------<3 o - 3 < --------- A --------<3x - 6 x - 6 x - 6 x - 6

5 x - 2 3 x - 1 3<=> --------- > 0 A -------- > 0

x - 6 x - 6

<=> (5x—23)(x —6)> 0 A (x—13)(x —6) >9, x * 6

23/5 6 6 13

23x e < -o o ,— > U < 6,+oo> A < —»,6> í/< 13 ,+ oo>5

•4 wMMHmHHMtmmQ------------ ©--------- (ywmHwmmim►23/5 6 13

----------------------------O O-----------

23La solución es: x e < -oo, — > U < 13,+oc >5

Si x es un número real, el máximo entero de x representaremos por [| x |] y es el mayor

de todo los entero menores o iguales a x. es decir:

Page 119: Espinoza Ramos 1

Sistema de Números Reales 105

[| x |] = máx {n e Z / x > n |

Para calcular el máximo entero de un número real x, se observa todos los enteros que se encuentran a la izquierda de x (o que coinciden con x, en caso que x sea entero) y el mayor de todos ellos es el máximo entero [| x |] , por ejemplo:

-------1-------1-------1-------1-------1-------1--------h — *-1 0 1 2 x 3

De donde [| x |] = 2

Ejemplo.- Hallar [| 3.7 |]

De donde [| 3 .71] = 3 ^ Q 1 2 3 3 7 4

Si x se encuentra entre dos enteros consecutivos de la forma:

•4------n x n+1

Entonces: f [ jk| ]=n <9 n s x < n + f , n « Z

Ejemplo.- Sí [ | x | ] = 5 <=> 5 < x < 6

[| x |] = -5 <=> -5 < x < -4

NOTA.- Como se podrá observar siempre se toma él numero entero mas próximo a laizquierda.

OBSERVACION.- Por definición de máximo entero se tiene:

[| x |] = n <=> n < x < n + 1, n e Z

<=> x e [n, n+l>, n e Z

Ejemplo.-[| x |] = -4 <=> -4 < x < -3 => x g [-4,-3>

Ejemplo v H ?.. ■ \ '.■■■; absurda-, puesip que todo máximo entero.es un numero entero.

Page 120: Espinoza Ramos 1

106 Eduardo Espinoza Ramos

1.38. PROPIEDADES DEL MAXIMO ENTERO.-

[| x |] e Z, por definición © [| x |] = x o x e Z

( 3) V x e R, [| x |] < x, por definición ( 4) [| x |] < x < [| x |] + 1, V xeR

© 0 < x — [| x |] < 1, V x e R © [ | [ |x |] | ] = [ |x |] , V x e R

0 [| x + n |] = ti x |] + n, n e Z

En efecto: Sea [| x |] = k, k e Z, entonces k < x < k + 1

=> k + n < x + n < ( k + n) + 1

=> [ |x + n| ] = k + n = [ | x | ] + n

© [| x |] < n o x < n + 1, n e Z © [| x |] < n <=> x < n , n e Z

^ 0) [| x |] > n <=> x > n, n e Z , x e R ^ l ) Sí yeZ [| x |]<y <=> x < y+1

^ 2 ) V x, y e R, si x < y <=> [| x |] < [| y |]

© [| x + y |] > [| x |] + [| y |]

En efecto: Sean[| x |] = m ni < x < m +1

[| y |] = n n < y < n + 1

m + n < x + y < ( m + n) + 2

entonces [ |x + y |] = m + n o m + n + 1

por lo tanto [| x + y |] > m + n [| x + y |] > [| x |] + [| y |]

Si 11 e Z + => [| nx |] > n [| x |]

1 efecto: Sea [ | x| ] = m => m < x < m + l

=> nm < nx < nui + n

=> [| nx |] > nm [| nx |] > n [| x |]

Page 121: Espinoza Ramos 1

Sistema de Números Reales

15) Si x e R y a? e Z + , entonces [| |] = [| — |]n n

(16) Si a y b e Z , x e R , entonces se cumple:

i) a < [ | x | ] < b = > a < x < b + l ii) a < [ | x | ] < b = > a < x < b

¡ii) a < [| x |] < b ;=> a + l < x < b

Ejemplo.-

( I ) Resolver la ecuación [| 3x + 1 |] = 2

Solución

1 2 1 2 [| 3x + 1 |] = 2 => 2 < 3 x + l < 3 => — < x < — entonces x e [— >

3 3 3 3

© Resolver la inecuación [| 5x |] < 3

Solución

3 3[| 5x |] < 3 => 5x < 3 => x < — j g < —oo, — >

5 5

© [| 2x |] < x

Solución

Si x < 0 => 2x < x => [| 2x |] < 2x < x

Es decir [| 2x |] < x =< -*>,0 >

Sí 0 < x < y => 0 < 2x < 1 => [| 2x |] = 0 < x

Es decir [| 2x |] < x S 2 -< 0, -- >

Si x > y => 2x > 1 => [| 2x |] > 1 es decir: [| 2x |] * x S 3 -■ <f>

S =< -oo.O > u < 0, — >2

Page 122: Espinoza Ramos 1

Eduardo Espinoza Ramos

© [I 2x |] < [| 4x I]Solución

1 f[l 2jc |] = 0S i O < x < — = > { => 0 < 0 falso

4 [[| 4x |] = 0

, , 1 Ahora si x > —

42 x > — [| 2jc|]> 0

2 =>4 x > \

Entonces [| 2x |] < [| 4x |] 5 = [­i

© [| -5x |] < [| x |]Solución

1 í 0 < 5jc < 1Sí 0 < x < — => \ => -1 < -5x < 0 => [| -5x |] = -1 y -1

5 [[ |x |] = 0 11 U ^

/. =< 0, j >

Sí x > y => -5x < x => [| -5x |] < [| x |] S 2 = [-j ,+°° >

S = <0,+oo>

© [I x - 1|] < [| x |]Solución

Sí x > 1; supongamos que: [| x |] = k

=> [| x — 11] = k — 1 < k = [| x |] de donde = [l,+oo >

Si x < 1, entonces [| x — 1 |] < 0 a [| x |] < 0

entonces [| x — 1 |] < [| x |] S 2 =< -»,1 > S = R

© ([I x |] — 2)(x — 2)(x + 1) > 0Solución

,+oo >

< 0

Page 123: Espinoza Ramos 1

Sistema de Números Reales 109

a) Si x < 2 [| x | ]—2 < 0. luego resolveremos

-(x -2 ) (x + 1 )> 0 es decir - 2 ) ( x + l ) < 0 de donde 5, =<-1,2

b) Sí 2 < x < 3, entonces [| x |] - 2 = 0 de donde S 2 = </)

c) Si x > 3 => [| x |] — 2 > 0 luego resolveremos (x — 2 ) ( x + l ) > 0

Sy = [3.+» > n(< --»,-1 > i >{2,+* >) /. Sj = [3,+oc >

S = <-1,2> o [3,+x>

® ( .* ' - \ ) ( x 2 + \ ) J [ \ x \ ] - x > 0Solución

[| x |] — x > 0, entonces [| x |] > x, pero por definición se tiene: [| x |] < x,

V x e R => [| x |] = x e Z

Luego resolveremos (x ' -1)(jc2 +1) > 0 => x > 1 S = Z

(7 ) ([| x — 2 [| x |]) (x — 1 )(x + 1) > 0Solución

[| x — 2[| x |] |] = [I x |] — 2[| x |] = [| -x |]

i) Si x < 0 , => -[| x |] > 0. entonces resolveremos

(x —l ) ( x + l ) > 0 5 ,= < —oo.-l]

ii) Si 0 < x < l ^ [| x |] = 0 entonces S =[0,I>

iii) Si x > l => [| x |] > 0, entonces resolveremos (x— l ) ( x + l ) < 0 S 3 = {H

... s = <-*,-!] u [0,1]

Solución

Page 124: Espinoza Ramos 1

Ill) Eduardo Espinoza Ramos

Sc conoce que [| .v |] + n <=> n < x < n + 1

x + 2\jr + 3

x+ 2 a + 3 a- + 3

O 1 < ------- < 2 <=> 1 < --------- A -----------x + 3 .v + 3 .V + 3

<=> 1 + ------< 0 A 2 + -------A +3 A + 3

x + 4 2a + 7----- < 0 A —— -> ()A + i A + 3

f(x + 4)(x + 3) < 0 A (2x + 7)(x + 3) > 0], x * - 3

©

Luego la solución es: x e [ - 4 ,-— >

x - lResolver la inecuación [| — |] > 4

Solución

Aplicando la propiedad siguiente: Si y e Z, [ |a |]>_v <=> x > y

4 e Z. r i* h

LX -

> 4 <T> j—i— > 4 <=> |x| - 1 > 205

<=> |x| > 21 <=> x > 21 V x < -21

La solución es: x e <-oo,-21 ] U [ 2 1 ,+<*>

Resolver la inecuación [|| a | -2 a |] = 0

Solución

Page 125: Espinoza Ramos 1

Sistema de Números Reales 111

Por definición de máximo entero se tiene:

[|| x | - 2 x |] = 0 •» 0 < |x| - 2x < 1 o 2x < |x| < 1 + 2x

ahora por la propiedad transitiva ( a < b < c o a < b A b < c )

se tiene: 2 x < |x |< l+ 2 x <=> 2x < |x| A |x |< 1 + 2x ...(1)

además se conoce que: | x | =x, x > 0

- x , x < 0

Io Si x > 0 => |x| = x reemplazando en (1 ) se tiene:

2x < 0 A x < 1 + 2x = > x < 0 A x > - l :=> x e <-1,0]

La primera parte de la solución es: x e [0,+oo> A <-l,0] => x = 0

2° x < 0 => |x| = -x reemplazando en (1) se tiene:

2x < -x A -x < 1 + 2x => x < 0 A jc> — => x e < - —,013 3

la segunda parte de la solución es: x e <-oo,0> A < — ,0] => jc€ < ~ —,0>3 3

Por lo tanto la solución de [ ||jc| - 2 x |] = 0 es: . r e < - y ,0 > t /{ 0 [ = < - ÿ ,0 ]

1.39 INECUACIONES LOGARITMICAS.,

Para el estudio de las inecuaciones logarítmicas es necesario recordar lo siguiente:

En primer lugar la definición de logaritmo es decir:

N**x o A N > 0 a b > 0

En segundo lugar las propiedades del logaritmo

a) log/, AB = log/, A + log6 B b) log,, — = logfc A -log* BD

Page 126: Espinoza Ramos 1

112 Eduardo Espinoza Ramos

c) log* A" = u log* A

e) log,, 1 = 0

d) \ogh '4a = - \ o g h A ti

f) log* b = 1

g) log„ N : log/, N log* a

En tercer lugar se observa la gráfica y = log/, x cuando b > 1 y 0 < b < 1. También

dentro del campo de los números reales, solo tiene logaritmo los números reales positivo: ahora gratificamos la ecuación y = log* x .

Al observar la gráfica se tiene los siguientes casos:

Io Caso.- Cuando la base es b > 1, en la gráfica podemos observar:

i) Los números mayores que 1 tiene logaritmo positivo.

ii) Los números entre 0 y 1 tiene logaritmo negativo, entonces para cualquier

A,, x 2 e R se tiene

Sí b > 1 y 0 < x x < x 2 <=> log* x x < logA x 2

De donde deducimos las relaciones siguientes:

a) Sí x > 0, b > 1; N e R => log* x > N <=> x > b"

b) Si x > 0, b > 1; N e R => log* x < N <=> x < b"

Page 127: Espinoza Ramos 1

Sistema de Números Reales 113

2o Caso.- Cuando la base es 0 < b < 1. en la gráfica podemos observar:

i) Los números mayores que 1 tiene logaritmo negativo.

ii) Los números entre 0 y 1 tiene logaritmo positivo, entonces para cualquier x x, x 2 de

R+ se tiene:

Sí 0 < b < 1 y 0 < x x < x 2 <=> logfc xx > logfc x 2

de donde deducimos las relaciones siguientes:

Sí x > 0, 0 < b < 1 y N e R => log/, x > N o 0 < x < b N

Sí x > 0, 0 < b < 1 y E e R => log6 x< N <=> x > b N

OBSERVACION.- Resumiendo, para la solución de las inecuaciones logarítmicas seobtiene de la siguiente manera:

a > c si b > 1 a <c si 0 < b < \

a > br si b > 1

a < b c si 0 < b < 1

Ejemplo.- Resolver las inecuaciones siguientes:

O log2(2x + 4) > log2(5x + 3)Solución

Calculando el campo de existencia de los logarítmicos dados

32x + 4 > 0 a 5 x + 3 > 0 de donde x > -2 a x > —

5

como la base es 2 > 1, entonces se tiene:

Page 128: Espinoza Ramos 1

114 Eduardo Espinoza Ramos

, , 3 1 3 1 „ 3 1La solucion es: a e< — ,+oo> n < -oo,—>=<— , —> S =< — ,—>5 3 5 3 5 3

© log, (2x + 5 )< -23

Solución

Calculando el campo de existencia del logaritmo

2x + 5 > 0, entonces * > - — de donde U =< ,+oo>2 2

, , 1 , • como la base es — < 1, entonces se tiene:3

log , (2 ,r+5) < -2 o (2x + 5 > ( —y 2 => 2x + 5 > 9 = > x > 2 => x e <2,+»>3 3

Luego la solución es: x e < ,+oo > n < 2,+oo >=< 2,+» > S = <2,+oo>

© log2 (| -v — 2 1 -1) > 1Solución

Calculando el campo de existencia del logaritmo

| x — 2 | - 1 > 0 => | x — 2 | > 1 => x — 2 > 1 v x — 2 < - 1 => x > 3 v x < l

de donde U = <-oo,l> u <3,+'»>

como la base es 2 > 1, entonces se tiene:

log2 (| -Y — 2 1 —1) >1 => | jc — 2 1 —1 > 21

=> | x — 2 | > 3 => x - 2 > 3 v x - 2 < - 3 => x > 5 v x < - l

x e <-ao,-1> u <5,+oo>

La solución es: x e (<-oo,l> u <3,+oo>) n (<-*>,-1> u <5,+oo>)

S = <-oo,-l > vj <5,+oo>

Page 129: Espinoza Ramos 1

Sistema de Números Reales 115

© iogjr( £ ± i l ) > i jc-1

-v + 15.ì > i

Solución

jc + 15El logaritmo dado esta bien definida sí x > 0 y x * 1 además ------- > 0

JC-1

Luego el campo de existencia es U ” < 1 ,+oo>

x +15, . x + 15 ¡ x + 15Ion. (------—) > 1 => — — • > x => ——— - x > 0 , de dondew x -1 x —1 x -1

,r + 15-,v2 +x „ jc2 - 2 x - 1 5 . , , , (jc — 5)(jc 3) „> 0 => ----------------< 0 de donde - — < 0.v - 1 .V -1 x - 1

de donde x g <1 ,+oo> u <1,5>

La solución es: x e <1,+oo> n (<-oo,-3> u <1,5>) = <1,5> S = <1,5>

Resolver la inecuación log1/3 (2x + 5) < -2

Solución

Aplicando la propiedad siguiente: x > 0, 0 < b < 1, N e R, log* x < N <=> x > b v

para nuestro caso 2x + 5 > 0 =í> x > ~ ^

log1/3(2jt + 5 )< -2 <=> 2x + 5 > ( ^ y 2

2x + 5 > 9 <=> 2 x > 4 => x > 2 , la solución es: x g <2,+°o>

( ó ) Resolver la inecuación log2( |x - 2 1-1) > 1

Solución

Aplicando la propiedad siguiente: x > 0, b > 1, N g R , logft x > N •» x > b h

para nuestro caso se tiene |x — 2| - 1 > 0

Page 130: Espinoza Ramos 1

116 Eduardo Espinoza Ramos

| x - 2 | > l o x - 2 > l v x - 2 < - l o x > 3 v x <1

log2( |jc—2 1 —1) > 1 o |x — 2| - 1 > 2

|x - 2 |> 3 <=> x - 2 > 3 v x - 2 < - 3 <=> x > 5 v x < - l

La solución es x e <-oo,-l> U <5,+*>>

1.40 EJERCICIOS DESARROLLADOS,-

Resolver las siguientes ecuaciones:

© |x 2 + 2 |= 2 x + lSolución

Aplicando la siguiente propiedad: |a| = b <=> [b > 0 A (a = b V a = -b)]

|x 2 +2 |= 2x + 1 <=> [2x + l> 0 A (x2 +2 =2x + l V x 2 +2 = -2 x - l ) ]

o [ . r > - y A (x2 -2 x + l = 0 V x 2 + 2x + 3 =0)]

<=> x > ~ — A (x = l V x — (j>) ---------------é --------------- e -2 - 1/2

Luego la solución es: x = 1

© |x 2 —x - 6 | = x + 2Solución

| x 2 - x - 6 | = x + 2 <=> [x + 2 > 0 A ( x 2 - x - 6 = x + 2 v x 2 - x - 6 = - x - 2 ) ]

o [x > -2 A (x 2 - 2 x - 8 = 0 v x 2 =4)]

<=> [x > -2 A (x = 4, x = —2 v x = ±2)]-2 2 4

La solución es el conjunto {-2,2.4}

© x 2 — 2 1 x | —3 = 0

Page 131: Espinoza Ramos 1

Sistema de Números Reales 117

Solución

La ecuación dada se expresa así:

2 1je| = je2 —3 o [x2 - 3 > 0 A (2x = x 2 - 3 v 2jc = - x 2 +3)]

<=> [,v2 >3 A (jc2 -2 .v -3 = 0 v x 2 + 2 x - 3 = 0)]

«> (x>yf3 V x < —J3) A (x = 3,-1 v jc = -3,1)

Solución

Aplicamos la propiedad: |a| = |b| o a = b V a = -b

|x — 4| = |x — 2| <=> x —4 = x —2 V x — 4 = -x + 2

<=> -4 = -2 V 2x = 6

<=> <|> V x = 3, La solución es x = 3

|x — 2| = |3 — 2x| <=> x — 2 = 3 — 2x V x — 2 = -3 + 2x

-3 —s/3 -1 1 V3 3

0 |x — 4| = |x — 2|

La solución es {-3,3}

0 |x — 2| = |3 —2x|Solución

«> x = — V x = l . La solución es: {1.—>3 3

0 2|j:+2|- | 2 jr+1- l |= 2 jf+l+lSolución

Aplicando la definición de valor absoluto

Page 132: Espinoza Ramos 1

118 Eduardo Espinoza Ramos

-2 -1

para x < -2x + 2\ = - x - 2

12x+l - 1 1 = 1 - 2 '

reemplazando en la ecuación 2U' 21 - 12*+1 - 1 1 = 2'v*1 +1, se tiene:

2 v~2 - (1 - 2 'M ) = 2a*1 + 1 , simplificando 2~x 2 - 2 ==> - x - 2 = l = > x = -3

Lueiío x < -2, la solución es x = -3

Para -2 < x < -1x + 2\ - x + 2

12'v+1 - 1 | = 1 - 2 jr+1

reemplazando en la ecuación 2 r* - ( 1 - 2 x+ ) = 2 *+! +1, simplificando

2 r"2 = 2 => x + 2 = l => x = -1, como - 2 < x < - l entonces x = -l no es solución

Para x > -1j \ x+ 2 \ = x + 2

l l2 í+1 - II =2*+1 -1

reemplazando en la ecuación se tiene: 2X~~ - ( 2 A+1 -1) = 2 J+1 +1, simplificando

2 '" 2 = 2'f+2 => x + 2 = x + 2, V x e R

Luego la solución para x > -1 es R A [-1,*£> = [-1 ,oo>

Por lo tanto la solución de la ecuación es: x = -3 y [-l,+oo>

© \ x 2 - 9 | + |jr2 — 4 1 = 5Solución

A la ecuación |.v2 —9 | + |x 2 —4 | = 5 expresaremos en la forma:

|x + 3 ||x —3| + |x —2||x+2| = 5 ...(1)

Page 133: Espinoza Ramos 1

Sistema de Números Reates 119

II I2 *3 U I5---------- h — H--------------------------------1---1-----------►

- 3 - 2 2 3

analizando en cada intervalo /,■, i = 1, 2, 3, 4, 5

D Í|jt + 3| = - x - 3 ; | x - 3 | = 3 - xPara x < -3 => i ... (2)

[|x + 2 | = - x - 2 : \ x - 2 \ = 2 - x

Reemplazando (2) en (1) se tiene: (-x — 3)(3 —x) + (-x —2)(2 —x) = 5

efectuando y simplificando x 2 =9 => x = ±3

luego como x < -3 la solución es: x e <-oo,-3> A {± 3} = <|>

f |x + 3 | = x + 3 ; | x - 3 | = 3 - x Para -3 < x < -2 => \ . ..(3 )]\x + 2 \ = - x - 2 : \ x - 2 \ = 2 - x

Reemplazando (3) en (1) se tiene: (x + 3)(3 — x) — (x + 2)(2 - x ) = 5

efectuando operaciones y simplificando: 9 —x 2 - 4 + x 2 =5 => 5 = 5 es valido V x e R

luego la solución es:

d l\x + 3 \ = x + 3 ; \ x - 3 \ = 3 - xPara - 2 < x < 2 => { ...(4 )

[U + 2 | = x + 2 ; | x - 2 | = 2 - x

Reemplazando (4) en (1) se tiene: (x + 3)(3 — x) + (x + 2)(2 — x) = 5

9 - x 2 + 4 _ r 2 =5 => x = ± 2

luego la solución es: [-2,-2> n {± 2} = {-2}

\\x + 3 \ = x + 3 , |x —3 1 = 3 - x para 2 < x < 3 => {1 |Jx + 2 1 = x + 2 , |x — 2 1 = x - 2

reemplazando (5) en (1) se tiene: (x + 3)(3 - x ) + (x + 2)(x - 2 ) = 5

efectuando y simplificando 5 = 5 es valido V x e R

...(5)

Page 134: Espinoza Ramos 1

120 Eduardo Espinoza Ramos

Luego la solución es: { 2 3 > n R - [2,3>

í|.Y + 3 |= j r + 3 , | jc—3 1 = _v—3 Para x > 3 => . .. (6)

| |x + 2 | = x + 2 , \ x - 2 \ = x - 2

Reemplazando (6) en (1) se tiene: (x + 3)(x - 3 ) + (x + 2)(x — 2) = 5

efectuando y simplificando: x 2 - 9 => x = ±3

Luego la solución es: [3,+eO n - {3}

Por lo tanto la solución de la ecuación es: [-3,-2> v {-2 ¡ U [2,3> v {3¡-

[-3,-2] U [2,3]

© \ x 2 - 4 \ = - 2 x + 4Solución

Por la propiedad: |a| = b <=> b > 0 A (a = b v a = -b)

|A-2 - 4 1 = -2,v-h4 o -2 x + 4 > 0 A ( x 2 - 4 = - 2 x + 4 \ x 2 - 4 = 2 x - 4 )

•» x < 2 A (.v2 + 2 ,r -8 = 0 v x 2 -2jc = 0)

» x < 2 A ((x + 4)(x — 2) = 0 v x(x — 2) = 0)

<=> x < 2 A (x = 2, -4 v x = 0,2)

Luego {-4, 0, 2\ son las soluciones de la ecuación dada

© \ x 2 + 3 | = |2x + l |Solución

Por la propiedad: |a| = |b| <=> a = b v a = -b

|.x2 + 3 1 = \2x+] | x 2 + 3 = 2x + \ v ,v2 +3 = -2„v-l

<=> .t2 - 2 x + 2 = 0 v x 2 + 2a + 4 = 0

<=> <{> V ({) = (J)

La solución es él (j> puesto que V x e R, a*2 - 2x + 2 > 0 , x 2 + 2x + 4 > 0

Page 135: Espinoza Ramos 1

Sistema de Números Reales 121

(ÍO) | je2 +6.V + 1I =2.c + 6Solución

Por la propiedad: |a| = b <=> b > 0 A (a = b v a = -b)

|.v2 +6.V + 11 =2.c + 6 » 2x + 6 > 0 A [x2 +6a + 1 =2x + 6 v x 1 +6x + \ = -2 x -6 ]

« x > -3 A (x2 + 4 .t-5 = 0 v x 2 +8,r + 7 = 0)

<=> x > -3 A (x = l,-5 v x = -l,-7) +-7 -5 -3

Luego la solución es {-1.1}

©3-v + 8 I x - 3

1 = 8

Solución

3x + 8 2x - 3

| =8 <=> 3x + 8 3x + 8--------= 8 v --------2 x -3 2 x - 3

= -8 , para x * —

o 13x = 32 v 19x = 16, Luego la solución es: x = — ,16jt = —

© | |x| — 5 | = 2x — 3Solución

| |x| — 5| = 2x — 3 « 2x — 3 > 0 A (|x| — 5 = 2x — 3 v |x| — 5 = -2x + 3)

o x ~~2 ^ (I ■* N 2jc + 2 v' | jc |= —2jc + 8)

=> x = -2 v x = —, por lo tanto la solución es x = —3 3

Page 136: Espinoza Ramos 1

122 Eduardo Espinoza Ramos

@ |-v — 4 12 - 5 1JC-41+6 = OSolución

Factorizando se tiene: (|x - 4| - 3)(|x - 4| - 2) = 0

«• |x — 4| — 3 = 0 v |x — 4| — 2 = 0

<=> |x — 4| = 3 v |x — 4| = 2

<=> (x - 4 = 3 v x - 4 = -3) v ( x - 4 = 2 v x - 4 = -2)

<=> x = 7 v x = l v x = 6 v x = 2, las soluciones son: {1,2,6,7¡

Hallar el valor de la expresión: + — ——Zi si x £ <2,5>x

Solución

Por la definición de valor absoluto se tiene:

14x + 7 | = •x — l si A > 7

1 - x si X < 1- 4 a - 7 si x < —

4

ahora para x e <2,5> <=> |4x + 7| = 4x + 7, |x — 7| = 7 — x

como x e <2,5> o| 4a + 7 | - 1 a - 7 1 _ 4a + 7 - (7 - a ) _ 5a

— = 5A A A

| 4a + 7 1 — | a — 7 1= 5 si x e <2,5>A

Hallar el valor de la expresión:| 5a + 4 1 - 14 + 3a I

si x e <0,3>

Solución

Aplicando la definición de valor absoluto

Page 137: Espinoza Ramos 1

Sistema de Números Reales 123

15.V + 4 1 =5x4 4 si x > —

5c „ ■ 4- 5 x - 4 s i x < —

5

; |4 + 3;c| =4 + 3x si x > —

34

-4 -3 x si x< —

ahora para x e <0,3> <=> |5x + 4| = 5x + 4, |4 + 3x| = 4 + 3x

| 5jc + 4 1 — 14 —3jc I 5x + 4 - ( 4 + 3x) 2x „ corno x e <0,3> <=> ----------1 1 -------— = ---------- ---------- = — = 2

15x + 4 1 - 14 + 3x | -2 si x e <0,3>

r r li l i j i | 5jc — 2 0 1 — 13x — 2 0 1 .Hallar el valor de la expresión: ----- ------1--------------1 si x e <-3,-2>

Solución

Aplicando la definición de valor absoluto

Í5 x -2 0 si x > 4 |5 x - 2 0 | = ; 13x-201

20 - 5x si x <4

l

3x - 20 si x > — 3

ln , . 20 20 - 3 x si x< — 3

ahora para x e <-j.-2> <=> |5x — 20| = 20 -5 x , |3x — 20| = 20 - 3 x

, . 15.v - 2 0 1 - 13x - 2 0 1 2 0 -5 x - (2 0 -3 x ) 2x „corno x e <-3,-2> <=> —— ■— '— ---------------------------------------------------!• = ----------- ---------- = -------- = -2

15x - 2 0 1 - 13x - 2 0 1= -2 si x e <-3,-2>

17) Resolver la inecuación | x 2 - 4 1< 5Solución

Por la propiedad: |a| < b <=> -b < a < b donde b > 0

IX2 — 4 1<5 <=> - 5 < x 2 - 4 < 5

Page 138: Espinoza Ramos 1

124 Eduardo Espinoza Ramos

o - 1 < a 2 < 9 «> - 1 < a 2 A x 2 <9

o x e R A - 3 < x < 3

c=> -3 < x < 3, Luego la solución es

| 9 - x | >3Solución

Por la propiedad |a| > b <=> a > b V a < -b

19 - ,v2 | >3 <=> 9 - a2 >3 v 9 - a2 <3

<=> x 2 <6 v a-2 >12

<=> - a/ó < x < a/ó v x > a/Í2 v x < -a/T2

- s í ñ

Luego la solución es:

, 3 a -3

- M wm» m-a/6 S VÍ2

/////////////////►

a€<^cdt“-a/Í2] V [- ¡6,-M] U [-a/Í2 ,+3o>

A + l<2

Solución

Mediante la propiedad: |a| < b o -b < a < b

, 3a - 3 3a - 3-------- < 2 <=> - 2 < --------< 2A+l A +l

3a - 3 3a - 3<=> - 2 < -------- A --------<2

V

A + l A + l

o — —- > 0 A * — < 0 , para x * -1A + l A + l

o (5x- l)(x + 1) > 0 A (x —5)(x + 1)<0, x * - l

Page 139: Espinoza Ramos 1

Sistema de Números Reales 125

a < A / ~ r V ~ + ~ t>-1 1/5 -1

x e < -» ,-1 > £ /< — ,+oo> A x e < - l ,5 >5

-1o-

1HHHM 1 ¡5 / 5

-o

Luego la solución es X S < ~ ,5 >

Resolver: —!— e [—,1] x + 4 3

Solución

—— e [ - , l ] => <1 => 1 < x + 4 < 3x+ 4 3 3 x + 4

=> -3 < x < - l, luego la solución es x e [-3,-1 ]

21) Resolver * 1 — r l2 x - l x - 2Solución

2 x - l1 , 5 1 1 ,------ o ----------> --------- para x * — ,2 se tiene

x - 2 \ 2 x - \ \ | x - 2 | 2

5|x—21 > |2x - 1|, elevando al cuadrado 2 5 (x -2 )2 > ( 2 x - l ) ? efectuando y simplificando:

7x2 -3 2 x + 33> 0 o ( 7 x - l l ) ( x - 3 ) >0+

11/7 3

Como (7x — 11 )(x - 3) > 0, se toma los intervalos donde aparecen el signo (+), es decir

< -oo,-y-] U [3,+to > . Luego la solución es: U [3,+*>-{!>'

Page 140: Espinoza Ramos 1

126 Eduardo Espinoza Ramos

22) Resolver la inecuación: | jr — 11 + 2 1 x - l | -3 < 0

Solución

Completando cuadrados se tiene:

( | jc- 1|+1)2 < 4 o -2 < |x + 1|+ 1 < 2

o -3 < |x + 11 < 1

<=> -3 < |x + 11 A |x + 11 < 1 <=> R A -1 < x + 1 < 1

<=> R A -2 < x < 0, la solución es x e <-2,0>

23) i jc—3 1 —3 1 jc—3 1 —18 > 0Solución

Factorizando se tiene:

(|x — 3| - 6)(|x - 3 | + 3) > 0 « (|x — 3| > 6 A |x — 3| > -3) v (|x — 31 < 6 A |x — 3| < -3)

<=> (|x — 3| > 6 A R) v 4>

<=> ( x - 3 > 6 v x - 3 < - 6 ) A R

<=> (x > 9 v x < -3) A R

<=> (x < -3 v x > 9)

La solución es x e <sg ,-3> U <9,+<x>>

\x\-\2 - x

> 0

Solución

Por la definición de valor absoluto | x |=x, x > 0

- x , x < 0

Si x < 0 => |x| = -x, reemplazando en la ecuación dada se tiene

Page 141: Espinoza Ramos 1

Sistema de Números Reales 127

- x - \>0

x + \> 0

2 - x x —2

de donde ( x + l ) ( x - 2 ) = 0

x + 1

x + \ x - 2

> 0 « (x + l ) (x -2 ) > 0, para x * 2

r _ 2

como

decir:

x - 2

-1 2

> 0 la solución es la unión de los intervalos donde aparecen el signo (+) es

x e (<-oo,-1 ] U <2,+oo>) A <-f»,0]

X fe <-x:A] . ..(1 )

Si x > 0 => |x| = x, reemplazando en la ecuación dada se tiene

.r-1 2 - x

> 0 -C-lx - 2

< 0 de donde

x — 1Si ------ < 0 <=> (X- l ) (x -2 ) < 0 para x * 2

x - 2

Entonces (x - 1 )(x — 2) = 0 => t\ = 1, r2 = 2

x — 1Como — —-< 0 => la solución es: x e [0,+»> A [1,2> = [1,2>

x - 2

x e [ Ì s2> ...(2 )

La solución de la inecuación es la unión de (1) y (2) es decir: x e <-oo,-l] U [1,2>

I 1 — I T ~ ~ i I2x + 3 3x + 7Solución

1 . . x , 1 . 1 x 12.V-+3 3x + 7 \2x + 3\ |3x + 71

7 3Para x * — ,~—, se tiene: |3x + 7| < |x| |2x + 3|

Page 142: Espinoza Ramos 1

128 Eduardo Espinoza Ramos

-7/3 -3/2

a) si x <13x + 7 | = —3x - 7 \ x \ = - x|2x + 3 | = —2 x —3

reemplazando (2) en (1) se tiene: -3x— 7 < (-x)(-2x —3) de donde 2x'

pero como V x e R , 2x2 + 6x + 7 > 0

la solución es:

. v o- 7 3b) Si — < x < —3 2

7 7<~oo,~- - > K R ~ < - >

13x + 7 1= 3x + 7| X |= - x

12x + 3 |= -2 x - 3

reemplazando (3) en (1) se tiene: 3x + 7 < -x(-2x - 3) de donde

2x2 - 7 > 0 => (V2x + V 7)(V 2x-V 7)> 0

'V2V7 V2

7 3 7 7La solución es: < - y > A (< -o o ,-J—] [/ U íy >+0° >)

■ < _ Z _ ¡ I r " 3 ' 1 2 }

. . .(2 )

! + 6x + 7 > 0

. ..(3)

2x2 - 7 > 0

[ |3 x + 7 | - 3x + lc) Si — < x < 0 => • | x | = - x

2 I12x + 3 1 = 2x + 3

• (4)

Page 143: Espinoza Ramos 1

Sistema de Números Reales 129

reemplazando (4) en (1 ) se tiene: 3x + 7 < (-x)(2x + 3 ) de donde 2x2 + 6x + 7 < 0

como V x e R, 2 x2 + 6x + 7 > 0 entonces la solución es: _ * <L A __ A.

2

d) Si x > 0 =>13.v + 7 ! = 3x + 7 | x | = x12x + 3 1 = 2x+3

... (5)

reemplazando (5) en (1 ) se tiene: 3x + 7 < x(2x + 3) => 2x2 - 7 >0

1S02.v2 - 7 > 0 <=> (V2x +V7)(a/2x -V 7 ) ;

La solución es:

luego la respuesta es: < y > t / < - y ,-^ jy ] £/ [ ,+oo >

l x - H - i x l1-1 x¡

> 0

Solución

[ Jt — 1, SÍ JC ^ 1Aplicando la definición de valor absoluto: | x — 11 = < ’ ; | x |

11 — x, si x < l - x , si x < 0x, si x > 0

0

a) Si x < 0 j |x | = - xj | x — 1 ¡ = 1 —x

. . . ( 2 )

reemplazando (2) en la inecuación dada. —— — > 01 — (—x) I +x

> 0

como ------> 0 < = > x + l > 0 , x * - l <=> x > - lx +1

Page 144: Espinoza Ramos 1

130 Eduardo Espinoza Ramos

La solución para esto caso es: <-x,0> A <~c.~ )> - <-! ,0>

b) Si 0 < x < 1 => j¡,.V 1= A

ll A--1 |=1-A-

reemplazando (2) en la ecuación dada:

2 a -1

...(3 )

- A - AI -A

> 0A -l

> 0 <=> (2x — 1 )(x — 1) > 0 para x * 1

ahora mediante el criterio de los puntos críticos se tiene:

1 /2

La solución para este caso es:

í| a I = —Ac) S i x > l => 1

1|A-1 i = A -1

reemplazando (4) en la inecuación dada:

——'—— >()<=> —í— > 0 <=> x - 1 > 0 para x * 1 de donde x > 1.1 “ A A - l

• <4)

La solución para este caso es:

Por lo tanto la respuesta es: < l.o > U f0,~3 v < !.+« > - < ~ f.~ J V < 1,-x >

| 2 a 2 - 3 a - 9 1< 2 1 a 2 - 2 a -31

Se conoce que:

Solución

í 2a 2 - 3a - 9 = (2a + 3)(a - 3)

[a 2 - 2 a - 3 = (a +1 )(a - 3 )

Reemplazando (1) en la inecuación dada

- . ( 1 )

Page 145: Espinoza Ramos 1

Sistema de Números Reales 131

\ 2 x 2 -3 .V -9 | < 2 1 je2 —2jc—3 1 o |(2x + 3)(x- 3)| < 2|(x + l ) (x -3 ) |

de donde: |2x + 3| |x — 3| < 2 |x + 11 |x — 31 para x * 3

se tiene: |2x + 3| < 2 |x + 1|, elevando al cuadrado:

4 x 2 +12x + 9 < 4 x 2 + 8x + 4 => 4x < -5 de donde:

.v < — ; luego la solución es: x ->x‘,— >'• ....... .

I — 2 | <1x

Solución

Mediante la propiedad: |a| < b <=> -b < a < b

| —- 2 1 <11 <=> -11 < —- 2 <11 o —9 < — < 13X X X

mediante la propiedad: a < b < c » a < b A b < c

- 9 < — < 13 <=> - 9 < — A - < 1 3

9x + l . . 1 3x -l .<=> ------- > 0 A --------- > 0

1/9 0 0 1/13

La solución es: ,v e (<-■»,—^ -> { /< 0 ,+ o o > ) A (< -» ,0 > U < — ,+*> >)9 13

1 1> ( / < - , + * > 9 13

© |3x + 2| < |2x — 11 + |x + 3|Solución

Page 146: Espinoza Ramos 1

132 Eduardo Espinoza Ramos

Aplicando la desigualdad triangular

V x e R: |3x + 2| = |(2x — 1) + (x + 3)| < |2x— 1| + |x + 3|

Por lo tanto la solución es:

4 * + 2 X*3 - 9 > 0Solución

Se conoce: 4 ' = 2 2' . 2 r+3= 8.2 jr

4 V + 2 ' ^ — 9 > 0 <=> 22v + 8 .2 r - 9 > 0

2lx + 8.2A - 9 > 0 o (2* + 9)(2A -1) > 0

(2A + 9)(2A -1) > 0 o (2A + 9 > 0 A 2A- 1 > 0 ) V (2x + 9< 0 A

o (2X > -9 A 2 X > 1) V (2* < -9 A 2X <1)

o x e (R A [0,+*>>) V (<j> A <-oo,0])

Demostrar que: Si |x — a| < R => x e [a — R, a + R]

Solución

Si |x — a| < R => -R < x — a < R

=> a - R < x < a + R

x e [a - R, a + R]

Demostrar que: Sí |x + 4 | < 1 => |2jc + 3 7

Solución

2 t + 3 2x + 3A la expresión ----- expresaremos en la forma: —— — = 2 +

x - l x - \ x - l

2 A -1 < 0)

. . . í l )

Page 147: Espinoza Ramos 1

Sistema de Números Reales 133

Como |x + 4 | < l => - I < x + 4 < 1 sumando —5 se tiene:

=> -6 < x — 1 < -4 inviniendo

1 1 1 , • j r- — < ---- - < — , multiplicando por 54 x —1 6

< —— < - — sumando 24 jc + 1 6

3 5 7 7— < 2 + ----< — < —4 x — 1 6 4

3 2a-+ 3 7— < ——— < —4 x — l 4

2a- + 3 , 7T T ' " 4

| 2 a - 1 1 +1

a2 - 2 a -3<0

Solución

Por definición de valor absoluto: | 2a - 11=

a z :

2 a - 1 , , v > — 2

, ■> 11 - 2 a , x < —

+

1/2

Sí a < — => |2x — 11 = 1 — 2x

Reemplazando en la inecuación dada:

- 2 a +1 A 2 a - 2 n--------- <0 <=> — — - > 0 (x~ l) (x -3 )(x + 1 )>0

a - - 2 a - 3 (a - 3 ( a' + Ì)

para x * - 1,3. Mediante el criterio de los puntos críticos se tiene:

-1 1 3

Page 148: Espinoza Ramos 1

134 Eduardo Espinoza Ramos

La solución para este caso es: x € < - » , — > A (<-1,1] U < 3.+oo>)

x&< - J ,~ >2

Si -v>— => |2x — 11 = 2x — 1, reemplazando en la inecuación dada

2x - 1 +1.V2 -2 .V -3

<0 <=>(x -3 ) (x + \ )

>0 => x (x -3 )(x + l ) > 0 , x * - l , 3

Mediante el criterio de los puntos críticos se tiene: -1 0 3

La solución para este caso es: x e [— ,+oo > A (< -1.0] U < 3.+oo >

X € <3,+«3>

Por lo tanto la solución de la inecuación es: x e < -1, — > U < 3,-f<*> >* M ' '

I-V--.VI-2\ x \ - l

> 0

Solución

A la inecuación expresaremos en la forma

-v - i 1*1-1

Ahora aplicamos la definición de valor absoluto.

x si x > 0m=<¡ . , I-k- J K , . ,

-X SI X < 0 1 - X , SI X < 1

. .(1 )

x - i si * > i < + \y - \ / + t0 1

p a r a x < 0 =>|x| = -x , | x - l | = l - x ...(2 )

Page 149: Espinoza Ramos 1

Sistema de Números Reales 135

- a ( 1 - x ) - _2 ^Q ^ -v2 - , -v.- 2 < o => ^ ~ 2 ^ + 1> < q— A' — 1 A + 1 A + l)

para x * 1, —---- ^'v-~ - < 0 => x — 2 < 0, x * -1A+l

=> x e <-oc,-l> U <-l,2]

Luego la solución para este caso es: x e <-*,0> A (<-*>,-!> U <-1,1])

X € <-cO;r \ > C J < -],()> ...(a)

para 0 á x < 1, -=> |x| = x, |x — 11 = 1 — x ... (3)

reemplazando (3) en (1) se tiene:

> | l ~ Jrl~ 2 >o » = £ —ü ± l < oA - 1 A - 1 A - 1

pero como V x e R. a 2 —x + 2 > 0 => — < 0 => x — 1 < 0

x # 1 => x < 1, luego la solución para este caso es: x e [0,1> A <-oc,l> = [0,1 > ... O )

para x > 1 => |x| = x. |x — 11 = x — 1

reemplazando (4) en (1) se tiene:

x U - 0 - 2 ^ o :Y- — - I - > Q ^ (x ~ 2)(x+- ^ > oA — 1 A — 1 A - l

=> (x — 2)(x + l)(x— 1) > 0, para x * 1

Ahora por el criterio de los puntos críticos se tiene

x e <Y>

Page 150: Espinoza Ramos 1

136 Eduardo Espinoza Ramos

Por lo tanto la solución general de la inecuación es: la unión de (a), (p) y (y)

x € <-'/v-l> U <-1,0> U [<),!> U [2.+x>

35) |4 a' - X1L~5 > 0\ ~ 4 ?

Solución

A la inecuación dada expresaremos en la forma.

|4,-->iL-s>o =. Ly.!l£2-4.!y5>o ...(l|1 - 4 7 h * i

Aplicando la definición de valor absoluto:

I -v |= 1 si 1 2 0 , | .Y - 4 b { * ~ 4 51-x si x < 0 4 - x si x < 4 4

Pa r a x <0 => |x| = -x, |x — 4| = 4 — x ...(2 )

—x( 4 —iri — 5 v 2 —4 r — SReemplazando (2) en (1) se tiene: --------- :------ > 0 => — ---- -— > 0

1 + x x +1

|-, - 5 ) ( t t l | > 0 para x x - 5 > 0 =» x > 5 jr +1

La solución para este caso se tiene: x e <-*,fl> A [5,+*>> = <j) . . . ( a )

Para 0 < x < 4 => |x| = x, |x — 4| = 4 — x ...(3 )

Reemplazando (3) en (1) se tiene:

x(4 — v) - 5 4 x - x 2 -5 A x 2 — 4x + 5 ^ A— - > 0 => -------------- ¿ 0 = > --------------- > ()1 -x 1 -x x — 1

como V x e R , x 2 - 4x + 5 > 0 => —-— >0 => x — 1 > 0. x * 1x -1

entonces x > 1, por lo tanto la solución para este caso es:

Page 151: Espinoza Ramos 1

Sistema de Números Reales 137

x g [0,4> A <l,+ob>

para x > 4 => |x| = x , |x — 4| = x — 4

reemplazando (4) en (1) se tiene:

x e <1,4> ... (ß)

... (4)

jc( jc - 4) - 5 >0 x~ — 4x — 5 >0 x 1 - 4x - 5 > 01 — X 1 — X x - \

para x * 1, (x — 5)(x+l)(x— 1) >0, ahora mediante el criterio de los puntos críticos se tiene:

-1 1 5

la solución para este caso es: x e [4,+oo> A ([-!,!> V [5,+oo>)

(Y)

La solución general es la unión de (a), (ß), y (y)

\ 2 - x \ - x 8 a - 19 - jc 2 |

<0

Solución

A la inecuación dada se puede expresar en la forma:

I*- x\ x ^ o ^ _[£—- 1 X— < 0 (propiedad del valor absoluto)8x | 9 - jc

\ 2 - x \ - x < 0 <=>

8 j c - 1 x - 9 1

| x - 2 1 - x 2 <08jc— 19 — jc “ | 8 a — | x + 3 || x - 3

ahora aplicando la definición de valor absoluto

l* + 3 | =

(1)

[ x + 3 , x > -3 Íjc- 2 ,| A- - 2 1 =

, x > 2| a - 3 |

, jc> 3

l—jc—3 , jc < —3 ’ ' ' 1.2—-C ., A < 2 ’ 1 ' \ 3 - x .. A <3

Page 152: Espinoza Ramos 1

138 Eduardo Espinoza Ramos

------ ©--------- ©--------- ©---- ►-3 2 3

Sí x<-3 , => |x + 3| = -x — 3, |x — 2| = 2 — x, |x — 31 = 3 — x ...(2)

Ahora reemplazamos (2) en (1) se tiene:

-i 2 i 2£ 0 => 2 - X- 1-------SO

8 x -(-jc -3 )(3 -.v ) 8x + (3 + x) (3 -x )

8jt + 9 - x 2 jc2 V8jc—9

(x + 2){x- l )(x -9 )(x + l)

< 0 <=> (x + 2)(x— l)(x — 9)(x + 1) <0, x -1,9

- 2 - 1 1 9

de donde x e [-2,-l> U [1,9>

La solución para el caso en que x < -3 es: x e ([-2,-l> U [ 1,9>) A <-*>,-3> = ())

para - 3 < x < 2 =>| x + 3| = x + 3, |x - 2 | = 2 - x , |x - 3 | = 3 — x . ..(3 )

reemplazando (3) en (1) se tiene:

< 0 => => > 08x-(.v + 3)(3 -x ) 8X- 9 + * 2 x~ + 8x —9

(x + 2 ) (x - l )(x + 9 ) (x - l )

> 0 <=> (x + 2)(x—l)(x + 9)(x —1) > 0, parax ^ -9,1

U + 2)(.v + 9 ) (x - l )2 > 0 , x * -9,1

-9 -2 1

de donde x e <-oo,-9> U [-2,1> U <l,+oo>

La solución para este caso en que -3 < x < 2 es:

Page 153: Espinoza Ramos 1

Sistema de Números Reales 139

x e (<-oo,-9> U [-2,1> U<l,+oo> A [-3,2>

\ x e [-2 .1 > U < I,2 >

8x-(x + 3)(3- x ) 8x-9 + x2 x 2 + 8jc- 9

como x2 - x + 2 > 0 V x e R => —— -------->0x2 +8x-9

>0 => -----------------> 0 => (x + 9)(x—1) > 0, x * -9 ,lx2 +8a- 9 (x + 9)(x-1)

-9 1

8.v-(x + 3) (x-3) 8 x - x 2 +9 x 2 - 8 x - 9

corno x 2 - x + 2 >0 , V x => —------------<0x 2 - 8 x —9

+ V ' V +< 0 <=> (x — 9)(x + 1 ) < 0, x * 9,-1 <------------- *--------------v------------- ►x 2 - 8 x - 9 -1

de donde x e <1,9>

..(a)

p a r a 2 < x < 3 => |x + 3| = x + 3, |x — 2| = x — 2, |x - 3 | = 3 — x . ..(4 )

reemplazando (4) en (1) se tiene:

* - 2 - * 2 <0 = <Q 3 2 0

de donde x e <-oo,9> U <l,+oo>

La solución para este caso en que 2 < x < 3 es:

x g <-x,-9> U <1 ,+qo> A [2,3> = [2,3> ... (p)

para x > 3 => |x + 3| = x + 3, |x — 2| = x —2, |x - 3 | = x — 3 - . (5 )

reemplazando (5) en (1) se tiene:

< „ 3 . > - / .<: l l a l l i <Q

Page 154: Espinoza Ramos 1

140 Eduardo Espinoza Ramos

La solución para este caso es: x e <-l,9> A [3,+oo> = [3,9> ...(y)

la solución es: x e [-2.1 > U <1,2> U [2,3> U [3,9>

k37j | l í l | < 4 x + 3Jt + 1

Solución

x + 3 x + 3| — - | < 4x + 3 o (4x + 3 > 0 A - 4 x - 3 < ------ <4x + 3)x + l x + l

, 3 . . . . x + 3 x + 3 .<=> (x > — A ( -4 * -3 < ------ A ------ < 4x + 3))4 x + l x+1

3 r-f 3 X + 3o ( x > - - A (— - + 4x + 3 > 0 A 4x + 3 - - — — > 0))

4 x + l x + l

, 3 . , 2 x 2 + 4 x + 3 x ( 2 x + 3)<=> (x > — A (---------------- > 0 A -------- —L > 0))4 x + l x + l

, 3 A / 1 A * x ( 2 x + 3)o (x > —- A (— - > 0 A ------- — >0))4 x + l x + l

puesto que 2x2 + 4x + 3 > 0

-3/4A ( <----------------------------------JtmmiH* A iLw//» /

V -1 -3/2 - 1 0 '

/ ° --------------------------------- \A l ■*------------------------HMMHHHmHHMHtHH* /

V -3/2 - 1 0 '-3/4 \ -3/2 -1 oo---------------o o

3x e< — ,+oo > A < 0,+oc >=< 0,+oo >

4

Page 155: Espinoza Ramos 1

Sistema de Números Reales 141

38) > ' - 3x ' + 4 | x 2 +x + 4

Solución

Aplicando la propiedad: V x e R , x 2 > 0 de donde

x ~ + 4 > 0 A x ~ + x + 4 > 0 , entonces

| x 2 + 4 | = x2 + 4 luego reemplazando se tiene:

X > X 3— <=> x(x2 + x + 4 )> (x -3 ) (x 2 +4)x 2 + 4 x 2 + x+ 4

<=> x 3 + x 2 + 4 x > x 2 - 3 x 2 + 4 x -1 2

<=> x 2 > - 3 => V x e R

@ J í M d d i _ ü l z i L d l + V 9 ^ > 0y I r + y i + l I r — 1 I +4|x + 2 |+ l | x - 1 1 +4

Solución

4X II X | — | —12 11 1 — X | —3 1 f - ------ .------------------------------- +V9-X > 0 , entonces

|x + 2 | + l | x — 11 +4

x | | x I —11-12 _ j l l ~ x I - 3 1 ^ Q A 9 _ ^ 0 |x + 2 | + l | x - 1 1 +4

^ M x - l | - 1 2 ^ j | l , - x | - 3|| x + 2 | + l | x - 1 1 +4

además como U_!_LL_11 > o , entonces:| x - 1 1 +4

x i i x M i - n j i - x i ^ j ^ dedonde|x + 2 | + l | x - 1 1 +4

iLÜül—L!—— > o A x < 9 como |x + 2| + 1 > 0 entonces lx + 21+1 ' '

Page 156: Espinoza Ramos 1

142 Eduardo Espinoza Ramos

x |x — 11 - 12 > O A x < 9 ... (1)

í jc, x > 0Por definición: | x |= < , entonces

(-je, x < 0

si x < 0 => x|-x — 11 - 12 > 0 => x|x + 1| - 12 > 0

I x+1 , x > — 1 .como |.v + l | = i => x e <-go,0> = <-oo,-1 > U [-1,0>

| —x —1 , X < - 1

si x e <-oo,-1> => |x + 1| = -x — 1 como

x|x + 11 - 12 > O => —jc2 —jc — 12>0 => x 2 +x + 12 < O v

=> 3 x e R, tal que x 2 + x + 12 < O; por lo tanto (j)

si x e [ -1 ,0 => |x + 1| = x + 1 => x(x + 1 ) - 12 > 0

x 2 + x - l 2 > 0 :=> (x + 4)(x — 3)> O *— + ^ y + ---------- *

Luego x e [-1,0> A <-oo.-4] U [3,+ oo> = (j>

Ahora si x > O => x|x — 11 -12 > O A x < 9

=> x(x— 1)— 12 > O A x < 9

=> jc2 —j c—12>0 A x < 9 => (x —4)(x + 3) > 0 A x < 9

-3 4

x e <-oo,-3] U [4,+oo> A x < 9

x g <-oo,-3] U [4,9]

como x > O A x g (<-oo,-3] U [4,9])

Page 157: Espinoza Ramos 1

Sistema de Números Reales 143

@ rix + l x ~ + 2x + lSolución

■ 1 i i x i 1 1*1I------l < l ^ ----------- 1 ,

x + l x 2 +2x + l |x + 1 | \x + l \ 2

1 1*1 1 , l* l , j< - para x * -l => l < -------7 de donde|x + l |x + l |2 l* + l|

|x + l| < |x| para x * - l => x + 2x + l< x , x * -l

2x + l < 0, x * - l => x < — , x * - l2

I — 1! - 2 | — - | > 0 x + 3 x + 3

Solución

Completando cuadrados se tiene: | —+- |2 - 2 1 * + - 1 + l > l de dondex+3 x+3

n * + l i ^2 , , x + l . , , . x + l , , ,( |------ l - l ) 2 > l <» | ---- 1 - l > l v | ---- - | - l < - l

x+ 3 x + 3 x+3

, x + l , „ . x + 1 , .» I---- r i > 2 v I---- - | < 0

x + 3 x+3

x + l . . x + l . x + l .------ 1 > 2 => -------> 2 v -------< -2x+ 3 x + 3 x+ 3

x + l -, « x + l „ .-------- 2 > 0 v -------+ 2 < 0x+ 3 x+3

x + 5 3x + 7< 0 v ---------< 0

x + 3 x + 3

Page 158: Espinoza Ramos 1

144 Eduardo Espinoza Ramos

-5 -3 -3 -7/3

5 - 3 *[ | - ——— I] = 2

xSolución

| í z 3 í n , 2 « 2 < ^ < 3X x

5 -3 x 5 -3 * 5 - 3 jc2 < --------<3 <=> 2 < — — A --------<3

0 2 - í ^ í s O A í ^ - 3 < 0 X X

5* - 5 ^ n A 6x - 5 .<=> --------< 0 A -------- >0X X

, + v - V + ,0 1

u 5/6

jce<0,ll A x e< -oo,0 > U < — ,+°o >6

0o-

5/6 1

La solución es:

Page 159: Espinoza Ramos 1

Sistema de Números Reales 145

Solución

<1 o 0 <

la expresión esta definida para 2 o /x - l* 0 , x > 0

2-Vjc * 1 => 4.v * 1 => x —4

Por lo tanto analizaremos en: [0, — > U < — ,+to >4 4

si -v > ~ entonces en (1) se tiene: .v > 0 A jc < 2-v/x -1

x > 0 A x -2 -J x + 1 < 0

x> 0 A (Vx - l ) 2 < 0 => x í <j)

[ |- x |] > 0 => [ | - jc|] > 1 o - x 2 l

como -x > 1 => x < -1 => x g <-oo,-1 ]

© [| -A' |] < 0Solución

[| -x |] < 0 <=> -x <0 => x > 0 => x e <0,+oc>

si 0 < x < — =;• x < 0 A x > 2 y [ x - l => c < 0 A ( Vx - 1 ) 2 > 04

=> x < 0 A x > 0 x = 0

Solución

Page 160: Espinoza Ramos 1

146 Eduardo Espinoza Ramos

46) [ |2 * - l | ] = -3Solución

[| 2jc—11] = —3 « • -3 < 2x - 1 < -2

o -2 < 2x < -1

47) [|Vx + lQ = - lSolución

[ | Vx+l | ] = - l -1 < a /x + 1 < 0 . La solución es <j> puesto que -Jx+1>0

48) t l x2 - 2 x - 8 | ] = |

Solución

Como — t Z => no tiene solución.2

49) [ \ ^ x - [ \ x \ ] |] = 0Solución

ti V *-11*11 l] = 0 o 0 < 4 x - [ \ x \ ] < \

« 0 < jc- [ | jc|]<1

» [ U |] < x < [ |* |] + 1 , V x e R

§ ) [U 2 |]< 15Solución

[ |x 2 |] < 15 => [| -v2 |] < 16 => x 2 < 16 => -4 < x < 4

x e<-4 ,4>

Page 161: Espinoza Ramos 1

Sistema de Números Reales 147

5Ì) [ |jc2 - 2 jc- 3 |] = 0Solución

[|;c — 2jc —3 |] = 0 «■ 0 < jc - 2 jc- 3 < 1

0 < jr2 — 2jc—3 < 1 <=> 0 < x 2 - 2 x - 3 A jc2 — 2jc — 3 < 1

<=> (jc-3)(jc + 1) > 0 A (a* — 1)2 <5

\ / ~ . V + —» A - V 5 + l < x < V 5 + l-1 3

» x e< -oo,-l][/[3,-t-oo > A x e< \-~Js,l+-yf5 >

<----------1

[M I]<0

Solución

CI --V |]< 0 <=> (x > 0 A [| —JC| ]< 0) V ( j c < 0 A [ | - x | ] > 0)

<=> (x > 0 A x > 0) V (x < 0 A x <-1)

<=> (x > 0 V x < - l )

o X € <-00,-1] U <0,+dO>i'rAiiViírYiY¿iiwiii'v¿

JC+ {JC IU H U I ]

<2

Solución

Se conoce que | x |=JC , JC > 0

-jc, , x < 0

Page 162: Espinoza Ramos 1

148 Eduardo Espinoza Ramos

i) si x > O => — — — < 2 <=> — - — < 1 x - [ \ x \ ] jc-[|jc|]

X - [ | x | ] X~ [ \x \ ] JC-C |X|]

- M - < 0 o ( [ | jc| ] > 0 A jc- [ | x | ] < 0 ) V ([|jc|]< 0 A jc- [ | jc| ] > 0 )-Y—[| JC |]

» ( [ U l ] > 0 A jc< [|jc|]) V ( [ | jc| ] < 0 A [ | jc| ] > jc)

<=> (x > 0 A x e Zq ) V (jc < 1 A x e R)

o ( jc e Z ¿ ) V ( jc < 1)

<=> x e <-oo,l> .*. x e <0,+oo> A (<-oo,1>) = <0,1>

¡i) Si x < 0 . .veZ => |x| = -x

< 2 => 0 < 2 => x < 0 , j c e Z " x e Z ”- jc- [ | jc|]

x e Z " U <0,1 >

5 ^ Dem ostrar que V x e R ; |x |> ^ /[ | jc 3 |]

Solución

Por propiedad: V x e R , [| x |] < x < [| x |] +1

Si x e R => x 7, e R ,

Luego V x 3 e /?: [| jc3 | ] < jc3 < [ | jc3 |] + 1 => [ | jc3 | ] < jc3 ... (1)

además V x e R: x < |x| => jc3 < | j c 3 | . . . (2)

Luego (2) en (1) se tiene: V x e R , [| jc3 1] < jc3 < | jc | 3 => [| jc3 |] < I jc |3

Page 163: Espinoza Ramos 1

Sistema de Números Reales 149

55) [ |x [ |x |] |] = xSolución

Se conoce que [| x |] e Z entonces como [| x[| x |] |] = x e Z

Es decir x e Z [ |x | ] = x e Z => x [ |x |] e Z

Luego: [ |x [ |x |] |] = x => [|x.x|] = x

[Ix2 I] = x => x 2 = x = > x ( x - l ) = 0 => x = 0 , x = 1

por lo tanto [ |x [ |x |] |] = x

56) [ | | x | + l | ] < 2Solución

Aplicando la propiedad [| x + n |] = n + [| x | ] , n e Z

[I Ix | +11]< 2 => [ | | x | 0 + l < 2 => [ ||x ||]< 1

como [ | |x | | ] <1 => |x|< 1 => -1 < x < 1

D ^ D í 3 3x - 2

Solución

Api icando la propiedad [| x |] < a => x < a + l

ti £ ± > 3 3x - 2

3x + l 3 x -2

<4 3x + l 3 x -2

- 4 < 0

3x + l - 4 ( 3 x - 2 ) 3x + l-1 2 x + 8< 0 => -------------------< 03 x -2 3 x -2

—9 v + 9 x — 1< 0 => ------— > 0 , aplicando el criterio de los puntos críticos.3.V-2 3 x - 2

Page 164: Espinoza Ramos 1

150 Eduardo Espinoza Ramos

2/3 1

j c - 1 2Como la inecuación es ------ - > 0 , entonces la solución es: jt € < —» , - >U < l,+oo>3 x - 2 3

[| x~ — 2jc — 2 1] < 13Solución

Por la propiedad: si [| x |] < a => x < a

[ \ x2 - 2 x - 2 |] < 1 3 => x 2 - 2 x - 2 < 13 => x 2 - 2 x + 1<16

( jc — 1)2 <16 = > - 4 < x - l < 4 => -3 < x < 5

59) 2[U + l | r - l l [ | . v | ] < - 4Solución

Como [|af + l |] = [ | i | ] + l entonces: 2([| x |] + 1)2 - 1 1[| jc |] < - 4 desarrollando

2[|jc|]2 + 4 [ |jc|] + 2 - 1 1 [ | jc| ] < - 4

2[l jc I]2 - 7 [ |x |] + 6 < 0 =» < 2 [ |r |] -3 ) ( [ |* |] -2 )< 0 . — -3/2

como (2 [ |:r |] -3 )( [ |jr |] -2 )< 0 entonces: [ | j c | ] e [— ,2] => [ | jc | ] = 2 = > 2 < x < 3

[| 2 jc- | jc | | ] = jc

Solución

Se sabe por propiedad que si [| a |] e Z A [| a |] = a => a e Z

Luego como [| 2 x - \ x \ |] = jc => x e Z => 2x — |x| = x

De donde |x| = x => jc e Z(j U solución es {0,1,2,...^}

Page 165: Espinoza Ramos 1

Sistema de Números Reales 151

(61) | [ | ¿ I ] ~ ^ - ^ I < V T

Solución

Calculando los valores de x en donde la expresión esta definida, es decir:

x — í > 0 A x > 0 de donde x e [ 1 ,+x>

ahora calcularemos [| — |] cuando x e [l,+oo> 2x

como x e [!,+*> => x > 1 => 2x > 2 inviniendo

0 < — < — => [| — |] = 0 , por lo tanto:2x 2 2x

\ < ^ => 1 0 - J — \ < J ¿2x V x V x

x - \ : -Jx

comoX - Ì

: -JxJC-1

< x => x 2 - x + 1 > 0

como x 2 - x + l > 0 , V x e R entonces para x e [l,+»>, x 2 - x + 1 > 0

Por lo tanto la solución es:

62) log, 3 (2x + 5) < -2Solución

Aplicando la propiedad: loga x < b sí 0 < a < 1 <=> x> a

log1/3(2x + 5 ) < - 2 <=> 2x + 5 > ( —)

2x + 5 > 9 => 2x > 4 => x > 2

(ó?) log2(3x + 2 ) - l o g 2( l - 2 x ) > 2

x e <2.+oc>

Page 166: Espinoza Ramos 1

152 Eduardo Espinoza Ramos

Solución

loga * > ¿>, a > 1 <=> x> a h A x > 0

3x + 2log,(3* + 2 ) - lo g , ( l - 2 * ) > 2 => log2(-—-—)> 21 - 2 x

,3* + 2 3* + 2 3* + 2 ilo g ,(--------) > 2 <=> -------- > 0 A --------->2*

l - 2 . t 1 -2 * 1-2*

3*+ 2 3*+ 2<=> --------<0 A -----------4 > 0

2 * - l 1 -2 *

3*+ 2 11*-2o < 0 A ----------<0

2* - l 2* - l

-2/3 1/2 2/11 1/2

2 1 2 1* e < ---- ,—> A * e< — ,—>

3 2 11 22 1

6^ log1/5(2* 2 - 3*4 5 )< lo g 1/5(*2 +2* + l)

Solución

logu P(x) < loga Q(x) •» P(x) > Q(x) A (P(x) > 0 A Q(x) > 0), 0 < a < 1

1 og, ,5í2jc2 -3 * + 5 ) < log1/5(*2 +2* + l ) , 0 < j < l

\ 7

2*2 - * + 5 > * 2 +2* + l A (2*2 —3* + 5 > 0 /V *2 +2* + l > 0 )

* 2 - 5 * + 4 > 0 A x *-1

Page 167: Espinoza Ramos 1

Sistema de Números Reales 153

(x -4 )(x — 1)>0 A x * - l

x e < - to. 1 > U <4..+oo> x * -1

...... ■ ■ .....ni’...... ...... . ■ ».».i ■ um■ X « < -3 0 .. 1> u < - ] . ) > l i < 4 ,+ 5C>

i .v + 3 logt ( - ) >1-V'-l

Solución

x + 3La variable x debe cumplir x> O A - —- > 0

-3 0o-

x + 3Como x > l aplicamos la propiedad: logr (------ )>1

x - 1x + 3 [-------- > X — Xx -1

x + 3 x + 3 .> x = > -------- x > 0 x + 3 - x ' + xX — 1

x 2 - 2 x - 3

x — l x - 1>0

< 0 => M K £ i i ) <0x — 1 -1 1 3

x e <- <o,-l > U <1,3>

La solución es: x e<l,+oo> A (<-»,-1> U <1,3>)

x —966/ Hallar el menor de los números M tales que:

x - 6| < M , sí x e [2,5]

Solución

x - 9 3------ = 1--------- , como x e [2,5] => 2 < x < 5x - 6 x - 6

-4 < x — 6<-1 => - 1 < —— < - - x - 6 4

Page 168: Espinoza Ramos 1

154 Eduardo Espinoza Ramos

- < ---- — <14 x - 6

1 jr — 9 —+ 1 < ——— < 2 4 x - 6

5 x — 97 á i ^ | á 24 x - 6

Hallar el mayor número M de tal manera que: ——^ ' Y+—-- > M , si x e [-2,2].r3 +27

Solución

.v2 + 6.r + 14 = (x + 3)2 +5 entonces: si x e [-2,2] => -2 < x < 2

l < x + 3 < 5 => 1 < (jc + 3)2 < 25 de donde 6 < ( j c + 3)2 + 5<30

6 < .r2 + 6.v + 14<30

como x e [-2,2] =?> - 2 < x < 2 => — 8 < jc3 <8

19 < jc3 +27 <35 — < — -— < —35 x +27 19

...(2 )

. . 6 .v2 +6x + 14 30de (1) y (2) se tiene: — < ----- ----- -— < —

35 x + 27 19

M í

\x~ +6x + 6\ > 6 x 3 +27 “ 35

M1 1

Hallar el número mayor de m y el número M tal que para todo x e [— ,1] se cumple:

x + 2m < ------ < M

x + 3Solución

x + 2 x •+■ 2 1A la expresión :— — escribiremos en la forma: ------ = 1---------

x + 3 x + 3 x + 3

com o.ve[—,1] => — <„r<l sumando 32 2

Page 169: Espinoza Ramos 1

Sistema de Números Reales 155

1.41

I

©

©

©

©

©

©

©

©

7 1 1 2— < x + 3 < 4 , inviniendo — < ------< —, multiplicando por - 12 4 x + 3 1

2 1 1 J ,— < --< — sumando 1

7 x + 3 4

. 1 1 5 x + 2 31 — < 1-------------------- < 1 — entonces — < ----< —7 x + 3 4 7 x+ 3 4

de donde 4 » * - 47 '■ .4

EJERCICIOS PROPUESTOS

Hallar los valores de x que satisfacen a las siguientes ecuaciones.

i 2x + 3 | + 4 = 5x Rpta. x = y

| 3 x - l | = 2x + 5 Rpta.

| x 2 - 4 1 = -2x + 4 Rpta. {0,2,-4}

1 - ^ - 1 = - Rpta. { 2 - 2 + 2s¡2)x — 1 x

( x - 4 ) 2 — 2 | x - 4 | - 1 5 = 0 Rpta. {-1,9}

12x + 9 | = x — 1 Rpta. (j)

| x 2 - 3 x - 7 | = 3 Rpta. {-1,-2,4,5}

y I OI —r l =3 Rpta. {-5,-2}x + 4

© |3x + 11 = 7 —x Rpta. { - 4 . | }

Page 170: Espinoza Ramos 1

156 Eduardo Espinoza Ramos

| jc 2 2 1 = 2 jc + 1 R p ta . { 1 }

© | 3x — 5 | + x — 7 = 0 R p ta . { -1 ,3 }

© | 5 x - 3 | = | 3x + 5 | R p ta .< - >

© | 2x — 6 1 = | 4 —5x | R p ta . {_ 2 1 0 . ' 3 ' 7

© | 6x + 3 | = | 1 8 + x | R p ta . { -3 .3 }

© 13x — 1 | = | 5x — 15 | R p ta . {2 ,7 } ^

© | 5x + 3 | = 3x — 1 R p ta .

© | | x 2 — 1 1 — JC | = x R p ta . { 1 , -1 + V 2 ,1 + V 2 }

© |2 x — 3 | + 2 = | x — 6 | R p ta . 4

© |3 x — l | - | x + 2 | = l R p ta . 4 «

© | jr — 4 12 - 5 | jc - 4 1 +6 = 0 R p ta . { 1 ,2 .6,7 }

© 2 1x 2 - 2 |+ 5 = 6 |2 jc 2 - 3 | R p ta . {± V 2 , ± 2 }

© | 6x + 3 | = | 18 + x | R p ta . { -3 ,3 }

© 3 11jc + 1 1 —4 12 - 5 | | j c + 1 | - 4 | = 2 R p ta . {-7 ,-3 ,1 ,5 }

© 1 lx I - 3 | = | 3x + 2 | R p ta . {_7 ’Í }4 4

© || jc + 21 - 1 12 - 5 | | j c + 2 | - 1 | - 6 = 0 R p ta . {-9 .5 }

© | 2x — 3 | - 1 = | x — 3 | R p ta . < - 4

Page 171: Espinoza Ramos 1

Sistema de Números Reales 157

@ | |x 2 -5jc + 1 5 |- x 2 + 8|=3jc + 9 Rpta. {-,16}

@ |x + 1 | + 2 | x —2| = | x — 8 | Rpta.

@ 3 |x + 1 | - 2 | x — 2 | = 2x — 1 Rpta. { | , 8}

® 2 11 A* — 5 1 -t-212 -11 II Jt- 5 1- 2 1+12 = 0 Rpta. {3,7}

II. Hallar el valor de las siguientes expresiones:

© |12 + 5 -rJ ~ | 1 2 r 4*J si x € <1,3> Rpta. 9

® | 7jc + 1 0 1 — I 5a* — 101 . . . _ ,-----------y-!---------- - si x e <0,1> Rpta. 6

® |9jc + 8 |- |2 j c - 8 | . „ , ,--------- -— --------- ' si x e <1.2> Rpta. 11

34) f f i .t 31 J 3 -* ! si x e <0,1 > Rpta. 3

15.V-201-|3.V- 2 0 1 . „ „ „ ,55) ------ ----- —— ------ si x e <-3,-2> Rpta. -2

© |6* + 32 | - 4 I « - * I si x e < .3,.2> R pta. 2

© I 4-V + 1 | - | A - 1 | g. x e <Q l> Rpta> j

38) 17Y + 2 1 I3-y + 2 1 si x e <0,3> Rpta. 4

3 1 3jc - 8 1 - 13x + 2 4 1 . e , „ ,— !— ----------- si x € <-5,-4> Rpta. -62x

Page 172: Espinoza Ramos 1

158 Eduardo Espinoza Ramos

l$2)

n i.

(41)

15 41- 14. 4,1 s i x£<03>

Resolver cada una de las siguientes inecuaciones.

x + 22.V-3

I < 4

3 + .v 2

4 + - | <5 x

JC H---I <6X

x + 3jc +11x - 2

5 — | <1 x

x + - \ < 6 x

l < 3

3 - 2x2 + x

x + 3

I < 4

6-3.v

2x

<2

x + 1> 6

.v

3-3.vx - \

I >1

I > 2

Rpta. 1

Rpta. < - 00,10

9 5Rpta. [— ,- ]11 3

Rpta. < - 00,— > U < 1,+od > 9

Rpta. [-4,-2] U [2,4]

Rpta. [-5,-1]

Rpta. [ - 3 - 2 V 2 - 3 + 2 V 2 ] U [ 3 - 2 o / 2 , 3 + 2 V 2 ]

w, 11 , , 5Rpta. < - 00,-----> U < — , » >2 6

Rpta. < - - , - l > U < - l , - - > 2 4

Rpta. < . - 1 > U < - 1 ,- — > 2 4

Rpta. < -oc,0 > U < 0, — >

Rpta. < -» , 1> U <1, *>>

Page 173: Espinoza Ramos 1

Sistema de Números Reales 159

' f ^ ' 43+.v 2

2.V-54 - x 1*1

Rpta. < -oo,-3 > U < -3 , — ][/[!, » >

Rpta. <-oo, 1] U [3,4> U <4, x »

i — i ì -6-2.V 2Rpta. [0,3> U <3, co>

©, 3.V -1

I > -6

| x —4 1 < -2 x + 4

. x + 3< 5 - x

x + Z

I “ " 7 1 < 4jc + 3 .r + 1

Rpta. <-oc,2> U <2, oo>

Rpta. <-4,0>

Rpta. < -00.22 - -Jvì > U < -2.1 + 2sÌ2 >

Rpta. <0, oo>

|x — 2| < 2x Rpta. <y, 0O>

| x - Q \ - 2 x <0| x + 5 1 +5

|3x — 9| < x + 1

x - 2 . x + 3.V + 4 x - 6

\ x 2 + 3 x | +x2 - 2 > 0

x + 16 x - 4

\4x~ — 8jc + 4 1 <4jc + 10

Rpta. <y[U) + \>

Rpta. <2,5>

Rpta. <6 . oo>

2 1Rpta. < -oo ,-3 M 2 ’

00 >

Rpta. <-oo,4>

_ „ r3 - V Ì 5 3 + VÌ5Rpta. [---------- , ----------- >

Page 174: Espinoza Ramos 1

160 Eduardo Espinoza Ramos

(68)

[69)

(70)

K !2)

(73)

I x + 5 I > 2x — 3

12. r - l I +1a)

.r2 - 2 x - 3<0

b) I 4x — 3 I > x + 2

I x 2 - 4 1 > —2x + 4

|2x + 11 > 2 + x

© |4x + 3| > x + 2

Rpta. <--x>,8>

Rpta. <-l,3>

Rpta. <5,00>

|3x + 8| > 8x — 3

Demostrar que:

a) Sí I x I < 3 => —5— e < — —— > x - 1 4 10

c) Sí I x I < 2 Ix + 4 2

e) Sí I x — 3 I < 1 => | ^ | < 7x - 1

g) Sí I x I < 3 => I ^ 4 1 < 7 x - 4 4

i) Sí Ix — 3 I< 1 => 1 < _ ! _ < I 8 x + 4 6

k) Si I x - 2 | < y = > | x 2 - 4 | < | | x - 2 |

74) Sabiendo que: b > 0 y | x — a | < 2b probar que:

Rpta. <-00,-4> U <0,2> U < 2 ,00>

Rpta. <-0 0 , - 1 ] U [ 1. oo>

Rpta. < 00, 1_> U < — ,00 >

„ 11,Rpta. < - 00, — ]

5 x +1 3

Si I x I < 1 =* I ——7 1 < 2 x - 2

b)

d)

f) Si I x —2 I < 1 => I x" —4 1 < 5

h)

j)

Si I x —4 I < 1 =>2 x - 2

Si Ix I< 1 => | — - |<- x + 3 2

Si I x — 5 I < 1 => — < —i— < 1 3 x - 3

1 1 ,e < - , l >x - a + 2b 5

Page 175: Espinoza Ramos 1

Sistema de Números Reales 161

© Dem ostrar que si x,a e < -o o ,- l] U [1 , * > entonces: | - - - | < | j c - ì / | jc a

© | — |2 + 3 | — | < - ­2 2 4

R p ta . -1 < x < 1

© I M + 2 | < | jc2 | R p ta . < -to ,-2 ] U [2 , no >

© l- v - 2 1 2 —3 1 jc—2 1 — 4 < 0 R p ta . < -2 ,6>

© | . c - I | 2 + 2 1 jc -1 1 - 3 < 0 R p ta . <0 ,2>

© | . v - 2 |2 —2 1 jc—2 1 —15 > 0 R p ta . < -3 ,7 > ~

© U l 2 + U l < v4

3 3R p ta . < — , — >

H 2 2

© 2 < | , v | 2 + \x\ R p ta . 1 ] U [ 1, » >

© | jcj - 1 | 2 — | jc 3 — 11 —3 < 0„ 4 r i — s/nr 3 + v r j -,R p ta . [ 2 , 2 ]

© | jc—3 12 —3 1 jc—3 1 - 1 8 > 0 R p ta . <-oo,-3> U < 9 , * »

© | x — 112 + 5 1 jc —1 1 - 3 6 > 0 R p ta . <-oo,-3> U <5,+co>

© | * + ' | ! - 2 | * + ì | > 0 jc + 3 jc + 3

R p ta . < - 5 , - 3 > U < - 3 , -

© 1 x — 1 1 > | x | —2 R p ta . R

| x - 3 | + 2| x | < 5„ 2 „R p ta . < - y , 2 >

.v2 + 2|jc + 3 | - 1 ( x 0 R p ta . [ 1 - - T Í 7 - 1 + V 5 ]

© 12,v- 5 i - 1 .V- 2 1 + 1 je I2 > 7 Rpta. < -* . - Ì 6 ] t / [2 V 2 .+ o o >

r~ | rn

Page 176: Espinoza Ramos 1

162 Eduardo Espinoza Ramos

(91J

©

©

©

@

©

(98)

,y 2- | 3 . v + 2 | + . v > 0

| 3x —2 | < | x + 6 |

|x + 2| < \ x \ 2

|3.v2 - 2.v + 11 > 3 1x2 + x - l |

| x — 1 | + |x + 1 |< 4

12 x 2 - 4 x - 6 \ > 12 x J — 3jc — 9 1

| x + 6 | > | x + 9-| + | x —2 |

|4x + 2 | > | x — 1 | + 3 | x + 1 |

Rpta.

Rpta. <-oo,-2 - V2]£/[l+o/3,+oo>

Rpta. <-l,4>

Rpta. <-oo,-1 > U <2 ,+to>

1 + V 4 8 Í TT 1 — 7 4 8 1 2 2<-oo,------------- >U < ------------ ,— >12 12 5

Rpta. <-2,2>

Rpta. <-oo,—]

Rpta. (j)

Rpta.

1 3.v3 - 2 x 2 - l x - 2 1 > |x 3 + 6 .y2 — 9jr — 1 4 1

|10-3.y + jc | < \x~ + x-6|

\2 x¿ +JT-1I < \2 x z - x - \ \

x —6 | - | x —3 | < | x — 1 I

(|x-l| + |*-2|X|l-*|-|*-2|) < jc2-6

6 -3 x | jc + 3|

x x + 12x - 3 4

3

Rpta.

2,v +1 < -\ x + 2 \

Rpta. <-oo,-2> U <3. oo>

Rpta. [4, oo>

Rpta. < -no,—]= > U < 0, >V2 V2

Rpta. < -oo,-2]í/[ ,+oo >

Rpta. <-oo,.l] U [3 ,« »

D . 15 3^/30-, t7 r25 3-^30Rpta. <-oo,---------—] U [— —]7 35 7 35

3sÍ33 -J33 - 3 . , , . . .< - 00,---- — ] U [-—-— ,3 > U < 3.4]

Rpta. < - * > - 2 > U < - 2 , ~ 5+ >

Page 177: Espinoza Ramos 1

Sistema de Números Reales 163

3 5- < -12.v - 31 *2+* + l

„ „ r 13 + 5Vl3 -13 + 5-/Í3 nRpta. [----- ------ , ------- --------]

I— — I > - 1-l-vl x

Rpta. < -o o - l > U < -1,0 > U < > U < 1’+0° >

| x " — 2x — 4 8 1 ( | x ” — 2x 1 — | x — 121 ) | x —2 1 —6

<0 Rpta. {-6} U<-4,-3]U[4,oo>

2 - | 2 - x | - x | x - x 2 1-2

<0 Rpta. <2, oo>

l+ | x | XRpta. < -oo,0 > U ^ o o >

2 x - l x - 2Rpta. [ - l - V 6 , | > t / < | , - l + V 6 > t / < 2 , o o >

x - l> | x + 3| Rpta. [-1 —s/7,—n/6] U [1 + V 7 ,2 > U h/6,+oo>

x + 1 1< —I x + 1 1 X

Rpta. <0,1>

| x 2 — 161 < x 2x + 4 | x - 1 1

12x2 + lOx|14x|

x + 4

- < 3x

| x " + 4x + 4 1 x ' + 4

Rpta. < -oo,-4 > C/[— ,1 > U < l,+oo >

Rpta. [L+oc>

Rpta. R — {-2}

|x|+l|■ > x — 1 Rpta. < -oo, -Jl >

Page 178: Espinoza Ramos 1

164

©@©©©©©

©©

©

©

©

@

Eduardo Espinoza Ramos

14x2 -91 12x + 5 1

>0

|x + 1 | - 2 | x | + 3 | x — 2 | < 6

Rpta. V x e R - { - :

3— | -Y - 4 x [| x - 5 1+X2

<0

3 | 2x + 6 | - | x + -- | <6V

1 x 2 - 1 6 , + 8(x + 4) ^ ox - 3 9 - x 4

I / ' I - I ~~T 1 x ' —4x + 8 x — 1

x x - 2

2 - | 2 - x [ - x | x 2 - x | - 2

>0

[x | 3 —4x2 +20 | x | +1

1 6 x - x 2 | - 44 - l x l

> - 1

Rpta. < —0 0 ,2 - -Jl ] U [1.3] U [2 + ,+oo>

Rpta. <:-00.-3] U [ - 1 , - | ] U < 0 ,—^ y ^ ]

Rpta. [-4,-3> U <3,5]

Rpta. < -oo, — ] - {1}

Rpta. [-V 2,V 2]-{0}

Rpta. <-oo,-l> U <-l,2>

Rpta. <-oo,-4] U [-2,2] U [4

Rpta. <-4,0> U <0,4í> U <5,7>

( |x + 2 1 + 1x — 2 1)(| 1—x| —12—x | )> x - 6 Rpta. [-1,3]

| x — 1 | - 1 x | + | 2x — 3 |> x + 2 Rpta. < -oo, — > U < 6,+oo >

( V | x - l | - 3 - V 5 - | x - 4 | ) ( V | x - l | - 3 + V 5 - | x ^ 4 | ) < | x | - 6 Rpta. [4,7]

Page 179: Espinoza Ramos 1

Sistema de Números Reales 165

(| x | +2)(| x [ - 2 h l x 2 + 4

(| je2 + 3 1 -4 a )a /a 2 +5>0 Rpta. <-oo.-2] U <1,2] U <3,+°o>

,Al£Ì^£|<_L.X +1 x+ l

x -3

(a + 3)(x - 5) | x |

U I 2 +2

Rpta. < — ,5 > -{3}

Rpta. <-3,5> - {0}

3a - a 2I------ — I

A' + 2

(a + 3)(a - 5 ) | a [

I a | 2 +2<0

Rpta. <0O, —] - { - 2 }

Rpta. <-3,0> U <0,5>

138) (| x | - l )(2x+ l ) ( | x | + 3)>0 Rpta. [—1,—— ]u[l,+oo>

139) ! 6a + 9a - 3 |< | 2x -9 x + 21 o * 1 1 2 1Rpta. < — ,— > u < —,—>2 4 5 2

(140) | a 2 - 5 12 - | a 2 - 5 1< 12

141) (|x —2 | + | a —3|)(|2 —x | - | 3 —a | ) > | a

Rpta. [-3,-1] u [1,3]

Rpta. [->73-1,2]

Rpta. <-oo,4 ]—{-2}

U43J | x - 6 | - a+ | x + 2-[<3 Rpta. -,+oo >

[144) I * - 4 | + | 2a + 3 | ^ 2I A — 11 —1

Rpta. <0,2>

Page 180: Espinoza Ramos 1

166

©

©

©

©

©

©

0

0

Eduardo Espinoza Ramos

| x - 5 | + l*+! [ x — 1

| A' - 8 1 - JC+ I A' + 4 I A-+ 2

-r|-3 ^ 2 - U |

<3

Rpta. <-oo, 1> u [3,+oo>

Rpta. < -*,-2 > u < — ,+oo >

5 - 1x | | j c |+1

( ^ j \ x - \ \ - 3 - ^ ¡ 5 - - \ x - 4 \ ) ( y ¡ \ x - l \ - 3 + ^ ¡ 5 - \ x - 4 \ ) < x - 6 Rpta. [4,7]

(Vi * - 2 1 - 4 - V ^ - l x - 3 | ) ( V U -2 1-4 + a/6- | a- -3| ) < \x-- 2 1 -5 Rpta. [-3 ,-2]u [6,9]

| x + l | . | | j c - l | - 2 |I Jr—11

-1 + x - 3x~ + 4 | x + jc + 4

>0

Rpta. < -00,-3]u [ | (1 + V Í7)3 > u [ | ( 3 + a/ Í 7 ),+oo >

a | | a + 1 |- 2 |- 6 Hx + 31-11 , ^ | a - 2 1 +5 IJC + 1 1 +2

| x ~ 2 | —x8a- | 9 - jc2

. 1

>0

Ia-I-1<2

| x~ + 2.r+ 3 | + 1 A'2 —1 | < 6

| x —1 I- | x 1 + | 2 x - 3 | > x + 2

\ x 2 - x \ - 2

Rpta. [4,9]

1 * 2 + 2 | ( jc2 + a - 1 2 )

\ x 2 + JC + 1 |

x 2 — 3 jc+ | jc — 11 +4

| jc- 1 | + jc2 +10JC + 27

| A2 +71 \ ( x 2 - 5 a' + 6)

< 0

<0

<0

(jc- — 9)(jc +jc + l) | a 2 + 9 1 +3

> 0

I a- I+1> 0

I A 2 - 1

(a - 2 ) ( a - 4 )<1

Page 181: Espinoza Ramos 1

Sistema de Números Reales 167

[ ,v + 5 1 -4x+ | x - 2 1 | x 2 + 2 |

| x + 5 | +8

> 0 163/ | | x | - | 2 x + 3 | | < | | x | - | 2 x + 2| |

165) |x - 4 |+ 8 > | x - 2 | + 4 x

|3x + 2| a/ x 2 +5 - x 2 + 6 x - 3

I x — 2 12

> 0

|x~ + 4| x(x + 2) + 2(x + 3)

- 2 1x2 | + | x 2 - t |+l x 2 —5x + 6

x 2 + 3 - | x 2 — 2x — 151

<0

19 - x | -8x<0

m 1 3 £ Ì+ 5 £ + 2 Is 0 x 2 +5

169) | x — 1 | - | x + 2 | + | x + 4 | < 8

| x 2 — 161 < x 2 + 4x + 4 |x-

| 4 x - x 2 | - 5

1 + Vx>0

x 3 - x 2 +4x | x 2 - 3x + 2 1

>0 1757 1 <x 2 + | x | -3

l + | x |

[176) x - l x + H - l x l ^ QIl X1-1 1

[177) 4 < i f ± ^ L ± l £ ± l L l < 2 5| x + 2 1 +2

(178) —----

<0

I x | -1

[ 2 x - x 2 |-3 | x 2 - 2 x - 1 5 1 - x 2 - 3

¡ x 2 - x | - 2 1 x 2 COS TC I +1 x 2 - 5x - 6 cos n

<0

[,79} | j ~ 3 | t 7 ~ i t > »| x + 3 | -2

1181) |X| < x - lIl x | - 4 1

l u i + n> 2x 4-1

Page 182: Espinoza Ramos 1

168 ■duardojjspiítoza Ramos

[186) | j í | - |2 j - -1J > üJCÍJr-l)

188) a 2 + a + 1—|x 3 — 11 > O

190) L - — l 3- ^ i < | x | - 4

192) |jc- +2jc + 3 | + | . y - - 1 | < 6

\ x - x 2 |.(V^ — 1)x - 6 x

1 1 6 - A 2 I —A'2

a 2 - | 2 - a |

>0

>0

| V-v2 — 6jc + 9 — 3 1 > - J J -x

200) | x ' - 5 a + 7 | > x " - 1

!.* .! > | | x2 + 6 [ - 3 | | | x 2 + l | + 3 |

jc- | jc + 1 | - | j c |

IUI-11

1 4 x - x 2 1 - 5

<0

> 0- e o s n - ^ x '

V | x - 3 | - | x - l |

x 2 - 9

\ 4 x - i \ - 4 x

< 0

U 4 |

l * 2 + | 3 x | |

>0

< | x | - 4

1199) x 2 + x + l - | x 3 - 1 1 > 0

3 - | x - 4 x |

| x - 5 | + x 2<0

202) ( x 2 - 6 x + 8 ) V ^ - | 4 - x 2 | < 0

( | 4 x - x 2 | —5 ) - y / Á ( x - l ) ( x —3)

I x | - 1

| x —3 |3 + 2 ( x - 3 ) 2 - 5 1 a - 3 | - 6

( x - 2 ) 2 —2 1 x —2 1 - 2 4

14 —x | + 1 2 x + 3 II A — 1 1 —1

| 3 a 2 + 5 x + 2 1 - 4

a 2 + 5

< 0

<0

■ < 2

>0

I A — 1 | + 2 | — | A — 1 |

x +2> 0

U - 4 |

4 — | x |> -1

. a - 6 x + 7 , 2I--------- ---- 1<----- :¡

A — 1 A — 1

[209) | ^ _ 8 | < | | - 6 | + | x - 2 |

A 3 - A 2 + 4 X

| a 2 - 3a + 2 1>0

Page 183: Espinoza Ramos 1

Sistema de Números Reales 169

-Vl-v-41-l jc-11 w U I - 1

IV. Encontrar el menor número M con la propiedad de que para todo x e R se cumple:

© 2x - x 2 < M Rpta. M = 1

© \ - 4 x - x 2 < M Rpta. M = 3

© 2 - jc 2' 3 - x lli < M Rpta. M

© 2jc2 3 -J t4 ' 3 < M Rpta. M =1

© \ + 6x —x 2 < M Rpta. M = 10

© 3 + 36jc-12x 2 < M Rpta. M = 30

V. Encontrar el número mayor M con la propiedad de que para todo x eR se cumple:

© M < 3 + 4 - - - Rpta. M = —x~ x 6

^5 ) M < x 2/5 - x lls - 2 Rpta. M = - ^

© M <9.v2 —4 8 * -3 6 Rpta. M = -100

A /< 5x2 - 2 0 x + 16 Rpta. M =-4

© Si 2x + 3 e [7,11] encontrar el valor M que satisface a la siguiente desigualdad

X+ < M Rpta. M = ——x - 7 5

( 7 ) Si x g [y ,y ] encontrar el mayor valor M que satisface a la desigualdad M < - + ^

Rpta.

Page 184: Espinoza Ramos 1

170 Eduardo Espinoza Ramos

©

©

©

©

©

[15)

fí? )

1 x — 1Sí — e ¿>[< -oo,l > U < 2,+ro > ]. Hallar el menor valor de M tal que | --------1 < Mx 2x+5

x + 5Sí |x — 31 < 1. Hallar el número M tal que: | ------1 < M

x + l

Hallar M tal que sí |x| < 2 =>x + 4

< M

Encontrar un número M positivo tal que:

Encontrar un número M positivo tal que:

Encontrar un número M positivo tal que:

Encontrar un número M positivo tal que:

14) Encontrar un número M positivo tal que:

Encontrar un número M positivo tal que:

x 3 - 2 x 2 + 3 x - 4 | < M

x + 2 , 1 3------ \ < M si . te - ,— 1x - 2 2 2

x -3 x + 4 | < A f sí x g [-2,2]

x 2 +4,v-3 | < M sí x g [-2,4]

x + 2x —4

< M sí x g [5,8]

x +2x~ - 3 x - 6 | < M sí x g [-2,5]

Encontrar un número M positivo tal que: | x 4 - 2x3 + x 1 - 3x - 5 1 < M sí x g [-3,-1]

x — 6x + 2 9Encontrar un número M positivo tal que: | -------------- 1 < M sí x e [— ,4]x + 5 2

18) Encontrar un número M positivo tal que: |x + l

x 2 +4x + 4< M sí x g [-1,3]

x — 3x + 5Encontrar un número M positivo tal que: | —-----------1 < M si x g [0,4]x ' - 2 x - 5

x ” + 6x + 14Hallar el mayor número N tal que: | -----_ ■' ■—- 1 > N si x g [-2,2]

x 3 +27

Page 185: Espinoza Ramos 1

Sistema de Números Reales 171

21) Si — e (< -to,1 >U < 2,+oo> ), Determinar el menor número M tal que | ——— | < Mx x + 4

22) Determinar el número M tal que: | —— < M , V x e <l,3>

® x^ +14Hallar el menor número M tal que: | —--------------- 1 < M , sí x e [-1,2]x -4jc + 14

(2 ^ Hallar un número M tal que: sí |x| < 1 => | - í- í— | < Mx + 3

VI. Resolver las siguientes ecuaciones:

© [| 3x |] = x + 2 Rpta. x = 1

© [| 3jc I] = 2x + 2 Rpta. x = 2 ,^

© [| l £ r -21- 3 1] = 5 Rpta. <-7,-5]U [9,11>

© [ | 2 - | j t | | ] = 1 Rpta. [-1,0> U <0,1]

© [| 3 x - 5 1] = 2x + \ Rpta. {6,-^}

© [|V3--v |] = 2 Rpta. <-6,-1 ]

© [| U ~31 |~ 1 13 = 2 Rpta. <-9,-6] U [8,11>

© [lliy ^ l l ] = - l Rpta. 4)

© [II—y —_ 3 1|] = -1 Rpta. <J,

© t i l t i l ] = 5 Rpta. [- 4 , - ^ > í / < - ^ , - Z ]

Page 186: Espinoza Ramos 1

172 Eduardo Espinoza Ramos

© [II - ^ 7 II] = 3 x + 1

Rpta.4 3 \

[-3 .-2 > U < — , - - ] \5 5

© ( l % + 3 |) = 3 Rpta. 23 m r ,< ------,-9] U [6,— >2 2

© [ | | 2, : - 1| |] = 1 Rpta. <

©x ■+■ 2

t l ^ l ] = 2 x+3

Rpta. < ü . 8]2

© [1 U - 2 |+3 n = 4 Rpta. [-1 ,0 u <0,1]

© [| 2 - 1 x 11] = 1 Rpta. [7,9>

© [1 ~ ~ T 1] = ^x + 3Rpta. r 13 16

T ' ~ T >

© [I* 2 - 2 x |] = 3 Rpta. < l- 7 5 ,- l ] u [ 3 4 + V 5 >

© [| 2x |] - 1 x — 11 = 2x —3 Rpta. {-2 — — 4}3 ’ 3

© l[U 2 |]—11=3 Rpta. < -V 5 ,-2 ]u [2 ,V 5 >

© r. | x - 2 | + | 2x - l |- 2 3

Rpta. 5 2 . r8 11 < — .— ] ^ [ - , — >

3 3 3 3

© ti x —11]2 + 2 [ |x |]2 =57 Rpta. [-4,-3>

VIL Resolver las siguientes inecuaciones:

© [ |~ ~ ~ l ]< 2 x + 2

Rpta. <-oo.-2> U <-l,3>

© [|4 x 2 — 5x—4 1] < 1 Rpta. < ——,2 > 4

Page 187: Espinoza Ramos 1

Sistema de Números Reales 173

© [112* ' + 5.t | —2 11 < 1

© | [ | - j c | ) - l |< 2

[ |* - - i | ] a o

© [1-73- 2 jc|] < V3

© [|.v2 - l | ] < 0

© i l f ' l K i5 - x

© [12a: — — 1] > 1X

© [ |x 2 -41] < -1

© 2x + 3 [ | | ^ - f - l | | ] < l

x + 1

© 4

© [12.V-— |] > 1 X

© oVnl<N1r*i •—

i

i—i

© y ü R _<0

[|x — 2 jc — 191]

© -J[\x\]2 -I 2 ([ \x \ }2 -

© f i * s „ [|.v -2 .V -3 |]

R p ta . <-3,--> U <-!,->2 2

Rpta. <-3,0]

Rpta. <-oo,-1] U [ 1 ,+oo>

Rpta. <0,+oo>

Rpta. < -V 2 ,V 2 >

Rpta. <0,5>

Rpta. [-2,0 > U [ - ,+ * >

Rpta. <-2,2>

2Rpta. < -oo,—— > U <6,+oo>

Rpta. < -oo,-5] U [5,+oo >

Rpta. [-2,0 > u[-j ,+oo >

Rpta. [0,2]

Rpta. < 1 - 2 5,-3]u[3,1 + 2 5 >

Rpta. <-oo,-3> <4,+oo>

Rpta. [2,3>

Page 188: Espinoza Ramos 1

174 Eduardo Espinoza Ramos

V ili.

©©©

©

©

[ |x - 2 [ |x |] |](x2 - 4 ) > O

( [ |x |] -2 )V Ü y + 2 |(x 2 -4 x + 3 ) > 0

19) [| jc — 2 |].(x2 — x + 2) > O

ti - * 0 - 2

Vl - Jx 2 - [ |x | ] - 4

<1

<0

1*1]-

| * - 1 1 -ti * |] | < x ©(|x — 5 1 +2x + -J x -5 —[|x — 2 |]x + 5)(x-^y-)

a/ 6 - x

(x2 +4x + 5)-V x-l(2jr + senx)(x + 2)

< O 129

>0([ !* ! ] - - ) (* —2 x -3 )

Resolver la inecuación logarítmica.

log ,,, 12x—3 1 > —3

log2(x-3-\/x + l +3) <1

>06 - [ |x |]

23) ( [ |x |] - x ) ( x - 2 ) ( x - 3 ) 2 > 0

V 2-j

1*1 [| * - i 13—9> 0

- 2 x - l_ l > x - 2 JxJ 5x + 26 x + 7 x

[I* - 9 1]< 0

31) n ^ ± Í D * 4

Rpta. < > - { - }2 2 2

Rpta. [-1,0> U <3.15>

, |x + 4x |+ 3 Alog 7 7 ¡-----x + 1 x — 5 1

Rpta. [— ,+oo >

4 x - l 11o82[- ^ — ---- - I - " 12x‘ - 4 x - 6

Rpta. [2,-i- > U < 4,+oo >

, rl 2*—3 L . log[^------— > 1

x +1Rpta. < ^ ( V 2 l - 3 ) , l>

Page 189: Espinoza Ramos 1

Sistema de Números Reales 175

© l‘>g(.v 4) (3 -* ) <2

0 log, (2.r + 6 )< -2

( s ) log v > 1v -1

log, 13 - 4.v|> 3

@ lo g ,1 3 - 4 v |> 2

© l()gf.[l 1 +35] > 2

© 2 4 - 2 * - v2 k W ^ Ì ------- — » 1

® ,08' (i T ^ ’21

( h ) l o g (a - 3 V-v +1 -4-3) < 1

(i? ) log5(3.v-5) > log,(7-2.V)

^ ò ) log, (.v -4.Y + 3) > -1

© log2(| -V — 2 1 -1) > 1

© l0 g ^ H (l ^ 7 ) - °

(Í9 ) log(;(2 + .v )< l

@ log2(.v2) + log2(.v4) > 3

Rpta. cj)

Rpta. < 2 , + x >

Rpta. < 1 ,3 >

^ 5 11Rpta. < —x ,— > u < — .+■» >4 4

Rpta. < - 00,—y > u < 3,+» >

7Rpta. < — ,5 > u < 5,+x >

Rpta. < - 3 . 1 > u < 3 , 4 >

Rpta. < -1 + VÄ.2 > u < 2,5]

Rpta. [-1,0> u < 3 , 1 5 >

_ 12 7Rpta. < — , —>5 2

Rpta. [ 0 .1 > 'u < 3 ,4 ]

Rpta. < - x , - 1 > u < 5 , » >

Rpta. < 0 , i > l [2 ,+ to>

( 2 0 ) l o g , (.v2 - 4 ) > l o g , ( 4 . v - 7 )1 1

(22) log, ( 8 - 2 a)>3T

Page 190: Espinoza Ramos 1

176 Eduardo Espinoza Ramos

1.42 CONJUNTOS ACOTAPOS.-

a) DEFINICION.- Llamaremos cota superior de un conjunto A c R a todo

número k e R tal que x < k, VxeA, ósea que cualquier número que sea mayor o igual que los elementos de A se llama “cota superior de A”.

Cuando A tiene alguna cota superior, diremos que el conjunto A es acotado superiormente.

Ejemplo.- Sea A = <-*,3> y la cota superior k = 5

cotas superiores de A

A . --------- C ...............,.............,................. , ...............;.......Rx 3 4 5 6 7

Observamos que cualquiera de los números reales mayores que 3 e incluso el 3 es cota superior de A.

De todas estas cotas superiores de A, él número 3 es la menor. Luego daremos la siguiente definición.

b) DEFINICION.- A la menor de las cotas superiores de un conjunto A c R yacotado superiormente, se le llama supremos de A o mínima cotasuperior de A y se denota por Sup(A).

OBSERVACIÓN.-

O El supremo de A es también una cota superior de A.

© La menor cota superior k = Supremo de A = Sup A esta caracterizada por lascondiciones siguientes que es equivalente a la definición.

K = Sup A o V x e A y para toda cota superior k' de A, se tiene que x < k < k'

© El supremo de un conjunto A, si existe, no es necesariamente un elemento de A.como en el caso de A = <-x,3> cuyo supremo es 3 no pertenece al conjunto A.

La existencia del supremo para conjuntos acotados superiormente esta dado por el siguiente axioma.

Page 191: Espinoza Ramos 1

Sistema de Números Reales 177

1.43 AXIOM A DEL SUPREM O O AXIOM A DE LA M ÍNIM A COTA SUPERIOR.- ......

Todo conjunto A de números reales, no vacío y acotado superiormente, tiene una menor cota superior en R.

Ejemplo.- Demostrar que sí A = <-oo,3> entonces Sup A = 3

Solución

Probaremos esta afirmación por el absurdo.

Supongamos que 3 no es la menor cota superior de A, entonces se puede asegurar que

k + 3existe una cota superior k de A tal que k < 3 y puesto que k < —-— < 3

Tomamos k '= —— => k < k ' < 3 .. .(1 )2

De donde k ' e A = < -oo,3 > , pero siendo 1 cota superior de A debería tenerse k'< k

contradiciendo a (1).

La suposición es absurda por lo tanto Sup A = 3.

a) DEFINICION.- Llamaremos cota inferior de un conjunto A c R a todo

que sea menor o igual que los elementos de A se llama “cota inferior de A”.

Cuando A tiene alguna cota inferior, diremos que el conjunto A es acotado inferiormente.

Ejemplo.- Sea A = [-2,7> y la cota inferior k = -2.

Se observa que cualquiera de los números reales menores que -2 e incluso el —2 es cota inferior de A.

número k e R tal que k < x, V x eA. Osea que cualquier número

cotas inferiores de A A R-4 7

Page 192: Espinoza Ramos 1

178 Eduardo Espinoza Ramos

De todas estas cotas inferiores de A el número -2 es la mayor. Luego daremos la siguiente definición.

b) DEFINICION.- A la mayor de las cotas inferiores de un conjunto A c R yacotado inferiormente, se le llama infimo de A o máxima cota

inferior de A y se denota por inf (A).

OBSERVACIÓN.­

, © El infimo de A es también una cota inferior de A.

(T ) La mayor cota inferior k = inf(A) = infimo de A esta caracterizada por la condición.

K = inf(A) o V x e A y para (oda cota inferior k' de A se tiene k'< k < x .

© El ínfimo de un conjunto puede no ser elemento del conjunto dado.

Ejemplo.- El conjunto A = [-2,7> esta acotado superiormente por 8 e inferiormente por —3, además la mayor cota inferior es -2 y la menor cota superior es 7 por lotanto: Sup(A) = 7 y Inf(A) = -2 de donde Sup(A) í A, Inf(A) e A

Cuando en un conjunto A se tiene que Sup(A) e A entonces el Sup(A) también se le

llama el máximo de A y si el Inf(A) e A entonces al ínfimo de A también se le llama el mínimo de A.

c) DEFINICION.- Un conjunto A se dice que es acotado, si es a la vez acotadoinferiormente y superiormente.

Ejemplo.- El conjunto A = <1,7> U [30,50] es acotado y Sup(A) = 50, Inf(A) = 1.

Ejemplo.- El conjunto A = <-x>,-5] U <l,+oo> no es acotado inferiormente ni superiormente.

1.44 PRINCIPIO ARQLIMEDIANÜ.-

Si x es un número real positivo entonces existe un número natural n0 tal que

0 < — < x (o equivalentemente tal que xn0 > 1 )»<>

Page 193: Espinoza Ramos 1

Sistema de Números Reales 179

D em ostración

Demostraremos por el absurdo. Suponiendo que nx < 1, V n e N

Por lo tanto el conjunto A = {nx / n e N} esta acotado superiormente al menor por k= 1, y por el axioma del supremo el conjunto A posee una menor cota superior k (Sup A) en R que satisfece la condición n x < k < l , V n e N pero siendo x > 0 => k —x < k y por lo tanto (k — x) no puede ser cota superior de A puesto que k es la menor de todas ellas. Luego existe un elemento de A: /n,jc como e iV tal que k - x < m^x < k . . . ( 1 )

Pues si así no fuese, entonces se tendría que n x < k - x , V n x e A => k — x seria cota superior de A lo cual es felso.

Luego de (1) => Jt<(m 1 + l)x => k<mx, con m = (m1 +l ) e i V

lo cual es absurdo, pues siendo k = Sup A debería tenerse mx < k, de esta manera el principio queda demostrado por el absurdo.

Ejem plo.- Probar que el conjunto A = {—l n & N } es acotado.n

Solución

Ubiquemos los elementos de A en una recta para x = — , n e N.n

n = 5 n = 3 n = 2 n = 1

ò l i i i rn 5 3 2

Ahora encontraremos el supremo y el ínfimo de A como:

V n e N => n > 1 => 0 < x = — <1n

Cuando n crece los elementos de A se acercan al cero (0) pero sin coincidir con el 0 para n e N de esta observación se tiene:

R

... (i)

Sup (A) = 1 e A inf (A) = 0 e A

Page 194: Espinoza Ramos 1

180 Eduardo Espinoza Ramos

Probaremos que inf(A) = 0, de (1) se vio que 0 es una cota inferior, si no fuese la mayor existiría otra cota inferior k mayor que 0 y por principio Arquimediano se tiene que existe

un n0 e N tal que 0 < — < k lo cual es absurdo pues — e A y siendo k cota inferior «o «o

de A debería cumplirse que k < — , de manera que Inf A = 0.«o

© Si A * <|>, B (|), dos conjuntos acotados superiormente tales que A c B , probarque Sup A < Sup B.

© Si A * <)>, B * (|> son dos conjuntos acotados inferiormente tales que Ac = B probar

que Inf (B) < Inf(A).

© Hallar supremos y el ínfimo de A = {-—— / n e N ) , B = — +^n / n& N}3«+ 4 3«+ 8

Rpta. sup(^) = - — , inf(A) = - 2 , sup(S) = 4 , inf(5) = 0.2

© Determinar el supremo y el ínfimo si existen en cada uno de los ejercicios.

a) A = { x e R / x ¿ <9} Rpta. Sup A = 3, Inf A = -3

b) A = { x e R / 2 l + 4 x - x 2 >0} Rpta. Sup A = 7, Inf A = -3

. . ,3 + 2« ,c) A = { - / n g N}3 - 2 n

Rpta. Sup A = 5, Inf A = -7

d) A = { x & R / x — 4jc—12 < 0} Rpta. Sup A = 6, Inf A = -2

e) /Í = {jce7?/|*| | jc + l | < 2 } Rpta. Sup A = 1, Inf A = -2

f) A = { x & R ! \6 + x - x | < 6 } Rpta. Sup A = 4, Inf A = -3

Page 195: Espinoza Ramos 1

Sistema de Números Reales 181

( 5) Encontrar el supremo y el ínfimo de A = | cosw7r / n & N } , B = t + ^ n / n e n }2 + n 2 -7 «

Rpta. su p (/í)= y , inf(A) = ~ ~ , sup(#) = - y , inf(2?)=-2

Hallar el supremo y el ínfimo si existe de:

A = {x e R / x 2 - 4 x -1 2 <0}, B = {x2 - 4jc —12 / x e< - 00,00 >}

Rpta. Sup (A) = 6. Inf (A) = -2, Sup (B) = 3 , Inf (B) = -16

( j ) Dar un ejemplo de dos conjuntos A y B, mediante intervalos tales que

Inf (A o B) > Sup {Inf(A), Inf(B)}.

© Determinar el supremo y el ínfimo si existe de los siguientes conjuntos.

a) A = { x e R / \ 4 - x \ > x } b) A = {x& R / \ I*2 -4 1 <16}

c) A = { x e R / |x + 6 | + | 3 - * | =9} d) A = { x e R ! \ | x 2 + 2x - 41 <7}

e) A = { x z R I \ x - % \ - \ 4 x 1 - 1 1 <0}

Page 196: Espinoza Ramos 1

182 Eduardo Espinoza Ramos

c a p i t u l o h

2 X r a m o m i c c i O N .

a) PAR ORDENADO.-

Llamaremos “par ordenado” de números reales a la expresión (a,b) donde a es llamada la primera componente y b es llamada la segunda componente.

Ejemplo.- Son pares ordenados, (3,5), (-2,7), (etc).

b) IGUALDAD DE PARES ORDENADOS.-

Los pares ordenados (a,b) y (c,d) diremos que son iguales si sus correspondientes componentes son iguales, esto es: _

Ejemplo.- Los pares ordenados (5,6) y (5,4) no son iguales sus segundas componentes son diferentes.

Luego diremos que dos pares ordenados son diferentes si una de sus componentes correspondientes son diferentes esto es:

Ejemplo.- Determinar el valor de x e y de tal manera que (5x+2y, -4) = (-1, 2 x - y)

Solución

Para calcular el valor de x e y aplicamos el concepto de igualdad de pares ordenados:

Page 197: Espinoza Ramos 1

Relaciones y Funciones 183

(5x + 2y, -4) = (-1 ,2x — y) «>5x + 2y = - \ x = - \

2 x - y = -A y = 2

c) PRODUCTO CARTESIANO DE CONJUNTOS.-

Consideremos dos conjuntos A y B arbitrarios; llamaremos producto cartesiano de A y B, al conjunto formado por todos los pares ordenados (a,b) de tal manera que la primera componente a pertenece al conjunto A y la segunda componente b pertenece al conjunto B.

La notación del producto cartesiano de A y B es: AxB. Simbólicamente el producto cartesiano se representa:

También puede determinarse A x B mediante el método del “diagrama del árbol” el cual nos permite observar el conjunto de pares ordenados, este método consiste en disponer los elementos de A y B del modo siguiente

B » « A A b €

Nota: (a,b) e A x B <=> a e A A b e B

Ejemplo.- Sean A = {1,3,5} y B = {2,4} Entonces:

A x B = {(1,2),(1,4),(3,2),(3,4),(5,2),(5,4)}

A B A xB

Page 198: Espinoza Ramos 1

184 Eduardo Espinoza Ramos

OBSERVACION.- Cuando los conjuntos A y B son finitos entonces:

donde: n(A): es el número de elementos del conjunto A.

n(B): es el número de elementos del conjunto B.

n(A x B): es el número de elementos del conjunto A x B.

Ejemplo.- Si A={2,4} y B = {1,3,5} entonces: AxB={(2,l),(2,3),(2,5),(4,l),(4,3),(4,5)}

De donde: n(A x B) = n(A).n(B) = (2)(3) = 6

Además se tiene:

B x A = {(1,2),(1,4),(3,2),(3,4),(5,2),(5,4)} de donde se observa que A x B í B x A

d) PROPIEDADES DEL PRODUCTO CARTESIANO

( T ) A x B í c B k A , no siempre se cumple { ! ) ' A x ^ ^ x A ^ f

® A x ( B u C ) ~ A x S U A x C 0 Ax(B(^C) = AxB a AxC

0 A x ( B - C ) = A x b ' ) (A<l’n C ~ A k ( B \ C )

(t) Si A c 8 í > A * C c B x C ¿ . V C '

(D li. A c e | ,b ;c d j JJ.§¡ c cx d |e) REPRESENTACION GEOMETRICA DEL PRODUCTO CARTESIANO.-

En el producto cartesiano A x B, a cada uno de los conjuntos A y B lo representaremos sobre dos rectas perpendiculares, en donde los elementos del conjunto A se representa sobre el eje horizontal y los elementos del conjunto B se representan sobre el eje vertical, de tal manera que las líneas verticales que pasan por los elementos de A y las líneas horizontales que pasan por los elementos de B al interceptarse se obtienen los pares ordenados de A x B.

Page 199: Espinoza Ramos 1

Relaciones y Funciones 185

Ejemplos.-

Sí A ={1,3,5} y B = { 2 , 4 } entonces:

A x B = {(1,2),( 1,4),(3,2)(3,4)(5,2)(5,4)}

A los elementos del conjunto A lo representaremos en el eje horizontal y a los elementos del conjunto B lo representaremos en el eje vertical.

OBSERVACION

Como los conjuntos A y B son arbitrarios, entonces consideremos los siguientes casos:

( 1 ) Si A = B, el producto cartesiano denotaremos por A x B - A x A - A 2

© Si A = B = R entonces A x B = R x R = R 2 este producto nos representa al planocartesiano.

f) DIAGONAL DE UN CONJUNTO.-

Dado un conjunto A * <|>, a la diagonal del producto cartesiano A x A denotaremos por IA y es definido por:

IA = { ( x , y ) e Ax A/ y = x}

Ejemplo.- Sí A ={1,3,5} entonces:

A x A = {(1,1),(1,3)(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5)}

Entonces: IA = {(1,1), (3,3), (5,5)}

g) EJERCICIOS DESARROLLADOS.-

7) Determinar los valores x e y, en cada caso:

a) (4, 2x — 10) = (x—1, y + 2)Solución

Page 200: Espinoza Ramos 1

186 Eduardo Espinoza Ramos

Mediante la igualdad de pares ordenados se tiene:

Í4 = x - 1 fx = 5(4 .2 x —1 0 ) = (x — 1 , y + 2 ) => ] => l

[2 ;t-1 0 = j> + 2 \y = -2

b) (y—2 , 2 x + 1 ) = (x — 1 , y + 2 )

Solución

Mediante la igualdad de pares ordenados se tiene:

[y - 2 = x - 1 \x = 2(y - 2 , 2 x + 1 ) = (x — 1 , y + 2 ) => ; =*

[2x + 1 = y + 2 [>> = 3

© Dados los conjuntos A = {x e z / - l < x < 3 } ; B = { x e z / l < x < 4 }

C = {x e z / 1 < x á 4}

Hallar los siguientes conjuntos y graficar:

a) A x B b) B x C c) ( A - C ) x B

Solución

Tabulando los conjuntos dados se tiene:

A = {-1,0,1,2,3}, B = {1,2,3,4}, C = {1,2,3,4}

a) A x B = {(-1,1),(-1,2),(-1,3),(-1,4),(0,1),(02),(0,3),(0,4),(1,1),(1,2),(1,3)(1,4),(2,1),

(2.2)(2,3)(2,4)(3,1),(3,2),(3,3),(3,4)}

b) B x C = {(1,1),(1,2),(1,3),(1,4),(2,1),(2,2,),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),

(4.2),(4,3),(4,4)}

c) A —C = {-1,0}

( A - C ) x B = {(-1,1), (-1,2), (-1,3), (-1,4), (0,1), (0,2), (0,3), (0,4)}

Page 201: Espinoza Ramos 1

Relaciones y Funciones 187

A = {x e R / x —3 < 7}, B = {y e R / -2 < y < 3}. Graficar, A x B, B x A

Solución

Como x — 3 < 7 => x < 1 0

A x B = {(x,y) / x < 10 A -2 < y < 3}

B x A = {(x,y) / -2 < x < 3 A y < 10}

Page 202: Espinoza Ramos 1

188 Eduardo Espinoza Ramos

© Para A y B subconjuntos arbitrarios de R, geométricamente visualizar, como superficie, el

producto cartesiano A x B en el espaciq bidimensional R 2, entonces:

© Que parte del plano cartesiano se obtiene si se representa gráficamente los siguientes productos cartesianos.

a) <0,+oo> X <0,+oo> b) <-oo, 0> x <-oo,0>

c) <-oo,0> x <0,+oo> d) <0,+oo> x <-oo,0>

Solución

a) <0,+oo> x <0,+oo> => {(x,y)/ x > 0 A y > 0 }

b) <-00,0> X <-QO,0> => {(x,y) / x < 0 A y < 0}

c) <-oo,0> x <0,+oo> => {(x,y) / x < 0 A y > 0}

d) <0,+oo> x <-oo,0> => {(x,y) / x > 0 A y < 0}

Page 203: Espinoza Ramos 1

Relaciones y Funciones 189

h) EJERCICIOS PROPUESTOS.

I. En cada caso determinar los valores de x e y.

o (x,4) = (-2,y) © (4 ,2x — 10) = (x — 1, y + 2)

® (y—2, 2x + 1) = (x — 1, y + 2) © (5x + 2y, -4) = (-1 ,2x — y)

© (x + 4, 6) = (10, y —x) © (x + 5, 3 - y ) = (7,2)

© (x + y. 3) = (5. y - x ) © (x —7y, 2x —6y) = (15,-10)

© (3x —8y, 4x + 3y) = ( 4 - 2 x - 1 0 y , 2x + 4y+ 7)

@ (5x + 2y, -4) = (-1 ,2x — y) © (x3 -19, jc2>’ — 6) = (>’3, xy

© (2x — y, x + y+ 3) = (x + y+ l , 2x + y)

Page 204: Espinoza Ramos 1

190 Eduardo Espinoza Ramos

II. En cada caso hallar los conjuntos y graficar:

( 7 ) Dado los conjuntos: A ={xe z / -1 < x < 3}, B ={xe z / 1 < x < 4}, C= { x e z / 1 < x < 4};

Hallar los conjuntos y graficar:

a) A x B b) B x C c) ( A - C ) x B

Sea A = {x e R /1 < x < 3} y B = {y e R / 2 < y < 4}. Hallar A x B y graficar

0 Sean A = {a.b}, B = {1,2,3,4,5} y E = {3,5,7,9}. Hallar (A x B) n ( A x E )

( 4) Representar al conjunto producto cartesiano: {x e R / |x| < 5} x {x e R / -2 < x < 3}

Sombreando el área apropiada en el sistema bidirnensional.

Dado los conjuntos A = {x e N / x = ~ ^ ~ < k 6 N} , B = { x e N / x 2 -14x + 40 = 0},

C = {x e N / x 2 -1 = 0 } , entonces el número de elementos del conjunto

[(A n B) u C] x (B - C) es.

Qó) Si A={x e R / 2 < x < 5¡ y B = {xeR /1 < x < 4}. Graficar A x B, luego graficar BxA.

Si A= {x e R / 2 < x < 5} , T = {x eR /1 < x < 4}. Graficar T x A, luego graficar AxT.

r 3 , 2 „2( 8 ) Sí A = {—y -^ / (x - 2 ) (x + 3 )(x -5 ) = 0} y 5 = { y + 3 / í ( j t + 2 ) ( í- 4 )= 2 } V x e R

Hallar A x B, B x A y graficar.

© Si A = { x e N / x = - ^ - , k s N } , B = { x e N ¡ x 2 +1<12) . Hallar (A n B) x (B - A)

@ Sí A ={x2 - 1 / 0 < j c < 5 , x e z } , B = {x2 + 1 / - 5 < x < -3, x e z } ,

C = {x3 + 4 / ( x - l ) ( x + 2)(x -3) = 0, x e z } . Hallar A x B , A x C , B x C

(Ti) Si A = { —/ x e z A - 2 < x <4}, B = { x e N / x < 2 A x e {3,2,4,5}}x

Hallar y graficar A x B y B x A

Page 205: Espinoza Ramos 1

Relaciones y Funciones 191

^ 2) Si A = {3x + 1 / (x e N A x < 3) V (x e z A O < x < 5)}

Calcular la diagonal del producto A x A y luego grafique.

Dado A = {x e < / -12 < x + 6 < 20} y B = {x e z /10 < x 2 < 400}

Cuantos elementos tiene A x B.

^ 4) Dados los conjuntos: A = { x e N / x < 3 } , B = {x eN / x es par y x < 5},

C = {x e N /x es impar y x <4}. Hallar el conjunto ( A n B ) x ( C - A )

^ 5) Sí A = {x e z + / x = — , k Gz+} y & = {x ez+ ¡ + 1 -1 2 } . Hallar (AnB) x (B-A)

(ló ) Si A y B son dos conjuntos arbitrarios demostrar que: A x B = 4> <=> A = (j) V B = (j)

(17) Demostrar que: A x (B u C) = (A x B) u (A x C)

@ Demostrar que: A x (B n C) = (A x B) n (A x C)

© Demostrar que: (A — B) x C = (A x C) — (B x C)

© Demostrar que: Sí A c B entonces A x B c B x B

© Den ostrar que: Sí AczB entonces A x A c A x B

© Den ostrar que: A x ( E - B ) = ( A x E ) - ( A x B )

© De; istrar que: (A n B) x (E n F) = (A x E) n (B x F)

© Den istrar que: ( A x E ) u ( B x F ) c ( A u B ) x ( E u F)

© Dei jstrar que: A c B y E c D implica que A x E c B x D

2.2 Rf ACIONES BINARIAS.-

a) DEFINICION.- Consideremos dos conjuntos A y B no vacíos, llamaremos relación binaria de A en B ó relación entre elementos de A y B a

todo subconjunto R del producto cartesiano A x B, esto es:

RcsitnaíelacíóndeAert B o R e A x B

Page 206: Espinoza Ramos 1

192 Eduardo Espinoza Ramos

Ejemplo.- Sean A ={2,4} y B = {1,3,5} entonces

A x B = {(2,1),(2,3),(2,5),(4,1),(4,3),(4,5)}

Los siguientes conjuntos de pares ordenados son relaciones de A a B:

Rx ={(2,1),(2,5)}, R 2 ={(2,3),(4,1),(4,5)}, R3 = {(2,1),(4,3),(2,3)} , i?4 = A x B

Pero los siguientes conjuntos de pares ordenados no son relaciones de A en B:

Rs ={(1,2),(4,1),(4,5)} , R6 ={(2,1),(4,1),(3,4)} puesto que (1,2) sé A x B, (3,4) ¿ A x B

por lo tanto R5 g: A x B , R6 A x B .

Observación.­

© Si A = B, entonces R es una relación en A ó, R es una relación entre elementos de A.

© La definición 1.1 establece una comparación entre elementos de pares ordenados,motivo por el cual se le llama “relación binaria”.

(T ) Si R es una relación entre elementos de A y B, al conjunto A le llamaremos conjuntode partida y al conjunto B le llamaremos conjunto de llegada.

© Generalizando: una relación R, entre los elementos del conjunto de los númerosreales R, está determinado por una función proposicional P(x,y); esto es:

E ~ GÜ.X.R/ P(xTy)}

© Cuando el par ordenado (a,b) satisface a la íúnción proposicional P(x,y) de la

relación R, diremos que (a,b) e R en caso contrario (a,b) <£ R.

© Si A tiene p elementos y B tiene q elementos entonces 3 2" relaciones entre A y Bdonde n = pq.

Ejem plos.-Sí A = {1,3} y B = { 2 , 4 } entonces A x B = {(1,2),( 1,4),(3,2),(3.4)}

El número de relación que se obtendrá de A x B es 2lxl = 24 =16 es decir: que se

puede formar 16 relaciones:

Page 207: Espinoza Ramos 1

Relaciones y Funciones 193

{(1,2)}, {(1,2),(3,2)}, {(1,4)}, {(3,2)}, «3,4)}, {(1,2),(1,4)}, {(1,4),(3,2)}, {(1,2),(3,4)}, {(1,4),(3,4)}, {(3,2),(3,4)}, {(1,2),(1,4),(3,2)}, {(1,2),(1,4),(3,4)}, {(1,4),(3,2),(3,4)}, {(1,2),(3,2),(3,4)}, {(1,2),(1,4),(3,2),(3,4)}, <j>

b) DOMINIO Y RANGO DE UNA RELACION BINARIA.

Consideremos una relación R de A en B: es decir que R c A x B .

El dominio de la relación R denotado por D R es el conjunto definido por:

D# » { ( t& A Í S b & B A {■«*$)

El rango de la relación R denotado por R r es el conjunto definido por:

: Rfi ~ @ e B f 3 q e A A

Ejemplo.- Si R = {(1,4),(1,5),(2,3),(2,4),(2,5)} entonces — {1,2}, R r = {3,4,5}

OBSERVACION.-

Para determinar el dominio de una relación, primero se despeja “y” enseguida se analiza los valores que pueden tomar “x” para que la variable “y” sea real.

Pa ra determinar el rango de una relación se despeja “x”, enseguida se analiza los valores que puedan tomar “y” para que la variable “x” sea real.

E mplo.- Determinar el rango y dominio de la siguiente relación:

R = { ( x , y ) G R x R / x 2 + y 2 + 1 0 y -7 5 = 0}

Solución

En primer lugar despejamos la variable “y” para obtener el dominio, es decir:

x 1 + y 2 + 10y-75 = 0 , completando cuadrado

(y + 5)2 = 100—oc2 dedonde y = - 5 ± V l 0 0 - x 2

Ahora analizaremos los valores que pueda tomar x para que “y” sea número real es decir:

1 0 0 - jt2 > 0 dedonde: jc2 < 100 = > - 1 0 < x < 1 0 .\ D f =[-10,10]

Page 208: Espinoza Ramos 1

194 Eduardo Espinoza Ramos

Ahora despejamos la variable “x” para obtener el rango, como x 2 + y 2 + 10_y—75 = 0

=> x = ± ^ 7 5 -1 0 y - y 2 entonces analizando los valores que puede tomar “y” para que

x sea número real se tiene: 1 5 - \ 0 y - y 2 > 0

donde ( j + 5)2 <100 - 1 0 < y + 5 < 1 0 => - 1 5 < y < 5 /. R f =[-15,5]

c) PROPIEDADES DE LA RELACION BINARIA.-

Las relaciones binarias gozan de las siguientes propiedades:

O Propiedad Reflexiva.- Una relación R en A, diremos que es reflexiva si(a,a) e R para todo a e R esto es:

R ea reflexiva en A <& V a e A>

( ? ) Propiedad Simétrica.- Una relación R en A diremos que es simétrica si

(a,b) e R implica que (b,a) e R, esto es:

R es simétrica V (a,b) £ R (b,a) e R

( ¿ ) Propiedad Transitiva.- Una relación R en A, diremos que es transitiva sí:

(a,b) e R A (b,c) e R implica que (a,c) e R, esto es:

R es transitiva o V a,b,e e A, [(a.b) 6 R A <b,c) € R (a,c) e R]

(4^ Propiedad Antisimétrica.- Una relación R en A, diremos que esantisimétrica sí:

V a,b e A, (a,b) e R y (b,a) e R implica que: a = b, esto es:

R es aotisimetrica <» V a,b e A, [fe,b) e R A (b,a) & R => a - b |

( ¿ ) Propiedad de Equivalencia.-

Una relación R en A, diremos que es de equivalencia si es: reflexiva, simétrica y transitiva.

Ejemplo.- Si A = {1,2,3,4,5,6} las relaciones en A.

Page 209: Espinoza Ramos 1

Relaciones y Funciones 195

a) Rx ={(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)} es reflexiva en A.

b) R2 - {(1,1),(3,3),(4,4),(5,5), (6,6)} no es reflexiva en A por que falta (2,2).

Ejemplo.- Si A = {2,3,5,7}, las relaciones en A

a) /?, ={(5,3), ( 2 ,7 ) , (3,5), ( 7 ,2 ) , ( 2 ,2 ) } es simétrica porque (x, .y) e =>(>>, jc) e R{

b) R 2 = {(5,3),(2,7),(3,5),(2,2)} no es simétrica porque falta (7,2).

Ejemplo.- Si A = {1,3,7,9} las relaciones en A.

a) ={(7,1),(2,2),(1,2)}no es transitiva porque (7,1) e R2 A (1,2) e R2 =>(7,2) e R 2

Ejemplo.- Si A = {1,2,3,4,5} la relación R en A dado por

R = {(1,1),(2,2),(3,3),(4,4),(5,5)} es una relación de equivalencia porque

es reflexiva, simétrica y transitiva en A.

Ejemplo.- Sea Z = conjunto de los números enteros y la relación R definida sobre

Z en R = {(x,y) e Z x Z / x — y = 3m, m e Z} es una relación de

equivalencia. En efecto:

(T ) R es reflexiva porque: a - a = 0 = 0.3 V a e Z es decir: (a,a) e R, V a e Z

^ 2) R es simétrica porque: S í a - b = m.3 => b — a = - ( a - b ) = (-m).3

V a,b e Z => (a,b) e R => (b,a) e R ,

( 3) R es transitiva porque: Si a - b = m.3 y b - c = m ' . 3 entonces

a - c = (a — b) + (b — c) = m.3 + m' .3

a - c = ( m + w ' ) 3 => a - c =m.3, V a,b,c e Z

es decir: (a.b) e R A (b,c) e R => (a,c) e R, V a,b,c e Z.

Por lo tanto R es una relación de equivalencia.

Page 210: Espinoza Ramos 1

196 Eduardo Espinoza Ramos

d) DETERMINACION DE UNA RELACION BINARIA.

Teniendo en cuenta que una relación es un conjunto de pares ordenados, entonces a una relación determinaremos por extensión o por compresión.

Ira. Por Extensión.-

Una relación queda determinada por extensión cuando se menciona cada uno de los pares ordenados de la relación.

Ejemplos.-

a) ={(1,2),(2,3),(3,4),(4,5)} , R2 = {(a ,b), (c,d) ,(e, f)}

b) Si A = {2,3,6,9} y B = {1,4,5,6,12}

Expresa por extensión cada una de las relaciones:

(T ) R = {(x,y) e A x B / y = 2x}

Solución

R = {(2,4),(3,6),(6,12)}

R = {(x,y) e A x B / x + y= 12}

Solución

R = {6,6}

2da. Por Comprensión.-

Una relación queda determinada por comprensión cuando se da una propiedad que caracteriza a todos los pares ordenados que conforman la relación.

Ejemplos.-

a) Si A = Z conjunto de los números enteros la relación R={(x,y)eZx Z / y = x} es una relación expresada por comprensión.

b) Si U = {x e N / x < 7}. Determinar por comprensión la relación:

R = {(3,1),(4,2),(5,3),(6,4),(7,5)}

Page 211: Espinoza Ramos 1

Relaciones y Funciones 197

Solución

Se observa que la diferencia entre la primera componente y la segunda componente es dos unidades por lo tanto expresaremos por comprensión:

R = {(x,y) e U x U / x —y =2 }

e) RELACION INVERSA.-

Si R c A x B es una relación de A en B; entonces a la relación inversa de R lo

denotaremos por R~l y está definido por:

R~l ={(y,x) e B x A l ( x , y ) e R \

Ejemplo.- Sí R= {(3,2),(3.1),(4,2),(4,5),(6,8)} => R~l = {(2,3),(1,3),(2,4),(5,4),(8,6)}

Ejemplo.- Hallar la inversa de las siguientes relaciones.

a) R = {(x,y)e R x R / x + 3y= 12}

Solución

Para determinar la inversa de una relación se despeja x, es decir: x = 12 — 3y

Luego se permuta x por y es decir: y = 12 - 3x

R * ~ U x , y ) z R x R , !y ^ n ~ 3 x \

b) R = {(x,y) e R x R / 3 x + 4 y = 5 A 1 < x < 7}

Solución

5 - 4 yPrimeramente despejamos x de 3x + 4y = 5 es decir: x = ■■■ ■ , 1 < x < 7

5 - 4 yAhora veremos como va variando y; como l < x < 7 => 1 < ------— < 7

3

3 < 5 — 4 y < 2 1 =í> - 4 < y < ^

Page 212: Espinoza Ramos 1

198 Eduardo Espinoza Ramos

5 - 4 v 1Luego x - ———, - 4 < ^ < —, por lo tanto al permutar x por y se tiene:

5 - 4*v = --------, - 4 < j t < —■ 3 2

j t * = { ( x , y ) e R x R / y = ^ ^ , - 4 < x < - }3 2

2,3. GRAFICA DE UNA RELACION DE R EN R,-

a) Definición.- Llamaremos gráfica de una relación de R en R al conjunto de puntosP(x,y) cuyas coordenadas satisfagan a dicha relación, teniendo en

cuenta que una relación puede estar expresada en una de las formas:

E(x,y) = 0 V E(x,y) < 0 V E(x,y) > 0 V E(x,y) < 0 V E(x,y) > 0.

b) Discusión de la Gráfica de una Relación.

Para trazar la gráfica de una relación dada por la ecuación E(x,y) = 0, daremos el siguiente criterio.

Ira. Determinación de las intersecciones con los ejes coordenados.

- Intersección con el eje X: E(x,y) n eje x = {(x, y) e R 2 / y = 0} = P

Es decir: para hallar el punto P de intersección con el eje X se hace y = 0 en laecuación E(x,y) = 0, ósea que se resuelve la ecuación E(x,0) = 0

- Intersección con el eje Y: E(x,y) n eje y = {(x,y) e R 2 l x = 0} = Q

Es decir: para hallar el punto Q de intercesión con el eje Y se hace x = 0 en laecuación E(x,y) = 0, ósea que se resuelve la ecuación E(0,y) = 0.

2da. Determinación de la simetría con respecto a los ejes coordenados.

- Simetría con respecto al eje X.

Existe simetría con respecto a eje X si se cumple E(x,y) = E(x,-y). Fig. (a)

Page 213: Espinoza Ramos 1

Relaciones)’ Funciones 199

Simetría con respecto al eje Y.

Existe simetría con respecto al eje Y si se cumple E(x,y) = E(-x,y) Fig. (b)

Simetría con respecto al origen.

Existe simetría con respecto al origen si se cumple E(x,y) = E(-x,-y). Fig. (c)

3ra. Determinación de la extensión de la curva.

Consiste en determinar el dominio y el rango de la relación.

4ta. Determinación de las Ecuaciones de las Asíntotas.

Trataremos solamente de las asíntotas verticales y horizontales.

- Asíntotas Verticales.- La recta x=a, es una asíntota vertical de la relaciónE(x,y) = 0, si para cada (x,y) e E(x,y), se tiene que

para “y” bastante grande la distancia de “x”a“a” es decir |x-a| es muy pequeño.

Page 214: Espinoza Ramos 1

200 Eduardo Espinoza Ramos

Para calcular las asíntotas verticales se despeja la variable y de la ecuación

E(x,y) = 0 es decir: y = —— de donde f y g son expresiones solamente de x,g(x)

entonces las asíntotas verticales se obtienen de la ecuación g(x) = 0, es decir haciendo el denominador igual a cero.

Asíntotas Horizontales.- La recta y = b es una asíntota horizontal de la relación E(x,y) = 0 sí para cada (x,y) e E(x,y) sé

tiene que para “x” bastante grande la distancia de “y” a “b” es decir |y — b| es muy pequeña.

ecuación E(x,y) = 0, es decir: x ■8(y)

donde f y g son expresiones

solamente de y, entonces las asíntotas horizontales se obtienen de la ecuación g(y) = 0 es decir haciendo el denominador igual a cero.

Page 215: Espinoza Ramos 1

Relaciones y Funciones 201

5ta. Tabulación.

Consiste en calcular un número determinado de pares ordenados a partir de la ecuación E(x,y) = 0.

6 ta. Trazado de la curva.- Mapeo de los pares ordenados.

OBSERVACION

(7) Diremos que el par (a,b) pertenece a la relación E(x,y) = 0 sí y solo sí E(a,b) = 0.

Ejemplo.- Discutir y graficar la relación: R = {(x,y) e R x R / xy — 2y—x = 0}

Solución

A la relación dada escribiremos en la forma: R(x,y) = xy—2y - x = 0

Io Intersección con los ejes coordenados:

- Con el eje X; hacemos, y = 0 ; R(x,0) = 0 - 0 - x = 0 => x = 0

- Con el eje Y; hacemos, x = 0; R(0,y) = 0 —2 y - 0 = 0 => y = 0

2° Simetrías:

- Con respecto al eje X: R(x,y) = R(x,-y)

pero x(-y) — 2(-y) — x * xy — 2y—x, por lo tanto no existe simetría con el eje X.

- Con respecto al eje Y: R(x,y) = R(-x,y)

pero xy—2y—x * -xy—2y + x, por lo tanto no existe simetría con el eje Y.

- Con respecto al origen: R(x,y) = R(-x,-y)

pero x y -2 y - x * (-x)(-y) - 2(-y) - (-x), por lo tanto no existe simetría con el origen.

3o Extensión:

X- Calculamos el dominio, para esto despejamos y es decir: y = ------ .

j c - 2

Luego Dr = R - { 2}

Page 216: Espinoza Ramos 1

202 Eduardo Espinoza Ramos

- Calculamos el rango, para esto despejamos x es decir: x = ------y - 1

Luego Rr = /? -{ l}

4° Asíntotas:

x- Asíntota Vertical: se despeja y. y = ------ la ecuación de la asíntota vertical es x=2

x - 2

- Asíntota horizontal: se despeja x:

2 yx = ------, la ecuación de la asíntota horizontal es y = 1.

y - 1

5o Tabulación:X 0 1 3 4 -1 -2Y 0 -1 3 2 0.3 0.5

O Hallar el dominio y rango de la relación: R = {(x,y) e R xR I xy2 - x + 3 y 2 +1 = 0}

Solución

Calculando el dominio de la relación R, para esto despejamos y de la ecuación

xy2 - x + 3 y 2 +1 = 0 => (x + 3)y2 = x - \ => y = ± J ——-' V* + 3

Page 217: Espinoza Ramos 1

Relaciones y Funciones 203

Analizando los valores que pueda tomar x para que y sea real, en este caso debe

cumplirse: —— > 0. + \ / - \ / +

* + -3 1Luego Dr =< -oo,-3 > t/[l,+oo >

Ahora calculamos el rango de la relación R.

Para esto despejamos x de la ecuación: xy2 - x + 3y 2 +1 = 0

2 2 3>’2 + 1x(v~ -1 ) = -3 y~ -1 => x - --------------

J 2 -1

Luego los valores que puede tomar y para x sea real es que y * ± 1

Porlotanto R r = /J -{ -l,l}

Hallar el dominio y el rango de la relación: R = {(x,y) e. R x R I x 2y 2 - A x 2 - A y 2 =0}

Solución

Sea x 2y 2 - A x 2 - Ay2 = 0 ...(1 )

Para calcular el dominio de la ecuación (1) despejamos y = ± Ax2 x 2 - A

Ahora analizaremos los valores que pueda tomar x para que y sea real, en este caso debe

x 2 1 1cumplir: —-----> 0 => ——— - > 0 ------------------ > 0

x - 4 x 2 - A (x + 2 )(x-2 )

La solución es x e <-oo,-2> U <2,+*>

Para x = 0 también se verifica. Por lo tanto: DR = < -o o ,-2 > U < 2,+oo > U {0}

Page 218: Espinoza Ramos 1

204 Eduardo Espinoza Ramos

Ahora calculamos el rango de la relación para esto despejamos x de la ecuación (1)

4 y 2x = ± —f—— , analizando los valores que pueda tomar y para que x sea real, en este casot y ~4

4 y 2se tiene —------> 0

y 2 - 4

V y e R, y2 > 0 => y = 0 se cumple, —~ — > 0 => ----- — ---- — > 04 ¿ - s o = --------y 2 - 4 ( y - 2 ) ( y + 2 )

-2 2

La solución es y e <-oo,-2> U <2,+oo>

Por lo tanto: R r = < -*>,-2 > U < 2,+oo > í/{0}

© Sí A = {2,3,6,9,11} y B = {1,4,5,6,12,14}

Expresar por extensión cada una de las siguientes relaciones:

a) R = {(x,y) e R A x B / y = 3x}

Solución

R = {(2,6)}

b) R = {(x,y) e A x B / x + y = 12}

Solución

R = {(6,6),(11,1)}

c) R = {(x,y) e A x B /y = x}

R = {(6,6)}

Solución

Page 219: Espinoza Ramos 1

Relaciones y Funciones 205

(T ) Si el universo es U = {1,2,3,4,5} determinar por comprensión cada una de las relaciones:

a) R = {(1,1 ),(2,2),(3,3),(4,4),(5,5) }

Solución

R = {(x,y) e U x U / y = x ¡

b) R = {(3,1 ),(4,2),(5,3)}

Solución

R = {(x,y) e U x U / y = x - 2}

La relación R = {(x,y) e Z x Z / x — y = 2k, k e Z ( . Es una relación de equivalencia

Solución

a) Reflexiva: S ix = y => y —x = 0

=> x —x = 2(0), 0 e Z

Luego V (x,x) e R R es reflexiva. _

b) Simetría: Como x —y = 2k, multiplicando por—1 se tiene: y —x = 2(-k),-k e Z

Luego (y,x) e R .'. R es simétrica

c) Transitiva: Sí (x,y) e R => x - y = 2kx , kx &Z

(y,z) e R => y - z = 2k2 , k 2 &Z

x - z = 2(kx + k 2) , kx +k2 e Z

Luego (x,z) e R .’. R es transitiva. Por lo tanto R es de equivalencia.

^6^ La relación R definida por: R = {(x,y) € R x R / |x - y| < 4}, R es de equivalencia.

Solución

a) Reflexiva: V x e R , |x — x| = 0 < 4 => (xjc) e R .\ R es reflexiva

Page 220: Espinoza Ramos 1

206 Eduardo Espinoza Ramos

b) Simétrica: (x,y) e R => |x - y| < 4

=> | y - x | < 4 => (y,x) e R R es simétrica.

c) R no es transitiva: para esto tomemos dos pares ordenados

(7,4) e R => |7 — 4| = 3 < 4

(4.1) e R => |4 — 11 = 3 < 4

(7.1) e R |7 — 1| = 6 ¿ 4, luego R no es transitiva.

Por lo tanto R no es de equivalencia.

© Determinar sí la relación: R = {(x ,y) / + ~Jy =1, x, y e R ' } es reflexiva, simétrica y

transitiva.Solución

a) Reflexiva: S í x e / ? + => x * — ., v V 4

Luego (x,x) í R => R no es reflexiva.

b) Simétrica: Sí (x,y) e R ~Jx +

- J y + J x =1 => (y,x) e R

Por lo tanto R es simétrica.

c) Transitiva: Sí (x,y) e R entonces: -Jx+^Jy' = 1

(y,z) e R entonces -Jy + -J: = 1

4 x + -Jz = 2(1 - J y ) * 1

(x,z) g R, por lo tanto no es transitiva.

Page 221: Espinoza Ramos 1

Relaciones y Funciones 207

Discutir y graficar la relación: R ={(jc, y ) e RxR! x 2 y - 4 y + x = 0}

Solución

La relación dada también se escribe así: R(x, y) = x 2y - 4y + x = 0

Ahora haremos la discusión correspondiente:

Ira. Intersección con los ejes coordenados

- Con el eje X, hacemos y = 0; R(x,0) = 0 — 0 + x = 0 => x = 0

- Con el eje Y, hacemos x = 0; R(0,y) = 0 - - 4 y + 0 = 0 = > y = 0

2da. Simetrías

- Con respecto al eje X: R(x,y) = R(x,-y).

Pero x 2 ( - y) - 4(-y) + x * x 2y - 4 y + x , por lo tanto no existe simetría en el eje X.

- Con respecto al eje Y: R(x,y) = R(-x,y)

Pero x 2 y - 4 y + x * (~x)2 y - 4 y - x , por lo tanto no existe simetría con el eje Y.

- Con respecto al origen: R(x,y) = R(-x,-y)

x 2y - 4y + x = (-je)2 - 4( - y ) - x , por lo tanto si existe en el origen.

3ra. Extensión.

el rango es todos los reales R, puesto que y = 0, x = 0. la ecuación se verifica.

Calculamos el rango, para esto despejamos x

Page 222: Espinoza Ramos 1

208 Eduardo Espinoza Ramos

4ta. Asíntotas

—X- Asíntotas Verticales: se despeja y, y = —------, las ecuaciones de las asíntotas

x~ - 4

verticales se obtienen de la ecuación x 2 - 4 = 0 de donde x = -2, x = +2 es decir:

x = ± 2 son las asíntotas verticales.

- l ± J l + 16>’2- Asíntotas horizontales, se despeja x, x = ------- ------------

. 2 y

La ecuación de la asíntota horizontal es y = 0

5ta. Tabulación.

( ? ) Discutir y graficar la relación: R = {(x,y) e R x R / x 2y 2 - 4 x 2 - 4 y 2 = 0}

Solución

A la relación dada escribiremos en la forma: R(x, y) = x 2 y 2 - Ax2 - 4 y 2 =0

Ahora haremos la discusión correspondiente.

Page 223: Espinoza Ramos 1

Relaciones y Funciones 209

Ira. Intersecciones con los ejes coordenados.

- C onelejeX , hacemosy=0 de donde i?(x,0) = 0 - 4 x 2 - 0 = 0 => x = 0

- Con el eje Y, hacemos x = 0 de donde R( 0, jk) = 0 — 0 —4>-2 = 0 => y = 0

2da. Simetrías:

- Con respecto al eje X: R(x,y) = R(x,-y)

Como x 2y 2 - 4 x 2 - 4 y 2 = x 2( - y ) 2 - 4 x 2 - 4 ( - y ) 2

Por lo tanto existe simetría en el eje X.

- Con respecto al eje Y: R(x,y) = R(-x,y)

Como x 2y 2 - 4 x 2 - 4 y 2 = ( - x ) 2y 2 - 4 ( - x ) 2 - 4 y 2

Por lo tanto existe simetría en el eje Y.

- Con respecto al origen: R(x,y) = R(-x,-y)

Como x 2y 2 - 4 x 2 - 4 y 2 = ( - x ) 2( - y ) 2 - 4 ( - x ) 2 - 4 ( - y ) 2

Por lo tanto existe simetría en el origen.

3ra. Extensión.

x e <-oo,-2> U <2,+oo> por lo tanto DR =< - qo,-2 > U < 2,+<x> > U {0}

Calculamos el dominio para esto despejamos y, y = ±

y es real sí ———- > 0 =>-l-2 __ A > 0+ +

x 2 - 4 ( x -2 ) ( x + 2) -2 2

Page 224: Espinoza Ramos 1

210 Eduardo Espinoza Ramos

4 yx es real si ——— > 0

y _ 4

1(>’-2)(>’ + 2) -2 2

y e <-oo,-2> U <2,+x>>. Por lo tanto .'. Rr = < -*>,-2 > U < 2,+oo > {/{0f

4ta. Asíntotas.

4*Asíntotas verticales: se despeja y = ± J —-----Ijc - 4

Las asíntotas verticales se obtiene de la ecuación x - 4 = 0 => x = ± 2

Asíntotas horizontales: se despeja x = ± 4 y Jly2-4

Las asíntotas horizontales se obtienen de la ecuación j r - 4 = 0 => y = ± 2

5ta. Tabulación. »X ± 3 ± 4 0

y

i+ i+

w |S

i 0

@ Discutir y graficar la relación. R ={(x,y) g R x R / y x 2 - 4 y - x 2 =0}

Solución

Page 225: Espinoza Ramos 1

Relaciones y Funciones 211

A la relación dada escribiremos en la forma: R(x, y) = y x 2 - 4 y - x 2 = 0

Ahora haremos la discusión correspondiente

Ira. Intersección con los ejes coordenados.

- Con el eje X, hacemos y = 0, de donde R(x,0) = 0 - 0 - x 2 =0 => x = 0

- Con el eje Y, hacemos x = 0, de donde R(0,y) = 0 - 4 y - 0 = 0 => y = 0

2da. Simetrías

- Con respecto al eje X: R(x,y) = R(x,-y)

pero y x 2 - 4 y - x 2 * - y x 2 - 4 ( - y ) - x 2

por lo tanto no existe simetría en el eje X.

- Con respecto al eje Y: R(x,y) = R(-x,y)

como y x 2 - 4 y - x 2 = y ( - x ) 2 - 4 y - ( - x ) 2

por lo tanto existe simetría en el eje Y. _

- Con respecto al origen: R(x,y) = R(-x,-y)

pero y x 2 - 4 y - x 2 * - y ( - x ) 2 - 4 ( - y ) - ( - x ) 2

por lo tanto no existe simetría en el origen.

3ra. Extensión.X

Calculamos el dominio, para esto despejamos y de donde y = —------ , y es real' x~ - 4

si x ± 2, luego entonces .\ DR = R - {-2,2}

Calculamos el rango, para esto despejamos x., x = ±

x es real sí: —— > 0 >'-1

+ +

0

Page 226: Espinoza Ramos 1

212 Eduardo Espinoza Ramos

y e <-oo,0] U <l,+oo>, Rr =< -oo,0] U < l,+oo >

4ta. Asíntotas

x 2Asíntotas verticales, se despeja y, y = .... , las asíntotas verticales se obtienen

de la ecuación x 2 - 4 = 0 => x = ±2.* 2 - 4

- Asíntotas horizontales, se despeja x, x = ±

obtienen de la ecuación y —1 = 0 => y = 1.

5ta. Tabulación.

4y

y - 1las asíntotas horizontales se

X 0 ±1 ±1.5 ±2.5 ±3y 0 -0.3 -1.2 2.7 1.8

1 US. EJERCICIOS PROPUESTOS.»

Hallar el dominio y rango de las relaciones.

a) R ={(x,y) e R x R / y = x 2 - 4 x , y < 0}

c) R = { ( x , y ) e R x R / x 2 = .v -l}

e) R = { { x , y )< z R xR I - Jx+ f i = X)

b) R = {(x,y) e R x R / y = - ^ 4 - x 2}

d) R = {(x,y) e RxR / xy-2y-x=0}

f) R = { ( x , y ) e R x R / x 2y 2 +xy = 5}

Page 227: Espinoza Ramos 1

Relaciones y Funciones 213

g) R = { ( x , y ) e R x R / y = — ----------- } h) R ={(x,y) g RxR/ ( x 2 - 4 ) y = y 2}2x - 3 x - 5

i) R = { ( x , y ) e R x R ! x 2y 2 - 2 x + y 2 - 4 = 0}

j) R = { (x , y ) e R x R / ( x 2 - 6 x + 5)y2 = 4 y - l }

( 2) Si U = {x g Z ' / x impar A i < 8 } . Tabular las siguientes relaciones en U

a) R = {(x,y) e U x U / x = 3 V y = 5 } b) R = {(x,y) e U x U / x + y = 8 }

c) R = {(x,y) g U x U / x y = 21} d) R ={(x,y)eU xU /x divide a 20}

( 3) En el conjunto de los naturales N se define una relación R de la siguiente forma:

R = {(x,y) e N x N / x 2 +x = y 2 + >>}

es decir si es una relación de equivalencia, justifique su respuesta.

© En R se define las siguientes relaciones, V x,y e R

a) R = {(x,y) g R x R / | x — l| = |y —1|} b) R = {(x, y) g R x R / x 2 - x = y 2 - y } .

Demostrar que son relaciones de equivalencia.

© Siendo A = {1,2,3,4,5,6} estudiar las propiedades de las relaciones binarias.

a) R = {(x,y) e A x A / x + y > 0} b) R = {(x,y) e A x A / x - y < 2}

c) R = {(x,y) e A x A / x < y }

Rpta. a y c es de equivalencia, b) es reflexiva

(^ó) En A = {1,2,3,4} se considera la relación R = {(x,y) e A x A / x = y V x + y = 3}

Es de equivalencia. Rpta. Si

( 7) En Z define la relación R: R = {(x,y) g ZxZ / x 2 + x = y 2 + y } . Graficar R.

( ? ) Clasificar la relación R definida en Z x Z mediante (a ,b)R(a\b' ) <=> ab'=ba'

Rpta. R es de equivalencia.

Page 228: Espinoza Ramos 1

214 Eduardo Espinoza Ramos

© Definimos en el conjunto Z x (Z — 0) la siguiente relación (a,b) R (c,d) <=> ad = be

Es una relación de equivalencia R p ta . R es una relación de equivalencia

© Demostrar que la relación dada por: R = {(a,a),(b,b),(c,c),(d,d),(a,c),(c,a),(b,d),(d,b)}

En el conjunto A = {a,b,c,d} es una relación de equivalencia.

( í l ) Discutir y graficar las relaciones siguientes:

a) xy2 - 3 y 2 - l = 0 b ) y 2(x2 - 4 ) = x + 2

c ) y 2 = -? — d ) y = - T3 -x 2x2 - 3 x - 5

e) x 2y 2 - x 2 + y 2 +1 = 0 f ) x 2y 2 + 4 x 2 - 4 y 2 = 0

g) x y - 2 x - y - 2 = 0 h ) y 2 (x + l) = 4

Discutir y graficar las relaciones siguientes:

\ 2 , ¿ i n wv 3x2 - 8 x + 4a) x y + x y - 6 x - 3 = 0 b ) y = — *— ----------x

v 2 4jc2 _ x 2 +1C) y ----- d) y =—----------x - 4 2xz - 5 x + 2

V 3 2 2 a -V j ( x + 3)e) x +xy - y = 0 f ) y =(x + 2 )(x -2 )

x 2 -3 x + 2

(A - l)2g) yx2 - 2 5 y - x = 0 h ) y =

^ 3 ) Discutir y graficar las relaciones siguientes:

, x 2 -2 5 ^ 4 x -5a) y = ---------— b ) y = ---------------x + 1 2(x -1)

2x2 -5 x + 2 2 2 , 2 , n nc ) v = — -------------- d ) xy - 4 x - 3 y +12x = 0

3x -10x + 3

Page 229: Espinoza Ramos 1

Relaciones y Funciones 215

@,2

Discutir y graficar la relación R definida por: R = {(x, y ) e RxR / y = ( 2 x - \ )~ ;---------- 'x - 7 xh 1'.‘

Se va a introducir el concepto de función, hablando libremente una función f de un conjunto A en un conjunto B es una regla (procedimiento o mecanismo) que nos transporta de un conjunto a otro de manera que asociamos cada elemento A un único elemento en B.

a) DEFINICION.- Consideremos dos conjuntos cualquiera A y B, a la relación binaria f de A en B le llamaremos función de A en B, si y

solo si, verifica:

esto quiere decir, que dos pares ordenados distintos no pueden tener la misma primera componente.

Gráficamente:

Observaciones:

B

f es función, sí b = c

O Una función f de A en B denotaremos por: f: A -----> B; ó A — ——> B y se lee “f

es una función de A en B”, donde el conjunto A le llamaremos conjunto de partida y el conjunto B le llamaremos conjunto de llegada.

© Si el par (a,b) e f, escribiremos b = f(a) y se dice que b es la imagen de “a” por f ótambién, que b = f(a) es el valor de f en el punto a.

© Sí A — B — R, ci 1 & función f! R R, se denomins. función re<il de v3.r13.ble reíil.

© Teniendo en cuenta la parte 2) se tiene la siguiente notación:

Page 230: Espinoza Ramos 1

216 Eduardo Espinoza Ramos

donde y = f(x) se lee “y es función de x” ó “y es la imagen de x por f

(x,y) e f se lee “el par (x,y) pertenece a f \

Ejemplo.- f(l) = 3 <=> (1,3) e f

© De la parte 4), a la función f se puede escribir en la forma:

t ~ ( t o ) , e R x & / y - ffx)}

donde la ecuación y = f(x) es llamada regla de correspondencia.

Observación: Una consecuencia inmediata de la definición a), es que toda función es una relación pero no toda relación es una función.

Ejemplo.- La relación: R = {(1,2),(2,3),(3,4),(2,5)} no es una función, puesto que para el elemento 2 existen dos elementos 3 y 5 tales que (2,3),(2,5) e R, que

contradice a la definición de función.

b) DEFINICION GEOMETRICA.- f es una función <=> cualquier rectaperpendicular al eje X corta a la gráfica de f en

un solo punto. Es decir: Gy ( / ) n L = {punto}

G1( / ) n L = { p } , G2(h) n L = { P , Q }f es función => h no es función

g j , DOMINIO Y IMM0O PE

Sea f: A ----- > B una función de A en B, llamaremos dominio de la función f, al conjunto

de todas sus primeras componentes, al cual denotaremos por D f , e s decir:

Page 231: Espinoza Ramos 1

Relaciones y Funciones 217

y llamaremos rango de la función f al conjunto de las imágenes de todos los elementos de

A, mediante f al cual denotaremos por R f es decir:

Ejemplo.- Sea f = {(1,2),(3,4),(5,6),(7,8)} su dominio y rango es: Df ={1,3,5,7};

Rf ={ 2,4,6,8}

2,8. CRITERIO PARA EL CALCULO DEL D OM INIO Y RANGO D I

El dominio de una función f se determina analizando todos los valores posibles que pueda tomar x, de tal manera que f(x) sea real, salvo el caso en que dicho dominio sea especificado.

El rango de una función f se determina despejando la variable x en función de “y”, luego se analiza todos los valores posibles que pueda tomar “y”, de tal manera que x sea real.

Ejemplo.- Hallar el dominio y rango de la función / ( x ) = -Jl + x - x 2

Solución

Calculando el dominio: como y = f(x,) entonces:

y = -Jl + x - x 2 luego “y” es real si, 2 + x - x 2 > 0 , de donde

^ - x - 2 < 0 (x —2)(x + 1) < 0-1

Page 232: Espinoza Ramos 1

218 Eduardo Espinoza Ramos

Luego el dominio es: Df = [-1,2]

Calculando el rango: como y = ^ 2 + x - x 2 , y > 0

l ± ^ 9 - 4 y 2y 2 =2 + x - x 2 , despejamos x, es decir: x

9 3 3Luego x es real si 9 - 4 y 2 > 0 => y 2 < — => — < v < —

4 2 2

Porlotanto / ? / =[0,+oo>n [-^-,-^-] = [0,^-] de donde R f =[ 0 ,y ]

Ejemplo.- Hallar el rango de la función: f ( x ) = x 2 - 4x + 7 , x e [2,3]

Solución

En este caso el dominio esta especificado x e [2,3] ahora calculando el rango: como

2 4 ± J 4 y —12 i------y = f ( x ) = x - 4 x + 7 . Despejamos x es decir: x = ----- ----------- = 2 ± ^ J y - 3

x = 2 ± J y ^ 3 e [2,3] => 2 < 2 ± ^ 3 < 3

0 < ±-\¡y—3 <1 => 0 < ~Jy—3 <1 => 0 < y —3 < 1

3 < y < 4 => y e [3,4] porlotanto .\ /?/• =[3,4]

A una función f, le llamaremos aplicación de A en B, si y solo si: D f = A.

En forma simbólica: Un conjunto f c AxB es una aplicación de A en B <=> V x eA,

3 y e B, tal que y = f(x).

Observación.- Una aplicación es un caso particular de una función, luego toda aplicación es una función, pero toda función no siempre es una aplicación.

Page 233: Espinoza Ramos 1

Relaciones y Funciones 219

Nota.- Algunos autores consideran a la función y aplicaciones como sinónimos, en estos apuntes, a las aplicaciones las consideraremos como casos particulares de las funciones.

Ejemplo.- Sean A = {1,3,5}, B = {2,4,6}, calculando A x B

A x B = {(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6)}

a) El conjunto f = {(1,4),(3,2)¡- es función donde D f = {1,3} y R f = {4,2} pero f no es

una aplicación de A en B puesto que D f * A .

b) El conjunto f={(l,2),(3,4),(5,6)¡- es una función donde: D f ={1,3,5} y«

R f = {2,4,6'f como D r = A entonces f es una aplicación de A en B.

2,10. FUNCIONES ES FE O A L ES,-

A la función f, le llamaremos función constante, si su regla de correspondencia es:

m ~ c, doado tes tina constante.

También a la función constante, se puede definir por:

f = {(x,y) e R x R / y ~ c, c constante}

donde su dominio es D f - R , su rango es R, = {c}

y su gráfica es:

A la función f, le llamaremos función identidad, si su regla de correspondencia es:

:f{x) = X

También a la función identidad se define:

f = {(x,y) e R x R / y = x}, donde Df - R , R f = R

y su gráfica es:

( ? ) FUNCION CONSTANTE.-

( 2 ) FUNCION IDENTIDAD.-

Page 234: Espinoza Ramos 1

220 Eduardo Espinoza Ramos

©

©

©

©

FUNCION LINEAL.- A la fimción f, le llamaremos función lineal, si su regla de correspondencia es:

f(x) = a x + b

donde a,b son constantes y a # 0. También a la función lineal se puede expresar en la forma:

X f = {(x,y)eRx R / y = ax + b}, donde D f =R y

R f = R', a,b e R y a * 0, cuya gráfica es:

FUNCION RAIZ CUADRADA.- A la función f, le llamaremos función raíz cuadrada,si su regla de correspondencia es:

También se puede expresar en la forma:

donde D f = R r y R f =[0,+°o>

FUNCION VALOR ABSOLUTO.- A la fimción f, le llamaremos función valor absoluto, si su regla de correspondencia es:

f(x) = jx¡, donde ¡ * j;

También se puede expresar en la forma:

f= {(x.y) € R x R / y » fx¡|

FUNCION MAXIMO ENTERO.-

Donde D f =R y R f =[0,+oo> y su gráfica es:

A la función f, le llamaremos función máximo entero, si su regla de correspondencia es:

Page 235: Espinoza Ramos 1

Relaciones y Funciones 221

f ( x ) = [j .r j] donde [[x |]= n o n < \ < n + 1, n e Z

También se puede expresar en la forma: j - í(x,_v) e RxRf y =Q x []}

donde D f =R y R ¡ = Z

1 Y4 . --- o

3 o

2

1

-5 -4 -3 -2 -1 1 2 3 4 5 X

Si x e [0,1> f ( x ) = [|* |] = 0 => f(x) = 0

Si x e [1,2> o f ( x ) = [ |x |] = l => f(x) = 1

Si x € [2,3> o f ( x ) = [ |x |] = 2 => f(x) = 2

Si x e [3,4> <=> f ( x ) = [| -v |] = 3 => f(x) = 3

S í x g [-1,0> <=> / ( x ) = [|x |] = —1 => f(x) = -l

S i x e [ - 2 , - l > <=> / (x) = [| x |] = —2 => f(x) = -2

Si x g [-3,-2> <» / ( x ) = [| x |] = -3 => f(x) = -3

Page 236: Espinoza Ramos 1

222 Eduardo Espinoza Ramos

Q FUNCION SIGNO.- A la función f, le llamaremos función signo, si su regla de correspondencia es:

~~ , x * 0lililí!! 0 . Jf = 0

o XTambién puede expresar en la forma:

f~ e 8 x R / y -síg(x)}

Donde D f = R , Rf = {-1,0,1} y su gráfica es:

( ? ) FUNCION CUADRATICA.-

A la función f, le llamaremos función cuadrática, si su regla de correspondencia es:

La gráfica de la función cuadrática es una parábola con eje perpendicular al eje X en el cual se presenta dos casos.

Si a > 0 la gráfica se abre hacia arriba.

Si a < 0 la gráfica se abre hacia abajo.

El dominio de la función cuadrática es: Df - R , El rango se determina completando cuadrados.

Como f (x ) = ax2 +bx + c => f { x ) = a{x2 + —x+-^-—-) + c ~ —n A^ 2 án

f i x ) - a x 1 +bx+c, a,b.e e R, a * 0

También a la ecuación cuadrática se expresa así:

Page 237: Espinoza Ramos 1

Relaciones y Funciones 223

Luego el vértice de la parábola es: V(— —, ^ ac ■)2a 4 a

D f =R D f =R

D r4 a c - b ¿Rr = [ ----------- ,+oo>' 4a

n 4 a c - bR f =< -oo,------------ 1f 4 a

@ FUNCION POL1NOM1AL.-

A la función f, le llamaremos función polinomial, si su regla de correspondencia es:

donde a0,a1, a 2,...,a„_l ,a„ son números reales, an * 0 .

Ejemplo.- f ( x ) = 5x5 + I x 4 +3jc + 6 , esuna función polinomial.

(lo) FUNCIÓN RACIONAL.-

A la función f, le llamaremos función racional, si su regla de correspondencia es:

, , _v anx n -t an ,xn _ ______(....- ..... ...... J Ä*OT6A\ . r - rK * -t-.+biX+hf,

donde a0,a1,...,an , b0,bl ,...,bm son constantes reales y b„ ± 0

Page 238: Espinoza Ramos 1

224 Eduardo Espinoza Ramos

x + 5x-17Ejemplo.- La función f ( x ) = —------------ , es una función racional cuyo dominio es el

x - 5 x + 6conjunto de todas las x, de tal manera que el denominador no se anule, es

decir: D f ={x e R / x 2 - 5 x + 6 * 0} = R-{2,3}

2,11. EVALUACION DÉ m k

Consideremos una función f con regla de correspondencia.

Si x toma valores específicos, por ejemplo: x = x 0 , entonces y 0 = f ( x 0) se dice que la

función ha sido evaluada, en otras palabras es:

Cuando x = x 0 el valor de la función es / (x0)

Ejemplo.- Si f ( x ) = 2x3 + x 2 +x+2 , el valor de f en el punto x = 2 es f(2) es decir:

/ ( 2 ) = 2(2)3 +(2)2 +2 + 2 = 16 + 4 + 2 + 2 = 24

Ejemplo.- Si f ( x ) = x 2 +x + 1 entonces / ( z ) = z 2 + z + 1

f ( 4 y ) = y + 4 y + l

Ejemplo.- Si / ( x) = 5* , probar que f(x + y) = f(x).f(y)

Solución

f ( x + y) = 5x+y = 5*.Sy = f ( x ) . f ( y )

••• f(x + y) = f(x).f(y)

_ _ _ _ _ _ _ ™ CON VARIAS REGLAS mCORRESPONDENCIA. _____________ " ■ 'K - A .v

En las funciones definidas con dos o mas reglas de correspondencia, su dominio y rango se determinan de la siguiente forma:

Page 239: Espinoza Ramos 1

Relaciones y Funciones 225

Suponiendo que la función f es definida por:

el dominio de f(x) se determinan así:

el rango de la función f(x) se calcula por:

D f * D fi sjDfi

R r ~ R;t <jRft

Esta forma de calcular dominio y rango de una función con dos reglas de correspondencia, también se extiende, a funciones de tres o mas reglas de correspondencia.

[2x + l si jcSIEjemplo.- Calcular el dominio y rango de la función: / ( * ) =

SoluciónU 2 - 2 Sí X <0

. í/ iU ) = 2jf + l, si x > 1 \Df = [l,+oo>Calculando su dominio se tiene: •{ , => \

[ f 1{x) = x 1 - 2 , si x < 0 [Dft = < -oo,O>

Luego su dominio de f(x) es: D r = Dfi u D f¡ = [l,+oo > u < -<*,0 >

D f = < -oo,O > u [ l,+ oo > *

Ahora calcularemos el rango:

Si x > l = > y = 2 x + l despejamosx: * = ^ - - > 1 => y > 3 de donde: y e [3,+oo>

Si x<0=> y = x 2 - 2 , despejando x se tiene: x = y + 2 < O => -Jy + 2 > O => y > -2

de donde: y e <-2,+oo>

Luego el rango de la función f es dada por: R f = < -2,+oo > u [3,+oo > = < -2,+oo >

Cuando se conoce una función y = f(x), en base a esta función, se puede construir otra función en una forma rápida mediante el siguiente criterio:

Page 240: Espinoza Ramos 1

226 Eduardo Espinoza Ramos

le r. Si se tiene la gráfica de y = f(x) entonces la gráfica de la íunción:

F(x) = f(x) + c se obtiene desplazando verticalmente la gráfica de y = f(x) en c unidades, siendo hacia arriba si c > 0 y hacia abajo si c < 0.

2do. Si se tiene la gráfica de y = f(x) entonces la gráfica de la íunción F(x) = f(x — c) se obtiene desplazando horizontalmente la gráfica de y = f(x) en c unidades, siendo hacia la derecha si c > 0 y hacia la izquierda si c < 0.

3er. Si se tiene la gráfica de y = f(x) entonces la gráfica de la función F(x) = f{x — h) + k se obtiene desplazando horizontal y verticalmente la gráfica y = f(x) en h y k unidades respectivamente.

f ( x - h ) + k, h < 0, k < 0 f(x - h) + k, h > 0, k < 0

Page 241: Espinoza Ramos 1

Relaciones y Funciones 227

4ta. Si se tiene la gráfica y = f(x) entonces la gráfica de la función F(x) = af(x), a > 0 se obtiene de la siguiente manera:

i) Si a > 1 la gráfica esta estirándose verticalmente en un factor a en base al eje X.

ii) Si 0 < a < 1, la gráfica esta encogiéndose verticalmente en su factor a.

5ta. Si se tiene y = f(x) entonces la gráfica de la ñinción F(x) = f(ax), a > 0 se obtiene de la siguiente manera:

i) Si a > 1, la gráfica se encoge horizontalmente en un factor a en base al eje Y.

ii) Si 0 < a < 1, la gráfica se estira horizontalmente en un factor a en base al eje Y.

6 ta. Si se tiene la gráfica y = fi(x) entonces la gráfica de la función F(x) = -f(x) se obtiene haciendo rotar la gráfica y = ffa.) alrededor del eje X.

Page 242: Espinoza Ramos 1

228 Eduardo Espinoza Ramos

7ma.Si se tiene la gráfica y = f(x) entonces la gráfica de la función F(x) = fT-x) se obtiene haciendo rotar la gráfica y= í(x ) alrededor del eje Y.

8va. Si se tiene la gráfica y = f (x) entonces la gráfica de la función F(x) = -f(-x) se obtiene haciendo rotar la gráfica y = f(x) alrededor del eje X y el eje Y.

Ejemplo.- Graficar la función F(x) = - J x - 2 + 2

Solución

La gráfica de F(x) = -Jx - 2 + 2 se construye a partir de la función f ( x ) = 4 x , trasladando a la derecha 2 dos unidades y hacia arriba dos unidades.

Page 243: Espinoza Ramos 1

Relaciones y Funciones 229

Ejemplo.- Graficar la función F(x) = |x - 3| +3

Solución

La gráfica de F(x) = |x - 3| + 3 se construye a partir de la función f(x) = |x |, trasladando a la derecha 3 unidades y hacia arriba 3 unidades.

© Determinar el dominio y rango de la función / (x) = -Jx2 -1

Solución

Como y = f { x ) = 4 x 2 -1 =>y = 4 x 2 - 1 . Luego analizamos los valores que x puede

tomar para que “y” sea real, y como y ^ J x 2 - 1 entonces “y” es real si x 2 -1 > 0

=> x 2 > l = > x < - l V x > l por lo tanto el dominio es: D f = < -o o ,-l]u [l,o o >

Ahora calculamos el rango, y para esto despejamos x y = ^ x 2 -1 , y > 0 => x = ± J y 2 + 1 ,

Luego analizamos los valores que “y” puede tomar para que x sea real y como

x = i ^ f y ^ V l entonces x es real Vy e R .

Por lo tanto el rango de f es : R r = [0,+*> > n R =[0,+oo >

© Calcular el rango de f ( x ) = 2x2 + 5 x - 6

Solución

Page 244: Espinoza Ramos 1

230 Eduardo Espinoza Ramos

Como y = f ( x ) => y = 2*2 + 5x - 6 es una función cuadrática en estos casos el rango se

determina completando cuadrados:

, . . 2 5 25x 25 . _ . 73 . . 5x2v + 6 = 2(jc + — x — ) ------dedonde y + — = 2(x+ —)' 2 16 8 8 4

5 73 73Luego K (-—,— —) por lo tanto el rango de fes: R f = [— — ,+oo>

( 5 ) Determinar dominio, rango y construir la gráfica de la función / (x) = 4 x 2 -1 2x + l

Solución

_ . . , . , . 4x2 - 1 (2x + l ) ( 2 x - l ) 1Factorizando y simplificando se tiene: / (x) = ---------------------------------------------------- = ---------- ---------- = 2x - 1, x * —2x +1 2x +1 2

Luego como f(x) = 2x-l , x * -1 / 2 su dominio es: D f = R - { - —}

Ahora calculando el rango, para esto despejamos x: y = 2x -1 => x =y + l

1 1 y + l 1 1c o m o x ec -o o .— > u < — ,qo > entonces ------ e< - 00,— > u < — ,00 >2 2 2 2 2

v+i 1 1 y+ 1 . - --0 0 < ---- < — v — < ----- <00 entonces -<e< y < -2 v - 2 < y < o o2 2 2 2

Page 245: Espinoza Ramos 1

Relaciones y Funciones 231

©

©

Determinar el dominio y rango de la función J'(x) = 2xx 2 - 4

Solución

La función f(x) está bien definida si:

2xx - 4

> 0 entonces(x + 2) (x-2 )

> 0 , ahora resolvemos la inecuación.

-2 0 2

Luego D r - < -2,0] u < 2,+oo >

Para determinar el rango despejamos x, como y = f(x)

2jf 2 2x 2 2 2Entonces y= I— -----, v > 0 = > v =■—----- dedonde y x - 2 x - 4 y = 0, y > 0

’ V x 2 - 4 ' X 2 - 4 ' ’

X =2±V4 + 16 / . - 1 6 /

— ’ , y > 0 .racionalizando x — -2>'2 ’ " ’ 2y2(2 + 7 4 + 16/ ) 2 +-^4 + 16/

x es real si y solo si y eR. Luego R / = [0 ,+ o o > a R = [ 0 , + oo >

x —3Determinar dominio, rango y graficar la función: f (jc) = sig(------ )

x + 4Solución

Aplicando la definición de la función signo se tiene:

r, V>0

, . , x - 3J (x) = sig(----- -) =x + 4

i • * ~ 3 n-1 SI -------< 0x + 4x — 3

0 s i :------= 0 , al resolver cada una de las inecuaciones se tiene:x + 4

1 • * “ 3 n1 SI -------> 0x + 4

Page 246: Espinoza Ramos 1

232 Eduardo Espinoza Ramos

- 1 , s i - 4 < x < 3x — 3 -----------

f'(x) = sig(----- -) = { 0, si x = 3x + 4 , • * -j 1, si x < - 4 v x > 3

•4

Y

3 ,

Su dominio es: D f =< -oo,- 4>u<-4,oo>

Su rango es R f - {-1,0,1}

0 x*

( ó ) Determinar el dominio rango y graficar la íimción: f (x) = [| 4 x |]

Solución

Calculando su dominio se tiene: f(x) está definida si x > 0 , luego D¡ = [0, oo >

Por lo tanto su rango es: R f ={0,1,2,...} 1 Y--------------f---------------- 0

Sí [ | ^ |]=0=> 0 < ~Jx < 1 = > 0 < x < 1iiiii

Si ti 4 x | ] = 1 = > \ < 4 x <2 = > 1 < x < 4 ^ - 1• 1 I ¡ : : 1 !

Si [1-7x1] = 2 => 2<-Jx <3 => 4 < x < 9 1 4 9 X

Determinar el dominio y graficar la función: f(x) = |x| + | x - l |

Solución

Por definición del valor absoluto se tiene:

, . í x si x > 0 . , f x -1 si x > \ X = < . \x ~ 1 = { V ♦

[—X si X < 0 [—X +1 si X < 1 0 1

Ahora calculando las reglas de correspondencia de f(x)

Si .Y < 0 => |jcj = -x , |x - l¡ = l - x

como / (x) = ¡x| + ¡x - 1| =5- f ( x ) = - x +1 - x = 1 - 2 x , para x < 0

Page 247: Espinoza Ramos 1

Relaciones y Funciones 233

Si O < x < 1 => |jc| = jc, |jc-1| = 1-jc

Como / ( x) =|.r| + |jc-1 | = x + l - x = \=> / ( jc) = 1, para 0 < x < 1

Si jc > 1 => |jc| = x, |jc —1| = jc — 1

Como / ( jc) = |jc]+|jc —1| = jc + jc-1 = 2jc-1 = > /(jc) = 2jc —1 , para x > l

Determinar el dominio, rango y graficar la función:

J[UI] s i [ \ x \ \ e s p a r|_2jc —[| jc -t-11] si [| jc |] es impar

Solución

Si x g [0,1> => [| jc |] = 0 es par =>f(x) = 0

S i x e [ l , 2 > =í> [| jc |] = 1 es impar =>f(x) = 2 x - 2

Si x e [2,3> => [| jc |] = 2 es par => f(x) = 2

Si x g [3,4> => [ | jc |] = 3 es impar => f(x) = 2x - 4

S i x e [ - 1 , 0 > => [ | j c | ] = -1 es impar => f(x) = 2x

S i x e [ - 2 , - l > => [ |x| ] = -2 es par => Rx) = -2

Page 248: Espinoza Ramos 1

234 Eduardo Espinoza Ramos

Sixe [ -3 , -2> [ |x |] = -3 es impar => f(x) = 2x + 2

( ? ) Determinar el dominio, rango y graficar la función: f ( x ) = s j x - [ \ x |]

Solución

Calculando el dominio de la función f es decir: f(x), está definida si x - [ | x | ] > 0 de

donde x > [| x |] que por definición de máximo entero se cumple VxeR. Luego D r = R

Como[ | x | ] = n «> n < x < n + l, n e Z

Entonces f ( x ) = V x - n , V x e[n , n +1>, n e Z

Si x e [0,1> => [ |x| ] = 0 => f (x ) = 4 x

x e [2,3> => t ix| ] = 1 => / ( x ) = V x-1

x e [2,3> => [ |x| ] = 2 => / ( x ) = ^ x - 2

x e [ - l , 0 > = > [|x| ] = —1 / (x ) = Vx + 1

x e [-2.-1> =;• [| x |] = —2 => f ( x) =~Jx + 2

Page 249: Espinoza Ramos 1

Relaciones y Funciones 235

Luego el rango es: R r = [0,1 >

10) Hallar dominio, rango y graficar la función f definida por f ( x ) = 3 - x

Solución

Calculando el dominio de la función, es decir:

f(x) es definida si x - [ |x | ] * 0 es decir: Df = R - { x / 1jc| —[| jc|] = 0}

Como | jc |= [| jc |] => x e N puesto que |x |> 0 . Por lo tanto D f = R - N

_ , , Íjc si x >0 „Como I x |= -{ , analizamos en la forma

-x si x < 0

Si x > 0 => f ( x ) =- 3 — jcx-[|* |]

X e [0,1> => [I Jc |] = 0

x e [1,2> => [| jc |] = 1

x e [2 ,3 > => [ |jc|] = 2

x e [3,4> => [| jc |] = 3

3 - x 3=> / (x ) = ------= — 1

X X

/ ( J C ) =

- /(JC) =

3 - x7 ^ 1

3 - xx - 2

3 — jcf ( x ) = ± - ± = - l

x - 3

Page 250: Espinoza Ramos 1

236 Eduardo Espinoza Ramos

x e [4 .5> => [ | jc | ] = 4 => f{x) = ~jc- 4

x e [5 ,6> => [| jc |] = 5 = > / ( * ) = l z £jc — 5

X € [-1 ,0> => [ | j f | ] = - l = > / ( x ) = - ^ í -- jc+1

x e [-2.-1 > => [| JC |] = -2 => / ( x ) = J z f L- x + 2

x e [-3 ,-2 > => [ | jc | ] = - 3 =* f ( x ) = - t ^ L- jc + 3

Luego el rango es : R r = < -a>,-2 > u {-1} u < 0,+oc >

Determinar el rango y graficar la función definida por

f ( x ) = [ \ - X ~ l - \] + 2 x , six e<-l,0> x - 1

Solución

Por la propiedad [| jc + n |] = u + [| x |] , n e Z

Page 251: Espinoza Ramos 1

Relaciones y Funciones 237

/(•* )= [I ~~— ~ I] + 2x = [| — -----—- 1] = [| 7 -----|] + 2jcx — \ x — \ x - 1 x - 1

/ W = 7 + [ |— - ? - | ] + 2*X -1

gAhora definimos [ |-------- 1] es decir:

x - 1

Como x e<- 1 ,0 > = > - I < x < 0 => -2 < x — 1 < -1 => -1 < —— < —-x -1 2

=> - 8 < —— < -4 => 4 < — — < 8

JC-1 -V — 1

[I------- 7 1] =4, 5, 6 , 7x -1

8 8Además [| — |] = n => n < --------< n + 1

x — 1 x - l

1 X - l l< --------< —n + 1 8 n

8 8< - x + 1 < —

n + 1

n +1 n +1

« - 8 n - 1------< x < -------n n + 1

x e [ - —- , - —— > entonces x e< -1,0> para n = 4, 5, 6 , 7 n ti

Luego f(x) = 7 + n + 2x, n = 4, 5 , 6 , 7

Ahora definimos f para cada valor de n

Page 252: Espinoza Ramos 1

238 Eduardo Espinoza Ramos

f i x ) =

2.v + 7 + A = 2x + \\ si J c e < - l , - 3 / 5 >

2jc + 7 + 5 = 2x + 12 si x e< -3 /5 ,-1 /3 > 2x + 7 + 6 = 2x + 13 si x e f -1 /3 ,-1 /7 > 2x + 7 + 7 = 2x + 14 si x e [—1 / 7,0 >

Graficando la función f se tiene:

_ . 49 54 34 r37 89 r96 , .R , = < 9 ,— > u [— , — > u [— ,— > u [— , 14 > ’ 5 5 3 3 7 7

Hallar el dominio, rango y graficar la función f(x) definida por: / (x) =

Solución

El dominio se determina en la forma siguiente: D f = < -oo, l] u < l,+oo >= R

Ahora calculamos el rango:

Si x < 1 => y = 4 - x 2 => x 2 = 4 - y

x 2 = - ( y - 4) => V (0,4) de acuerdo al criterio de la función cuadrática.

4 - x , si x < l

2 + x , si x > \

P a ra x > l => y = 2 + x 2 , de donde y ~ 2 = x 1 V(0, 2)

Page 253: Espinoza Ramos 1

Relaciones y Funciones 239

Ahora uraficando se

Luego R r = < - qo,4 ] u < 3 , + o o > = R

(l3 ) Hallar el rango y graficar la función f definida por: / (.y) =

Solución

Calculando el rango de la función

X 2 - jc- 1 2 , s i x e [—4,6 ]

x - 2

JY+1s i x e < 6,+ oo >

tiene:

Page 254: Espinoza Ramos 1

240 Eduardo Espinoza Ramos

©

Si x e < 6, + oo>x - 2 , 3

>• = --------= 1Jt + 1 x + 1

x e <6, + oo> => 6 < x < +oo => 7 < x + l < + o o

0< — < ­.t + l 7

- - < — — <0 7 .t + l

3 30 < —— < ­

.t + l 7

4 , 3 ,- < 1 --------------- < 17 .t + l

Solución

Calculando el dominio de la función f(x) es decir, f(x) está definida si x * -1

Luego el D r = ^ -•¡-1 }

Ahora a la limción expresaremos en la forma:

. . . . x 3 + x 2 + .t + l ( x 2 +\)(x + \) , .J (x) = ------- r— r---- = ------ ¡----- ---- , como |.t +\x + 1 \x + 1

X + 1, si x > -1 — JC — 1, si X < —1

Por lo tanto la función f(x) es dada por: f ( x ) = -\ x 2 +1 si x > -1

Page 255: Espinoza Ramos 1

Relaciones y Funciones

( Í 5) Hallar el dominio, rango y graficar la función: f (x) = [| x |] + x - [ |x | ]

Solución

La función f(x) está definida si x - [ | x |] >0

De donde x > [| x |] es valida V x e R, luego D f =R

Si x e [0,1 > => [| |] = 0 => f(x) = 4*

x e [1,2 > => [ |* |] = 1 => f ( x ) = l + 4 7 - ¡

x e [2,3 > => [ |x |] = 2 => / ( x ) - 2 + x - 2

x e [3,4 > => [ |x |] = 3 => / ( x ) = 3 + Vxr 3

x e [ - l ,0 > = > [|A'|] = —1 => f ( x ) = - 1 + Vl + x

x g [-2,-l> => [ |X|] = -2 => / ( * ) = - 2 + J 2 +H

Page 256: Espinoza Ramos 1

242 Eduardo Espinoza Ramos

©

Determinar el rango y grafícar la función / (jc) = | jc2 - 9 1

Solución

Aplicando la definición de valor absoluto a la función f(x) expresamos:

/ ( x)= U 2 - 9 | = .| jc2 - 9 , si x 2 >9

9 - x 2, si jc2 <9

f i x ) =|a-2 - 9 , si x e <-00,-3] u[3,+oo >

9 - x 2. si x e< -3 ,3 >

El rango de la función f(x) es Rf = [0,+oo>

La gráfica es como se muestra en la figura

Construir la gráfica de la función / (jc) =

Solución

S i x e [ 0 , l > => [|-v|] = 0 es par

\x+[\x\]\ si [ |x |] es par | x + [ | x - l | ] | si [ |j c |] es impar

x G

x e

x e

x e

x e

x e

x e

0,1 > => [|-v|] = 0 espar => f(x) = |x| = x

[1,2 > => [| jc |] = 1 es impar =>fl;x) = |x| = x

[2,3 > => [| x |] = 2 es par => f(x) = |x + 2| = x + 2

[3 ,4 > => [ | x | ] = 3 es impar => f(x) = |x + 2| = x + 2

[-1 ,0 > => [| jc |] = — 1 es impar => f(x) = | x - 2 | = 2 - x

[-2,-1 >=> [I jc |] = —2 es par => f(x) = | x - 2 | = -x + 2

[-3 ,-2 > => [| jc |] = —3 es impar => f(x) = )x —4| = -x + 4

[-4,-3 > => [| x |] = - 4 es par => f(x) = |x - 4| = -x + 4

Page 257: Espinoza Ramos 1

Relaciones y Funciones 243

118)

Solución

x e [ 0 , l > => [|jc|] = 0 => / ( x ) = x 2

x e [ l , 2 > [ |x |] = 1 => / ( x ) = (x -1 )2

x e [2,3 > => [ |x |] = 2 => / ( x ) = ( x - 2 ) 2

x e [-1,0> => [ |x |] = - l => / ( x ) = (x + l)2

x e [-2,-1 > => [| x |] = -2 => / (x ) = (x + 2)2

^ 9 ) Graficar la función / (x) = -J\x]Solución

Por definición | x | =x, si x > 0

- x , si x < 0

Df = R , Rf =[0,1 >/

Page 258: Espinoza Ramos 1

244 Eduardo Espinoza Ramos

Luego la función f(x) queda expresado así:

. í V * , s i x > 0 f { x ) = \ ----

[V -x , si x < 0

donde Df = R y Rf =[0 ,+ oo >

20) Hallar el rango y graficar la función f definida por: f(x) = |2x — 11 - x

Solución

Por definición de valor absoluto | 2jc—11 =2 x - l si x> —

2

\ - 2 x si x < — 2

Si jc c — => |2x - 11 = 1 - 2x => flx) = 1 - 3x

x > — => |2x — 11 = 2x — 1 => fl¡x) = x - 1

Ahora la función dada se expresa así: / (x) =1 -3 * si x < —

2

JC — 1 si x > — 2

calculando el rango de la función f(x)

si => y = 1 - 3x, despejando x => x = — 2 - 2 y < 3 => y >

Si x -~^ y = x - 1, despejandox => x = .y + l>-^- => y > - ^

1Por lo tanto R f = < — ,+oo > u [ — ,+oo > = [— ,+oo >

Su gráfica es:

Page 259: Espinoza Ramos 1

Relaciones y Funciones 245

211 Hallar el rango y graficar la función f(x) dado por:

f ( x ) =

x , si jc e [1,2 >

[\x\] + s ¡ x - [ \ x \ ] , si x e [-1,1 >

x , si x e [-4 ,-1 >

Solución

x e [ - l ,0 > => [|jc|] = —1 => /(jc) = —1 + Vx + l

x e [0,1 > => [| x |] = 0 => f ( x ) = 4 x

Graficando cada parte de la función

Si / ' ( jc) = a x , Demostrar que f(x + y) = f(x) f(y)

Solución

Como f ( x ) = a~ => f ( x +y) = a x+y = a x . a y = f ( x ) . f ( y )

R f = [-2 ,4 >

f(x + y) = f{x).f(y)

Page 260: Espinoza Ramos 1

246 Eduardo Espinoza Ramos

© La función f(x) es lineal, hallar dicha función sí f(-l) = 2 , f{2) = -3

Solución

Como fíx) es una función lineal entonces f(x) = ax + b

Ahora calculamos los valores de a y b

/ ( - 1 ) = -a + b = 2 f ( 2 ) = 2a + b = -3

5a = —

b =

, _5x 1, por lo tanto / (x) = —— + -j

Dada la función f(x) = mx + b, V xeR , si se sabe que f{3) = 11, f(-3) = 6.

Hallar m + bSolución

Calculando los valores de m y b

/(3 ) = 3m + 6 = 11 / (-3) = -3 m + b = 6

_ 5m ~ 6 * . 5 51 56 28, entonces: m + b = —+ — = — = —¿ = 1 I 6 6 6 3

6

m + b28

Dada la función fi[x) = ax + b, x e R, donde a y b son constantes reales, sí

ftx + y) = ffa) + f(y) V x, y e R , y sí f(-2) = -6. Hallar a y b

Solución

Como f(x + y) = f(x) + f(y)

a(x + y) + b = ax + b + ay + b

a(x + y) + b = a(x + y) + 2b => b = 0

Luego f(x) = ax + b => flx) = ax

fí-2) = -2a = -6 => a= 3 .\ a = 3, b = 0

Page 261: Espinoza Ramos 1

Relaciones y Funciones 247

Si f ( x + 4) = jc “ + 3 x , Hallar f(a + 1)

Solución

Definiremos la función f(x) Para esto se hace una sustitución z = x + 4 => x = z - 4

Ahora se sustituye en f ( x + 4) = x 2 +3x => f ( z ) = ( z - 4 ) 2 + 3 (z -4 ) = z 2 -5 z + 4

Luego la función f(x) es dado por: f ( x ) = x 2 -5 x + 4

Calculando fía + 1) es decir: f ( a + l) = (a + l )2 -5 (a + l) + 4 = a 2 - 3 a - 4

f ( a + l) = a - 3 a - 4

Dado el polinomio P(x) = jc3 +(a + \ )x2 + x , se define la función f con dominio

{0,1,2,3,5}, por f(a) = resto de la división de P(x) entre x + a , calcular f(2) + f(3)

Solución

Calculando el resto de la división de P(x) entre x + a

jc3 + (a + l):c2 +x I x + a

- x 3 - a x 2

x 2 +x~x~ —ax

(1 — a)x-(1 —a)x —a(l —a)

Como f ( a ) = a - a

í(2) = 4 - 2 = 2

f(3) = 9 — 3 = 6

Luego f(2) + f(3) = 8

a~ - a = resto

12M. m O FIJESTC^

Q Hallar el dominio de cada una de las funciones

a) / (x) = -y]x2 - 4 x + 3 b) f ( x ) = -Jl - \x\

Page 262: Espinoza Ramos 1

248 Eduardo Espinoza Ramos

c) f i x )Í^ -X 2

4 , , , 2 x¿ - x - le) /(x)= i — 3r

g) f ( x ) = 4 x 2 - 3 x + 2 +43 + 2 x - x ¿

d) f ( x ) =

f) f ( x ) =

h) f ( x ) =

x - 1x 2 — 5x + 6

I (x2 - 4 ) ( x 2 -9 )

\ - x 4 + I7 x 2 -1 6

1

i) f ( x ) - M2 + I 1 -x

1 + x

4 x ~ \ x \

i) f (x ) = 4 x - \ + 2-J \ - x + 4 x 2 +1

(x + 1)2 x + \I) / ( * ) = .

4 x 2 - 3 x - 4

\ 4 ñ - 4 x 2 - 4

Rptas:

a) D f - < -o o ,l] u [3 ,+oo > b) D f = [ - 1 4 ]

c) D f — < -o o ,-2 > u [0 ,2 > d) D f = [1 ,2 > u < 3 ,o o >

e) D f = < -o o ,-3 > u [- -^ - ,0 > u [l,+oo > 0 D f = [-3 3 > - {-1^2}

g) D f = < -1,1] u [2,3 > h) Df =<t>

i) D f =<f> i) D f ={ 1}

k) [ - - - 1 > U < - 1 , - - ]3 4

1) <-5,-2] u [4,5>

( ? ) Determinar el dominio, rango y graficar la función: / (x) =

Rpta. D f =R , R r = [-9 ,+ * >

x - 9 si x < 45 x - 2 si x > 4

Page 263: Espinoza Ramos 1

Relaciones y Funciones 249

( 3 ) Hallar el dominio de las funciones siguientes:

1

®

©

a) /(* )= -* M l * l ]

b) / ( * ) =2 x - [ \ x \ ]

c) /(* ) = 2xx - [ \ x \ ]

d) / ( * ) = [ | - | ] X

2 - x

e) /(* )= [ I-----rl]x - 3

g) f ( x ) = - v .V * + 1

j) / ( * ) = >/1-^4—J

h) / ( x ) =4 - x

11*1-1

k) / ( x ) = l —\ l s ~ x 2 - 2 x

í) / W = [ |x 2 |]

i) / ( x ) = V x - x 3

I) /(X ) = V*2 + 4 x -1 2 + - T-- 3 -Vx + 2 0 - x 2

Determinar el dominio, rango y graficar cada una de las funciones siguientes:

a) / (x )

c) / ( x ) :

Jx .Vi X < 1

} -X J .5/ X>1

jV x -2 s/ x > 2

x 2 + 2 x -3 s / x e < - l , l >

b) g(x) =

d) / ( x ) =

3 x -2 si - 4 < x < 4 si 4 < x < 6

|x - 4 5/ x < 3 12x — 1 si x > 3

Hallar el dominio, rango y graficar la función:

a) f ( x ) =

c) / ( x ) :

| x + 2 1 -x si x e< -4 ,0 >

sí x e< 0,4 > 2 x -8 si x e< 4 ,oo>

2[| x | ]+ 2 .sí - 5 < x < 1

V i s/ 1 < x < 4

6 sí - 7 < x < - 5

b) / ( x ) :jx 2 -1

1*1

s¡ 4 < x < 7 s/ x < 4

d) / ( x ) =f [ |x - l | ] sí 4 < x < 7

lVi*T sí x < 4

e) f(x) = |x - ] | + |x + 11 f) / ( x ) = (x 2 + 4 )[|2 x + 3 |]

Page 264: Espinoza Ramos 1

250 Eduardo Espinoza Ramos

©

©

g) f i x ) =

■V4 -JC2 + 2 , si - 2 < x < 2

|d ] si x < 2

2 si x < -2

2[| x |] si x e< -5,1]

■Jx si x e < l,4 ]

x 2 +3 si jce< -7 ,-5 ]

h) / w = í " 2xl1 si * 6[0J1' [2[U|] si x e<3,5]

j) / ( * ) =

l* + 3 | si x < 0

2(jc—1)“ si x e [0 ,l> 2—\x — 4 | si xe[2,+oo>

Hallar dominio, rango y graficar cada una de las funciones siguientes.

a) f(x) = |x + 1| + |x— 1| — 2|x|

c) f^x) = |x + 2| + |2 x -2 | + |-x + 5|

e) f(x) = |x — 2| + |x + 11

g) f ( x ) = j 2 Ü 2 x + 5 |] -4 [ |x |]

i) f ( x ) = \ x K |x | ]

b) f ( x ) = [ \ x \ ] ~ \ x \

d) f(x) = |x| |x — 11

f) f(x) = |x + 2| + |x — 2| — |x| — 1

h ) A x ) = 4 \ x - 2 \ ] - [ \ x \ ]

|x + 3 |,x < 0

2 ( x - l ) 2, x e[0,2 >2 - 1 x - 4 1, x e [2,00 >

k) f ( x ) = - x ‘ \x + l \ - lx + 3

, -3 < x < 4 1) f ( x ) \ ¡ 2 x - - J x , s ix e [l,9 ]

Determinar dominio, rango y gráficar cada una de las funciones siguientes.

a) / ( * ) = 2[\x \] -2x b) f ( x ) = ^ ¡ 5 - \ x - 3 1 c) f ( x ) = [| 2 -3 * |]

d) f ( x ) =[\2x\]

g) / ( * ) = -[ |* - 3 |] - [ |* | ]

j) f (x )=[ \x \ ]+^l \ x \ -[ \ x \ ]

e) m =

h) f ( x ) =

2 - x

x - ^ ü ñ

\x \ti x 0+1

f) / ( * )

i) f ( x ) =

1*1[ |x |] + l

1* H I *13y¡2-[\x\]

Page 265: Espinoza Ramos 1

Relaciones y Funciones 251

( 8 ) Construir la gráfica de las funciones siguientes.

a) f ( x ) = s i g ( ¡|* 2 - 1 |- 1 ) b) / ( * ) = [ \ 4 a - x 2 |]

c) f(x) = sig (x 4- 1) - sig(x - 1 ) d) f ( x ) = sig(—x + 4

( ? ) En cada una de las funciones dadas, hallar el dominio, rango y hacer su gráfica.

(x + l)(x2 + 3*-10) . . , jc2 —IOjc-1a) / ( * ) = -------------------------- b) f { x ) =

x +6x +5 [| x |]—2jc — 1

c) n x ) = - ± d) f { x ) J x 2 + l * - 4 K x 2 - 5 * + 6 )' 2x + 3 ‘ (x2 - 3 x + 2) (x -3 )

e) f ( x ) = [ \x \ ] + \x \+ x + 2 f) / ( * ) = ------* ~ [ U I ]

g) / W = t t T h) / W = ( [ U - H ] - l ) + « g ( [ U + l | ] - l )1*1-1

.. , , . [1*1] .. . . , x 2 + x - 60 / ( x ) = —i— j) / ( x ) = s/g(---------- — )| x | - x +1 x +1

Gráficar las funciones siguientes.

a) / ( x ) = [ | - x 2 |] b) / ( x ) = [ | - x 2 + l|]

c) f ( x ) = 4 \ x ] d) /(x )= V tl* l3

e) f(x)= r if ~ iT ) V 0 / W = U | 3l ; |l^ 5 |-x g <-5’2]4 |2 x - l | ] - 2 x | jc -4-11 —4

^ l ) En cada función, hallar el dominio, rango y hacer la gráfica.

a) f ( x ) = 7 T J L r.7 b) / ( * ) = - 2_JC[|x + l |] U H I 2 x | ]

Page 266: Espinoza Ramos 1

252 Eduardo Espinoza Ramos

@

©

c) f ( x )1

V i 2 x I —2[| x |]

3

d) f ( x ) = 1*1[ |jc|]

e) ./(*) = li ,1 + JC

g) / ( * ) = * - [ ! 1*11]

f) / W = ( í- [| x | ] )2

h) / (* )= [ !* ! ]+ (* -[!* !])

Hallar el rango de la función f(x) = x - |x - 2|, x e R

Gráficar la función / ( x) = (x2 + 4)[| 2x + 3 1], D f = [-1,1]

Hallar el rango de f(x) = |x + 2 |-2 |3 - x |, x e [-4,10> gráficar la función f.

15) Sea / (x) = | x | +^J -x - [ \x | ] , 0 < x < 2 Hallar el rango de f.

Hallar el rango de f ( x ) = — [| 2 1 x +11|] (| x | -1) para x e <-5/2 , 2 > , gráficar f.

17) Hallar el dominio, rango y gráficar la función

a) f ( x ) =

1*1-2 3 — jc

| si - 1 < X < 1

-V*2 +2x si 1 < x < 2 2

b) f ( x ) =

x + 1si - 2 < x < - \

5 —jc , J te < - 2 ,3 >

2x +

1 - x, * e [3 ,5 ]

b) f ( x ) = x 2 - 2 x - 3

x 2 - 9d) / ( * ) = —

x l - 2 x - 3

c) / (jc) = Vi-* + Vl + *

e) / ( * ) = Vtl * l]+1 “ Vi - *

h) / ( x ) = |6 + jc- x" | g) / ( x ) = * 2 + | x | - x + l

Page 267: Espinoza Ramos 1

Relaciones y Funciones 253

© Hallar dominio, rango y gráficar la función

@

a) f ( x ) =

16 —jc | —1 . , Qsi -1 < x <8x + 3

116—x 2 |b) / ( x ) =

16x |si - 5 < x < - 3

(l9 ) Hallar el dominio, rango y gráficar la función: f (x) =

4

[1-1— 1]x ¿ +1

X 1 - 2 , - 3 < x < 0 x - \ x - 2 1, 0 < x < 8

2+ V jc-4 , 4 < x < 8

, si x < 3

[| —=-----|]+3x , si 4 < x < 6x -13(x - 6) - 4 | ] , si 8 < x < 9

Hallar el rango de f (x) = ? sí x e [-2,4>l + | x - 3 |

2 r. 2 — x nx [ | —— |] + 3 x - l {

Hallar el rango de f ( x ) = ------------ - sí x e < - 2 , —>|5x - 1 | - 1 5 + 6 | x + 2 1 5

(22) Determinar dominio, rango y gráficar: / (x) = - \j9 -x 2 s/g + * ) + [| + |] -1x -1 x + 3

@

Hallar el dominio, rango y gráficar / (x) =

Construir la gráfica y hallar el rango de:

f[l x —2 1] , si [ |x |] es par

|X -[|X |]| , si [|x |] es par| x - [ | x + l |] | , si [ |x |] es impar

f ( x ) = <¡: ~ xr , v * <=[-3,4]3 x - [ |x + l |] | , si [|x |] es impar

Rpta. Rf = [-7 ,-4 ] u [-3,0] u [1,4] u [5,8 >

® Sea f : [ -2 ,4>->R/ / ( x ) = X + - Hallar el rango de f. R pta. R r = [ - —,1]l + | x - 3 | 5

(26) Dadas las funciones f ( x ) = - x 2 +3x + l , g(x) = 3x2 +2x + l Hallar R r a Rx

Page 268: Espinoza Ramos 1

254 Eduardo Espinoza Ramos

27/ Hallar los valores de a y b para que cada uno de los conjuntos de pares ordenados sea unafunción y determinar la función en cada caso.

f = {(1,8),(2,-3),(1, a 2 + b 2) , ( - l , a + b),(a2 + b ,b) ,(b+a2 ,£>)}

g = {(4,3)(-5,-3)(4.a2 - b 2), ( -5,a + b),(a2 +b,a), (a2 +b2,b)}

Rpta: a) a = 2 , b = 2 b ) a = -2 , b = -l

28j Sí /'(x) = x 2[\ y |] - 441 ~ | ] , x e <0,6], Hallar el rango y gráficar

29) Hallar dominio, rango y gráficar la función / ( x) z=-x x x ^U K U I ]

(30) Determinar el rango y gráficar la función: / {x) = | x2[| |] — 4 1, x e <1,3]

® Sí f ( x ) = ax2 +bx+c, / ( - 1 ) + / ( | ) = , f(-l) = 0 y f(l) = 8. Hallar f(5)

Rpta. a = 3 , b = 4 , c = 1, f(5) = 96

(32) Determinar las siguientes funciones lineales

a) f(l> = 1 y f(3) = 3 b) f(l) = 3 y f(3) = 1

c) f(7) = 0 y f(8) = 42

(33) Si f es una función real es de variable real tal que f ( x + 2) = x 2 + x .' 3 * * is [|x|] 1?. . |[|f+x|]-x£j

. / ( a + 3 ) - / ( a - 3 ) 3 _ 4Calcular ----------— ------- , a * — Rpta. 6

2 a - 3 2

(34) Si f es una función real de variable real tal que f ( x + l) = x 2 +3

Calcular + ^ , a * 0 Rpta. a

Page 269: Espinoza Ramos 1

Relaciones y Funciones 255

35) Sea f una función real de variable real definida por flx) = mx + b tal que :

2f(2) + f(4) = 21 y f(-3) — f(l) = -16 Hallar el valor de j / ( l ) Rpta. |

Sea f (x ) = ln(—— ), demostrar que: f (x) + f (y) = f (-X +-~-)1 -x l + xy

¿7) Sea f(n) la suma de n miembros de una progresión aritmética, demostrar que:

f(n + 3) - 3f(n + 2) + 3f(n + 1) - f(n) = 0

38} Sea tp ( x ) = - ^ ( a x + a x ) y i//(x) =-^-(a-a x)

Demostrar que: <p (x+y) = cp (x) cp (y) + y (x) y (y) y

V (x+y) = (p (x) y (y) + <p (y) (x)

39) Demostrar que, si f(x) es una función exponencial, es decir j '(x) - a x (a<0) y los

números x , ,x 2,x 3 constituyen una progresión aritmética, los números f ( x l ) , f ( x 2) y

/ (x3) forman una progresión geométrica.

40) Hallar analíticamente el rango de la función f ( x ) = 4 x - x 2 - 1 , x e [0,10].

4 j) Determinar el rango de la función / (x) = -J2x--Jx , sí x e [1,9]

42) Determinar el dominio, rango y graficar la función f { x ) = x 1 + | x | - x +1.

43) Hallar el dominio, rango y graficar las funciones dadas.

a) . /(* )= [ | l - x 2 |] b) g ( x ) = 4 x + 4 - 4 x - 5

í l - 2 x , - l < x < 0 íx2 , x < 044) Sí f ( x ) = \ , g(x) = \ '^ ’ )[|3 + cosx |] , x > 0 ’ sv ' [senx , 0 < x < ? r

Hallar dominio, rango y graficar f + g.

Page 270: Espinoza Ramos 1

256 Eduardo Espinoza Ramos

(47)

Halle el dominio, rango y dibujar la gráfica.

J x 1 -1 6a) f i x ) =

c) f i x ) =

[U 2 -1 6 |]

X4 1*1

b) f i x ) = V 2x-1

|x |- [ |x | ]

e) / ( x ) = [ |x 2 - 2 x - 3 |]

d) / ( x ) = [| | l - 2 x 11]

f) / ( x )= ^ /[ |x |] - 3 x

g) / ( x ) =

i) / (x) =

Vx~2 - 9 , x e < -5 ,-3 ]| x -e3 1 —2 , x e< -3 ,5 ]

x 2 -10x + 26 , x e< 5 ,7 ]

5 - x , x e < -2 ,3 >

2

h) / (x )x - 2 , x e [-3,0 > x - | x - 2 | , x e [0 ,4 >

2 + V x -4 , x e [4,8 >

x +1 —x

, x e[3,5]j) f i x ) =

I x | +2 , x e [-7 ,-2]

[ | | | ] + x , Ix |< 2

í-ix+n2x -1

, xe[2 ,5 ]

k) f { x ) =

1) f i x ) =

H) f i x ) =

I a — 11 —2 |]x - 2 x , x e < - l ,2 >I x —4 1 , x e [2,9 >

3 x - [ |l + x |] si [ |x |] es impar[| - x |] si [| x I] es par V x e [-2,4]

2 5 -x7 - x

, x e [ - 5 ,— ] 27

V Ü -3 I , * e [ | , 4 >

Determinar una función polinómica de segundo grado f(x) tal que f(0)=-5,f(-l)=l, f'( 1 )=-7

Hallar el rango de la función J'(x)x + x + 2

si x e [-1,10]

Page 271: Espinoza Ramos 1

Relaciones y Funciones 257

Hallar el rango de la función f (x) = ——— ~+ - X—1 - , sí x e <0.1>2 - V u n u i ]

Hallar el rango de la función f ( x) = 8x[| — —— |] + x 2[| — —- | ] donde D r = < - 1,1]x - 4 x + 2

50) Hallar el rango de la función f (x) = - + ——— sí x e <-3,5>2 1 jc—2 1 H-l

Si f (x) = - ^ — T y D f =[4,20], Hallar R f l + x~ '

Hallar el rango de la función f ( x ) = — ------ , sí x e [1,10]4x +1

^ 3 ) Dado f ( x ) = 4 --J(x + 6)2 - 9 , xe< -o o ,-ll> . H a lla rá /

54) Determinar le rango y graficar la función f ( x ) = \ 4 - x [|2 r. 7 - x

55) Determinar él domino, rango y graficar la función / (x) =1 -x , x > l

COS7T, - 1 < X < 1

x - x 2, X < —1

56) Hallar el rango y graficar las funciones:

a) / W = [ I 1 ^ | ] , x £ [-1,3] b) / ( x ) = J | x | - | [ | x | ] , x 6 [ - 2 ,l>

Calcular el rango y graficar las funciones dadas:

x + 5

a) f ( x ) =

x - 2si I jc—2 1 > 3

4 x 2 + 4x — 1, si 0 < x < 1 b) / ( x ) =

2+ 12 x - 5 1, si 2 < x < 3

■slx2 - 9 - 2 , - 5 < x < -3

| x + 2 1 -3 , 0 < x < 5 3 x -16

x > 6x —5

Page 272: Espinoza Ramos 1

258 Eduardo Espinoza Ramos

c) /(* ) =

|x + 3 |, si - 4 < x < 0

3 - x 2, si O < x < 4 - 2, si | x | > 4

d) / « =

- | . r + 4 |, .sí - 8 < x < 2

x 2 - 4 x - 2 , s/ 2 < x < 5

- x 2 + 1 0x-22 , s í 5 < x < 8 -3 , si |x |> 8

Consideremos dos funciones reales de variable real, f,g: R -> R si D f r \ D g , Entonces:

a) Igualdad de Funcios^.v-

Diremos que las funciones f y g son iguales sí y sólo sí

Ejemplo.- Las funciones f ( x ) = 3 -1 . «(x) =x3 -3

Son iguales porque £ =D, : 'x ,~ g (*

Ejemplo.- Las funciones . ’ o ?;on : lies

puesto que D, ■- ' - ' . i '• " .’c ¿ . * £>,,

Ejempíu.- la s funciones ;<x) = \ « !] í ij

son iguales a : x <Jr ner < * •• •• • i.i qi. .

sus d o m m ic '* 1 ■ mv. icn

b) Suma de Fmidoues.-

Teniendo en cuenta v-!(: i ’a • . . ■K id< y -.yregla de correspondcncn

DEFINICION.- Si f -;on >*. fu* , - >.• r) , • ¡(x )\ f*i ‘

res; . . ' : ! ; . i . - , v tv . ' u,, ■ pori a se si :.ine:

Page 273: Espinoza Ramos 1

Relaciones y Funciones 259

i)

*i> i S + g ) ( x ) ^ f U ) + g{x) Vx<s Df a

Ejemplo.- Hallar f+gsi : f={(-l,2),(0,0),(2,4),(3.-l),(4,3)}, g= {(2,0).(3,4),(4,7),(6,2)}

Solución

Primeramente calculamos el dominio de f y g.

Df = {-1,0,2,3.4} , Dg = {23.4,6}

Luego calculamos el dominio de la suma: D r+g = D r a £>? = {2,3,4}

ahora calculamos los pares ordenados que pertenecen a f + g.

( / + g)(2) = / ( 2) + g( 2) = 4+0 = 4 (2,4) e f + g( / + g)(3) = f ( 3 ) + g(3) = -1 + 4 = 3 => (3,3) e / + g( / + g)(4) = / (4 ) + g(4) =3 + 7 = 10 (4,10) e / + g

Luego la suma de f y g es: f + g = {(2,4),(3,3),(4,10)}

\2x +1, si x > 1 Í3x +1, si x < 8Ejemplo.- Calcular (f + g)(x) sí: f ( x ) = \ . , g W = ] .

[ x - 2 , s i x < 0 [ 2 jc , s i jc > 10

Solución

Primeramente calculamos el dominio de f y g

D r — < —oo,0> u [l,+ * > , = < -o o ,8] u < 10 ,+ oo >

Luego calculamos el dominio de la suma f + g es: D r+g = D r a Dg

■*----------- o o----------------------------------------- ► Df

• Dn0 1

'i

8 10- • o--------- 9

D f+(! = D f A D fi = < -oo ,0> u [1,8] u<10,+oo>

Page 274: Espinoza Ramos 1

260 Eduardo Espinoza Ramos

Ahora definimos la suma en cada intervalo

Si x < 0, ( / + g)(x) = f ( x ) + g(x) = x 2 - 2 + 3x + 1 r x 2 + 3 x - \

Si 1 < x < 8, (f + g)(x) = f(x) + g(x) = 2x + 1 + 3x + 1 = 5x + 2

Si x < 10, ( / + g)(x) = f (x ) + g(x) = 2x + 1 + 2jc3 = 2jc3 + 2x + 1

Luego la suma (f + g)(x) es:

c) Diferencia de Funciones.-

( f + g)(x)-x ~ + 3 x - l si x < 0 5x + 2 si 1 < x < í

2x3 +2x + \ si x > 10

Si f y g son dos funciones con dominio D f y D g respectivamente entonces a la

diferencia de f y g denotada por f - g se define:

i> Df , ~ D f / n,

¡i) 11 - g m = m - g(x). v « 0 / a d .

Ejemplo.- Hallar f - g si f= {(1,2),(2,5),(3,4),(4,1)} y g = {(0,2),(1,0),(2,1),(-1,3)}

Solución

Primeramente calculamos el dominio D f y Dg : D f = {1,23,4}, Dg ={-1,0,1,2}

Ahora calculamos el dominio de la diferencia ^ f g = D f a D ? = {1,2}

Calculando los pares ordenados que pertenecen a f — g

í( / -á f ) ( l ) = / ( l ) - g ( l ) = 2 - 0 = 2 ^ f(1.2) s . f - g \ ( f - g ) ( 2 ) = f ( 2 ) - g ( 2 ) = 5 -1 = 4 ^ [(2,4) e f - g

Luego la diferencia f - g es: f — g = {(1,2),(2 ,4)}

Page 275: Espinoza Ramos 1

Relaciones y Funciones 261

d) Multiplicación de funciones.-

Si f y g son dos funciones con dominio D r y Dg respectivamente, entonces a la multiplicación de f y g denotado por f.g se define:

I) D/ g = £ ) y A D s :

V .t 6 /> / A Ü g

Ejemplo.- Hallar f.g si: f = {(1,4),(4,5)(2,3),(3,2)} y g = {(0,2),(1,2),(2,-1),(3,0),(5,2)}

Solución

Primeramente calculamos el dominio Df y Dg : D r = {1,23,4}, Dg = {0,1,2,3,5>

Ahora calculamos el dominio del producto: D f g = D r a Dg = {1,23}

Calculamos los pares ordenados que pertenecen a f.g

(/.g )(l) = / ( l ) + g(l) = 4.2 = 8 (/.gX 2) = / ( 2 ) + g (2 )= 3 .(- l) = -3 (/.g)(3) = /(3 ) + g(3) = 2.(0) = 0

(1.8) € f . g (2,-3) g f . g (3,0) e f . g

Luego el producto f.g es: f.g = {(l,8),(2,-3),(3,0»

Ejemplo.- Hallar (f.g)(x) donde: f ( x ) = \ 2 , g ( x ) = . 32x + l . x > l

\ x 2 - 2 , x < 0

Solución

3.r +1 , x < 8

2x3 , .r > 10

Primeramente calculamos los dominios de f y g:

D f -- < -oo,0 > u [l,+oo > , D g = < -x>,8] u < 10,+oo >

Ahora calculamos el dominio del producto f.g

Page 276: Espinoza Ramos 1

262 Eduardo Espinoza Ramos

D fg = Z ) r A D g = < -o o ,0 > u [1,8] u < lO.oo >

Ahora definimos el producto en cada intervalo

Si x < 0, ( f .g)(x) = f (x) .g(x) = (x 2 -2).(3x + 1) = 3x3 + x 2 - 6 x - 2

Si 1 < x < 8, ( f .g)(x) = f (x) .g(x) = (2x + l)(3x + l) = 6x2 + 5x + l

Si x > 10, {f .g)(x) = f (x) .g{x) = {2x + l)2x3 = 4 x 4 + 2x3

Luego el producto (f.g)(x) es: ( f .g){x) =

3x3 + x 1 — 6x - 2, si x < 0

6x2 + 5x +1 , si 1 < x < i

4x4 + 2x3 , si x > 10

e) Cociente de Funciones.-

Si f y g son dos funciones con dominios D f y Dg respectivamente entonces el

cociente de f y g denotado por f/g se define

Ejemplo.- Hallar f/g si:

f ={(-2,3), (0,3), (4.0), (5,-3), (6,3)} y g ={(0,-2), (-2,5), (3,2), (5,0), (8,-2)}

Solución

Primeramente calculamos el dominio de f y g: D f = {-2,0,4,5.6}, Dg = {-2,0,3,5,8}

Ahora calculamos el dominio del cociente f/g

D r/g = Df A —{x e Dg i g(x) = 0}

= {-2,0,4,5,6}n {-2,03,5,8}-{5 e D , / ^{5) = 0} = {-2,0,5}- {5} = {-2,0}

Page 277: Espinoza Ramos 1

Relaciones y Funciones 263

Calculando los pares ordenados que pertenecen a f/g

g g(~2) 5

Y g(0) 2 2

( - 2 , - ^ ) g —5 g

(0,-2) e Z 2 g

1 f 3 3Luego el cociente — es: — = {(-2,—),(0,— )}g g 5 2

/' Í2x +1, si x e[-3 ,0 > fx2 + 1, si x g [-2,21Ejemplo.-Hallar (—)(x) si: / ( x ) = < ,g W = .

g |x + 2 , si x e [0,4] [x — 4 , si x g< 2,5]

Solución

Calculando los dominios de f y g: Df = [-3,0 > u [0,4] , £>? =[-2,2] u < 2,5]

Ahora calculamos el conjunto { x e D g / g(x) = 0}

a) Si x g [-2,2] => g(x) = x 2 + l = 0 => 3 x tal que g(x) = 0

b) Si x e <2,5] => g(x) = x —4 = 0 => x = 4 entonces: x g <2,4> u <4,5]

-3 -2 0 2 4 5

Dfig =D f a í ),, -{4} = [-2,0 > u <0,2] u < 2 ,4 ]-{ 4 } = [-2,0 > u < 0,2] u < 2 ,4 >

( - ) ( * ) =

2x +1, si x g [-2,0 >

x ¿ +1

A ——, si x g < 0 , 2 ] x ‘ +1x + 2 x + 4

, s í x g <2,4>

Page 278: Espinoza Ramos 1

264 Eduardo Espinoza Ramos

M í i l COMPOSICIÓN m FDNOONES.-

Definición.- Dadas dos funciones f y g, tales que: f: A ----- > B ; g: B ----- > C y queR f AÜf, *(j), entonces la función compuesta g o f es aquella función

definida por:

h = g o f \

OBSERVACION. Para que exista la composición de funciones g o f es necesario que:

R f a Dg *<f>.

ILUSTRACION GRAFICA

i») ' ¿ W c C

Page 279: Espinoza Ramos 1

Relaciones y Funciones 265

Ejemplo.- Sean f= {(0,1),(1,2),(2,3),(4,3),(5,2)} yg= {(6,7),(5,4),(4,3),(2,4),(1,4),(0,7)}

Hallar Dgof , Dgof , así como f o g y g o f.

Solución

i) Calculando Dg°f

fog { x G D g / X G D g A g ( x ) G D f } por definición:

Dg= { 0, 1, 2, 4, 5, 6}

1 4 4 4 4 4

g(0) g(i) g(2) g(4) g(5) g(6)

ll ii II II II ll7 4 4 3 4 7

_____y

veremos cuales pertenecen al Df

Se observa que el 4 & Dr entonces D r„g ={ 1,2,5}

Ahora veremos su regla de correspondencia.

(/0g)(l) = /(g ( l) ) = / ( 4 ) = 3 (fog)(2) = f(g(2)) = /(4) = 3 (/»g)(5) = / (g (5 ) ) = /(4)=3

(1.3) G fog(2.3) g fog(5.3) g fog

f o g = {(1,3),(2,3),(5,3)}

ii) Calculando Dgof ;

Dgof — { x & D f / x & D f a f ( x ) g Dg} por definición.

Page 280: Espinoza Ramos 1

266 Eduardo Espinoza Ramos

Df = { O, 1, 2, 4, 5}

f(0) f(l) f(2) f(4) f(5)

II II II II II1 2 3 3 2

V._______ _______ y

Veremos cuales de estos elementos pertenecen al Dg , entonces 1 e Dg , 2 e Dg luego:

D eof ={0,1,5}

Ahora veremos su regla de correspondencia.

(g»n(0) = g (/(0 )) = g(l) = 4 (go/')(l) = g ( /( l ) ) = g(2) = 4 (go.f)(5) = f (g(5)) = g(2) = 4

(0,4) e g o f(1.4) 6 go f(5.4) e gof

g o f = {(0,4),(1,4),(5,4)}

Ejemplo.- Sean f, g: R — » R tal que: f ( x ) = x 2 + 2x + 3 , g(x) = x —5

Agof)(l) + (fog)(2).(fog)(3) - (gogX 2) 1-2Hallar [-

(fng)(2)

Solución

Calculando cada una de las operaciones

(goí)(l) = (g(f(D) = g(6) = 1 ; (fog)(2) = (f(g(2)) = f(-3) = 6

(fog)(3) = f(g(3)) = f(-2) = 3 ; (gog)(2) = g(g(2) = g(-3) = -8

Ahora reemplazamos en la expresión dada:

ri g o / m + (Jog)(2)lfog)(3) -(gog)(2) 2 _ 1 + (6)(3) - (-8) 2 = 27 2 = ,9 12 = J_ (fog){ 2) J 1 6 J 6 2 81

Page 281: Espinoza Ramos 1

Relaciones y Funciones 267

r . , c , v | - 3 x 2 + l si x > 1 TI „ (gog)(l) + 2 g (- l)Ejemplo.- Sea g(x) = < . Hallar —-------------e——[ x - l si x < \ (gog)(-l) + g '( l )

Solución

Calculando cada operación se tiene:( g o g ) ( l) = g ( g ( l ) ) = g ( - 2) = -3 (gog)í-D = g ( g ( - l ) ) = g(-2)=-3 g ( - l ) = - 2 ,g ( l ) = - 2

Ahora reemplazamos en la expresión: = -3 + 2(-2) = ± ± = _ 1(gog)(-\) + g 2(l) - 3 + (-2) - 3 + 4

Ejemplo.- Si í { x ) = x 2 encontrar dos funciones g para los cuales

( fag)(x) = 4 x 2 - 12x + 9

Solución

(f og ) ( x ) = f ( g ( A-)) = 4.V2 - 12x + 9 = (2.x - 3 ) 2

g 2(x) = (2 .v -3 ) ' => g(x) = ±(2x-3)

g l (x) = 2 x - 3 , g 2(x) = - 2 x + 3

Ejemplo.- Dadas las funciones f(x) = 3x- 2 si x e < 0 ,+<»> ; g( x) = x 2 sí x e <-3,5>

a) Hallar fog (la función f composición g)

b) Hallar gof (la función g composición f)

Solución

a) 1 ro. calculamos el dominio de f o g: D foK - {x e Dx l x e Ag(x) e D f }

x e Dg a g(x) e D,

x €< -3,5 > a x 2 e< O.oo > entonces x e <-3,5> A <-x,0> u <0,x»

x e <-3,0> u <0,5>

Page 282: Espinoza Ramos 1

268 Eduardo Espinoza Ramos

2do. Calculando la regla de correspondencia de f o g

( fog)(x) = f{g(.x)) = / ( x 2 ) = 3x2 - 2

Por lo tanto: (fog)(x) = 3x2 - 2 para x g <-3,0> u <0,5>

b) 1 ro. Calculamos el dominio de g o f: Dgof ~{x &D f I x & D r a J'(x) e Dg }

x e D , a f ( x ) e Dg

x g <fí,oo> A 3x —2 e <-3,5> entonces x g <0,°o> A -3 < 3x —2 < 5

1 7x e <0,oo> A - l < 3 x < 7 entonces jcg< 0 ,oo> a — < x < — => x e < 0 ,

3 3

2do. Calculando la regla de correspondencia de g o f

(gof)(x) = g ( f ( x ) ) = g ( 3 x - 2 ) = (3x~2)2 = 9 x 2 - \ 2 x + 4

Por lo tanto: (gof)(x) = 9,v2 -12x + 4 , para: ,v e < 0 ,- >

Ejemplo.- Hallar fog si f(x) = 3x + 2, x g <-oo,3>, g(x) =

Solución

donde £ )„ = /)„ u £ )„ dominio de la función g* **2

Ahora calculamos el dominio de f o g

D,og = { x e D g / x e De a g ( x ) e D , \ = { x e D g l x e D g¡ u D g a g ( x ) e D f }

= { x e Dg¡ a g x (x)D f } u {x g Dg2 a g 2 (x) e D f } = D fog¡ u £>^

OJ I

Page 283: Espinoza Ramos 1

Relaciones v Funciones 269

Ahora calculando D y D to;¡

D roe, = t i e D g, ! x e Dg¡ a g ( ( x ) e Dr \

x e <-x,0> A2x e <-oo.3>

x e <-*,0> A x e <-oo,3/2> entonces x e <--*>,0> por lo tanto D fo - < -*>,0 >

Dfog2 = {x e / x e a g 2 (x) e D f }

x e [l,oo> A -3x e <-oc,3> entonces x e [l,x>> A x e <-1,qo> entonces x e [1,*>

D /og, =[1.»>

(/og! )(x) = / ( g , (x)) = f ( 2 x ) = 3(2x) + 2 = 6x + 2

( fog2 )(x) = / ( g 2 (x)) = / ( - 3 x ) = 3(-3x) + 2 = -9 x + 2

(./«g)(x) =6x + 2 si x e< —oo,0 > -9 x + 2.si x e [ l , » >

I x ' si x < 1 í — t si x < 2Ejemplo.- Hallar (f o g)(x) sí: / (x ) = < , g(.v) = •

[ - x 3 í / x > 2 [2x s í x > 4

Solución

Veremos el caso cuando las funciones tienen dos reglas de correspondencia.

í / i(x ) si x e D r íg(x) .sí x e D „/ W = L . . n ‘ . £ (* )= /' » ■ n| / 2(x) s; x e D /z [g 2W * e D Í2

el dominio de f o g se obtiene siguiendo el mismo criterio del ejemplo anterior, es decir:

0 D fw , = V e Dk¡ / x e Dg¡ A g, (x) € D fi}

x e<-oo,2> A -x e <-,» ,l> entonces x e<-'»,2> A x e <-l,oo> de donde x e<-l,2>

i¡) n Aog2 = ( t e Dg, / x e Sj a g 2(x) e / ,}

x e [4,oo> A 2x e <-*>,!> entonces x e [4-oo> A x e <-*>,l/2> => x e

Page 284: Espinoza Ramos 1

270 Eduardo Espinoza Ramos

¡¡i) D >2 ogi = ^ e / x e a g i (x) e D u }

x e<-oo,2> A -x e [2,oo> entonces x e<-oo,2> A e <-oo,-2> de donde x e<-oo,-2]

iv) D fi0g¡ = {x e D ?, / x e D gz a g 2(x) e D /2}

x e[4.oo> A 2x e [2,oo> entonces x e[4,oo> A x e [1,*> de donde x e[4,oo>

Luego de i ) , iii) , iv), la regla de correspondencia es:

(J\og\ )(x ) = ,/¡ (g ¡ (x ) ) = / , ( - x ) = x 2

( Í2 ° 8 i )W = f i ( g \ W ) = h (~ x) = X3

(,/2og2 )(x) = / 2 (g 2 (x)) = h (2x) = -8 x ‘ , luego

(fog)(x) =(/lOgiXx) , .s¡ x e< -1,2 >( / 2ogi)(x) , s/ x e< -oo ,-2 ] (/og)(x) =( J 2 ° g 2 ) ( x ) , si x e [4,oo>

x' , si x e< -ao ,-2 ]

x 2 , .sí x e < - l , 2 >

- 8 x 3 , si xe[4 ,oo>

2.18. PROPIEDADES DE LA COMPOSICION DE FUNCIONES,-

Consideremos las funciones f, g, h, I (identidad)

© f o g * g o f no es conmutativa © (fóg) o h = fo(goh) asociativa

© (f + g) o h = (foh) + (goh) distributiva © (fg) o h = ( fo h ).(g oh)

© f o I = f , I o f = f , V f ® I " o l m = J nm, n , m e Z +

© I v ”o l " = 7" o I 1"' = / , w e z + , nimpar © / " = / . / . / . . J

2.19. EJERCICIOS DESARROLLADOS.

© Dada las funciones f= {(2,1),(-2,3),(1,5),(-3,4),(7,8)); g = {(3,-2),(7,2),(-3,l),(2,4)}

Calcular f + g, f - g, f.g , f/g

Page 285: Espinoza Ramos 1

Relaciones y Funciones 271

Solución

Calculando el dominio de cada función: D f - { - 3,-2,l,2,7} ; D e = {-

Como D r^g = D r-g = D fg = D f a Dg ={-3,2,7}

(./ + g)(-3) - . / (—3) + g (-3) = 4 + 1=5 ( / + íf )(2) = f ( 2 ) + g(2) = 1 + 4 = 5 =*( / + #)(7) = / ( 7 ) + g(7) = 8 + 2 = 10

/. f + g = {(-3,5),(2,5),(7,10)}

( / - g ) ( - 3) = 1 (-3 ) -¿ K -3 ) = 4 -1 = 3 ( / - g >(2) = / ( 2 ) - g (2) = 1 - 4 = -3 =*( / - g ) ( 7 ) = / ( 7 ) - g ( 7 ) = 8 - 2 = 6

( - 3 , 5 ) e / + g (2,5) e / + g (7,10) e / + g

(-3,3) e / - g (2,-3) e / - g (7,6) e / - g

f-g={(-3,3).(2,-3).(7.6)}

(/.g )(-3 ) = /(-3 ) .g (-3 ) = 4(1) = 4 (./.g)(2) = /(2 ).g (2) = l (4 )= 4 =>(/.g )(7 ) = /(7 ).g (7 ) = 8(2) = 16

(-3,4) e / .g (2,4) e f .g (7,16) e . / ‘.g

f . g = {(-3,4),(2,4),(7,16)}

Calculando el dominio de f/g: D / /? = / ) , - a D>r- { * /g(jc) = 0} = {-3,2,7}

(Z|(- , , = T f = r 4íf g(~3) 1/ ( 2 ) _ 1 g(2) 4

(7_)(7) = / Í Z l = | = 4g g(7) 2

(—)(2) =g

(-3,4) e — g

( 2 , 1 ) . / 4 g

(7,4)e —

— = ¡(-3,4), (2,- -), (7,4)}2 4

© Sean f= {(1,3),(3,5),(2,4),(4,6)}; g = {(4,1),(0,-3),(3,2),(1,0)}. Hallar f/g

■3,23,7}

Page 286: Espinoza Ramos 1

272 Eduardo Espinoza Ramos

Solución

©

Calculando el dominio de cada función: D f = {1,2.3.4} , DR = {0,1,3,4}

Calculando el dominio de f/g: D rig = D r a D e - { x / g(x) = 0\ = {1,3,4} — {1 }={3,4}

g g(3) 2

áT g(4) 1

2 g

(4.6) e - /— - {(3,2),(4,6)| g 2

® [jc + 4, x < - l -2 x , — 4 < jc < 3Si f (x) = 4 , g(x) = < . Calculando f + g

jc —3, —1 < j c < 4 - 4 , x > 3

Solución

Calculando el dominio de cada función:

D f = < - « ,-1 > u [-1,4 > ; Dg = < -4,3 > u [3,oo >

Ahora interceptamos los dominios------- um m rnm m m m w im m im aiiiim ri-4 -1 3

D rJ.g = D f a Ds = < -4 ,-1 > u [-1.3 > u [3,4 >

Si x e < -4 ,- l> , f(x) + g(x) = x + 4 - 2 x = -x + 4

x e [-1,3>, f'(x) + g(x) = x - 3 - 2 x = - x - 3

x g [3,4>, f(x) + g(x) = x —3 —4 = x —7

de donde ( / + g)(x) =

Hallar (f + g)(x) si f y g están definidas por:

- J C + 4 si jce< - 4 ,-1 > - x - 3 si x e [-1,3>

jc — 7 ,v ;x e [3 ,4 >

Page 287: Espinoza Ramos 1

Relaciones y Funciones 273

f ( x ) =|JC —1 I . -V/ I x - 1 |< 1

3jc , si | .r - 1 1> 1 • g(x) =[ |jc|] , si - 3 < jc<1

- 2 , si \ < x <2 1 - 2jc , si x <2

| x - l | < 1

|x — 11 > 1

Solución

-1 < x — 1 < 1 => 0 < x < 2

x — 1 >1 V x - K - l => x > 2 V x < 0

Ahora a la función f(x) expresamos así: f (x) =| x - 1 1 si 0 < x < 23x si x e< -oo,0 > u < 2,+oo >

Dibujando los dominios de cada función en una recta horizontal.

■ Dr

1-O

= D f a De = [-3.0 > u [0,1 > u [1,2] u < 2,oo >

Calculando la suma en cada intervalo

x g [-3,0> => f ( x ) + g(x) = 3a+[|jc|]

x e [0.1> /(jr) + g W = |jc - l |+ [ |jc |]

X € [1,2] => / (x ) + g(x) = | jc- 1 |- 2

X € <2,00> => líx) + g(x) = 3x + 1 - 2x = x + l

NOTA.- Se efectúa la operación en sus propias reglas de correspondencia

( / + g)(x) =

3* + [| x |] , si jc e [-3,0 >j jc - 1 |+ [ |jc|], si .re [0 ,l>| x - 1 1 -2 , si x e [1,2]jc + 1 , si .v e< 2 ,+ * >

Page 288: Espinoza Ramos 1

274 Eduardo Espinoza Ramos

©[3x + 2, s i x < 0

sr flx) = |x - 2 | + |x + 2 |, g (x )= . y H(x) = fíx) + g (x ), DH[ l - . t , .síjc > 0

Hallar la gráfica y el rango de H.Solución

Primeramente definiremos los valores absolutos

\x~2\ =x - 2 , si x > 2 2 - x , si x < 2

U + 2| =x + 2 , si x > -2- x - 2 , si x < - 2

-2 2

Ahora definiremos f(x) en cada intervalo

Si x < -2 , ftx) = (2 — x) + (-x — 2) = -2x

-2 < x < 2 , fíx) = 2 - x + x + 2 = 4

x >2 , flx) = x - 2 + x + 2 = 2x

por lo tanto f ( x ) =- 2x , si x < - 2

4 , si - 2 < x < 2 2x . si x > 2

Ahora calculemos los dominios de cada función

-2

Da = [-2,3 > = [-2,0 > u [0,2 > u [2,3 >

Definiremos a la función H(x) en cada intervalo

x e [-2,0> => H(x) = 4 + 3x + 2 = 3x + 6

x € [0,2> => H(x) = 4 + 1 —x = 5 —x

D4

D„, Dg

= [-2,3 > .

Page 289: Espinoza Ramos 1

Relaciones y Funciones 275

x e [2,3> H(x) = 2x + 1 —x = x + 1Y

Por lo tanto la función H(x) queda definida por:

3x + 6 si ~ 2 < x < 0 H(x) = < 5 - x si 0 < x < 2

x +1 si 2 < x < 3

Calculando ífa), para esto x + 2 = y => x = y - 2

Como x e <-5,5] => y-2 e <-5,5] de donde -5< y - 2 <, 5 => - 3 < y < 7 = > y e <-3,7]

Luego f ( x + 2) = x 2 => f ( y ) = ( y - 2 ) 2, y e <-3,7]

Ahora evaluamos en x: f ( x ) = ( x - 2)2 , x g <-3,7]

Calculando g(x), para esto x - 1 = y => x = y+ l

Como x g [-2,2] => y + 1 g [-2,2] => - 2 < y + l < 2 = > - 3 < y < l => y g [-3,1]

Luego g ( x - \ ) = x 2 => g(y) = (y + \ )2 ,y e [ -3 .1 ]

Ahora veremos en x: g(x) = (x +1)2 , x e [-3,1 ]

( 7 ) Calcular (f+g)(x) y (f/g)(x), donde f (x)V i - * , Si JC<1

r ;g (* ) = {xV* , si jc> 4

je" - 1 , si jt< 0

x , si Q < x ú 2 x + 5 , si x > 2

Solución

Calculando el dominio de cada función

Page 290: Espinoza Ramos 1

276 Eduardo Espinoza Ramos

D , =< —oo,l] u [4,+oo> , Dg = <-oo,0> u [0,2] u <2,+oo>

Ahora calculamos Df+g

0-o

1 4

D f +g = D f A Dg = < -oo,0 > u [0,1] u [4,+oo >

Calculando f(x) + g(x) en cada intervalo

Si x e <-oo,0> , f (x) + g(x) = - J l - x + x 2 -1

x g [0,1], f ( x ) + g(x) = J l - x + x

x g [4,+oo> , f ( x ) + g(x) = -Jx +x+5

• J l - x + x 2 -1 , sí jc<0

( / + g )(*) = f M + g(x) = -JT-x + x , si O < x < 1

-Jx + x + 5 , s¡ x S 4

-► D f

D„

Ahora calculamos D f¡K es decir:

D//g = Df K D g - {* / g(x) = 0} = <-oo,0> u [0,1 ] u [4,+oo> - {O,-1}

= <-oo,-1 > u <-1,0> u <0,1 ] u [4,+oo>

- J l - x* 2 - iV i-*

JC

jt + 5

, si X G< -00,-1 > U < —1,0 >

, Sí X G< 0,1]

, s / * > 4

Page 291: Espinoza Ramos 1

Relaciones y Funciones 277

© Calcular (f + g)(x) y (f/g)(x) donde

/ (* ) =

x , si x < -2 .r----- X2 -1 , SÍ ~ 1 0 < X < 2

V l- x , si - 2 < x < 0 ; g(x) = < r _X , si 0 < x < 2 0 , s i x > 2

Solución

Calculando el dominio de cada función

D f = < -oo,-2 > u f—2,0 > u [0,20 > , Dg = < -10,2 > u [2,+oo >

Ahora calculamos el D f+g

-o• --------o

-o D#

-10o—

-2 20-> D n

Df+g = D f A Dg = < -10 ,-2 > u [-2,0 > u [0,2 > u [2,20 >

Calculando f(x) + g(x) en cada intervalo.

x e <-10,-2>, / (x )+ g (x ) = x 2 -1 + x 2 - l = 2x2 - 2

x e [-2,0>, /(jc) + g(x) = 4 l - x + x 2 - 1

x e [0,2>, f ( x ) + g(x) = x + x 2 -1

x e [2,20>, f ( x ) + g(x) = x + -Jx

Luego se tiene: ( / + g)(x) = / ( x ) + g(x) =

2x2 - 2 si -1 0 < x < -2

• J l - x + x 2 -1 si —2 < x < 0

x + 2 x - l

x +

s/ 0 < x < 2

si 2 < x < 20

Page 292: Espinoza Ramos 1

278 Eduardo Espinoza Ramos

Calculando (f/g)(x)

( A ( x ) = g

x 2 - l—2— si -1 0 < JC < 2 —{-1.1} x —1

si - 2 < * < 0 -{ -U } ,x ósea (—){x) =

— si 0 < jc < 2 — {—1,1} x -1

g

4~x si 2 < x < 2 0

1 si — 10 < jc < —2

x 2 - l

x 2 - l

■Jx

si x e [-2,-1 > u < -1,0 >

si x e [0,1 > u < 1,2 >

si xe[2 ,20>

( 9) Dadas las funciones definidas por:

f= {(0,0),(4,3),(2,4),(-3,2),(3,-1)} y g = {(6,2),(3,4),(2,0),(4,7)}. Calcular f o g

Solución

. es decir: IIQ{xl x e Dg a g ( x ) e D f }

Dg = { 2, 3, 4, 6 }

i 4 4

g(2) 8(3) 8(4) 8(6)II II II ll0 4 7 2

V

Veremos cuales pertenecen al Df

Se observa que: 0 eD y , 4 g D r , 2 & D f entonces D fog = {2,3,6}

Ahora calculamos los elementos de f o g

(f°g)(2) = f (g (2 ) ) = / (0 ) = 0 (/óg)(3) = /(g (3 )) = / (4 ) = 3 => (fog)(6) = f (g(6 )) = f ( 2 ) = 4

(2,0) g Dfog

(33) e Dfog

(6,4) g D fag

f o g = {(2,0),(3,3),(6,4)}

Page 293: Espinoza Ramos 1

Relaciones y Funciones 279

(ío ) Sean las funciones reales de variable real / ( x ) = J * + ^ ^ g(x) = i* ’ * < ^[x -1 , x > l ( l—x , x > 0

Hallar f o gSolución

De acuerdo a los criterios establecidos se tiene:

/ W = ( / l W * ’t + 2 - I S 1 , * w = |* > w " 12 • x < 0 } / ,( * ) = ) t - l . »> 1 = * 2 0

Calculando D /ofi = {xe Z)^ A g, (x) e / ) ^

x e< -oo,0 > A x 2 < 1 desarrollando x e <-oo,()> A -1 < x < 1 => x e [-1,0>

(/iOgi)(x) = / 1(g1(x)) = / i ( x 2) = x 2 + 2 , x e [ - l ,0 > _

Calculando D/¡ogi = {x / x e A g 2 (x) e Df ¡}

x e [0.+*> A 1 - x e <-ao,l] entonces x e [0,+oo> A 0 < x < o o => x e [0,+oo>

(f\Og2 )(x) = f i (g2 (x)) = / i ( l - x ) = l - x + 2 = 3 - x

Calculando D f og¡ = {x / x e Dg A g x (x) e D f }

x g< -» ,0 > A x 2 e<l,+oo>

x e <-oo,0> A x e <-oo,-l> u <l,+oo> = <-ao,-l> => x 6 < -» ,-l>

( f r°g\ )(x) = f 2(g X (x)) = / 2(X2) = x 2 -1

Calculando Dyj<#j = { x / x e D g A g 2( x ) ^ D f i }

x e [0,+oo> A 1 - x e <!,+«> entonces x e [0,+oo> A x e <-oo,0> => (j)

( fog)(x) =

x 2 -1 si X < -1

x 2 +2 si x & [—1,0 >3 - x si xe[0,+oo>

Page 294: Espinoza Ramos 1

280 Eduardo Espinoza Ramos

( í j ) Dadas las funciones: f ( x ) = { *’ * E< °°’1] *(*) = {* 8 ’ * < 0[-1 , xe<l,+oo> [ [ |* l ] , * > 0

Calcular (f o g)(x)Solución

f ( x ) \ A M = x , x e < ^ ] íf t (x) = x2 -8 si x < 0

I /2 (*) = “ i- x e< l>+a0 > ’ \ g 2 W = [ |* |] si x > 0

Dfog = ->f,ogl u /,0g2 K~JP>f1ogl U >f1°g2

Dflog¡ = { x l x e D g¡A g {( x ) e D f i }

x < 0 A x 2 - 8 e< -oo,l] x< 0 A -00 < x 2 < 9

=> x < 0 A (-00 < x 2 A x 2 < 9) => x < 0 A (R A -3 < x < 3)

=> x < 0 A - 3 < x < 3 => x e [-3,0>

(A°¿ i ) = A ( g iO)) = f \ ( x 1 -8) = x2 -8

(/lO gi)(*) = * 2 - 8 , X 6 [-3,0>

D.f¡og1 - { x f x e Dg A g 2(x) e D^ }

i > 0 A [ |x |]e< -o o ,l] => jc> 0 A —00< [|ar |]< 1

=> x > 0 A - o o < x < 2 => x e [0,2>

(f\Og2 )(*) = /1 (g 2(x)) = / j ( [|x |]) = [ |x | ]

(f\Og2) ( x ) H \ x \ ] , x g [ 0 ,2 >

Df 2og¡ = { x / x e Dg¡ A g(x) g D f i }

x < 0 A x 2 —8g<1,+oo> => x < 0 A 9 < i 2 <®

x < 0 A (9 e x 2 A x 2 <+<x>) => x < 0 A (x < -3 V x > 3) =>xg<-oo,-3>

Page 295: Espinoza Ramos 1

Relaciones y Funciones 281

( f 2° S \ )(*) = h (Si O » = f 2 (x 2 - 8) = -1

(Í20Si )(*) = “ I . x e <-«v3>

D f 2og2 = { x / x & D giA g 2( x ) G D f2}

x > O A [| jc |] e< 1,+qo > => jc> 0 A 1 < [ | jc| ] < +oo

=> x>0A2<x<oo =>xe [2,+oo>

Ü 2 ° S 2) = f 2(g 2 (*)) = f i (tix I]) = “ I • x e [2,+«»

( f 2° g 2 )M = " I . x 6 [2,+oo>

(fog)(x) =x 2 - 8 si x e [ -3 ,0 >[| x |] si x e [0,2 >—1 si x e< —oo,-3 > i^{2,+oo >

( Í 2) Si f ( x ) = x 2 y (fog)(x) = 4x2 -12x + 9 encontrar dos funciones g(x).

Solución

(fog)(x) = f (g (x ) ) = 4x2 -12x + 9

g 2(x )= (2 * -3 )2 => g(x) = ± ( 2 x - 3 ) g 1(x) = 2 x - 3 , g 2(x) = -2 x + 3

13) Sí f(x- 1) = x - 2 y (gof)(x + 2) = 2x2 - x . Calcularg(x)

Solución

f ( x - l ) = x —2 => fTx) = x — 1

(go/)(x + 2) = 2x2 - x => (gof)(x) = 2 (x -2 )2 - ( x - 2 ) = 2x2 - 9 x +10

(gof)(x) = 2x2 -9 x + 10 de donde g (/(x )) = 2x 2 - 9x +10

g ( x - l ) = 2x2 -9 x + 10 => g(x) = 2(x + l)2 -9 (x + l) + 10 = 2 x 2 - 5 x + 3

Page 296: Espinoza Ramos 1

282 Eduardo Espinoza Ramos

© Si f { x ) = x 2 +2 y g ( x ) = x + a , determinar el valor de a de modo que

(f o g)(3) = (g o f)(a — 1).Solución

(fog)O) = f (g(3)) = f ( 3 + a) = (3 + a )2 +2 = a 2 + 6a + l l . . .(1 )

( g o f ) ( a - 1) = g ( f ( a -1)) = g((a - l ) 2 + 2)

= g(a2 - 2 a + 3) = a2 - 2 a + 3 + a = a 2 - a + 3 ... (2)

- , , 8 Igualando (1) y (2) se tiene: a +6a + \ \ = a - a + 3 => a =

^ 5) Si H(x) = eos 2x y f(x) = sen x encuentre una función g tal que H(x) = (g o f)(x)

Solución

H(x) = (g o f)(x) = g(f(x)) = eos 2x

g(senx) = cos2 x - s e n 2 x = l- -2 s e n 2x g(x) = 1 - 2 x 2

© Calcular f ± g , f.g , f/g , donde f = {(1,2),(3,4),(2,5),(4,1)}; g={(3,-l),(2,l),(l,0)(0,2)}

© Calcular f ± g , f.g , f/g , donde f = {(-3,2),(0,0),(2,4),(3,-1),(4,3)} ,

g = {(2,0),(3,4),(4,7),(6,2)}—“ i» / " r,J

© Si f= {(1,3),(2,6),(4,8),(6,2)} y g = {(1,2),(2,-1),(0,1),(4,5),(7,0)}

Hallar f + g , f - g , f.g , f/g

© Si f= {(1,4),(2,5),(3,6),(4,-6),(5,-5)} y g = {(0,8),(1,3),(2,0),(3,7),(4,0),(5,10)}

Calcular f + g , f - g , f.g , f/g

© Sean f= {(2,8),(8,4),(6,9),(4,7),(3,6),(1,5)} y g = {(7,1),(3,2),(5,5),(10,5),(1,3)}

Hallar f + g , f - g , f.g , f/g

Page 297: Espinoza Ramos 1

Relaciones y Funciones 283

©

©

©

©

Sean f= i(4,l),(6,5),(5,4),(8,3),(9,2),| y g = <(8,-5),(2,2),(5,-4)¡

Calcular f + g , f - g, f.g , f/g

Calcular f + g , f.g . f/g de las funciones

Í2x + l , x > la) f ( x ) =

b) f ( x ) =

c) f ( x ) = •

d) f ( x ) =

[x2 - 2 ,x < 0

7 ,x<10x - \ , x > l l

x 2 si X > 1

| x - l | s / JC < 1

Í3x + l , x < 8

x > 10

3 x - l , U - 1 K 1 x , x > 3

U x + l , x > - lg(x) = \ 2

[X -1 , x < - l

x~ si XG [-10,-7 >2x si x e [-4,0 > , g(x) =

2xi - 2 si x e < 0 ,8 >

- x 2 +x , si x e < -8 ,-4 ] - x + 3 , si x e < -4 ,0 ]

Í2x -1 , x e [0 ,l>e) / ( x ) =

Ix , x e [2 ,5 >

f) / ( * ) =

g) / ( * ) =

x | , x s [-1,3 >- 2x + 3 , x e [3,6]

x2 - l , | x | < 2 x , x > 2

g(*) =

g(x) =

g W =

x +2 , si x e< 0 ,3 ]

3x , x e< -1,1]2x , x e< 1,4]

-v/x-1 , x e [ l ,4 >[| X |] , x e[5,7 >

x — 1 , 0 < x < 3 x + 1 , x < 0

Hallar (f+g)(x) y (f / g)(x) sí: / ( x ) =í-\/l—x , x < l

IVx , x > 4g(*) =

x 2 -1 , x < 0 x , 0 < x < 2 x + 5 , x > 2

Hallar (f + g)(x), donde:

/ ( x ) =[| X — 11] , x e < -4,-1][ |x |]+ l , x e [0,2]| x - 2 1 +3 , x e< -1,0 > u < 2,3]

g(x) =

5 , x e < - 3 , - l>- 2 , x e < 0 , 2 >- 3 , x e [ - l ,0 > u [ 2 ,3 >

Page 298: Espinoza Ramos 1

284 Eduardo Espinoza Ramos

f 4jc + [ | jc | ] , jc e < - 3 ,0 > Dadas las funciones definidas por: f { x ) = { .

I|jc + l | - 3 , x e< 1,6 >

g(*) =[| —jc I]—5jc , x e< -4,-1]

| jc —3 1 , i g < 0 , 2 ]

( I I ) Hallar ( f /g ) ( x ) donde: / ( j c ) =1*12x

Hallar (f + g)(x) y graficar

x g [—5,—1] f[| * —2 1] , x e [0,3 >

* 6 [1,4] ' g X { X1 , x g [3,6]

Hallar (f + g)(x) y graficar donde

/ (* ) =[ |* - 1 |] , x e < - 4 , - l ]

[|* |]+ 1 , * G[0,2]| jc — 2 1-1-3 , jc e < - l ,0 > u < 2 ,3 ]

g(x) =7 , x e [-3 ,-1 >1 , x e [0,2 >- 2 , x e [ - l ,0 > u [ 2 ,3 ]

11) Hallar (f + g)(x) y graficar donde

/ (* ) =

sig (| x 2 - 4 1) si x 2 <9

Ü ^ D

jr2 + 10X + 21

si x - 12jc < -27 , g(x) = 3 , x e R -[9,+oo>

si | x - 3 1 > 6

r f \Dado las funciones f{x) = 2 x -3 , - l < x < 3 ; g-(jc) = jc—[| jc |] , x 6 R, hallar (—)(jc)g

7 - jc

Vi * - 3 1Dadas 1 as funciones: f ( x ) = i

o ( r í = í [ll * - 11- 2 1]*2 -2 jc , - 1 < * < 2[ | jc - 4 1 , 2 < jc< 9 '

Hallar (f+g)(x) y graficar donde

x + 2 5---------< 0 A jc < —x - 4 2

— < x < 4

Hallar (f + g)(x) y graficar

/ ( * ) =[I*2 l]+1 * 2 - 1 1 -3 , x e [-2,2] 2jc —1

jc—1JC e< 2,4 >

, g ( * ) =j4 — [|x |] , x < 2

- 2 , jc > 2

Page 299: Espinoza Ramos 1

Relaciones y Funciones 285

© Dada las funciones f ( x ) = 2x - [ | 2 x +[| x |] | ] , -~ < x < \

g(x) = | | x —2 | - | x | | , |x| < 1 ; Hallar (f+ g)(x)

Hallar (f+g)(x), (f-g)(x), (f.g)(x) donde

Í3x+1/ w - L 5x

, x e [-1,1 > , x e< 1,6]

g(x)2-sfx -1 x - 2

x e[0,3 > x g < 3 ,5 ]u [6 ,8 >

Hallar (2f — 4g)(x), donde

[[I * ~ 3 1], x e [1,4 >

U 2 - 4 | x + 2

, x g < - 2 , 1 >

x e [u o >x 3x + 5

Calcular (f + g) (x), (f.g) (x), (f/g) (x) y graficar donde

Í2x --1 , x e[0,2] ra) . / (x) = j ; g ( x ) = J x , D =[1,4]

[3 , x g [3.5]

b) f ( x ) =x x < 13x, 1 < x < 3 : g(x) =eos x , x > 3

- x , x < - 2 11 , 2 < x <334 , x < 6

í[ |x |] [ |x 2 - 4 |] , x < 3 íx , x < 2c) j ( x ) = \ r ------- , g(x) = {

U /x "-1 6 , x > 4 ' x > $

d) f ( x ) =1 - 2 x , - 3 < x <- 1

[[ |-4 + cosx|] , x > 0g(x) =

■ x < 0 sen x , 0 < x < n

í x + 3 si x g [ - 4 ,0 ]e) J ( x ) = \ , g(x) =

3 x + 2 si x e < 0 ,5 >

2 x -4 , x e [-3 .2 ] 2 - x , x g <2,8>

f) f ( x)=<V x -2 , x g [2,4>

Ix2 -14x + 48 , x g [ 6 , I 0 >g(x) =

[ | - | ] , X G [1,8 >

1 2 x — 10 1 , x g [8 ,1 2 >

Page 300: Espinoza Ramos 1

286 Eduardo Espinoza Ramos

, . \\x - 4 , x e[-6 ,0] , . Jx + 2 , x > -2g) , f(x) = \' ' J , g(x) =

2 , j te [ l ,6 > l 1 , x < -2

ux 4 f |x - l |[ |.v ig (3 -x ) |] , xe[0 ,6 ] [ |x - 2 \ , x e < -8 ,3 >h) Si f (x) = ■ , , g(x) = {

x 2 , x e< 6 ,1 0 > | x | x - 2 | , x e<3,8]

[x2 -4 x -4 .s7 g ( |x |-3 ) , x e [0,2]

^ |], .v/ x < 3x~ +1

X2 + X + 1x - 1

, si x e [5,10 >

j) Si / (x ) =Vx2 +16 , x e < - 4 ,- 2 > ,

2x + 4 , x e < - 3 ,- l >[| x |] — 2x , x e [ - l ,2 > , g{x) -

x 2 + 2 | , x e < 4 , 6 >[ |x2 - 2 1 , x g [-1,5 >

21; Determinar fog , cuando f = {(l,3),(2,4),(3,5),(4,6)f y g = {(4,l),(l,2),(6,3),(0,-2)}

(22) Determinar fog , g o f, cuando: f= {(0,1),(1,2),(2,3),(4,3),(5,2)}

g = {(6,7),(5,4),(4,3),(2,4),(1,4),(0,7)}

0 Hallar gof sí: f= {(2,5), (3,4), (6,2), (5,0), (1,7)} y g= {(4,8),(5,3),(0,9),(2,2),(7,4)}

@ Hallar gof sí: f = {(2,5),(5,7),(3,3),(8,1)} y g = {(1,2),(2,3),(4,5),(6,7)}

® Í3 x -2 , x e M , 4 > ,Sí / (x) = < ; g(x) = x" +1. Hallar (fog)(x)

[x , xe[4 ,6 ]

(26) Consideremos las funciones reales de variable real

[x2 x < 0 íx + 2 , x — 1g(x) = \ ' ; f ( x ) = \ . Hallar fog

[ l - x , x > 0 [x — 1 , x > l

{Y n Sean las funciones f y g definidas por:

Page 301: Espinoza Ramos 1

Relaciones y Funciones 287

Hallar: f(0) + g(0) , fll) íT-3) , (fog)(-2) , , (gof)(3) , (gog)(-3/2)g ( - l )

28} Hallar fog sí /(jc) = 2 x 2 +1 , x e <-2,20>, g(jc) =

29} Hallar fog sí flx) = 3x + 2 , D f =< -oo,3 > , g(x) =

- j c + 1 , x s< -oo,-2 > 2jc , J c e < 6 , a o >

2x , j c < 0

- 3 jc , jc> 1

Í2jc — 1 , jc < —1 Íjc , jc< 0Determinar gof si. /(jc) = < g(x)= \

[jc + 2 , x > 2 [2x , x > O

x > * < _ 1 r-> .2 , x < 1-1 , 1 < jc< 2 , g(x) = <31) Hallar fog s í , / ( * ) =1 , jc> 4

1 , jc > 2

© Í2jc-1 , jc e [0,2] <—Hallar fog y gof, donde, f ( x ) = \ , g ( x ) = 4 x

[jc , jce<3,5]

jc , jc > 4

| x | —x , JC < O

^ 3) Sí H(x) = 4 x 2 -2jc + 3 y (Hof)(x) = -y/[| jc|] + 3 . Calcular f(x)

3 [| JC2 — 11 , JC < 3Calcular (fog)(x), donde f ( x ) = \ ---- , g(x) =

[V*2 + 1 , jc>3

Í[|jc|] , jc< 0 ,------35) Calcular fog y graficar sí: g(jc) = < , , f ( x ) = - J x + l , -l<x<2

I jc" — 2jc , jc < 1

l e ' ,3 6 } Calcular fo g , donde, g(x) = < , g(jc) =

í u 2 -11 , x < 3

U c 2 + 1 , jc> 3

JÜ*I] , x < 0

= V - i , jc > 0

Í2jc- 5 , x <2~ [ - j c - 2

fNAl*

37) Sí / ( x) = - j 2 x - \ y g(x) = 2 x 2 - 7 . Hallar la función h t a l q u e f o h = g

38} Dadas las funciones / ( jc) = 2 jc - [ | 2 x + [ |2 jc | ] | ] ,

g(x) = 11 x + 2 | - 1 x | , |x| < 1. Hallar fog , gof

Page 302: Espinoza Ramos 1

288 Eduardo Espinoza Ramos

©

(40)

©©

©

Sean / (x) = 2x2 - 1 , g(x) = 4 x 3 - 3x , x e R , probar que fog = gof

Si ffa+1) = 3x+l , g(x) = 2x-3 , hallar (fog)(x+l)

© Sean f ( x ) =Jx2 , <1- x 3 , x > 2

g(x)-- x ,x < 2 2x , x > 4 ’

hallar gof

Hallar fog y gof si existen , donde

1f ( x ) =

x e < - U > f[|x |] , x e [0,1 >x — 1 , g(x) = '

l'Jx2 -1 , X G [1,3 >|x 2 + 1 1 , x e< 1,2 >

Hallar ( f o g oh)(x) si f ( x ) = x 2 +2x + l , g(x) = x - 2 , h(x) = x - 3

Sean f(x) = ax + 2 , g(x) = x —6 , a ^ O , b * 0 si fog = gof hallar b(a-l)

Sean / M - P ” 1 • y J * V l ] - 2 | * l , >i J l < x i O[ x / 2 , 4 < x < 6 ( x [ |x - 3 |] + 2 , si 2 < x < 4

Hallar fog si existe

Dadas las funciones f y g definidas por: / (x)

2

[ 1 ^ 1 ] , * 6 < - U > 3 - x

Vx2 + 2x , x e [ l , 2 >

g(x) = x — 1 ’ 'Y ef Calcular (fog)(x) y (gof)(x)|- 1 | , x e < 0 , 3 >

íx , x e [-3,0]Determinar gof sí f ( x ) = \ , , g (x) = x - 1 5 , x e < - 1 0 , 9 ]

| x¿ , x e< 0,5]

Sean / ( x ) = [ |x |] y g(x) =[|x - 4 | ] , x > 0

. Hallar: h(x) = ¡\ (fog)(x2) , x < 0

x* , x < 0 \(g<>f)(4x) , x > 0

SiF(x) = ctgx y g(x) = cosecx encontrar una función f tal que F(x) = (fog)(x)

Page 303: Espinoza Ramos 1

Relaciones y Funciones 289

¿0/ Si (gqf ) (x+2) = 2x~ - x y f(x—l) = x —2 Calcular g(x).

5 ^ Si ( f o g ) ( x - \ ) = x 2 - 2 x y g(x) = x + 3 Determinar ffa).

52) Dadas las funciones f.g: R ------» R, definidas por:

f(2x + 3) = 4 x + l y g(.x)=JC2 + 3 . Determinar (fog)(x) y (gof)(x)

^ 3) Si F(x) = (1 — cos2x) secx y ffx) = senx. Hallar una función g tal que F(x) = (gof)(x)

54) Si F(x) = eos2 x y f (x) =— , hallar una función g tal que F(x) = (fog)(x)' l + JE"

55) Si F(x) = sen 2x y g(x) = eos x , encontrar una función f tal que F(x) = (fog)(x)

56) Determinar gof si, f ( x ) =

0 , jc < 0

.r2 , x e [0.1] , g(x) = 0 , jc > 1

1 , jc< - 0 2x , x e [0,1] 1 , x > l

51) Si K x) = 4 x - x ~ , 0 < x < 7 , g(x) = -jV 4 , x 0 , hallar (gof)(x)x + 2 , x > 2

58) Si (goi)(x) = x+2 , 1(x ) = jc3 + 6 x 2 + 12jc+8 /hallar g(x).

59) Dadas las funciones / ( jc) = j jc2 - 1 1 y g(x) = - j 9 - x 2 . Determinar (gof)(x)

[| x - 1 1], 0 < jc < 3 x + \^ Si / ( * ) = •{ r~----- —- y g(x) = — determinar gof

-v/i 1 — JC I —2 , JC > 3 JC-4

. [ 2jc -1 . - 4 < x < 4 ,61) Hallar fog , siendo / ( jc ) = i , # ( j c ) = j c - 2 jc

■ [[|JC|] , x> 4

62) Si g ( 2 - x ) = y (gof)(x) = 2x-1, hallar f(x)

Page 304: Espinoza Ramos 1

290 Eduardo Espinoza Ramos

2.Y + 1 , si X

SÍ / (Y)= - 2.v , si X

0 si X

a/[I*I]24 U |]. Hallar gof si es que existe.

Sean las funciones f y g definidas por:

, si x < -2f i x ) = 1 — X

(x + 2)2 , si x e [-2,-1]gix) ■■

|x + 6 |l-v + 3 | - 3

a/ 5 ~ - 2

, si X €< -4 ,-1 >

, si x e< -1,5 >

Hallar las funciones (fog)(x) y (gof)(x)

Sean las funciones f y g definidas en R, tales que:

f i x ) =x+2 , x < l

(x -1 )2 +3 , x> 1gix) =

\ x 2 - 2 . x > 2 x - 5 , x < 2

Hallar las funciones (fog)(x), (gof)(x)

Sean las funciones f ( x) = \X ' A < *, g(x) = i x ' x _ Hallar gof' - x , x > 2 [2x , x > 4

Hallar gof, si f y g son funciones reales, tales que:

, x 2 +1 , X < 1 , [x — 1 , x < 2f i x ) = \ , y g(x) = \

- x 2 , X > 4 l 2 , x > 4

Sean las funciones f y g definidas por:

/ (x) = | 'V Sí y g(x) = \ X 1 ’ í < .2 - Hallar fog y su rango- x +3 si x >3 i 2 , x > 4

Sean las funciones f y g definida por:

j x 2 + l , x < l íx ' - 4 , x e [0,4]f i x ) = \ , y g(x) = -¡ . Hallar fog

- x 2 , x > 4 0 . x e< 4,7 >

Page 305: Espinoza Ramos 1

Relaciones y Funciones 291

70/ Dada las funciones f y g definidas por:

\ x +1 , x < l x - - 4 , x e [0,4]./(*) = y g(x) = 1 J

- x , j c> 4 o , x e < 4 , 7 >

7 u Dadas las funciones f y g definidas en R por:

f ( x ) =

s i g ( \ x - - 4 \ ) si | JCI <3

.y+ 6 si x e< 3,9 > y g(x) = 3 , x e <-oo,9>

j c +10.c + 21 si [ jc —3 1 > 6

Construir la gráfica de f + g, indicando explícitamente su rango.

+1 , x < ^ 372) Hallar fog, siendo / ( jc) = • y g ( x ) = | ^ 2 ~ 2 x s i x ( x - 2 ) > 0

x>^¡3 [ [ | j c | ] si j c ( j c - 2 ) < 0

r, „ r • , f , , ] x Sl x e<_00,l] , . Jjc2 - 4 , x e 0,473) Hallar fog, siendo: f ( x ) = \ y g(x) = < J1 si x e< l,+oo > 0 , j ce<4,7>

74) Hallar fog siendo: f ( x ) =2x + l , —3 < jc < —1

-1 <* <1 y g(x) I jc2 - 4 , x e [0,4]0 , jce< 4 ,7 >

- , jc > 1JC

75) Dadas las funciones / ( jc) = -

composiciones fog y gof.1 + JC

y g(x) = 1 - x determinar los dominios de las

76) Si g ( 2 - x ) = 4 x - \ y (g o f)(x) = 2x - 1 , Hallar la función fi(x)

77) Dadas las funciones / ( jc) :1 —x

y g(x) = 1 — x, determinar los dominios de las

composiciones fog y gof y sus reglas correspondientes.

Page 306: Espinoza Ramos 1

292 Eduardo Espinoza Ramos

78) Hallar (fog)(x) sí: f ( x ) =

^82

©

©

2jc + 1, —3 < jc < —1

1. —1 < JC < 1 , g(x) =

- , x > \X

-1 . .v < O 3jc + 2. jc > O

Si /'(jc) = -Jx2 -1 6 y g(x) = —-— , Hallar (fog)(x)jc + 2

_ _ , jc2 +3 jc, .v/ jc< 3 f3 — jc, si x < \Sean las funciones f y g definidas por: f (x)=< , g(x) ■

\ - x +3, si jc>3 5 —jc, si jc>1

Hallar (fog)(x).

1Si /(* ) =

, x e < - 2 , 2 > f [ | x — 1 1], jc e [0 ,1 >jc -2 , g(x) = < ¡—— Hallar (fog)(x) si es que existe

n/jc -1 , x e [1,3 >\2x2 +3|, *e<2,3>

Si / ( jc) = jc2 + 2 jc + 2 . hallar la función g(x) tal que (fog)(x) = x 2 - 4 jc + 5

Tj ■> JCG<-00,1] JJC - 8 . JC<0Hallar (fog)(x) si / ( * ) = { , g(*) = -L „ „

■1, x e<l,+oo> [[|jc|], jc> 0

í[ |jc —11], 0 < jc<3 jc-t-1Si /(.c) = { ,--------■— y g(x) = — ~, calcular (gof)(x)

(- /l 1 — jc| —2. jc > 3 x - 4

Sean f y g dos funciones, tales que: / ( jc) =

2

[ l ^ - ^ l ] , x e < - l , l > 3 —x ,

■yjx2 +2x, jc e [1,2 >

, jcg [ -2 ,-1 > . .x - l . Hallar fog, si es que existe.| jc — 11, x e< 0,3 >

Si H(x) = ' j x 2 - 2 jc + 3 y (HoF)(x) =-J[\x\]+3 calcular F(x)

íx -1 , x e [0 ,l] [jc3, jc e [—1,1] „ „Dados f (x) = \ , , g(*) = 'í .H allar

[ j r + 1 , xe<-oo,0>u<l,+oo> [2jc + [ | jc|]jc- , . c e [3,4]

(fog)(x) si es que existe.

Page 307: Espinoza Ramos 1

Relaciones y Funciones 293

2J1 FUNCIONES; INYgCTIVAS» S m m C 'm A B Y BIY1QWA&~

a) Función Inyectiva.-

La función f: A -» B es inyectiva (univalente) si a cada elemento del dominio le corresponde un único elemento del rango, es decir, si existen dos elementos

xx x 2 e D r distintos x x * x 2 cuyas imágenes son distintas f { x x) ± f ( x 2) loque

es equivalente a decir:

Si xx, x 2 e D f : f ( x x) = f ( x 2) => x x = x 2 que es la forma más práctica para ' * * t

determinar si una función es inyectiva.

Ejemplo.-

f función inyectiva f no es inyectiva

Ejemplo.- Determinar que la función f(x) = 5x + 3 es inyectiva.

Solución

f es inyectiva sí f { x x) = f ( x 2) => x¡ = x 2

f ( x x) = f ( x 2)=> 5xx +3 = 5x2 +3 x x = x 2

f ( x ) = 5x + 3 es inyectiva

Observación.- En forma gráfica se puede determinar si una función es inyectiva o no, para esto tracemos una recta paralela al eje X, si dicha recta corta a la

gráfica en dos partes o más, entonces la función f no es inyectiva y si corta en un solo punto, entonces la función f es inyectiva.

Ejemplo.- Si f ( x ) = x 2 y g(x) = 4 x

Page 308: Espinoza Ramos 1

294 Eduardo Espinoza Ramos

b) Función suryectiva.-

La función f: A -> B, es suryectiva (o sobre) si y solo si, V y e B, existe x e A tal que y = f(x); esto quiere decir que todo elemento de B es imagen por lo menos

de un elemento de A es decir que f: A B es suryectiva si R f =B

Ejemplo.- La función f: [0,qo> -» [0,oo> tal que f ( x) =-Jx es suryectiva puesto que R f =[0,*> >

Ejemplo.- Determinar si la función f(x) = 3x+5 es suryectiva.

Solución

Como f: R —> R / f(x) = 3x+5

y — 5 v — 5y = 3x+5 despejamos x es decir jc= - - Luego V y e R, 3jc = — —

y — 5 y - 5Tal que f ( x ) = / —) = 3(—-—) + 5 = y entonces f es suryectiva.

c) Función Biyectiva

La función f: A -> B se llama función biyectiva, si la función f es inyectiva y suryectiva simultáneamente.

Page 309: Espinoza Ramos 1

Relaciones y Funciones 295

xEjemplo.- Determinar si la función f: [0,2> -> <-co,0] tal que / (x) = ------ es biyectiva.

x - 2

Solución

i) Veremos si i' es inyectiva, es decir: f ( x ) = f ( x {) => x = xx

=> x x¡ —2x = x¡x-2x¡ x - 2 Xy~2

—2x¡ = -2x-¿ => jtj = x 2 por lo tanto f es inyectiva.

ii) Ahora veremos si f es suryectiva, para esto es suficiente ver si el rango de f coincide con el conjunto de llegada.

>■ = — ^ x = ~ e[0,2>=> 0 < - ^ < 2 x - 2 y - 1 y - 1

0 < - ^ - < 2 <=> 0 < - ^ - a - ^ - < 2 •» 0 ^ ——— a —-— <0y —1 y —1 y - 1 y —1 y —1

. — yo 1 1

y e <-oo,0], luego R f =< -oo,0] entonces f es suryectiva.

Como f es inyectiva y suryectiva entonces f es biyectiva.

2.22, FUNCIONES CRECIENTES» DECRECIENTES Y MONÓTONAS.

a) Función Creciente.

La función f se llama creciente si para todo x x, x 2 e D f se tiene:

Page 310: Espinoza Ramos 1

296 Eduardo Espinoza Ramos

4

f (x 2 )Y

f(* l) / I / 1 / 1 ^ 1 !< X1 x 2 X

b) Función Decreciente.

La función f se llama decreciente si para todo par x x, x 2 e D f se tiene:

c)

d)

Función Monótona.

La función 1' se llama monótona si la función f es creciente o decreciente

Teorema.- Si una función f es creciente, entonces f es inyectiva (univalente).

Demostración

Sean x¡ , x2 z D f , tales que x x * x 2 , de donde se tiene x x < x 2 ó x 2 < x x

Si x x < x 2 entonces f ( x x)< f ( x 2) por ser f creciente

y = f(x)

Page 311: Espinoza Ramos 1

Relaciones y Funciones 297

Si x 2 < entonces f ( x 2)< f (x{) por ser f creciente

Por lo tanto en ambos casos se tiene f ( x ¡ ) * f (x2) es decir, si x, * x 2 entonces

/ (x¡) * f (x2) ■ Luego la función f es inyectiva.

e) Teorema.- Si una función es decreciente, entonces f es inyectiva (univalente).

Demostración

La demostración se hace en forma similar al teorema anterior.

2.23 CALCULO DE RANGOS DE MONÓTONAS.-______________

Cuando las funciones dadas son inyectivas su rango se encuentra en forma muy práctica de la siguiente manera:

Sea la función inyectiva cuyo D f = [a, b] entonces se tiene:

Si f es creciente se tiene: R r = [ f ( a ) , f (b)]; Fig (a)

Si f es decreciente se tiene: R f = [ f ( b ) , f (a)] ; Fig(b)

Ejemplo.- Calcular el rango de f ( x ) = x 3 para x e[-2,2].

Solución

f es inyectiva y creciente entonces R f = [ / ( - 2 ) , / ( 2 ) ] => R f - [-8,8]

Page 312: Espinoza Ramos 1

298 Eduardo Espinoza Ramos

2 ¿ á ' : m v N c i m ^ m s m

a) Definición.- Consideremos la función: f = { ( x , f ( x ) ) / x e£>/} condominio

D f y rango R f entonces diremos que existe la función inversa de f.

si y solo si, f es inyectiva.

A la función inversa de f denotaremos por f * ó / 1, la cual es definida en la forma

siguiente:

donde: D r, = R f y R¡> = D f

Ejemplo.- Consideremos una función inyectiva f= {(1,3),(2,5),(4,7),(6,9),(8,11)}

entonces la función inversa de f es: / * = {(3,1),(5,2),(7,4),(9,6),(11,8)}

donde Df . = {3,5,7,9,11} = R r y Rf , = [1,2,4,6,8} = D f

b) Gráfico de la Función Inversa

Consideremos una función f y su inversa / * , el gráfico de la función inversa / *

es simétrica a la función f con respecto a la función identidad I(x) = x por tal motivo dicho gráfico se obtiene por reflexión con respecto a la recta I(x) = x.

Page 313: Espinoza Ramos 1

Relaciones y Funciones 299

c) Propiedad Fundamental de las Funciones Inversas

Sí f: A->B es una función inyectiva y / * : B-»A es la función inversa de f entonces:

d) Cálculo de la función Inversa

Sea f: A-»B una función inyectiva, entonces a la función inversa f * : B -> A se

puede hallar resolviendo la ecuación Wíí$:

Ejemplo.- Hallar la inversa de la función fl¡x) = 7x + 3

Solución

f ( f * ( x ) ) = x => l / * ( x ) + 3 = x f * ( x ) =x - 3

También la inversa de una función inyectiva se puede obtener en la forma siguiente:

Ejemplo.- Hallar la inversa de la función f(x) = 5x-3 s íx e[0 ,5 ]

Solución

Como y = fl[x) => y = 5x - 3, x e [0,5]

Page 314: Espinoza Ramos 1

300 Eduardo Espinoza Ramos

v + 3Primeramente se despeja x: x = ■ , x €[0,5]

Luego se determina la variación de y

x = ^ Í ^ e [ 0 , 5 ] => 0 < ^ - < 5 => 0 < y + 3 < 2 55 5

-3 <>-<22 => y e [-3, 22]

y 4-3x - ------ ,y e [-3 ,2 2 ] , ahora permutaremos x por y es decir:

y = , x e [-3,22]. Por lo tantof * ( x ) = ■ , x e [-3,22]

2,25 FUNCIÓN IN\ ERS A D I UNA COMPOSiCIÓR-

Si dos funciones f y g son inyectivas y la función composición f o g existen entonces la función f o g es inyectiva por lo tanto tiene inversa (f o g)* en este caso tiene la siguiente propiedad, (fog )* = g * o P

( 7 ) Determinar si la función es inyectiva f ( x) = ,\ 3 x 3/2+2xU2

Solución

Simplificado 3jc37 2 + 2 xXí 2 = -Jx(3x + 2) de aquí se tiene que x>0 => |x| = x entonces

2 ¡x \+ x + 2 _ 3x + 2 _ 1

' X ~ U x 3/2+2x 1/2 Í 4 x ( 3 x + 2 ) ~ ^

debemos probar que f(a) = f(b) => a = b con lo cual se determina que es inyectiva.

f(a) = f(b) => -1= = —!= => a = b. Por lo tanto f es inyectiva.Va Vb

i

Page 315: Espinoza Ramos 1

Relaciones y Funciones 301

Demostrar que f es in>ectiva donde f (x ) =5X , V x e R.

Solución

Debemos probar que: f(a) = f(b) => a = b

fía) = ftb) => 5a =5* => a = b

Por lo tanto f es myectiva.

© Dada la función f ( x ) = x + 'Jx2 + 7 , x e [-3,3]. demostrar que f es inyectiva.

Solución

Probaremos que fía) = f(b) => a = b

fía) = ffb) => a + 4 a 2 +7 = b + 4 b 2 +7

a - h = 4 b 1 +7 - 4 a 2 +7 , elevando al cuadrado:

(a - b ) 2 = ( 4 b 2 + l 4 a 2 + 7 )2

ab+1 = 4 a 2 + 7 4 b 2 +1 , elevando al cuadrado:

0 2/>2 +14a/> + 49 = a 2í r + 7 o 2 + 7 / r+ 4 9

a 2 - 2 a b + h 2 = 0 => ( a - b ) 2 = 0 =>a = b .*. fesinyectiva

© La función f: R —►[(),+*> definida por /(jr) = 5jc 2 . ¿Es f suryectiva?

Solución

Debemos de comprobar que: V y e[0,+*>> , 3 x e R tal que f(x) = y

pero como y = 5x2 => x = ± 4 y / 5 .entonces:

3x = ±V>’ / 5 , y e [(),*> tal que / ( x ) = f ( ± 4 y / 5 ) = 5( ± 4 y T x ) 2 = y

/ . f fx ) = y => f es suryectiva.

Page 316: Espinoza Ramos 1

302 Eduardo Espinoza Ramos

Determinar si la lünción f { x ) = x +1 - [ | x |] , x e R es inyectiva.

Solución

Definimos él [| x | ] , V x e R

[| .v |] = k <=> k < x < k + l , k e Z . Luego la función f(x) queda definida

fix) =

x + 3 , x e [-2 ,-1 >x + 2 , x e [ - l , 0 >

jr + 1 , x e [0,1 >

Luego la función f(x) es la unión de una familia de funciones lineales donde cada una de las cuales es inyectiva, es decir:

f ( x) = x+l-[| x|] => f(x) = x + l - k

Probaremos que si f(a) = ffb) => a = b

ffa) = fíb) = > a + l - k = b + l - k => a = b

Por lo tanto cada función f(x) sea inyectiva falta ver que la intersección de los rangos de dos en dos es el vacío.

f k (x) = x + \ - k

x £ [ k , k + l > = > k < x < k + l => k + l < x + l < k + 2 => l < x + l - k < 2

1 < f k (x) <2 y e [1,2> => Rfi =[1,2 >tf

C ^ f k W =[1,2 >±<j). por lo tanto f(x) no es inyectiva.*=i

Page 317: Espinoza Ramos 1

Relaciones y Funciones 303

(ó ) Determinar sí la función f: <-4,3]----- > [-9,13> definida por f(x) = -2x + 1 es biyectiva.

Solución

Veremos si f es inyectiva, es decir: / (x ,) = / ( x 2) => x¡ = x 2

f f ( x , ) = -2 x , +1<' => -2x, +1 = -2 x 2 +1 => x, = x 7 . Por lo tanto f es inyectiva.[ / ( x 2) = -2 x2 +1

Ahora veremos si fe s suryectiva, es decir: Rf = [-9,13 >

1 — yComo y = - 2 x + l => x = e< -4,3]

- 4 < - —- < 3 => - 8 < l - y < 6 => - 9 < - y < 5 => - 5 < y < 9

.•. R, = [-5,9 >* [-9,13 > , por lo tanto f no es suryectiva,

Luego la fimción f no es biyectiva.

( 7 ) Determinar el dominio de la función / ( x ) = x 2 -6 x + 8 para que la función f sea

biyectiva.Solución

El dominio de una función cuadrática para que sea inyectiva se determina completando cuadrado es decir:

" Y

\ y = f(x)/ ( x ) = x 2 —6x + 8 = ( x - 3 ) 2 -1 que es

una parábola con vértice en el punto (3,-1) por lo tanto f es inyectiva si D r = [3,+oo > ó para D f =< -°o,3]

0-1

® Si existe f o g, donde f y g son inyectivas. Demostrar que f o g es inyectiva.

Demostración

Page 318: Espinoza Ramos 1

304 Eduardo Espinoza Ramos

Como f y g son inyectivas, entonces:f ( X ! ) = f ( x 2 ) g (x3) = f ( x 4)

X: = X 2 ... (1)

x3 = x 4 ...(2 )

Probaremos que í' o g es inyectiva, es decir:

(fog)(x 1) = ( fog)(x2) => Xj = x 2

(/og)(*l) = (/og)(*2) => /(g(*l)) = /(g(*2))

=> g(xt ) = g(x2) , por ser f inyectiva.

=> x, = x , , por ser g inyectiva.

Como (fog)(xx) = (fog)(x2) => Xj = x2 , enlonces f o g es también inyectiva.

( 9) Si f: R -----> B es una función suryectiva. Tal que f(x) = |x — 3| - x, Hallar el conjunto B.

Solución

Luego a la función f expresaremos así: / (x) =

Donde Df =< - 00,3 > u [3,+00 > , ahora calculamos el rango

Si x > 3 => y = fix) = -3 => y = -3

R f = < -3 ,+00 > u {-3} = [-3 ,+00 >

Por lo tanto la función f es suryectiva cuando: B = [-3,+®>

Si la función f es creciente en todo su dominio demostrar que f es inyectiva.

Solución

Page 319: Espinoza Ramos 1

Relaciones y Funciones 305

Aplicaremos la definición siguiente de función inyectiva f es inyectiva, si xx x2

implicaque f ( x x) * f ( x 2) , V xi,x2 eZ)y

Como jcj *■ x 2 => JCj < x 2 V x 2 < x x pero f es creciente entonces:

/ (x , ) < f ( x 2) V f ( x 2) < f { x x) de donde f ( x x) * f ( x 2) por lo tanto f es inyectiva.

Demostrar que la función f es inyectiva, donde: / ( jc) =

Solución

2 • „—¡= , si jce<4,+oo> y x

— x ~ , si x < 0

2 ,Primeramente veremos si f x (x) = y f 2(x) = -x~ son inyectivas.

2 2V Xj , x 2 GDfi f i ( x 1) = f 1(x2) => - = = - = => x x = x 2V*i y x z

Por lo tanto f x (x) es inyectiva.

V x , , x 2 e Dfi => f 2(Xj) = f 2(x2) => -x!2 = - x 2 => X! = x 2

Por lo tanto f 2 (x) es inyectiva.

Ahora veremos que R f¡ A R f = 0

„ „ 2 4Para x e < 4 ,+ oo> => y = —== => x = ——

Vx y ■

4 4 ,x = — e<4,+oo> => —r-> 4 => <1 =5. y e <0,1> => R f = < 0 , l >

^ .. ‘

para x < 0 => y = - x 2 => x = - s [ ^ y < 0 => - J - y > 0 => -y > 0 => y <0

R r = < —oo,0 >Jl

Page 320: Espinoza Ramos 1

306 Eduardo Espinoza Ramos

Rf a Rfi = < 0,1 > a < -oo.O > = (

Por lo tanto es inyectiva.

{ /_ ^ 3 X < 0

- 5 x 2 + 7 x -3 , x > 0

Solución

La función f x (x) = V ~ x3 , x < 0, es inyectiva.

La función / 2(x) = -5 x 2 + 7 x -3 , x > 0 no es inyectiva. Por lo tanto la función no es

inyectiva.

, Í2x + 1 , x <0Hallar la inversa f (x) si existe, de la función f definida por: f ( x ) = \ 9

[x +1 , x > 0Solución

Graficandoa la función f(x) se tiene: Si x < 0 => Rj- = < -°o,l]

x > 0 => R f = < l,+oo > además cada función f x (x)

y / 2 (x) son inyectivas, y como a R ( =<¡>

Por lo tanto existe la inversa de f(x). Ahora calculamos la inversa de fi(x)

Si x < 0 , / j(x ) = 2x + l

» » x —1x g <-oo, 1 ], 2/j* (x) +1 = x , de donde f x (x) = ——- , x < 1

Page 321: Espinoza Ramos 1

Relaciones y Funciones 307

Sí x > 0, f 2(x) = x 2 +1

para esto: f 2( f , (x)) = x , x e <l,+oo>

f p (x) +1 = x , de donde f 2 (x) = - J x - l , x e < l,+«>

'je—1por lo tanto: / (x) =

, x < l2

~Jx- \ , x > 1

14) Probar que f ( x ) = 4-Jx - x para 0 < x < 1, posee inversa y hallar la función inversa si es

que existe.Solución

Para que f(x) tenga inversa debe de ser inyectiva y para esto debe cumplir que:

/(x,) = /(x2) = > x x = x 2

^ - x x = 4 j x 2 - x 2 = > - x 2 ) = 0

=> 4 ( ^ ’ - ^ 7 ) - ( ^ " - ^ /x 7 ) ( V * i" + ^ /* 7 ) = o

=> ( ^ - ^ K 4 ~ 4 x í - x 2) = 0

C o m o 0 < x ! < l => 4-^/x¡~-.^xj" * 0

Luego --4*2 ~ 0 => x, = x2 por lo tanto

f(x) es inyectiva entonces existe f*(x), ahora calculamos la inversa f*(x) para esto:

f(f*(x)) = x, x e [0,3]

despejando f íx ) se tiene: f * ( x ) = (2 + - j 4 - x ) 2 , x e[0,3]

— *[|1 —— |] si - 2 < x < 0

lx2 - l | - l si 0 < jc < 115} Hallar P (x) si existe donde f ( x ) =

Page 322: Espinoza Ramos 1

308 Eduardo Espinoza Ramos

Solución

©

Primeramente definiremos el máximo entero [ |1 - ^ | ] y el valor absoluto | x 2 - 1 1 en

cada intervalo [| 1 - |] = 1 + [| —j |] = 1 + 0 = 1

Como -2 < x < 0 => 0 < -x <2

o < - £ < i =>[|-£| ]=o

=> x ' - l = (x + l ) ( x - l )

Para 0 < x < 1 => | x 2 — 11 = 1—x 2 por definición

-1

Por lo tanto la función f(x) queda en la forma:

í - x si - 2 < x < 0 f ( x ) = \ ,

- x si 0 < x < l

Si -2 < x < 0 , / j (x) = - x , calculando su inversa

/i(./i* (x)) = x

x e < 0 , 2> , (x) = x , de donde f [ (x) = -x , 0 < x < 2

Si 0 < x < 1 , J'2 (x) = - x 2 , calculando su inversa / 2* (x)

Se tiene: / 2( / 2*(x)) = x ,-1 < x < 0, de donde - / 2*2(x) = x , - l < x < 0

f j (*) = V - x , 1 < x < 0

Por lo tanto la inversa de f(x) es: / * (x)

Hallar P(x) si existe donde / ( x ) =

x si 0 < x < 2

V -x si -1 < x < 0

2 1 x | +x + 2

3x3/2 + 2 x 1/2

Page 323: Espinoza Ramos 1

Relaciones y Funciones 309

Solución

Calculando el dominio para definir |x|

3jr3/2 + 2x 1' 2 - 4 x (3x + 2) de aquíx> 0 => |x| = x

Ahora simplificado se tiene: / (x) =2 \ x \ + x + 2 3x + 2 1

I 3x3/2 + 2xxn ’]¡-^(3 x + 2) V*

Determinaremos si f(x) es inyectiva: f(a) = f(b) => a = b (f es inyectiva)

W = W ~ a = b

Por lo tanto fi(x) es inyectiva entonces f(x) tiene inversa. Ahora calculamos la inversa.

f(f*(x)) = x

—-f-L ■-- - = x , de donde /* ( * ) = ~V4V 7 * w *

© Si f es la función definida por f ( x ) = -Jx2 +16 + 2x , x e [0,3] determinar si existe P(x).

Solución

Para que exista P (x) la función f(x) debe de ser inyectiva, es decir:

Sí fía) = f{b) entonces a = b

-Ja2 +16 + 2a = -\jb2 +16 + 2b entonces 2( a - b ) = -Jb2 +16 - V a 2 +16

para que sea f inyectiva debe cumplir a = b de donde

a —b = 0 => -Jb2 +16 — -Ja2 +16 =0

-Ja2 +16= J b 2 +16 => a 2 = b 2 => \ a \ 2=\b\2

=> |a| = |b| => a = b puesto que a , b e[0,3]

por lo tanto f(x) es inyectiva => 3 f*(x)

Page 324: Espinoza Ramos 1

310 Eduardo Espinoza Ramos

Ahora calculamos f*(x) mediante la ecuación: f(f*(x)) = x , x e [4,11]

V /* (x ) )2 +16 + 2 / * (x) = x => -\/(/* (x ))2 +16 = x - 2 / * (x) elevado al cuadrado

( /* (* ) )2 +16 = x 2 -4 x /* (x ) + 4 ( /* (x ) )2 => 3 ( /* (x ) )2 -4 x /* (x ) + x 2 -1 6 = 0

4x± J l ó x 2 -1 2 (x 2 -1 6 ) 4* + 2-Jx1 +48/ * ( x ) = ------ -i------------ ---------- - => / * (x) " ~■

2 x± V x2 +48 . . . 2x+J.2 x + ^ x 2 +48 . nf * ( x ) = -------- --------- •• / (x) = -------- --------- , x e[4,l 1]

IJ J Z 3 > 3’ Determinar si P(x) si existe.

x ' + 2 x - 3 , x e [ - l j >

Solución

Determinaremos si f(x) es inyectiva

S i x > 3 => /j(x ) = V x -3 donde = [0,oo>

S i/ j (x ,) = / [ (x2) =>-^x, - 3 = /x2 - 3 elevando al cuadrado => Xj = x 2 => / es inyectiva

Si —1 < x < 1 => / 2(x) = x 2 + 2 x -3 = (x + 1)2 - 4

Como -1 < x < 1 => 0 < x + 1 < 2 => 0 < (x + 1)2 < 4

=> —4 < ( x + 1)2 - 4 < 0 =í> /?/2 = [-4 ,0>

Si f 2(x1) = f 2(x1)=> (x¡ +1)2 - 4 = (x2 +1)2 - 4

=> (x¡ +1)2 = (x2 +1)2 => X] +1 = x2 +1

=> x, — x2 puesto que x j,x 2 e [ - l , l > . Por lo tanto f 2 es inyectiva.

Como Rft a. R f - [0,oo > a [-4,0 > = <!>.

Page 325: Espinoza Ramos 1

Relaciones y Funciones 311

Entonces f(x) es inyectiva y por lo tanto 3 f*(x)

Ahora calculando la inversa de cada función: / , ( /j (jc)) = x , x e [0,+»>

t/í./'i* (-V)) — 3 = x => f * (.v) = x 2 + 3, x e[0,+oo>

f 2( . /* (x ) ) = x , x e [-4,0>

(/ 2*(x))2 + 2 / * ( x ) - 3 = x => f 2 (x) = -Jx + 4 - \ , x e [-4,0>

■■■ /* ( * ) =Jx2 +3 , x > 0

Vx + 4 -1 , - 4 < x < 0

19) Si f(x) = 2x —3b , determinar el valor de b de manera que / ( / ; +1) = 3 f * ( b ~ )

Solución

Calculando la inversa de f(x): f(f*(x)) = x, x e D t .

2P(x) - 3b = x, x e D , * , de donde / * (x) = , x & D r,

como /'(b + \) = 3 f * ( b 2) , entonces 2(b + \ ) - 3 b = 3(— y ^ - )

3/?2 +1 16-4 = 0 => (3 b - l)(b + 4) = 0, de donde b = | , b = -4

, íx 2 - 8x + 7 .vi 4 < x < 7 V - 3 < x < -120P Sea J (x) = <{_____ . Hallar f*(x) si existe.

[V 7-2x si - l < x < 3

Solución

Anal izaremos sí J\ (x) = x 2 - 8x + 7 , J 2 (x) = s¡l - 2x es inyectiva

S í 4 < x < 7 V —3 < x < - l => / ,( x ) = x 2 -8 x + 7

./ ,(x) — x 2 -8 x + 7 = ( x - 4 ) 2 - 9

Page 326: Espinoza Ramos 1

312 Eduardo Espinoza Ramos

Si x, ,x 2 e D f¡ ; f \ (x ,) = /j (x2 ) => x, = x 2

(Xl _ 4 ) 2 - 9 = (x2 - 4 ) 2 - 9 => IXj — 4 12 = |x2 — 4 12

=> |Xj - 4 | = |x 2 - 4 | => x, = x 2 , puesto que |x - 4 | = x - 4

Sí 4 < x < 7 , |x — 4| — 4 — x s i —3 < x < - l . Luego f x(x) es inyectiva

Sí —l < x < 3 => / 2(x) = V 7 -2 x

Sí x x, x 2 eZ>/2 ; f 2(Xj) = f 2(x2) => Xi = x 2

- 2 x i 2x2 =í> 2xj = 2 x2 => x, = x2 . Luego / 2(x) es inyectiva.

Ahora calcularemos el rango de cada función.

Sí 4 < x < 7 V - 3 < x < - 1 => 0 < ( x - 4)2 <9 V - 7 < x - 4 < - 5

- 9 < ( x - 4 ) 2 - 9 < 0 V 16 < ( x - 4 ) 2 - 9 < 40, pro lo tanto Ry¡ = < -9 ,0 ] u < 16,40]

Sí —1 < x < 3 => - 6 < - 2x < 2 => 1 < 7 - 2x < 9 => l < ^ 7 - 2 x <3

Entonces =<1,3]

Como R r¡ a R f = <j> entonces f es inyectiva en todo su dominio.

Ahora calculamos f*(x)

/ , (/i*(x)) = x , x e <-9,0] u <16,40]

(/i*(x))2 -8 /j* (x ) + 7 - x = 0 ,x e <-9,0] u<16,40]

/j*(x) = 4 ± V x + 9

f i (x) =4 + Vx + 9 ,x e < -9 ,0 ]

4 -V x + 9 , x e < 16,40]

Page 327: Espinoza Ramos 1

Funciones y Relaciones 313

/ 2( / 2*(*)) = * ,x e <1,3] => ^ 7 -2 /2 * (x) = x ,x e <1,3]

/ 2*(jc) = 2 ( 7 - x 2) , x e <1,3]

Luego la función P(x) queda en la forma: f * ( x ) =

A + x + 9 ,x e< -9,0]

4 - J x + 9 , x e< 16,40]

l / 2 ( 7 - x 2) , x e< 1,3]

2.27 EJERCICIOS PROPUESTOS.-

O Sea la función f: [1,4] —> [a,b], tal que /(x ) = x 2 -2 x + 3 , Demostrar que f es inyectiva

y hallar los valores de a y b para que f sea biyectiva. Rpta. a = 2 , b = 11

( 2) Es inyectiva la función real f ( x ) =

( 3) Seaf: A -> <1,10] dada por f ( x ) =

xx 1 +1

4 -1 lx4 -2 x

a) Determinar A Rpta. <-*>,0]u[4,°o>

b) Mostrar que f es inyectiva

10 + 3*( 4) Sea f: A -» <-4,1J definida por / (x) = -10 — 2jc

a) Determinar A Rpta, <-00,0] u<10,oo>

b) Mostrar que f es inyectiva

3 + 4x© Sea f: A ->[-9,-l> dada por f ( x ) = -

3 - x

a) Determinar A Rpta. <0,oo>

b) Probar que f es inyectiva

c) ¿fes suryectiva? Rpta. no

Page 328: Espinoza Ramos 1

314 Eduardo Espinoza Ramos

( ó ) Dadas las funciones reales siguientes:

flx) = 3x + 2|x|, g(x) = ■ , x * 1 y h(x) = 3x + 7, p(x) = x + 2|x|x - l

¿Cuál de estas funciones es inyectiva?

^ 7) Demostrar que las siguientes funciones son inyectivas

a) f(x) = 3x —2, x > 0 b) f(x) = sen x, jc2 2

c) f ( x ) = ( x - h ) 2 + k , x > h d) f ( x ) = 2 - x i , x e R

e) /(jc) = V9+jc2 ,x >1. En forma analítica y gráfica

( ? ) Demostrar que la función f definida por: f ( x ) = 1 - - Jx2 ~ 4x - 5 , x < - 1 es inyectiva

( 9) Demostrar que J(x) = ——j , x * -2 es inyectiva

10J Sean f: A —>B, g: B -> c, demostrar que:

a) Si g o f es suryectiva entonces g es suryectiva

b) Si g o f es inyectiva entonces f es inyectiva.

La función f (x ) = J —— .¿Es suryectiva?U _ I «• '*■'

( 12) Sea f una función definida por: f (x) = — , x e < 0,2 > u < 2,00>w x 2 - 4

Determinar si f es una función biyectiva Rpta. si es biyectiva

^ 3) Determinar si la función f ( x ) = 6 x ~ x 2 - 5 es f inyectiva, si no lo es, restringir su

dominio para que sea inyectiva. Rpta. No es inyectiva

Page 329: Espinoza Ramos 1

Funciones y Relaciones 315

© Sea f una Junción definida por / ( x ) = —y—j-, D f =R . Es f una función inyectiva?

Rpta. f es inyectiva

( Í 5) Dada la función f (x) = —— Mostrar que f es inyectiva y graficarW ' ' (x -2 )(x -4 x -1 2 )

Sea f (x) = ——— + - —— -1 , x e <1,2>. Demostrar que f es inyectiva (ó univalente)x -1 (x -1 )2

17) Si se sabe que f(-1) = 4 y f(3) = -2 , donde f es una función lineal, hallar la ecuación que

define P(x) Rpta. /* ( * ) = +

1$) Sí f ( x ) = 2x+ c y / ( c ) = 2 / * ( c 2). Encontrar el valor de :

a) fíO). P(0) Rpta. -8 b) Rpta.- 4

© ) Si f(x) = 3x + 2a, Determinar los valores de a de modo que f(a2) = f*(a + 2)

Rpta. a -- l V a=\

20) Hallar la inversa f*(x) si existe para la función. f (x) = x 2 + 4x -1 , x e <-4,-3>

Rpta: / * ( x ) = - 2 - 4 x + 5 , x e [ - 4 , - l >

21) Hallar la inversa f*(x) si existe de la función, / ( x ) = x 2 - 2 x - l , x >2

Rpta. / * ( x ) = 1 + Vx + 2 , x > - l

(22) Hallar la función f*(x) si existe, para la función, f ( x ) = ( | x - 51 +l + x )V 5-x

Page 330: Espinoza Ramos 1

316 Eduardo Espinoza Ramos

l x2 + '2.x ■+■ 2, x 1Sí f ( x ) = < ’ . Hallar la función inversa de fi(x) si existe

x 3 + 4,x <1

Rpta. f *(x) =- 1 + Vx-T,x > 5

3- J x - 4 , x < 5

24) Sí la función f: <-1 ,!>-» R, definida por: f ( x )

(25) Hallar í*(x) si existe de:

\ - J b - X , X < 0a) f ( x ) = -

Lr + l , x > 0

1-1*1Hallar la inversa de f(x) si existe

R p ta . / * ( x) =1+ 1 * 1

í - x , x < 0 b) f ( x ) = \

\ - x , x > 0

C) f ( x ) = ( \ x - 3 \ + x y j 3 - x d) f { x ) =| x - 6 | + x + V x - 6 - [ | x - 4 | ] x + 6

-Jl - x

2x + 3 7 9Dada la función f ( x ) = ---------- , x e < — > . Hallar P(x) si existe.

' x - 1 2 2

® \ 2 - x \ , x > 2Sí f: R -> R tal que f (x) = \ , . Determinar la función inversa f*(x) si existe.

- j r < 0

28} Consideremos la función f definida por: f (x) =

x + 3, x < -3

/x 2 + 4 x - 2 , 0 < x < 3

74 - x

, x < 11

Determinar si f es inyectiva, si lo es hallar f*(x).

29) Sea f : R -» R tal que f ( x ) = ---- ----- , si f es inyectiva hallar f*(x)“ * ~ [ |* l]

30) Hallar la inversa f*(x) si existe de:

Page 331: Espinoza Ramos 1

Funciones y Relaciones 317

a) f ( x ) =

2x -1,JE < -1

4 x 1 ,-1 < x < O x + 4 , x > 0

b) f ( x ) =- j - x + 1 , X <1 jc-[x] , 1 <x <2 3jc-5 , x g< 2,4 >

c) . / ( * ) =| - 4 x ¿ , x < 0

!- ^ 4 - x 2 , O < x < 2d) / (x ) = í - ^ r ’- 3 S j f < 0

\3x , 0 < x <4

Dada la función / (x) =| jc2 - 4 1 , O < * < 2

------+ x - l , x> 24

Hallar P(x) si existe.

, f 2 V - x + 2, x < OR p ta : / * ( * ) = ] ---------

[ V 4 - jc, O < x < 4

© Dada la función / (x) =

2j c —1 , x < -1

4 x 2, -1 < x < O , Hallar f*(x) si existe. x + 4, x > 0

' x + \

R p ta : f * (x) =

, x < - 3

x - 4 , x >4

©. (x 2 + 2 x + 2 , j c < —1 „ _ . .

Dada la función / (x) = ___ , Hallar P(x) si existe.-V * + l , x > - \

R p ta . / * (x) =| — 1 — -v/x—T , x> 1

Ijc2 -1 , x < O

(34) Dada la función f definida por: f ( x ) =4 - x 2 + x + 2 + \ , - 1 < jc< 1 / 2

72 —JC + 1

2 < x < 4

Page 332: Espinoza Ramos 1

318 Eduardo Espinoza Ramos

Hallar f*(x) si existe. Rpta. f*(x) =jc + 5 i i

, — < x < — 3 5

. \ < x < - 2 2 2

I r + 4|Hallar la inversa si existe para la función, f ( x ) = ------------ , x e < - 2 , 0 > u < 0 , l >

U - l l - l

©

Rpta. f * ( x ) = -------- ,x e <-oo,-5> u < 1 ,*>* + 1

(3ó) La función f definida por la regla de correspondencia

f i x ) =J4 — 1 2jc + 27 , . « * < - 1 1

Lv2 +6jc + 6 , si x > 0. Demostrar que f es inyectiva y hallar P(x)

Rpta. P(x) = j ó —J x 2 +8x + 25 , x < 0

(Vx + 3 - 3 , x > 6

Sea la función f: R —>R, definida por: f ( x ) = [| x |]+ -Jx- [ \x |] , hallar P(x) si existe

Sea las funciones f y g definida por:

-Jx1 + 4 a' - 5 . 6 < x < 7

f i x ) =[ |jc|] , 9 < * < 10

Rpta. f * ( x ) = k + i x - k ) , xe [ k , k+ l >

jc -21 —13—jc| , 3.5 < jc < 7.5

(jc -8 )2 —9 , 7 .5< jc<9.5

x , 9.5 < jc < 13.5

Hallar (f + g)* si existe

(39) Dadas las funciones f y g definidas por: f ( x ) =

0, x < 0

jc2,0 < x < 2 , g(x) =

71, x > 2

2, x <0 4 x , 0 < x < \ — l,x > 1

Hallar (f o g)(x), determinar si es inyectiva en caso afirmativo, calcular (f + g)* (x)

Page 333: Espinoza Ramos 1

Relaciones y Funciones 319

40} Dadas las funciones / (x) ■x + 2

, x < - 2 y g(x) =

2x -1 2x + 2 , - 2 < x < 3

x + 2

x - 3, x > 3

Hallar f* o g Rpta. ( f*og){x) =

, - 2 < * < 3 - V ¡ 7-(2xz -1 2x + l)

2 ^ + 2

-Jx~3-^Jx + 2, x> 3

(41) Sean las funciones f ( x ) = ------ y g(x) = 3x —1. Hallar la intersección del dominiox + l

í* o g con el dominio de (f o g)(x). Rpta. R -{0 ,2}

42) Sí / ( x) = 3x - 2x + 5 , Df =< 1,4 > y g(x) = | x | + 3. Determinar el dominio de f*o g.

2 4Si f ( x - 2) = ------ . Hallar el valor de x que satisfaga ( / * o / ) ( —) = 2 .

jc + 3 ' x

Dada la función f definida por: / (x) =

Hallar f*(x) si existe.

\ x - 5 \+ 4 x + * J x -5 - [ |x |] x + 5- J ó - x

Rpta. f * ( x ) = 6x2 +5 x 2 +1

x + 4Si f* es una función biyectiva tal que / * ( ------ ) = D . Hallar el conjunto solución de la

3x

inecuación: / (c) >3x

jí + 4Rpta. x e <-4,-l> u <0,2>

@ Sean f ( x ) = x * + 2 , g l x ) - ——- si Hallar g*(a+5)x + 3 3

Rpta. - 1

47) Dada las funciones reales / (x) = 1+---X ■, g(x) = —, x ^ 0 . Hallar el dominio de f*og*x x

Rpta. <-1 , 1> - {0} = <-1, 0> U <0, 1>

Page 334: Espinoza Ramos 1

320 Eduardo Espinoza Ramos

48) Si f y g son dos funciones donde f(x-l) = 3x+2, g(2x+3) = 4x+4 . Hallar (g* o g)(x)

Rpta. £ * ± 2

49) Sea f: < - l , l > - > R , tal que / ( x ) = -— -— , analizar si f es inyectiva.

50) Hallar P(x) si existe, donde, / (x) =x +x , x > 5

I x , JC < —1

|x + (x2 +1)1/2 ,x > 151J Analizar la inyectibilidad de la función, / (x) - -i l------- 1 , en caso afirmativo

\ — y/ - x 3 +1 , x< -1hallar P(x)

52) Sea f y g dos funciones, tales que:

/(* ) =, x e < - l , l >

3 ~ x ; g(x) =4 x 2 + 2x , x e'[l,2 >

— - , x e [ \ 2 > .x -1 . Hallar f o g si es que existe.| je —11 , i e < 0 , l >

53) Hallar P(x) si es que existe de la función, / (x)x2 + 2 x - 2 , - 3 < x < - 2

U + 3 |lx-21-1 , - 1 < x < 1

x H" 2x “ 1 , x 5í 254) Analizar la inyectibilidad de tal función, /'(x) = -i ’ , en caso

‘ ( - x 3 , x > 2afirmativo hallar P(x)

55) Hallar f*(x) si existe donde

a) f ( x ) = <¡x + 4 x - 5 , x e [-2 ,l >

x - 5 , x e [5 ,+ * >b) f i x ) = •

|x ¿ +2x + 2 , x > l

x 2 + 4 , x < l

Page 335: Espinoza Ramos 1

Relaciones y Funciones 321

c) f i x )

e) / (* )

t) f i x )

g) f i x )

h) f i x )

O f i x )

j) f i x ) =

k) f i x ) =

I) f i x ) =

2 x - l , X € < - 0 0 , - 1 >

• 4 x 2 , x e [ - l ,0 ] d) f i x )=<x 4 4 , xe<0,+oo>

J x 2 - 8 x + 7 , x e < - 3 , - 1 > U < 4,7]

j / 7 - 2 x , x g [ - 1 3 >

x 2 + 1 0 x + 21 , x e [ - 7 , - 5 > £/ [—2, —1 >

•fx + l + l , x e < - l , 3 ]

J x 2 + 2 x + 2 , x e < - o o , - l >

|—\Jx +1 , x g [ - 1 , + o o >

- ( x 2 + 6 x + 8) , x e < - o o , - 4 ]

• x + 3 , x s < 0 , 3 >

■yfx — 1 , x e [10 ,+00 >

—x 2 — 4 x — 3 , x e < - o o , - 2 ]

3 + ^ , x g [1,+oo>

| —x 2 — 2 x , x e [ - 3 , - l >

¡2 + V 3 + 2 x - x 2 , x e [ - l , l ]

j 4 - - - \ / x 2 + 1 2 x + 2 7 , x < - l

[ x 2 + 6 x + 6 , x > 0

x 2 , x e [ l , 2 >

[ | A | ] + V x - [ | x | ] , x e [ - l , l >

- V - x , x e [ - 9 , - l >

— + 1 , x e [ - 4 , - 2 >2

V x + 2 , x e [ - 2 , 2 ]

Page 336: Espinoza Ramos 1

322 Eduardo Espinoza Ramos

0

©

11) f i x ) =

- 4 - ( x + 2)2 , J te [-5 ,-2 ]

2a[|x + 3|] , jc e < -2 ,- l>

2 + -Jx+ 1 , j t e < - 1 3 >

4 , x = l

ir2 -I r < —1 Í2.V-1 , JC<0Dadas las funciones f ( x ) = < ’ y g(x) = 1 r -|jc + 1 , x > - \ [-Jx , jc>0Hallar si existe fog*

Analizar si las funciones reales f y g son inyectivas

f i x ) =

- 2x +10 , x < 0

■Jx2 +16 , 0 < x < 3 , g(x) ■3 ,

, .v>3

- x 2 - U ) x - 2 1 , ,v e [-5 ,-l] U - 2 1 - 1

U + 3|, xe < 1,2]

x 2 - 4

Si g: A -> B y f: B -> C, son funciones inyectivas, demostrar que fog: A -» C es inyectiva.

59) Analizar la inyectividad de la función f ( x ) ■

afirmativo, hallar su inversa.

- x 2 , x < 0

-J - x J , x < 0

-5jc2 + 7jc-3 , x > 0en caso

Si / (x) = i probar si es inyectiva, si lo es, hallar su inversa.- , x > 0 x

¡ 2 - x 2 , - f 3 < x < 2 i— j---------Dadas las funciones f ( x ) = < --------- , g(x) = x - 4 1 -3 , x e <-oo,-4]

[ \ - ^ x 2 - 4 , x < - 4U<0.2] tal que f=h*og

i) Demostrar que f y g son funciones inyectivas.

¡i) Hallar la función h.

Page 337: Espinoza Ramos 1

Relaciones y Funciones 323

62) Dadas las funciones f ( x ) = —— , xe [ f l , 4 ] - {2> y g(*) = i ^ X< ^' x - 2 Lr + 3 . - 6 < x < 1

Hallar f*og si es que existe.

63J Determinar la inversa P(x) si existe donde / (x) =

x 2 - 4 , x < - 2

- V x - 2 , 2 < x <6 - 2x +10 , x > 6

[ -Jx - 3 , x > 364) Si f (x) = < . Determinar f*(x) si existe" ' x 2 + 2 x - 3 , x e [-1,1 >

x ~ —4 si x < -~265) Si / (x) = < ____’ " . Determinar P(x) si existe." l - V x - 2 , si x > 2

66) Hallar la inversa de f si existe donde / (x) =Jx + 2 x - 3 , x < 2

- x 3 , x > 2

67) Decir si f(x) es inyectiva, si es así hallar f*(x) donde / (x) =| x |, x < —1

2 - x 2, x > 11

2x, x < 368) Dado f (x) = < , probar que f(x) es inyectiva y hallar f*(x).

x ‘ , 3 < x < 5

69) Analizar si es inyectiva la función f ( x ) = x 2 -3 x + 2 , x e [0,+oo>, en caso que no sea,

determinar el dominio para que sea inyectiva y hallar su inversa.

70) Analizar si la función f ( x ) = x 4 - 2 x 2 - 3 , x > 2 es inyectiva, en caso afirmativo, hallar

su inversa.

© Sea / ( x) = |^ ^ _ ^ L A ^ , mostrar que fes inyectiva y hallar P(x).- V 3 - x , x < 2

Page 338: Espinoza Ramos 1

324 Eduardo Espinoza Ramos

x —3 1Si f (x) = ------- f -------- -— 1, x e <1,2>, analizar rigurosamente si f es inyectiva, en

x - i ( x - i ycaso afirmativo, hallar f*(x) y sus dominios.

73/ Encontrar f(x) y f*(x), si se sabe que:

[14)

Í75)

i) «■(-.•) = —---- r , (fog)(x) = 2x + 34x + l

ii) g(x) = 3x - 2, (gof)(x) = 2x + 4

x - 2Sean f ( x ) = 2x~ 4jc — 1, x e [l,+*>, g(x) = -——=- , xgR. Calcular (gof*)(x) si existe.

x +4

Si f ( x - l ) = 3x + 2, g(2x + 3) = 4x + 4, encontrar (g*oí)(x)

Calcular f*(x) si existe, donde: f ( x ) =x 2 + 4 x - l , x g< -4 ,-3]

|x + 4 |, x g< -2 ,0 > u < 0,1 >

J l ) Sean f ( x ) = — , x<-2 y g(x) =2 + x

2x2 -1 2 x + 3, jtg c-2,3]x + 2 _ ■ Calcular (Pog)(x), si existe

x - 3, jc>3

18) Hallar f*(x) si existe donde f ( x ) =

x + 2, x < 2

- j 9 x - 2 , x g< 23 >

( x - 3 )2 +5, x >3

Page 339: Espinoza Ramos 1

Limites y Continuidad 325

CAPITULO III

3 . L I M I T E S Y C O N T I N U I D A D .

3A INTRODUCCION^

La teoría de límites de una función es indispensable conocer la teoría puesto que es la base sobre el cual se dan los conceptos fundamentales del cálculo como son: la continuidad, la derivada, la integral, etc.. Antes de dar la definición de límite de una función daremos la idea intuitiva.

Sea L un número real y f una función definida en las proximidades del número “a”, no necesariamente en “a” y denotaremos por: lim f ( x ) = L y diremos que:

x->a

Cuando x se aproxima a “a”; f(x) se aproxima a L. ó para x próximo a “a”; f{x) está próximo a L. ó para x aproximadamente igual a “a”, f(x) es aproximadamente igual a L.

Ahora daremos algunas definiciones previas a la definición de límite.

a) Punto de Acumulación.- Sean A c R y jc„ e R , al punto x 0 le llamaremos

punto de acumulación del conjunto A sí y sólo sí, todo intervalo abierto de centro jc0 contiene por lo menos un elemento x * x n del conjunto A.

Page 340: Espinoza Ramos 1

326 Eduardo Espinoza Ramos

Ejemplo.- Si A = <-l,5> entonces 2 es un punto de acumulación de A, es decir:

-1

Sí A = [2,9> entonces 2 es punto de acumulación de A y también 9 es punto de acumulación, es decir:

- H — H -----------------2 9

Si A = [1,5] u <7,9] entonces 6 no es un punto de acumulación de A y tampoco “o” es punto de acumulación del conjunto A, es decir:

—(-----H ---- ]—(— -----J—1 5 6 7 9

Observación.- £1 punto de acumulación x () de A, no es necesario que dicho punto sea

elemento del conjunto A.

b) Función Acotada.- La función f(x) se dice que es acotada, si existe un número real

M positivo, tal que | f ( x ) \ < M , Vx e D f

Ejemplo.-' La función f(x) = cosx es acotada por que existen n = l , tal que: |f(x)| = |cosx| <1 = n.

3,2 DEFINIOION. -

Consideremos una función f : A c z R - > R (D f = A) y xQ un punto de acumulación

de A = D f , se dice que el número real L es el límite de f(x) cuando x se aproxima

a x() (x —> x t)) al cual denotaremos por: lim f ( x ) = L , si y sólo si para todo número

e > 0 (épsilon) existe otro número 8 (delta) positivo tal que, para todo

x e D r a 0 < | x ~ x {) | < 8 entonces | f(x) - L | < s

En forma simbólica

fám f {x) = L V £>0,3 $ >Q i Vx&Dr a 0 < f x - ¿j , j <<5 = » L \ < s

Page 341: Espinoza Ramos 1

Limites y Continuidad 327

a) Interpretación Geométrica del Límite

A cada parte de la definición de limite haremos su representación gráfica:

Y i

L + £ ■l Y

L

1 feL - E ■

i*0 X 0 x 0

-...—►X0

jt() en el eje OX

L en el eje OY

“ Y

L -

V e > 0

0 - fx(, —S x ° x n +¿>

0 < | .V - je,, | < 8 I fíx) — L I < £

Ahora consideremos un arco de la curva y = f(x) sobre el cual se ubica el puntoi-*»,

Page 342: Espinoza Ramos 1

328 Eduardo Espinoza h'amos

Como el límite de f(x) cuando x -> x0 es el número real L, es decir que pan

s > 0 (tan pequeño como uno quiere) debe existir un número 8 > 0 de tal mane)

i cada

ra quelos puntos (je ,/(x)), Vx e (x0 - 8 , x 0 + 8) , debe de estar en el interior del

rectángulo comprendido entre las rectas de ecuaciones: x = x 0 - 8 , x = x0 +<5,

y = L - e, y = L + e

OBSERVACION. De la definición de límite se observa que la función f puede no estar definida en x = x0 , sin embargo existe el limite, es decir:

lim f ( x ) =LX ~ * X () -

Ejemplo.- Considerémosla función /'(x) = —— donde f(x) no está definidax - 3

~ . , . . . . (x + l)(x -3 ) .para x = 3, sin embargo el l im----------------= 4 existe.

*-*3 x - 3

Ejemplo.- Aplicando la definición de límite. Demostrar que: lim 2x — 1 = 11x —>6

Solución

lint 2x —1 = 11 < > V c > 0 , 35 = 1/ si 0 < | x - 6 | < 5 => | (2x — 1) — 111 < ex -* 6

pero |f(x) — L| = |2x— 1 - 11| = |2x — 12| = 2|x — 6| < e < = > | x - 6 | < - ^ = 5

£Luego dado e > 0, tomamos 5 = — , se tiene:

Sí 0 < | x - 6 1 < S = => | J(x) - l l | = 2 | x - 6 | < 2(~) = £ => |f(x) — 111 < e

lim 2x -1 = 11A—»6

Ejemplo.- Aplicando la definición de límite. Demostrar que: lim x 2 - 3 x + 5 = 9a-*4

Page 343: Espinoza Ramos 1

Limites y Continuidad 329

Solución

l im x2 - 3 * + 5 ==9 » V £ > 0 , 3<5>0/.si 0 < | j c - 4 | < 5 => | (x2 - 3 + 5 ) - 9 ) | < £:r ~>4

pero | f ( x ) - L \ - |.v2 -3jc + 5-91 = | x 2 — 3jc—4 1 = |x + l1 |x - 4 \ ..-(1)

tomamos S¡ =1 para acotar |x+l| en efecto:

Sí |x — 4 |< 1 =? -1 < x —4 < 1 => 4 < x + 1 < 5 => | x + l | < 6 ...(2)

Luego de ( 1) , (2) se tiene: |f(x) - L| = |x + 1 ||x - 4| < 6|x - 4 | < e

£ £| x - 4 1 < — = S2. Por lo tanto tomamos S = min{ 1,—}

6 ' 6

£Luego dado e > 0 , 3 S = min{l,—\ se tiene que:

6

Sí 0 < |x - 4 | < 5 --=> |f fx )-9 | = |x + l | |x - 4 | < 6 |x -4 | < c .\ lim x 2 -3jc + 5 = 9*-->4

b) Método General Para Encontrar él 6

En la definición de límite de una función f(x) cuando x -> .v0 ( lim f ( x ) = L ) ,x -tx „

necesitamos probar que dado cualquier e>0, es posible encontrar un 5 >0 tal que sí:

0 < | jc—jc0 | < ^ =>| f (x) — L | < £

Para encontrar un 8 > 0 se hace de la manera siguiente:

1ro. Se descompone |f(x) - L| en dos factores, en donde uno de los cuales debe de ser | | es decir: \ f ( x ) - L \ = | g(x) ||x - x0 | < | h(x) \ \ x - x 0 \

2do. Se debe acotar |h(x)| < K , para algún K dentro de un intervalo

0 < | x - x 0 | < 5 ,, donde 5, se elige como cualquier valor que satisface la

relación 5, < | jc0 — a | (diferencia entre x f) y su asíntota)

En particular 5, = - j | x () - a \

Page 344: Espinoza Ramos 1

330 Eduardo Espinoza Ramos

Nota.- Si se tiene varias asíntotas se toman las diferencias de x 0 con todas las asíntotas,

luego se elige la menor de ellas y se toma <5j a la mitad de éste menor.

3 ro. Sí 0 < | x - x 0 | < (?! \ f ( x ) - L \< \h { x ) \ \ x - X q \ < k \ x - xü \< s de£

donde | x - xQ \ < — = S2

4to. Luego el 5 se escoge el menor ó mínimo entre <5¡ y S 2 es decir:c

<5 = m ín Jó ,,—1 1 k

5to. Se tiene: si 0 < | x - x0 \ < 5 \ f ( x ) - L \ < c con lo cual se prueba que:

lim f (x) = L

x + 3Ejemplo.- Aplicando la definición de límite. Demostrar que: l im :----- = 4

Jf-»5 x - 3

Solución

Por definición de límite se tiene:

lim = 4 o V c > 0 . 3 8 = ? / , si 0 < | x - 5 | < 5 => \l H-4\<e x~>5 X - 3 x - 3

es decir dado e > 0, debemos de encontrar 8 > 0 en términos de e, tal que:

0 < | x — 5| < 8 = > | ^ Ü - 4 | < e x - 3

Para encontrar el 8 > 0 se hace la forma siguiente:

\ f ( x ) - L \ = 1 - 4 - 4 1 = | ~ 3(* ~ 5) | = 31 — ~ [ | * ~ 51 . . . ( 1 )jc — 3 x - 3 x - 3

Ahora acotando la función | —-— | y para esto calculamos (5, = — 15 —3 1=1 de acuerdo. t - 3 2

2do. Paso del método establecido.

Page 345: Espinoza Ramos 1

Limites y Continuidad 331

| j r - 5 | < 5 , = l => -1 < x —5 < 1, sumando2 => 1 < x - 3 <3. invirtiendo

=> | - U < 1 ...(2 )3 x - 3 x - 3

Ahora reemplazando (2) en (1) se tiene:

| / ' ( x ) - £ | = 3 | - — | U - 5 | < 3 | j c - 5 | < e de donde | j c - 5 | < - = 5 , x - 3 3

£Luego se elige S = min{ 1, y}

Por lo tanto, dado c > 0 , 3 8 = m in{\,^) se tiene: Sí 0 < | x - 5 | < 8 => |f(x) —L | < e

x + 3 lim ------ = 4Jf—*5 X -3

XEjemplo.- Aplicando la definición de límite demostrar que: lim — ------------ = -1

'-»i 2x - 5 x + 2Solución

Por definición de límite se tiene:

lim — ------- = -1 o V e > 0 , 3 8 = ? / s i 0 < | x - l | < 6 = > | — — ------------ (-1 )| <e*->'2x --5x + 2 2x - 5 x + 2

es decir, dado c > 0, existe un 8 > 0 en términos de e.

Tal que 0 < |x - 1| < 8 entonces | — —----------- ( - l ) | < c2 x - - 5 x + 2

Para encontrar el 8 > 0 se hace en la forma siguiente:

| / ( , ) - ! | = | = — — 2 -----— Ijc-112 ... (1)2x~ - 5 x + 2 1 2 ,t-l || jc -2 |

Ahora acotado la expresión —— — -------- y para esto calculamos <5, de acuerdo al 2do.\ 2 x - \ \ \ x - 2 \

Paso del método general indicado donde sus asíntotas son | y 2 por lo tanto:

Page 346: Espinoza Ramos 1

332 Eduardo Espinoza Ramos

\x0 - a \ = \ l ~ \ = ± y U o - a I = | 1 - 2 | = 1

Al r)j elegimos la mitad de la diferencia menor.

1 , 1 . 15, = — | x 0 - a | - —(—) = —2 2 2 4

0 < |x — 11 <5, = — => < x - l < —1 4 4 4

3 5 I . , 3 5 . 3— < .v < — => — < 2x — 1 < —, — < x — 2< —4 4 2 2 4 4

1 1 4=> - < 2>2 x - l x - 2 3

Ahora reemplazando (2) en (1) se tiene:

| / ( x ) - Z , | = 2 ---- ---- .— -— | x - l | 2< — | x - l | 2< c dedonde: | x - l | < ^ ^ -12.x - 11 | x — 2 1 3 1 1 4

1 -JJcPor lo tanto el S = miu\—, — -} se tiene que: Si 0 < | x — 1 | <5 => | f ( x ) - L | < c4 4

A lint— ——-------= -12x -5 x + 2

Ejemplo.- Aplicando la definición de límite demostrar que: lim 2~Jx + 5 = 7X - - > \

Solución

Por definición de límite se tiene:

lim 2s[x+5 = 7 o V e > 0 , 3 8 = ? / s i 0 < |x — 1| < 5 => \2-Jx + 5 - l \ < cx >1

es decir dado í; > 0 existe un 5 > 0 en términos de e de tal manera que 0 < |x — 1| < 8

entonces 12 ^ x + 5 — 7 1 < c

Page 347: Espinoza Ramos 1

Limites y Continuidad 333

Ahora calculamos el 5 > 0 y para esto se tiene:

12~Jx + 5 - 7 |= 2 1 ~Jx - 1 1= 2 1 -p¡-— 1| * ~ 11 •••(!)V* +1

Luego acotamos la expresión ' * '-Jx +1

Tomamos ó', = 1 para acotar | —=l— | en efecto:*\lx +1

Si 0 < | x - l | <5 , =1 => -1 < x — 1 < 1 => 0 < x < 2

=> 0<- /x<- i / 2 => 1 <^[x + 1 < -Jl +1

1 < - J — <1 => 1 - 4 — 1<1 ...(2 )“sfl + 1 -yfx + 1 -yfx + 1

Ahora reemplazando (2) en (1) se tiene:

| f ( x ) - L | = 2 1-¡=— | | jc- 1 | < 2 | x - 1 | < £ de donde: \ x - \ \ < — = 8 V * +1 2

Por lo tanto el 3 8 = min{ 1,y} se tiene que: Si 0 < |x — 11 < 5 => |f(x) — L| < e

.*. / /w2^/x+5 = 7X—>1

x - - J l Í2Ejemplo.- Aplicando la definición de límite demostrar que: lim - ------ ¡=r = - , | —

— 0 2x + 3 V 3

Solución

Por definición de límite se tiene:

lim = 1 1 V c > 0 ,3 5 = ? / si 0< |x - 0| < 5 =>* ^ > 2 x + - j 3 V 3 2 x + V 3 V 3

Page 348: Espinoza Ramos 1

334 Eduardo Espinoza Ramos

es decir dado c > 0, existe 8 > 0 en términos de e de tal manera que 0 < |x — 11 < 8

, x —J l Í2entonces --------■== + ■»/—) <£

2 x + f 3 v 3

Ahora calculamos el 8 > 0 y para esto se tiene:

, x - J l . -Jl , +2-^2 , 1 „ ,2x + V3 ^3 V3 l 2^ + -V3 " Y| * " ( )

Calculamos S, = — |x 0 -a | = —| 0 - - — |1 2 2 2 4

1 4 1Ahora acotamos la expresión | --------¡= I, tomando 8, = —2 x + j 3 1 4

, . s 73 V3 ^3 V3 . S0 < \x < 8, = — = > ------ < x < — = > ------- <2x < —1 4 4 4 2 2

V3 , p¡ 3^3 2 1 2=> ---- <2x + 3 < ------ => = r< ---------= < - =2 2 3-V3 2* + -v/3 V3

* - ®

A 1 _ , . . . 4 / l v . , x~ s f2 V 3, -V3+2V2 2 ,

Ahora reemplazando (2) en ( 1) se tiene: | --------j= + —¡= | < -j=— . —j= \x \ < c2x + -v3 V 3 V 3 V3

| jc | < .... - j ' £ - p . = g 2 . Por lo tanto 3 S = min{— ,- '/— . 1 U I i c u n u - 1 ^ r— \

2(V3+V2) ' 4 2(V3+2V2)

3,3. EJERCICIOS PROPUESTOS.-

Mediante la definición de límite. Demostrar que:

( l ) Hm 3 x2 - x - 2 = 8 ( 2) lini3x2 +2x= 5.r->2 ^ ,r->l

Page 349: Espinoza Ramos 1

Limites y Continuidad 335

©©

©©

©

lim 4x~ + x - 4 = 10X-* 2

3 x - l 1l im ------- = —■'—•o x - 2 2

3 + 2x 8lint■V -»1. 2 5 — JC 9

lim x 3 - 3x2 + 3x -1 = 8jr-*3

lim 3.v1 - 2 x 2 + 2 x - 3 = -3 9A » 2

©

©

©

ío )

lim ax1 +bx + c = axl + bx() + c

lim ——- = -1*->0 x +1

lim — = -21x—*-i x + 8

lim x 3 + x 2 -2 x = 140.V—>5

13) lim x —13x3 + l l x 2 + x - 5 32

x ‘ +7x + 10 3lim —------------- = —x-*-2 x - 3 x - 1 0 7

15) lim1 1

r-*:' x 2 +16 25 © /im — — = 5*-*2 X - l

©

©

(TT)

2x4 - 6 x 3 + x 2 +3//wí------------------------ = -8*-»i x -1

19) lim -Jx +T = 2

^Í3x^ - ñ 1lint------------- = —•v-»2 3 3

lim -J- 2x = V2

lim l¡2¿ = \ T 2x—>\

lim \Í2x = V = 4

® lim 3 -V 3x =0v-*“*

18) //w

(24)

@

©

@

2x - 2*-»1 x — 1

= 4

20) lim -J2x = 2" -v—>2

22) lim a/x + 5 = 3.r-*4

lim ifx = -2

lim Vx — 8 = -5jr->27

lim l¡4 x -5 =3v->H

lim V2 - X 2" - Vx = O

Page 350: Espinoza Ramos 1

336 Eduardo Espinoza Ramos

3Í) lint -J lx - t f x = 2 (32) lim — = -)=1 W -Jx + Í s¡2

33) lim —- = — (34) lim —= L = r = -

(35) lim ■ — = 1 (3ó) l imX t } - 2< >0 ~Jx + 4 ^ ■' -’■i ~Jx

.37) lim = - (38) lim ^ ~ 2 1-f-»i je —1 2 *->4 x —4 4

3,1 < ® H n . r « * 7 - 3x-+2 x — 2 2 x-*5~v x~ — 9 4

41) lim , Y 1---- = 2 (42) lim ^ 2x + 1 3 1x~*i -yjx2 + 3 - 2 jc2 - 3 x - 4 15

43) lim X~ ]0 x+- = - l 2 (44) //w 4 -- = 3~>1 -7 4.c + 5 —4 *-»2 .v —2

45) lim x - — ¿ = - 3 4 (46) lim ^ ~ '^a 1■> *h ^ x + 3 •,->a * - a 2-Ja

47) lim ,v“[|jc + 2 |] — 0.5 (48) lim — - = -12^ r-o.s v- / ,-»2 1 jc | —2

(49) lim \ ¡ 4 - x 2 =a/3 (50) lim X_ ^ ?L—— = —4W v->i W *->i - j 9 - 5 x - 2

51) l im3 — Í=- = l (52) lim l x ^ + — =l.<->1 Vx jf—>1/3 y 9

lim • £ — - = 1 @ //w ^ ~ 4* ~ 3, ,My x +3 w -<-->-3 .v + 2

a > 0

Page 351: Espinoza Ramos 1

Limites y Continuidad 337

55) lim —— — —- = O (56) l im j* * +1 7jr-»4 X — 3 x —»v2 x 4 + l 5

57) lim 4x +1 = -5 © l i m x -+2x+- 2 = 22.V + 1 w -v_>o x 2x +1

59) lim_ íli -P-+ i -=:l (60) lim l 'X| - 1í - » v l 3 + x - x 2 jr- * - i x 2 + l 2

3.4. PROPOSICION.-

Sí x e R, |x| < e para todo c > 0, entonces x = 0.

Demostración

La demostración la haremos por el absurdo. Supongamos que x * 0, esto quiere decir

I x I| x | > 0. Ahora elegimos c, = — de donde e, > 0 y como |x | < c se cumple para

— de donde: | x | < —2 2

original la cual no es valida, por lo tanto se cumple que x = 0.

£¡ = — de donde: | x | < ^ => 1 < Vi (absurdo) y esto es debido a la suposición

3*5. PROPOSICION.-

Si lint f ( x ) = L y a < L < b, entonces existe un número 5 > 0, tal que: a < f(x) < bV—>.V„

para todo x e D f y 0 < |jr-jc0 | < ¿>

Demostración

Sea e = min {b — L, L — a} como a < L < b = > b — L > 0 , L - a > 0

Entonces e < b - - L y e < L — a (por ser mínimo)

Entonces e < L —a => a < L - e < L + e < b ..-(1 )

Además lim f (x) = L , entonces para dicho s > 0, existe un 8 > 0 tal que,x->x„ '

V x e D f A 0 < |-v — jc0 I < ¿>

Page 352: Espinoza Ramos 1

338 Eduardo Espinoza Ramos

Entonces |f(x) — L| < c => L —c < f(x) < L + e

Luego de (1) y (2) se tiene: a < L —e < f(x) < L + e < b,

=> a < f í x ) < b , V x & D , y 0 < |_ r-.r0 | <«5

■t ¿ T C A D r M A /IT V irT rvA T i fU f I IM T T F i

El limite de una lünción si existe, es único, es decir:

Si lim f ( x ) = L¡ y lim f ( x ) = L2 entonces = L 2x —>u x —>a

Demostración

Por la proposición 1.8 es suficiente probar que:

1Lx - ¿ 2 I < £ de donde Lx - L2 = 0 => Lx = ¿ 2

£En efecto para e > 0, consideremos lim f (jc) = Lx; para — > 0 , existe <5, > 0 tal que

x —>a' 2

£ £0 < \ x - a | < 5 , entonces| f ( x ) - L x \ < — , en forma similar lim f ( x) = , para — > 0 ,

2 x - >a' 2

£existe 8 2 > 0 , tal que 0< \ x - a \ < S 2 entonces \ f ( x ) - L 2 \< — además se tiene:

| Lx - L2 | = | (L, - f ( x ) ) + ( / ( x) - L 2) | < | f ( x ) - Lx | + 1 f ( x ) - L2 | < | + 1 = c

es decir: \Lx - L 2 \ < e para 0 < \ x - a | < 8 = min{8x, 8 2)

Por lo tanto: se tiene si e > 0 para 0 < |x — a| < 8

Se tiene | Lx - L 2 | < e y esto implica Lx - L 2 = 0 de acuerdo a la proposición 1.8 por

lo tanto: Lx = L2.

. . . (2)

V x e D r y 0 < |x - J t 0 | < £

Page 353: Espinoza Ramos 1

Limites y Continuidad 339

3.7. TEOKEMA.-

Si f y g son dos funciones tales que f(x) < g(x), V x de un intervalo con x * a, y

lim f (x) = L , lim g(x) = M entonces L< M es decir: lint f (x) < lim g(x)x~>a x x~*a x —>a

Demostración

Demostraremos por el absurdo. Supongamos que L > M entonces L - M > 0

Como lim f ( x ) - - L y lim g(x) = M , para r. = ——— , existen 8¡ >0 y S 2 > 0 tales.v > o' \ >í/ 2

f ( ) < \ x - a \<¿>, \ f ( x ) - L \ <r. \ L - e < f ( x ) < L + cque: ■ „ => , , . entonces < . . . ( • )

| 0< |jc — o | <¿>2 I - M \ < £ [M - £ < g(x) < M + £

Ahora tomando S = min{8l , S 2} y si 0 < \ x - a \ <8 entonces se cumple

simultáneamente (1) y como f(x) < g(x), por lo tanto 0 < |x - a| < 8, se tiene:

M - c < g(x) < M + e = L - e < f(x) entonces g(x) < f(x) lo cual es una contradicción

puesto que f(x) s g(x) y esto es debido a la suposición L > M por lo tanto debe cumplirse

L < M.

3.8, TBOREMA--

Si lim f ( x ) = L entonces existe 8 > 0 , tal que: para todo x e < a - 8 , a + 5>, x * a,x - -> u

se tiene |f(x)| < k para algún k real positivo.

Demostración

Como lim f (x) - L por definición se tiene, dado c = 1 existe 8 > 0 tal que para todox~>a'

x, | f ( x ) - L | < c = l siempre que 0<¡x — a¡<8.

Consideremos el mismo 8 > 0 y para x * a, un elemento del intervalo <a — 8, a + 8>

entonces: |f(x)| = |f(x) - L + L| < |f(x) - L| + |L| < 1 + |L|

Luego tomando k = 1 + |L| se cumple que: |f(x)| < k para x e <a - 8, a + 8>

Page 354: Espinoza Ramos 1

340 Eduardo Espinoza Ramos

i a DDADiFTt a n r c C A ito r i l u v n r c n c c iT v r ir u i v c

Sean f y g dos funciones tales que:

lint f (x) = L , lint g(x) = M y k una constante, entonces:

a) lint k = k b) lim kf (x) = k lini f ( x )x —>a x —*a x~>a

c) lim( f ( x ) ± g(x)) = lim j ( x )± lim g(x) = L ± Mx *a ' -V—>í/ ' x->a

d) lim f (x) .g(x) = ( lim f(x)).( lim g(x)) = L.Mx ~*u x —>a

e) l im—— = ------ ----- = — , si M * 0jt m g(x) lim g(x) M

f( . l i m f ( x ) ,f ) l i m ± ------- = — , si M * 0 , g(x)*0

,r->" g(x) lim g(x) M

g) lim( f (x))" = ( lim f ( x ) ) " , n entero positivo.jr tu x-+a

h) lim %Jf(x) - nflim f ( x ) = ' ¡L , V n par positivo.x->a Y x —fa

i ) lim | f ( x ) | = | lim f ( x ) | = | L \x->a x —>a

Demostración

a) La demostración es inmediata de la definición de límite, dado c > 0, existe 6 > 0, tal

que | f(x) — k | < e siempre que 0 < |x — a| < 8

Como f(x) = k entonces | k - k| = 0 < e siempre que |x - a| < 8, en este caso se

puede tomar cualquier 8 en particular 8 = e.

Page 355: Espinoza Ramos 1

Limites y Continuidad 341

£b) Como lim f (x) = L por definición dado c > 0, ex = — , existe S > 0 tal que

x-*a \ k \

£| f ( x ) - L | < = — entonces: \ k f ( x )—k L \ < c . Por lo tanto: l imkf{x) = kL

| k | x—*u

Ec) Como lim f (x) = L y lim g(x) = M , dado c > 0, para — > 0 existen <5j > 0 ,

' x->a 2

Í0< \ x - a \ < 8 y \ f ( x ) - L \ < -8-, >0 tal que: ' ' 1 => z . ..(1 )

| 0 < \ x - a \ < S 2

Ahora tomando 8 = min{81,8 2} , para 0 < |x - a| < 8 se verifica (1)

simultáneamente, además:

| ( / (x ) + g(x)) ~(L + M ) ¡ < \ f ( x ) - L | + 1 g(x) - M | < ! + ! = c

es decir: 0 < | x - a | < 8 entonces |(f(x) + g(x)) — (L + M)| < c lo que implica:

lim( f ( x ) + g(x)) = L + M = lim f ( x ) + lim g(x)x x —>a' x —>a

£d) Como lim f (x ) = L « • V e > 0 y e, —------------- > 0 , existe <5t > 0 , tal que:

x -ya 2(| M |+1)

0 < \ x - a \ < 8 l => | f ( x ) - ¿ | < C], además l img(x) = M , V e > 0 yx~>a

£= ------ ------ > 0 , existe 5 , > 0 tal que 0 < \ x - a |< 8-, => I g(x) - M |< e-,.

' 2(| ¿ |+1) - M 2 h 2

Ahora para r.3 = 1 como l img(x) = M entonces existe <53 > 0 tal quex->a

0 < \x — a | < <53 => |g(x) — M| <1 => |g(x)| < 1 + |M|

Ahora elegimos 8 = min{8l , S 2, <53 \ , V x e D f f, y 0 < |x — a| < 8 entonces:

|l'(x).g(x) - LM| = |f(x).g(x)- g(x).L + g(x).L— LM| < |g(x)| |f(x) - L| + |L| |g(x) - M|

Page 356: Espinoza Ramos 1

342 Eduardo Espinoza Ramos

| f (x) .g{x) - L M | < (1+ 1M |)+ 1L | c2 = ¡ T T Í T + ?¡Í 7T n < f + 7 = c2(| M |+1) 2(| L |+1) 2 2

Luego esto prueba que: lim f{x).g(x) = L.Mx —>a'

e) Como lim g(x) = M * 0 , existe 5¡ > 0 , tal que:X-+tí

0 < | x - a | <S, => — -— < —2 — . . . (1)1 I g W I 1 * 1

(sug. Tomar c, y aplicar la definición de límite),

c M ~Sea c > 0 para c2 = —-— > 0 , existe 5 , > 0 , tal que:

0 < | j c - ¿ z | < í >2 => | g ( x ) - M |< £ , •••(2)

Ahora tomando 8 = min{8{, S2} para 0 < |x - a| < 8 se verifica (1) y (2) y además:

1 1 , 1 1 2: l g ( * ) - * l < ----- T r-2I — — . Xv-'W *'’)g(x) M IM || g(x) | | M | | g(x) | | M |"

1 2 c M 1 1 1— — | <---------- —.—-— = £ , ósea que 0 < |x — a| < 8 => | — — \ < £

g(x) M | M | 2 g(x) M

de donde lim —-— = —*-** g(x) M

f) Como lim f ( x) = L y l im----- = — , Ahora aplicando d) y e) se tiene:x—>a' x—>a g ( X) M

lim - — = lim f (x ) .—-— = lim f (x ). lim —-— = — lim -- — = —' >« g ( x ) v ->a g ( x ) x~*a ‘ x xi g ( x ) M x->a g ( x ) M

La demostración de las propiedades g) h) i) se deja para el lector.

Page 357: Espinoza Ramos 1

Limites y Continuidad 343

OBSERVACIÓN.- Límite de una función polinómica:

Si f \ x ) = b„xn +bn_1x n l +...+b]x + b0 es una función polinómica donde

b„ , b„ , ,...,b0 son constantes reales, entonces para todo número real “a” se cumple:

lim f ( x ) = lim b„xn +b„^xn l +...+blx + b0 = a"b„ + an~1bn_l +...+abx + Z>0X - + U X - > £ /

(La demostración se deja como ejercicio para el lector).

3.10. EJERCICIOS PESARROLLABOS.-

Calcular los siguientes límites aplicando sus propiedades.

(7) lim 3x3 - 2 x 2 + 5 x - 7^ j->2

Solución

Aplicando el criterio del limite de una función polinómica:

lim 3x3 - 2 x 2 +5jc-7 = 3(2)3 -2 (2 )2 + 5 (2 )-7.v -> 2

= 3 (8 )-2 (4 ) + 1 0 - 7 = 2 4 - 8 + 1 0 - 7 = 3 4 - 15= 19

® ( , - „ 2 í l ± i 2 í ± ix~>2 5x — 3jc + 10

Solución

Para el caso de los límites de las funciones racionales, primeramente veremos los casos inmediatos y esto ocurre cuando se evalúa el numerador y denominador, si son diferentes de cero simultáneamente o uno de ellos por lo menos es diferente de cero, entonces el límite se obtiene en forma directa (veremos estos casos).

3.y2 +17jc + 4 _ 3(2)2 +17(2)+ 4 _ 50 _ 25

*-2 5x2 —3JC + 10 5(2)2 —3(2) + 10 24 12

Page 358: Espinoza Ramos 1

344 Eduardo Espinoza Ramos

2x3 - 3 x 2 + 4 x -3 9Q Hm - ,

4x + 3x + 7Solución

2x3 - 3 x 2 + 4 x -3 9 _ 2(3)3 -3 (3 )2 + 4(3 )-39 _ 5 4 - 2 7 + 1 2 -39 _ _0_ _ '-»s 4x2 + 3x + 7 ~ 4(3)2 +3(3)+ 7 ~ 36 + 9 + 7 “ 52 "

® „ 2x2 +7x + 5 hm

0 limr—k_

*-*4 x 2 -16Solución

2x2 +7x + 5 2(4)2 + 7(4) + 5 32 + 28 + 5 65 _h m ----- ---------- = -------- ------------ = -------------- = — 3*->4 x -1 6 4 -1 6 16-16 0

Nota.- Ahora veremos los límites de las funciones racionales que al evaluar nos da— .0

en este caso sé factoriza para evitar la indeterminación.

. x 3 - 2 x 2 - 4 x + 8 .im ------- ---------------x~>~2 3 x" + 3x - 6

Solución

x3 - 2 x2 - 4 x + 8 x 2( x - 2 ) - 4 ( x - 2 ) (x2 - 4 ) ( x - 2 )h m ------- -------------= hm ————------ — -— = l im --------- ---------3x + 3 x - 6 x-> -2 3(x + x - 2 ) » - 2 3 (í + 2 ) (x - l )

(x + 2 ) (x -2 )2 ( x - 2 ) 2 ( - 2 - 2 ) 2 16= lim — ■— —----------------------------------- — = lim --L— = = ---

» - 2 3 (x + 2 )(x - l) x- - > - 2 3(x—1) 3(—2 — 1) 9

© limx~+a x~ - ( a - 2 ) x - 2 a

Solución

x 2 - ( a - l ) x - í ? x 2 - a x + x - a x ( x - a ) + ( x - a )lim — ------------------- = lim ■ , ■ ■— —-------- = limx~*a x 2 - ( a - 2 ) x —2a x^ a x 2 - a x + 2 x - 2 a ar~>" x (x —a) + 2 (x—a)

(x + 1 ) ( x - a ) x +1 <3 + 1= h m -----------------= lim -*->« (x + 2)(x - a) x~*a x + 2 a + 2

Page 359: Espinoza Ramos 1

Limites y Continuidad 345

© I J M - l2

*->2 3 x - 6 2 x 2 - 5 x + 2Solución

Al evaluar se tiene la forma <x> - oo, en este caso se debe efectuar la operación para evitar la indeterminación, es decir:

Factorizando tanto numerador como denominador:

4 9 3 -5 -3

i"3­1 2 34 5 - 2 -3 0

-4 -1 3 -14 1 -3 0

4 - 3 0

4x4 +9x3 +3x2 - 5 x - 3 = (4 x-3)(x + l ÿ

3x4 +9,v3 +9x2 +3x = 3x(x3 +3x2 + 3x + l) = 3x(x + l ) 3

4.v4 +9 x 3 4 3x2 - 5 jc- 3 (4 x -3 ) (x + l)3 4 x - 3 7hm ----- --------- ------1---------= l i m --------------- -— = h m ------- = -*->-> 3jc + 9 x + 9 x +3jc x~*~l 3jc(jc + 1) *-*-i 3x 3

4.v4 + 9 r ’ + 3 ; r - 5 ;c - 3 lim ----- -------------------------3;<:4 +9;c3 +9;t2 +3;t

Solución

Page 360: Espinoza Ramos 1

346 Eduardo Espinoza Ramos

©

Solución

Este límite es de la f o r m a , y para calcular se racionaliza:

-Jxl + 3 - 2 (Vjc2 + 3 - 2 ) ( V * 2 +3 + 2) x 2 - lh m --------------- -- h m --------------- , .. ..---------- = hm -' - 1 x ~ ] x~*1 (jc-IkV *2 +3 +2) JMl (x - \ ) ( s l x 2 +3 + 2)

( a - 1) ( a + 1) x + 1 1 + 1 2 1: lint---------- -------------- = hm ---- -- —j=---- = ------ —Jt->1 (jc-1)(V*2 + 3 +2) x_>1 V.v2 + 3+2 V4+2 2 + 2 2

,0 ) l i n , h d ¿ E*-+4 l —-s/5 — JC

Solución

Este límite es de la forma jj-, y para calcular se efectúa una doble racionalización, se

obtiene:

.. (3-y fT+x) ( 3 - 4 5 + x)(3+45 + x ) { \ + ^ 5 - x )h m -------r .... = hm -— -— ---- — ■— ,■ —------- - ■*->* (1 — V 5 - j c ) (3+V5 + jc) ( 1 - V 5 - jc)(1 + V 5-- t)

( 4 - jc)(1 + V 5 - I ) 1 + a/ 5 ^ c 1 + 1 2 1= h m ------- ,----- ----------= hm --------- ===== = --------= -----= —Jr->4 (3 + 'j5 + x ) ( x - 4 ) *->4 3 + V5 + jc 3 + 3 6 3

Solución

Este límite es de la forma jj-, y para hallar este límite se puede usar una doble

racionalización pero se hace muy operativo, entonces para los casos en que las cantidades subradicales son iguales y se tenga diversos tipos de raíces se hace un cambio de variable con el propósito de simplificar.

El cambio de variable se hace de la siguiente forma:

Page 361: Espinoza Ramos 1

Limites y Continuidad 347

Se elige una variable que se iguala a la cantidad subradical y el exponente de esta variable es el mínimo común múltiplo de los índices de los radicales.

Solución

Este limite es de la forma -jj-, como se tiene tres tipos de raíces y la cantidad subradical

son iguales, se hace la sustitución en la misma forma que se hizo el ejemplo anterior.

z 12 = x donde el m.c.m. (4,3,2)=12

Para nuestro caso se tiene: lim-Jx - 8

x->64 Vx-4

Sea v6 = x donde m.c.m. (2,3) = 6

Para x = 64 , y6 = 64 => y = 2

Ahora reemplazamos, se tiene:

4-y/x + 3 -Jx +-yfx — 3 l im---------—---------- —

Como r 12 = x => • 3a/x = z 4 . Para x = 1, z 12 = 1 => z = 1

4 ~{x = z 3

(z - l) (z +z +2z +3z +3z + 3)l ,m----- 1-------- i---- ------- —1----- —(z6 + l)(z3 + l ) ( z - l ) ( z2 + z + l)

Page 362: Espinoza Ramos 1

348 Eduardo Espinoza Ramos

lint

(z + z +2: + 3z + 3r + 3)= ¡IM------7---------ó---------7 --------- —

*-»1 (z + l ) ( z + l ) ( r + r + l )

1 + 1 + 2 +3 + 3 +3 13 13_ (1 + 1)(1 + 1)(1 +1 +1) _ (2)(2)(3 ) _ 12

*-J x +* + 'Jx - 3 13

13) lini

a ~>i x - 1 12

Vx + A y + 5-V3.V + 13•»'-*1 -T - 1

Solución

Este límite es de la forma—, pero como se tiene varias raíces cuyas cantidades

subradicales son diferentes, en este caso se agrupan en la forma siguiente: a cada una de las raíces se evalúa y dicha cantidad se resta, es decir:

-Jx +V4jc + 5 —\¡3x + 13 ( 4 x - 1 ) + (J~4x + 5 - 3 ) - ( - J 3 x + 1 3 - 4 )lim ------------------------------- = lim ----------------------------- -----------------------V—>1 X — 1 JT—»1 X — 1

rJ x - l V4x + 5 - 3 -j3x + \3 —4 : hm[----------b------------------------------------ ]Jf-»1 JC — 1 x - l x - l

r 1 4 3: — + —,------=--------- ,--------- — ]* ^ 4 x + l 4 4 :t + 5 + 3 V 3À +13 +4

1 4____ 3 _ . _ i1 + 1 3 + 3 4 + 4 ~ 2 3 8 _ 24

-*—»i ~J2x-l ~4xSolución

Page 363: Espinoza Ramos 1

Limites y Continuidad 349

También este límite es de la form a^ , pero observamos que tanto en el numerador como

en el denominador tienen varios radicales en este caso se debe de transformar a la forma del ejercicio anterior dividiendo numerador y denominador entre x — 1 es decir:

-n/3jc - 2 + -Jx —s/5jc — 1V 3 x - 2 +4x-y¡5x-\ .. x - l sh m -------- — = ------------------- = h m -... .— = ---

Jr~>1 - j 2 x - \ --Jx -r” >1 -J2x - 1 - V x

je—1

-JJx-2 + -Jx — -JSx-ílint. *->i x -1

~ j 2 x - l —Jx lim-Jf->1 x -1

Ahora calculamos cada uno de los límites aplicando el criterio del ejercicio anterior.

V 3 x - 2 + V x - V 5 x - l ( V 3 x - 2 - l ) + V x - l ) - ( V 5 x - l - 2 )//»i------------------------------= h m -------------------------------------------------»-»i x -1 *->i x -1

r-v/3jc—2 —1 V x - 1 ' J S x - l - 2 1= /j»j[--------------+ -------------------------- ]

*->i x — 1 x —1 x -1

,. r 3 1 5 .= hm[ - ¡ = = — + - p --------- p = — ]

*->! V3 x - 2 +1 Vx +1 -J5 x - l + 2

= 2 + I - 1 = 2 - 1 = 22 2 4 4 4

-Jhx-2 + Vx -V 5 x -1 3l im---------------- ------------= - . ..(2 )*->i x -1 4

//„, a/2x-1 - 4 x _ /¡m ( j 2 x - \ - l ) - ( V x -1) _ ^ V2x-1 -1 _ V x - 1 ^JC—*1 x -1 í-»l x -1 -r-»l x -1 x -1

r 2 1 , 2 1 1= ---------= ----] = -------= —•v->i ^ 2 x — l + 1 ‘yfx + 1 2 2 2

Page 364: Espinoza Ramos 1

350 Eduardo Espinoza Ramos

... . . .(3 )*->i je—1 2

____ ____ 2

Ahora reemplazamos (2), (3) en (1) tenemos: lim - - - - - —- = -4- = —*■-*! V2x + 1 —n/jc J_ 2

Ahora resolveremos ejercicios aplicando las propiedades y los criterios explicados en los ejercicios anteriores.

15)x->2 X 2 - 4

Solución

.. l ] 5 x - 2 - \ [ x + 6 V 5 x - 2 - 3lx + 6 (3a / 5 a - 2 - 2 ) - ( 3-Jx + 6 - 2 )hm ------ —r----------------------------------------------------------------------------------= l im--------- l im-- ---------- --r—»2 X" - 4 ( x -2 ) ( x + 2) A-»2 ( x - 2 ) ( x + 2)

3 - j 5 x - 2 - 2 3^/x"+í>- 2_ /( W------2—2-------------a—2----

at—>2 X + 2

5 1

lJ (5x -2 )2 + 2 l ] 5 x - 2 + 4 í/(* + 6)2 + 2Vx + 6 + 4limí->2 X + 2

5 1 5 1

16J limx—>0*¡ x 3 +8 -•>/ a 2 +4

x 2

a / a 3 + 8 ~-\/ a 2 +4

a 2

4 + 4 + 4 4 + 4 + 4 . 12 12 . 12 + 2 4 12

Solución

l im ---------— ---------- = lim ----------- ---------—jr-»0 x x~^ X

Page 365: Espinoza Ramos 1

Limites y Continuidad 351

©

w ^ - 2>- ^ - 2))*->0 X2 X2

.. JC3 X2= lim(\ j(x*+ S)2 +2%]xi +8 -4 ) x 2 x 2(4 x T + 4+2)

x 1 n 1 1= lim —p = = = ----, - . ■.-------. ----= O------ =---X~>0l j ( x i +8)2 + 2^x3 + 8 + 4 V x 2 +4 + 2 2 + 2 4

V x 3 + 8 - V x 2 +4 1h m ------------ ----------- = —í->0 jf2 4

V x 2 +4 -a/x2 +6x l i m------------------x->2 - 4

Solución

V x 2 + 4 - V x 2 +6x V x 2 + 4 - 2 ) - V x 2 +6x -2)lin t-------------------= h m ------------ --------------*->2 a: - 4 *->2 jt - 4

.. V x 2 + 4 - 2 V x 2 +6x - 2= l im ---------------- --h m --------jt- » 2 X2 - 4 *-*2 x - 4

1 V x 2 +6x - 4= í/m —= = = = = -------------------,— . ------ /;m

” 2 }J(x2 + 4 )2 + 2 V x 2 + 4 + 4 Jr“ >2( x 2 - 4 ) ( ^ x 2 + 6 x + 2 )

1 .. jc2 6jc — 16— /z/w4 + 4 + 4 ^ 2 { x 2 - 4 ) ( ^ x 2 + 6x + 2 ) (V x 2 + 6 x + 4 )

12 M 2 (x - 2 )(x + 2 ) ( ^ x 2 + 6 x + 2 ) ( a/ x 2 + 6 x + 4)

1 x + 8= ----- //»i

12 Jf_*2 (x + 2 ) (V x 2 + 6 x + 2)(4x2 + 6 x + 4 )

1 2 + 8 _ 1 10 _ 1 5 112 4 (2 + 2 )(4 + 4) _ 12 128 _ 12 64 “ 192

Page 366: Espinoza Ramos 1

352 Eduardo Espinoza Ramos

jt-»o jeSolución

IJ\ + X — Jü~X .. (Ml + x - l ) ~ ( - J \ ~ X - 1 ) V l+ J f - 1 -yj l -X - 1//» i------------------- ................... .......... ....... . = l im ---------------h m -------------x->0 X *-><> X a-—>0 X JT-»0 X

= l im---- ;---------- -— ------------ limX ° x ( ^ ( l + x ) 2 +VT+X+1) r' >0 xi-JT ^x+ l)

= lim ", : " 'r~-------------- f /?W ■.v—»0 ;

1 I 1 _ 1 1 1 _ 51+1+1 1+1 3 2

x2 Vjc + 6 -Vjc + 1 + 4jc-1 19J l im ------------- = = = ----------------

^ - 2 V ^ 3 - lSolución

. . x 2 J x + 6 - \ ¡ x + 1 + 4 x - l x 2(-Jx + 6 — 2) — ( ^ / j c + 1 + l) + 2(x2 - 4 ) + 4(jc + 2) l i m ----------- =====------------- - l i m -------------------------- ,-------------------------------------M ~2 4 x 2 - 3 - l x^~2 4 x 2 - 3 -1

x 2( J x + 6 - 2 ) 4 x +1 +1 2 (x 2 - 4 ) + 4(jc + 2)

- /¡«i * + 2 * + 'v + Jt + 2v 2 4 x 2 - 3 - l

x 2 \-Jx + 6 + 2 (^/x+T) 2 — (Vx+T) +1

= lim

x + 2

+ 2(x —2) + 4

-2 JC-2

*Jx2 - 3 + 1

4 1 „ o 1 „ 1 ~ 10- - — + 4 - 8 1 - 4 — ----------- .4 1 + 1 + 1 ________3 _ 3 _ 5

- 4 - 2 - 2 31 + 1

Page 367: Espinoza Ramos 1

Limites y Continuidad 353

-r - >0 x 2 Xlx+l + %]x + \ - 1

Solución

xVÄ+T + VÄ + T -1 x(\fic + ï - l ) + tflx + ï - l ) + xhm , , . - = lim* ^ ' x 24 7 + \ + i f c + \ - i ^ o x 2( V 7 + T - i ) + ( V Ä + T - i ) + x 2

-+1= lim x

,r->0................. ......... *-+JC

Xx(\i7 + ï- i)+ ^ ^ 1

1

r ( ^ x + I ) 2 +VÂ+T+i (VÂ+T)2 + V* + T+i+i

= K«[ 7 , ---------------VV --------------]-+xx 2 1

(a/ x + 1)2 + \lx + 1 +1 (4/ x +1 ) 2 + a/x +1 +1

0 + — 1— +1 1(2)(2) , = 4. = 5

0 + —— + 0 -(2)(2) 4

. « V 3x+ 5+ x + 321) /îw — 7 7 = -------

x~*-2 ljX + l+ \Solución

\/3x + 5 +1 x + 2lim = lim ( ^ T I + 1) + (x + 2 ) = ^ x + 2 + x + 2

*-*-2 V-ï +1 +1 SX +1 +1 •r_>' 2 VX + 1 +1x + 2

____________________ +1 3(\j3x + 5 )2 -3/3x + 5 +1 1 + 1 + 1+ _ 2= um - ----— = ^ =6

.r->-2 1 1 1(3/x +1 )2 - \ ¡ x + \ +1 1 + 1 + 1 3

22) f a , ^ - * " 1 ^ 1x—>2 V3X + 1 0 - 4

Page 368: Espinoza Ramos 1

354 Eduardo Espinoza Ramos

Solución

M x - l - x + s / x 2 - 3 ( Vx—1 - l ) + (-Jx2 - 3 - \ ) - ( x - 2 )h m ------ . --------- = lim ------------------ — -— ------ ---------- *->2 v 3jc + 1 0 - 4 x - > 2 V 3 jc + 1 0 - 4

V x-1 -1 + -Jx2 - 3 -1 x - 2= /,-«[■ x r 2 _ _ x ^ 2 ------- x ^ 2 }

x~>2 *j3x + 10 - 47 - 2

1 x + 2 ,+ - ? = = ------- 1

( M x - l ) 2 + \ j x - 1 +1 Vx2 - 3 +1= l im ------------------------ ------1— —

x—>2 3V3x + 10+4

1 4 , 1 i , 1 , 4- + ------- 1 - + 2 - 1 —+ 1 —1 + 1 + 1 1 + 1 _ 3_____ _ 3___= 3_= 32

3 3 3 3 94 + 4 8 8 8

\J x -1 - x + J x 2 - 3 32I m -------,........................= —*->2 V3x + 1 0 - 4 9

3.1.1. EJERCICIOS PROPUESTOS

Calcular los siguientes limites, mediante las propiedades.

® x 2 ~(a + \)x + a a - 1h m ------- 3-----5----- Rpta. —x—>a i st -x - a 3a2

x 3 - x 2 -8 x + 12 n ,hm —----- ------------ Rpta. 0'-*2x3 - x 2 — 12x + 20

® .. 3jc2 — 17jc + 20 D ,hm — ---------- Rpta. Ix~*4 4x -2 5 x + 36

Page 369: Espinoza Ramos 1

Limites y Continuidad 355

© „m *-X- ~ 2? Rpta. 11í-»2 x 2 - 4

© l,m Rpta. i^ *-»ijc3 + 2x2 - 7jc + 4 5

/ - \ 5jc2 +3 jc5 - 8 1716J lim------------------------------------------------------------------------;----- Rpta. —^ V->1 7x - 4 .X - 3 24

© x3 + 6x2 + 9x 3hm —r------------------------------------------------------------------ --------- Rpta. —*->3 .y3 +5 x 2 + 3 * - 9 2

/^ n 2.r3 - 52 - 2jc - 3 11(8 ) lim—-------- r----------- Rpta. —v“x * - M x 3 - 1 3 x 2 + 4 x - 3 17

® 1 - x2lim--------- - ■'-------- - , a > O y a 1 Rpta.1-*1 /I _L *- „ í si I v\x~*i (1 + ax) — (a + x) 1 - a

2x~" + l - 3 r “2"10) lim ------ Rpta. 5

r_>13x ~5 + 2x

© lin/ ™ - 2* * 1 Rpta. *W — i j r so- 2 x + l 24

2

1012) l im -—------ X 2) - ■ - Rpta. ¿ )^ 2 ( x 3 - 1 2 jc + 1 6 ) 10 2

13) //ro(—---------^— ) Rpta. -1■ 1 x- l 1-X l-JC3

14) Hallar los valores de m de tal manera que lim —— mX- -- ——— = m 1 -2 7'— j r - * m JC — m

Rpta. m = 5, m = -4

( í i ) Hallar el valor de “a”, a > 0, sabiendo que lim —— 2a x + ax = 2 a - 5 Rpta. a = 2W *-»1 2 a x + x 2

Page 370: Espinoza Ramos 1

356 Eduardo Espinoza Ramos

Q ) Si l im— ^ -----------= ¿ * 0 , calcular el valor de a + b Rpta. -2*->'ax-+2x + b

(l7 ) Si f(x) = x - 2 y g(x + l) = x 2 - x , calcular lim ^ ° S ) (X + ) Rpta. 3*->2 (g o /)(x + 2)

65) Si se sabe que lim ^ = 4 y lim = -6 . Calcular lim — — Rpta. -1w — n - x 3 n - x 2 *-*igW

b + x , , , f ( a + x ) — f (a ) n abSi f ( x) = ------ , x * b , calcular / r a ;------------- :----- Rpta. ---------—

b - x *->0 x ( b - a )

(20) Si f ( x ) = X+- - , x * 0 , calcular lim ' -------— - Rpta. -1^ x - 3 *->o 5/¡

(21) Sí lim fS l t 2> - = 8 y lim _£Íí2_ = 3 . Calcular l i m ^ - Rpta. -w * ^ - ^ h 2 x - 2 x->-2 x —4 « o g W 3

Si f ( x ) = j 3 x + l , Hallar lim f ( x + h) ~ f ( x). Rpta. — 2=A 2-j3x + \

V l + x 2 - 1 „ 1//w ------------------ Rpta. —.V—>0 v-2 K 2

24; Rpta. 1.v- > 0 j t

25) lim V - .- -—V 3jr 14 Rpta. -1^ X-.5 X ~ 5

@ ffwVx2 - 2 x + 6 z 2 / x i í 2«z 6 a> _ iW *-»J x - 4 x + 3 3

(27) lim — Rpt a.^ .v—> 2 1 ¡Ay — 1 2

28) lim , ;Y + 3- Rpta.x~*~ yx + 7 - 4 3

Page 371: Espinoza Ramos 1

Limites y Continuidad 357

©„ 'h+a+b-Ja*b Rpta. 1Jf-»0 X 2-Ja + b

®2-4xhm----- ,

j;->4 3 -v 2 x + lRpta. 3

4

©.. Vb2 -x -Jb2 -a Rpta. 1x->a X-a 2-fb2 - a

©V8 + JC-2lim------------

< ->n x Rpta. 112

©4x2 +9 -3

a -,,r->0 x +X Rpta. 16

© -x/l + X-1hm ------*-*<> M\ + x -1

Rpta. 32

© V*-2hm--------•<- >* .v-8

Rpta. 112

© l,m 77=----*->™yx-2 Rpta. 4

© tfT -ihm•'-*1 v* -1

Rpta. 58

© V*-1hm•'->> v* -1

Rpta. 32

© .. VT-1Al—■r -»• 4/X - 1Rpta. 4

3

© -Jx —ühm _,v-»64 ijx - 4

Rpta. 3

Page 372: Espinoza Ramos 1

358 Eduardo Espinoza Ramos

- i ^ T 7 - V 8 F 3

© !'™ T T ~ r R p ,a - 7

^ * - i * - 1 12

@ í/(jr + l): - '7 x + 1 - 1 1í™ --------------------------- RP,a - i

@ Rpta. -v- ' *->i JC-1 F 6

© ) , „ , K + R p ta . - iW x -1 6

\ [x - 2-Jx + 3x - 2 _ 7lim ------------------------------- R p ta . -

j c - l 3

® ,. t f x 2 - 2 l f x +1 _ 1a (j - i , í - Rpta- ?

© Rpta. _ LW (jc- 8 ) 144

^ x 2 +2x

@ & r * £ = L 7.í R p ta .v - y x-*i JC-1 6

. x 2 -*Jx - x - 5 9 5 4895 2 ) i m ---------- -------------------- R p ta . -------“ J v-»2S x - 2 5 10

Page 373: Espinoza Ramos 1

Limites y Continuidad 359

53) Um x '

56) lini —-\[x - l

lj3x + 5 + x f 360) //»i — -------------•v->-2 + 1 + 1

Rpta. 3•t~>1 V x -1

CN a^ax-x2 „ „54J lim ---------,— Rpta. 3a^ •'-»« a-~Jax

g ) 'v->a x* - aRpta. ---- =

6aMa2

Rpta. 6

o , .. J b c - x + i H i ï - J ï _ „ 3 V2 - 857) lim-------------------------- Rpta. ---------^ x~*4 x-4 v 12

g ) U m ^Z S ß . Rpta. 3a^ *-»■ V x -V ä

g ) , „ V ^ T - Æ î t 2 Rpta. _ j_^ V O X 10

Rpta. 6

-rjv Vx2 + 4 - 2 _ 161) hm—--------------------- R pta .-----^ »2 X — 2x — 16x + 32 36

© Rpla. _ i.v—»0 jc2 4

63) lim . X—r Rpta. -2^ W ) V l+ x 3 - V l+ x 2

Page 374: Espinoza Ramos 1

360 Eduardo Espinoza Ramos

x 2 - 6 —v/x + 6h m -----7= --------Jr_>3 -Jx + l —2

Rpta. 703

® ^Jx4 + l —^Jx2 +l lim —--------- -------—*—►0 X 1

Rpta. 12

©(¿Jx + 6 -%Jx + 7 h m -------- —--------- -

.<■->2 x - 4Rpta. 1

24

-Jx—J a + ^ x - a h m -------, —------Jx1 - a 2

Rpta.1

■J2a

.. - i x -~ j2 a + ^ ¡ x -2 a hm --------.......... ..----------Jx2 - 4 a 2

Rpta.1

2 sfa

©5 V I-3 -V x -4lim -------------------

Jf->4 x - 4Rpta.

112

©2 - 4 xh m ------ .

*->A 3 --J2x + lRpta. 3

4

©3 ^ 2 x 2 - V 8 * - 2

Í 5 V Í - V 2Rpta. 2V2

©3*j2x2 -2 - j3 x 2 +4 + 2

h m ------------------------------x~>2 X - 2

Rpta. -1

©i f x + J - 2 x - x - 1 0 h m --------------------------

X + 8Rpta. 19

16

Page 375: Espinoza Ramos 1

Limites y Continuidad 361

- 7 - 7 1 V X ^ X 2 ~ 1 “ 6 7

® ¿ 5 3 - x R pta- I

78) l im 1 - f f i î ï ï R p ta . I" y *->o 3x 9

79) lim — 1 ~SÍ2X— L =^ Rpta. -12" r~>2 2 -^ /9 —>/2x-3

;■ ^/x4 +1 -a/Ä 2 +1 180) lim ------------ ---------- Rpta. —^ .«-o r P 2

^ * + x 2 2

o-«a i- V Î W 2 T 7 -7 3 i82) lim ---------------------- Rpta. — ='-»2 / - 2 K 8-x/3

83) lim - - ^ * Rpta. I*->i 1 —x 8

1¡3~+4x - 2 1lim -— ==-------- Rpta. —

*->25 V ^ -5 12

® V-T2 - 2 x + 6 ~ 4 x 2 + 2 x -6 1lim ------------ ;---------------------- Rpta. —'-»í x - 4 x + 3 3

0iC, Vx2 + 4 - 2 „ 186) lim —---------------------- R p ta .------v ~*2 x -2x~ -16x + 32 36

Page 376: Espinoza Ramos 1

362 Eduardo Espinoza Ramos

¡¡m V 7 + ^ T T - V 5 T T Rp(a 22^ a/jc + -JAx + 5 —J3x + 13 19

® ; . 4\[4x - 5j&x - x 2 +16 23/íW —;------ F= - r— ---- R p ta .-------*->2jc3 - 4 ^ 2 x - 5 l f 4 x + l O 25

y « 6 V ^ 3 - 3 18

1 , - 3 1 ^ 2 6 1 ^ 3 1 - 2 6 7 ^ 3 3

‘ ~ 3 l x 2 + 1 5 x-64 -21x - 3

.. V* 2 + 2 7 -3 _ . 3293) hm , ■ —----- Rpta. —^ « 4 / 7 7 1 6 - 2 27

.n j l , ^ 3 x - 2 + x - s 2 „ „ 5794) h m ------- ,,------ ----------- Rpta. —k 7 *-1 V ^ + 7 - 2 5

95) lini X -T :\ Rpta. 6" ^ ^ í - M l - x + x 2

S ) R |„ a, 4•r-’2 \ ¡ 5 x -2 +-\¡x + 2 - 2x 288

.. H 5 x - 2 + x + % _ t 256097) //W , ...=--------- Rpta. -------" X^ s j x 2 - X + 2+ X + 3 1863

Page 377: Espinoza Ramos 1

Limites y Continuidad 363

,00) Un, S' - 2 3 x -2 V l5 -3 x 12

101) + + Rpta. -2jr->0 X - x-jx + 1

[102) 2 Rpta. +oo'-*> Vx2 -3 x + 2

103) l im ---------- V * + — ------ Rota. —v - - 7 = 7 ^ 2 - V ^ T + 2x 18

/• a/x -1 +41-^ x - l - ^ x - l +4 4104) h m —¡ = — -------— ----- ----- Rpta. —*-*o ^ T ^ - S ^ x - î + l i x ^ - S 3

+ 3 ^ /x -3 x - l _ 27105) /zm------------------^ = - Rpta. —L ' x + 3 - 3 ^ 7 8

106) lint y i í f —yj—1 Rpta. —J v.o 3 /f^ 7 _ V l3 7 F 2

506»■ V3x2 + x + 4+ -\/x2 +5x + 1 0 - 6x 2 _107) lim------- . . . — :---- ------ ------------- Rpta.•r_>1 \j-Jx + 3 + 6 + Vx + 8 - 5x2 371

(l08j l im ^ X +? ^ 2+3 Rpta. -Iv ' *-»i x —1 4

/ /w 8 - 2 x + ^ - Æ _ 23■ y .<->4 x - 4 12

110) lim V2x + 7_ Rpta. —,v->in x -9 - c o s (x -1 0 ) 54

Page 378: Espinoza Ramos 1

364 Eduardo Espinoza Ramos

111) lim 4 ¿ j 4 x - 5 ^ x - x 2 +16 » 2 j t 3 -4a/2x-5V 4jc +10

„ 23R p t a . ------25

Vl + x 2 —J\~ 2 xh m ----------------------x + x

Rpta. 1

-v/jc — 1 — x + Vx2 —3h m ------ ---------'■*2 V3x + 1 0 -4

Rpta. 4

, u ) ,im£ t E jn zx—»0 r 2

Rpta.

. . a/x + 1 — 1 //w ------------*-><> X

l im ----- ............ - -x^ l - \ ¡ 3 - 4 x ^ \

Vl + 3x - ^ 3 - x h m ------------ --------*-*> 1- x

a / x - 8l i m ---- - =*->64 4 - V x

119) hm i j x - i f x

121) lim

JT-.1 l - x 2

■Jx—'J 2 x - l-J$x—1—\¡2x + 2

[,201 t o 3 E Z d ! 5 ± Ijt->0 r

122) lim x - l

x~*1 V x2 + 3 - 2

-\/ 3.V-2 + Vx + 6 - 4 hm -----------------------------Jf->2 x —2

V4.t - 7 - V 4 x + 1 /znj-----------------------*->2 x - 2

V x -4 —s/3x —14h m -----------------------x-*s x - 5

126) lim

- j 2 x - 2 Ijx l im ---------------Jf-»8 x —8

Jm — p = -------*-»2 *j2x - 2

V x Z 5 - V 2 x + T + 4limx-*4 x - 4

Page 379: Espinoza Ramos 1

Limites y Continuidad 365

3.12. LÍMITES LATERALES

Para que exista lim f ( x ) , depende del comportamiento de la función f(x) cuando x tiendex —*a '

hacia a, tanto para valores de x menores que a (por la izquierda de a), como para los valores de x mayores que a (por la derecha de a).

Para el caso de los límites laterales es más simple, por que depende del comportamiento de la función f(x) cuando x se aproxima hacia a ya sea por la izquierda o por la derecha de a y a esto denotaremos en la forma:

Al límite de la función f(x), cuando x se aproxima hacia a por la izquierda es el número lx

que denotaremos por: fim , / ( x j t¿

al límite de la función f(x), cuando x se aproxima hacia a por la derecha es el número l2

que denotaremos por: i m / £ * ) ~ / 2

Page 380: Espinoza Ramos 1

366 Eduardo Espinoza Ramos

a) Definición.- Consideremos una función f definida en el intervalo <c,a>; el límite de la función f(x) cuando x se aproxima hacia “a” por la izquierda es

el número real L al cual denotaremos por lim f (x) = L si para todo e > 0,x->a~

existe un 8 > 0 tal que sí: a — 8 < x < a. Entonces | f(x) — L | < e.

Expresando esta definición en forma simbólica.

hm f{x) - L ^ > (V í>>0, 3 8 > 0 /s i a ~ 6 < x < a z¿> [ f l x ) ~ L j<«>

b) Definición.- Consideremos una función f definida en el intervalo <a, d> el límite de la función f(x) cuando x se aproxima hacia “a” por la derecha es el

número L al cual denotaremos por lim f ( x ) = L , si para todo e > 0, existe unx-*a +

8 > 0 tal que si: a < x < a + 8 entonces | f(x) — L | < e

Expresando esta definición en forma simbólica.

h m / { * ) = £ = » ( V f j > 0 , 3 S > f l / & a < x < 8 + S r - > ¡ ^ x ) ~ L | < g }

OBSERVACION.- Para que exista lim f ( x ) debe de cumplirse la condición siguiente:

rl hm f { x ) ~ L <■.-■> Hm / ( O Um f { x ) ~ Lx^4f ' x-'+a*

En otras palabras, existe límite de una función sí y solo si, existen los límites laterales y son iguales.

OBSERVACIÓN.- No existe lim f ( x ) en los siguientes casos:x —yci

Cuando no existan uno de los límites laterales.

© Cuando los límites laterales existen y son diferentes.

OBSERVACIÓN.- Al calcular el lim f ( x ) , cuando la función f(x) tiene diferentesx —>a '

reglas de correspondencia para x<a, y para x>a se aplica el criterio de los límites laterales

Page 381: Espinoza Ramos 1

Limites y Continuidad 367

Ejemplo.- Calcular si existe lim f (x ) donde: f { x ) = \ X -Ví * <' 1*-»> ‘ ' [x +1 si x > 1

Solución

Aplicando el criterio establecido, es decir: 3 lim f (x ) = L <=> lim f ( x ) = lim f (x ) = Ln i ' jt-»r ‘ A->r

lim f (x ) = lim x 2 +3 =1 +3 = 4 ...(1).v-*r x—,>r

lim J'(x) = lim .v + l = l + l = 2 ...(2)v -» r x—>i *

al comparar (1) y (2) se tiene que: lim f ( x ) * lim f ( x ) entonces 3 l im f (x ).T->1 .r->r -V—>1

Ejemplo.- Calcular si existe , lim f ( x ) , donde: f ( x ) = \ X S‘ v - 2•r~>2 8 —2x si x > 2'■

Solución

Aplicando el criterio establecido se tiene: 3 lim f { x ) = 1 o lim f ( x ) = lim f ( x ) = 1x~>2 x—»2-* x->2+*

lim f ( x ) = lim x 2 = 2 2 = 4 ...(1 )jr—»2- ' ,v->2-

lim f (x ) = lim 8 -2 * = 8 - 4 = 4 . ..(2 )jr-»2+ jt—>2—

al comparar (1) y (2) se tiene que: lim f ( x ) = /j'w /(jc) = 4 entonces 3 lim f ( x ) = 4x->2-' x-*2+' x—>2

Ejemplo.- Calcular, si existe lim x . l—— -1 6*->0 ^4*2

Solución

Page 382: Espinoza Ramos 1

368 Eduardo Espinoza Ramos

.. x V1 - 64x2 x V1 - 64x2 V1 - 64x2 1lim ---------------= hm ----------------= /i»i — ---------- = —2 1 x | -v*o ' 2 x a'—> ti ’ 2 2

xVT- 64x2 xa/i -6 4 x 2 , ¡~¡Como lim 1--------- :— tí lim ----------— entonces: 3 lim xA — - - 1 6< -»o 2 [ x | Ji ->n+ 2 1 x | jt-»o ]] 4X -

Ejemplo.- Calcular si existe lim — —^ ——A > -1' J x 2 -[\X\]

Solución

Por propiedad se tiene [] jc — 11] = [| x |]— 1

X y ¡ x 2 -[ \x \] X 4 x 2 -[ \x \] -4 X .3 X . 2

para - 4 < x < -3 => [| -v |] = —4

.. [ |x - l | ] - x .. -4 -1 - x - 5 - x -5 + 3 -2hm , =■ = lim . = lim • •• = ■ r ..... = -==■

r_> 3 -y/x2 - [ |x |] t~> '3 y x 2 + 4 Jr~>“3~ t /x 2 +4 a/9 + 4 VI3

para -3 < x < -2 => [| x |] = -3

[|x —1|]—x .. —3 —1—x .. —4 —x —4 + 3 1lim ■■■.■ ■■■■■■■■- . — = lim —, ..... = hm --------= = — ■==■' ^ r J x 2 -[ \x \] r- 5W r + 3 j - - 3W x 2 +3 V9 + 3 V l2

[|JC- 1 1]-JC ^ [ | x - l | ] - x . , [|x — 11] — XComo hm - j - _ * lim ■ . ■ =■ entonces 3 lim

' V * 2 - [ I Jf I ] A' ^ “ r a/ * 2 - [ I x I ] v > 3 - t i x | ]

x 2[ |2x + ! | ] _ io x

Ejemplo.- Calcular lim -------- ¡------------------v->2- x3 - l l x - + 3 8 x -4 0

Solución

Page 383: Espinoza Ramos 1

Limitesy Continuidad 369

Í i ± i = 2 + J L = „ i £ i l l ]= 2 + [ l- L .JC — 1 JC — 1 x -1 x -1

7 3 1 4 3para — < jc < 2 => — < .x — 1 < 1 => 1 < ------< — => 3 < -------< 4x 2 4 4 x -1 3 x -1

Por lo tanto [ |—— 1] = 3x -1

* 2[ | ~ “ |] — 1 Ojt , 2 iny — ] 5x -lO xlim —------ ------------------- = lim> >2 X1 -1 L r + 38x - 400 *-*2- x 3 -1 lx2 + 38x - 40

5 x (x -2 ) 5x 10um — -----------------------= lim

>2'(x 2 - 9 x + 20)(x-2) >-»2 x 2 -9 x + 20 4 -1 8 + 20 3

Ejemplo.- Calcular lim -J\ x | +[| 3x |] si existe*->7/3

Solución

Sea 2 < x < \ => 6 < 3 x < 7 => [|3jc|] = 6

_________ ____ s Rlim J\ x | +[| 3x |] = lim -Jx + 6 = ------

.V—>7/3’ JT—>7/3" 3

Sea — < x < - => 7 < 3x < 8 => [| 3x |] = 73 3

lim J\ x | +[| 3x |] = //w Vx + 7■V *7/3* J—>7/3+ 3

Como lim J \ x \ +[|3x|] * lim J\ x | +[| 3x |] entonces 3 lim J\ x | +[| 3x 11.v—>7 / 3” .v->7/3+ jc—>7 / 3

Ejemplo.- Calcular si existe //'»i ^ ^ —*->^3 X - a/3

Page 384: Espinoza Ramos 1

370 Eduardo Espinoza Ramos

Solución

v r■J2 < X < -s/3

2 < x <3

- 3 < - x 2 < -2

0 < 3-Jc2 < 1 => [ |3 - x 2 |] = 0

, a / [ |3 -x 2 |] 0 „hm ------------------------j =— = hm ---------j= = 0.v x - a/3 Í - V 3

------- => -J3<x<-J~4 => 3 < x 2 < 4

"^3 ^ X = > - 4 < - x 2 < -3 = > - l < 3 - x 2 <0=> Luego [ |3 —x 2 |] = -1

lim ^ 3 * ^ = lim 3 . Por lo tanto 3 lim 3 * ^■ x —v''3 x->$+x~*j3 •»-»V? x - V J

3.13 EJERCICIOS PROPUESTOS.-

O Calcular si existen lim f ( x ) , l i m f ( x ) , donde: / (x)-V —>1

X .Sí X < 1

x .v/ 1 < x < 4 4 - x .y; x > 4

Rpta. a) 1 b) a

(Y ) Calcular si existe lim f (x ) donde: / ( x ) =^ jt-*2 ’

6x —x s» x < 2

2x2 - x - 3 s í x > 2 Rpta. a) 36 sí x = 2

® x- y ^ HCalcular si existe lim f (x ) . donde /'(x) = <' ’ '

■<-->0' ' x , x < 0Rpta. 0

Page 385: Espinoza Ramos 1

Limites y Continuidad 371

®

0

í X~ Y < 1Calcular si existe l i m f ( x ) , donde f ( x ) = { '»-*1 ' 2 , x > 1

Rpta.

Calcular si existe lim f (x ) , donde: f (x) =x—>5 *

x - 5i —yjf—4

x 2 -12x + 35x - 5

, x > 5

, x < 5

Calcular si existen a) lim f(x )X—>1

donde f i x )1 - x 2 si X<1

1 si 1 < x < 2 x -3 1 si x > 2

b) lim f{x)x—>2

Rpta. a) 3

Calcular si existe lim f ( x ) , donde: / ( x ) =r->3 ‘

x 3 - 2 x 2 -5 x + 6x - 3

Vx + 1 -1x + 2

si x < 3

si x > 3

®

©

Calcular si existe lim J |x |+ [ |3 x |]x —>5 / 2

[U - | ]- X10) Calcular lim

r->« X

Calcular si existe lim 2x I x - 1 1-V-»1 X — 1

Calcular si existe lim í i J J —ñi *-»1 x +1

13) Calcular si existe lim 1 1 6 -x 2 1+1' ->* ( 4 —x)-y/5— I x — 1 1

x 3 - X 2 + 3 x - 3 ,Calcular si existe lim Ix->\ x — 1

Rpta.

Rpta. -1

Rpta. 3

Rpta. -

Rpta. 3

Rpta. 4

Rpta. -2

b) 1

Rpta. 3

Page 386: Espinoza Ramos 1

372 Eduardo Espinoza Ramos

3r+ I x I15) Calcular si existe lim ------------ Rpta. 3

J *-*> 7jc—5 1 jc I

16) Calcular si existe lim — ——----- Rpta. O■ J x—*2 I JC — 2 I P

17) Calcular si existe lim [|3jc |] + 1 3jc"- 1 1 Rpta. 3‘ .V - > 3

18) Calcular si existe lim -x/ |.v | + [|3 x |]+ 4 Rpta. 3.V—>5/3

19) Calcular si existe lim - -- --- - —— Rpta. 3I Jc — 21 — [| jc |]

20) Calcular si existe lim -^ 4 ----- l] + 2jt: Rpta. 3‘ x~*1 2x + 2 [|x + l |]

12- [ l f l ] 621) Calcular si existe lim --------- -— Rpta. —1 J x -» i/6 [ |3 x |] -1 0 5

' |J"H } X | * - WM • / J^ n i i , 2 [|x2 + l |]+ |x + 2 |- 2 _ 4 + V222) Calcular lim ------------------------------ Rpta.

x—>VT [|3jc + 2 |] 6

23j Calcular lim ^ Rpta. 1*->1* [|jc + 1 |] + 3jc-1

24) Calcular si existe lim a/|jc |+ [ |3 jc |] + 4 Rpta.^ X—>5/2 v

3V6

1S) Calcular R pt, ’x-»2- [| 2jc - 1 1] + 2 8

* M l f l ]26) Calcular si existe l im -------------- Rpta. 3

1 *-»6 [| 2* | ] + 10

Page 387: Espinoza Ramos 1

Limites y Continuidad 373

(27) Calcular lim ^ * + +-^ ~[ | x - 3 1]

Rpta. - ( 2 ^ 7 + 6 )

Calcular lim' “»r -J9 sig ( x - \ ) - x ¿

Rpta. —6

Calcular lim [x~ —s ig ( \x ~ -1 |-1 ) ] Rpta. 1

Calcular si existe lim [x2 + 5 + .si'g(|;t2 - 1 1-1)] Rpta. 2x->j2

Calcular si existe l i m f ( x ) , donde: f (x ) =A—>1

1 —Jx 1 - l [ x

2 X 1 * _ 2 ~ 2

( x - l )

si X > 1

si x < 1

Rpta.

© Calcular si existe a) lim f (x)X—>—1 b) lim f (x )

Jr—>1

Donde: / ( * ) = (x -2 [ \x \ ] )¿

Calcular si existe lim [| jc |]+[| 4 - x \at->3

Rpta. a) 3 b) 1

Rpta. 3

34) Calcular lim f| ———r—- |].[| ——————— |].r—>3 10 10

Rpta. 10

35) Calcular si existe lim U x2 |]-11 x + 1

Calcular lim (x2 + 2.v)[| 1 - x |]v -> 2 +

Rpta. 3

Rpta. -16

37) Calcular si existe lim ^ X^ x 2 - [ \ x \ ]

Rpta. 3

m I <N

Page 388: Espinoza Ramos 1

374 Eduardo Espinoza Ramos

© Calcular si existe u * ’ - 3 i H i x 2 n,v->V2 x - 2

Rpta. 3

® Calcular si existe lin i([\x-\\]-x)-y]x-[\x \]jr->3

Rpta. a

M 1 - *

© Calcular si existe lim f (x) , donde: f (x) = •x -t-2

> - w i

N ] - H l - 8. [ i | i ]

X - | x |

©

©

si - 9 < x < - 2

-, si - 2 < x < 7

Calcular si existe los límites:

a) lini

Evaluar lim f ( x ) donde: f ( x ) =■V->1 '

Rpta. 3

b) Iim(x-\)[\x\]X->1

x + 2 x + 3 2x + \

linix ->.r

36- 5 x10

36 + 5x10

44) lini 2[| -V2 + l |]+ |x + 2 |- 2*-* [|3x + 2 |]

ljrti[j2x + 3 \] -3 x -2 [ \x \]

■ si X > 1

si x e< 0,1 >

Rpta. -10

Rpta.

Rpta.

3(4-V 2 )

l - XRpta. 3

46) Sea J (x) -ax2 +bx + 1 ; x < l2a x - b ; 1 < x <2 . Hallar los valores de a y b para que exista los x +1 ; x > 2

límites de f(x) en x = 1 y x = 2. ™ 5 , 1Rpta. a = —, h = —3 3

Page 389: Espinoza Ramos 1

Limites y Continuidad 375

47) Si f i x ) =

x - x -4 x + 4J+ 2

, x < -2

ax2 - 2&C+1, - 2 < x < 2 , Hallar a y b de tal manera que existe los limites

x 2 - \ 3 x + 22x - 2

de f(x) en x = 2 y x = -2

-, x > 2

D * 1 A 21Rpta. a = — y b = —

(48) Calcular si existe lini f i x ) , donde: f (x) = <1 es paix-*2 ' [ 2 x - [ \ x - 2 \ ] si [ |x |] es impar

Rpta. 3

49) Calcular si existe lim f i x ) , donde: f {x) = — Lsen A ^*->o ' ' I x I

Rpta. 3

(50) Calcular si existe l i m ( x + 5 + .ï/g(|x - 11- 1))x->-V2

Rpta. 3

S I) Si f i x ) :

x 3 + 3x2 - 9 x - 2 1x + 3

, si x < -3

a x9 -2 b x+ l , si - 3 < x < 3 . Hallar a y b de tal manera que exista los

x 2 -22X + 57x - 3

limites de f(x) en x = -3, x = 3

, si x > 3

Rpta. a = -1 y b =-

3.14. LIMI IES AL INFINITO.-

Consideremos la función f i x ) = 2 +------ , cuya gráfica es:x - 2

Page 390: Espinoza Ramos 1

376 Eduardo Espinoza Ramos

Examinando la gráfica para valores de x cada vez más grande, el valor de la ñinción f se

aproxima a 2, por lo tanto se puede decir que: lim f ( x ) = 2 para el caso cuando x* - * + 0 0 *

decrece sin limite, el valor de la función f se aproxima a 2. Luego podemos decir que

lim f (.v) = 2 . A estos tipos de límites se les llama límites al infinito.jr-*-«>*

Ahora daremos las definiciones correspondientes.

a) DEFINICION.- Consideremos f: <a, + *>>-----> R, una función definida en elintervalo <a,+oo>, él limite de la función f(x) cuando x crece sin

limite es él número L y denotamos por lim f ( x ) = L , para todo e > 0, existe unAT—M-co

N > 0 tal que sí x > N entonces: |f(x) - L| < e; es decir:

lim f ( x ) (V e > 0 ,3 N > 0 / s U > K f "^ ¡ f& P í| <«>

b) DEFINICION.- Consideremos f: < -* ,b > -----> R, una función definida en elintervalo <-oo,b> él limite de la función f(x) cuando x decrece sin

limite es él número L y denotaremos por lim / ( x) = L , si para todo e > 0 existe.V—>—OO *

un número M < 0 tal que sí x < M, entonces: | f(x) — L| < c, es decir:

Um f { x ) ~ l * * (V 0 0 , 3 M < O/sí •=» ff (x )~ M < 2)

Page 391: Espinoza Ramos 1

Limites y Continuidad 377

c) DEFINICION.- Consideremos la función / : D r —> R , una función definida en

su dominio él limite de la función f(x) cuando x -»*>, es élnúmero real L que denotaremos por lim f ( x ) = L sí para todo e > 0, 3 M > 0.

jr—>oo ‘

tal que si |x |> M => |f fx )-L |< £ .

d) TEOREMA.- Sea n un número entero positivo cualquiera entonces se cumple:

i) lim ----= 0 ¡i) lini — = 0

Demostración

i) Por definición: V e > 0 , 3 N > 0 / x > N => I-i— 0 |< £ => I — 1<£1 n ' 1 nX X

C o m o x > N > 0 => |*|">AT" => —— < ——u r N n

Por lo tanto si x > N => —— < — y —í— < e => N n = —U l" N " |j t |" e

Como N" = — => N =c V £

Luego sí x > N => | —n— 0 1 < c siempre que: N =

ü) Su demostración es en forma similar que i).

Ejemplos.- Calcular los siguientes límites:

Q Hallar lim 2x2 +3* + 5>~>ot 3 x2 — 2.V + 1

Solución

La forma más práctica de calcular los limites cuando x ----- > +°o o x ----- > -oo esdividiendo tanto el numerador como el denominador, entre la mayor potencia de x que aparece en la expresión dada, luego se aplica el criterio del teorema anterior, para nuestro

ejemplo dividimos entre x 2 tanto el numerador como denominador es decir:

Page 392: Espinoza Ramos 1

378 Eduardo Espinoza Ramos

, 2+i +42x +3.V + 5 x x 1 2 + 0 + 0 2lim — ------------= l im -------— = -----------= —

*-**’ 3x —2x+ l Jr_>“= -i__2 , _J_ 3 - 0 + 0 32X X ¿

2x - 3 x - 4

Solución

Cuando x toma valores positivos bastante grande, se toma x 2 =^[x^ con el cual

dividimos el numerador y denominador entre x 2 = V x 4 se tiene:

.. 2x: - 3 x - 4 X X2 2 - 0 - 0 ,h n i . . . — = lim — , . = ■■ -7— ■ = 2Vx4 +i x-KO h +J _ 4 i+ ó

*-*+* x + 7Solución

Como x toma valores positivos bastante grandes, se toma x = Vx2" con el cual

dividimos el numerador y denominador entre x = -Jx* se tiene:

Vx2 +4

hm _ = lim ‘V _VTTo=1 i, ,.v-»+oo X + 7 jr-»+oo ^ 7 1 + 0 j r - » + * X + 7

X X

*-»-» x + 7Solución

Cuando x toma valores negativos bastante grande, se debe tomar x = - J x 2 , con el cual

dividimos el numerador y denominador es decir:

Page 393: Espinoza Ramos 1

Limites y Continuidad 379

4.x ■ + 4

-Jx2 + 4 - ^ [ x 2hm -----------= lim ---------— = hmA->-CC JC + 7 .V—>—co x + 7 x—>-oo J ^ 7 1 + 0

. ‘Jx 2 +4.. Um -----------= -1

x - » - » jc + 7

lim (-yjx2 - 5 x + 6 - x ).v-»t-ür.

Solución

En este tipo de ejercicios para poder aplicar el método de los ejemplos anteriores, es necesario expresar a la función como un cociente y para esto se debe racionalizar:

>• / / •> - 7 (Vx2 -5 x + 6 -x )(a /x 2 -5 x + 6 +x) -5 x + 6hm (Vx~ -5 x + 6 - a ) = / ;» ; -------------- = = = = = ----------------- Jim ____ ■ -----™ ^ +0° V*2 -5 x + 6 + x ™ V * 2 - 5 x + 6 + x

Como x toma valores positivos bastante grande entonces dividimos entre x = -Jx2 .

65*+6 x -5 + 0 5

lim (V-í2 -5 x + 6 - x ) = lim , X+= — = lim’Vx2 - 5 x + 6 + x fi 5 I 6 I¡ V l - 0 + 0 + 1 2

\ x x 2

( ó ) lim -Jx2 - 2 x + 4 + xjt- í - k

Solución

En forma análoga al ejemplo anterior debemos expresar a la función como un cociente y para esto se debe racionalizar:

n 7 »• (V*2 -2 x + 4 + x ) (V x 2 - 2 x + 4 - x ) -2 x + 4lim V-V - 2 x + 4 + x = l¡m -------------- - ■ ■ ■ ---------------- - = //w - = = = = —* Vx2 -2 x + 4 - x w W*2 -2 x + 4 - x

Como x toma valores negativos bastante grande entonces dividimos entre x = -V x 2 .

Page 394: Espinoza Ramos 1

380 Eduardo Espinoza Ramos

4-2 x + 4 ~ 2 + x - 2 + 0 ,

lini = ----= lim —¡ = = = — =— = 1™ V x 2 - 2x + 4 - x j1_ l + _4_ _ 1 - V l - 0 + 0 -1

" x x 2

lim -Jx2 - 2 x + 4 + x = lX—>-«>

x3 + 3x2 + 7x + 5 3 /1 T Ilim (------r------------------ Vx + 2x - 3 0 ),_♦+» x" + 4x + 7

Solución

En el ejercicio dado se observa que el numerador es de un grado mayor que el denominador en estos casos se resta y se suma x a la vez para luego hacer las operaciones respectivas.

lim (--y3+^ 2 + 7 r + 5 -V x 3 + 2 x 2 -3 0 ),->+ce X +4x + 7

r,X3 +3 x 2 +7x + 5 , 3 / 3 - 2= lim [(------------------------ x ) - ( - x + Vx +2x -3 0 )]*->+* x +4x + 7

, - x 2 + 5 - 2x2 + 30 v= ¡im (— — + ---------- = = = = = ----p-rr:7 ------------ ---- )*-»+• x + 4x + 7 x 2 + xA/x3 + 3x2 - 30 + 3/(x3 + 2x2 - 30)2

Ahora dividimos numerador y denominador entre x 2

,im _ > / 7 T P ^ 3 0 ]x _ +4x + 7

. - ‘ * 7 - 2 + “™ ( 4 7 + i 2 30 I 2 30 2 )

1 + - + — i + 3 i + ------------------- r + 3 ( l + ----------r )2x x x x 3 V * x 3

-1 + 0 [ -2 + 0 2 51 + 0 + 0 1 + 3 /Í+ 0 + V Í+ 0 3 3

Page 395: Espinoza Ramos 1

Limitesy Continuidad 381

® J x + J x + a/*+ 2 lin, J ------ ------

Jx + 24 x + 2Solución

Como x loma valores positivos dividimos numerador y denominador entre J x ,

1 1 2-Jx + -\fx + 'Jx + 2 V y * V * 3 * 4

lim ---------¡------ ------- - lim ----------- , -----------= - — , -:■■■■—- = 1V* + 2 *-►+• / 2 a/1 + 0

3.15 EJERCICIOS PROPÜESTOS.-

Calcular si existen los siguientes ejercicios.

© Rp(a i-r-»K 4jc +3j t + 2 x + l 4

© .. 4.r3 +2jc2 - 5 1lim ------ ----------- Rpta. —

*->-<* - 8x +x + 2 2

© lim Rpta. 0w jf -1 + 2 x + \

r 3 -v2U ) //w (—---------------------------------------------------------------------- ) Rpta. 2X ' +2 -v + 2

© ,/ra[J í L _ C í d S 4 í í í i l ] Rpta. íw v— 2x + l 4jc 2

3 jf - 2 .V - 4 r 3Um ( i * ' ~T- R pta- T2x + 1 x —3 2

© ,3 v 2 ilim (—^--------- - — ) Rpta. —' 2x -1 2.V + 1 4.r

Page 396: Espinoza Ramos 1

382 Eduardo Espinoza Ramos

lim ( ^ \6 x 2 + 8*+ 6x-*+ao

- V l 6x 2 - 8x -

lim ( 4 x 2 +x —s/x2.r-»+a

+9)

®^ 2 x 2 +\ lim ------------

x-»-<* .v + 3

© lim (4 * 2 +2x - x )

© lim (-Jx2 - 2x - l -x—>±cc Vx2 - 7x + 3)

© lim(-Jx(x + a ) - x )x—*u>

© lim (sj{x + a)(x + b) -X—*or- -*)

© lim ( x + 4 x 2 - x 3 + 1)jr-»•+-*

©W -Xlim .

' —* V l - 4 x 2

© lim (x + V l - x 3)

© l im ------ p -------'■** X -V x 2 +]

© lim (4 -v + 4 2 x ~ 4 x --a/2x )

©, V x+V x+4/x l im ------, —v-»x V2X + 1

Rpta. 2

Rpta.

Rpta. —\¡2

Rpta. 1

Rpta.

D * a+bRpta.2

1Rpta.

„ 1 Rpta.

Rpta. O

Rpta. -oo

Rpta. -J2

Rpta. —=42

Page 397: Espinoza Ramos 1

Limites y Continuidad 383

¡¡m T-V7 TI Rpla. o

22) lim x(-Jx2 +1 - x ) Rpta. — s^ / 2

23) lim Rpta. -1^ ™ a47 ^ c- x

24) lim (4 x 4 + x 3 +1 -V x 8 + x 6 +1) Rpta. —^ X-*-'r 4

V*7 +3 + a / 2 x 3 -125) lim ----------- ;— .-■■■=— Rpta. 00^ ™ 4 7 7 7 V \

26) Um f - ' G X ' G * » Rpta. - i^ *-+-:/)] 243x - 11 3

¡27) lim (V-r3 + 2 x 2 + 3 -V -r2 +4x + l) Rpta. - -^ 3

-Jx + -Jx + y x28) lim —----------------- Rpta. 1^ *— V í + T

S > lim (-Jx + -Jx + a/x - -J x ) Rpta. 1

30) lim ] i ? Z I E Æ ± Z - Rpta. ,

3 l) lim x 3' 2 (a/x3 +1 - V x3 - 1 ) Rpta. 1

32J lim ^ X- +. } +A 2x:.J ± Rpta. *C ^ r-w*. 6/ 8 . 7 . ,

i X —> +00 , -00 si X—>-00

Page 398: Espinoza Ramos 1

384 Eduardo Espinoza Ramos

® Iim xf^jx2 +-Jx4 +1 -jc-%/2) Rpta. OX ->V

34) lim y.A + — j r 1,2 Rpta.■ 7 x - k t .^ 7 T _ 3/7

3 5 ) lin , Rpta. i' ™ 1/x i + 2 i + l - i P ^ Í 3

a/ 8x 9 + 3x 4 + 1 + á/jc'^ + x ~ +1 +1036) lim — , :— .................. _........ Rpta. 2* a/jc4 + x 2 +1 + a /x12 + x 2 +1 - 1 0jr—>+ac>

®

.. V* 4 +3 - V * 3 +4 _ . A/;»;------—— Rpta. O—

^ 8 ) lim ( J 4x + ->/4x + -J4x - 2-Jx) Rpta. —Jt-»+or. 2

39) lim (Mx3 - x 2 +\+%JxA - x 5 +1) R p t a . - —X->-K 1 5

lim (Vx6 - 4 jc 3 - 1 /x 12+ 2 x 9 ) Rpta. - -JT-»cr 2

(41) lim ---------x) Rpta. OV ' Jr-Ko V j r - + 3

42) l im (x2 ~ 4 x 6 - 2 x 4 ) Rpta. —

© lim ' l x 2 + l ~ 4 x 2 +\ r j

-\A/x3 +5 + 4x2 +6 - 2 x 1lim — ------ , :— R p ta .------

J~ +* x —a/x3 - 12x 2 +1 16

Page 399: Espinoza Ramos 1

Limites y Continuidad 385

45) lim É S t / l - n n - x 1 1) Rpta. I

Í6) lim V r ' - 2 ^ + 1 + 3 / 7 7 1 Rpla. ," i l x l' + f a s + 2 - V i ’ +3x3 +1.r—

a/,y4 + 1 + a „ . .47) l im --------------- Rpta. 2X—>X x + l

ao\ /■ ^/x6 -1 +2x48) lim ----------------- Rpta. 3“■ x-*+cr x + 2

49) lim Rpta. , / í + l" x->.!f x — \

50) lim ~ x '~ + - Rpta. 2" jr-»-® X +1

5 l) lim (x - ^ J ( x - a ) ( x - b )) Rpta. a + b

2

®

cXc + 2xcHallar el mayor valor de c de modo que él lim — ------- = sea infinito y calcular él

9^3limite. Rpta. c = 1, L -

(53) Si lim - - J x 2 + 3 x -1 0 ) = —, calcular el valor de k Rpta. k = 3v - ' *->+* x +x + l 2

(54) Hallar las constantes k y b que cumple lim (kx + b - X + ) = 0 Rpta. k = 1, b = 0*-»+<* x~ + 1

(55) Determinar el valor de las constantes, M y N tal que lim [M x+ N — f — -] = 0*->+■* x + 1

Page 400: Espinoza Ramos 1

386 Eduardo Espinoza Ramos

X U LIMITES INFINITOS,-:

Consideremos la función f (x) = ------ cuya gráfica es:' x - 2

En el gráfico se observa que cuando x se aproxima a 2 por la derecha, la función f(x) crece sin limite y su notación es:

fo n /<*) = +*>x->T

y cuando x se aproxima a 2 por la izquierda, la función f(x) decrece sin limite y su notación es:

l i m c o

a todo este tipo de limites se les llama limites infinitos.

Ahora daremos las definiciones siguientes:

a) DEFINICION.- Consideremos una función f definida en algún intervalo 1 que contiene a c, excepto en c, entonces él lim f (x) = +*>, si y solo

x —* r'

si, dado un número N > 0, existe un 8 > 0 tal que 0 < |x - c| < 8 entonces f(x) > N.

Es decir: lim f i x ) « + * o (V N > 0 .3 8 > 0 / sí 0 < fx - c| < 8 fix) > N)

Page 401: Espinoza Ramos 1

Limites y Continuidad 387

b) DEFINICION.- Consideremos una función f definida en algún intervalo I que contiene a b excepto en b, entonces él lim f (x ) = -oo, sí y solo

x->b

si, dado un número N<0, existe un 5 > 0 tal que sí: 0 < |x — b| < 8 entonces f(x)<N.

c) TEOREMA.- Si n es un número entero positivos cualquiera, entonces:

. . . 1 . . . 1 í~°° > si n es impari) lim — = +oo n) lim — = <

x->o* xa a->°- x" [+oo , si n es parLa demostración del teorema queda a cargo del estudiante.

NOTACION.-

i) — = +oo, a > 0O

..v a «n) — = -oo , a < OO

in) — = O, a 5*0 a

Page 402: Espinoza Ramos 1

388 Eduardo Espinoza Ramos

d) PROPIEDADES.-

Sí lim f (x) = c , lint g(x) = 0 , donde a es un número real, c * 0, entonces:

f (x )i) Sí c> 0 y g(x) ——> 0, para valores positivos de g(x) entonces: lim - — - = +*>

x - ,a g ( X)

f fa )ii) Sí c > 0 y g(x)------ > 0, para valores negativos de g(x) entonces: l im -------- = - »x - ,a g ( X)

••• f ( x )ii¡) S íc < 0 y g ( x ) ------ > 0, para valores positivos de g(x) entonces: lim —-------= -ooX - > a g(x)

f ( x )iv) Si c <0 y g(x)------> 0. para valores negativos de g(x) entonces lim —■- = +-»

x->a g (x )

Ejemplos.- Calcular los siguientes limites:

x + 2jr-»2* X~ —4© Hm -- X —‘i

Solución

x + 2 x + 2 1 x + 2l im — ----- = l im -------------------= l im ------- = +oo l im — ----- = +x>

x~*2* X~ —4 *-*!' (X -2)(x + 2) r-»2+ X ~2 *->2"*2 - 4

© ,¡m J £ Í ± í _x-»r 2 - x - x ~

Solución

5x3 +1 5,v3 +1 5.r3 +1 (-4) 4l i m ------------ = - um — ----------= - l i m -------------------= ----------- = — = -oo

,->r 2 - x - x x + x - 2 (x + 2 )(x - l) 0" 0 ’

W x-,4 X - 4Solución

Page 403: Espinoza Ramos 1

Limites y Continuidad 389

lim V l6-jc2 1 6 - x 2 (4 -x)(x+4)= h m --------- = = = = = lim x + 4 -8— lim , = —- = -00

4- x - 4 ( x - 4 y j \ 6 - x 2 ^ 4" ( x - 4 y j \ 6 - x 2 ” 4~ V l6 -x 2 0+

limx—>4” x - 4

■ = —00

©I ¡ „ ¡ L i J h l

x —»4~ JC- 4Solución

[ |* |] - 4 3 - 4 -1 -1l i m -----------= h m ------- = hm ------- = — = +00

x —>4- X — 4 x—>4- X — 4 x—>4- x — 4 O[U IJ -4

hm ----- -— = +00x—»4- X - 4

Calcular los siguientes límites:

( T ) lim — Rpta. +aoW x—»2* x 4

Ç2 ) lim ■■X— Rpta. +00W x-,-4-X + 4

® lim ■■X.,+ 2 Rpta. -00x->2~ x —4

( 7 ) lim Rpta. +00W x -» -3 " 9 - X

( 5) lim —-— Rpta. +00x —>5+ X -5

® lim X + 2 Rpta. -00x - » r 1 — x

Page 404: Espinoza Ramos 1

390 Eduardo Espinoza Ramos

( j ) lim ——- Rpta. -oo^ x + l

( ¿ ) lim ^ * 0 - -- Rpta. -oox-»3~ 3 — JC

(T ) lim Rpta. +oox-*o* 5x~+3x

® x 3 + 9 x 2 + 20xlim -----:------------- Rpta. -oo*-*r x + x -1 2

® lim ■■ - Rpta. +oox-»3* x - 3

© ' 3x2 - 7x + 6 _lim — i----- — - Rpta. +oo

v 2 _ v _ A2" x - x - 6

(l3 ) lim — 116 x |+J— Rpta. +00w x~>4 ( 4 - x h / 5 - l x + l l

@ lim 2* 2 ~ 5 x ~ 3 Rpta. 00W * - > 1 x -1

® lim(— ------- -— -------------------------------------------------------------) Rpta. +00- I l - x x - 2 x —1

(íó ) lim (—----------— ) Rpta. 00^ x-+2 x - 2 x - 4

Consideremos tres funciones ffr), g(x) y h(x) tales que

i) f(x) < g(x) < h(x), V x * x 0 y

ii) Si lim f (x) = lim h(x) = L , entonces se cumple: lim g(x) = Ljt—>jr0 *-»*0 r->jro

Page 405: Espinoza Ramos 1

Limites y Continuidad 391

Demostración

Mediante la definición de limites se tiene:

lint f (x) = L <=> V c > 0, 3 <5, > 0 / 0 < | x - x0 | < <5j => |f(x) — L| < c

lim h(x) = L o V e > 0 ,3 <5-, > 0 / 0< | x —x 0 | <<5-, =>|h(x) —L |< c

Luego si tomamos 8 = »(¡«{<5,, S 2} se tiene:

L — e < h(x) < L + c entonces:

L — c < f(x) < g(x) < h(x) < L + c, de donde: L - c < g(x) < L + c por lo tanto:

Si 0 < | x - x0 | < <5 => |g(x) - L| <£, lo que significa que: t im g (x ) = L

Para él cálculo de los límites trigonométricos es necesario establecer algunos criterios, los cuales mencionaremos en el teorema siguiente:

a) TEOREMA.- Demostrar que:

0< |jc -jc0 | < 0 =>0 < \ x - x {) | < 0< | x - x 0 | < S 2

\ f { x ) - L \ < o | h (x ) -L |< e

de donde: L — £ < í{x) < L + £

ii) lim = 1x —»0 X

iii) lim sen x = sen xn iv) lim eos .ï = eos x ()

Demostración

sen xi) Demostraremos que lim -— — = 1

r->0 x

Page 406: Espinoza Ramos 1

392 Eduardo Espinoza Ramos

para esto demostraremos la desigualdad: , x sen x ,1------< eos x < --------< 12 x

donde x es el ángulo medido en radianes tal que: 0 < | x | < —

Consideremos él circulo unitario con centro en el origen del sistema de coordenadas rectangulares XY.

Sea 0 < x < — el arco AP, medido en radianes, donde:2

P(cos x, sen x), A(1,0), B(cosx,0), C (l,tg x ) siendo C el punto de intersección de la recta que contiene el radio OP con la recta tangente a la circunferencia en A.

En el gráfico observamos que:

Area A POA < Area del sector circular OPA < área A OCA

Donde: Area A POA = — (1) sen x = Sen'Y2 ’ 2

1 XArea del sector circular OPA = — arco(radio)2 = —

* tgX , . s e n i i tgx , , ,Area A OCA = -£—, es decir: -------< — < , de donde:

2 2 2 2

Page 407: Espinoza Ramos 1

Limitesy Continuidad 393

© lint

sen x < x < tg x dividiendo entre sen x.

x 1 sen x1 < -------< ------- tomando inverso eosx < -------<1 ... (1)

sen x eos x x

nAdemás d(A ,P) < arc .A P , (1 - eos x )1 + sen2 x < x 2

x 2 x 2l - c o s x < — => 1------<cosx — (2)2 2

x 2 sen xAhora de (1) y (2) se tiene: 1-------< eos x < ------- <1 . . . ( a )

2 x

si x e ( ~ | . 0) suponiendo que < x < 0 => 0 < -x < y

que reemplazando en (a) se cumple:

, ( -x )2 . , sen(-x) , , x 2 senx ,1---------- < c o s ( -x )< ----------^-<1 => 1------< c o s x < --------<1

2 - x 2 x

t i x 2 senx . , n | . nLuego 1------< c o s x < ------- <1 se cumple para 0 < |x |< —2 x 2

x 2Como lim 1------= 1 y lim 1 = 1 entonces por el teorema de Sándwich se tiene:

j —>o 2 jc-»o

senx , l im -------= 1jt-»o x

Ejemplo.- Calcular los siguientes límites:

sen 7xx—>0 x

Solución

Page 408: Espinoza Ramos 1

394 Eduardo Espinoza Ramos

® limi

ó * -se n 2x« 2x + 3 sen 4x

Solución

Dividimos numerador y denominador entre x

6x - sen 2x sen 2* . _ sen2x-------------- o ----------- 6 - 2 ------------------- , - ..

lim - ----- — — = l im - — — — - lim ------------------------------------— = ----------= —x~>o 2x + 3 sen4x *->o ^ + sen 4x x^o ^ + sen^x 2 + 12 7

X X 4

6 x -se n 2 x 2lini*->o 2x + 3 sen 4x 7

® limr—wH1 - eos x

x-*Q XSolución

.. 1 -e o s* ■ (l-cosx )(l + cosx) sen2 x sen* sen* 0l im ---------- = lim ------------------------- = h m ---------------= lim--------.------------= (1)(—) = 0x-+0 X x-»0 x(l + cosx) -«-»O x(l + COSX) JT-*0 x 1 + cosx 2

1 -co sx „ l im ---------- = 0x->0 X

l - e o s x( 4) limW *-*“ x J

Solución

.. l - e o s x (1 - eosx)(l +cosx) .. sen2 xl im ---- -— = h m ------- ---------------- = hm — -------------x>0 x x <0 x '(1 + cosx) m 0 x ‘ (1 + cosx)

senx 2 1 n u 1 , 1= hm(------ ) -----= (1)(— — ) = -*->0 x 1 + eos x 1 + 1 2

cos(mx)-cos(/ix) lu»----------- 2--------jr-»n x -

Solución

Page 409: Espinoza Ramos 1

Limitesy Continuidad 395

, cos(w.r) - c o s ( h ) [1 -cos(/;x )]-[l - eos mx] 1 - eos nx 1 - eos mxh m --------------------- = h m ----------------- ----------------= h m ----------------l im ------- ------jr—>0 ^ x—>0 x x—»0 x Jr-*0 x

sen2 nx .. sen2 mx= lim —-----------------hm

x_>0 .r2 (1 + cos nx) x 2 (1 + eos mx)

vjsennx 2 1 ,m sen m x ,2 1= hm(---------- ) ' -------------- lim(-------------)-»-><> nx 1 + eos nx •<-><> nix 1 + eos mx

2 2 2 2 n m n - m2 2

1 - eosfsen 4x)

*->l) sen '(sen 3x)Solución

sen2 4 x 1 - cos(sen 4x) 1

¡jm l-cos(sen4x) = ¡jm ' \(,x 2 sen2 4x = 16(1)(2 } _ 8

x~*° sen2(sen3x) Jr_>0 ^ sen2 3x ^sen(sen3x)^2 9(1)(1) 99x2 sen3;c

NOTA.- Si se tiene que calcular limites de fondones trigonométricos, cuando x tiene a x0 diferente de cero, aplicaremos el teorema siguiente.

b) TEOREMA.- Sí hm f ( x ) = L o lim f ( x 0 +h) = Lx->x0 ‘ h-->0 ‘

Demostración

Aplicando la definición de limites se tiene:

Para cada c>0, existe 8 > 0 tal que sí x &Df y 0 < | jc—jc0 | < «5 entonces:

|ffx) — L| < e . ..(1 )

Ahora hacemos un cambio h = x - x () de donde x = x 0 + h es decir la sustitución

en (1) se tiene: x0 + h s D r y 0 < | jc0 + h - x 0 \ < c entonces

| / ( xü + h ) - L | < £ , por lo tanto:

Page 410: Espinoza Ramos 1

396 Eduardo Espinoza Ramos

V e > 0 , 3 8 > 0 / x 0 + h e D f A O < |h| < 5 => \ f ( x 0 + h ) - L \ < e

Luego por definición de limite se tiene: lim f ( x 0 +h) = L

OBSERVACION.- En la práctica este procedimiento consiste en hacer el cambio de variable de la siguiente forma:

L= lint f ( x ) = lint f (x ) = lint f ( x 0 + /;) donde: x - x ()=h => x = x0 + h* t-jr0->0 h->()‘

A este procedimiento se le da el nombre de reducción del limite de x0 a 0.

Ejemplo.- Calcular los siguientes límites:

O, 1 - 2 eos xlint -------------

j i n — 3xSolución

Aplicando el procedimiento de reducción: lim

... (2)3 3

Reemplazando (2) en (1) se tiene:

l -2 c o s x l in t ------------- = limh-> 0

l-2C0S(/í + y )= lim

h-> 0

1 - 2[cosh .eos—- senh. sen —1 ___ 3 3

-v-3x n - 3 ( h + - )3

-3/!

= lim h-> o

Page 411: Espinoza Ramos 1

Limites y Continuidad 397

1-cosh (l-cosh)(l + cosh) 1 -c o s2 A sen2 Ah m ----------- l im ----------- ------------= h m ----------- -— = h m --------------h->o h a->o h { 1 + cosh) *->o /i(l + cosh) *->o h ( 1 + cosh)

senh senh 0 . 0 .: lim ------ .---------- =(1)(----- )= —= 0a->o h 1 + cosh 1 + 1 2

© limr -*1

1 + cos nx ' x 2 - 2 x + l

Solución

1 + COS7U' 1 + COS7CClim— ---------- = hm ---------- — .-.(1 )*-**x - 2 x + l (x -1 )2

Sea x - l = h => x = h + l . . .(2)

Reemplazando (2) en (1) se tiene:

1 — cos tot 1 + c o s 7t (/; + 1) .. l + cos7z/icos7r-sen7¡Asen7rhm —----------- = hm —----------------= h m -------------------- ------------------

x -2 x + l h h—>o ),i

1-cos nh (1 - cos nh)(l + cos nh) ,7rsen7ZÄ,2 1 = h m ------ ----- = l im -------- -------------------- = lim(------------ ) . -h 2 h~>o A2(l + cos7iÄ) *-»° nh l + cosm'f

t 2 1 7 ■>, l K n l + cos7cc nn~ (------- ) = -— h m — --= —1 + 1 2 a-> o * 2 _ 2x +1 2

® limw v/l. 1 - cos 6xim -------------*o sen 6x

Solución

1 - cos 6xl-c o s6 x x 0 „h m ------------= hm — ■ = - = 0

-V—>o sen 6x <->o o sen ox 66x

1 — cos 6.v sen 6x sen 6x Adonde h m ------------ = hm 6 .-— — .--------------= 6(1)(0) = 0

« »o x x-*o 6x 1 + cos 6x

Page 412: Espinoza Ramos 1

398 Eduardo Espinoza Ramos

©1 + senx-cosjc

l i m ---------------------a-*o 1 -s e n x -e o s x

Solución

1 + sen-eosx senx 1 -co sxl + se n x -e o sx x , x x 1 + 0 ,l im --------------------= lim -------------------- = lint — -- ------- ---------- = ---------= -1

x—>0 l — sen x — cos x *->o 1 -s e n x -e o s x ,r->o sen x + 1 - eos jc -1 + 0

1 + s e n x - e o s xl im --------------------jc-»o 1 - s e n x - e o s x

® limr—nrsen(7r - x )

v -------------* x ( n —x)

Solución

s e n ( ^ - - x ) s e n ( 7 T - x )l im ------------ - = lim ------------ •••(!)x~>x X ( X - X ) x -n —*0 x(TT-X)

Sea z = x - 7t => x = z + n •••(2)

Reemplazando (2) en (1) se tiene:

sen(Tr-x) sen(-z) senz 1 1 1l im ------------- = l im --------------- = l im ------- (------- ) = (1)(-------) = —

x ( n - x ) (: + n )(-z ) 2-»o z z + n 0 + n n

s e n t e - x ) 1l im ------------- -- —*->x x ( n - x ) n

© , 1 - eos 3xlim ------------x-to 1 - eos 4x

Solución

1 - cos3xé ^sen3x^? 1

lim ]~ cos3x. = lim , x2 - = lim * U c f 3* jr—>o 1 - cos 4x *->o 1 - eos 4x a >o sen 4x 2 *

x 2 x 1 + eos 4x

Page 413: Espinoza Ramos 1

Limites y Continuidad 399

= lim

, , sen3x ,2 ,, „ .( 3 _ 3 7 “ ) (1 + cos4jc) 9(2)

» o sen4x 2 16(2)(4-------- ) (l + cos3x) v '4x

©

©

©

©

©©©

©

©

fío}

Calcular los siguientes limites:

lint1 - sen—

2x->n n —x

eos x - eos 3x l im ---------r-------x—>0

tg .t-s e n xlimx->0

Jt-sen 2 xh m -------------*->o x + sen 3x

1 - a/cosx hm -

lim h-> o

sen(x + A )-senx

.. Vl + senx -V l- s e n x h m -----------------------------Jr-»0 x

Vcosx -a /cosx h m ---------------------x~>° sen x

eo s* -eo s 2xh m -----------------*->o 1 - eos x

1 - 2 c o s j c + c o s 2 oc h m -----------------------X-*Q Y

9_16

Rpta. 0

Rpta. 4

Rpta. I

Rpta. ——4

Rpta. —4

Rpta. cosx

Rpta. 1

Rpta. ——12

Rpta. 3

Rpta. -1

Page 414: Espinoza Ramos 1

400 Eduardo Espinoza Ramos

1 - cos7jc _ 7lim ------ ------ Rpta. —x - 0 2

©

,. 1 -s e n x „ 1l im ------------ Rpta. —

2

@ Un, Í2 £ £ Z 2 Í Í Rpta., * eos 2x 2.r—>—

4

( h ) //m (l-jc )tg — Rpta. —*->i 2 n

,nx^ cos(— )15) lim ------ j=- Rpta. n

x -> l 1 - -Jx

0 Rpta. 2-VJ / 2 - eos x

6

se n x -c o sx „ 117) l im ---------------- Rpta. -

r —>- 4f . l - t g x ' ^ 24

( ís ) l i m ( - - x ) tgx Rpta. 1' 2

® ,. sen x - s e n a „//m ---------------- Rpta. eos ajr-*o X — Q

eos je-eos o „«m ---------------- Rpta. -sen a*->« X-<7

senóje _ „lint ——— Rpta. 2r ,2* 3x - 2 tt h

3

sen2 (7; + a ) - sen 2 a „ _lint-------------------------- Rpta. sen 2aa-»o h

Page 415: Espinoza Ramos 1

Limites y Continuidad 401

sen 3jc. sen 5x _ , ,23) l im -------------- r—;— Rpta. 15AT-.0 (x - x 3)2

. . . 3 sen/cc - sen 37a _ „ ■>24) h m ----------- ---------- Rpta. 4 n ¡“ J x->0 X1

,• "v-Y2 + 4 —3 eos x + 1 _ 725) hm —-------------------------- Rpta. -" x-»n 1 — eos x 2

sen2 6.x + tg 3x „ ,26) l im --------------- -— Rpta. -1" 3 x - n

@ lim tg 2 x(-íl sen2 x + 3 s e n .t + 4 - V sen2 jt + 6sen jc + 12) Rpta. —x —*—

2

(n + 2x) cos(^~- + 3x) ?Q s) lim ------------------2--------- R pta. £

s e n (3 y + 3 x ) 3

sen(a + 2 x ) -2 s e n (e r+ x ) + sena „h m ----------------------------------------- Rpta. -sen a.v—>0 x 2

cos(a + 2 x)-2cos(a + x) + cosa „hm — ----------- --------- ------------ ------------- Rpta. -eos a*-*(> x 2

(SÎ) „ „ U t o + 2 * ) -3 «<■ + *) + lg« 2 s n at_>() x eos3 a

( 1 - c o s x ) 2hm —------------— Rpta. ocx->o tg x - sen x

(33) lim COSX Rpta. 1

t g f l j r - t g 3 ax „h m ----------------- Rpta. a-v- >0 tg x

Page 416: Espinoza Ramos 1

402 Eduardo Espinoza Ramos

(35) lim -- -S- n- - - - Rpta. ~(1 + eos 2x) 64

36) Rpta. -2X ~ + \ ~Jx -1

37) , ,„ ,V Z Z Z ¡ ¡ E I Rpla. 2JT ►(> 1 - COS X

(55) /*» Rpta. 2A +0 4

© lim - - - s— Rpta. V3^ * 7r

*-* y sen(x - —)

(40) lim -------—------- — Rpta. 4Jt->0 (tg x -se n x )"

41) lim ----------- ---------------- Rpta. a1 v ><) (l - cos ax + x) sec ax

,v\ .. sen(x2 -10x + 25) 142) lim —— —r------------- — Rpta. —

*-*$ x + 5x -125*+ 375 20

43) lim(— \ ----------- -----) Rpta. —" « O s e n i 1 -co sx 2

ljm jsenfsen2jr) Rpla. Ik *~>o 1 - cos(sen 4x) 4

© iim cos*.... Rpta. 4 Í(ü V l - c" " v'sen x

Page 417: Espinoza Ramos 1

Limites y Continuidad 403

, , , .. l - s e n x /2£ 9 U m ------------------; ---------r R p ta* tJT-»* , ,W X X\ 2cos* /2 (eos— sen—)

4 4

@ ;im £ ^ í ± Ü z £ ^ í z i > Rpta. -2sena^ J-*0 X

(3) , * $ + * * * z £ - * Z L Rpta, 1r->0 tg*

SO) fl„ Rpta. 2x -* a x 2 H 2

4 e o s x -e o s 2 x -3 „l im ------------- ---------- Rpta. oox~*° x sen x

/Ç%\ 1 -4 c o s 2 x „ Ä(521 hm -- ----------------- Rpta. O

-V—>f. 8 sen(x - n 12)

53) /f»i(x-l)sen(— ) Rpta. OJt-»1 x -1

2x3 - e o s ( x - l ) - l _ „& ) l™ ---------- r ~ ; Rpta. 3*-»> X -1

__A 5 se n x -3 e o sx + 3 „ 555) h m ------------------------- Rpta. —

*_>(> 2 tg x +1 - eos x 2

® ,. sen2 x - s e n 2 a „ „h m --------------------- Rpta. sen 2a

cosx-cos(sen2x) 357) //m -------------r---------- Rpta. -

x 2

58) lim 3,-----------x~*°y x

2

eos mx - eos nx „ J n 2 - m 2Rpta.

Page 418: Espinoza Ramos 1

404 Eduardo Espinoza Ramos

. 1 - cosxcos2xcos3x „ x59) h m --------------------------- Rpta. 14^ r-» 0 1 - COS X

sen(2x + a )-2 sen (x + a) + sena _601 lint--------------------- ------------------- Rpta. sen a‘ jc2

, x 1 - x -Jx - 1 , /rrv 1 -sen x(61) hm{------------ + — ---------) (62) l in t—--------jt-»i sen (x -l) sen (x -l) x eos*

2

631 ft. izl£“ Ll (5) /™2(1-“ SJ:)• f W j - i ) " " X 'S *

651 (66) lim Í Í £ z £ i S í z l l £ 2 i £ E*->o sen x * -»o x

67) ,/m i z £ 5 i £ © í™ '2 " 2 “ “ »2•t->0 senz x ' ’ x 4

3.21 FUNCION EXPONENCIAL Y LOGARITMIC A.-

a) FUNCIÓN EXPONENCIAL DE BASE “A” POSITIVA

Sea a e /? + y a *1, a la íunción exponencial de base “a” definiremos en la forma

siguiente:

exp, -M ix. v) e RxR / y =- a* }

donde su dominio es <-°o , +oo> y su rango es <0,*»

Si a > 1, la función y = a v es creciente gráfica (a)

Si 0 < a < 1, la función y = a -' es decreciente gráfica (b)

Si a = e entonces y = e x su gráfica es (c)

Page 419: Espinoza Ramos 1

Limites y Continuidad 405

(T ) lim e x = +*>*—►+00

© lim e x =0,v->-co

® l im ex =1*->0

(T ) lim e x =0

b) PROPIEDADES DE LA FUNCION EXPONENCIAL.-

Sí a, b > 0, entonces:

© a ° = l © a x jay = a x*y © (ax ) y = a x

© ~ 7 = a *~y © (<¡b)x = a xbx © (7 ) ' = 4a-> b b

Ejemplos.- Trazar la gráfica de las siguientes funciones.

© v = 2 v © . v = ( | r

Solución

Como a = 2 > 1 => y = 2 r es creciente Como a = — < 1 => y = (—)x es decreciente* 2 2

Page 420: Espinoza Ramos 1

406 Eduardo Espinoza Ramos

c) FUNCION LOGARITMICA DE BASE “A” POSITIVA.-

De la definición de la función exponencial y = f ( x ) = a x a > 0, a * 1 se deduce

que dicha función es inyectiva y por lo tanto tiene inversa.

Luego a la función inversa de y = / ( x ) = a * le llamaremos función logarítmica de

base “a” y la definiremos en la forma siguiente.

Definición.- A la función f: <0, + oo> ->■ R definida por:

Le llamaremos función logarítmica (ó función logaritmo) de base a donde a>0, a*l

Se sabe que loga x es un número único b, tal que x = a h es decir:

NOTA: loga x = b se lee “el logaritmo en base “a” del número x es b”

OBSERVACION

La función logarítmica de base “a” tiene por regla de correspondencia la ecuación:

donde

i) Si a > 1, la función / (x ) = log„ x es creciente

ii) Si 0 < a < 1, la función f ( x ) = log0 x es decreciente

Page 421: Espinoza Ramos 1

Limites y Continuidad 407

d) PROPIEDADES DE LA FUNCIÓN LOGARÍTMICA

Si a, b > 0; entonces:

© lo g „ l= 0

© log„ AB = loga A + loga B

( ? ) log„ A" = wlog„ A

© loga = —logfc a

© log« a = 1

© log„-^ = logfl A - l o g a B

© iogu J a ——ioga a n

© l o g . ^ ^ 1log* a

OBSERVACION.- Sí x - e y <* v=log» x = la je i

DEFINICIÓN.- La función logaritmo cuya base es e, se llama función logaritmo natural ó neperiano y denotaremos por:

/ ( r > - t o g , x ~ L n x

Y donde D f < 0,+°o > y R f =R

Page 422: Espinoza Ramos 1

408 Eduardo Espinoza Ramos

DEFINICIÓN.- La función cuya base es 10, se llama función logaritmo decimal ó vulgar y se denota por:

OBSERVACION

( ? ) ln ex = x © e'n x = x

3*22 EL NUMERO

La expresión (1 + —)” tiene limite comprendido en 2 y 3 cuando n ----- *x>, es:n

2 < <3

a) Definición.- Al número e definiremos como el límite de la expresión (1+—)11

cuando n-Kio, es decir:

• V«»~>

donde: e s 2.718281828459045....

OBSERVACION

O La función (1+— )x tiende al número e, cuando x -><», es decir:

( 2) Sea z = — => x = — cuando x -» 00; z -> 0, entonces:

Page 423: Espinoza Ramos 1

Limites y Continuidad 409

Para el cálculo de los límites de la forma l im (f(x ) )g(x) se consideran los siguientesx-*u *

casos:

ler. Sí existen los límites lim f ( x ) = A y lim g(x) = B y son finitos, entonces:x —*a ' x —>a

lim( f ( x ) ) g(x) =( l im f ( x ) y ” g(X) = A bx —>a x —>a

2do. Sí Hm f(x ) = A * l y lim g(x) = ±oo , entonces l im (f{x))g{x) es inmediato.x —>a' x~*a x->a '

3er. Si lim f ( x ) = A = 1 y lim g(x) = ±oo ( l 00 indeterminado)x —>a ' x —>a

En estos casos, estos límites se calculan de la siguiente forma.

A la función f(x) expresamos así: f(x) = 1 + 4> (x) donde lim <$>(x) = 0x —>a

Luego se hace la sustitución y se aplica la definición del número e.

J • . x ~ x t ' a.v. .......; .i.-..—.................. ...■■■■■...y; ......;

OBSERVACION.- En el cálculo de los límites de funciones logarítmicas se aplica

la propiedad siguiente:

i m W f í x ) } ~ L t í h m ÍUWx->a .. • *-w»

Page 424: Espinoza Ramos 1

410 Eduardo Espinoza Ramos

Calcular los siguientes límites.

rx-4 ,,._-)x-*s X + 1

Solución

x - 4 7 _5 , - 5 — — <*-2> J ~ :2) <lim[—— ]x~2 = lim[l+— ] ^ 2 = lim[(l + — ) 5 ] *+I = e ~ " *+1 = tT5Jr-** je + 1 r - * » jc + l *-><* jr + 1

-> ~ * -l jc” +3

*->cr *•- +4*Solución

x 2 +3 ,. + x2 1 + 0 ,lim —z-------------------------------= lim ---------= -------- 1jr-»*' + 4X x~>oc 4 1 + 0

Ahora hacemos la transformación indicada en el criterio establecido.

x 2 +3 — 3 - 4 * — 3 - 4 x — (— K ^ )l i m v = fa i[ l+ - 1 v = //w [q+ . ) 3"4* ] * x+4x'->r' x~ +4x *->*> x~ + 4 x x~>c' x " + 4x

(x2 -1)(3 —4x) _4= exp{ h m --------~ = e

Solución

l im (4x+ l - V x + T ) ^ = lim [l + ( - J x - J x T l ) ] ^ = lim [1+—= — ^ = ] V7*-** *-»■+» *-♦+» Vx -V-v + 1

= lim [(l + - ?=— p = r ) < ^ + 7>)] VnvTTT = e ^ 7 ^ 7 ^ = e -l/2 V jc-V x + 1

Page 425: Espinoza Ramos 1

Limites y Continuidad 411

(T ) lim — Ln.<-»oi v l - x

Solución

.. 1 - 11+X .. 1 ,1 + X 1/* 1 r r/- / (1 + X) -h m - L n ------= h m - L n ( - ------) = -L n [ h m ( ------------- - )]*-»0

® .. ,sena + sen3x, „ n1,lm { ----------------- ) sen3jr»0 sen a - sen 3x

= — Ln(—- ) = — Ln e2 = Ln e = l lim — L n ^ ¡ X = 12 e ~l 2 » o j t ï l - x

1sen a + sen 3x

\ S C I! J A

Solución

sena + sen3x sena + 0 ,Como lim - ------ —— = ------------= 1

a->o sen a - sen 3x sen a - 0

Entonces transformamos la función mediante el criterio establecido.

. sen a + sen 3x . “ 77 „ 2sen3x, . , 3 U 1 M T 3 V 1 I J A . cot, u . . o v i l J A . OQ,„ -j ..Um(----------------- )sen3* = /Z/W(l + ------------------yenlxx—*o sen a - sen 3x *->0 sen a - s e n 3x

sen a -sen 3.v2 O M ' •* lífftS e n j X x Z : , Z x->o sen a -sen 3* ^ a■lim[(l+-------------------------- ) 2sen3x ] sen a -sen 3* = e = g

*-»0 sen a - sen 3x

® lim (cosx + a sen hx)1 t\

\ l / X

x—>0 'Solución

Como //w(cosx + asen¿>x) =1 + 0 = 1 entonces transformamos la función mediante el-V—>0

criterio establecido

lint (eos x + a sen hx) ' = lim (1 + (eos x + a sen bx - 1)X - *i) * - > ( )

eos jr+tf sen.r-1

lim[( 1 + (eos x + a sen bx - 1))cos *+<,sen bx~1 ].v—>0

Page 426: Espinoza Ramos 1

412 Eduardo Espinoza Ramos

cosjr+asen¿wr-l , . sen bx 1 -co s jthm--------------- limlab-------------- ) , _ .= £jr-*o x — g x - ' 0 bx x — e — 6

©x i

l i m ^ —Jt->0 x

Solución

Sea a = e x - \= > e x = \+ a tomando logaritmo

=> Lnex = Ln(l + a ) x Lne = Ln(\+a) => x = Ln(l+a)

Cuando x —>0; a-+0 entonces:

e x -1 « 1 l 1l im ------- lint Ln(i+a) -- l im -—— = — = - = 1

X a->0 a->0 Ln(\+a) Lne 1

® lim.íll x -1

® Um

jt-»0 xSolución

Sea a = 7 X - \ =>7X = l + a =>Ln7x = Ln(l+a) => x = —— Ln(l+a)Ln 7

Cuando x—>0; a-->0 entonces:

lim —----- = lim — -------- = Ln7. l im --------- — — - Lnl.-^— = Lnlv-o x a ->n_ J _ £ „ n + a ) a -*0 lB ( l+ a ) l a Lne

Ln7

7X -5 *>0 x

Solución

En este limite se debe de aplicar el criterio del ejemplo (8) es decir la forma del límite del ejemplo anterior.

i* _ 5 r n x _ d _ ( 5 jc 7* _ i 5 ^ -1lim ------— = lim ---------— ------- = l im -------------lim -- ------= Ln7 - Ln5 = Lnx —y() X jt->0 X x -* 0 X *->0 X

Page 427: Espinoza Ramos 1

Limites y Continuidad 413

9* _ 7 Jl im ----------jr-.o 8X - 6 X

Solución

Ahora debemos de expresar en la forma del ejemplo anterior, dividiendo entre x

9* -7 * 9* -1 7* -1x___= lint

9 ' - 1 *lim ---------- = lim .. .jr->o g * _ 6 X « o ^ - 1 ex - 1 ln 8 - ln 6 j _4

v r r 3

© limsen 3x - s e n *

a:->o Ln( 1 + jc)

sen3x-sen jr l im ----------------- = lim

Solución

sen 3 x - sen*

= lim

sen 3jc sen x3x _x____ 3(1) — 1 3 -1 _

*-*o Ln(\+x) *-»o 1 Ln(y + x^ ° Ln(l+ x)Vx Lne 1= 2

„ ax „ß* e — e

©©

©

lim*-»o x

em - e * lim =c-»fl JC

em - lim (-------a->0 X

1X

* 1

) =J

3.25 EJERCICIO!?i:i*í5MísSí:ÉÉËf e

Solución

) = L n ea - L n e^ = a L n e - ß Lne = a - ß

Hallar los siguientes límites:

ltm(x ’ \ 2x + 3f ' 1JT-MO x 3 + 4

, x 2 - 2 x + \ , xhm (—----------- ) 'x - - 4 x + 2

3 x - 4 —lim(i í - J ) 3

3x+2

Rpta. e

Rpta. e

Rpta. e •2/3

Page 428: Espinoza Ramos 1

414 Eduardo Espinoza Ramos

® lim (cosx + senx)x Rpta. er-*0

0 ¡¡m L * a + x ) - L m ^ I

® lim x(ln(x + a) - Inx) Rpta. ar —>nr

2 -* ~ sen x

© lint x Rpta. -^ jr-*° x -3 x + 2 2

2 .

( 8) l im (^r— ) x+x Rpta. 1*-** x" +1

( ? ) Rpta. <?3w X-*« x 2 - 2

lÓ) lim y l - 2 x Rpta. ex-+Q

x-*x> x - a

3 - - I- V

(x + a ) '"“ (x + b)*'b .(16) lint---------------------- -— Rpta. eW (x + a + h)2x+a h

-2

@ l i n t ( ^ - Y Rpta. <?2fl

12) lim (X ^ - T-+ - ) x Rpta. e~2

1 i2

x-t+yi x +4

® l i m - sen3x)2x Rpta. ex->()

m

® lim(ex + x ) x Rpta. ejc-»0

© limix + ex) x Rpta. er-»l>

2 n

2

(a+b)

Page 429: Espinoza Ramos 1

Limites y Continuidad 415

i17) Um Ç1 ] + scn-sßx ) 3en Æ Rpta. e'5

18) Um ( 4............. , )X$en Rpta. \¡2^ jr-»+oo I

16x sen —4x

lnfe + » ) - l . x 1» A x

(20) //w (1 + tëJC)senjf Rpta. e 2v ] >0 1 - tgjc

1 t 121) /;»»(■ + tg5_) sen; Rpta. jr-»o 1 - sen x

® lim 2 - J cos x )* 2 Rpta. 1t->0

® lim(cosx)*2 Rpta. ex- ,0

15o6

(24J Um(cosJ— )bx Rpta. e 2jt- to x

(ex +x)'*x — lim[—---- —— ] ' Rpta. ex~*° (1 + sen x) x

26) lim (senx ) lÊX Rpta. 1

1 3

v’ ô'cos 2x 'l i m ( - ^ ^ - ) xl Rpta. e 2

28) lim(\ + x 2)< tê~x Rpta. e*->()

Page 430: Espinoza Ramos 1

416 Eduardo Espinoza Ramos

i29) lim(l + tg ^ /x ) lx Rpta. -Je^ *->0

(30) lim(cosx)senx Rpta. 1jr-»0

31) Rpta. - I' ' i 1 2

sen.r

@ l im i* ^ - ) * ™* Rpta. -x - o x e

p in ic o s « * ) R pta. (£)2x-»o ln(costa) b

© lim ln(1 + g } Rpta. 0i—k-cr r

35; lim - i -1- — ! Rpta. 1x ->+cc x

O i / 1—\ 1*3 In.t —36) limlplx) Rpta. e 2

x-»o sen ax - sen px

x—>0

ax _ Bx(37) /;m— - ----- — — Rpta. 1

sen Lx „ „l im ---------- Rpta. 2x -»o ln(l + x)

39) lim (sen—+ eos —) jr Rpta. eX-X» X X

40) l im------ + g ---- , a > 0 Rpta. a xL n 2a" a-»0 h

Page 431: Espinoza Ramos 1

Limites y Continuidad 417

x - alim ■ x*a Lux - Lna

Rpta. a

lim e — 1.v->n frh' _ i

Rpta. —b

;■ O' - a . A /zw---------- , a > Ov~*A X — b

Rpta. a bLna

lim — \n\•f->o ax V I-

1 + axax

R p„. i

5 ' - 4 ' h m —------ Rpta. - L n — 4

-1

©

lim -*->i je In je

ilim(^-)x lx->2 2

ln (co sx )lim ---------- j -*~>f>ln(l + x~)

sen2 3x lim — ----------Jr~>n ln (l + 2x)

Rpta. 1

Rpta. -Je

Rpta. - -

9Rpta. —4

lim (a* + b xy

lim (eos — + n. sen — ) *a j x X

Rpta. 1

Rpta. -Jab

Rpta. ean

Page 432: Espinoza Ramos 1

418 Eduardo Espinoza Ramos

54) lim. Ln(nx + 4 1 -m 2*2)

Ln(x + Vi -Je2;Rpta. n

55) lim(o 1 + sen x. cos P x

Rpta.P 2 2 e - a

56) /<»»[•^ 'Y + ( 2 - —)'82u ]- J x - J a a

Rpta. + e*

3a>

. . . a ' + é ' + c ' -(57) ltm(------- ----------) 'v ->o 358) lim 8 7

x—*0 6J _ 5 J

5 9 1 Jim ln0 +j: + -v2) + ln(1~ ji: + x2' 60) lim (1 + c tgx).V—»—

2

a) DEFINICIÓN.- Consideremos una recta L y un punto A que se desplaza a lo largo de la curva C: y = f(x), cuando la distancia entre la recta L

y el punto A de la curva tiende a cero, cuando el punto A tiende al infinito, entonces a la recta L se denomina asíntota de la curva, es decir:

A • • <-•:

Page 433: Espinoza Ramos 1

Limitesy Continuidad 419

b) DEFINICIÓN.- La recta x = a es una asíntota vertical de la curva C: y = f(x) si se cumple una de las relaciones siguientes:

i) lint f ( x ) = ± » ¡i) lint f (x) = ± * iii) lint f ( x ) = ±*>

Ilustración Gráfica

lint f ( x ) - +'x>x > a ’

lint / ( * ) = -*>.V—

Page 434: Espinoza Ramos 1

420 Eduardo Espinoza Ramos

c) DEFINICIÓN.- La recta y = k es una asíntota horizontal de la curva y = f(x) si se cumple una de las siguientes relaciones:

i) lin, f ( x) = k ii) lini f (x) = k iii) lin, f ( x ) = k

d) Definición.- La recta y = a x + b es una asíntota oblicua de la curva C: y = f(x) si se cumple que:

lint [ f ( x ) - ( a x + b)] = fí ó lint [/(,v)-(úur+/>)] = 0

OBSERVACION.- La forma práctica de encontrar las asíntotas oblicuas (horizontales) de una curva y = f(x) es de la manera siguiente:

, • f (x)lim itée //mi _-----Si existen los límites lin, ■—■■■■ = k . lim [ f ( x ) —k] = bX - > Í X X X ~ > ± c c

La recta y = k x + b es una asíntota oblicua (a la derecha cuando x - > + tc y a la izquierda

cuando x—»-*>) y es una asíntota horizontal cuando k=0.

Page 435: Espinoza Ramos 1

Limites y Continuidad 421

Ejemplo.- Hallar las asíntotas de la función:

Q y ( x - 3 ) = x 2 +9

©

Solución

2 V2 +9y(x -3 ) = x + 9 => y - ------—, como el denominador se anula para x = 3 entonces:jc —3

x~ +9i i m --------- = ± * entonces x=3 es una asíntota verticalx - 3

x~ +9Ahora calculamos las asíntotas horizontales si existe y = k donde k = lim-------- = +oo

x - 3

Por lo tanto no existen asíntotas horizontales.

Calculando las asíntotas oblicuas: y =mx + b donde:

y x 2 +b . .m = hm — = lim -------- = 1 => m = 1jr->±oo X x->±<*>2 X — 3X

b = lim ( y - mx) = lim ( - —— ) = lim — 3 z=>b = 3A > * :/ x—»±Q0 X — 3 V >T 3T X — 3

Luego la asíntota oblicua es la recta: y = x + 3

x +3y -

-Jx1 - 4Solución

x 2 +3Observamos que el denominador se anula para x = ± 2 y además lim . = +00x ^±2 -yjx2 - 4

entonces se tiene que x = ± 2 Son las asíntotas verticales.

v2 +3Ahora veremos las asíntotas horizontales: y = k donde k = lim .....= ±00— 4 7 ^ 4

Por lo tanto no tiene asíntotas horizontales.

Page 436: Espinoza Ramos 1

422 Eduardo Espinoza Ramos

©

Calculando las asíntotas oblicuas y = mx + b, donde:

k = lint lim *1- - 3 =±1- 4

x~ + 3b= l i n i ( y - m x ) = lim (—= = ± x) = 0 => b = 0x-»±oo ^ x _ 4 2

Luego las asíntotas oblicuas son y = x , y = -x

y = ----- - + Mxx - \

Solución

Se observa que el denominador se anula para x = 1 y además lim ——— + \[x = <x>,'-♦1 JC — 1

entonces la asíntota vertical es x = 1

x~ +1Calculando la asíntota horizontal y = k, donde: k = l i m --------+ \¡x = oo* - > jc—1

Por lo tanto no tiene asíntota horizontal.

Calculando las asíntotas oblicuas y = mx + b donde:

y jc2 +1 \ fxm = lim — = lim — ------ v---- = 1.r-»a X X — X x

b = lim {y - mx) = lim ( 'x + \[x - x) = oo, Luego, no existe asíntota oblicua.X — X —» 0 0 J C — 1

® a~(a-xy = 3 2

£/“ (£/ — JC)*> *>

¿7" + J t~

Solución

Cálculo de las asíntotas verticales, como el denominador no se anula para ningún valor real de x entonces no tiene asíntota vertical.

Page 437: Espinoza Ramos 1

Limites y Continuidad 423

©

Cálculo de la asíntota horizontal: y = k donde: k = lint a—j ü—y - = 0* - . 0 0 a - + x 2

Por lo tanto la asíntota horizontal es y = 0.

Cálculo de las asíntotas oblicuas: y = mx + b donde:

y a 2( a - x ) m = hm — = hm —------- — = 0x->'x *-**■ a~x + x

a~(a —x)b = lint (y - mx) = lint —-------- - 0 = 0 , Luego y = 0 es la asíntota horizontal,X —► ' / ' X - * C S ’ Q + X

v = -2 x l —5jc—3

x —1Solución

2 x 2 — 5x — 3Como el denominador se anula para x = 1 y además: lint----------------= oo, entonces la*->i x - l

asíntota vertical es calculando la asíntota horizontal: y = k, donde:

k = lim — --- ——- = oo. Por lo tanto no se tiene asíntota horizontal.*-»»■ x -1

Calculando las asíntotas oblicuas: y = mx + b donde:

y 2x2 - 5 x - 3 .m = hm — = l im ------ ---------- = 2

x x —x

, .. . . .. ,2x2 -5 x - 3 . , ,2x2 - 5 x - 3 - 2 x 2 +2x - 3 x - 3 -b= l im (y - m x ) - hm(----------------- 2x) = lim(-----------------------------= lint------- - = -3X-V-t A—K/j X — 1 jr->oo X —1 X -W X — 1

Por lo tanto la asíntota oblicua es: y = 2x - 3

y 2( x - 2 a ) = x 3 - a 3Solución

Page 438: Espinoza Ramos 1

424 Eduardo Espinoza Ramos

y 1( x - 2 a ) = x i - a * =>y = ± J ^ — ^V x-2a

Se observa que el denominador se anula para x = 2a

i } _ rAdemás lim ± , | ---------- = ±oo, por lo tanto x = 2a es la asíntota vertical.

x - > 2 a V x - 2 a

Calculando la asíntota horizontal: y = k donde:

I 3 _ a 3k = lim ± J ---------- = ±oo, por lo tanto no se tiene asíntota horizontal.

*->•' v x - 2 a

Calculando las asíntotas oblicuas y = mx + b, donde:

y ,■ W * 3 - fl3m = lim — = lim ± — -r=----- = ±1x x^jx _ 2a

= ±a

oblicuas

Hallar las asíntotas de las siguientes funciones:

© y{ x - 3 ) 2 = x 2+9

( 2 ) x 2(x + y ) - a 2( x - y )

( i ) x y 2 - 3 y 2 - 4x = 8

y = 4 x 2 + x - x

^5) xy2 + yx2 = í /3

Rpta. x = 3 , y = 1

Rpta. y = -x

Rpta. x = 3 , y = - 2 , y = 2

Rpta. v- - j

Rpta. x = 0. y = 0, y = -x

b = lim ( y - m x ) = lim ± ( J —— ±x) =x—»±00 y x - 2 a

por lo tanto y = ± (x + a) son las asíntotas

Page 439: Espinoza Ramos 1

Limites y Continuidad 425

©©©

©

©

y = xx + ax - a

x 2( x - y ) 2 - a 2( x 2 + ^ 2) = 0

v =

y = \x + 4\ +1*1-3

„210) y = -

x 4 -1 2 x 2 + 2 x 3 -8 x + 32

y =

12) y =

X 2 +3

x ¿ +l

x ¿ + 2 x - l

@ _y = 3 - 2 x -4 x 2 - x ~ :

14) f ( x ) =

16) f ( x ) =

l - x zx 2 - 4

x ' + 2 x + l

18) f ( x ) = .

20) f ( x ) =

/16jc2 + 4 x - 6

' 9x2 - 6 x - 8

I 9 x 2

OC1£i

i 16x2 + 4 x -6

Rpta. X = a

R pta. x = ± a , y = x ± a 4 2

Rpta. X = 1, X = -1, y = ± X

Rpta. X = ±3, y = x+4, y = -x-4

Rpta. X = ±2, X = -4, y = 0

Rpta. y = -X , y = x

Rpta. x = 0, y = x + 2

5 7Rpta. x = 1, x = 2, y = -3x + — , y = - x ~ —

15) f ( x ) =x - 5

17) f i x ) =

19) / (* ) =

x 2 -7 x + 10

2x + 5x - 8 x + 3

x 4 - 5 x 2 +4 x 2 + 2x - 24

21) / ( * ) = .20 + x - x

x 2 + 4 x -1 2

Page 440: Espinoza Ramos 1

426 Eduardo Espinoza Ramos

f ( x ) =21 + 4 x - x 2 x 2 + 7 x -8

@ /(x ) = V*3 - 3 x 2 - 9 x + 21

23) f ( x ) = Vx4 - x 3 - 9 x 2 +9x

25) f(x ) = Vx3 - 5 x 2 -25x + 125

3jc3 + 3x + 1 I 2 7/ (* ) = -----------— + < x 1 +4x + x - 6

271 f (x ) =x" —x 3 +1 I 2" 7----- -------- +V* +4

x +1

m =-6 x +4x +5

x 3 - 6 x 2 -4 x + 24+“j s 6 x ¿ +5

a) CONTINUIDAD DE UNA FUNCIÓN EN UN PUNTO.-

Consideremos una función real de variable real f: R—>R, diremos que la función f es

continua en el punto x = x0, si y solo si, se cumple las tres condiciones siguientes:

OBSERVACION.- Cuando una de las tres condiciones ó más no se cumple, se dice que la función f es discontinua en el punto x = x0.

b) PROPIEDADES SOBRE CONTINUIDAD.­

© Consideremos dos funciones f y g continua en x = x0, entonces:

a) f ± g es continua en el punto x = x0

b) k f es continua en el punto x = x0, k e R

c) f.g es continua en el punto x = x0

Page 441: Espinoza Ramos 1

Limites y Continuidad 427

^ 2) La función polinomial definida por:

/ (x ) = a„xn +an_1x"~1 +...+a1x + a0, a„ * 0 , donde n es entero

positivo y a¡ &R , i = 0,1,.. .,n es continua.

© La función racional / (x) = es continua en todos los puntos x = x0

donde h(x0) * 0

( ? ) Si lim g(x) = b y si f es continua en b entonces:x->x„

lim f (g (x ) ) = f ( b ) = / ( lim g(x))X—>X0 X~>X0

© Si g es continua en x0 y f es continua en g(xQ) , entonces la función

compuesta f o g es continua en x = x 0.

a) DISCONTINUIDAD EVITABLE O REMOVTBLE.-

Diremos que la función real de variable real f: R—>R tiene una discontinuidad

evitable ó removible en un punto x = x0 sí:

i) Existe el número lim f (x)

ii) x0 í D f o bien x0 e D f se tiene que: lim f ( x ) * / (x0) , en este casox->x0

definimos la función

Page 442: Espinoza Ramos 1

428 Eduardo Espinoza Ramos

©

b) DISCONTINUIDAD NO EVITABLE O IRREMOVIBLE.-

lro. Discontinuidad de primera especie.- Diremos que la función f(x) tieneuna discontinuidad de primera especie si existe los límiteslaterales lim f ( x ) y lim f ( x ) , finitos y diferentes.

jr-»jr0~ jr—

2do. Discontinuidad de Segunda Especie.- Diremos que la función f(x) tieneuna discontinuidad de segunda especie en el punto x0 , si no existe lim f ( x ) ,

x~*xo

o si uno de los límites laterales es ± oo.

EJEMPLOS DE APLICACIÓN

Determinar los valores de x para los cuales la función f es discontinua y construir la gráfica.

/ ( * ) =2 x - \ , x * 2

3 , x = 2Solución

Analizaremos la discontinuidad en el punto x = 2

i) f(2) = 3 existe

ii) 3 lim f ( x ) <=> lim / ( x) = lim f ( x )x-*2 x-*2~ Jr->2+

lim f ( x ) = lim 2x -1 = 4 -1 = 3x->2 x->2~

lim f ( x ) ~ lim 2jc—1 = 4 —1=3jr-»2* x-t2*

como lim f (x) = lim f ( x ) = 3 => 3 lim f ( x ) = 3x->2 ' ' x->2* x->2

Page 443: Espinoza Ramos 1

Limites y Continuidad 429

© m =

iii) lim f ( x ) = / (2 ) = 3 , por lo tanto la fruición f(x) es continua en todo x.x—*l

x 4 -81x 2 - 9

Solución

O- , • ,-r n \ X4 -8 1 (x1 + 9)(x + 3 )(x -3 ) 2 n i r,Primeramente snnphficamos: / (x) = — -------------------------------------------------------- = -- ---------- ---------- = x + 9 , x^-3,3x - 9 (x + 3 )(x -3 ) I

La función f(x) tienen puntos de discontinuidad evitable en los puntos x = -3, x = 3

Ahora definiremos a la función de tal manera que sea continua en todo x.

lim x 2 +9 = lim x2 +9 =18Jt->3

f(x) = I X + ^ ara X * . Por lo tanto F(x) es continua V x.[l 8 para x = -3,3

x 3 - 2 x 2 -1 lx + 12© f ( x ) = -

X J X T

Soluciónx 2 -5 x + 4

Primeramente simplificamos:

~ 2f - l b t + 12 = <iz f e g £ . í i l = „ 1,4' x -5 x + 4 (x - 4 ) (x - l )

Luego la función f(x) tiene puntos de discontinuidad evitable en los puntos x = 1, x = 4.

Ahora definiremos la función de tal manera que se continua en todo x.

lim f (x) = lim x + 3 = l+ 3 = 4 y lim f ( x ) = lim x + 3 = 4 + 3 = 7x->\ x->l x->4 x->4

x + 3 para x * 1,4F(x) = 4 para x = 1 . Por lo tanto F(x) es continua Vx.

7 para x = 4

Page 444: Espinoza Ramos 1

430 Eduardo Espinoza Ramos

® / ( * ) =

2x + 3 8 -3 x x + 3

5 / X<1

si 1 < x < 3 s i x > 3

Solución

Los posibles puntos de discontinuidad son 1,3 analizando la discontinuidad en x= 1 y x=3

i) f( 1) = 5, f(3) = 6 existen

ii) 3 lim f { x ) , 3 l i m / (x )x —>\ x—>3

lim f ( x ) = lim 2x + 3 = 2 + 3 = 5jr->l

lim f ( x ) = lim 8 -3 x = 8 -3 = 5X - > \ * X ~ > \ *

lim f ( x ) = lim 8 -3 x = 8 - 9 = - l ^jr-»3~ x - * Y

3 lim f ( x ) = 5X~>\

lim f ( x ) = lim x + 3 = 3 + 3 = 6x->3* x-*3*

Como lim f ( x ) * lim f ( x ) => 3 lim f { x ) r jr-»3‘ x-»3

Por lo tanto la función tiene una discontinuidad de primera especie en x=3.

© / ( * ) =

x - 2 1 s ig(x - 1 )

x3 + 3x2 + 3jc - 9[| 1]

x 2 - 9 x 2 - 2 x - 3

9 4 3 2

s i - 5 < x < 0 a x * - 3

si 0 < x < 5 a x * 3

si x = -3

si x = 3

Solución

Los puntos donde posiblemente sean discontinuos son: x = -3, x = 0, x = 3

Page 445: Espinoza Ramos 1

Limites y Continuidad 431

Ahora los puntos x = -3, x = 0, x = 3

Para - 5 < x < 0 , [ |^ | ] = -1

s / g ( j c - l ) =

1 , jc > 10 , x = 1 ; entonces la función f(x) queda simplificado en la forma:

-1 , jc < —1

f ( x ) =

+ 27x 3 +3x2 + 3jc + 9

x 2 - 9 x 2 - 2 x - 3

9 4 3

2

si - 5 < jc< 0 a j c * - 3

si 0 < x < 5 a x * 3

si x - - 3

si x - 3

para x = -3 entonces ff-3) = 9/4 está definida.

x +27 93 lim f (x) = lim —-------------------= —, Luego f(x) es continua en x = -3* - - 3 jc3 + 3x 2 + 3 x + 9 4 ’ * w

Para x = 0 entonces f(0) = 3 está definida

3 lim f (x) <=> lim f (x) = lim f (x) = 3 , Luego f(x) es continua en x = 0x —>0 x —>0 x —>0+

Para x = 3 entonces f(3) = 3/2 está definida

x ¿ - 93 lim f (x) = lim —* ^ x 2 - 2 x - 3 2

= — , Luego f(x) es continua en x = 3

© /(* )■ = ] ( ^ 2 ~ 4 cosx ) si x * 01 /8 si x = 0si x = 0

Solución

Page 446: Espinoza Ramos 1

432 Eduardo Espinoza Ramos

El punto donde la función puede ser discontinua es x = 0 es decir:

•) / (0 ) = —, la función está definida8

ii) 3 lim f ( x ) = limi^Jl- 4 e o s x ) llx = lim (2 -4 c o sx )1/lx2jr-»0 x->0

1 l-Vcosx 1-Vcosjrlim -, „2

= lim([ 1 + (1—ycosx]1- ^ 7 ) 2' 2 =e""° 2x1 =<jc—»0

¡ii) lim f (x ) * / ( 0 ) , por lo tanto la función f(x) es discontinua en x =x —»0

© /(*) = ■x sen — si x * 0

x0 si x = 0

Solución

Analizaremos la continuidad en x = 0

i) f(0) = 0 la función está definida en x = 0

ii) 3 lim f (x) = lim x sen 1 / x = 0jr—>0 Jr—»0

iii) lim / ( x ) = /(O ) = 0jr-»0

Por lo tanto f(x) es continua en todo x.

sen zNOTA: lim x sen 11 x = l i m ------- = 0 puesto que: -1 < sen z < 1

x->0 z—>oc> 2

-1 / z < SCn 2 < 1 / z tomando límite l i m - M z < lim SCn~

0.

< lim 1 / z

Page 447: Espinoza Ramos 1

Limites y Continuidad 433

8J H (x) = sen(-^-— - ) x +4

Solución

3x3 - 2Sea fix) = senx, g(x) = —------ , de donde g(x) es continua V x e R, y f es continua

x 2 +4

en todo g(x), para x e R, luego:

,3* - 2 ,H(x) = f (g (x ) ) = sen(—-------) es la función compuesta y es continua VxeR.

x~ +4

I Determinar los valores de x para los cuales la función es discontinua y construir la gráfica:

© f ( x ) =

® f ( x ) =

1 + x , x < - 2 2 - x , - 2 < x < 2 2 x - l , x > 2

sen---- , x * 0

x0 , x = 0

©

©

©

f ( x ) =- \ x \ + x

22 , x = 0

,x < 0

f ( x ) =

f ( x ) =

3x3 +2x2 - 6 x + \x 2 - x

2 x - | x |3 x + |x |

Rpta. Cont. en todo x * 1

Rpta. Discont. En x = -2, x = 2.

Rpta. Discont, en x = 0

Rpta. Discont. En x = 0

Rpta. Discont. En x=0, x=l

Rpta. Discont. x=0

Page 448: Espinoza Ramos 1

434 Eduardo Espinoza Ramos

© / ( * ) =x 3 - x 2 + 2 x -2

x - l4,

X *1

x = 1Rpta. Discont. enx= l

© / w =x 2 +2 , x < 0

sen x 2 -------, x > 0

Rpta. Cont. En todo R

© / (* ) =3x2 -7 x + 2

x - 23.

, si x * 0

si x = 0Rpta. Discont. En x=0, x=2

/(x) =x - [ |x |] | , si [ |x |] es par

| x - [ |x | ] | , si t |x |] es impar

@ f i x )

x 2 - x - 2|x - 4 |

si x * ± 2

— si x = ±24

Rpta. Discont. en ± 2

12) f ( x ) =¡x2 - 9 , x < 3

x , x > 3Rpta. Discont. en x=3

13) f ( x ) =

[ | l - x | ] + [ |x - l | ] , si 0 < x < 22 j x \ - [ \ x \ ]

2 x —5 , s i x >2

Rpta. Es continua en x = 2, discontinua en x = 0, x = 1

f ( x ) =

|x | , X > - 1 , X * 1| x - l |

% ( |x 2 - l | - l ) , x < - l

Rpta. Es Discont. En x = —7 2 ,-1 ,!

Page 449: Espinoza Ramos 1

Limites y Continuidad 435

/ (x ) =

f i x ) =

.y3 +8

x + 2, 5/ x * - 2

5 , s i x = -2, en x = —1

> -xx < 8

/(x ) =

VX - 2

3 - 2x, x > 8

s/g(x2 - 7 ), 4

x < - l

|x |< l

/ w =

x 2 - 9 '

— + -Jx2 - 2x + 1, x > 1 8

sig(x2 - 4x) -1 , x < -3

Vx2 + 7 + ^ 3 x 2 - 1 9 - 6x - 3

9 3 - lO x 1 v- ¿ 7 ^ + 7 ^ '

V x - 4

a/i 6 — x-\/5x - 4

/ (x ) =sen x - sen a

x — Ü COS fl

- , x * a

, x = a

- 3 < x < 3

3 < x < 4

x > 4

/ (x ) =

cos nix - cos «x

2 2»I -17

/(X):

2

1 + COS /EC

X2 - 2x + 1

,x = 0

-, X *1

Rpta. Discont. en x = -2

Rpta. Discont. en x = 8

Rpta. Discont. en x = -1

Rpta. discont. en x = -3, x = 3

Rpta. Cont. en x = a

Rpta. Discont. en x = 0

Rpta. Cont. V x

Page 450: Espinoza Ramos 1

436 Eduardo Espinoza Ramos

II. Determinar el valor de A para que la función f sea continua.

© f i x ) =x — 4x - 2

si x * 2

si x = 2Rpta. A = 4

© f i x ) = -iJ - A x 2 s i x <4- 6x +16 si x > 4

Rpta. A = 1

© f i x ) =_ j Ax2 si x <2si x > 2

Rpta. A = —4

III. Determinar A y B de modo que la función f dada sea continua en todo su dominio.

© f i x ) =x + 2 A si x < -2 3 Ax + B si - 2 < x < \ 6 x - 2 B si x > 1

„ 4 „ 14Rpta. A = — , B = —

P 9 9

© f i x ) =

-i n - 2 sen .v , x < —2

/lse n x + fi , ~ — < x < — 2 2

cosx7T

* X * 2

Rpta. A = -1, B=1

© f i x ) =x + 2 A 3 Ax + B 6.V-2 B

si x <-2 si - 2 < x < l si x > 1

„ . 1 „ 2 Rpta. A = — , B = — 3 3

© f i x ) =x

A x+ B , cosx.

x e< - ti,0 >

x e [ 0 , n >

x e [ti,27i >Rpta. A=0 , B=-l

Page 451: Espinoza Ramos 1

Limites y Continuidad 437

fix) =

12,r2 - 3 a - 9 I . 3 ,-----—---------- si x < — V x > 32 x 2 - 3 x - 9 2

A

B

si x ■

si x = —

Rpta. A = 1 , B = -1

© / ( * ) ■

-2 se r ix , x < ----2

A D 7 1 71A + B sen x , — - < x < — 2 2

1 - sen x x>n

Rpta. A = 1 , B = -1

© fix) =

3-V 3Z +3A $ l x - 2 )

AB2

\2x-l\B

si x < 8

si x ■

si x > 8

© Jix) =5[| 3.T + 4 1] , x e [1,2 >

3 x ^ A - 2 x . x e < 2 3 > 18 , x = 2

Rpta. A = 13 , B = 2

Ai8 -V x^ 2 4 7 + 2

V 7

© f i x ) — •

-x +4Y- A_~B

■x2 - 4■) , "—s/5 < x < - \

a/3 1 — jc — 6x - 8 B 2i \ l 2 6 - x - 5 x - & )

,x = - \

, x > -1

„ , 24,531 _ 135Rpta. A = --------- , B = -----

13,500 204

Page 452: Espinoza Ramos 1

438 Eduardo Espinoza Ramos

IV

O

©

Analizar la continuidad de la función f en el punto x = y , siendo:

f i x ) =

2 - s e n x - s e n 2 x1 -sen x

3

n' X * 2

K, X = —

2

Analizar la continuidad de la función f dado por: f ( x )

-V2 -5C ly |], - 2 < x < 2

l - * 3 . x < - 2

jc + 1 , x > 2

Dada la función f ( x ) =ax + bx +1, x < 1

2 a x - b , \ < x <2 . Hallar el valor de las constantes a y b x + 1 , x > 2

para que la función f sea continua en R.

( 4) Para que valores de a y b la función: f ( x ) =

intervalo <0,5>

ax2 - 2 , x < 1

1 -fc t2, l< x < 3 es continua en el- 2 -a x , x > 3

Dada la función / (x) =

A , si x < -1

, si | x | < 1. Hallar los valores de A y B para que lax 6 - lx 4 -13 + x , si x > l

función sea continua en x = ± 1.

Hallar los valores de a y b para que la función: f ( x ) =

en todo R.

2x + l, x < 3

ax2 + ¿\ 3 < x < 5 sea continua

x 2 +2, x > 5

Page 453: Espinoza Ramos 1

Limites y Continuidad 439

© Halle los valores de A, B y C para que la función: / (x) =

©

- , x < - 2 xAx~ + Bx, - 2 < x < 3 sea

ex + 6, x > 3continua en todo R.

^8 ) Determinar sí la función f dada por: / (x)

-j4 + x --v/4-jcx_1_3

, x * 0es continua en x = 0

, x = 0

( 9) Hallar los valores de a y b, para que la función: f ( x ) =

sen 2 (x -3 ), * < 3

x - 3ax + b , 3 < x <5 sea

7 , x > 5continua en todo R.

Dada la función / (x) =

continua en x = 2.

Dada la función: / (x) =

¿>[|3x + 4|], l< x < 2

3x4a - 2 x , 2 < x < 3 . Hallar los valores de a y b para que f sea18 , x = 2

t g n x 5 .—-----, — < x < - 2x + 2 2

ax + b, - 2 < x < 0 . Hallar los valores de a y b para que

2senx + 3sen2 xx + 2x

-, x > 0

f sea continua en < — ,+00 > 2

12) Hallar los valores de a y b para que la función: f ( x ) =

continua en todo R.

x + 2o, x < - 23ax + b, - 2 < x <\ sea3 x - 2 b , x > l

Page 454: Espinoza Ramos 1

440 Eduardo Espinoza Ramos

3.31 PROBLEMAS SOBRE LIMITES.

Q En una circunferencia de radio 9, sea L, (d) y L2 (d) las longitudes de dos cuerdas a las

distancias d y — (9 + d) del centro respectivamente, donde 0 < d < 9. Hallar lim ^ 2 2 d ^ I ^ ( d )

Solución

Representando gráficamente los datos se tiene:

L 2(d)2 ^ 4 (9+rf>2

l2(d) = 2 - j8 1 ^ í

£, = 2-n/81 - d

(9 + d ) 1

8 1 - - ( 9 + rf)24

, J 3 2 4 - ( 9 + d',2 i l ( l 8 - 9 - d ) ( l 8 + 9 + d) 1 Í27+7 1 Í36 V I//« - -----, ; = ■— = — hm I--------------------------- - = — hm , -------- = —_ — = ------2 ^ 8 1 - r f 2 2 ^ (9 -d )(9 + d) 2 d - * \ 9 + d 2 V 18 2

© En la figura mostrada. Y -X / fr

P olpnlor lim r K x ,V- dlLUlai i//»#---,v~»o /Í5 A \

Solución

Page 455: Espinoza Ramos 1

Limites y Continuidad 441

Dibujo de la figura:

Q T = Â T - A Q ...(1)

EnelAQAS: AQ = AS cotgx ...(2)

EnelA O A T: A T = tgx ...(3)

En el A OPS: OS = sec x a AS = OS - O A se tiene: AS = sec x -1

reemplazando (5) en (4) se tiene:

...(4)

...(5)

QT = tg x - (sec x - l)cotgx =tg2 x -s e e x + l _ sec2x - s e c x _ secx(secx-1 )

tgx Igx tgx...(6)

sec2 x (s e c x - l)2

L = lim Q L - = lint -v->o AS *-*o

lim

sec.v-1

1 - eos x

sec" x (se cx -l) secx -1 = l im-------------------- lim -

x —>0 tg2 x •t->0 sen x

• lim1 - eos X

x~y° eos x. sen2 x x~*° eos x(l - eos2 x)

= lim - 1 - eos x = lim -1 1

(T ) En la figura, C es una circunferencia unitaria

cuyo centro es el origen de coordenadas, T

Ó COSXÍI-COSXXI + COSX) x-*0 eos x(l + eos x) 1(1 + 1) 2

Y

Page 456: Espinoza Ramos 1

442 Eduardo Espinoza Ramos

Por trigonometría: OE = eos ecx

nv __En el A OPE: cosec x = —- = OE

OP

En la figura DE = OE - OD = cosec x -1

O A = eos .r

, DE cosec x -1 1 - sen xL = hm - = - = h m ------------- = h m -------------

v ,» O A cosx' ■) ■) 2

...d)

...(2)

eos2 X( l-se n x )(l + senx)= lim ----------------------------= lin t-----------------------------

sen x eos x(l + sen x) , ,» sen x eos x(l + sen x)' 2 ' 2

eos x _ 0 _ oiimsen x(l +sen x) 2

‘ 2

( 4) Dado el sector circular de radio R y ángulo

central x (como se muestra en la figura), se

inscribe en el un triángulo equilátero de lado L,

calcular:

R - l J 3h m -----------x->— 3 x - / r

3

Solución

L = lim = 0*-+*-OA

1

Expresaremos a R como una función de x

En la figura: R = OC = OH + ~HC

En el A OHB cotg - = 2 JL , OH = HB.coig -2 HB 2

...(2)

Page 457: Espinoza Ramos 1

Limites y Continuidad 443

/T /TEnelABH C: HC = — BC = — L ...(3)

2 2

Ahora

„ -rry; X a/J . rr—: AB L n L X -J3 .R = HB cotg — + — L pero HB = ---- = — entonces R = — cote — + -— L2 2 2 2 2 2 2

• ¿iinoüD no obní; \ i * T

, R - L j 3 i ( c o tg ^ - V 3 )hm -------------- = hm —---------- --------- ---------------- = lim —------------ -------------x 3x - n 3x-7r x ,« 3 x - n

3 3 3

X rz X X 71 X, eos— V 3sen— r eos— ctg —.sen —. L -------------2 = ¿ 2, , . , E 6-----2

^ •V“>j (3x - rr jsen ^ ^ x-*y (3 .r-7 r)sen^

n x n x ,n j r. sen —eos----eos —.sen— . sen(-------- ) .= lim — 6- . l ___________________ 6 _ 2 = £ / / w ----— 2 _ -I --

2 v_>f (3x-7r)sen —.sen — ^ *-*t - 6(— - —) sen—.sen—3 ' 6 2 3 6 2 6 2

. 1 1 1 ¿ (1 L . = / . R - L j 3 _ L" 2 6 sen2 - " 12 3 3x-7r " 3

6 3

( ? ) Hallar el límite del ángulo interno de un polígono regular de n lados sí n —zoíLüí v rninv sbibreiqnHK» ¿JK> »2. íjjnrbup fionil el 3b olr^iTíg'-* omigó-sí ¡3 (iv

Solución

reemplazando (2) y (3) en (1) se tiene:

Page 458: Espinoza Ramos 1

444 Eduardo Espinoza Ramos

La suma de los ángulos internos de un polígono regular de n lados es: Sí = re (n-2)

Como nos piden el límite de un ángulo interno cuando n —k>c, es decir i = —ti

_ . n ( t i - 2) n ( t t - 2)Osea i = --------- - entonces lim i = l i m ---------- = n2 n—> t» n—>oo fj

( j p Hallar el límite, cuando n -*» , del perímetro de la línea quebrada , inscrita

en la espiral logarítmica r = e ~v> si los vértices de esta quebrada tienen, respectivamente,

los ángulos polares: <p„ = O , q>x = y = ~ -

Solución

Teniendo en cuenta la magnitud del ejercicio daremos algunas reflexiones iniciales.

i) En el espiral r = e ® , r es un radio vector, V valor de cp.

ii) La quebrada inscrita en la espiral significa que a cada vértice le corresponde unvector.

iii) Cada segmento de la quebrada está obviamente entre dos vértices consecutivos.

¡v) Cada segmento es el lado de un triángulo cuyos otros dos lados son los radios vectores correspondientes.

Si C es el segmento de la línea quebrada que es el lado de un triángulo se aplica la

fórmula. c 2 = a 2 + b 2 - 2abeos O

v) A cada vértice M k le corresponde un radio vector

t\ — e~^k donde cpk = — ...(1)2

vi) El k-ésimo segmento de la linea quebrada Sk está comprendida entre los radios

vectores rk y rk , los cuales forman el k-ésimo ángulo (cpk ~(pk \ )■

Page 459: Espinoza Ramos 1

Limites y Continuidad 445

vii) Calculando el k-ésimo segmento S k :

Sk - Vrk-1 +rk ~ - rk~\rk cos(<Pk ~<Pk-1) -" í2)

Reemplazando (1) en (2) y simplificando exponentes:

5* = ^ k\ e n +e -k* -2e~ kn.eKÍ1 c o s ^ = ^ lrc(ert +1) ...(3)

viii) Calculando el perímetro de la línea quebrada finita se tiene:

n n ti

P„ =P„(M0M lM 2. . M n) = ' £ s k = £ J L 1¿r - ( 4 )k=i *=i V e

P" = V ß + 1 ( /2 + 2*/2 + 3tt/2 " + nir/2 ^*=1

Ve* +1 n _ J ______1 _ ___ 1___" + + e 1" 12 g(n-i)»/2*

Para la suma de una progresión geométrica es dado por: 5 = ------------

____ 1 „ ____ ____V 7 7 T e^'2 +1 J - g '',T/~ -.„g/2 _ ~JeK + 1 .. _ „„n

L 1 -I _ / -) t - /1 . Je e '71/2 , ____1 _ g’172 e'r /2 - l e*/ 2 - le*

e 1-------„*/2

ix) Calculando el perímetro de la línea llevando el límite para n -* » , se tiene:

n ;• r> ;• ^ ë ^ + ï n -m l2\ Ve* +1 /1 -nnll^ e* +1 , nP = ¡im P„ = h m — ---- (1 -e ) = — ---- hm( 1 - e ) = — —---- (1 -0)«->«. n -> a ,e ' t / 2 _ j e"/2 _1 n-»oc e - 1

e nl1 -1

Page 460: Espinoza Ramos 1

446 Eduardo Espinoza Ramos

331 PROBLEMAS PROPUESTOS.-

©

©

©

Hallar el límite de las áreas de los cuadrados construidos sobre las ordenadas de la curva

y = 21” ' como base, donde x = 1,2,3, . ...,n, con la condición de que n—>oc

Rpta. 4

Hallar el límite de la suma de las longitudes de las ordenadas de la curva y = e~x cosrar

etrazadas en los puntos x = 0 , 1 , 2 , ,...,n , sin - > o o Rpta.e + \

Sobre los segmentos obtenidos al dividir el cateto a de un triángulo rectángulo en n

partes iguales, se han construido rectángulos inscritos (ver figura). Determinar el límite del área de la figura escalonada así construida, si n ->oo

z ]

- A

Rpta. S = ab

©

©

Hallar el límite de los perímetros de los polígonos regulares de n lados inscritos en una

circunferencia de radio R y de los circunscritos a su alrededor, sí n-»oo Rpta. L=2Rtt

divide elEl punto C( divide al segmento AB=L en dos partes iguales, el punto C 2

segmento AC¡ en dos partes también iguales; el punto C3 divide a su vez, el segmento

C2 C, en dos partes iguales; él C4 hace lo propio con el segmento C2C3 y así

sucesivamente. Determinar la posición límite del punto C„ , cuando n->ao Rpta. j

© Consideremos un triángulo equilátero de lado a sus tres alturas sirven para engendrar un nuevo triángulo equilátero y así sucesivamente n veces. Hallar el límite de la suma de las

áreas de todos los triángulos cuando n-*© Rpta. a 243

Page 461: Espinoza Ramos 1

Limites y Continuidad 447

( ? ) Un círculo de radio R lleva inscrito un cuadrado; éste, lleva inscrito un círculo el cual, asu vez, tiene inscrito un cuadrado y así sucesivamente n veces. Hallar el límite de la suma de las áreas de todos los círculos y el de la suma de las áreas de todos los círculos y el de

la suma de las áreas de todos los cuadrados cuando n—*». Rpta. 2nR2

( s ) El segmento AB cuya longitud es a . está dividido en partes iguales por n puntos, desde

los cuales se han trazado rayos en ángulos — (ver figura). Hallar el límite de la longitud2»

de dicha línea quebrada cuando n crece infinitamente. Rpta. a

A------------------------------ B

( ? ) El segmento AB cuya longitud es a está dividido en n partes iguales. Los pequeñossegmentos resultantes sirven de cuerdas subtienden arcos de circunferencia, cada uno de

los cuales es igual a — radian (ver figura). Hallar el límite de la longitud de la línea n

resultante cuando n—kc ¿Cómo cambiaría el resultado si las cuerdas subtendiesen una

semicircunferencia? Rpta. a, -y-

(ío ) En los puntos extremos y medios del arco AB de una circunferencia se han trazado lastangentes y los puntos A y B se han unido por una cuerda. Demostrar que la razón de las áreas de dos triángulos resultantes tienden a 4, disminuyendo infinitamente el arco AB.

Sea C\ un círculo de radio 7 y Tx el triángulo equilátero inscrito en C ,;C 2 el círculo

inscrito en Tx y T2 el triángulo inscrito en C2 y así sucesivamente se construye T„ el

triángulo equilátero inscrito en C„

Si A„ es la suma de las áreas de los triángulos : Tl ,T2,...T„ y B„ es la suma de las

áreas de los círculos C \ , C2 . Hallar lim An y lim B n .n—>oo w—»oo

( y ) La gráfica de f ( x ) = V 4 - x 2 es una semicircunferencia de radio 2 con centro en el

origen. Sea Q un punto fijo de la semicircunferencia con Q * (±2,0).

Page 462: Espinoza Ramos 1

448 Eduardo Espinoza Ramos

Sea p un punto que se mueve hacia Q a lo largo de la curva. La secante que pase por P y 0 interceptada a la recta vertical x = 4 en el punto E.

Hallar la posición límite del punto E cuando P se aproxima a Q.

Demostrar que esta posición límite está en la tangente a la semicircunferencia en Q.

13) Una caja cerrada con base cuadrada va ha tener un volumen de 2000 pulg\ El material para las partes superior e inferior de la caja costara S 3 por pulgada cuadrada y el material por los lados costara S 1.50 por pulgada cuadrada y el material para los lados costara $ 1.50 por pulgada cuadrada. Sea x pulgadas la longitud de un lado de la base cuadrada y C(x) dólares el costo total del material.

a) Escribir una ecuación que defina C(x) y establezca el dominio de la función C.

b) Calcular él lim C(x) y lim C(x) y explicar estos resultados en términos delX—>0+ Jr-í+oo

problema.

c) Trazar la gráfica de C.

14) Un campo rectangular que tiene una rea de 2,700 m2 va a ser limitado por una cerca, además, otra cerca dividirá el terreno por la mitad. El costo de la cerca que dividirá el terreno es 5 4 por metro y el costo de los lados es de $ 6 por metro. Sea x metros de longitud de la cerca divisora y C(x), el costo de la cerca.

a) Escriba la ecuación que definida C(x) y establezca el dominio de la función C.

b) Encuentre lim C(x) y lim C(x) y explique sus resultados en termino del•r->0+

problema.

c) Trazar la gráfica de C.

15j Un tanque abierto de forma rectangular tendrá una base cuadrada y su capacidad será de125 metros cúbicos. El costo por metro cuadrado para el fondo será de $ 8 y para los lados será de $ 4. Sea x m la longitud de un lado de la base cuadrada y C(x), el costo del material.

a) Establezca una ecuación que defina C(x) y determine el dominio de C.

b) Halle lim C(.v) y lim C(x) y explique sus resultados en términos del problema.jr-MT x->+ct-

c) Trace la gráfica de C.

Page 463: Espinoza Ramos 1

Derivada 449

CAPITULO IV

4 Í A r>FRIVATÍA*»• t-JtUfVt » jrVJL./Tt»

En este capítulo realizaremos el estudio de la derivada de una función, que es un instrumento matemático muy potente, que sirve para el estudio del cálculo diferencial e integral.

Las derivadas aparecieron aunque de una forma un tanto obscuras en el siglo XVIII, como consecuencia del estudio de las velocidades, hechos por el matemático y físico inglés NEWTON y el estudio sobre tangentes de curvas hecho por el matemático y filósofo alemán LEIBNIZ.

En este capítulo haremos el estudio de las derivadas en las diversas funciones, de tal manera que el siguiente capítulo trataremos sus aplicaciones.

Consideremos la función real de variable real y = f(x), si x e D f entonces la derivada de

la función f con respecto a x definiremos por la expresión:

4.1. DEFINICION.-

siempre que dicho límite exista.

El proceso de encontrar la derivada se llama “diferenciación”.

Por definición de derivada se tiene: Si x e D f , f ' ( x ) = lim1 Ax—>0f ( x + A x ) - f ( x )

Ax

Page 464: Espinoza Ramos 1

450 Eduardo Espinoza Ramos

_ J _____ 1_ _____r<t \ V a /x + A * 4x -Jx-ylx + Ax 1 - 1f (x) = lim —----------- — = lim . =— = hm - = - = = —=— = = - ■ = -------------¡=

Ar-.o Ar Ax-»oVxVx+AxAx -Jx^Jx + A x H x +~Jx + Ax) 2x-Jx

Ejemplo.- Si f ( x ) = x 2, calcular / '( x )

Solución

f ( x + Ax)~ f'(x) (x + A t)2 - x 1 x 2 + 2x.At + A t2 - x 2f (x) = hm ------------------------------------------— — = h m ---;-----------= h m ------A *->0 A t Ax-»0 A r A r-> 0 A t

2x.Ax + Ax'= l im -----------= /;»;(2x + Ax) =2x + 0 = 2x / (x) = 2x

Av—>0 Ax Ají-»

Ejemplo.- Si f(x) = eos x, calcular f ' ( x )

Solución

. . .. f ( x + A x ) ~ f ( x ) cos(x + A x)-cosx/ (x) = hm --------------- ------ = h m -------------------------a*->o Ax a*-»o Ax

cosx .cosA x-senx .senA x-cosx r senAx (1-cosA x),= l i m --------------------------------------------= hm [-sen x .------------ cosx--------------- JA.r-*0 Ax Ax—*0 Ax Ax

.. senAx 1-cosAx .14 /A, n= -s e n x h m -----------cosx h m -------------= -senx.(l)-cosx.(0)=-senx-0= -senxAjt >0 Ax Ax—>0 Ax

f ' ( x ) = — senx

Ejemplo.- Si J ' ( x )= ex , calcular f ' (x )

Solución

k J(x + A x ) - f ( x ) ex+Ax- e x e x e*x - e xf (x) = hm — -------- = h m ------------------------ = h m ----------------= hm e (--------- )

A r-»0 A t Av->0 A t Ar->0 A t Ar ->0 Ax

e** -1= e x . l i m ---------- = e x .lne = e* / ' (x) = e s

&«■->() Ax

Page 465: Espinoza Ramos 1

Derivada 451

OBSERVACION:

Si la derivada de una función f(x) se desea calcular en un punto x = x 0, simplemente se

reemplaza x por x0 en la definición es decir:

Ejemplo.- Calcular / ’(—1) sí f ( x ) = 8 —2x

Solución

Por definición se tiene: f '(~ 1) = lim ^ *+ -*->o h

/ ' (-1) = lim h—>0

(8 - 2(—1 + A)3) - (8 - 2(—l)3)

= Jimh—>0

\ - 2 h + 6A + 2 - 8 - 2 = l im~2h2 + 6/i - 6 = -6 h—> 0

Consideremos una curva C: y = f(x) y un punto fijo P0(x0, y 0) de dicha curva, sea Ls

la recta secante que pasa por P0(x0,v 0) y por el punto M(x, y) eC.

La pendiente de la recta secante que pasa por los puntos P0 y M es:

Page 466: Espinoza Ramos 1

452 Eduardo Espinoza Ramos

mLs = tg a = f ( x ) - f ( x 0) = y - y 0 x _^x

Si el punto M(x,y) se aproxima al punto P0 (x0, y0) resulta que la variable x se aproxima

a x0 de tal manera que Ax = x - x 0 se aproxima a cero, con lo cual se está haciendo uso

del concepto de límite.

Por lo tanto, cuando el punto M(x,y) se aproxima al punto P0 (x(), y 0 ) la recta secante Ls

se ha transformado en la recta tangente Lr, lo cual indica que el ángulo a tiende a

Luego la derivada de la función f en él P0 (x0, y 0 ) es / ' (x0) y representa la pendiente de

la recta tangente en el punto P0 (x0, y 0)

NOTACION

Si f es una función que depende de los valores de la variable independiente x entonces a la derivada de f denotaremos por:

En la notación — , no debe considerarse como una fracción, aunque lo parezca, es un dx

símbolo para la derivada.

coincidir con el ángulo 0 y tg a =f ( x 0 + A x ) - / (x n)

Axtiende a convertirse en:

dyLa notación que más se usa es — la cual se lee: la derivada de “y” con respecto a “x”.

dx

Page 467: Espinoza Ramos 1

Derivada 453

OBSERVACIÓN:

S ix = x„+A x => Ax = h entonces h = x - x 0 y cuando x -» x() se tiene h —> 0,

lo que es lo mismo cuando Ax —> 0, h —> 0: por lo tanto la definición de derivada

r-, * ;• f ( x + A x ) - f ( x ) , , (.f (x) = hm -:— 1 , daremos en la forma:Ar->0 Ax

■m d00< fex+ i 6 ü f

4 3 . DEFINICION,-

La función real de variable real y = f(x) es diferenciable en un punto x = x0 si existe su derivada en el punto x = x0. es decir si / ' ( x 0) exis'te.

4.4. DEFINICION«-

Diremos que la función f es diferenciable en un intervalo [a, b] si la función f es diferenciable en cada uno de los puntos del intervalo [a, b]

x 3,2 cos(—);x > 0x es

0, x = 0Ejemplo.- Demostrar que la función f definida por: / ( x ) =

diferenciable en el punto x = 0

Solución

Para que f sea diferenciable en x = 0, debe existir / ' ( 0 ) , en efecto

m =un m i M z m =¡im m - m ¡¡mÜ Z Ü V = rh cos(1 , . 0 a-> o h h~>o h h->o h *->o h

Luego 3 f(0 ) = 0 => f(x) es diferenciable en x = 0

Ejemplo.- Demostrar que la función f definida p o r /(x ) = x 2' 3, x e R, no es diferenciable en x = 0

Page 468: Espinoza Ramos 1

454 Eduardo Espinoza Ramos

4,5

Solución

Para que f no sea diferenciable en x = 0, debemos probar que 3 / '( O ) , es decir

/'(O ) = lim h~> 0

no+h) - m =l¡mm - m _ h2/3lim = lim 1

h h->0 II h-*0 h h->0 fil/3

por lo tanto como /'(O) no existe => f no es diferenciable en x = 0

Consideremos una función real de variable real, y = f(x), entonces:

i) La derivada de la función f en el punto x = x0 , por la derecha representaremos por

/ ' (*o ) y está definido por:

lim

o equivalente a la forma

si el límite existe.

> X - -V(,

ii) La derivada de la función f en el punto x = x 0 , por la izquierda representaremos por

f ' ( x o ) y está definido por:

i m , w «>o equivalente a la forma:

si el límite existe.

Ejemplo.- Hallar /'(x o ) Y / (*o ) en x = xo s* f ( x)2x~ —3 , s i x <2 8j c —11 , s i x > 2

Page 469: Espinoza Ramos 1

Derivada 455

Solución

/•(2- )« um m ± a t m = limh-> o+ h h-> o+ h

16 + 8 A -1 1 -8 + 3 8 h= lim ----------------------- - hm —

/>-> o+ /¡ *->o+ A

f ' ( 2 ~ ) = lim lim (2(2 + * )z - 3 ) - ( 8 - 3 )A-»0" A h—>0~ h

= limh—>0~

\ + %h + 2h - 3 - 8 + 3 h

M + 2h2= limA->0~ h

lim 8+ 2/? = 8h—>0

OBSERVACIÓN.- Diremos que la derivada de la función f(x) existe en el punto x = x 0, si sus derivadas laterales existen y son iguales es decir:

iyyyyyyyyyyyyyyy¿yyyyyyyyyyyyyyyyyyyyy.

Las propiedades de las funciones más útil en el cálculo son: la continuidad y la derivabilidad; como estos conceptos son definidos mediante un límite, entonces nos haremos las siguientes preguntas

- ¿Si una función es continua, es derivable en ese punto?

- ¿Si una función es derivable ha de ser también continua o quizás las dos propiedades son equivalentes?

Para dar respuesta a estas preguntas daremos un ejemplo;

Sea f: R —> R / f(x) = |x| es continua en R, en particular en x = 0, ahora veremos si es derivable en x = 0, es decir

/.(O) = Im ZElíLZffi = ¡m m - m = Miz» = Un !*! - f "> 10h->0 h o h A-»0 h h-}0 h l - l , / ¡ < 0

Page 470: Espinoza Ramos 1

456 Eduardo Espinoza Ramos

entonces / ' ( 0 +) * / ' (0 ) => 2 f(0 ), esto quiere decir que la función f no es

derivable en x = 0 por lo tanto “Si f es continua en x - x 0 =£> f sea diferenciable en:

x = x 0 . Si f es derivable en x = x (j => f es continua en: x = x0

a) TEOREMA

Sea f una función y x0 e D¡ , si f es diferenciable en x0 entonces f es continúa en Xq

Demostración

Por hipótesis se tiene que f es diferenciable en x0 , esto quiere decir que3 f ' ( x 0) , y

lim f ( x 0 + h ) ~ / ( x 0) = lim /(* o + ¿ 0 f ( x o) hh-tO A-> 0 h

. S m k - r M 0 = »h-tO h A-»0

entonces: lim ( f ( x 0 + h) - f ( x 0)) = 0 => lim f (x0 +h)~ lim f (x0) = 0*->o A-»0 h-> o

l im(f(x0 +h) ~ f ( x 0)) = 0 => lim f ( x 0 +h) = f ( x 0)*->0 A-»0

f es continua en x0

COMENTARIO:

„ L . . . . f ( x 0 + h ) - f ( x 0) .Sabemos que si existe l im----------------------- entonces existe una recta tangente no

a~»o hvertical bien definida y es única en el punto (x0, / (jc0 )):

La no existencia de la recta tangente no vertical cuando las derivadas laterales existen pero no son iguales.

Page 471: Espinoza Ramos 1

Derivada 457

Tal es el caso del valor absoluto f(x) = |x| en donde sus derivadas laterales en x0 = 0 son

diferentes / ' ( 0+) * / '(0 ~ ) .También no existe

recta tangente no vertical cuando uno o ambas derivadas laterales no existen, es +00 ó -00 Como la recta tangente no vertical es única entonces en la gráfica de las funciones se presentan esquinas como se muestra en la figura.

4.7 ALGUNAS REGLAS DE DERIVACION.-

. dya) La derivada de una constante es cero.- Sí y = f(x) = c => — = 0dx

Demostración

dx

b) La derivada de la función identidad es 1.- Sí y = f(x) = x => — = 1dx

Demostración

dv rw x i- f ( x + h ) - f ( x ) .. x + h - x h , dy= f ( x ) = lim — ------ - y = l im -----------= lim — = hm 1 = 1 .•. —dx *->o h *-><* h h-*o h *->0 dx

= 1

c) La derivada de la función potencia simple.-

Si y = f(x)=x"ax

Demostración

~ = nxn 1, n es cualquier número real.

, l i m {x + h) ' - x ' .para n <= Z* dx h—>o h a->o h

Page 472: Espinoza Ramos 1

458 Eduardo Espinoza Ramos

, .r(x + h)nX+{x + h)n+2x (x + fi)xn 2 +x" 1,= lim(x + h - x ) [ - ------ --------------- ------- + ...+ ------------------------ ]

h-> o h h

= lim[(x + h)n +(x + h)n+ x + ...+(x + h)xn +x" ]h-> o

_ i ^"“1 , . „n-l . „«-1 _ „„n-1 . dy _ „ ”= x + x + ...+ X + x = n x — - = nxdx

d) La derivada del producto de una función por el escalar

Sí y = k frx) => ^ = k f ' ( x ) dx

Demostración

± . l i „ W f r + W - W . t Um / ( * + « ) - / ( * ) s t f w . d y _dx *->o h *-»o h dx

e) La derivada de la suma de dos funciones

Si y = f(x) + g(x) => % = f { x ) + g \ x ) dx

Demostración

dy = Um ( / + g)(x + h ) - ( f + g)(x) = Um f ( x + h) + g(x + h ) ~ ( / ( x ) - g(x) dx h->o h h-*o h

= ^ / ( * + » ) - /< £ ) . + ,m f ) . j . w + ,A->0 /l A->0 h

^ = f ' ( x ) + g'(x) dx

f) La derivada del producto de dos funciones.-

Sí y = f(x).g(x) => ! j - = f ( x ) g ' ( x ) + f ' ( x )g (x ) dx

i

kf ' ix )

Page 473: Espinoza Ramos 1

Derivada 459

Es decir: La derivada del producto de dos funciones es igual al producto de la primera función por la derivada de la segunda más el producto de la derivada de la primera función por la segunda función.

Demostración

Sea y = F(x) = f(x).g(x), entonces:

dy _ ¡im F(x + h ) - F ( x ) = ^ f ( x + h)g(x + h)~ f ( x ) g ( x ) dx h-> o h *-»o h

ahora sumamos y restamos f(x + h) g(x) en el numerador

dy_ = ¡jm / ( x + h)g(x + h)~ f ( x + h)g(x) - f (x )g (x ) + f ( x + h)g(x) dx h—>0 h

É L mUm / ( » ) , ) *(» + * )-* (*> +g(x) / ( * + * ) - /( * >*->o ¿

= t e / ( * + * ) t e + t e g fc r).teA-»0 A->0 ^ h->0 h->0 h

= / W g 'W + g ( x ) f (x) : . ^ = f (x) .g ' (x) + g(x ) . f ' (x)dx

g. La derivación del cociente de dos funciones.-

Si V = / M ^ É L = e w a - » ^ g(x)<0g W dx [gW ]

Es decir: La derivada del cociente de dos funciones es igual al producto del denominador por la derivada del numerador menos el producto del numerador por la derivada del denominador dividido por el cuadrado del denominador.

Demostración

f (- 0Sea y = F(x) = ------ , entoncesg(x)

Page 474: Espinoza Ramos 1

460 Eduardo Espinoza Ramos

f ( x + h) f ( x )dy _ ¡im F(x + h ) -F { x ) _ ^ g(x + h) g(x) _ ^ g ( x ) f ( x + h)~ f ( x ) g ( x + h) dx h~>o h h->o h h->o hg(x)g(x+h)

Ahora sumando y restando f(x) g(x) en el numerador se tiene:

dy _ lim g ( x ) f ( x + h)~ f (x)g(x) - f ( x ) g ( x + h) + f{x)g{x) dx h-*o hg(x)g(x + h)

g(x)[ f{x + h)~ f (x) ] f (x ) [g(x + h)~ g(x)]= Um_________h___________________ h ... g ( x ) f ' ( x ) - f (x) .g' (x)

a-.o g(x)g(x + h) g(x).g(x + 0)

g ( x ) . f ' ( x ) - f (x )g ' ( x ) . dy g ( x ) . f ( x ) - f ( x ) g ( x )[g (x ) f " dx [g W ]2

RESUMIENDO:

® l ! ! l F(x)=c ^ Jy - 0 dx

® y= F(x)=x =>dx

® y = k F(x) ^ = k r < x \ d\

® * = F{x)**xn: SXr

--m” 1

y ; F (\)+O x)

ísi-3

ft

®i • s F(\)G(x.> •

£ía

-

F f.v io f i ' , r i .

® ■ J r • • '

fe ¡lil

i

dy _ G\ x)f~’(x ) - F{x)<j{x) |G(x} d\ < C r ( ^ : 1

Page 475: Espinoza Ramos 1

Derivada 461

Ejemplo.- Hallar la derivada / '( * ) si la función f(x) es:

0 f ( :x ) = x 1 + x 5 + ^ j + 4x

Solución

f ( x ) = x 7 + x 5 + - ~ + 4x = x 1 + jc5 + x ~3 +4jc x

f ' ( x ) = l x 6 + 5x4 -3 x ~ 4 + 4 = 7x6 + 5x4 — ~r + 4 .\ f ' ( x ) = l x 6 +5x4 - ^ - + 4

0 / ( x ) = (x 5 + 2 x ) ( x 3 + x 2 + x + 7 )

Solución

f ( x ) = (x5 +2x)’.(xi + x 2 + x + 7 ) + (jc5 + 2 j c ) . ( x 3 +x 2 + x + 7)'

= (5jc4 + 2 ) . ( x 3 +x 2 + x + 1) + (x * + 2 jc ).(3x2 + 2 x + l )

= 8 x 7 + 9 j c <* + 6 x 5 + 4 1 * 4 + 2jc3 +10x 2 +4x + \4

x 3 + 2 x 2 + 7© /(* )= ■

x -t- x + xSolución

4 3JC + JC + JC

/•>/• \ +Jf3 + x).(jc3 + 2 x 2 + 7)'—(jc3 2jc2 + 7).(.x4 + x 3 + jf)'J \X ) = 2 - -

(x + x + x )

( * 4 + x 3 + x ) . ( 3 x 2 + 4 x ) - ( x 3 + 2 x 2 + 7 ) . ( 4 x 3 + 3 x 2 + l )

(x 4 + x 3 -t-x)2

x 6 +4x +2x 4 + 5 x 3 + I 9 x 2 + 7

( jc4 + x 3 + x ) 2

Page 476: Espinoza Ramos 1

462 Eduardo Espinoza Ramos

El criterio de la regla de la cadena para la derivada de las funciones compuestas, es la herramienta más importante del cálculo diferencial.

Antes de dar una demostración formal, le daremos un tratamiento intuitivo y para esto, consideremos dos funciones diferenciales en general:

y = f ( u ) "y es función de u"

h = g(x) u es función de x"

entonces a “y” se puede expresar en función de x, es decir y = f(u) = f(g(x)) = (f o g)(x) esto viene hacer la composición de funciones, ahora para calcular su derivada se hace de la forma siguiente:

y = f ( u ) u = g(x )

du , entonces - j - = - f - . - ^ - = f ' (u )g ' (x ) = f '(g(x)).g'{x)du dx du dx— = g (x)dx

ÉL~:dx

dySí y = (f o g)(x) => — = / ' (g(x)).g' ( x ) . Ilustraremos mediante un diagrama dx

dy dx

dydu

dudx

NOTA.- Cuando se trata de tres funciones f, g, h, se tiene:

(fogoh)(x) = f ' (g(f i (x))g ' (h(x))h' (x)

Page 477: Espinoza Ramos 1

Derivada 463

(fogoh)(x)

9(h(x))- - tX

dy nEjemplo.- Calcular mediante la regla de la cadena — ' donde: y = ( f (x ) )dx

Solución

Sea y = u", u = f(x) => — = nun , — = f ' ( x )du dx

~ = = nUn X ~ = n ( f ( x ) )n-1 f ' ( x ) entonces ^ = n ( f ( x ) ) n~1 f \ x )dx du dx dx dx

OBSERVACIÓN.- Sea f una función derivable en x0 , si y - F(x) = ( f ( x ) ) n , n e Q

entonces F es derivable en x Q y es dado por:

'I * * ( /{ * # » * ' / ’(*#>^ xwx-xx^ ^ í-x-x-x*»... : : . . : :

Ejemplo.- Hallar — sí y = [a + bx ]” dx a - b x n

Solución

Sea f ( x ) - a + bx" =: f ’(x) - nbx" + l (a+bxn)a - b x n (a - b x " ) 1

> / ’(*) =labnx n-1

(,a - b x n) 2

y m ( s a + tZl r =

a - b x dx dx (a - b x ) a - b x

Ejemplo.- Sí f ( x 2 +1) = V*2 +1 + $Jl6(x2 +1) y f { x 2 - 2 ) = g ( x 2 +1). Calcular g' (5)

Solución

Sí z = Vx2 +1 entonces z 2 = x 2 + 1 , de donde / ( z ) = z + a/ i ó z 2

Page 478: Espinoza Ramos 1

464 Eduardo Espinoza Ramos

Luego f ( z ) = z + kj\6.1fz entonces f ( x 2 - 2 ) = x 2 - 2 + a/Í6.a/x2 - 2

ahorasí u = x 2 +1 => x 1 = u - 1 y g(u) = u -3 + ^ ¡ \6 . \ lu - 3

de donde g '(«) = l + $/Í6

3^/(m- 3 ) 2g'(5)=-

4,9 DERÍV ACION D I LA

a) Función Exponencial de Base “a” Positiva.-

Sea a e /?+ y a * 1, a la función exponencial de base “a” definiremos en la forma:

donde su dominio es <-oo,+oo> y su rango es <0,+oo>, si a > 1, entonces la función

y = a x es creciente, si 0 < a < l entonces la función y = a x es decreciente.

OBSERVACIÓN.- Del gráfico se observa que:

Q ) lim ex = +oojc"+oo

© lim ex = Ox"-00

® lim e~x = OA'"-t-OC>

( 4 ) limr—>—00

Page 479: Espinoza Ramos 1

Derivada 465

a xa y = a x*y

-n*-y■ = a

b) Propiedades de la Función Exponencial: Sí a, b > 0, entonces:

© « ° =1 ©© (ax ) y = a xy ©

© (atí)x = a xbx

Ejemplo.- Trazar la gráfica de las siguientes funciones:

© y = 2x © y = ( ¿ r

Solución

1 1Como a = 2 > 1 => y = 2 es creciente Como a = — < 1 => y = (—) es decreciente

De la definición de la función exponencial y = f { x ) = a x , a > 0, a * 1 se deduce

que dicha función es inyectiva y por lo tanto tiene inversa.

Luego a la función inversa de y = / ( * ) = a x le llamaremos función logarítmica de

base “a” y la definiremos en la forma:

d) Definición.- A la función f: <0,+oo> ->R, definida por:

Page 480: Espinoza Ramos 1

466 Eduardo Espinoza Ramos

Le llamaremos función logarítmica (o función logaritmo) de base “a”, donde

a > 0, a * 1 se sabe que logfl x es un número único b, tal que a b = x

Es decir: I Ü

NOTA: Logax = b se lee “el logaritmo en base a del número x e sb ”

OBSERVACIÓN.- La función logarítmica de base “a” tiene por regla de

correspondencia la ecuación: , f ( x ) = logfl x de donde:

i) Si a > 1 => f ( x ) = logfl jc es creciente

ii) Si 0 < a < 1 => f ( x ) = log„ x es decreciente.

e) Propiedades de la Función Logarítmica.

© loga l = 0

© logfl a = 1

( ? ) log„ A" = n loga A

© loga ¿ = 1logf, a

Las demostraciones de estas propiedades se deja para el lector

© log,, (AB) = log,, A + log,, B

© logfl ^ = log,, A -logfl B

( ó ) log a "sÍA ——log a A

© log log* a

Page 481: Espinoza Ramos 1

Derivada 467

OBSERVACIÓN.- Sí

f) Definición.-

La función cuya base es e, se llama función logaritmo natural o neperiano y denotaremos por:

- tag, x «X»x , donde ~ y Rf s> R

g) Definición.- La función logaritmo cuya base es 10, se llama función logaritmo

OBSERVACIÓN.- Casos particulares de las funciones exponenciales y logarítmicas son:

OBSERVACIÓN.- Algunos límites que se dan en la definición de las derivadas:

decimal o vulgar y es denotado por:

Ln e ' = x Q eln r= x

( ^ lim (1 + — ) x =e.v-»+ot X

Q lim( l + - ) x = eax ->oo X

7 ) lim ------ - = L n a , a > 0, a * 1v->0 x

Page 482: Espinoza Ramos 1

468 Eduardo Espinoza Ramos

a) Demostrar que la derivada de la función exponencial: / ( x) = e x es / ' ( x) = e '

Demostración

Por definición de la derivada se tiene:

r,, x f ( x + h ) - f ( x ) e x+h- e x e h -1f (x) = Lim-------------------- = Lim--------------= e Lim-------- .•.(!)*--» n /; h-*() h h" o /)

t 'A -1Por la observación 4 se tiene: l im--------= Lne = 1 ...(2)A"0 h

Ahora reemplazando 2 en 1 tenemos: / ' (x) =e* (1) de donde / (x) = e'v

b) Demostrar que la derivada de la función exponencial

F(x) = a x , a > 0. a * 1 es F'(x) = a x.Lna

Demostración

Por definición de derivada se tiene:

n „ , r . F(x + h ) - F ( x ) r . a x+h- a x X r . a " - 1/* (x) = Lim------------------ =Lim-------------= a Lirti-------- ...(1)/i-> 0 // //-+0 /y A->0 //

/i _|Por la observación 4 se tiene: l im ---------= Lna ...(2)

*-»o

Ahora reemplazado 2 en 1 tenemos: F '(x ) - a ' .Lna

c) Demostrar que la derivada de la función logarítmica: F(x) = Ln x es F ‘(x) = —x

Demostración

Por definición de derivada se tiene:

Page 483: Espinoza Ramos 1

Derivada 469

F | , ) = I m = ¡ M n - H - U a _ /lm l i n ( , A ( .. t m LnfX + fty , ,A->0 /) A-»0 /j A -»0 h X * -»0 X

d) Demostrar que la derivada de la fimción logarítmica: F(x) = log„ x e1

/ r '(x) =xLna

x > 0

Demostración

Por ser similar al anterior inciso, se deja como ejercicio., /

OBSERVACIÓN.- Si y=Ln u donde u=f(x), entonces aplicando la regla de la cadena

y = Lnu

u = f ( x )

dy _ 1 du u

~ ~ = / ' (x) dx

dy = dy d ^ = \ f ,. _ / '( x )dx du dx u f ( x )

*■ X

Por lo tanto: Sí > - ¿ f l ( /< x » =9.

OBSERVACIÓN.- Si _y = e" y u = ffa), entonces:

y — e

u = f ( x)

du

£ - / * ( x )dx

dy = _ e/ (x) ,rfx du dx

Por lo tanto Si V ™ •= f> f< '>

Page 484: Espinoza Ramos 1

470 Eduardo Espinoza Ramos

RESUMIENDO:

© Sí y = e x => — = e x © S í y = a x =í> — = a x LnaW dx W dx

© Sí y=L nx=> - ^ = - © Sí y = loga x => & = — — x > 0dx x dx x l na

© Sí y = e f(x) = > ^ W {V W © Sí y = Lnfflx» => & =dx dx f ( x )

Ejemplos.- Hallar — si: dx

©Solución

y = e x' x

y = e xKx => * y = e xl+x— ( x 2 +x) = (2x + l)ex dx dx

© y = 5 ^ xlSolución

v = 5 ' ' — = 5A — (x i + x 1)Ln5 => — = (3x2 - 2 x ) L n 5 ¿ x xdx dx dx

® T , / 2 t i rf>’ Dx(a + x + 4 x 2 +2ax)y = Ln[a+x + y x +2ax] => — = --------------.. . ,, ■, —^ a + x + y r 2 ' —a + x + y x +2ax

Solución

, jt + a 1+ -

</>• _ -y/x2 + 2crx ______a + x + 4 x 2 +2 ax_____ t _ 1

a + x + 4 x 22ax (a + x + 4 x 2 +2ax)-Jx2 +2 ax V-r2 + 2ax

Page 485: Espinoza Ramos 1

Derivada 471

4.11 DERIVACION P E L A S FUNCIONES TRIGONOMETRÍCAS,-

Para definir la derivada de las fiinciones trigonométricas daremos la definición de dichas funciones:

a) La Función Seno.- Si x e y son números reales, entonces a la función seno definiremos por:

í t {{*•> - sen x}

ó también mediante la regla f(x)=sen x donde D f = R y R f [—1,1], cuya gráfica es

b) La función Coseno.- Si x e y son números reales, entonces a la función cosenodefiniremos por:

ó también mediante la regla ffx) = eos x , donde D r = R y R f =[-1,1], cuya

gráfica es:

t Y

-1

Page 486: Espinoza Ramos 1

472 Eduardo Espinoza Ramos

c) La Función Tangente.- Si x e y son números reales, entonces a la funcióntangente definiremos por:

f « {(x,y) e f U Í U y - Igx}

ó también mediante la regla f(x) = tg x , donde: D f = {x e R / x * ~ + k n k e z) y

R , =R cuya gráfica es:

d) La Función Cotangente.- Si x e y son números reales, entonces a la funcióncotangente definiremos por:

ó también mediante la regla f(x) = ctg x , donde D r ={x e R / x * k n , k e r} y

Rr = R , cuya gráfica es:

Page 487: Espinoza Ramos 1

Derivada 473

e) La Función Secante.- Si x e y son números reales, entonces a la función secantedefiniremos por

f * f f c í # M 'R x R f y -s e e x j

ó también mediante la regla f{x) = sec x, donde: D f = {jc e i? / x * y + kn, k e : } y

/?; = < -oo,-l]u[l,+qo > cuya gráfica es:

f) La Función Cosecante.- Si x e y son números reales, entonces a la funcióncosecante definiremos por:

{(x,y) g R x R / y ~cosec xj

ó también mediante la regla f(x) = cosec x , donde: Dy ={x e R / x # ^ + kn ,k e z )

y R f = <-oo,-1] u [l,+oo>, cuya gráfica es:

Page 488: Espinoza Ramos 1

474 Eduardo Espinoza Ramos

Las funciones trigonométricas son derivables en todo su dominio y.

a) Por definición de la derivada tenemos:

dy . . F ( x + h ) - F ( x ) T. senLc + M -sen * r . senx cosh+eos xset ih-senx— = Lim— ------ ------— Lim---- ------- ---------- =Lim --------------------------------------dx h-> o h h->o h *-> o h

r ■ senh ,1-COSh. /Av= Ltm cosjc.-------- senx(---------- ) = cosx (1) —senx (0) = cosx*-> o h h

b) Por definición de la derivada tenemos

dy T. F(x + h ) - F ( x ) . . cos(.v + h) — eosx . . cosx.cosh-sen x .senh-c o s jc— = L m i--------------------------- Lint---------------- -------------- = Litfi---------------------------------------------------dx *-» o h *->o h *-»o h

Page 489: Espinoza Ramos 1

Derivada 475

1-cosh senh= L i m { - eos a : -------- — -) - sen x.---------------------------------------------------------------------- ) - eos x(0) - sen x(l) = - sen x

*-»o h h

. dy „ .senx. eosx(senx) - senx(cosx)c) - j - = D y tgx = Z)v(------ ) = -------i------ ----------i------ -

dx cosx c o s 'x

eos x. eos x + sen x. sen x co s 'x + sen * x 1 •>- = -------= sec' x

eos" x eos2 x cosx

d), e), f) Su demostración dejamos como ejercicio.

OBSERVACIÓN.- Si y = sen u, u = f(x) funciones derivables en general

y = sen u

u = /(x )

dydududx

= eos u

= f ' ( x )

dy. Calculemos — mediante la regla de la cadena

dx

y X

4 L = 4 L- ^ = cos w =cos( / w ) - / ' wax du dx

por lo tanto: Sí___ .__i

En forma similar se calcula la derivada de las demás funciones trigonométricas.

Page 490: Espinoza Ramos 1

476 Eduardo Espinoza Ramos

Corolario.- Si u = f(x) es una función derivable entonces:

a) Si >•= sen (f(x)j -r> - f =cos{ A .v )) /’í,v)dx

' ' '' ’ '' ,

b) Si y “ cos(f(x)) => ~~ ~ ~ $ e n /{*))■/’(x). t*x

c> Si y = tg (í\x)) =s> - see¿ ( f i x )}./’ f.v)ax

d) Si y - ctg (fix)} => — ~ - m s e c 2 ( f ( x ) } . f (x)dx '

e> Si y - see (% » -> H = sec(/ü ')) tg(/(jc.

f> Sí y = coscc (f(x)> 53> ^ ~ w s e c x i f ( x ) ) c t g ( f ( x y f ( x }

Ejemplos.- Hallar — sí: dx

( l ) y=sen(.v2 +ex)Solución

— = cos(x2 +ex )(x2 + ex) = (2x + ex).cos(x2 +ex) dx

y = tg(senx + cosx)Solución

— = see2 (sen x + cos x) D x (sen x + cos jc) = (cos x - sen x) see2 (sen x + eos x) dx

(T ) v— cos(sen x + x 2)Solución

— = -sen(sen x + .v2 )jDv (sen x + .v2) = -(eos x + 2.v).sen(sen x + x 2) dx

Page 491: Espinoza Ramos 1

Derivada 477

( ? ) y =c tg(ex + Lux)Solución

— = - c o s e c 2(ex + Lnx)Dx(ex + lnx) = - ( e x + —)cos ec2(e* + lnx) dx x

4.13 DERIVACION DE LAS FUNCIONES TRIGONOMETRICAS]

Antes de definir las derivadas de las funciones trigonométricas inversas, daremos la definición de dichas funciones:

a) Función Inversa del Seno: Arcoseno.- La función seno: y = f(x) = senx, no esinyectiva, por lo tanto no tiene inversa

n nT ’T

sePero si se observa el gráfico de la función f(x) = sen x en el intervalo

tiene que f(x) es estrictamente creciente.

Por lo tanto a pesar que la función seno no tiene inversa, se concluye que para la71 71

función definida por f(x) = senx, x e [ - — ,—] si tiene inversa:

Page 492: Espinoza Ramos 1

478 Eduardo Espinoza Ramos

A la inversa del seno le llamaremos arcoseno por lo tanto a la función arcoseno de x

denotaremos por:

y = g(x) = arc.senx y definiremos por: ¡ I I

donde Dg =[-1,1] y Rg = [ - y , y ] . La gráfica de la función arco seno es:

De la definición de are. Sen x

&yi(arc.scd) = t , x e £ -U ]

Árcset!{se& y) - y . j e f m m m:w :+h+:¿:+h+< 2 2 \

b) Función Inversa del Coseno: Arcocoseno.-

La función coseno: y = cosx, no es inyectiva por lo tanto para hallar su inversa

haremos una restricción similar que la función senx.

Entonces a la función coseno definimos por: f(x) = cosx, x e [0,tt]

y a la inversa de la función coseno le llamaremos arco coseno y denotaremos por:

y = g(x) = arc.cosx y definiremos como

donde: D f = [-1,1] y R r = [0, n ] . La gráfica de la función arco coseno es

Page 493: Espinoza Ramos 1

Derivada 479

De la definición del ar.cosx se tiene:

c) Función Inversa de la Tangente: Arcotangente.-

Arco tangente la función tangente: y = tgx, no es inyectiva, por lo tanto parahallar su inversa haremos una restricción similar a las funciones anteriores.

Entonces a la función tangente lo definiremos por:

n nF(x) = t g x , x > y a la inversa de la función tangente le llamaremos

arco tangente y denotaremos por:

y = g(x) = are.tgx definiremos por:

n ndonde D g =R y R r = < > cuyo gráfico de la función arco tangente es:

Page 494: Espinoza Ramos 1

480 Eduardo Espinoza Ramos

d) Función inversa de la Cotangente: Arcocotangente

La función cotangente: y = ctgx, no es inyectiva, por lo tanto para hallar su inversa, haremos una restricción en forma similar a la función anterior, entonces a la función cotangente definiremos por:

F(x) = ctgx, x e < 0 ,7t> y a la inversa de la función cotangente le llamaremos arco cotangente y denotaremos por y = g(x) = arc.ctgx y definiremos por:

donde Dg =R y Rg =< 0, n > . La gráfica de la función arco cotangente es:

y = ctg x

e) Función Inversa de la Secante: Arcosecante

La función secante: y = sec x no es inyectiva , por lo tanto para hallar su inversa se

hará una restricción en forma similar a las funciones anteriores.

Entonces a la función secante definiremos por:

F(x) = sec x, x e [ 0 ,y > u < y ,7 r] y a la inversa de la función secante le

llamaremos arco secante y denotaremos por:

y = g(x) = aic.secx y definiremos por:

donde: Dg = < -» ,-1 ] u [ l ,+ 00 > y Rg = [ 0 , - j> u < y ,7 r ]

Page 495: Espinoza Ramos 1

Derivada 481

La gráfica de la función arco secante es:

f) Función Inversa de la Cosecante: Arcocosecante

La función cosecante: y = cosecx, no es inyectiva, por lo tanto para hallar su inversa, haremos una restricción en forma similar a la función secante.

Entonces a la función cosecante definiremos por: F(x) = cosecx,

71 Tíx e [— ,0 > u < 0,—1 y a la inversa de la función cosecante le llamaremos arco

2 2cosecante y denotaremos por y = g(x) = arc.cosecx y definiremos por:

Donde Dg = < -o o -l]u [l,o o > y Rg = [ - y , 0 > u < 0 , y >

La gráfica de la función arco cosecante es:

Page 496: Espinoza Ramos 1

482 Eduardo Espinoza Ramos

4,14 REGLA DE DERIVACION PARA LAS

Sea u = u (x) una función derivable en x, entonces:

© Sí y -arcseo«(x} '

©m | | p - |

Sí v = arc.coSu{x) => ,— - ¿ ^ 5 1 -* J l -»*<*)

©g il

Sí y = arc.tguíx) : dy ~ - [~ S XLdK i+U-(X)

'■ P % '

© Sí y^arcxfgttlx}dx

© Si y= are.secuíx.), ^ ÍíK *)Í^»20 f)“ i

G )\ 2 / 31 y ■ "• i.............

dyEjemplos.- Hallar — sí: dx

(T ) y = arc. tg V 4jc2 -1Solución

4x

— — dy ü j 4x2 -1 -J4x2 -1y = arc. tg^/4x -1 => — = — — = —---- dx l + ( V 4 x 2 - l ) 2 1 + 4 * - - 1

dy 4x

dx 4 x 2 4 4 x 2 -1 x ^ 4 x 2 -1

Page 497: Espinoza Ramos 1

Derivada 483

„2*( ¿ ) y = arc.sen ex + are.sen- J \ - e 2

Solución

y = are.sene x + are.sen Vl - e 2x , derivando se tiene:

e 2'

dy Dxe x Dx4 \ - e 2x e x ,2x

t e - J \ - e 2x + ^ i _ (, / r ^ V é - e 2x ^ 7 e 2'

d y _ e x_________ e 2x ^ e x________ e x _ Q=? d y =Q

t e V l - e 2x e x4 \ - e lx - J l - e 2x - J l - e 2x dx

y = arc.sen (Lnx)

Solución

,T dy D xLnx 1y = arc.sen (Lnx) => — = r = — ------ ■t e J l - L n 2x x y l l - L n 2x

x sen a .y = are. tg(--------------- )

1 -x c o s aSolución

D x sen a4 , x se n a . dy 1 -x c o s ay = arc.tg(------------- 1 ■*

1 -x c o s a dx | x sen a1 -x c o s a

(1 - x eos a)(x sen a) ' -(x sen a)(l - x eos a ) 'Tídy (1 -x co sa )* (1 - x eos a)sena + xsena eos a

dx (1 -x c o s a )2 + x 2 sen2 a 1 - 2xcosa + x 2 eos2a + x 2sen2a

(1 -x c o s a )2

sena dy senal - 2 x c o s a + x 2 dx l - 2 x c o s a + x 2

Page 498: Espinoza Ramos 1

484 Eduardo Espinoza Ramos

n síiK'iffiyyyyyyyyyyyyyyyy.-ys\-Y.-Yy.h i M P u e i m -

A las funciones y = f(x) definidas en un intervalo se

denominan funciones explícitas; por ejemplo; la

función y= f ( x ) = x 2 ,a las ecuaciones de las

variables x e y denotaremos por: E(x,y) = 0.

Por ejemplo:

E(x,y) = x 2 + y 2 -2 5 = 0 es decir, jc2 +>'2 = 2 5 , que nos representa a una circunferencia.

La ecuación x 2 + y 2 =25, no es una función

definida en forma explícita, pero x 2 + y 2 = 25

entonces y = ± 4 2 5 - x 1

Y

j / f ( x ) = x 2

►0 X

-Y 11

l \1 \ l \1 \ 1 \

CJl i y 5 x"i / i /L /

Es decir de la ecuaciónx 2 + y 2 = 2 5 , que no es una función definida en forma explícita;

se puede obtener dos ecuaciones, cada una definida en forma explícita; por lo tanto una ecuación de dos variables E(x, y) = 0, de donde se obtiene dos o más funciones en forma explícita se denomina función implícita.

En la ecuación E(x,y) = 0 muchas veces no es fácil despejar la variable y, por ejemplo:

y 1 - 3 y 5 + l y l - . y - j c o s * = 0 •••(!)

entonces para calcular su derivada se hace de la siguiente manera: como E(x, y)=0 se verifica para y = f(x) entonces remplazando en la ecuación (1) se tiene:

Page 499: Espinoza Ramos 1

Derivada 485

/ 7 ( x ) - 3 f 5(x) + 1 f 2(x )- f (x) + xeo sx = 0 ahora derivamos aplicando la regla de la

cadena: 7 f 6( x ) . f ' ( x ) - l 5 f A (x).f ' (x) +1 4 / (x). / ' (x) - f ' ( x ) + eos x - x sen x = 0

como y = f(x) => y ' = f ' ( x ) , entonces 1 y 6. y ' - l5_y4./+ 1 4y.y'-y'+ eos x - x senx = 0

/- 6 4 j j j . x s e n x -e o s *(ly — 15jv + I 4 y - l ) y = x se n x -c o sx de donde y =7y 6 -1 5 y 4 + 14y~ l

a este proceso de derivar se denomina derivación implícita.

Ejemplo: Hallar y'= — sídx

x 3 +ax2y + bxy2 + y 3 = 0Solución

x 3 +ax2y + bxy2 + y 3 = 0 => 3x2 +2axy+ax2y'+by2 + 2bxy.y'+3y2_y'=0

3x2 +2axy+by2 +(ax2 +2bxy+3y2)y '=0 / = * ^ b y +2axyax +2bxy+3y

( 2) x sen y - eos y + eos 2y = 0Solución

x sen y - eos y + eos 2_y = 0 => sen y + x eos y.>'' + sen >\y' - 2 sen 2y.iy '

sen y(x eos y + sen y - 2 sen 2y)_y' = - sen y ■’■ /= -

x eos y + sen y - 2 sen 2_y

dyOBSERVACION.- La derivada (— ) de la función implícita E(x,y) = 0, se calcula

dxderivando término a término, considerando a y = f(x) como una función de x, y de esta

ecuación despejamos y'=r dy^ Kd x ,

. Una forma más práctica para calcular ÿ —dy

Kdx Jde la

ecuación E(x,y)=0, es aplicando la fórmula siguiente:

Page 500: Espinoza Ramos 1

486 Eduardo Espinoza Ramos

Donde Exx(x ,y ) es la derivada de E(x, y) = 0 con respecto a “x” donde a la variable “y”

se le considera como constante y E' y(x, y) es la derivada de E(x, y) = 0 con respecto a

“y”, y la variable “x” se le considera como constante.

Ejemplo.- Hallar v '= — sí dx

x 3 + ax2y + b xy2 + y 3 = 0Solución

Sea E(x,y) = x 3 +ax2y + bxy2 + y 3

=> E x( x , y ) = 3 x 2 + laxy + by2 y Ey (x ,y) - ax2 + 2bxy+ 3y 2

dy Ex (x,y) 3x2 +2 axy + by2 dy 3x2 + 2axy+by2

dx E Y(x ,y) ax2 +2bxy+3y2 dx ax2 +2bxy+3y2

416 DERIVADA DE LA FUNCION DE LA FORMA y » (%x))m .

Para calcular la derivada de la función y = ( f ( x ) ) g(x), primero se toma logaritmo en ambos miembros, es decir:

Lny = Ln{J (x))s(x) = g { x ) L n ( f (x )). ahora derivamos implícitamente:

— = g' (x)Ln(f(x)) + g(x).^ -y^ - , despejando y'y / (* )

y'=y{g ' ( x ) L n ( f (x)) + g { x ) . £ £ kf ( x )

y '= { f ( x ) ) g(x)[g'(x)JLn(f(x))+g(x).-f (x)

Page 501: Espinoza Ramos 1

Derivada 487

~ = ( / W ) s(v)_1 f ' ( x )g ( x ) + ( f ( x ) ) gW g' (x)L„(f (x)) dx

Ejemplo.- Hallar— sí _y = x senAr dx

Solución

Tomando logaritmo a y = xsenJr se tiene: Lny = LnxseDX = sen x.Lnx

, . , . y T senx , , , , , , sen*derivando se tiene: — = eos x.Lnx + ------- de donde y = y(cos x. ln x + ------- )

y x ' ' x

d y sen r / , S e n X x— = x (cosx.lnx + -------)dx x

4.17 EJERCICIOS DESARROLLA DOS. -

I Hallar — sídx

1 +V1 - * 2

Solución

A la función expresaremos en la forma:

y = arcc° s x —[ln(l- y ¡ \ - x 2 )-ln(l + V l-* 2)], derivando aplicando la regla

dy _ x 2Dx arccosx-(arccosx)Dxx 2 1 Dx ( \ - ' J \ - x 2 ) Dx (l + y ¡ \ - x 2)

dx x 4 2 í - V l - x 2 1 + V l - x 2

-2 x arccosxVi - X 2_____________ J_ r V l - X 2 ______ Vi — X "

x 4 2 Í - V i - X 2

Page 502: Espinoza Ramos 1

488 Eduardo Espinoza Ramos

(x2 + 2 xV l-x^ árceos x) + 1 j. x + x

xa4 ~ x2 2 V l-x 2 ( 1 —v/l — x2) V l~x2(l + V l-x 2)

x 3 V l-x 2 2V1- X 2 ( l - V l- x 2)(l + V l-x 2)

x + 2-Jl-x2 arccosx 1 _ dy_x2-x-2^1-x2x arccos x

x 3 V l~x 2 x-y/l-x2 x 3 Vi — jc*

j = ln(x + Vx2 - 1 )-V T ^I

Solución

1 + -x r í 7 x 2

V P^T—¿y ^ Dx(x + Vx2 -1) Vx2 -l(x)'-x(V x2 -1 )' = Vx2 - 1 __________ Vx2 -1

X+Vx2 - 1 (Vx2 - l ) 2 x +Vx2 - 1 x 2 - 1

X + Vx2 -1 x 2 - 1 - x 2 1 1 X2r + -

de donde

Vx2 - l(x + V* 2 - 1 ) Vx2 - l ( x 2 - 1) Vx2 - 1 Vx2 - l ( x 2 - l ) (JC2 - 1)

rfy _ x 2

3/2

(x2 - 1 ) 3 / 2

(T) y = — sen(5x2 ) - —senx2 w • 20 4

Solución

— = — cos(5x 2)Dv(5x2) - —cos(x2)Dx(x2) =^^cos5x2 - — cosx2 =-cos5x2 - —cosx2 <¿t 20 4 20 4 2 2

Page 503: Espinoza Ramos 1

Derivada 489

( 7 ) y = 1 n(1 + ) + 2 arctgVsen x' 1—v/senx

Solución

Antes de derivar, a la íunción expresaremos asi:

y = ln(l + Vseñjc) - ln(l - V senx) + 2 arctgVsenx

Ahora derivando mediante las reglas establecidas:

COSX COS .Y

d y _ D x(l+-Jseñx) Dv(l-V senx) Dx*jsenx _ 2-^senx , 2-Jsenxdx 1+Vsenx 1—Vsenx l+(V senx)2 1+Vsenx \ - 4 s en x

cosx , 1 - V s e n x + 1 + Vsenx x cosx___ ( -------- ---------- ) -i---------------------2-Vsenx (l + -\/senx)(l- - J se n x ) (l + senx)Vsenx

eos x eos x eos x 1 + sen x +1 - sen x ^-Jsenx(\ -se n x ) (1 + senx)Vseñx Vsenx (1 - senx)(l + senx)

_ 2 cosx _ 2 cosx _ 2Vsenx(l - sen2 x) ^fseñx(cos2 x) Vseñx.cosx

sen x - eos x>' = ----------------sen x +cosx

Solución

Derivamos mediante la regla del cociente:

dy _ (sen x + eos x)Dx (sen x - eos x) - (sen x - eos x)D r (sen x + eos x) dx (senx + cosx)2

_ (sen x + eos x)(cos x + sen x) - (sen x - eos x)(cos x - sen x)(sen x + eos x )2

(sen x + eos x )2 + (sen x - eos x )2

(sen x +eos x )2

cosx, Vsenx 1 + senx

Page 504: Espinoza Ramos 1

490 Eduardo Espinoza Ramos

CD

sen2 x + cos2 x + 2senxcosx + sen2 x + cos2 x - 2 sen x cosx (sen x + cosx)2

2(sen2 x + cos2 x) 2 dy(sen x + cosx)2 (sen x + cosx )2 dx (sen x + cosx)2

(5 ^ >’ = (1 + Ln(senx))"Solución

— = ii(l + Ln(senx))n ] D x(l + Ln(senx)) = n(\ + L ii(se n x ))" 1 ^ x SCnX dx sen x

_ n cos-r ^| + ¿ /;(s e n ! . ^ = 77ctgx(l + ¿«(senx) ) " _1

( ? ) y = (sen y - cos —)

sen x dx

X x 2

Solución

dy x x x x 4 , , x x . . l . x x x%— = 2( sen eos — )D r (sen eos —) = 2(sen-----eos —)(— (eos— + sen —))dx 2 2 2 2 2 2 2 2 2

, X X X X x 2 * 7 X r fv= (sen — eos—)(sen —+ cos—) =sen — eos- —= -c o s x .\ — = -c o s x2 2 2 2 2 2 ¿x

_ a /x + 1 —/ x - 1V x+ 1 + Vx~~T

Solución

A la función y = / ( x ) . Expresamos en la forma siguiente:Vx + 1 + a/x-1

_ (V x + T -V x -1) _ (Vx + 1 - a / x - 1)(Vx + 1 —s/x — 1)

( a /x + 1 + Vx - 1) (Vx + l + V x - 1 ) ( a /x + 1 - V x - 1 )

(V x T T -V x - l)2 x + 1 - 2i/x + l i / x - l + x - l 2x - 2-Jx2 - 1 r~, 7V = -------------------- -— - ---------- -------------------------= --------- ----------- = x - Vx~ + 1

(x + l ) - ( x - l ) x + l - x + 1 2

Page 505: Espinoza Ramos 1

Derivada 491

Ahora calculamos la derivada — , es decir: — = 1-------—d x ’ ' Vx2 +1

® y = x 6( l-c o s 2 x )2

©

Solución

Aplicando la regla del producto se tiene:

— = x 6 Dx (1 - eos 2x)2 + (1 - eos 2x) 2 Dxx 6 = x 6 (2 sen 2x)2(l - eos 2x) + 6x5 (1 - eos 2x)2 dx

= 2x5 (1 - eos 2x)(2x sen 2x + 3(1 - eos 2x))

— = 8x5 (2x eos x + 3 sen x) sen3 x dx

10) y . L n - y \ l + s e n *

Solución

A la función dada la expresaremos así: y = \ ~ sen *) ~ + sen *)]

ahora derivando de acuerdo a las reglas establecidas:

dy _ 1 (1 -se n x ) D x(l + senx) _ 1 -c o sx cosxí /x 2 1 - s e n x 1 + senx 2 1 - s e n x 1 +senx

cosx ,1 + senx + l - s e n x . cosx 2 1 ¿/y= —-— (-----------5------) = — -—.--- r— = —— — = -secx2 1 -sen x 2 eos x cosx íit

Vx2 + o 2 + x x>' = l n ( / - 2 2 >Vx +a - x

Solución

A la función dada expresaremos en la forma:

y _ _ in(Vx2 + a 2 + x )- ln(-\/x2 + a 2 - x)Vx2 + a 2 - x

Page 506: Espinoza Ramos 1

492 Eduardo Espinoza Ramos

ahora derivando mediante la regla establecida:

D J s l x 2 + a 2 +x) Dx(-Jx2 + a 2 - x Vx2 + a 2/ 2 , 2 . / 2 , 2 1 2 . 2 .V* +a +x Vx + a - x Vx + a + x

x + Vx2 + a 2 x - J x 1 + a 2

Vx2 + a 2 (Vx 2 + a 2 + x) -Jx2 + a 2 (Vx2 + a 2 - x )

1 1 2 dyr + - - •

Vx2 +a2 Vx2 +a2 Vx2 +a2 ¿x Vx2 + a 2

.senx + cosx,12) y = arctg(-----------------)

sen x - eos xSolución

Aplicando la regla de derivación del arco tangente:

sen x + eos x (senx -cosx)(senx+ eosx)Msenx+ eosx)(senx - cosx)'

dy _ *^senx-cosx^ _________________ (senx-cosx)2_________________dx i | (Senx + coss 2 (senx-cosx)2 +(senx+cosx)2

sen x -e o s x (senx-cosx)2

_ (sen x - eos x)(cos x - sen x) - (sen x + eos x)(cos x + sen x) sen2 x + co s2 x - 2 sen x eosx + sen2 x + cos2+ 2 senx cosx

- ( s e n x -c o s x )2 - (se n x + cosx)22

sen2 x + cos2 x - 2 senx eos x + sen 2 x + cos2 x + 2senxcosx 2 = -1 .2

dx

(Í5) y - Varctgx -(aresenx)3

Page 507: Espinoza Ramos 1

Derivada 493

Solución

Aplicando la regla de la potenciación

dy Dx arctgx ^ 1 3 . x2— = —7= - 3(arcsenx) Dx arcsenx = ------- — ,, . .■ ■— . (arcsenx)dx 2^/arctgx 2(1 + x ^arctgx y i - x 2

„ dy _ 1 3(arcsenx)2

2(l + x 2)Varctgx V i- * 2

______ 2 i______14) >' = y V x 2 + a 2 + ^ - L n ( x + 4 x 2 + a 2)

Solución

Derivando mediante los criterios establecidos:

■» - * n ,/^TTT . tZ oxX . jj¿ + «*>* 2 2 * 2 , +

= _ ¿ 1 _ + : £ ± Z + £ L [! ! 3 S Z ]2 , / T T ? 2 2 x + 4 ? 7 7

2x 2 + a 2 a 2 . x + 4 x 2 + a 2 2x 2 + a 2 a 2~ + - - ( • _ — = ----r - - ) = r - - +-

2-Jx2 + a 2 ^ -y/jc2 + a 2 (x + Vx2 + a 2 2-\/x2 + a 2 2^|x2~+a2

2(xz + a2) l~2 2" dy l 2 2= — .... =V x¿ + a = Vx + a

2 V ? ^ V *

g ) .v = t g ( / " (<"ct^ ' 3>)Solución

Antes de derivar aplicamos la propiedad: e ln“ = a

e ¿»(ore.tg 3> = arc.tgx173 dedonde y = tg(eÍB(aretEJr* 3)) = tg(arc.tgx1/3) = x 1/3

Ahora derivando se tiene: — = —------í£c

Page 508: Espinoza Ramos 1

494 Eduardo Espinoza Ramos

4 a - b senx.16J y = arctg(— ----------------)b + a. cosx

Solución

Derivando mediante la regla del arco tangente:

4 a - b 2 Sen r J ^ 2 (b+ac os x)Dx sen x - sen xDx (b+a eos x)

dy _ ° x b + a.eos* = ____________________ (b+a.cosx)2____________dx . , 4 a 2 - b2 sen a: , (b + acosx)2 +(a2 -Z r)sen 2 x

l + (--) ---------------------------------------------------- j-------------b + a.cosx (b+acosx)

II.

4 a 2 - b 2 [(b + a eosx) eosx + a sen2 x]

b 1 +2abcasx + a 2 eos2 x + a 2 sen2 x - b 2 sen2 x

4 a 2 - b 2 (¿> eos x + a eos2 x + a sen2 x)b2 + l a b eosx + a 2 eos2 x + a 2 - a 2 eos2 x - ¿ 2( l-c o s2 x)

4 a 2 ~ b 2 (a + b.eosx) _ 4 a 2 - b 2 (a + b eosx) dy _ 4 a 2 - b2

( l ) Si y = f(z), z = g(x), calculardx"

Solución

d~ vPara calcular — aplicaremos la regla de la cadena dx~

dy _ dy dz dx dz dx

b" + eos x + 2abcosx + a (a + b cosx) dx a + b .cosx

Ahora calculemos la derivada de la ecuación (1)

Page 509: Espinoza Ramos 1

Derivada 495

d 2y _ dy d 2z dz d dy dx2 dz ' dx2 dx 'dx dz

d y ^ z ^ x dy dy d ,dy dz d 2y dz dz ’ dx dz dz dz dx dz2 dx

± (± ) = £ i . i - . . .(3)dx dz dz dx

reemplazando (3) en (2) se tiene: ^—y = — .^— - + —y . ( — ) 2 •••(4)dx dz dx dz dx

y = mcomo =>

z = g(x)

dydz

dzdx

= / '( * )

= * ’(*)

d 2ydz2

d 2zdx2

= /" (* )

= g"(x)

...(5)

Ahora reemplazando (5) en (4) se tiene: = f( z) .g"(x ) + f" (z).(g'{x))2dx

© Sí /'(* ) = sen * 2 e p / ( — ——) . Calcularx + l dx

dy = dy_ te donde dx dz dx

y = m2 x —lz = -------x + l

dydzdz

= / '( * )

3dx (x + l)2

dy dz 2 3 3 , 2* ~ lx 2— = / (z)— = senz .-------- - = -------- - .se n (------- )dx dx (* + l) (x + l) x + l

Page 510: Espinoza Ramos 1

496 Eduardo Espinoza Ramos

dy 3 2 x - l 2— = .......v -sen(--------)dx (x + 1)2 x + \

Hallar f ' ( x ) sí f ( x ) = sen3 (sen2 (senjc))

Solución

Aplicando la regla de la cadena se tiene:

/ ( x ) = sen3 (sen2 (sen x)) => f ' { x ) = 3 sen2 (sen2 (sen x ) )D x sen(sen2 (senx))

f ' ( x ) = 3 sen2 (sen2 (sen x))cos(sen2 (senx)).Dx sen2 (senx) - .(1 )

Dx sen2 (sen x) = 2 sen(sen x)Dx sen(senx) = 2 sen(sen x) . cos(sen x) eos x

D x sen2(senx) = 2 sen(senx ) cos(senx ) eosx = sen(2senx)cosx ...(2)

Reemplazando (2) en (1) se tiene:

/ ' (x) = 3 sen2 (sen2 (sen x)).cos(sen2 (senx)).sen(2 sen x) eos x

( ! ) Dada la función / (x) =2 1x sen — + x, x * 0 „

x . Demostrar que / (0) = 10 , x = 0

Solución

~ a a * a / - . / m ; • / ( 0 + A )- /(0 ) m - 0Por definición de derivada se tiene: / (0) = lint ------------ -------------------= hmh->0 h h-*0 h

,2 1 j,h sen — + h f= l im--------- *-------- = l im(hsen—) + l = 0 + 1 = 1 / ’(0) = 1

*->o h *->0 h

NOTA.- V h * 0 , - l< s e n — < 1 , - h < h s e n — <hh h

lim{-h)< lim /¡sen — < lim(h) ; de donde l im(-h)sen~ = 0 h—> 0 h—>0 h h-*0 h—> 0 h

Page 511: Espinoza Ramos 1

Derivada 497

( ? ) Sea f ( x ) =x 5/2sen —, x * 0 „ , „

x . Hallar / (O )0 , x = O

Solución

Por definición de derivada se tiene:

15/2 1h sen—n 0 ) = n m = nm = lirn

O h h->0 h *-» O h />->()— - lim //3/2 sen — = 0

h

puesto que: - l< s e n — <1 => - / i 3' 2 < /r3' 2 sen — < /¡3/2h h

l im(-h3l2)< lim h 3' 2 sen —< lim A3' 2 a-»o /¡-»o / j A->0

0 < lim /?3,2 sen — < 0A—»0 /z

luego: lim Ir"2 sen— = 0 , por lo tanto: f ' (0) = 0A->0 /í

( 7 ) Dada la función / (x) =

f ' (x) exista

ax ' + b , x < \1 . Hallar los valores de a y b de tal forma que

, X > 1

Solución

Como para x > 1, se tiene [x| = x entonces: / (x ) :ax2 +b , x < 1lx

, X > 1

mediante derivadas laterales en x = 1 se tiene

/ (1) = 2 ax |x=1 = 2 a

X“

2a = - l= > a = —2

Page 512: Espinoza Ramos 1

498 Eduardo Espinoza Ramos

además de ser continua en x = 1 entonces: lim f (x ) = lint f (x ) => a + b = 1

1 1 . , , 3 , 1 , 3como a = — = í> ----- i-o = l => b = — por lo tanto: a = — ; b = —2 2 2 2 2

( l ) Hallar A, B y C para que la función que se da, sea continua en -2 y derivable en 3

f ( x ) =

Ax + 5 , x < -2

Bx2 +cx , - 2 < x < 3

A x2 + Bx , x > 3Solución

Para que f sea continua en x = -2 se tiene: lim f (x) = lim f ( x )x->-2~ x —>—2+

lim Ax+5= lim Bx~+cxx - * - Y x->-2*

- 2A + 5 = 4B - 2C de donde 2A + 4 B -2 C = 5

Para que f sea derivable en x = 3 debe 3 / ' (3)

3 / '( 3 ) « f_ (3) = f + (3)

2Bx + C |a=3 = 2Ax + B\ r=3 => 6B + C = 6A + B de donde 6 A - 5 B - C = 0 ...(2)

como f es derivable en x = 3 <=> f es continua en x = 3, si f es continua en x = 3 entonces

se tiene: lim f (x) = lim f (x) entonces lim Bx2 + Cx = lim A x2 + Bxx -> y x—>3* x—>-3“ .r->-3+

9B + 3C = 9A + 3B de donde 9A - 6 B -3 C = O 3 A -2 B —C = O .(3)

luego2A + 4B - 2 C = 56 A - 5 B - C = 0 resolviendo el sistema se tiene: A = — = B = C

43 A - 2 B - C = O

( 8 ) Sea f ( x ) =3 — 4(jc — 1) si x< 2x - 3 s i x > 2

probar que f es continua pero no derivable en x = 2

Page 513: Espinoza Ramos 1

Derivada 499

Solución

La función f es continua en x = 2 sí y solo sí lim f (x ) = lim f (x) y además 2 e D fx->2 ' -v—>2+

lim 3 — 4(jc — 1)“ = lim x - 3 =-1x—>2 x—»2

Por lo tanto lim f ( x ) = l i m f (x) y 2 e D r*->2“ ' x >2* ' '

Luego f(x) es continua en x = 2, ahora probaremos que f(x) no es derivable en x = 2

í/'(2) = -8(x-l)|,=2=-8En efecto: / i ( 2 ) * / ] (2 )

[ / l w = i

como f [ (2) * / ] (2) => 3 / '( 2 ) por lo tanto la función f(x) no es derivable en x = 2

Hallar los valores de a, b, c para que la función: / (jc) =

continua en x = 2, y derivable en x = -2

Solución

|x |> 2 o x > 2 V x <-2 además |x| < 2 o -2 < x < 2

a la función f(x) lo expresaremos en la forma:

l * f, \ x \ > 2

. Sea

ax~ +bx+c , | jc | < 2

J'(x) = , x < - 2- xax2 +bx + c , - 2 < x < 2

8 .—r , x > 2

la función f ( x ) es continua en x = 2 si lim f (jc) = lim f ( x ) = f (2 )x —> 2 a - —> 2

fl 7lim —— = lim ax" + bx + c , de donde 1 = 4a + 2b + c

x—>2* x x—>2

Page 514: Espinoza Ramos 1

500 Eduardo Espinoza Ramos

la función f(x) es derivable en x = -2 si 3 / ' (-2) y 3 / ' (-2) <=> /_ (-2) = f + (-2)

24í=_2 = 2ax + ¿ | jr= 2 de donde ...(2)

como f(x) es derivable en x = -2 => f(x) es continua en x = -2, si:

lim f i x ) = lint f ( x ) , -2 g D fx->-2~ a - > - 2 +

lim — - = lim ax2 +bx+c entonces*->-2~ x *-> 2*

...(3)

luego se tiene:4a+2b+c = \

3 5- &a+2b =3 resolviendo el sistema se tiene: a = — , b = 0, c = —8 2

% -2 ¿ + c = l

Si la función f está definida por : / (x) =

3 . 1ax +4x , x < —

¿ x -3 , x >2

Hallar los valores de a y b para que f sea derivable en todo R

Solución

La función f(x) es derivable para x < - - y para x > - i- ahora veremos si es derivable

en x = , por lo tanto f(x) es derivable en x = —i- si 3 / ' ( - —)

3 / ' (—-) => f i (-Í-) = /+ ( - “ ) entonces (3ax2 + 8x) | t2 2 2 -

2

al evaluar se tiene: .(1)

si f(x) es derivable en x = , luego f(x) es continua enx = - — si lim f ( x) = / ’( - —)2 2 jc—>-i/2 ‘ 2

3 lim f i x ) <=> lim / ( x ) = lim f i x )v _ » _ l / 2 -v — 1 / 2 2 a ' > 1 / 2

Page 515: Espinoza Ramos 1

Derivada 501

lim (ax3 + 4x 2)= lim (bx-3 )-V—>-1 / 2~ Jr—>—1/2+

- - + l - - - 3 = > - a + 8 = - 4 6 - 2 4 => 8 2

& - 4 b IB ... (2)

\ 3 a -4 b = 16luego se tiene: < , de donde 2a = -16 => a :

1 a - 4b = 32

S ia = -8 => b = - —— = —- ———■ = —10 . Por lo tanto b = -104 4

La respuesta es: a = -8 y b = -10

© Calcular A y B para que la derivadas de: / (x) = sea f ' ( x ) =2x

V 4 -x ( 4 - x ) 3/2

Solución

f ( x ) = ^¡X~- , derivamos mediante la regla del cociente V 4 -x

J 4 - x D v(Ax+ B )- (A x+ B )D x* j 4 - x _ ' 2 ^ 4 - x 2A (4 -x ) + Ax+BJ \X)

( V í ^ ) 2 4 - x 2(4—JC)3/2

-Ar+8^4 + 3 2x -y4x+8/4 + 5 „=> -------------r v = --------- r r => ------------------ = 2x

2(4 —x) (4 -x ) 2

-Ax + 8A + B = 4x, ahora por identidad se tiene:A = 4 A = -4

SA + B = 0 ^ B =32

12) Hallar /'(O ) si / ( x ) = x 3 - 3 x 2 + 2 x -6 x 2 - 2 x - 3

Solución

Calculando la derivada de la función f(x) por medio de la regla del cociente:

Page 516: Espinoza Ramos 1

502 Eduardo Espinoza Ramos

x 3 - 3 x 2 + 2 x - 6 , 3 x -9/ ( x ) = ------ , _ -----— = x - l + -

x 2 - 2 x - 3 x 2 - 2 x - 3

P ( x ) - 1 i 3(*2 - 2 x - 3 ) - ( 3 x - 9 ) ( 2 x - 2 ) (x2 - 2 x - 3 ) 2

/ ’(x) = l + 18* 3x2 27 => / '( 0 ) = 1 + —— = 1 — 3 = -2 (x - 2 x - 3 ) (0—3)

luego si: f ( x ) = - — 3x +2x 6 y (O) = _2(x2 - 2 x - 3 ) ‘

13) Si / (x) = 4 tg 3x + Vi + 2x3 , Hallar / '( 0 ) = 0

Solución

o p- r r r ^ D yU(x)Como se conoce que: Si y = -Jit(x) =>— = — ------dx 2,]u(x)

9 tg 2 3xsec2 3x + -D J tg 3 3x + Vl + 2x3 ) Vl + 2x3

/ M ; -2 Í W ^ ■ 2T/tg3 3x + VT+2x3

/ '( 0 ) = , 0 + Q = j = 02 V O + V 1 + O 2

m u n dy . 1 + sen2 x 314) Hallar — si y -fifr ’ l + cos3 x 2

Solución

Aplicando la regla del cociente se tiene:

dy 0 + cos3 x 2)O v(l + sen2 x 3) - ( l + sen 2x3)D v(l + cos3 x 2)

/ ' ( 0) = 0

(1 + cos3 x 2) 2

Page 517: Espinoza Ramos 1

Derivada 503

6x2 senx3 cosx3(l + cos3 x 2) + 6xcos2 x 1 senx2(l + sen2 x 3)

(1 + cos3 x 2) 2

15) Dada la función f definida por: f (x) ■

x 2 +x + l . ., si x < 1

x + a

x 3 +fct2 -5 x + 3 , si l < x < —

Hallar el valor de a y b para que f sea diferenciable en <

Solución

2

La función f\ (x) = ——+x + y f 1(x) = x i +bx2 - 5 x + 3 son diferenciables en sus x + a

dominios respectivos como f debe ser diferenciable en x = 1 entonces: debe 3 / ' ( l )

entonces /_ (1) = f + (1), donde:

f ' /lv _ x 2 + 2ax + a - l , _ 3a( 1 ) ? \ x = l — T

(x + a)~ (1 + fl)

f i (1) = (3x 2 + 2bx - 5) |x=1 = 2b - 2

como f j l ) = f i ( l ) => -3a , = 2 b - 2 ...(1)(a+1)

si f es diferenciable en x = l f es continua en x = 1, la función f es continua en

x = l o 3 l imf ( x ) = / ( l )JC—>1

3 lim f ( x ) <=> lim f ( x ) = lim f (x)A-»f jt-»i .r—>r

lim X- — = lim x 3 + bx2 -5 x + 3 , de donde = b - 1 ...(2)-V—>1 x + a .v->r 1 + a

luego— — ■ = 2 b - 2 y - - = b —\(o + l)2 1 + a

Page 518: Espinoza Ramos 1

504 Eduardo Espinoza Ramos

de donde3 a

(a + 1)2 1 + a a + 1■ 2 => a = 2a + 2 entonces a = -2 y b = -2

16) Hallar f \ x ) , si f ( x )x 2 +1x2 +2

Solución

x~ +1= 1 -

x 2 +2 x 2 +2(dividiendo)

x 2 +1? -i x +2

1 —x +2

= 1 +-1

2 + x ‘por propiedad

como V x e R , i > 0 = > x “ + 2 > 2 > 0 invirtiendo

0 < - ■ < - => - i < -x~ +2 2 2 x +2

<0

sumando 1 — < 1---- ------2 x +2

<1 => - <1 x ¿ +l2 x 2 +2

< 1, de donde:

x 2 +1x +2

= 0 => f(x) = 0 => / ' (x) = 0, V x e R

Calcular f ' ( x ) , si / ( x ) = [ |x |] + [ |- x |]

Solución

/ ( x ) = [ |x |] + [ |- x |] =0 , s ix e Z -1, s i x í Z

por lo tanto f es diferenciable V x í Z entonces f(x) = -1 de donde f ( x ) = 0, V x e Z

Calcular f ' ( x ) , si f ( x ) = [ |x + [ |x |] |]

Page 519: Espinoza Ramos 1

Derivada 505

Solución

Por la propiedad [| x + n |] = [| x |] + « <=> n e z como [| x |] e Z

=> [|* + [ |* |] |] = [ |* |]+ [ |* |] = 2[|x |] luego V x e z, / ( x ) = 2[\x\]

=> f ' ( x ) = 0

19) Si f ( x ) = tg(A S( n X) + sen2 (x eos 2 x ) . Hallar / '

Solución

Calculando la derivada de acuerdo a las reglas establecidas:

. . . . 2/J fsen x .^ .x sen x , . , „ xf (x) = sec (— -— )DX (— - — ) + 2 sen(x eos 2x)Dx sen(x eos 2x)

y , x sen x . . x eosx + senx . - , _ , . _ w _ _ _= sec (— -— )(-------- --------- ) + 2 sen(x eos 2x) ,cos(xcos2x)(cos2x-2xsen2x)

f ' (—) = sec2 — (—) + sen (-—) eos — (eos n - n sen n) = 1 + 0 = 1 f (—) = 12 4 2 2 2 2

20) Si x 3 + y 3 = 8xy Hallar DxySolución

Derivando implícitamente se tiene: 3x2 +3y 2Dxy = 8_y + 8xDxy

donde despejamos Dxy = —----8x-3_v

• .

, • • . dy E x(x,y) .aplicando el otro criterio de: — = --------------se tiene:dx Ey (x, y)

sea E(x,y) = x + y - i x y Ex (x ,y) = 3x2 - 8 y y Ey (x,y) = 3_y -8 x

dy _ Ex(x,y) _ 3x2 - 8 y _ 3x2 -8 y _ dy _ 3x2 - 8ydx Ey (x,y) 3_y2 - 8x 8 x -3 y 2 dx 8 x -3 y 2

Page 520: Espinoza Ramos 1

506 Eduardo Espinoza Ramos

Si s e n ( v - x 2 ) - L n ( y - x 2 ) + 2 J y - x 2 - 3 = 0 . Hallar —dx

Solución

Sea E(x,y) = s e n ( y - x 2) - L n ( y - x 2) + 2 ^ y - x 2 - 3 .derivando

_ t , 2w a . ~2x 2x „ . 2x 2xE x (x, y) = cos(y - x )(-2 x )--------- ----- = -2x cos(y - x ) +

E x (x,y) = -

y~x2 - J y - x 2 ' y - * 2 V -

-2x ( y - x ) 2 c o s (y -x 2) + 2 x -2 x - J y - x 2

x 2

y - x 2

E , ( x , y > = a * y - x ' ) - ^ - r + *— =—X s j y - x 2 y ~ x

- 2 x ( y - x 2 ) c o s ( y - x 2) + 2 x - 2x^1 y - x 2

dy _ Ex (x,y) _ _______________ y - x z________________)

dx £ ,,(x ,y ) ( y - x 2)c o s (y -x 2) - l + -y /y-x2

t/y _ 2 x [(y -x 2)c o s (y -x 2) —l + -^/y—x 2] _ - ^ = 2

^ ( y - x 2)c o s (y -x 2) - l + - J y - x 2

22J Si x 2 seny + y 3 c o s x - 2 x - 3 y + l = 0 . H a lla r -^

Solución a

Sea E(x ,y) = x 2 s e n y + y 3 c o s x - 2 x -3 y + l .derivando:

£ v(x,y) = 2 x s e n y - y 3 s e n x -2 y £ y (x,y) = x 2 cosy + 3y2 c o sx -3

dy _ E x(x,y) _ 2x sen y - y 3 s e n x -2dx Ey (x, y) x 2 co sy + 3 y 2 c o s x -3

Page 521: Espinoza Ramos 1

Derivada 507

(23) Hallar y ' = — si tg(x2 + y 2) + e x' +ey2 = 0 por dos métodos que se han establecido. dx

Solución

Aplicando el primer criterio se tiene: derivamos la ecuación tg(x2 + y 2) + e*2 +e}" = 0

sec2(x2 + y 2)Dx( x 2 + y 2) + e x Dxx 2 +ey Dxy 2 =0

sec2(x2 + y 2)(2x + 2y.y') + 2xe*2 +2 y.y'ey2 =0

2>’sec2(x2 + y 2)y'+2yer y '= - ( 2 xsec 2( x 2 + y 2 ) + 2xex2)

2y(sec2(x2 + y 2ey2 )y'= -2x(sec2(x 2 + y 2) + ex¡)

. dy _ _ x ^.sec2(x2 + y 2) + e x2

' dx y sec2( x 2 + y 2) + exl

Ahora aplicando el segundo criterio se tiene:

Sea E(x,y) = tg(x2 + y 2) + ex' +er .derivando

Ex (x ,y) = 2xseo.2(x 2 + y 2) + 2xex y E y (x ,y) = 2xszc2(x 2 + y 2) + 2yey

dy E (x, y) 2x(sec2(x2 + y 2) + e x‘ )como — = -----— -----= —------------------ —-------- -

dx E y (x ,y) 2y(sec2 (x 2 + y 2) + e y2

_ dy _ _ x ^.sec2(x2 + y 2) + e x¡

dx y sec2(x2 + y 2)+ e yl

'24) Hallar ^ si y = (x 2 + l)sen* dx

Solución

Tornando logaritmo a ambos miembros: ln_y = ln(x2 +1)sen v = sen x ln(x2 +1)

Page 522: Espinoza Ramos 1

508 Eduardo Espinoza Ramos

ahora derivando implícitamente se tiene

y' ____ _ „ 2x= senx.DxLn(xl +l) +Ln(x¿ +l)Dx senx => y'= v[senjc.— + cosx.Ln(x2 +1)] y ' ' ‘ x +1

dv , ■> . , sen r ,2xsenx 2— = (x +1) (— ------ + cosx.£w(x +1))¿X X‘ + l

— = (x2 + l)senA_I2xsenx + (x2 + l))senjr eosxLn{x2 +1) dx

25j Hallar — si y = x C0SJrdx

Solución

Tomando logaritmo en la ecuación y = x C0SX

ln y = ln x C0SJr = cosx lnx derivando implícitamente

y*— = eos x.DxLnx + Lnx.Dx eos x de donde

, r cosx , , COSA-rcosx . , dy COSJ:rcosx , ny = vi---------lnx.senx] = x [— -ln x sen x ] = x [--------- lnx.senx]x x dx x

26) Hallar — si v = x Lnxdx

Solución

Tomando logaritmo en la ecuación y - x Lnx

ln y = ln(xlnx) = lnx .lnx derivando implícitamente:

Page 523: Espinoza Ramos 1

Derivadas 509

Solución

Tomando logaritmo a ambos miembros l n x y = ln y*

aplicando propiedad de logaritmo y Ln x = x Ln y derivando implícitamente

y ' \ nx+ — = lnj>+—y' de donde ( l n x - —)y ’= l n ^ - — x y ' y x

y ln .v -x , _ x \ n y - y y f x l n y - y s dy y. y — => y — ( - ) —— — i

y x x y l n x - x dx x

, 0, u „ dy . x 2sjx + 128) Hallar — si y ~dx ' (x - l ) 3Z]5x-\

Solución

Tomando logaritmo y aplicando sus propiedades:

ln y = ln (— X -- / r—— r) =lnxtyx + l — ln(cjc — 1)3^5jc — 1)( x - l ) Z fSx - l ’

ln y = lnjc2 + I n ^ x +1 - ln(x - 1)3 - I n ^ S x - l

ln y = 2 ln x + 1 n(jr +1) - 3 ln(jc -1) - j ln(5x -1)

y’ 2 1 3 1 . . . , r 2 1 3 1— = — i------------------------------ de donde y = y[—+:y x 2(x + l) x - \ 5 x - l x 2(jc + 1) jc-1 5 x - l

dy _ x 2 -Jx + 1 j- 2 + 1 3 1dx (x -1 )3a/5x-1 x 2(x + l) x - l 5je-1

29) Hallar & si y = X ..arctgx ' J dx ' 1+ *2

Solución

Tomando logaritmo y aplicando propiedades:

x i a y - yy l n x - x

Page 524: Espinoza Ramos 1

510 Eduardo Espinoza Ramos

1 n y = ln(X arctk * ) = ln x 2 + ln . arctgjc - ln(l + x 2)1+x~

y' 2 1 2x , 2 1 2x— = - + ------- ---------------------- dedonde y = y [ - + — ,--------------------- j ]y x (l + x )arctgx l + x x (l + x )arcAgx l + x

dy _ x ~ are. tg x 2 + 1 2xdx l + x 2 x (\ + x 2)arc. tgx l + x 2

u ,, dy . (x + l)3^ ( x - 2 )30) Hallar — si y -

dx ‘ ■' ^/(x — 3)2Solución

Tomando logaritmo y aplicando propiedades:

(x + 1) 3^ ( x - 2)3 3 2Z,«y = L n ------ , ■ ■ -----= 3 Ln(x + 1) + — Ln(x - 2) — Ln(x - 3)

V (x -3)2 4 5

y' 3 3 2 3 3 2i - = —— + — ----------------- dedonde / = _y[—— + ------- ------- -----— ]y x + l 4(x - 2) 5 (x-3) x + l 4 (x -2 ) 5 (x-3)

dy (x + l)3^ /(x -2 )3 3 , 3_______ 2

^ ^ /(x -3 )2 X + 1 4 (x -2 ) 5(x -3)

dv . (x + l)(2 x -3 )1/231) Hallar — si y =dx l¡3x - 2

Solución

Tomando logaritmo y aplicando propiedad:

1/2l n y = l n (* + 2i(2x~ 3)— = ln(x + 2 )(2 x -3 )1/2 - ln ty 3 x -2

' V 3x-2

ln y = ln(x + 2) + ln (2 x -3 )1/2 - l n ( 3 x - 2 ) 1/3

Page 525: Espinoza Ramos 1

Derivadas 511

ln y = ln(x + 2) + — \n(2x - 3) - j Ln(3x - 2)

y 1 1 1 J j • r 1 1 1- - + -— — de donde y = y[------------------ + -y x + 2 2 x - 3 3 x - 2 x + 2 2 x - 3 3 x - 2

. d y _ (x + 2)(2x -3 )1/2 1 | 1_______1 _dx l ¡3 x -2 x + 2 2 x - 3 3 x - 2

418 EJERCICIOS PROPUESTOS.-

I. Calcular las siguientes derivadas, usando la definición

= R p t 3 ' f ' ( X ) z

(D A ( x ) = —f = = Rpta. f '(x)-- slx + 2

® f ( x ) = x-J x +1 Rpta. /'(*) =

(4 ) f ( x ) = 4 4 - x 2 Rpta. f ' ( x ) -

© f ( x ) = l]2x + 3 Rpta. f (x) =

(ó ) f ( x ) = 43- 2 x Rpta. / ' (x) -

( 7 ) f (x) — —~z----- Rpta. f \ x ) -x +]

( ? ) f ( x ) = - f L = Rpta. f ' ( x ) =*Jx +1

-13( 3 x - 2 ) 2

-12(x + 2)3/2

3x + 2 2 1' x +1

X

~ 'J4 --X2'

2

3(2x + 3)2/i

14 3 - 2 x

4x ( x 2 +1)2

12 ( x + l ) 3 /2

Page 526: Espinoza Ramos 1

512 Eduardo Espinoza Ramos

Cx + D (Cx + D )2

x 3 + l „ . . . . . 2x3 -1

© f ( x ) = 4 a x + - jL = Rpta. / '( x ) = —^Vox 2

a2-fax 2 x-Jax

13) f(x)J a2+x2- Rpta. /'(*) = ^

-14; / w ” ^ 7 R p,a- ^

15} f ( x ) = - ^ ~ Rpta. / '( x ) =2 x - l 1 “ ( 2 x - l ) 2

16) f ( x ) = ¥ Rpta. / ’ (x) = 3X Ln3

17) f(x) = cosx Rpta. / ’ (x) = - sen x

18) / ( x ) = l ± ^ Rpta. / ’(x )= 123 -2 x (3 -2 x )2

II. Calcular la derivada en el punto indicado usando la definición

(T ) / ( x )= V l + 9 x , a = 7 Rpta. f ' { a ) = ~16

f = = . a = 3 Rpta. / • (a) = - J --Jlx + 3 27

/ ( x ) = —+JC + X2 . a = -3 Rpta. / ’(a) = - ^9

Page 527: Espinoza Ramos 1

Derivadas 513

© f ( x ) = ( x 2 +x )2 , a = 2 Rpta. f ' ( a ) = 60

© f ( x ) = V*2 - 4 , a = 5 Rpta. / ’(a) =V 2l

© f ( x ) =-Jl -3x

, a = -e Rpta. f'(a) =----250

©©©

/ ( * ) =lW 5 + llx

, a = 1

/ ( jc) =| J c - ll3, a = 1

/ W = -p - - 1 , a = 4Vx

Rpta. / - ( a ) - - -

Rpta. f ' ( a ) = 0

Rpta. /'(« ) = - —

ÍO) f ( x ) = J x 2 - 9 ,a = 5

" > n x ) ’ i ñ - * - 2

f (x) = 3 -V 5 + x , a = -4

Rpta. /'(a) = -11

Rpta. /'(« ) = - i

III. Determinar, cuales de las funciones siguientes son derivables en los números dados por

© f ( x )

-Jx , x < 4, X 0 = 4 © f ( x ) = 7 Ü I , x 0 = 0

2 (x -8 ) , x > 4

© f ( x ) = \ x 2 - 4 \ ,x0 = 2 a x 0 = - 2 © / ( * ) =

- J l - x , x < 1> Xn =1

(1 - X ) 2 , X>1

Page 528: Espinoza Ramos 1

514 Eduardo Espinoza Ramos

Vm ,x < 1

© f i x ) = , *0 =1

x 2 , X>1

©x 2 - 4 ,x < 2

/ ( * ) = • , x„ = 2

V x - 2 , x > 2

1 x + 2 1 ,x < 0

© / w =• 2 - 2 x 2 , 0 < x < 2 , x0 = 0,2

x 2 - 4 x + 2 , x > 2

3 5© / ( x ) = V U H U I I . - 1- 4 ' ,

© / ( x ) = | * - 3 |3 ( x - 3 ) + x 3 x — , x0 =3

/(* ) =

s/ x < -1

, *0 = - !-1 - 2 x s í jc > —1

IV. Problemas de diferenciabilidad.

( ? ) Calcular los valores de a , b y c para que la función:

f i x ) ■■— si | x | > 2I x | sea continua en x = -2 y diferenciable en x = 2

ax 4 bx + c si \ x \ <2

(T ) Calcular los valores de a y b de la fimcion f para que sea derivable en x = 2

f i x ) =J-3 x , si x < 2

\ax+b , si x > 2Rpta. a = -12, b = 12

Page 529: Espinoza Ramos 1

Derivadas 515

(T ) Halle los valores de a y b tales que f sea diferenciable en 2 sí:

[ax + b , si x < 2f (x) = \ . Rpta. a = 8, b = -9' \2x -1 ,si x > 2

© Sí f (x) =j x - 8 1 (x - 8 ) . Hallar los puntos donde f es diferenciable.

( ? ) Si f ( x ) = \ X si x < 1 Encontrar los valores d e a y b ta lq u e f ' ( 1) existe.[ax + b si x > 1

Rpta. a = 2, b = -1

ax+b, si x < 2( ó ) Hallar los valores de a y b de manera que exista / '( 2 ) sí: f ( x )

Rpta. a = 4, b = -7

x 2 -3 , si x > 2

0 1 X X < 1Hallar los valores de a y b de manera que la función: / (x) = < ’ sea derivable[ax + b, x > l

en todo su dominio. Rpta. a = 2, b = 1

© Hallar los valores de a y b, de manera que la función: f ( x ) ■ax~ +b, si x < \

1 sea— , si x > 1 .1*1

1 3derivable en todo su dominio. Rpta. a = — , b = —2 2

© Hallar las constantes m y n de tal manera que la función / ( x) =

sea derivable en x = -1. Rpta. m = 2, n = 10

x 1 +mx + 3, jc < —1 -4 m x + n , x > —1

Í3— x, x < l10^ Sea f la función definida como: f { x ) = , donde a y b son constantes.

[ax +bx, x > 1

i) Si la función es continua para todo x ¿Cuál es la relación entre a y b?

¡i) Determinar los únicos valores de a y b que hacen a f continua y diferenciable.

Page 530: Espinoza Ramos 1

516 Eduardo Espinoza Ramos

Si / ( x ) = |x - 3 |3 ( x - 3 ) + x 3[ | x ~ | ] ¿Sea f derivable en x = 3?

12) Dado / ( x ) = ( x - l ) [ |x |] , trace la gráfica de f para x e [0,2], halle si existen /_ (1 ),

A ( i ) . / ' ( i) .

13 Dado / (x) = (5—jc)[| x | ] , trace la gráfica de f para x en [4,6], obtenga si existen /_ (5),

f 'A5). /'(5 )

14) Dada f ( x ) = (x - a)[| x | ] , demuestre que: f ! (a) +1 = / ' (a)

1?) Determine / '( - 3 ) sí f ( x ) = ( \ x \ - x ) \ ¡ 9 x Rpta.

dyV. Hallar la derivada — sí

CD

©

©

©

©

©

y -í

dx

1(.x + a)m (x + b)n

4 a 2 - x 2

y =x + a

y=-

y = -

-Jx + -Ja

-J2x2 -2 x + 1 x

Vx3 + 3x2

Rpta.

Rpta.

= (3x2 + 4x + 8 )V x -l Rpta.

dy n(x + a) + m(x + b)dx ( x + a)m+x (x + b)n+l

dy a 2dx ( a 2 - x 2 ) 3/2

dy -Ja(4x - -J a )dx 2-Jx-Jx + a ( 4 x +-Ja)

dy x - 1

dx x 2y¡2x2 - 2 x + l

dy - 1

dx (x3 + 3 x 2)2/3

dy " '15x2dx 2 ( x - l ) 1/2

Page 531: Espinoza Ramos 1

Derivadas 517

©

©

©

fío)

n - 1

©

©

y=

y =

d + x ) n

Vi + X + -\/l ~ x- \ / l + X -~J 1 - x

y = (x + a )m(x + b)n

v _ 4 x 2 + 1+ V *2 -1

V 4 x 2 + \ - 4 x 2 -1

y - ■

y =

i -V x

ll + Vx

4x + 6

V* 2 + 3x + 4

3

2x +1

_ 4a + bx —4a — bx -Ja + b x + 4 a - b x

_ t x ? +3x + 5 45

16) y = ^ ( l - x ) m(l+ x )n

IV y-1 + x

y -

i - x

4 X + -\[x + 4 x

Rpta. rfy _ « x

dx (x + 1)«+i

Rpta. ¿l = - l r[l + - F± = )dx

dyRpta. — = (x + a)m 1 (x + b)n l [m(x + b) +n(x +a)] dx

n dy x Rpta. — =* V*4 - i

Rpta. ^

Rpta.

Rpta.

(Vx2 +1 W x 2 - 1)2

í¿X 2(4x + l ) 4 x - x 2

1dx (x2 +3x + 4)3/2

¿y _ 36x2(x 3 —l)3

dx (2x 3 + l)5

r. dy a ri Rpta. - f = - _ [ ! -dx bx2 4 a 2 - b 2x 2

dy 5(2x2 -2 x -1 3 ) x 2 +3x + 5 4Rpta. — = ------------- ------(------------- )dx (2x - l ) 2x —1

Rpta . ^ = [ÍZ 1 Z ^ L Z Z 2 )£ ](1 - X)W . (1 + X) dx m + n

- mm+n

dy _ 2x 2 J - x 3d x ~ (1- x 3)2 1 + x 3 '

2/3

Rpta.dy _ 1 + 2-Jx + 44 x ^ x - J x

Z -T x J ^ T x -\/x + a / x + a /x

Page 532: Espinoza Ramos 1

518 Eduardo Espinoza Ramos

(Í9) y = l l Rpta. ^ = — (1 + 1 + V ^)"2/3d + ^ ) ' 2/3x*2/3 ^ dx 21

a t -v/l - eos x _ , rfy 120) y = a r c t g - = _ Rpta. — = -Vi + eos x dx L

cosx 1 , . x. _ ¿y 121) y = ------ ------—ln (tg -) Rpta. - -

2sen2 x 2 2 dx sen3

t g x - t g 3 x dy 1

l - 6 t g 2 x + tg4 x dx eos2 4x

x ex - e x x cosx + 2senx n . dy 1 ,23) y = arctg—---- — - are. tg--------- ------- Rpta. -f - = -----—— + 1

e +e senx-2cosx dx cosh2x

. .a .x 2" -1 dy 2nxn~l24) y = are.cos(—-------) Rpta. ' -x 2" + l dx x 2n+l

25) _v=— arc. tg(emx J - ) Rpta ^ ^m'■Jab ' U ' dx aemx + b e mx

1 x2arc. tg.r+—Z,ar+11 x¿arc.lgx+—Lnx+l c[y l e 2

26) y = —j=e 1 RPta- — = (2x-------- r-) r-4 x dx 1 + x Vx

, sena .senx . „ dy sena21) _y = a/r.sen(-------------------- ) Rpta. — = -1 -c o sa .se n x dx 1 -co sa .co sx

,6 + aco sx dy -Ja2 - b 228) y = are. cos(-------------) Rpta. -a + b cos x dx a+ b eos x

i r a sent2(r ^ r ^2/-1- Vx 1+Vx29) y — eos (----- j=) Rpta. — = — =------------------ = —1 + Vx dx V x (l+ v x )

->,1 -Ira; „ . rfy L n x - 2 1 -Z ,rar..30) v = sen"(--------- ) Rpta. — = ----- -— sen[2(--------- )] y ' x dx x~ x

Page 533: Espinoza Ramos 1

Derivadas 519

©

\ - e \•‘' = ,S(I 7 7 )

2 1 xy = - are. Ig x + - arctg------ -

3 3 \ - x

y = Lti( tg —) - c tg x.Ln( 1 + sen x) - x

1 1 , 1 + x * 1 ♦>’= T ln("¡-----) —-a rc tg x4 1 -x 2

55) y = \n(x + 4 x 2 -1 )

y = 4xarc. sen -Jx + 4 l - x

• = L«(V2senx + l + sen x -1 )

y = Ln.1 + sen x 1 -sen x

y = Lti(3x2 +V 9x4 +1)

^ 4 tg x + l - 2 ^ tg x

7 4 tg x + T + 2Vtgx

y = ln(21n (senx) + 3

21n2(sen x )-3)

y = y a/íí/r. sen -Jx1 +2x Rpta.dydx

Rpta.

Rpta.

Rpta.

Rpta.

Rpta.

Rpta.

Rpta.

dy _ - 2 e x dx (\ + e x )

dy _ 1 + x 4 dx l + x 6

sec (--------)l + e x

dy _ Ln(l + sen x) dx sen2 x

dy _ x 2dx I - * 4

dy _ 1

dx Vx2 -1

dy _ 1dx l 4 x

are. sen

dy cosx

dx V 4sen2 x - \

dx eos x

„ . ífy 6x Rpta. — -* ^ 9 x 4 +1

2sec2 x

Rpta.

dx tgx + 1)

í/y _ 241n(senx)rtgx dx 41n4(se n x )-9

x + 1

&4x2 + 2 x V l - x 2 - 2 x (are.sen -Jx2 + 2x)3/4

Page 534: Espinoza Ramos 1

520 Eduardo Espinoza Ramos

43J y = arc.tg (Ln(ax+b)) Rpta. -------------------------------(ax + b)( 1 + Ln ~ (ax+ b))

44) ,= i | ln (se „ ü ¿ ) Rpta. ^ 1 ct8«* + 3>'4>4 dx 12 z,„2/3(sen(jc + 3)/4))

4S) >> = ln2 x-ln(lnx) Rpta. — = 2^n.~X—-^ dx xLnx

(4ó) y = ( 2 - x 2)c o s x 2 + 2x sen x 3

Rpta. — = -2 x c o sx 2 + (jc2 - 2)2xsenx2 + 2 sen x 3 + 6x3 eos*3 dx

(47) y = sen(cos2 x) cos(sen2 x) Rpta. — = - sen 2x cos(cos2 x - sen2 x)w dx

(4§) y = sen(sen(senx)) Rpta. — = cos(sen x(sen x)) cos(sen x) eos xdx

(4 ^ 7 = sen3 (sen2 (sen x))

dy 9 9 1Rpta. — = 3 sen '(sen (senx))cos(sen (senx)).sen(2senx)cosx dx

S0j >■ = sen(,sen7 jr7 +1)7) Rpta. | - 3 4 3 * V . , x « ’ W , 7 + l) ‘ .coS(K „ 7 , 7 + 1)7

51) y = sen(x2 +sen(x2 + sen x 2))

Rpta. — = cos(x2 +sen(x2 + senx2)).[2x + cos(x2 + senx2)(l + cosjt2)2x] dx

© >'=<— r = r > ' «p«“- r — r )" ‘W 1 + V l-x 2 (l+Vl-JC ) (1 + Vl-Jf2)

(53) _v = (-\/x + l + 4 x — l ) 4 Rpta. — = 2(-\lx +1 + 4 x — l ) 3( —. )v -^ dx -Jx + \ V x-1

Page 535: Espinoza Ramos 1

Derivadas 521

54; y - . Rpta. d y ^ 2( x 2 - x + l)3^(1+ x 2)3 t e (x 2 +l)512

^5) y = { x + 4 ~ x ) n Rpta. ^ - = n(x + 4 x ) n~l (l - } )^ dx 2*J- x

56) Sí / • ( * ) = — í _ , j, = / ( _ £ _ ) . Hallar^ x 2 + l Jf + 1 dx

■CT\ . (x —l)3(x -2 ) dy 3 1 157) y = ln(--------— ----- ' ) R pta. — = ------- + -

x - 3 dx x - l x - 2 x - 3

58) 2 arcsen3" + ( 1 - árceos3x)2 Rpta. = 3 ln 2.2arcse _ 6(1 - arccos3x)

( g ) y = ln(arcsen(5x)) + arcsen(lnx) R pta. — = . ^ ^t e - J l - 2 5 x 2 are. sen 5 x jcVI — ln jc 2

dyVI. Derivación Implícita. Hallar sí:

dy 1e y = x + y R pta. — =

dx e y - 1

© l„ >l + i = * R pta. *L = J L -y dx x - y

( ? ) arctg—= —ln(jr2 + y 2) R pta. — = X + x 2 dx x - y

¿ _x~y ^y 3 = ——— Rpta,x + y dx 2 - 3 y (x + y)

© x „ dy y l - x 2 - y 2xy = are. tg — R pta. — = — .

u /7v V>' ' dx x 1 + jc2 + y 2

Page 536: Espinoza Ramos 1

522 Eduardo Espinoza Ramos

x sen y -e o s y + eos 2y = 0sen y

dx 2 sen 2y - sen y - x eos .y

( j ) y sen x - eos (x - y) = 0 Rpta. dy _ y eos x + sen(x - y) dx sen (x -.y )-sen x

sen xy + eos xy = tg (x + y)_ dy y eos2 (x + v)(eos xy - sen xy) -1Rpta. — = -------- ----- ----- ------ —— —

dx xcos (x + >>)(cos xy - sen xy) -1

© x 3 +ax2y + bxy2 + y 3 = 0dy 3x 2+2 axy+by2Rpta. — = ----- --------------- -dx ax +2bxy+3y

10) x 4 + / = x V Rpta. dy x y 2 - 2 x 2dx y ' 2 y 2 - x 2

© x — y = are.senx — arc.seny

í y x 2 - a-Jxy + y 2 = a

Rpta.

Rpta.

dy _ J l - y 2 d - 4 l - x 2 )

<** V l - x 2 ( l - V l - y 2 )

dy _ 4x j x y + y dx 4 y-Jxy + ax

13) 2x*y2 - 4 x 2y 4 + x 2y 2 =6_ dy y .4 x 2 - 4 v 2 +1Rpta. — = -----(— ------ )

dx x 2 x 2 - S y 2 +1

4) y 5 - 2 x 2y 3 +3x4y - x 5 = 5dy 5x4 —4xy3 -1 2 x 3yRpta. — = ----------V —------ fdx 5 j4 - 6 x y +3x

í s ) -Jy+iJy+t fy* = x Rpta. dy _ 1

d x ~ 1 .+ ! + . 12 J y 3 4 7 W 7 "

16) -Jxy+ 2 x =4~y Rpta.dx Vx - x

Page 537: Espinoza Ramos 1

Derivadas 523

^ 7) x - y = arc.senx - arc.seny Rpta. — = ^ L = £ = iÍ— ^ L .J L J

(Ts) y = x + arc.tgy R pta. — =^ dx

dy _ l + y 2

3 , 2 2 -> 3 ^ dy 3x2 + 4 x v - v 2x + 2 x ~ y - x y + 2 y = 2 R pta. — = -------------- f -— :— rdx 2x y - 2x - 6 y

@ x 3 - 3 a x y + y 3 = a 3 Rpta. d y - a y x2

dx v 2 -y - a y

© 4 + 4 = 1 « * »

@ 3 2 2 _ dy 2 x y - 3 x 2 - y 2x +xy = x y R pta. -7- = 7n r

(11) (x + y ) 3 + ( x - y ) 3 = x 4 + y A Rpta.

dx 2 x y - x 2

dy 2x3 - 3 x 2 - 3 y 2 dx 6 x y - 2 y 3

© R p ,. . $ = ^ T Tw dx 4 x - 3 y

.3

@ (x + ^ J = * - y R pta. £ = 1 l 3l + 3xy + 4jy

VII. Derivadas de las funciones y = ( f (x))*w

(T ) j> = (x2 + l)sen' Rpta. ^ = (x 2 +1)sen * (eosx l n ( x 2 +1) + 2 " - )w dx x 2 +l

( 2) >» = e x R pta. — = e x' x x x ' ( — + (Z,nx + l))w dx x

Page 538: Espinoza Ramos 1

524 Eduardo Espinoza Ramos

© y = ( l « 2)*“ '*' Rpta. +dx l + x l + x

© y - * f ' RP«.w dx Vx

( ? ) y = x senx Rpta. Q = x seDX(— +eosxLnx)w dx x

© y = x Lnx Rpta. ^ = 2 x Lnx~lLnxdx

( 7) y = (Lnx)x Rpta. — = (Lnx)(Ln(Lnx) + — —)dx Lnx

12) y - x 1"

( 8 ) y = (sen x)cosx Rpta. — = (sen)cosx (c tg x eos x - sen xZ,« sen x)w dx

dy dx

dy x L n y - y y

( 9) y = (cosx)* Rpta. — = (eos x) * (Ln eos x - x tg x)dx

10) x y = y x Rpta.dx y L n x - x x

© y = x x2 Rpta. ^ = x*2+1(1 + 2Lnx)dx

, dy i - \ - L n xRpta. - f - = S jx ------—dx X

x W T " R p ta '

14) , = , < * -? * Rpta. * = , ( - » ______ 1_______ * _ )" ^/(x + 2)2 i/(x + 3)3 * l¡{x + 2)2-J(x + 3)' x ~ 2 3(* + 2> 2^ + 3>

Page 539: Espinoza Ramos 1

Derivadas 525

VIII.

O

©

©

©

©

©

©

©

11V* + l o . dyy = . --------- Rpta. — = ----------------------- V (x - l)5(x - 3 )n dx - J ( x - l ) 5 (x -3 )11 2(* + 1) 2 Í * - 1) 2(* ~ 3)

)

y - 3 |x (x2 +1)X2 - l

y=-

y

( x - 2 ) 2V ^T Í

(jc- 5 ) 3

( x + 1 ^ 4 7 ^ 2

S¡(x- 3)2

Derivadas en un punto

Si y = tg3 - ^ , Hallar ^ U 2 6 dx

Rpta. ^ , í l ± f a L ± í , K !+1>dx 3 x ( l - x 4) 'Y(jc2 - 1 ) 2

Rpta. 2 ( x - 2 ) ( x 2 +11jc + 1)

d* 3 ( x - 5 ) A4 (x + l )2

dy _ 51x 2 -3 0 2 x + 361 (x + l )24 / ^ 2 dx 2 0 ( x - 2 ) ( x - 3 ) 5j(x - 3 ) 2

Rpta.

Si f(x) = tgx y g(x) = Ln(l —x); H allar—-/ ’(O)g ’(0)

Si f ( x ) = l - x y g(x) = l - s e n — ; Hallar ^ ^ J s 2 / ’(I)

Calcular / '(O ) sí f ( x ) = e x cos3x

Hallar / ' (1) sí f ( x ) = ln(l + x) + arcsen—

Rpta. 671

Rpta. -1

Rpta. 0

Rpta. -1

„ 1 V3Rpta. — + ----f 2 3

Sí / ( * ) = l n( t g^)— Hallar / " £ ) 2 sen x 4

Sí f ( x ) = 2jLrtx . Hallar / ' (e)

Si f ( x ) = e m sen me. Hallar / ' ( - )

Rpta. 4 V2

„ 1 Rpta. —3e

71Rpta. /re2

Page 540: Espinoza Ramos 1

526 Eduardo Espinoza Ramos

® Si / ( x ) = l n ( ± ± ^ ) Hallar / ' £ ) ^ tgx 4

Rpta. -1

10) Hallar y' sí y = arctg(-— + arcsen(— ^ X_ )1 + tgx V í + tg x

_ j x 2(sen(l/x) + x , x * 0© Dada la función / (x ) = '"~“ v ’ ' ~ ^ ” ; Demostrar que / ’(O) = 1

^ 2 ) Dada la función / (x) =x 2 + senx , x = 0

¡x + 0.2l|]+x2 eos— ,x * 0

Hallar / ’(O) si existe, usando la definición de derivada.

¡ 3) Si y 3 =V 5* 3 + 3* 2/V /3 Calcular — para x = 1, y = 1dx

V5 —8x"14) Dada la función / (x) = ■ _ , determinar los valores de m, sí:

I j l x - l

15) Si / ( x ) = cos3(x + 7r), hallar / ' ( —_)4

S ) Si f ( x ) = 4 x + \ £ X,i , hallar / ’(0)

Sí f: I—» R es una función derivable en el punto x = a, (a e I), entonces la ecuación de la

recta tangente a la gráfica de f en el punto P(a, f(a)) es dado por:

Page 541: Espinoza Ramos 1

Derivadas 527

Si / ' (a) O , entonces la ecuación de la recta normal que pasa por el punto P(a, f(a)), es dado por:

ln -y-ña)**-

Para el caso en que / ' (a) = 0, la ecuación

de la recta normal es: x = a.

Llamaremos longitud de la tangente, al segmento de la tangente comprendida entre el eje X y el punto de tangencia y denotaremos como: L, = d(A, P ) .

Llamaremos longitud de la subtangente al segmento AB que es la proyección ortogonal

del segmento AP sobre el eje X, al cual denotaremos como: Ls, = d ( A B ) .

Llamaremos longitud de la subnormal al segmento BC que es la proyección ortogonal del

segmento PC sobre el eje OX .

De la ecuación de la recta tangente L , : y - f (a) = f ' (a)(x - a) .

Calculamos el punto de la intersección A con el eje X, para y = 0, entonces:

mx = a/ '( « )

como el punto de tangencia es P(a,f(a))

m

A ( a - £ f - , 0) / (a )

L, = d(A,P) =

Ls, - d(A,B) =

f ' ( a )

m

+ ( f ' (a ) )2 - Longitud de la tangente.

f ' ( a )= longitud de la subtangente.

De la ecuación de la normal L„ : y - f ( a ) ~ ----------( x - a ) , calculamos el punto C de laf ' ( a )

intersección con el eje X.

Page 542: Espinoza Ramos 1

528 Eduardo Espinoza Ramos

Para y = 0 =i> x = a + f ( a ) f ' ( a ) =i> C(a + f ( a ) f ' ( a ) , 0).

Ln = d(P, C) + (a))2 = longitud de la normal.

Ls„ = d(B,C) = \ f (a) f ' (a) \ = longitud de la subnormal.

Ejemplos:

Hallar las ecuaciones de la tangente y de la normal a la curva y = x 3 - 3 x en el punto

(2.2)Solución

Calculando la pendiente = mL, = — \p(2 2>, pero como y = x 3 - 3x=> — = 3x2 - 3 .dx dx

dyEntonces mL, = — 1^2,2)=12 - 3 = 9

Luego Lt : y - y 0 = m L , ( x - x 0) , dedonde L, : y - 2 = 9 (x -2 ) => L, : 9 x - y - \ 6 = 0

como L„ ± L, => mL„ = -■^ , entonces Ln : y - 2 = - ^ ( x - 2 )

Ln :x + 9 j - 2 0 = 0

© Hallar la ecuación de la recta tangente y de la normal a la curva x 5 + y 5 - 2xy = 0 en el

punto P(1,1)Solución

Para calcular la pendiente de la recta tangente, en primer lugar calculamos su derivada, es

decir: x 5 + y 5 - 2 x y = 0 => 5x4 +5y4y ' - 2 y - 2 x y ' - 0

( 5 / - 2 x ) y ' = 2 y - 5 x 4 => y ’= 2/ A~5~~ -5 y ' - 2 x

dy _ 2_y-5x4 _ 2 - 5

Page 543: Espinoza Ramos 1

Derivadas 529

entonces L, : y - y 0 = m L , ( x - x 0) => L, : >>-1 = —(x -1 ) , de donde L, :x + y - 2 = 0

como L„ 1 L, => mLn = 1, entonces tenemos que:

L „ : y - \ = x - \ => L „ : x - y = 0

a) Representación de curvas en forma parainétricas

Las coordenadas (x,y) de un punto P de una curva pueden ser funciones de una variable t llamado parámetro, es decir:

1 *(nc .

A la ecuación (a) se denomina ecuación paramétrica en donde cada valor de t le corresponde un punto P(f(t),g(t)) del plano XY. El lugar geométrico que describe los puntos f(t) y g(t) se denomina curva parametrizada de la ecuación paramétrica, para obtener la ecuación cartesiana se elimina el parámetro t y de esa manera se obtiene una ecuación de la forma cartesiana y = f(x) ó E(x, y) = 0

Ejemplos: Trazar la gráfica de las siguientes ecuaciones paramétricas.

( ! ) x = 2t, y = -5t

t K0 0 0

1 2 -5

2 4 -10

-1 -2 5

-2 -4 10

Page 544: Espinoza Ramos 1

530 Eduardo Espinoza Ramos

( 2) x = t - l y = t 2Solución

Ejemplos.- Trazar la gráfica de las ecuaciones paramétricas pasando a coordenadas cartesianas

x = -1 + cosG , y = 2 + 2sen0Solución

® x = t y = l-

Solución

Eliminando el parámetro t para obtener la ecuación cartesiana

x = t• l => xy = 1 ecuación cartesiana cuya gráfica es una hipérbola.

Page 545: Espinoza Ramos 1

Derivadas 531

b) Derivadas de las Ecuaciones Paramétricas

Consideremos dos funciones f y g derivables en un intervalo [a, b], tal que:

[* = / ( / )...(a), son las ecuaciones paramétricas

y = g(0

dyLa — donde x e y están dados en forma paramétrica, se obtiene aplicando la regla

dx

de la cadena, es decir:

Síx = f ( t )

y = g ( 0

dx~dt - J ' ( 0 dy

, entonces: — = ~ - = 8 ; f ' ( 0 ^ 0dx dx f ' ( t ) '

dtf. dy _ g'(t) #

dx f ' ( t ) ' "n o * 0

Para obtener la segunda derivada, se aplica nuevamente la regla de la cadena, es decir:

± (dy, d f ' ( Q g " ( 0 - g ' ( 0 f " ( 0( / ’(O)2d~y_= d_(dy_._dt dx _ d t f ' ( t )

dx' dx dx dx_ / ' ( / ) / ’(/)di

d \ v _ f ' ( 0 g " ( 0 - g ' ( 0 f " ( 0dx2 (./"(O)’

Page 546: Espinoza Ramos 1

5 3 2 Eduardo Espinoza Ramos

©

Ejemplo.- Calcular la derivada — de las funciones dadas en forma paramétrica.dx

/ +1

>• = (— t )í + rSolución

/ + 1

y = ( - Z ) 2 / + 1

1 2/

0 + 0 , . , í/y v,de donde — = — = —2 / dx x,

(1 + 0 2 /(1+/)'1

(1 + 0 3 d + 0 '( l + o 3

2/1+/

©

í/v _ 2/í¿t 1 + /

.y = a ( /- s e n /)

y = a(\ - eos 0para I - -

Solución

x = a ( t - s en t ) x, = a ( l -c o s /)

y - a( 1 - cos I) V/ - a sen /

dy _ .v, _ a sen / _ sen /dx x, a(l -e o s /) 1 -co s /

£' 1i - o

— i — idx

Ejemplo:

Encontrar las ecuaciones de la tangente y normal de la curva x = / 2 + 1 , y = / ’ + 2/ en el punto donde t = -2

Page 547: Espinoza Ramos 1

Derivadas 5 3 3

Solución

I .v = I ~ +1 x, = 21

y = r + 2/ >•, = 3 / -+ :

dv y, 3 r + 2entonces — = — = ---------d.v ,v, 2/

, dy 7mL, = — I, 2 = - ^Í7X 2

el punto para t = -2 es P(5,-12) por lo tanto L, : y + 12 = ——(jc-5)

- 1 2 2«;L„ = ----- = — por lo tanto L„ : v +12 = — (.v - 5)

n,L, 1 ' 7

4.21 DERIVADAS DE ORDEN SUPERIOR.-

Sí f: R —»R es una función derivable en x entonces:

que es otra función la cual puede derivarse es decir:

/ 'U W o - ' / ’Cx)

a esta función le llamaremos la segunda derivada de f y si la función f " ( x ) se vuelve a

derivar, se obtiene otra función:

r"(x)- hm Ax).' : /;

y lo llamaremos la tercera derivada de f y así sucesivamente se tiene, que la derivada de la

función f (" °(,v) es:

h

y se denomina la n-ésima derivada de f con respecto a x.

Page 548: Espinoza Ramos 1

5 3 4 Eduardo Espinoza Ramos

NOTACION: /*"* (jc) = D uf ( x ) = f ( x )

a) Propiedades de las Derivadas de Orden Superior

Si D ' ' / ( x ) . D"g(x) existen en un intervalo entonces

Q D" (./ (x) ± g(x)) = D"x f ( x ) ±

n0 d ; ( f (x)g(x)) = £ ( Z )D'' */(jr)D Í jí(-v) (Regla de Leibniz)

k 0

ttí!(w - //)!m\

si 0</ i< m

si n = w si n > m

O

Ejemplos:

Hallar f {n)(x) si J'(x) =Jt + 1

Solución

./‘(jc) = — r=> /''(*) = -----------i-v + l (x + 1)“

, / " W ~(JC + 1)

/ ' ” (*) =-1.2.3

(-v + 1)4

/ " ( V) =(—1)" (1.23. . j i )

(-V + 1)ii+l : . . r " ( x ) (-1)” »!

(Jf + l ) " '1

Page 549: Espinoza Ramos 1

Derivadas 535

Hallar f in)(x) si f(x) = Ln(x + a)Solución

f(x) = Ln(x + a) => f ' ( x )(x + a )

f " ( x ) = ------- —-(x + a)~

r w 12(x + a)3

(x + a)4

, y , x 1.2.3.4./ (x) = ---------—

(x+a)

r { x ) j - i r ' i . 2 . . . . ( n - i ) f n ( x ) J - , r \ n - i y .(x + a)n (x + a)n

© Demostrar que la función y = Axn + Bx l ”, satisface la ecuación diferencial:

n ( n - l ) y - x 2y ”=0

Solución

.V = Ax" + Bxl~” => y = + (1 - n )B x "

n ( n - \ ) y = t i(n- \ )x" +n(n - \ )B xx~" ... (1)

.v" = »(/; -1 )Ax" 2 - n ( l - n ) B x n l

x 2y " —n(n — l)Ax" + n(n—l)xl " ... (2)

Luego restando (1) y (2) se tiene: n ( n - l ) y - x 2y " —0

Page 550: Espinoza Ramos 1

536 Eduardo Espinoza Ramos

©senh x cosh x

Demostrar que la función y = A ----------(- B ------- -, satisface a la ecuación diferencial:x x

x v " + 2 x y ' - x ~ y = 0

Solución

, ,,x coshx-senhx, „^xsenhx-coshx, coshx „senhx 1 senhx coshx,y = A(---------- ----------) + B(---------- --------- ) =A ------- + B------------ (A--------+B-------- )

x~ X' X X X X Xy

coshx „senhx y , . ,= A -----------B ----------- — , derivando nuevamenteX X X

, x senhx~ coshx . x co sh x -se n h x xy’- yV = A(--------------------- ) + B(----------- r--------- ) - - V 1

senhx „coshx 1 . .c o s h x _ senhx, xy’- y 1 , . y . x y '- y= A -------- + B -------------- ( A ---------+ B --------- ) — = y — (y + —) — :LTZ-

X X X X X X' x X x~

„ x 2 y - x y '- y -x y ' + y x 2y - x y '- x y ' 2 t > 2 ny = — :------ — j----- — — = — :----- ----- — dedonde x y + 2 x y - x y = 0x" x '

© Muestre que eos bx)(n) = r " e ax eos(bx+ncp) determinando r y ip en función de a y b

Solución

(eax eosbx){l) = ae“x eosb x - b e “1 senbx = e ax( a eosbx - b senbx)

2 + b 2 4 ci2 +b2sen /?x]

= Va2 + b 2 eax (eos cp eos bx - sen <p sen bx) = Va2 + b 2 e“x eos ((p + bx)

pues en el siguiente gráfico se tiene:

bsen (p ,---------------------; eos <p = - -----------------------

Va2 + b2 V«2 +b2

Page 551: Espinoza Ramos 1

Derivadas 537

(em eosbx){1) = \Ja 2 + b 2 [aeax eos(bx + <p)~beax sen(bx + (p)]

= ( 4 a 2 + b 2 )2[—j= a. - - - e ax cos(bx + (p) — . Jü. ...... e “x sen(¿>,r + <p)]•Ja2 +b2 -Ja2 + b 2

= (a2 + b 2)eax[cos(pcos(bx + (p)-sen(psen(bx + (p)] = (a 2 + b 2)eax cos(fcc+2<p)

En forma similar obtenemos: (eax eosbx)m = ( 4 a 2 +b2 )3 eos(bx + 3(p)eax

Luego por inducción, para un n e Z ^ , tenemos:

(e“x eosbx)(n) = ( 4 a 2 +b2 )" cos(bx + n<p)e“x

y se pide demostrar: (eax eos bx)(n) = r "e ax cos(bx + n(p)

I ? , i bentonces r = ^a~ + b~ y (p = arctg—a

( ó ) Si f(x) = a sen 3x + b eos 3x, Hallar los valores de a y b tal que se cumple la igualdad:

f " ( x ) + 4 / ' (x) + 3 f ( x ) = 10 eos 3x

Solución

í f ' (jc) = 3a eos 3x - 3b sen 3x f(x) = a sen 3x + b eos 3x => <' , entonces:

[ / ' ' (x) = -9a sen 3x - 9b eos 3x

-9a sen 3x — 9b eos 3x + 12a eos 3x — 12b sen 3x + 3a sen 3x + b eos 3x = 10 eos 3x

(-6 a - 12b) sen 3x + (-6b + 12a) eos 3x = 10 eos 3x

igualando coeficientes se tiene:

- 6 a - 1 2 Z ) = 0, resolviendo el sistema

- 6 /j + 1 2 fl = 0

2a = —

3

6 - 13

Page 552: Espinoza Ramos 1

538 Eduardo Espinoza Ramos

4,22 EJERCICIOS DESARROLLADOS.-

8( ? ) Encontrar la ecuación de la recta tangente a la curva y = —----- en el punto (2,1

Solución

c r ¿y i a a a dy 16xSe conoce que mL, = — | r=1, de donde — = ----- ------- -dx ' dx (x~+4)~

]6x__ = _ 3 2 = _ 3 2 = _ I( x 2 +4)2 82 ~~ 64 "" 2

L, : y -1 = —j( .y - 2 ) , de donde L, : x + 2y = 4

(T ) Hallar la ecuación de la recta tangente a la curva x 5 + y 5 - 2 x y = 0 en el punto (1,1).

Solución

Primeramente calculamos la derivada, es decir:

x 5 +>,r> - 2xy = 0 => 5x4 + 5_y4 — - 2 y - 2 x — = 0 ' dx ' dx

, , 4 , d y 4 _ dy 2 y - 5 x 4(5 y - 2 x ) — = 2>‘-5 .r -

dx ' dx 5y - 2 x

dv 2 y -5 x 4 2 -5pero como mL, = — |P(U) = — - - - - - |P(11) = —— = - iax 5_k - 2 x

además L, : y - y 0 = mL, (x - x fí) , de donde L, :x + y - 2 = 0

(T ) Encontrar una ecuación de cada una de las rectas normales a la curva y = x 3 -4 x que

sean paralelas la recta L: x + 8y - 8 = 0

Solución

Como L,1L„ y Ln || L : x + 8.y - 8 = 0 . entonces:

Page 553: Espinoza Ramos 1

Derivadas 539

L,1L,,=> mL. = — — donde m L = —— mL 8

por lo tanto: mL, = — — = í

Además sea P„ (x0 , y 0 ) un punto de la curva y = x 3 - 4 x , entonces y

m L , = -7 - l.r=.v„ = 3* 2 ~ 4 U , „ = 3 * o - 4dx

igualando (1) y (2) se tiene: 3x,2 - 4 = 8=> x 2, =4=> x(, =±2

para x (t = - 2 , y» = 0 => P, (-2,0) y x0 = 2 , y n = 0 => P2 (2,0)

Icomo Ln : y - y 0 = mLn ( x - x 0) , entonces se tiene:

: y - 0 = ~ ( x + 2 ) , £ n : y - 0 =-■^ ( x - 2 ) |

© Demuestre que para la hipérbola cuya ecuación es b 2x 2 - a 2y 2 = a 2b

la línea tangente en (x0,y 0)es b 2x 0x - a 2y 0y = a 2b 2

Solución

Calculando la derivada se tiene: 2b2x - 2 a 2 y ~ = 0 =>J ~ ydx dx a 2

si (jt„, _y0) es punto de tangencia de la hipérbola entonces: b 2x l - a 2y

, . , dy b 2x . b2x ()ademas mL, = — l/>n(^ ^ o) = — lpo(Wo) = ~ T ~

ax a y a y ()

b2xcomo L, : y - y 0 = m L , ( x - x 0) entonces L, : y - y 0 = ■ / 0 (x -x ,

a 'yo

— Xo -4 * „

...(2)

' , una ecuación en

2 - „ 2 , 2 n — a b

Page 554: Espinoza Ramos 1

540 Eduardo Espinoza Ramos

T 2 2 2 r.2 1.2 2L, :a y 0y - a y 0 = b x 0x - b x0

r 1.2 2 . 2 2 2 2 2.2L, :/> x{)x - a y 0y = b x 0 - a y 0 = a b

L, :b2x 0x - a 2y 0y = a 2b 2

© Demuestre que la elipse cuya ecuación es: b 2x 2 + a 2y 2 = a 2b 2 , una ecuación de la línea

tangente en (x„ ,yn )es b 2x ()x + a 2y 0y = a 2b 2

Solución

Calculando su derivada se tiene: 2b2x + 2a2v —- = 0dx

dy - 1)2x ____ _ d>'de donde: — = ---- , como mL. = — I „ ,x v , *dx a 2 y d x ™ 0'™

r b 2x i r . / \ b"xQ entonces : mL, = — — | P() (x0, y {)) = — -— , ademasa y a - y 0

b2XnL, : v - i-'o = m L , ( x - x 0) , entonces: L, : y - y 0 = — r— ( x - x 0)

a ' y 0

L, :b2x„x + a 2y ny = a 2b 2

( ó ) Encontrar la ecuación para cada una de las rectas que pasan por (-16,-3), y que sean

x —ltangentes a la curva y =x + 3

Solución

El punto (-16,-3) no está en la curva, entonces para calcular la pendiente tomamos un punto de la curva P(a,b) que es por donde pasa la tangente.

Calculando la pendiente mL, = — -fl + 16

Page 555: Espinoza Ramos 1

Derivadas 541

además mL, = — \ , h) donde — = — - —-.en to n ces mL, = — - —— ...(2)dx ' dx (x+3)~ (a+ 3)"

igualando (1) y (2) se tiene: ^ ■ = — - —- = > - 3 + ...(3)a + 16 (a + 3) (a + 3)2

como el punto P(a, b) pertenece a la curva, entonces satisface a la ecuación

b = ^ \ ...(4)a+3

ahora reemplazando (4) en (3) se tiene: ——- = -3 + simplificando se tiene:a + 3 (a + 3)2

a 1 + 4a -1 0 = 0 => a = —2 + -Jl4 , a = —2 —J\4

•JÍ4-3 . 4para a = - 2 + -JÏ4., b = —j = — .=>mLr =

-J\4+1 ' ' (l-r-J\4)2

4L, : v + 3 = --------.= — (x +16)

(1+V Î4)2

- rrr , *J\4 + 3 4para a = - 2 - v i 4 , b = —¡= — => mL, =■

V Í4 -1 ' (1 -V Í4 )2

L, :y + 3 = ------^ = ^ - (* + 16)(i —y íí)

( 7) Hallar la ecuación de la tangente a la curva x 2y ~ x + 1 cuya inclinación es de 45°

Solución

Como 45° es el ángulo de inclinación de L , , entonces:

mL, = lg45" =1 => mL, =1 *..(1)

- ’ , * + 1 1 1 , ■ , ademas: x~ v = x +1 => y = —— = — + ——, derivando

Page 556: Espinoza Ramos 1

5 4 2 Eduardo Espinoza Ramos

dv 1 2 dv . 1 2_ = — — z^ mL¡= ¡ - dx x x ' dx a “ a"K-~ ..2 „3 => mLt - ^ U o - ^ '_ 3 -.(2 )

1 2igualando (2) y (1) se tiene: — --------- = 1 de donde a 3 +a + 2 = 0 => a = - 1

o - a

como p(a, b) pertenece a la curva => b = para a = -1, b = 0 => P(-1,0),a~

L, : y - 0 = l(x +1), de donde L, : x - y +1 = 0

( ? ) Si una recta tangente a la curva x 4 - 2 x 2 - x + y = 0 en el punto (-1, 0) es también

tangente a la misma curva en el punto P(a, b), hallar las coordenadas de P. ■

Solución

Como mL, = | /)(-i,0)= (l + 4 x - 4 r , ) | /,(_U)) = l ...(1)

mL, = C- ~ \ P(a.h) = l+4<7-4a3 ...(2)

igualando (1) y (2) se tiene: \ + 4 a - 4 a 3 =\ =?• (1 - a 2) =0 => a = ± 1 :=> a = 1

como P(a,b) es punto de la curva entonces: a 4 - 2 a 2 - a + b =0 para a = 1 => b = 2

El punto es Pf 1, 2)

( 5 ) Probar que la suma de las intersecciones con los ejes coordenadas de cualquier recta

tangente a la curva x Xl 2 + >■* 2 = b1' 2 es constante e igual a “b” (b > 0)

Solución

Calculando la recta tangente x h l + y i n = b l‘2 => — = - J —dx V x

Page 557: Espinoza Ramos 1

Derivadas 543

, d>' i yomL, = — p = - — d x ' P" V x 0

l, =y-yo =-J—(x-x0)

4 * ü y + 4 ñ x - y o - x 0- J ñ = o

4 7 y + sjyüx - -Jx o.Vn (Xfí 2 + y O 2) = o

L, : -Jx~^y+ yfyñx = -\/-vo>'o 1 2 • Ahora calcularemos las intersecciones

A s L, a ejex => y - 0 , x = ^Jxob^2 y B & L , A e j e y => x = 0, y =

por demostrar que x + y = b (constante).

Luego x + y = J x ^ b u2 + J y ^ b h2 = ( ^ + 4 ñ ) b h l = b h2 .bv2 =b

x + y = b

Encontrar una ecuación para cada una de las rectas tangentes

3y = x 3 - 3 x1 + 6x + 4 que sean paralelas a la recta 2x — y + 3 = 0

Solución

Se sabe que L, II L: 2x — y + 3 + 0 => mL, = mL = 2

Además 3 y = .v3 - 3x2 +6x + 4 = > — = x 2 - 2 x + 2 ' dx

como mL, = -^- \P(a.b)=a2 - 2 a + 2

Ahora igualando (1) y (2) se tiene: a 1 - 2 a + 2 = 2 => a (a—2 ) = 0 => 1

además el punto p (a, b) pertenece a la curva entonces:

b^1

a la curva

i*

...(2)

a = 0, a = 2

Page 558: Espinoza Ramos 1

5 4 4 Eduardo Espinoza Ramos

3b = cr3 - 3 a 2 + 6a + 4 => paraa = 0 => A = y => /?(0,-j)

4 4L ,: y ---- = 2(x — 0 ), de donde L, : 2x - y + — = 0

para a = 2, b = 4 => p(2,4), L, = y - 4 = 2 ( x - 2 ) , de donde L, : 2 x - y = 0

© Escribir las ecuaciones de la tangente y de la normal a la curva .r3 + y 2 + 2 .v -6 = 0 , en

el punto cuya coordenada es y = 3.Solución

Calculando el punto de tangencia para y = 3

jr3 + 2x + 3 = 0 , Ahora resolveremos la ecuación

Es la única solución real

Luego el punto de tangencia es: p(-l, 3)

1 0 2 3 -1

-1 1 -31 -1 3 0

Ahora calculamos la pendiente de la recta tangente:

Para esto derivamos x * + y ~ + 2 x - 6 = Q de donde:

* i - > d y ~ n . . . dy 3x2 +23jc~+2y — + 2 = 0 de donde — = ------------

dx dx 2y

evaluando en el punto p(-l,3) se tiene: mL, = — |„(„t 3) = ~ ^X +2 L {_! 3)= ~dx ' 2 y ' 6

la ecuación de la tangente es: L, : y - y t) = m L , ( x - x 0) , de donde: L, :5x + 6 y -1 3 = 0

también: L„ : y - 3 = y (x +1) de donde: L„ : 6x + 5.v + 21 = 0

12) Demostrar que el área del triángulo formado por los ejes coordenados y la recta tangente, en cualquier punto a la curva de ecuación xy = 5 es siempre constante.

Page 559: Espinoza Ramos 1

Derivadas 545

Solución

Primeramente encontraremos la recta tangente,

como: xy = 5 => y = — entonces su pendiente x

CS: mL'

T - 5 I - 5mLi - r k h .>■„)- 7x - xn

L , : v - v o = — ^ - ( x - x 0 ) => l , \ 5 x + x l y = y nx l + 5x0 *<7

encontrando las intersecciones con los ejes coordenados:

, , • _ _ O 'o*o+5)x0A g Lj a eje x ==> y = 0 => x ------------------

B g L, a eje y x = 0 => y - y 0x 0 + 5 *0

©

área del triángulo = = constante

Area - OV^o + 5>*o 0^*0 + 5) _ (>’0*0 + 5)2 _ (5 + 5)2 _ 2Q 5x0 5 5

Hallar las ecuaciones de la tangente y la normal a la curva:

y = -^5 + x 2-Js + x 2 V ? + x 2" , en el punto de abscisa 2.

Solución

y = 1/5 + x 2 a/s + x 2 V5 + x 2 " elevado al cuadrado

y 2 = 5 + x 2^5 + x 2^jT+xi2 ^ . de donde y2 = 5 + x 2.y

Page 560: Espinoza Ramos 1

546 Eduardo Espinoza Ramos

ahora calculando el punto para x = 2 => y 2 = 5 + 4 y => y 2 - 4 y ■

(y—5)(y + 1) = 0 => y = 5, y =-1 como y > 0 => p(2,5)

derivando y 2 = 5 + x 2y se tiene: 2yy' = 2 xy+x 1 y'

„ 2v . t _ d>' 2xy(2y - x )y = 2xy => —— =------ -dx 2 \ - x ~

_ dy 20 20 10m ' dx /'(2-5)~ 1 0 -4 ~ 6 “ 3

como L, : y - y„ = mL, ( x - x n ) , de donde L, : I Ojc - 3 v - 5 = 0

1 3como L„1L,=> mL„ = -

mL, 10

L„ : .y -5 = - — (jc- 2 ) porlotanto L„ :3jc + 10>' -5 6 = 0

dv d~ y . i a ,Hallar — y — ~ si x — t - t , y = t +1 dx " dx2

v = / +1

x = r - t

dt

— = 2í — 1 dt

d 1 y dt 2

Solución

f = 6l dydy dx 31, entonces: — = =

d 2x= 2

dx 21 -dt

d r

dx d 2y dy d 2xd2y _ dy dt ’ dt2 dt 'dt2 _ (2/ —1)6/ — 3/2(2)

■> ~ ' J,, _dx dx4 » ’dt

C 2 í- l)J

[15) Hallar — y — si x = cos3 / , y = a sen3 / dx'

■ dv - 3/2 1 ’ Í¿Y 2/ -1

rf2.y - 6 t + 6 t2 dx2 ~ (2r — l)3

Page 561: Espinoza Ramos 1

Derivadas 547

Solución

x = a eos /

v = a sen /

— = -3 o eo s2 /sen / di

dv „ 2— = 3er sen / eos t di

d \ dt2

d 2y dt 2

= 6a eos/sen- / - 3 a e o s - t

= 6a sen /eo s2 / - 3 a sen3 /

dvdv (h 3asen2 /.eos/ sen/ rfy— = = ----------- ----------= --------- = - tg / , entonces: — = - tg / ,dx av -3 a eo s~ /.sen / eos/ í¿y

dt

dx d 2y d 2x dy d 2y dt d t2 d t2 dt _ -3 a c o s 2 /.sen/(6a sen/.eos2 / - 3 a s e n 3 /)

dt(-3a eos/2, sen)3

(6a eos /se« / - 3a eost)(3asen t eos /) (-3a eos/2..ve//)3

-1 8 a 2 eos4 / sen2 /+ 9 a 2 eos2 / sen4 / 18a2 eos2 / sen4 / - 9 a 2 eos4 / sen2 /(-3 aeo s2 / sen /)3 (-3a eo s /2, se n /)’

9 a2 eos2 /sen 2 /(sen2 / + cos2 /) - 2 7 a 3 eos6 / sen3 /

1(eos /sen/)3a

_ í/ 2j _ sec4 /.esc/dx 3a

. d 2 y . , |x = Z,n(l + / 2)16) Hallar — j- para t = 0 si <

dx ' v = / 2

Solución

c/x 2/x = Ln(\ + t 2 ) dt l + / 2

=> ■ => ■•>

>*=/' 1^ II

dt

d 2x 2 - 2 / 2

¿ /2 (1 + / 2 )2

d 2 y= 2

dt1

Page 562: Espinoza Ramos 1

548 Eduardo Espinoza Ramos

dx d 2y d 2x dy - 1 ~ ~ ~ r 2/d 2y d i ' d i 2 d i1 dx l + t 2 (1 + r ) 2dx- A >

dt ( - Vl + r

rf2V 4/(l + í 2) - 4 r + 4 ^ (1 + / 2 ) = 8/3( l + / 2)8r3

= (1 + r ) , de donde: |f=0=(1 + 1 2) |,=0 = 1d f d i 1

Hallar las ecuaciones de la tangente y normal a la curva en el punto correspondiente al valor del parámetro que se indica

a) x = t 2 +1 , v = / 3 + 2 / , t = - 2

Solución

>■=/•* +2/ * = 3 ,J + 2 dt

^-1 -1 4 dt 2_

=> • => •

x — t 2 +1 ÍÉC - — = 2/ dt

— 1 - - 4[ J ' -

dy14

mL, = — \p =■%— - --------- —dx " dx , - 4 2

dt i t = - 2

como L , : y - y 0 = mL, (x - x 0) donde para t = -2, x = 5, y = -12 => p(5,-12 )

L, : v + 12 -= — (x - 5 ) , de donde: L, :7x + 2y = 1 1 ' ■ 2

además L„±L,=> mL„ = -1

mL, 7

L„ : y - y,, = mL, (x - x0) , de donde: Z,„ : 2x - 7 y = 94

Page 563: Espinoza Ramos 1

Derivadas 549

b) x = 3sent - 4, y = 5 + 2cost, t =5n4

Solución

y = 5 + 2 eos t

x = 3 sen t - 4

dy— = -2 sen/, dtdx , t— = 3 eos /, dt

dydt

-42

5n 3~Jl rr 3-J2 , _ /r-para f = — , x0 = — — 4 , >•„ = 5 -V 2 => ;?(---- ----- 4,5-V 2 )

dr ^ <fr. -3 ^ 2 3~ lí= 57r/4 -------dt 2

como L, : y - y 0 = m L , ( x - x 0) , de donde: ¿ f :2x + 3 y - 7 + &J2 = 0

1 3además L„\L, => mL„ =-mL, 2

L„ - y - y n — rnL„(x—x 0)

L „ \ y - 5 + 2 = | ( x + + 4 ), de donde: Ln : 3 x - 2 y + 22 + = 0

Si f (x ) — —-— . Hallar / '(n)(x) 1 -jt

Si / ( .v) = t-L = > /■(*) = - 1

Solución

1-jr O-Jf)

/" (x ) = - ^ T( 1 - x ) 3

Page 564: Espinoza Ramos 1

550 Eduardo Espinoza Ramos

1.2.3

O - * ) 4

/•<->w - i Ü 4 = - í - ... í - r(1- x )""1 (1- x ) " '1 (1 - x )

19) Si /(x ) = —-— . Hallar f {n)( x ) l + x

/ ( * ) = — — => / '( x ) = - 1

Solución

1 + JC ' ' ' (1- x )2

1.1r ( jc ) =

a - * ) 3

r " {X) = — ^ ( i - * )

/ /V(JC)= 12*3 4

, /rC-)(l ) = J Z & .

(5q) Si / (x ) = - 7— — ; Hallar / '(")(x) x ' - 4

Solución

5 x -2 5 x -2 A B A ( x - 2 ) + B(x + 2)x 2 - 4 ~ (x + 2 )(x -2 ) ~~ x + 2 x - 2 _ (x + 2 )(x -2 )

Page 565: Espinoza Ramos 1

Derivadas 551

5x - 2 = (A+B)x + -2A + 2B, por igualdad se tiene:

4 5 x -2 3 2 a ■ af (x ) = , ......= ------- + ------- , derivando se tiene:x —4 x + 2 x - 2

A + 3 = 5 \A = 3-2A + 2B = -2 ^ \B = 2

(x + 2)2 ( x - 2 ) 2

3.1.2. 2.1.2.. / ( * ) = ----- -T7T +

f " ' ( x ) = -

(x + 2)3 ( x - 2 ) 3

3.1.2.3 2.1.2.3.(x + 2)4 ( x - 2 ) 4

, , v / 4 3 . 1 . 2 .3 .4 2 .1 . 2 .3 .4/ (* )= --------- r + --------- r

(x + 2) (x - 2 ) '

/•<«>/ > _ 3.(-1)"1.2.3...j » 2.(-1)” 1.2.3..j» . 3 (-l)"« i 2.(-1) " h!(x + 2)"+I (x -2 )""1 W (x + 2)"+1 (x -2 ) " “1

JC ~ + X *+■ 121) Determinar la derivada n-ésima de la función f (x) = —-----------^ ' x -7 x + 6

Solución

Para calcular la derivada n-ésima de la función f(x) primeramente descomponemos en fracciones parciales.

x ~ + x +1 x ~ + x +1 A B C- +---- + -x —7x + 6 (x -2 ) (x - l) (x + 3) x - 2 x -1 x + 3

A(x - l)(x + 3) + B(x - 2)(x + 3) + C(x - 2)(x - 1)( x - 2 ) ( x - l ) ( x + 3)

Page 566: Espinoza Ramos 1

552 Eduardo Espinoza Ramos

x 2 + x + l = A (x2 + 2 x - 3 ) + B(x2 + x - 6 ) + C(x2 - 3 x + 2)

x 2 +x + l = (A+ B + C)x2 + ( 2 A + B - 3 C ) x - 3 A - 6 B + 2C

por identidad de polinomios se tiene:A + B + C = 12A + B - 3C = 1 , la solución es:- 3 A - 6 B + 2C = 1

v -v + x +1 7 1 3 1 7 1/ ( x ) = —-----------= - ( ----- + ^

x —7x + 6 5 x - 2 4 x -1 20 x + 3

7 1 3 - 1 7 - 1/ '( x ) = -C ------- ------------------- " ) + ” (-------- ~)

5 (x -2 ) 4 (x -1 )2 20 (x + 3)2

4 7 1.2 3 1.2 7 1.2f = ------r )—7(—— + ------ r>5 ( x - 2 ) 3 4 (x -1 )3 20 (x + 2)

7 -1.2.3 3 -1.2.3 7 -1.2.35 ( x - 2 ) 4 4 (x -1 )4 20 (x + 3 )4

rlv, 4 7 1.2.3.4 3 1.2.3.4 7 . 1.2.3.4/ (x) = - ( ---------t ) - t (-------- ------------------- r )

5 ( x - 2 ) 5 4 (x -1 )5 20 (x + 3)5

5

B = -

20

f(n)( 7 ( - ! ) ” />! 3 (-1)"»! | 7 (-!)"»!* 5 (x -2 )" +1 4 (x - i ) " +1 20 (x + 3)n+l

22) Hallar la n-ésima derivada de la función / (x) = -------- ----------^ ' (x -1 )2 (x -2 )

Solución

Descomponemos de la función f(x) en sumas parciales

Page 567: Espinoza Ramos 1

Derivadas 553

/ ( * ) =A B C- + ------+ -

(jc—1)2 (jc — 2) x - 2 x - \ (x - 1 )2

1 A ( x - l ) 2 + B ( x - 2 ) ( x - l ) + C ( x - 2 )( x - 1 ) 2 ( x - 2 ) ( x - 2 ) ( x - l ) 2

1 = A(x — l ) 2 + B (x2 -3 x + 2) + C(x —2)

1 = (A + B)x 2 + (~ 2 A -3 B + C)x + A + 2 B - 2 C , por igualdad de polinomios se tiene:

A + B = 0- 2 A - 3 B + C = 0 , resolviendo se tiene: A + 2 B - 2 C = \

A = - l B = - 1 C = - 1

f ( x ) =1 1 1 1

/ '( * ) = -

(JC— 1)2 (JC— 2) x - 2 x - 1 ( ¿ - 1 ) 2

1 -1 - 1.2

( x - 2 ) ¿ (x — 1) (x -1 )3

/ " ( x ) = -1.2

( x - 2 ) J (x -1 )3 (x -1 )4

/ ' ’ ' (x) = - = ^ - - ( ^ 4 ) - ( Z l^ ) (x - 2 ) (x -1 )4 (x -1 )5

1.2.3.4 1.2.3.4 1.2.3.4.5/ ,v(x) =

( x - 2 ) 5 (x -1 )5 (x -1 )6

t _ ( - ! ) " ! . 2 . . j i ( - 1 ) " 1 . 2 . 3 . . j i ( - 1 ) * 1 . 2 . . j i ( i i + 1 )r ' n (x) = -

(x -2 ) n+i (x -1 ) w+l (x-1) n+2

/•c>(jc)- (~1)n»! +( x - 2 ) n+I ( x - l ) n+1 (x -1 )""2

Page 568: Espinoza Ramos 1

554 Eduardo Espinoza Ramos

23) Calcular f (n) (0) si f ( x ) = Ln{-^— )

Solución

f (x) = Ln(—!—) = -£«(1 - je) , derivando1 —x

.. -1 1. / ( * ) = -

/"(*> = 2 ( l- jc )2

/■'(,»: 12

1-JC 1 -x

1

( l - * ) 3

( 1 - J C ) 4

/•<"> (x) = — si f in)(x)= (n 1)! /■(n>(0) = (n-1)!(1 -x )" (1 -* )" ‘ ( \ - x ) n

24) Si f ( x) = £/K— ——); Hallar / (n)(l)“ m x - b

Solución

m r -4- / )

/(x ) = ¿«(-—■— ) = Ln(mx + b)-L?i( mx - b) m x - b

fu \ m mf (x) =ivc + b m x - b

f " (x) = ( - ^ - ) - ((mx+b)~ (mx-b)"

Page 569: Espinoza Ramos 1

Derivadas 555

4 , m \ 1.2 , , m \ 1.2 x./ (*) = (------------r ) - ( ------------r )

(mx + b) (m x-b )

m \ 1.2.3, . - m 41.2.3,/ ,vu ) = ( • • 7 ) - (

(w.v + ¿ )4 ( m x - b ) 4

r (x) = ( WI •1 1 3 ;4 ) ~3-4 )(mx + b) (m x -b )

,(»), , w " (- l)"+11.2.3...(n-1) w ''( - l)" +11.2.3...(w-1) ./ ' ' (x) = ------------------------ — -------------------------------- , entonces:(mx + b)" (m x-b )"

. « " ( - U ^ í n - l ) ! m "(-l)"+I(» - l) !./ (x)=-

(mx + b)" (mx-b)"

(«i2 - é 2)n

4.23 EJERCICIOS PROPUESTOS.»

G) Formar las ecuaciones de las tangentes a la línea y = x - — en los puntos de su~ ' x

intersección con el eje de abscisas. Rpta. y = 2x - 2, y = 2x + 2

(T ) Trazar la tangente a la hipérbola y = x + de modo que atraviese el origen dex + 5

coordenadas. Rpta. x + 25y = 0 , x + y = 0

2 2

( J ) Formar las ecuaciones de las tangentes a la hipérbola -y— -y- = 1 que sean

perpendiculares a la recta: 2x + 4 y - 3 = 0 Rpta. 2x-y+1=0 2x —y —1 = 0

Page 570: Espinoza Ramos 1

556 Eduardo Espinoza Ramos

( 4) Formar la ecuación de la tangente a la línea y = .v3 +3x2 - 5 , perpendicular a la recta

2x — 6y + 1 = 0 Rpta. 3x + y + 6 = 0

( ? ) Formar la ecuación de la normal a la línea y = ~ 4 x + 2 en el punto de su intersección

con la bisectriz del primer ángulo coordenado. Rpta. 2x — y — 1 = 0 .4x — y —12 = 0

© Formar la ecuación de la normal a la parábola: y = . t2 -6 x + 2 perpendicular a la recta

que une el origen de coordenadas con el vértice de la parábola. Rpta. 4x — 4y—21 = 0

© Trazar la normal a la línea y = xLnx que sea paralela a la recta 2x - 2y + 3 = 0

Rpta. x - y - 3 e 2 = 0

© Hallar la ecuación de la recta tangente a la línea x 2 (x + y ) = a 2 (x - y) en el origen de

coordenadas. Rpta. y = x

( 9) Halle una ecuación de la recta tangente a la curva y = x 4 - 6 x , y perpendicular a la recta

x - 2y + 6 = 0 Rpta. 2x + y + 3 = 0

QÖ) Determine una ecuación de cada una de las rectas normales a la curva y = x 3 - 4 x y

paralela a la recta x + 8y — 8 = 0 Rpta. x + 8y + 2 = 0, x + 8y— 2 = 0

( n ) Determine una ecuación de cada una de las rectas normales a la curva y = x 3 - 4 x y

paralela a las rectas que pasan por el punto (4, 13) y que son tangente a: y = 2 x 2 -1

Rpta. 4 x - y - 3 = 0, 2 8 x - y —99=0

Obtener una ecuación de la recta tangente a la curva y = (7 x - 6 ) ~ u3 que es perpendicular

a la recta: 12x — 7y + 2 = 0 Rpta. y = — —— ( x -V2 12 7

(Í3) ¿En que punto de la curva x + -Jxÿ + y = 1, la recta tangente es paralela al eje X ?

Rpta. p( 1,0)

Page 571: Espinoza Ramos 1

Derivadas 557

14) Hay dos rectas que pasan por el punto (-1,3) que son tangentes a la curva

x 2 + 4y 2 - 4x - +3 = 0 , obtenga una ecuación de cada una de estas rectas.

Rpta. 4 y + llx — 1 = 0, 4 y + x - 13 = 0

15) Obtenga una ecuación de la recta tangente a la curva ¿Jx}' = 14x + y , en el punto (2,-32)

Rpta. 352x + 23y + 32 = 0

íó ) Obtener las ecuaciones de las rectas tangentes y normal a la curva 2x3 + 2y 3 -9 x y = 0

en el punto (2,1) Rpta. 5x— 4y- 6 = 0, 4x + 5 y - 13 = 0

n ) Hallar las ecuaciones de las dos tangentes a la elipse 4x2 + y 2 - 1 2 que pasan por el

punto (4,4) Rpta. 2x + y = 12 , 14x + y = 60

18) Hallar las ecuaciones de la tangente a la estrofoide y = - x J ——— en el puntoV a + x

Rpta. 31x + 8y + 9a = 0, 8x — 3 ly + 42a = 0

19) Demostrar que la ecuación de la tangente a la curva y = ax2 +bx+c en el punto

(Xj, Vj) es: y = 2(axx + b)x - a x2 + c.

20) Demostrar que la ecuación de la tangente a la curva y - x 3 +ax + b en el punto

(Xj, >')) es: _y = (3x2 + a)x -2 x ¡3 +b

21) Encontrar la ecuación de la recta que pasa por el punto (1, 2) y es normal a la curva

x 2 = 4y Rpta. y = - x + 3

(22) Hallar las ecuaciones de las tangentes a la curva y 2 + 4x = 0 y que pasa por el punto

(2,1) Rpta. x + 2 y - 4 = 0, x —y —1 = 0

Page 572: Espinoza Ramos 1

558 Eduardo Espinoza Ramos

23) Hallar las rectas normales a la curva xy - 2x + 4 = 0 en donde su abscisa es igual a su

ordenada. Rpta. y = - —+—, y = ~ — , x + 2y—4 = 03 3 ' 3 3

24) Demostrar que la hipérbola x 2 - y2 = 5 y la elipse 4 x 2 + 9 y2 = 72 se cortan en ángulos

rectos.

25) Demostrar que los círculos x 1 + y 1 =%axy la cisoide (2 a -x ).y 2 = x 3 son

perpendiculares en el origen.

¿ó) Hallar las ecuaciones de las normales a la hipérbola 4x2 - y2 =36 paralelas a la recta

2x + 5y = 4 Rpta. 2x + 5y — 50 = 0, 2x + 5y + 50 = 0

2 ^ Hallar una ecuación de la recta normal a la curva x - y = -Jx + y en el punto (3. 1)

Rpta. 5x + 3y = 18

2 8 Hallar la ecuación de la recta tangente y normal a la curva y = 8 sen 2x en el punto

(— ,1) Rpta. y = & j 3 x - ^ ^ - + l , y = ——j= + l — —¡=12 H ' 2 72^/3 6^3

^ 9) Demuestre que las tangentes al folio de descartes x 3 + .y3 = 3axy en los puntos de

intersección con la parábola y 1 =ax son paralelas al eje de las Y.

30) Halle la ecuación de la parábola y - x 2 + b x + cque es tangente a la recta y = x en el

p u n to ( l ,l ) Rpta. >' = x 2 - x + l

31) Hallar una ecuación de la recta tangente y una ecuación de al recta normal a la curva dada en el punto indicado.

a) x 3 -3 x y 2 +y* = 1 , p(2,-l) b) x 2 -2x>' + _y2 +2x + .y -6 = 0 , p(2,2)

c) x 3 + y 2 + 2 x - 6 = 0 en y= 3 d) x 3 - 2 x 2_y2 +5x + j - 5 = 0 en x = l

2x2e) xy[xy+2y2 - 3 = 0, p (l,l) f) V3 + x\y2 — ^ = 0 . p (l.l)

Page 573: Espinoza Ramos 1

Derivadas 559

32J Hallar las ecuaciones de la recta tangente y normal en el punto p(-1,2) a la curva

yex+l + 2x y 2 - y + 2 x 2 + 6 = 0

33J Hallar las ecuaciones de la recta tangente y normal a la gráfica de

f ( x ) = (2 - 3.v + .V3 )Vl + jc2 en el punto x = 0.

34) Determinar la ecuación de la recta que pasa por (0,2) y es tangente a la gráfica de

J ’{x ) = 2 x i - 5.r + 6 .

(37)

@

(39)

Determinar los valores de a, b y c de modo que: f ( x ) = x ~ + ax + b y g(x) = x~ + c x ,

tienen la misma recta tangente en el punto (2,2). VUvl —

Encontrar la ecuación de la recta que pasa por el punto p(-1,2) y es tangente la curva xy+ 3y = x — 1.

Hallar la ecuación de la tangente a la curva x 2y = x +1 cuya inclinación es 45°.

Encontrar una ecuación de la recta normal a la curva y - xVl6 + x 2 en el origen.

dyHallar — de las lünciones siguientes dadas en forma paramétricas:

a)

2 al l + r

l + r

dyRpta. — =

2 /dx 1 - i ¿

b),v = a(cosr + /sen /) y = a(sen t - t eos t)

dyRpta. — = tgC

dx

c)

eos 3 ! a/cos 2t

sen3 i •J eos 2t

„ ¿ dy 3 - 4 sen2 /R pta- — ~a—dx l - 4 s e n - /

Page 574: Espinoza Ramos 1

560 Eduardo Espinoza Ramos

d)

x = arc. cos( . ' = )Vi

y = are. sen(Vi+t

Rpta. -^ = -1dx

e) x =a(Ln tg — + c o s í-se n /)

y = o(sen / + eos t)Rpta.

dy _ a(cos t -sent )dx ,1 ta(— tg—- sen í - eos t)

Hallar í L Z de las siguientes funciones dadas en forma paramétrica.dx

a)x - Lnt

v = / 3Rpta. =

dx~

b)x = arc. tg I

y - L n ( l + t 2)d 2y Rpta. - ~ y = 2dx

c)Ijc = a eos3 1

v = a se n 3 1Rpta. 1d 2y _____________

dx2 3a eos4 /.sen/

d)x = arc. tg I

1tV =T

Rpta. = +0 + t 2)(3t2 +1)dx~

e)[jé = are. eos-Jt

y = - J t - t 2 dx"

Hallar la ecuación cartesiana en cada una de los siguientes casos:

Rpta. d 2 y W t - l 2

a)

c)

\ x — t -1

\ y = 4 t - t 2

x - 2 eos 9 +1y = 3 sen 9

b)x = 2 sen 9 + eos 9 y = 2sen0 -1

Rpta. (^ -J-)2 + Z - = 12 9

Page 575: Espinoza Ramos 1

Derivadas 561

d)x =-

v = -

at

ü ? ai1

1 + / 3

Rpta. x ' + y 3 - a x y = 0

x = a s e d x 2 y 2e) < Rpta. —— = 1\ y ~ b t g t p a 2 b i

( 3, 2 2 2„ \x = acos i - - -f) j Rpta. x 3 +>' =a3

| v = a sen t

42) Comprobar que la función dada en forma paramétrica mediante las ecuaciones

x = 2t + 3/2 , y - 12 + 2t3 satisface la relación y = y '2 +2y '3

43) Comprobar que la función dada en forma paramétrica mediante las ecuaciones x = ,r

3 2y = —r H— satisface la relación xy'3 = 1 + y’' 2t t • •

44) Comprobar que la función dada en forma paramétrica mediante las ecuaciones

1 _ 1 + Vl + rx =■Ji

, - L n —— —— , y = , 1 , satisface la relación v J l + v ' 2 = y'

45) Comprobar que la función dada en forma paramétrica mediante las ecuaciones

1 + ln/ 3 + 2 Luí , ,2x = — -— . y = ----------- satisface la relación yy = 2xy +1

46^ Demostrar que y, determinada como función de x por las ecuaciones x = sent e

v = ae1’ 2 +be~’ 2 satisface la ecuación diferencial (1 - x 2) ^ ~ ~ - - x — - 2 y ,dx- dx

cualquiera que sean a y b

Page 576: Espinoza Ramos 1

562 Eduardo Espinoza Ramos

d - y

47) Hallar dx~ n I* = a ( /-c o s í)para í = — donde: ■{ para a > 0 , t e[0,27r]

d ) \ 2l 3/2 2 = 0(1-c o s í)ax

Rpta.2-Jía

Hallar las ecuaciones de la tangente y la normal a la curva en el punto correspondiente al

valor del parámetro que se indica.

a)x = 3/

, 2 V . t = o3 r

r3 + l

b)

v = 2 sen2 1

C)x = 3 s e n /-4

V = 5 + 2 cos It= -5 K

d)x = ae cost

, t = 0

y = ae sen t

e)x = 2Ln(c tg/) + l

>' = tg / + C tg tf>

x = t(t c o s í- 2 sen t)

, t=-y = t(t sen t + 2 eos t)

Escribir las ecuaciones de la tangente y de la normal a la curva x = , y = — — + —P 2t 21

en el punto (2,2) Rpta. 7 x - 10 y + 6 = 0, 10x + 7 y -3 5 = 0

Escribir la ecuación de la tangente a la curva x = t cost , y = t sent en el origen de

coordenadas y en el punto t = —n A + n tiRpta. v — - = ------- ( x ----

' 8 A —7i 8

5 l) Escribir las ecuaciones de la tangente y la normal a la cicloide .y = -J2 eos' /,

y = V 2sen 3 1 en el punto t = — Rpta. x + y = 1, x — y = 04

Page 577: Espinoza Ramos 1

Derivadas 563

52) Escribir las ecuaciones de la tangente y la normal a la cicloide x = t - sent,

y = 1 — cost en el punto para que el í = —

53) Escribir las ecuaciones de la tangente y la normal a la parábola semicúbica x = t 2 ,

y = / 3 en el punto para que t = 2 Rpta. 3 x —y —4 = 0 , x + 3y—28 = 0

54) Hallar f (n) (x) en cada una de las funciones sgtes:

a) f(x) = senx Rpta. / (n)(x) = sen(x+— )

b) f(x) = cos2x Rpta. / (n)(x) = 2" cos(2x + -^ -)

c) f(x) = (ax+b)n Rpta. / (n)(x) =nla"

d) f(x) = cosx Rpta. / (n)(x) = cos(x + yp-)

e) f(x) = e*J Rpta. f ^ n)(x) = k ne kx

?5) Hallar / (M)(x) si f ( x ) = x"-Jx Rpta. f (n)(x) = 3.5.1...(2n + l)^fx

5ó) Hallar f (n)(x) si f ( x ) = ^ Rpta. f <n)(x) = n' (‘ad —^ cx+d (cx+d)

5 ^ Hallar f (n)(x ) , si f ( x ) = sen a x+ eos bx

f (n)(x) = a n sen(ax+— ) + b n eos(bx + — ) Rpta. J w 2 2

58) Hallar / (B,(x) si:

a) J ( x ) = x e x Rpta. / <n)(x) = ex (x + n)

Page 578: Espinoza Ramos 1

564 Eduardo Espinoza Ramos

b) f(x) = xLnx Rpta. / " > ( , ) , n > 2

c) f(x) = serr x

d) f ( x ) = —(x -2 )"* 1 ( x - l ) n+1

e) /(or) =x 2 - l

12 L(x + l)n+1 ( x - l ) ' ,+1

0 ./(x) = e 's e n xn

Rpta. f (n)(x) = e x ^T C* sen(x + Á~ —)*=o

59) Hallar / ‘"’(x) si:

1+xa) J(x) =

1 -xb) J(x) =

x + 1x - x

8 x -5 C) / ( * ) = — -

2x" + x - 6.. r , , 4x2 +3x + 5d) / W = 7 T - T X —x-’ +2x - x - 2

, , , . 4x +1e) /(x ) = — ----------2x + x - 3

3x2 + 5x -1g) / (JC> = —----- r “ :------7x - x - 4 x + 4

r 2x3 -19x + 43 0 / ( * ) = — -

x -9 x + 20

h) f ( x ) = — 2x + l6x ' - x -1

i) f i x) =5x -1

x 2 + x -1 2j) f (x) = —

x 6 + x 2 -1

x" + x - 2

Page 579: Espinoza Ramos 1

Aplicaciones de la Derivada 565

Ya se ha tratado una aplicación de la derivada, al hacer el estudio de las rectas tangentes y normales a la gráfica de una función.

Una de las aplicaciones más importantes y útiles de la derivada está en el estudio de los valores máximos y mínimos de una función. Existen muchos problemas prácticos en los cuales se trata de encontrar una “mejor” manera de formularse problemas relacionados en la determinación de los valores máximos y mínimos de una función; ahora nos dedicaremos gran parte de este trabajo al estudio de los máximos y mínimos.

Cuando se piensa que una derivada como en la razón instantánea de una función, se presenta muchas aplicaciones físicas de la derivada, las aplicaciones más obvias de la derivada en problemas de este tipo, es la determinación de la velocidad y aceleración de un objeto móvil los cuales también estudiaremos.

a) DEFINICION.- La función f: D c R -> R, tiene un valor máximo absoluto en f(c) donde:

b) DEFINICION.- La función f : D c R - > R , tiene un valor mínimo absoluto en f(c) donde:

OBSERVACIÓN.- Algunas funciones tienen máximos ó mínimos absoluto sobre un intervalo y otras no.

Page 580: Espinoza Ramos 1

566 Eduardo Espinoza Ramos

Ejemplo.

La función f ( x ) = x 3 , tiene a 8, como valor

máximo absoluto y a “0”, como valor mínimo absoluto en el intervalo cerrado [0, 2] pero en él, intervalo abierto <0, 2> no tiene máximo ni mínimo absoluto.

5.2 TEOREMA.-

Sí f es una función continua en un intervalo cerrado [a, b], entonces f tiene un valor mínimo absoluto y un valor máximo absoluto en el intervalo cerrado [a, b].

OBSERVACION. Si el intervalo no es cerrado, el teorema no necesariamente se cumple. Por ejemplo:

La función f ( x ) = — es continua en <0,1 > x

pero no tiene máximo absoluto.

Consideremos una función f continua en el intervalo cerrado [a, b].

Observando la figura se tiene que los puntos A y D son los más saltantes de la curva desde x = a hasta x = b, y el punto B es el más bajo; luego a las ordenadas de A y D que son f(a), f(c) le llamaremos valores máximos absolutos, pero los puntos F y H se denomina máximos relativos y los puntos C, E y G se denomina mínimos relativos. Por lo tanto, llamaremos extremos de una función a un valor máximo relativo ó a un valor mínimo relativo de una función.

Page 581: Espinoza Ramos 1

Aplicaciones de la Derivada 567

a) DEFINICIÓN.-

Diremos que f(c) es una valor máximo relativo de una función f si existe un intervalo abierto <c —5, c + 8> con 5 > 0 tal que f(x) está definida y f(x) < f( c),

V x e <c — 8, c + 8>

b) DEFINICIÓN.-

Diremos que f(c ) es un valor mínimo relativo de una función f si existe un intervalo abierto <c - 8, c + 8>, tal que: f ( c) está definida y f(x) > f( c) V x e <c— 8, c+ 8>.

c) TEOREMA

Consideremos una función f continua en el intervalo abierto <a, b> y sea c e <a, b>, si f(c) es un extremo relativo de f, entonces / ' (c) = 0 ó / ' (c) no existe.

Demostración

Consideremos que f(c) sea un valor máximo relativo, suponiendo que / ' (c) existe

=> 3 <c - 8, c + 8>, con 8 > 0, tal que V x * c, f(x) < f(c ) f(x) — f(c ) < 0,

cuando x e <c-8,c> = > x < c = > x — c < 0 . Luego V x e <c — 8, c>,

> 0 , de donde f ' ( c ) = lim f ( x ) ~ f (c) > o => f \ c ) > 0 ...(1)x —c x - c

Page 582: Espinoza Ramos 1

568 Eduardo Espinoza Ramos

cuando x e <c, c+8> => x > c => x — c > 0

f ( x ) — f(c)luego V x e <c, c+8>,-——— :----- < 0 , de donde

x - c

f ' ( c ) = lim < o => f ' ( c ) < 0 ...(2)x—*c x - c

por lo tanto de (1) y (2) se tiene que: / ' (c) = 0

d) DEFINICIÓN.-

Un número c para el cual una función f está definida y además f (c ) = 0 ó no existe, le llamaremos número crítico o valor critico de f.

Ejemplo.- Encontrar los puntos críticos de:

0 / ( x ) = jc 4 + 8x3 - 2 j r - 2 4 jc + lSolución

Como: f ( x ) = x 4 +8jc3 - 2 x 2 -24at + 1 => f ' ( x ) = 4x i +24x2 - 4 x - 2 4

para hallar los números críticos de f, hacemos / ' (x) = 0 es decir:

4x3 + 242 -4 .v -2 4 = 0 => (x 2 - l) (x + 6) = 0 de donde los números críticos son {-6,-1,1}

0 f ( x ) = ( .v - l)2/3 +1Solución

I/I 2Como f (x) = ( x - l ) ~ +1 => f'(:x) = — ¡ =' ' 3 \ f x - l

Luego para hallar los números críticos se tiene que no existe f ' ( x ) por lo tanto

M x - \ = 0 => x = 1 es un número crítico.

Page 583: Espinoza Ramos 1

Aplicaciones de la Derivada 569

Solución

_ „ „ x 4 +3 3 3 . . . „Como f (x) = — ■—- = x +— => / (x) =X X X 2

Los puntos críticos se encuentran cuando f ' ( x ) = 0 ó no existe f ' ( x )

Si f ( x ) = 0 => x 4 -1 = 0 => x = ± l valores críticos

Si no existe f ' ( x ) => x 2 = 0 = > x = 0

Sin embargo no es un valor crítico, porque la función f(x) no está definida en x = 0.

Luego x = 0 es punto de discontinuidad.

Si f es una función continua en [a,b], m y M son los mínimo y el máximo de f en [a,b] y d es tal que: m < d < M. Entonces existe: c e <a,b> tal que: f(c) = d

En algunos casos es muy difícil determinar los números críticos de una función, de hecho no siempre hay números críticos.

El siguiente teorema que se atribuye al gran matemático francés: MÍCHEL ROLLE, da condiciones suficientes para la existencia de un numero critico.

El teorema se anuncia para funciones continuas en el intervalo cerrado [a,b] y derivable en <a,b> tal que f(a) = f(b).

Page 584: Espinoza Ramos 1

570 Eduardo Espinoza Ramos

Observando la gráfica deducimos que es razonable esperar que existe un numero c entre a

y b tal que la recta tangente en el punto (c, f(c)) sea horizontal o equivalente: / ' (c) = 0 ,

que viene a ser precisamente la conclusión del siguiente teorema:

Ejemplo.- Halle el posible valor de z que satisface el teorema del valor medio para la

función / ( x) = x 2 - 2 x + \ , x e [-1, 4]

Solución

Según el teorema del valor medio se tiene:

Si f(x) es continua en [-1,4] y derivable en <-1, 4> entonces 3 z e <-l,4>, tal que:

, / ( 4 ) - / ( —1) 9 - 4 , _______/ (r) = -----------------= ------- = 1, como:4 - ( - l ) 5

f ( x ) = x 2 - 2 x + \ => f \ x ) = 2 x - 2 => f ' (=) = 2 z - 2 = l

2z= 3 z = — e < - l ,4 >2

5,5 T E O R E M A B E R O L L E .-

Sea f una función continua en [a, b] y derivable en el intervalo abierto <a,b>; si

f(a) = f(b), entonces existe un número z e <a, b>, tal que: / ' (z) = 0 .

Demostración

Page 585: Espinoza Ramos 1

Aplicaciones de la Derivada 571

Primeramente daremos una interpretación geométrica del teorema.

Geométricamente quiere decir, si f es una función continua y derivable en <a,b> y f(a) f(b) => 3 z e <a, b>, donde la recta tangente es horizontal.

Ahora daremos la demostración del teorema:

Si f(x) = f(a), V x e [a, b] => es una función constante y por lo tanto / ' ( - ) = 0 ,

V z e <a,b> si f(x) > f(a) para algún x e <a, b> => el valor máximo absoluto de la

función continua f en [a, b] no es f(a) ni f(b), es decir que 3 z e <a, b> tal que f(z) es el

valor máximo absoluto de f en [a, bj. Como el valor máximo absoluto, también es un

valor máximo relativo, además f ( z ) existe entonces / '( z ) = 0 , porque f(z) es un

extremo relativo.

Si f(x) < f(a) para algún x e <a, b> => el valor mínimo absoluto de la función continua f

en [a, b] no es f(a) ni f(b) es decir que 3 z e <a, b>, como el valor mínimo absoluto,

también es un mínimo relativo, además f (z) existe por hipótesis => f ' ( z ) = 0 , puesto

que f(z) es un extremo relativo.

OBSERVACION.-

Si la derivada de la función no existe en algún punto de <a, b>, puede ser que no haya

tangente horizontal, aunque la función sea continua y f(a) = f(b).

y T

Page 586: Espinoza Ramos 1

572 Eduardo Espinoza Ramos

APLICACIONES.-

(7 ) Demostrar que la ecuación x 3 + x -1 = 0 m tiene exactamente una raíz real.

Solución

Primero usamos el teorema del valor intermedio para demostrar que existe una raíz.

Esto es: f ( x ) = x 3 + x - l , entonces f(0) = -1 < 0 y f(l) = 1 > 0 puesto que f es un

polinomio, es una función continua de esta manera el teorema del valor intermedio dice que existe un número c entre 0 y 1, tal que f(c) = 0, por consiguiente la ecuación dada tiene una raíz. Para demostrar que esta raíz es única aplicamos el teorema de ROLLE y razonamos por contradicción.

Esto es: Supongamos que la ecuación tiene dos raíces a y b: entones f(a) = f(b) y como f es un polinomio; entonces es diferenciable f(a) = f(b) y como f es un polinomio; entonces es diferenciable en <a,b> y continua en [a,b], por lo tanto, por el teorema de

ROLLE, existe un numero c entre a y b tal que / ' (c) = 0 ; pero f ' ( x ) = 3x2 +1 > 0 , V x.

Es decir: / ' (x) no puede ser cero, lo que da lugar a una contradicción, por lo tanto, la ecuación no puede tener dos raíces.

( ? ) Demostrar que la ecuación: x 7 + 5x3 + x - 6 = 0 , tiene: exactamente una raíz real.

Solución

Sea /(x ) = x 7 + 5x3 + x - 6 , y f(0) = -6 < 0 y f(l) = 1 > 0

Puesto que f(x) es un polinomio, es una función continua y diferenciable en todo x;

entonces es continua en [0,1] y diferenciable en <0,1>; Entonces, existe c e <0,1> tal que f(c) = 0, es decir la ecuación tiene una raíz real para demostrar que esta raíz es única, aplicamos el teorema de Rolle y razonamos por contradicción.

Esto es; supongamos que la ecuación tiene dos raíces a y b entonces fía) = f(b) y como f es un polinomio, entonces f es diferenciable en <a,b> y continua en [a,b], por lo tanto por el teorema de Rolle, existe un numero c entre a y b tal que / ' (c) = 0 pero

/ '(x) = 7x6 + 15x2 + 1 > 0 , V x es decir: / ' ( x) no puede ser cero, lo que da lugar a una

contradicción.

Page 587: Espinoza Ramos 1

Aplicaciones de Ia Derivada 573

Por lo tanto, la ecuación no puede tener dos raíces: La principal aplicación del teorema de ROLLE radica en la demostración del siguiente teorema.

5.6 T E O R E M A B E L V A L O R M ED I O. -

Si f es una función continua en el intervalo [a, b], derivable en <a, b> => 3 z e <a, b>, tal

f ( b ) - A b )b - a

Demostración

Primeramente daremos una interpretación geométrica del teorema. Geométricamente quiere decir, que la función continua tiene una tangente en todo punto entre A y B => por lo menos un punto en la curva entre A y B en la cual la tangente es paralela a la cuerda

ad . f ( b ) - f ( a ) ,AB, puesto que --------------- , es lab - a

pendiente de la cuerda que une los puntos A y B por otra parte f ' ( z ) es la

pendiente de la recta tangente en el punto (z. f(z>), por lo tanto:

/ '( - ) = —— —LJ—1 _ cuando f(a)=f(b) este teorema se transforma en el teorema de Rolle.b - a

Ahora daremos la demostración del teorema.

Consideremos una función g definida por: g(x) = f(x)(b - a) - x(f(b) — f(a)), g(x) es continua porque f(x) ( b - a ) y x(f(b) - f(a)) es continua en [a, b]

Además g'(x) = f ' ( x ) ( b - a ) - f ' ( x ) ( b - a ) - ( f ( b ) - f ( a ) ) , com og'(x) existe en <a, b>;

entonces g(x)es derivable en <a, b> g(a) = f(a)(b —a) —a(f(b) —f(a)) = bf(a) —af(b)

g(b) = f(b)(b-a)-b(f(b)-f(a)) = bf(a)-af(b)

Page 588: Espinoza Ramos 1

574 Eduardo Espinoza Ramos

Luego g(a) = g(b), por lo tanto cumple las condiciones del Teorema de Rolle

=> 3 z e <a, b> tal que g' (z) = 0

como g' (x)= f ' ( x ) ( b - a ) - ( f ( b ) - f ( a ) ) => g' (:) = f ' ( : ) ( b - a ) - ( f ( b ) - f ( a ) ) = 0

f ' ( : ) (b-a) = / ( b ) - f(a) de donde f ' ( z) = ^ —b - a

Ejemplo.- Verificar si se cumple el teorema de Rolle de la función / (x) = 2x2 -3 jc - 2

en x e [ - —,2] en caso afirmativo halle el valor posible de z.

Solución

La función íTx) es continua en [ ~ , 2 ] y derivable en <-■j , 2 > además

f ( ~ ) = .1(2) = 0 por lo tanto cumple con las condiciones del teorema de Rolle.

Ahora calcularemos el valor de ; e< - — ,2 > como2

f ( x ) = 2x 2 —3x ~ 2 => f ' ( x ) = 4 x -3 , para : e < - ^ - ,2 >

3 1f ' (z) = 4 r - 3 = 0 => : = — e< — ,2 >4 2

5.7. TEOREMA (PE LA FUNCION CONSTANTE).-

Sí / '( x ) = 0 , V x en algún intervalo <a,b>, entonces: fes constante en <a,b>.

Demostración

Sean .y, , x-, puntos cualquiera en <a,b> con .v, < x 2 puesto que f es diferenciable en

<a.b>, entonces será diferenciable en < ,y¡ ,x 2 > y continua en [x, ,x 2 ].

Page 589: Espinoza Ramos 1

Aplicaciones de la Derivada 575

Ahora aplicaremos el teorema del Valor Medio a la función f en el intervalo [xj , x 2 ] y

tenemos un numero c tal que xx < c < x 2 y / ( x , ) - / ( x , ) = f ' ( c ) ( x 2 - x ¡ ) pero se tiene

que: / ' (x) = 0 V x => / ’(c) = 0 . Luego f \(x2) - / ( x , ) = 0

,\ / (X[) = / (x2 ). Es decir la función f es contante en <a,b>

5.8. TEOREMA (PE LA DIFERENCIA CONSTANTE).-

Sean f(x) y g(x) dos funciones continuas en el intervalo cerrado [a,b]. Entonces: / ' (x) = g' (x) en a < x < b, si y solo si f(x) = g(x) + c, donde c es una constante.

Demostración

1 ° Sí / ' (x) = g' (x ) , en a < x < b, entonces: ( f ( x ) - g(x))'= 0 en a < x < b

ahora por le teorema de la función constante se tiene: f(x) — g(x) = c = constante.

2o Si f(x) = g(x) + c. con c constante, entonces derivando se tiene: f ' ( x ) = g '(x)

APLICACIONES.-

(T ) Resolver: {> '- 3 * n * + 5*J +2W [ V'(0) = 4

Solución

Tenemos > ''=3senx + 5x3 +2 = (-3cosx + —x 4 +2x)'4

Lueuo por el teorema de la diferencia constante, se tiene: y = -3 eos x + —x 4 + 2x + c• 4

donde c es una constante. Para hallar c evaluamos la ecuación en x = 0

y(0) = c => c = 4 y = -3 co sx + — x 4 +2x + 44

( ? ) Resolver: ! " ' (,) = 2r’ " sen ' + 3W 1/40) = 1

Page 590: Espinoza Ramos 1

576 Eduardo Espinoza Ramos

Solución

2 9Tenemos: n'(t) = 2t2 - s e n / + 3 = (— t 2 +cos/ + 3/)' entonces: n(t) = — + cosf + 3/ + c

3 3

Evaluando la ecuación t = 0. ja(0) = 1 + c = 1 => c = 0 .\ /u(l) = ^ t ' + eos i + 3í3

Ejemplo.- Usar el teorema del valor medio para probar la siguiente desigualdad | sen x - sen y | < | x — y |, V x ,y e R

Solución

Sea f(t) = sen t, esta función satisface las condiciones del teorema del valor medio, en

f ( y ) - A x )todo intervalo [x,y] c R con x < y, entonces 3 c e <x,y> tal que / ' (c) = -

y - x

sen y _sen \y, f(x) = senx, / '(x) = cosx , f(y) = sen y. Luego :— — — = co sc , c e <x,y>

y - x

Con | eos c | < 1, V c e R , entonces

, sen v - sen xv - x

cos c |< 1 => | sen y — sen x | < | x — y |, V x, y e R

Ejemplo.- Usar el teorema del valor medio para probar la siguiente desigualdad:

b - a , b - a . , n------— < tg b - tg a < ------— , 0 < a <b< —eos- a eos" b 2

Solución

Sea f(x) = tg x. Esta función es continua en [a,b] cz< 0 ,y > y diferenciable en <a,b>;

tg b — tg a i 7entonces 3ce<a,b> tal que f ' (c) = ------------ y / ' (x) = sec ~ x entonces / ' (f) = sec ‘ c

b - a

Ahora para a < c < b se tiene sec2 a < sec2 c < sec2 b

i ^ s ^ •> ; ■> tg f t - tg a í ,sec’ a < f (c) < sec- b => sec a < —------<sec bb - a

Page 591: Espinoza Ramos 1

Aplicaciones de la Derivada 577

. . b —a , b —a „ , nes decir: ------— < t g / ; - t g a < ---- -— , pues O < a < b < —cos~ a eos b 2

Ejemplo.- Usar el teorema del valor medio para probar la desigualdad:

ln (1 + x) < x, V x * -1

Solución

Sea f(t) = ln (1 + t). Esta función es continua y diferenciable en todo su dominio.

Luego es continua en [0,x] y diferenciable en <0,x> entonces por el teorema del valor

/ ( * ) - / ( 0 ) _ ln(l + jr)-lnl _ lnfl + x)medio 3 c e <0,x> tal que / '( c ) = -jc — 0

Pero r W = — => /'(<•)= — < 1 , c * - l1 + x ' 1 + c

De donde + £) < | p0r iQ tanto ln(l + x )< x , V x ^ -1

Ejemplo.- Usar el teorema del valor medio para probar la siguiente desigualdad:

l - - < ---------- < 1 --------; -1 < x < 0; x > 02 1 I

(1 + x )2 2(1+ x )2

Solución

a) Sea / ( / ) = - + ---------

(1 +ty-

Esta función es continua y diferenciable en <x,0>, con —1 < x < 0 entonces

3 c e <x,0> tal que / ' (c) =a - x

x 12 ì I I

c , ■ , w 4 (1 + x )2 2(l + x ) 2 - x ( \ + x ) 2 - 2Es decir: f (c)= -—— ------;— = ---------------------- --------- x I

-2.v(l + x )2

Page 592: Espinoza Ramos 1

578 Eduardo Espinoza Ramos

/•./ 1 1 1 /■./ v 1 1y como / ( / ) = —----------- r => / ( c ) = - ------------ j

2(1 + O1 ~ 2(1+ c )2

r 1 1 i 1 ,Luego ------------ - = — ( 1 - - --------- - ) ...(1)2 1 x 2 i

2(1 +c)2 (l+jc)2

Ahora sí c e <x,0> cz <-l,0> => -1 < c < 0

3

Entonces: 0 < 1 + c < 1 => 0 < (1 + c )2 < 1

, 1 1 / 1 X 1 1 1 / 1 V n=> i < -------- => - - ( --------—)< => - - - ( --r < °2 2 1 2 2 2 3

(l + <-)2 (1 + c )2 (1 + c) 2

además; como x < 0 = > -x > 0 => - — > 0x

X 1entonces de (1) se tiene: 1 ----------—— — < 0

" (1 + * )2

x 1de donde tenemos: 1---< -------- — ... (a)

2 i(1 + x )2

b) Sea / ( 0 = — -—— + --——; x > 0

(1 + í ) 2 2(1 + / ) 2

Esta función es continua y diferenciable en <0,x>: entonces 3 c e <0,x> tal que

— L ^ + _ * i

* f ( x ) - f ( 0) . . , (1+x)2 2(1 + x ) 2 -3/f ' (c) = - -- - - es decir: f ( c ) = - ----------- --------------------------------------------------- ------- ---------- , pero f (t) = ----r

j t -0 x 12(1 +1)2

Ahora como t > 0 => -t < 0 => f ' ( t ) < 0

Page 593: Espinoza Ramos 1

Aplicaciones de la Derivada 579

Entonces / '( e ) < 0 : pero x > 0 , por lo tanto:

■1 + - + -——— < 0 de donde ---------- -----< 1 -------- —\ ' 2(1 + a:)2 2(1 + . r )2

I "" 1( l + . V ) 2 2(1 +, Y) 2

... (p)

X 1Luego de (a) y (p) se tiene: 1 - —< -------- r < '

(l + .v)2 2(l + .r)2

5.9 FUNCIONES CRECIENTES Y DECRECIENTES.-

a) DEF1NICION.-

Consideremos una función f definida

en un intervalo 1, entonces f(x) es

creciente en el intervalo; si para todo

par A] ,.íi del intervalo, se tiene que

/ (A'i) < f (x- , ) siempre que x x < x 2

b) DEFINICION

Consideremos una función f

definida en un intervalo I, entonces

f(x) es decreciente en el intervalo,

si para todo par x^.xj del

intervalo, se tiene que

/ ( y, ) > f (x- ,) siempre que

a-, <x-,

Page 594: Espinoza Ramos 1

580 Eduardo Espinoza Ramos

5 J0 TEOREMA,-

Si f es una función continua en el intervalo cerrado [a, b] y derivable en <a, b>, entonces:

i) Si / ' ( x ) > 0 , V x e <a, b> => f(x) es creciente en <a, b>

ii) Si / ' ( x ) < 0 , V x e <a, b> => f(x) es decreciente en <a, b>

Demostración

i) Suponiendo que _/'(x) > 0 , V x e <a, b>, sea x x, x 2 e <a, b>, tal que x, < x 2

j _ Y jentonces: / ' ( ; ) = -— 1—— , donde z está entre x, y x , (por el teorema del

x2 -x ,

valor medio), pero x 2 - x ( > 0 y además ./ '(:) existe por hipótesis.

Luego f ( x 1) - f ( x l )> 0 , es decir / ( x 2)> / ( x 1) , ó sea, / ( x 1)< / ( x 2) para

x, ,x 2 e< a , b > . entonces f(x) es creciente en el intervalo <a,b>

ii) Suponiendo que / ' ( x ) < 0 , V x e<a,b>, sea xx ,x 2 e < a ,b > , tal que: x, < x 2

j | _ j (X |entonces: = ------ — ;----— , donde z está entre x, y x-, (por el teorema del

x 2 - x ¡

valor medio) pero x¡ - x 2 < 0 como f ' ( - ) < 0 por hipótesis.

Luego / ( x 2) —f ( x \ ) < 0 »entonces f ( x 2) < / ( x 1),ó sea, que / ( x , ) > / ( x 2) para

Xj ,x 2 e< a,b> , entonces f(x) es decreciente en <a, b>

Ejemplo.- Hallar los intervalos donde la función: f ( x ) = x 5 - -5x3 -2 0 x —2 es

creciente y decreciente.Solución

Los intervalos donde la función f(x) es creciente o decreciente se encuentra con los puntos críticos de la función es decir haciendo / '(x ) = 0 entonces:

/ '( x ) = 5x4 -1 5 x 2 -2 0 = 0 de donde (x2 -4 ) (x 2 +1) = 0 => ¡-2,2¡son los puntos

críticos, ahora los puntos críticos los dibujamos en la recta real

Page 595: Espinoza Ramos 1

Aplicaciones de la Derivada 581

- o-2

O2

y se obtienen los intervalos '<-*>,-2>, <-2,2> y <2,+»>

Luego determinaremos en que intervalo es creciente o decreciente.

Si xe<-*,-2>, f ( x ) = (x+ l)(x -2 )(x ' +!)>() => la función f(x) es creciente sobre <-oo,-2>

Si xe< -2 ,2> ,/'(x ) = (x + l)(x-2)(x2 +1) < 0 =>la función f(x) es decreciente sobre <2,+x>

Si xe<2,+oO, / '( x ) = (x + l)(x -2 )(x 2 +1) > 0 =>la función f(x) es creciente sobre <2,+oo>

5.11 CRITERIO DE LA RELATIVOS.»

l 'RIMLRA MMi\ A PARA . Vi RFMOS

Consideremos una función f continua en [a, b] y sea c e <a, b> un número crítico y

/ '( x ) está definida para todos los puntos de <a, b> excepto posiblemente en c, entonces:

. / '( x ) > 0 ,V x e < o ,c > li) Si > => f(c) es un valor máximo relativo de f

f ' (x) < 0, Vx e< c, b > j

.. r ( x ) < 0 .V x e < O.c >ii) Si f(c) es un valor mínimo relativo de f

f ' (x) > 0, Vx e<c,b > j

¡ii) Si / '( x ) no cambia de signo, cuando x pasa por c entonces f(c) no es un valor

máximo ni mínimo relativo.

Page 596: Espinoza Ramos 1

582 Eduardo Espinoza Ramos

Ejemplo.- Hallar los valores máximos y mínimos relativos de la función

f ( x ) = .r5 — 5jc3 -2 0 jc -2

Solución

Para calcular los máximos y mínimos relativos, primeramente se debe de calcular los números crítico, es decir: f ' ( x ) = 0 para obtener los números críticos como;

/ ( x) = x - ~ 5 x 3 - 20.V- 2 => ./"(.t) = 5*4 - 1 5x2 - 20 = 0

de donde x = ±2 números crítico.

(x -4 ) ( .v +1) = 0

f ' ( x ) = 5(x + 2)(x -2)(x~ +1) - o --2

- O2

Para x = - 2 Sí, x < -2, f ' ( x ) > O4

Para x = 2 Sí

- 2 < x < 2, / ' (x) < 0

- 2 < x < 2 , / ' (x) < 0“ |

x > 2 , f ' ( x ) > 0+

=> máximo relativo en f(-2) = 46

mínimo relativo en f(2) = -50

Ejemplo.- Hallar los máximos y mínimos de la función f ( x ) = x 5 - 5 x i —2 0 x - 2 ,

mediante el criterio de la segunda derivada

Solución

Primeramente hallaremos los números críticos de la función f(x), es decir:

Page 597: Espinoza Ramos 1

Aplicaciones de Ia Derivada 583

/ ( * ) = . r 5 - 5 x 3 - 2 0 x - 2 => f ' ( x ) = 5x4 - 1 5 x 2 - 2 0 = 0=>(x2 - 4 ) ( x 2 + l) = 0 = > x = ± 2

números críticos ahora calculamos la segunda derivada, es decir:

J'"(x) = 20 x 3 -3<)x, ahora evaluamos en los números críticos.

/ " ( - 2 ) = -100 < 0 => 3 máx.relativo en f(-2) = 46

/ " ( 2 ) = 100 > 0 => 3 min.relativo en f(2) = -50

5.13 CONCAVIDAD Y PUNTO DE INFLEXION.-

Consideremos una función f derivable y sea P un punto de la gráfica f, si todos los puntos de f arbitrariamente cercano a P están por arriba de la recta tangente a f en el punto P, entonces la gráfica es cóncava hacia arriba en P.

Si todos los puntos de f arbitrariamente cercano a P están por debajo de la recta tangente en P, entonces la gráfica es cóncava hacia abajo en P.

Page 598: Espinoza Ramos 1

584 Eduardo Espinoza Ramos

Cuando f tiene una sola tangente en P y f es cóncava hacia arriba en todos los puntos cercanos arbitrariamente a P situados a un solo lado y es cóncava hacia abajo en todos los puntos cercanos arbitrariamente a P situados al otro lado de P, entonces P recibe el nombre de punto de inflexión.

a) DEFINICION.-

Sea f una función derivable, si P(c, f(c)) es un punto de la gráfica y si existe un intervalo abierto <a, b> sobre el eje X ye e <a, b>, tal que: V x í c, x e <a, b>. Si el punto Q(x, f(x)) correspondiente a la gráfica está por arriba de la recta tangente en P, entonces la gráfica es cóncava hacia arriba en P.

Y

i

\ c ó n c a v a h a c i a

\ a r r i b a / y = f(x)\ P ( c , f ( c ) ) /

i \ . / i l ^ i 1 T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Q(x, f(x))

0 a c x b X '

b) DEFINICION

Sea f una función derivable, si P(c, f(c)) un punto de la gráfica y si 3 <a, b> sobre

el eje X y c e <a, b> tal que V x * c, x e <a, b>, si el punto Q(x,f(x)) correspondiente a la gráfica está por debajo de la recta tangente en P entonces la gráfica es cóncava hacia abajo en P.

Page 599: Espinoza Ramos 1

Aplicaciones de la Derivada 585

c) DEFINICION.-

Un punto P(c, f (c )) es un punto de

inflexión de f si existe un intervalo

abierto <a,b> y c e <a,b> tal que la

gráfica de f sea cóncava hacia arriba

sobre <a,c> y cóncava hacia abajo sobre

<c, b> ó reciprocamente

d) DEFINICION.-

Si P(c, f(c )) es un punto de inflexión de f y si existe / " ( c ) entonces f " ( c ) = 0 .

e) TEOREMA.-

Suponiendo que f: R -> R es derivable en <a, b>.

a) Si f es una función tal que f " ( x ) > 0 , V x e <a, b>, entonces la gráfica de f es

cóncava hacia arriba sobre <a, b>.

b) Si f es una función tal que J "(x) < 0 , V x e <a, b>, entonces la gráfica de f es

cóncava hacia abajo sobre <a, b>

Page 600: Espinoza Ramos 1

586 Eduardo Espinoza Ramos

INTERPRETACION GRAFICA

YA

y = f(x)

Y

*•0 a c b x 0 a c b X

Ejemplo.- Determinar los intervalos en donde la función es cóncava hacia abajo y

0 f ( x ) =3jc4 -lO .t3 - \ 2 x 2 +10.V + 9

/ ( * ) = 3jc4 —IOjc3 -12jc2 +10x + 9

=? i ' (.r) = 12x3 - 30,t2 — 24x +10

=> f " (x) = 36x1 - 60x - 2 4 . ahora hacemos:

/ ' '(x) - 0 para determinar los puntos de inflexión.

36.v2 -60.V -24 = 0 =í> 3.v2 - 5 . r - 2 = 0 ^

cóncava hacia arriba.

Solución

2

de donde x = — . x = 2 3

3

Para ~ - < x < 2 , / ” ( x)<Q => f(x) es cóncava hacia abajo en < — ,2>

Page 601: Espinoza Ramos 1

Aplicaciones de la Derivada 587

5.14 EJERCICIOS DESARROLLADOS.-

©

1.- Construir la gráfica determinando los puntos críticos, puntos de discontinuidad, los

extremos relativos, los intervalos de crecimiento y decrecimiento, los puntos de inflexión

y la dirección de su concavidad de la gráfica.

3 2v = x - 3xSolución

Calculando, los valores críticos — = 0 , es decir:dx

dy , 2— = 3.v - 6.v = 0 dx

x = 0, x = 2 valores críticos

para el valor critico x = 0

dyx < 0dx

> 0

0 < x < 2 , ^ < 0 dx

entonces 3 máximo relativo en x = 0 donde se tiene el punto máximo (0.0)

para el punto critico x = 2

0 < x <2 , — < 0 dx

2<x <+oo, — > 0 dx

entonces 3 mínimo relativo en x = 2 donde se tiene el punto mínimo (2,-4)

La curva y = .y3 -3 . í2 es creciente sobre los intervalos <-oo,0> y <2,+oo> y es creciente en

el intervalo <0,2>

Ahora calculamos los puntos de inflexión, es decir:

d*\dx

— = 6r - 6 = 0 => x = 1 => y = -2

Page 602: Espinoza Ramos 1

588 Eduardo Espinoza Ramos

Luego (1,-2) es el punto de inflexión

i •

Como — — = 6(a -1) dx~

d 2yPara x < 1,— j - < 0 => la gráfica es cóncava hacia abajo sobre el intervalo <-* ,l> . dx~

d 1 •Para x> l , — r- > 0 => la gráfica es cóncava hacia arriba sobre el intervalo < 1 ,+»>dx~

X f i x ) Conclusiones

< -0 0 ,( )> + Creciente

< 0 , 2 > - Decreciente

<2.oo> + Creciente

X f " ( x ) Conclusiones

<-*>,l> - Cóncava abajo

< 1 ,0 0 > + Cóncava arriba

© f ( x ) =

Solución

Primeramente hallaremos los puntos críticos

12_v — 4 y * i rz/ ' ( x) = — ------ 1— = 0 => 4 jc( 3 - jc ' ) = 0 => x = 0, jc = ± V 3

Luego { -7 3 ,0 ,^ 3 } son los valores críticos - r ■ r

Page 603: Espinoza Ramos 1

Aplicaciones de ia Derivada 589

~ = 4x(*j3-x)(^3 + x) dx

ahora veremos en que puntos críticos se tienen máximos o mínimos.

~ S

x < —s/3 , ^ > 0 * dx

-V3 < a- < o , 4 : <0 dx

-V3 < .r < 0 , ^ - < 0 “ dx

0 < .y < ^ 3 , — > 0 * dx

3 máx. relativo en ,y = —73 , (—73,1)

3 mín. relativo en x = 0, (0,0)

para el puato critico x = -73

0<x<^¡3 , — > 0 + dx

-7 3 < ,y < + o o , — < 0 ‘ dx

■ 3 máx. relativo en .y = V J , (V3,1)

La función f(x) es creciente sobre los intervalos< -oo,—7 J > ,< 0 ,V3 > y es decreciente

sobre < —73,0 > , < 7 3 ,+ * > ahora calcularemos los puntos de inflexión, es decir:

12 12 5 5/"(.Y) = — - = 0 => X = ± l => (1.— ) . (—1,— ) 9 9 9

son los puntos de inflexión. Ahora calculamos los intervalos de concavidad

Page 604: Espinoza Ramos 1

590 Eduardo Espinoza Ramos

/■•(jr) = ^ ( 1- jcKI + jc) ____ + A/ - V + __-1 1

para x < -1, f " ( x ) <0 => f(x) es cóncava hacia abajo sobre el intervalo <-oo, -1>

para -1 < x < 1, / " ( x) > 0 => f(x) es cóncava hacia arriba sobre el intervalo <-1, 1>

para x > 1, f ' ( x ) < 0 => f(x) es cóncava hacia abajo sobre el intervalo <1, +oc>

X f + (x) Conclusiones

< -no, -^¡3 > + Creciente

< - 7 3 ,0 > - Decreciente

A o V + Creciente

< -y/3 ,+ 0 0 > - Decreciente

X / " ( X) Conclusión

< -O C ,-1 > Cóncava abajo

< -l,l> + Cóncava arriba< l,0 O > - Cóncava abajo

© f ( x ) =125

Solución

Hallaremos los puntos críticos es decir:

fax(\~_5)” i_/ ' (x) = — ---------- = 0 => x = 0, x - ±V5 son los valores críticos

125

f ' (x) =6x(x2 - 5 ) 2

125 -7“ ■ r

Page 605: Espinoza Ramos 1

Aplicaciones de la Derivada 591

ahora veremos en que puntos críticos se tiene máximos y mínimos.

Para ei punto critico x ~ ~ ^ 5

Para x < - 4 5 , / ' (x) < 0 '

- V 5 < .v < 0 , / ' (je) < 0

3 máximo ni mínimo en x = -7 5

-■Js < x <0 , /"'(jc)< 0

Q < x < S , c )> 0 +3 mínimos relativo en x = 0, (0, - 1 )

0 < *< V 5 , f ' ( x ) > 0*

s Í5 < x < + * , / ’ (je) > 0 "

3 máximo ni mínimo en x - 45

además la función f(x) es creciente sobre los intervalos < 0, V5 > , < V5 ,+*> > y es

decreciente sobre los intervalos< -oo,—\¡5 > y < —v/5,0 > .

Ahora calcularemos los puntos de inflexión , es decir:

/ " ( j e ) = Y j t i 2 — 5>(je2 - 1 ) = 0 de donde x = ± 1, je = ± ^ 5

64 64 r - i—Luego Í - 1 - — ). (1- ^ ’ (-V 5.0). (^5,0)

Son los puntos de inflexión, ahora calculando los intervalos de concavidad

---------- 4-----------------A--------------------------------- i-1-----------

- f

Para x < —\Í5 , / ' ' (.v) > 0

intervalo < y/5 >

•1 1 -n/-

=> la gráfica es cóncava hacia arriba sobre el

Page 606: Espinoza Ramos 1

592 Eduardo Espinoza Ramos

Para --J5 < x < - 1 , f ”(x)< O => la gráfica es cóncava hacia abajo sobre el

intervalo < —V5,—1 >

Para -1 < x < 1, f " ( x ) > 0 => la gráfica es cóncava hacia arriba sobre elintervalo < -l,l>

Para \ < x <-j5 , f " ( x ) < 0 => la gráfica es cóncava hacia abajo sobre el

intervalo <1, V 5>

Para -J5 < x < +-c, f " ( x ) > 0 => la gráfica es cóncava hacia arriba sobre el

intervalo < -J5 ,+*> >

X f " { x ) ConclusiónA 1 8 l V + Cóncava arriba

< -V 5 -1 > - Cóncava abajo

< - l , l > + Cóncava arriba

A & V - Cóncava abajo

< V5 ,+ • » > + Cóncava arriba

X / ' Conclusión

< - 00, — v / 5 > - Decreciente

< —n/5,0 > - Decreciente

AOV + Creciente

< 4$ , + Q ° >+ Creciente

( 4) f ( x ) = (x + l )L n i (x + \)Solución

La función f(x) es definida para x e <-1, +oo>

Luego calcularemos los puntos críticos, es decir:

/ '(.* ) =[ln(x + l) + 2]ln(.v + l) = 0 , de donde:

Page 607: Espinoza Ramos 1

Aplicaciones de la Derivada 593

Ln(x+1) = O v Ln(x+1) +2 = 0=>x = 0, x = - \ + —e~

o sea que {0,-1 + — } son los puntos críticose~

J ' (x ) = Ln(x+l)[Ln(x + \) + 2\ -1~ 1 + 7

0

ahora calculamos los máximos y los mínimos

1para el punto crítico x - - 1 + ~

-1 < x < -1 + —, f ' ( x ) > 0" e

-1 + — < .r < 0 , / ’ (jc) < 0“ e

1 1 43 máx. relativo en.v = -1 + — , (-1 + — , — )

e~ e~ e~

para el puato crítico x -Q

- l + - < . v < 0 , r(x)<0~e

0 < 0 < + oo, f ' ( x ) > 0"3 mínimo relativo en x = 0, (0,0)

La gráfica es creciente sobre los intervalos < -1,-1 + — > , <0,+oo> y decreciente sobre ele

intervalo < -1 + - ,0 > . Ahora calcularemos los puntos de inflexión, es decir:e

z, . w = 3 í ü < í l ! ) ± l l „ o = , — u í.í + 1 e

de donde (-1 + — ) es un punto de inflexión.e e

Page 608: Espinoza Ramos 1

594 Eduardo Espinoza Ramos

W + . H U --------- + -------------------+ 7 -x + l -1 + —

e

para — 1 < jc< —1 , f ' ( x ) < O, la gráfica es cóncava hacia abajo sobre ele '

intervalo < - l , - l + —>e

para -1 + — <jc<oo, f " ( x ) > 0 , la gráfica es cóncava hacia arriba sobre ele

intervalo < - l + —,+oo> e

X f ' W Conclusiones J " (x ) Conclusiones

< - l , - l + - >e

+ Creciente'

Cóncava abajo

< - l + - , 0 >e

Decreciente + Cóncava arriba

<0,+*>> + Creciente

f ( x ) =

Solución

La función f(x) está definida en todo R-{-1.1} ahora calcularemos los puntos críticos, es

x 2 —3decir: [ ' (x) = — ..... — = 0 => jc = ±V3 valores críticos.

3 ^ 1 ?

Page 609: Espinoza Ramos 1

Aplicaciones de la Derivada 595

--73 l ï

—-s/3) , . , , ......................./ ( jc) = ------ ¡----- , ahora calculamos los máximos o mínimos;

3

para el pimío critico x - S

JC < —s/3 . f ' ( x ) > 0J

—•73 < x < - 1 , / ' (x) < 0

■Æ,3 máx.relativo en x = -73, (—7 3 ,- - 7=)V2

para el punto critico je =-73

1 < x < -73 , / '( .c ) < 0

-JÎ < * < * > , f ' ( x ) > (T

■ 3 mín. relativo en x = ^JÏ , (-73, -J ï / V2 )

además la función f(x) es creciente sobre los intervalos < -oo,—73 > y < a/3 ,+°° > .

decreciente en los intervalos < -7 3 ,-1 > ,< -1 , 1> y < 1,-73 > .

Ahora calcularemos los puntos de inflexión, es decir:

/" (* ) = = 0 => x = 0, x = ± 3,9*j(x2 - l ) 7

3 3de donde: (0, 0),(3,—), ( - 3 ,-—) son los puntos de inflexión, además como asíntotas

verticales tiene a x = ±1 ahora calcularemos los intervalos donde f(x) es cóncava

- 3 - 1 0 1 3

para x <- 3, / " ( v ) > 0 => la gráfica es cóncava hacia arriba sobre el intervalo <-*>,- 3>

Page 610: Espinoza Ramos 1

596 Eduardo Espinoza Ramos

para -3 < x < -1, / ' " (x) < O, la gráfica es

para -1 < x < O, f " { x ) > O => la gráfica es

para O < x < 1, f " ( x ) < O => la gráfica es

para 1 < x < 3, J "(x) > O => la gráfica es

para 3 < x < < O => la gráfica es

X f ' ( x ) Conclusión

A 1 8 i, V + Creciente

< -7 3 ,-1 > - Decreciente

<-1, 1> - Decreciente

AV - Decreciente

< V3,oo > + Creciente

i i

Y

O

cóncava hacia abajo sobre el intervalo <-3,-l>

cóncava hacia arriba sobre el intervalo <-1, 0>

cóncava hacia abajo sobre el intervalo <0, 1>

cóncava hacia arriba sobre el intervalo < 1,3>

cóncava hacia abajo sobre el intervalo <3, *>>

X f " ( x ) Conclusión

<-oo, -3> + Cóncava arriba

A1iV

- Cóncava abajo<-l,0> + Cóncava arriba<0, 1> - Cóncava abajo<1, 3> + Cóncava arriba

<3,+»> - Cóncava abajo

—r=----------------'--►-r 3 x

© f ( x )i ] ( x - 2 ) 2

Solución

La función f(x) está definida V x * 2 calculando los puntos críticos, es decir:

x - 6

3^/Ü ^2)5■ = 0 => x = 6 valor crítico

Page 611: Espinoza Ramos 1

Aplicaciones de la Derivada 597

ahora calcularemos el máximo o el mínimo. Para x = 6

2 < x < 6, f ' ( x ) < 0

=> 3 mínimo en x = 6 , el punto critico (6,—¡=)v2

6 < x < + x , f ( x ) > 0 '

además la función f(x) es creciente sobre los intervalos <-x, 2>, <6. +x> y es decreciente

sobre el intervalo <2, 6> ahora calcularemos los puntos de inflexión, es decir:

—2(v — 12) 12f " ( x ) = — = = = = = 0 => x = 1 2 dedonde (12,—==•) es el punto de inflexión

VToo9i j {x-2)

calculamos los intervalos de concavidad.

- 2 (jc-12)/ " ( -V) =

>lj(x- 2)g

—<D- 12

para x < 2, f " ( x ) > 0 => la gráfica es cóncava hacia arriba sobre el intervalo < -x , 2>

para 2 < x < 12, J " ( x ) > 0 =>la gráfica es cóncava hacia arriba sobre el intervalo <2,12>

para x > 12, f " ( x ) <0 => la gráfica es cóncava hacia abajo sobre el intervalo <12,+x>

© f ( X) = ( J L - ) e '4 - x

Page 612: Espinoza Ramos 1

598 Eduardo Espinoza Ramos

Solución

Calculamos los puntos críticos, es decir: / ' (x ) = —— ——( 4 - x ) 2

además x = 4 es punto de discontinuidad.

= 0 => x = 2

Luego determinaremos si tiene máximo o mínimo en x = 2

----2 4

para el valor critico x = 2

para x < 2, f ' ( x ) > 0+

)

=> No existe max. ni min. relativo

para 2 < x < 4, / ' (x) > 0 ' *

además f'(x) >0, V x e <4,+x>> => f(x) es creciente sobre los intervalos <-*.2>, <2,4>,

- <4,+oc>, ahora calcularemos los puntos de inflexión es decir:

Si x < 0, f " ( x ) < 0 => la gráfica es cóncava hacia abajo sobre el intervalo <-oo,0>

Si 0 <x < 1, f " ( x ) > 0 => la gráfica es cóncava hacia arriba sobre el intervalo <0, 1>

Si 1 < x < 2, f " ( x ) < 0 => la gráfica es cóncava hacia abajo sobre el intervalo <1,2>.

Si 2 < x < 4, f ”(x) > 0 => la gráfica es cóncava hacia arriba sobre el intervalo <2,4>.

Si x > 4, f " ( x ) < 0 => la gráfica es cóncava hacia abajo en el intervalo <4, +»>.

x ( x —2)(x — ))xe *t (x) = ----------------------( 4 - x )

= 0 => x = 0, x = 1, x = 2

de donde (0.0), (1,— ) , (2,— ) son los puntos de inflexión 3e f e~ ■

0 1 2 4

Page 613: Espinoza Ramos 1

Aplicaciones de Ia Derivada 599

CONCLUSIÓN

x / ' Conclusión

<-x,2> > 0 Creciente

<2,4> > 0 Creciente

<4,»> > 0 Creciente

X /" ( -Y ) Conclusión de f

<-»,0> < 0 Cóncava hacia abajo

<0, 1> > 0 Cóncava hacia arriba<1,2> < 0 Cóncava hacia abajo<2,4> > 0 Cóncava hacia arriba<4,oo> < 0 Cóncava hacia abajo

©Solución

Calculando los puntos críticos, es decir:

1f ' (x) = (x + l)~ (.r- l)(5,v-l) = 0 , de donde x=-l, .y = —, x=l son los puntos críticos.

Ahora analizaremos en que puntos críticos se tiene los máximos ó mínimos.

/ ' ( y ) = (.Y+l)2(.r-l)(5 ,Y -l) T\ * 1

para el punto critica x - - l

para x < -1, f ' ( x ) > 0"No existe máx. ni mín en x =

para -1 < x < —, / ' (.v) > 0 *

Page 614: Espinoza Ramos 1

600 Eduardo Espinoza Ramos

para el punto critico x = i

para - 1 < x < —, / ' ( a ) > 0 ‘

para < v < 1, / ' ( * ) < 0J

. 1 1 3 4 5 6:=> 3 max. en jc = — , (—, -------)

para el punto critico x = 1

< x < x . /'■ (x) > 0

=> 3 min. en x = 1, ( 1.0)

La función f(x) es creciente sobre los intervalos <-*, -1>, < -1 ,— > y <1, +*-> y es

decreciente < -7,1 > ahora hallaremos los puntos de inflexión, es decir:

/ " ( a) = 4(.y + 1)(5,v' — 2x — 1) = 0 =>x = -l, x = -— , x - de donde (-1,0) y

( 1 + -\/6 J ^ ( 29_ 6^ ) > , (i—2 _lr_(29 + 6^ ) ) son los puntos de inflexión.5 6 2 5 5 6 2 5

Ahora detenninaiemos los intervalos de concavidad.

, " ( x ) = Mx + \ ) ( x - ]- ^ ) ( x - ]- ^ ) ' 1 t 3 - g .

para x< -1 ,/" ( .y) < 0 => la gráfica es cóncava hacia abajo sobre el intervalo <-•*>.-1>

para -1 < a < -—— . f ' ' ( a ) > 0 => la urálica es cóncava hacia arriba sobre el intervalo5 '

. , 1 -V 6 .

Page 615: Espinoza Ramos 1

Aplicaciones de la Derivada 601

para 1 ^ < x < * +^ ~ , / ” (*)< 0 => la gráfica es cóncava hacia abajo sobre el

. 1 —\fb 1 + 46intervalo < -------- , --------->5 5

para x > ■ + , f " ( x ) > 0 => la gráfica es cóncava hacia arriba sobre el intervalo

1 + V6< -------- ,+oo >

x / '( * ) Conclusión<-00, -1> + Creciente

< - l , - >5

+ Creciente

< - , l >5

- Decreciente

<1, 00> + Creciente

X f ' i x ) Conclusión

<-00, -1> - Cóncava abajo

, 1 -4 6 < 5 >

+ Cóncava arriba

J - 4 6 1 + 46 _5 ’ 5 '

Cóncava abajo

1 + 46< -------- ,+00 >5

+ Cóncava arriba

® / w = _ £ ! ^ ñ - w je + 8x + 16

Solución

4(3* - 4) 4Hallaremos los puntos críticos, es decir: f ' (x) = --------- — = 0 => x = — punto crítico

(x + 4 y 3

además x = — 4 es punto de discontinuidad ahora calcularemos el punto máximo ó mínimo.

Page 616: Espinoza Ramos 1

602 Eduardo Espinoza Ramos

/ '( * ) =4(3*-4)

(* + 4)3 -4 4/3

para - 4 < x < — , f ' ( x ) < 0"

para — < x < oo, / ' (x) > 0 +

4 4 1• 3 mínimo en x = — de donde: (—,— )

3 3 8

además para x < — 4, / ’ (x) > 0 . Luego la función f(x) es creciente sobre los4 4

intervalos < -o o , — 4>, < — ,+*>> y decreciente sobre el intervalo < - 4 , —> ahora

calcularemos los puntos de inflexión, es decir:

x - 4 = 0 x = 4(x + 4)

de donde (4,0) es punto de inflexión. Luego calcularemos los intervalos de concavidad

—4(x — 4)

para x < —4, f " ( x ) > 0 =:

intervalo <— *>,—4>

para - 4 < x < 4, f ”(x) > 0 intervalo < - 4, 4>

para x > 4, / " ( * ) < 0 =>

intervalo <4, + oo>

-4 4

la gráfica es cóncava hacia arriba sobre el

=> la gráfica es cóncava hacia arriba sobre el

la gráfica es cóncava hacia abajo sobre el

X f ' ( x ) Conclusiones<-00, -4> + Creciente

. 4 < - 4 ,—> 3

” Decreciente

4< — , + 0 0 >

3

4 Creciente

X f " ( x ) Conclusiones

< -o o , -4> + Cóncava arriba

<-4, 4> + Cóncava arriba< 4 ,+ o o > -■ Cóncava abajo

Page 617: Espinoza Ramos 1

Aplicaciones de !a Derivada 603

f ( x ) = x eSolución

Calcularemos los puntos críticos, es decir:

f ' ( x ) = x 2( 3 - 4 a 2 )e4~2' = 0 =>x = 0, x = ±73

puntos críticos. Ahora analizaremos en que puntos hay máximos y mínimos

f ( x ) = x 2(43 -2x ) (43 + 2x)e4~2xl

2

para .t < • f ( x ) < 0

para < x < 0 , / ' (x) > O-*

. 73 ,-a /3 -3 ^3 5/2 ,=>3m m . en x = ------ ,(-------, ------- -e )2 2 8

/3< jc < 0 , f ' ( x ) > 0 +

2

no existe max. ni min.

Page 618: Espinoza Ramos 1

604 Eduardo Espinoza Ramos

F0 < x < —j - , / ' (x) > 0*

x > 2y . f ( x ) < 0

a - • V3 ,V3 3V3 5/2 ,=> 3 máximo en x = — , (— ,----- e )2 2 8

■73 -73además la función fi(x) es creciente sobre los intervalos < ------ ,0 > y < 0 .— > y2 2

•73 -73decreciente sobre los intervalos < - x , ------ > y < — ,+*> > ,ahora calcularemos los2 2

puntos de inflexión, es decir:

f " (x )= 2 x(2 x+ l ) (2 x - l ) ( - j2 x+ - j3 ) ( - j2 x -~ j í ) e42x = 0

n 1 VJ V3 1=> x = 0, x = — , x = ------ , x = ----- , x = —2 2 2 2

( 0 , 0 M - ^ , - - ^ ) , i - ¿ - | | | e ) , ( ^ , | ^ | é ? ) , ( | - , ^ y - ) son puntos de inflexión.

Ahora calcularemos los intervalos de concavidad.

0

f ' '(x) = 2x(2x +1 )(2x - 1)(-Jlx + -73 )(-72x - V J )e4~2x''

para x < , f ”(x)< 0 => la gráfica es cóncava hacia abajo sobre el

intervalo: < -•», J - >V 2

Page 619: Espinoza Ramos 1

Aplicaciones de la Derivada 605

para f " ( x ) > 0 => la gráfica es cóncava hacia arriba sobre el

intervalo

- I

« 4

para ~ —< x < ( ) , f " ( x ) < 0 => la gráfica es cóncava hacia abajo sobre el

intervalo: < —- ,0 >2

para 0 < x < —, f " ( x ) > 0 la gráfica es cóncava hacia arriba sobre el

intervalo < 0, — >2

para / " ( * ) < 0

intervalo < —2 V 2

la gráfica es cóncava hacia abajo sobre el

para x > ^ j — , f ”(x)> 0 => la gráfica es cóncava hacia arriba sobre el intervalo

4

RESUMIENDO:

X / '( * ) Conclusiones- Decreciente

< -00,-------->2

A o V

+ Creciente

AoV

+ Creciente

-73< -----,+00 >

2

Decreciente

Page 620: Espinoza Ramos 1

606 Eduardo Espinoza Ramos

X / " ( * ) Conclusiones

'

Cóncava abajo

3 l2 ’ 2 >

+ Cóncava arriba

< — , 0 > 2

* Cóncava abajo

< 0 , - >2

+ Cóncava arriba

1 17< — — >

2 v 2‘

Cóncava abajo

" i3— ,+00> 2

+ Cóncava arriba

( n ) Graficar f ( x ) = cos(- j X ) +

Solución

© Sea f ( x ) = , Xl = , Hallar:4 x 2 + 7

a) Los intervalos donde f es creciente y decreciente.

Page 621: Espinoza Ramos 1

Aplicaciones de la Derivada 607

b) Los valores máximos y mínimos relativos.

c) Puntos de inflexión y graficar.

II.

O

/ ( * ) =x 2 + 7

entonces / ' (x) ■

Solución

(x¿ + i y

/ ' (jc) > 0 , V x e R, entonces f es estrictamente creciente en R.

No tiene máximos ni mínimos relativos. Además lim f ( x ) ~ 1 y lim f ( x) = -1x —>+cc< .v—

■ uiolüw» J ob i- )u rn • fií fi soorioiioo {£-,.() rfírnsbcf(0) = 0, su gráfica es:

X

Si f ( x ) = a x s +bx2 , determinar a y b de modo que la gráfica de f tenga un punto de inflexión en (1,2)

Solución

Como (1,2) es punto de inflexión => / ' ’(1) = 0

/ ' ( x) = 3a x 2 + 2 bx => f " ( x) = 6ax + 2b

f ' ' ( \ ) = 6a + 2b => 3a + b = 0

además (1,2) pertenece a la gráfica de f(x), entonces:

Page 622: Espinoza Ramos 1

6 0 8 Eduardo Espinoza Ramos

f(l) = 2 => f(l) = a + b = 2 => a + b = 2. Luego:3a + ¿> = 0

a = -1=>

, - b= 3a + b = 2

© Determinar a y b, tal que: f ( x ) = 2 x3 +0*2 +6 presenta un extremo relativo en (1, -2)

Solución

Como (1, -2) es un extremo relativo => / '(1 ) = 0

/ ' (jc) = 6 x2 + 2ax => / ' (1) = 6 + 2a = 0 =í> a = -3

además (1,-2) pertenece a la gráfica de f, entonces:

f(l) = -2 => 2 + a + b = -2 => a + b = -4 => b = -l

( ! ) Si / (jc) = ax3 + Ax2 + e x , determinar a , b y c de manera que (1,2) sea punto de inflexión

de la gráfica de f y de pendiente de la tangente de inflexión en dicho punto sea—2.

Solución

Como (1,2) es punto de inflexión => / ' 1 (1) = 0 , entonces:

/ ' (x) = 3ax2 + 2bx + c => f " ( x ) = 6ax + 2b entonces:

/ " ( l ) = 6a + 2b = 0 . de donde 3a + b = 0

además se tiene la pendiente de la tangente de inflexión en (1,2) es / ' ( l ) = -2

entonces : / ’ (1) = 3a + 2b + c = -2 entonces 3 a + 2b + c = -2

también (1,2) pertenece a la gráfica entonces f(l) = 2, es decir:

íU) = a + b + c = 2 => a + b + c = 2. Luego3a + b = 0 a = 4

3a + 2b + c = -2 => ¿7 = -12a + b + c =2 c = 10

Page 623: Espinoza Ramos 1

Aplicaciones de la Derivada 609

( ? ) Hallar a, b, c y d de manera que / ( jc) = ax3 +bx2 + ex + d presente extremos relativos en

(1,2) y (2, 3)

Solución

Como (1, 2) y (2, 3) son extremos relativos => / ' (1) = 0 , / ' (2) = 0 , entonces

tenga un extremo relativo en (0, 3) y la gráfica de f con punto de inflexión en (1,-1)

Solución

Como (0, 3) es un extremo relativo => / ’(0) = 0 entonces

f ' ( x ) = 3mx2 + 2nx + r => f(0) = r = 0 => r = 0 además (0, 3) pertenece a la gráfica

entonces f(0) = 3 entonces 0+0+0+1=3 => t = 3. Como (1,-1) es punto de inflexión

=> / " 0 ) = 0 , f " ( x ) = 6mx + 2n => / " ( l ) = 6w + 2n = 0 de donde:

/ ' (jc) = 3 ax1 + 2bx+c de donde

además los puntos (1,2) y (2,3) pertenece a la gráfica, entonces:

/ ( 1) = 2 a + b + c + d = 2

/ ( 2) = 3 ta + 4b + 2c + d = 3

por lo tanto se tiene:

3a + 2¿>+c = 0 12a + 4é + c = 0

a+ b + c + d = 2 8a + 4b + 2c + d = 3

a = -2 ¿ = 9 c = -12 d =1

( 5) Dada la función/ ( jc) = mx3 + nx2 +rx + t , determinar las constantes m, n, r, t para que f

3m + n = 0 además el punto de inflexión está en la gráfica => f(l) = -1 entonces

Page 624: Espinoza Ramos 1

610 Eduardo Espinoza Ramos

m + n + r + t = -l => m + n = -4. Por lo tanto:3 m + n = 0

m + n = - 4

m = 2 n = -6 r = 0 t =3

( ó ) Sea f ( x ) = ax3 +bx2 + ex + d una función. Hallar los valores de a, b, c, d tal que f tenga

1 49un punto de inflexión en ~ ) > y sea tangente a la recta y = 3—2x en el punto Q(0,3)

Solución

1 49 1 Como p (— ,— ) es un punto de inflexión entonces: / ” (— ) = 0

2 12 2

/ ' (x) = 3ax1 + 2bx + c=> f " (x) = 6ax + 2b => / ' ' ( - y ) = -3a + 2b = 0 => -3a+2b=0

1 49además />(-—, — ) pertenece a la gráfica de f entonces

1 49/ ( — ) = —

2 12

a b c , 49— + -------+ d = —8 4 2 12

sea L, : y = - 2 x + 3 => mL, = -2 => / ' (0) = -2 => 0 + 0 + c = -2 => c = -2

además el punto Q(0, 3) pertenece a la gráfica => f(0) = 3 => 0+0+0+d=3 => d = 3

3a + 2Z> = 0 -3a + 2b = 0a b 1 -> a 1----1 ----- h b — —8 4 12 2 3

1a , i3 l l. Por lo tanto a = — , b ~ —, c = -2, d = 3 , l 3 2b = —

2

III. PROBLEMAS SOBRE MAXIMOS Y MINIMOS

( l ) Una caja rectangular tiene una base cuadrada y no tiene tapa. El área combinada de loslados y el fondo es de 48 pies cuadrados. Hallar las dimensiones de la caja de máximo volumen que cumpla estos requerimientos.

Solución

Page 625: Espinoza Ramos 1

Aplicaciones de ¡a Derivada 611

Condición del problema: A = x 2 + 4xy = 48

48— x ide donde y = ---------- además V = x 2y

' 4x '

4x 4

i„, , 48 -3 .V . .V (x ) = ----------- = 0 => x = ± 4 puntos críticos

V”(x) = - —x=$ V ' (4 ) = -6 < 0 => 3 máximo en x = 4

©

48 - xcomo >• = — — •• => y = 2. Luego las dimensiones de la caja deben ser x = 4, y = 2.

4x

Encontrar la altura del cono recto de mayor volumen que pueda inscribirse en una esfera de radio R.

Solución

Se sabe que el volumen del cono es: V =n r 2h

Del gráfico se observa que: ACAB = ABAD entonces;

r 2 R -hr 2 =2 R h -h 2 ...(2)

Page 626: Espinoza Ramos 1

612 Eduardo Espinoza Ramos

ahora reemplazando (2) en (1) se tiene: V = V(h) = ^ - ( 2 R h - h 2) = ( 2 R h 2 - h 3)

V(h) = ^ j (2Rh2 - / ; 3) ,0 < h < 2 R

ARV'(h) = j ( 4 R h - 3 h 2) = 0 = > h =

jt 4 R k AkV"(h) = - ( 4 R - 6 h ) => F " ( — ) = j ( 4 /? -8 /? ) = - — « < 0

. . , 4 R , ; 4 R . , , . .=> 3 máximo en /; = — por lo tanto para h = — se tiene el volumen máximo.

© Dada una hoja cuadrada de lado a, se desea construir con ella una caja sin tapa, cortando en sus esquinas cuadrados iguales y doblando convenientemente la parte restante. Determinar el lado de los cuadrados que deben ser cortados de modo que el volumen de la caja sea el mayor posible.

Solución

El lado del cuadrado cortado = x entonces el volumen de la caja es:

V(x) = x ( a - 2 x ) , 0 < x < —

V (x) = (a - 2x)2 - 4x(a - 2x)

V'(x) = ( a - 2 x ) ( a - 6 x ) = 0 => x = — , x = —2 6

XCM

(C

X a - 2x

X\

V"(x) = -%a + 24x => F " (—) = -8 a + 4a = -4a < 06

3 máximo en x = -

Por lo tanto el lado del cuadrado cortado para obtener volumen máximo es x = -

Page 627: Espinoza Ramos 1

Aplicaciones de la Derivada 613

@ Un rectángulo a de tener un área de 64 pulgadas cuadradas. Hallar sus dimensiones, de forma que la distancia desde una de sus esquinas al punto medio de un lado no adyacente sea mínima.

Solución

Datos del problema:

. 64 -, xA = xy = 64 => v = — , d = J y ~ + —

' x V 4

, , , 4096 x 2 Vi 6384+ x 4/ ( x ) = J — — + — = ------- -------- entonces

x- 4 2x

f ' ( x )x 4 -16384

2x 2VÍ6384 + x4

Como >• =64

V = 4 4 /2 -7 2

Luego las dimensiones son 4 V2 V2 y 8^2 pulgadas.

© Hallar los puntos de la hipérbola x 2 - y 2 =1 más próximo al punto (0, 1)

Solución

Condición del problema d = V*2 + ( ,y - l) 2

Como x 2 - y 2 =1 => x2 = y 2 +1

Page 628: Espinoza Ramos 1

614 Eduardo Espinoza Ramos

Entonces / (y) = -J.V'2 + l + ( y - l )2 = ^ 2 y 2 - 2 y + 2

2 v - l 1/ '( > ’) = - p = - - ---------= 0 =>2y — 1 = 0=> y = —

a/ 2 v'2 - 2 y + 2 2

como a-2 - y 2 =1 => x = ±t/.V2 +1 J C = ±•v/S

©

Por lo tanto los puntos más cercanos a la hipérbola al punto (0, 1) son Pl * y ) y

/> - i2 ’ 2*

Si un recipiente cilindrico de lámina (cerrado en ambos extremos) ha de tener V como

volumen, encuéntrese las dimensiones que requieran la mínima cantidad de material.

Solución

Datos del problema: V = nr~h de donde h = -n r

7 7 ~>VA, =2nr~ +2nrh entonces A , - 2 n r ' + —r

7 2V A, (r) = 2 n r + — r

• I V VA, (;•) = 4n r -----— = 0 r = % —

r 1 V 2k

A, (/•) = 4n +4V ■ , V V I4V

A, Q — ) = 12tt > 0 => existe mínimo en r = 3 —i 2n 1 2 n

( T ) La sección de un canal de irrigación abierto ha de tener la forma de un trapezoide

4 ' 7isósceles con lados de pendiente — . Si el área de la sección a de ser 52.674m~ . ¿Qué

dimensiones son las que hacen mínima la superficie sustentadora (el fondo y los lados)?

Page 629: Espinoza Ramos 1

Aplicaciones de Ia Derivada 615

Solución

-»+*—m-

4 h 3/7 . , 3 52.674 3 .tg0 = — = — => m= — ; z = x + 2m => 52.674 = (x + — h)h => x = — — - — /?6 3 m 4 4 A 4

Además se conoce por geometría que: s = (x+2y)L, donde y = 4 h 2 + m 2 => y = —' 4

52.674 3 , 5/í ... ,52.674 7/i r■v(/í) = (— ------- - h + — )L => s(h) = (— --- f — )L

h 4 2 h 4

, , . 4 , 52.674 7 _ , ,■v (h) = (----------- -- ) ¿ = 0 ^

/ r 44(52.674)

h =30.0994 => h = 5.5 mts.

Como y = — h y = 6.875 mts' 4

_ 52.674 3 .Como x = --------------h

h 4x = 5.45 mts.

Por lo tanto las dimensiones son: x = 5,45 mts. y =6.87 mts. h = 5.5 mts.

( ¿ ) En un cono circular recto de radio r, se inscribe un cilindro circular recto. Hallar el radio R del cilindro para que:

a) Su volumen sea máximo b) Su área lateral sea máxima.Solución

C

• R

IB

Page 630: Espinoza Ramos 1

616 Eduardo Espinoza Ramos

a) Volumen del cilindro = V — n R 2y

h r hRAdemás AABC = AECD, de donde —— = — => y = h ——

h - y R ' r

i hR^reemplazando (2) en (1) se tiene: V = n ( R 2h -------- )

r

V(r) = n h ( R 2 - — )=> V'(R) = n h ( 2 R - — ) = 0 de donde R = — r /■ 3

V"(R) = n h( 2 - — )=* V"(— ) = n A(2 -4 ) = - 2 n h <0 r 3

_ . . , _ 2r=> 3 máximo cuando R = —

3

b) El área lateral del cilindro es: A = 2?iRy

A( R) = i m h - — ) = 2n h(R - — ) r r

A' (R) = 2n h( \ - — ) = 0 = > R = - r 2

A"(R) = 0 => 3 máximo cuando R = —r 2

( ? ) Una estatua de 6 mts. de altura tiene su base a 2 mts. arriba del nivel del ojo de un

observador. A que distancia de la estatua debe colocarse el observador para que el ángulo

subtendido desde su ojo por la estatua sea máxima.

Solución

...(2)

Sea x la incógnita correspondiente a 0 máximo sea p = 0 + a , de donde 0 = p - a

Page 631: Espinoza Ramos 1

Aplicaciones de la Derivada 617

tgfl = tg( f i - a ) ■tg /3 - tg a

l + tga.tg /3

. . 2 . 6 ademas tg a = — , tg p = —

x x

tgO

6 2t g / J - t g a x x 4x

1 + tg a . tg 1+J 2 x 2 +12

4 x 4 jctg 0 = —^ — =? 0 = are. tg(—------ ) , derivando:

.xz +12

4 8 - 4 jc24X 4(x ~ + 1 2 )- 4x(2x)

dO _ Dx(x 2 +\2 _ (x2 +12)2 _______________¿v | 16.y2__ (jc2 + 12)2 +16jc2 x 4 +40.v2 +144

(jc2 +12)2 (x2 + 12)2

4 8 -4 x 2= 0 = ±2^3

A-4 + 40x2 +144

Por lo tanto analizando para x = 2-^3 se tiene que sea máximo.

10) Una ventana tiene la forma rectangular con su parte superior en media circunferencia.

Cuáles serán sus dimensiones para que penetre el máximo de luz para un perímetro dado.

Solución

De los datos del problema se tiene:

„ x x „ , 1 „ n xP = - y + 2y + x - perímetro. y = - ( P - x — — )

La cantidad total de luz correspondiente a la mayor superficie es:

n x" x n xAi v*\ —--------1--- í P — x ------- }

Page 632: Espinoza Ramos 1

618 Eduardo Espinoza Ramos

2 r. 1 2 r. 1 2, P* X KX _ X nX

X _ _ 8 ~ + T ~ 1 4 ~2 ~2 T '

. . . P n x . 2 PA (x) = -----x ------- = 0=> x = — —

2 4 7T + 4

y4"(jr) = - l - — < 0 ==> 3 máximo en x =4 ;r + 4

1 „ n-x 1 „ 2P n , 2P Pcomo r = - ( P - x ------- ) = — ( P --------------------------- (--------)) = ------

' 2 2 2 tt + 4 2 n + 4 n + 4

2 P PPor lo tanto las dimensiones son: x = ------ 7 y y =■ + 4 7T + 4

© Dada la recta L: x + 2y = 8, encontrar las dimensiones del rectángulo de área máxima

con uno de sus lados sobre esta recta y cuyos otros dos vértices están en los semi ejes

coordenadas positivos.

Solución

entonces tg 6 = tg(l80 - a ) = - tg a =1

O A a eos 0 , OB = a sen 6

Por simetría de triángulos ABEC = AOBA

B E a ~ B I? A n-----= • = pero Bk - 4 - a sen 0BC OA

entonces BC = h y OA=a eos 0

4 -a s e n 0 aluego

a eos 6b = eos 0(4-asen0)

Page 633: Espinoza Ramos 1

Aplicaciones de la Derivada 6 1 9

n i „ 2 . 1tg 9 = — , eos 9 = —= , sen 9 = —¡= 2 V5 V5

¡ , = 4 , ( 4 - 4 . ) . 8 7 5 - 2 0

V5 V5 5

. . , Ü-j5a-2a2 ,area = A = ah = --------------- = /4(a) derivando leñemos

A \ a ) = *— — 4c'- = 0 => a =2^5

A" (a) = < 0 => 3 máximo en a = 2^5

8 ^ 5 - 2 a 8 ^ 5 - 4 ^ 5 4 ^5

Luego las dimensiones del rectángulo son: a = 2-%/5 y b =

Un río tiene un codo de 135° (ver figura) un granjero desea construir un corral bordeado

por dos lados por el río y los otros dos por 1 Km. de valle ABC. Hallar las dimensiones

del corral de área máxima.

Solución

Se tiene que z = x por ser triángulo isósceles

Page 634: Espinoza Ramos 1

620 Eduardo Espinoza Ramos

De los datos del problema se tiene:

AB+ BC = \km. -- 2x + y

de donde y = l — 2x.

3xA = área total es = xy + - x(\ - 2x) + y => A(x) = x -

A’(x) = 1 - 3.V => x = — número crítico3

1 1 2 1A”(x) = - 3 => A"(—)< 0 =>3 máximo en x = —, ycomo v = l - 2 x = l — = —

3 3 3 3

por lo tanto las dimensiones son: — y — de Km.3 3

13) Una hoja de lata de anchura “a” debe ser

encarvada longitudinalmente en forma de

canalón abierto (ver figura). ¿Qué ángulo

central p debe tomarse para que el canalón

tenga la mayor capacidad posible?

Solución

A = área de la parte sombreada

A = área del sector circular área del AAOB.

. p n i n . R s e n p x R-A= — R ‘ - R { ----------) = — (p - s e n p)2 2 2

dA R~ ,, ,— = ---- ( l -c o s p ) = 0 => cosp = 1 => p = 0dp 2

B

Page 635: Espinoza Ramos 1

Aplicaciones de la Derivada 621

como 0 < p < 7t, por lo tanto para obtener la mayor capacidad posible se tiene p = n.

Es decir que la sección del canalón tiene la forma de semicircunferencia.

14) Determinar la altura minima h = OB que

puede tener la puerta de una torre vertical ABCD. para que atravéz de ella, se pueda

introducir en la torre, una barra rígida M N , de longitud L, cuyo extremo M resbalará a lo

largo de la línea horizontal A B . La anchura de la torre es d < L (ver figura).

Solución

Haciendo rodar la barra por ambas paredes a una distancia “d”, desde la pared vertical, la

barra se levantará una longitud H del suelo. El problema nos pide, este máximo

levantamiento y para esto se tiene:

Por semejanza de triángulos se tiene: ABOM = AMAN

L c o s O - d Leos# , , , TI L c o s O - d--------------= ———- , de donde H = ---------------

H L sen 0 c tg 0

H = (L eos 0 - d) tg 0 ahora derivando:

= (L cos0 - í / ) s e c 2 9 + tg(?(-/sen0) = 0dO

Page 636: Espinoza Ramos 1

6 2 2 Eduardo Espinoza Ramos

L cos 6 - d L sen2 8 * _ d=> eos 6 = —

eoss 2 G eos 0

coa6 = 1 — => sen0 = J l - ( —)2' 3 U V ¿

1 - ( V ’= ( ¿ y — - d ) —----- / ----- simplificando se nene: H = (^¡Ll - Vrf"" f 1' "

Inscribir en una elipse dada, un rectángulo de la mayor área posible, que tenga los lados

paralelos a los ejes de la propia elipse.

Solucióny ' 1

La ecuación de la elipse es: ~ + ~ ~ = 1o “ b

de donde: y = — 4 a 2 - x 20

P(x,y)

x

Condición del problema: A = x y = — y a 2 - x 1 => A(x) = — y a 2 - x 2 .derivando' a

bxa

dA b ¡~i 7’ fot'— = —Va - * -----dx a a y a 2 - x 2

n a b- 0 => x = - 7= como v

4 i

b I i ■>— y a " —x~ =>

Luego las dimensiones del rectángulo son: 2x = —% - \¡2a , 2y = = -Jlb.a/ 2 V 2

IV. PROBLEMA SOBRE EL TEOREMA DEL VALOR MEDIO Y DE ROLLE

O Verificar las condiciones de la hipótesis del teorema de Rolle son satisfechas por lafunción dada en el intervalo indicado. Luego encontrar un valor adecuando para C quesatisface la conclusión del teorema.

a) / ( x ) = x 2 - 4 x + 3 , [ 1 , 3 ]

Page 637: Espinoza Ramos 1

Aplicaciones de la Derivada 6 2 3

Solución

i) La función ffx) es continua en [1,3]

ii) Como / '( ,r ) = 2 x -4 => 3 / ' (x) V.v

iii) f(a) = f(b) = 0 puesto que f(-l) = 0 y f(3) = 0

ahora hallaremos un valor z e <1, 3>, haciendo:

/ ' (:) = 0 para esto se tiene f ' ( x ) = 2 .v-4 = 0 => / '( r ) = 2 r - 4 = ()=> z = 2

b) f ( x ) = x * - l 6 x , [-4,0]Solución

i) La función f(x) es continua en [-4, 0]

ii) Como f ' (x ) = 3.v2 -1 6 => 3 f ' ( x ) , Vx f(x) es diferenciable en <-4,0>

iii) f(a) = f(b) = 0 puesto que f(-4) = 0 y f(0) = 0 ahora hallaremos un valor

z e <-4, 0>, haciendo f(z) = 0

. r zcomo f ' ( x ) = 3x2 -1 6 => / ( - ) = 3 r2 -1 6 = 0 de donde r = ----

c) J ' ( x )= x3 - 2 x z - x + 2; [1,2]Solución

i) La función f(x) es continua en [1, 2]

ii) Como f ' ( x ) = 3jc2 -4 jc -1 3 f ' (x) \ /x f es diferenciable en <1,2>

iii) f(a) = f(b) = 0 puesto f(l) = 0, f(2) = 0 ahora hallaremos un valor z e <1, 2>,

haciendo f ' ( z ) = 0

como / ' (jc) = 3x2 - 4x - 1 f ( : ) = 3_2 - 4 ^ - 1 = 0 =» = = 2 + ^

7 + 7por lo tanto 3 : = ......... en < 1, 2> tal que / ' (:) = 0.

Page 638: Espinoza Ramos 1

624 Eduardo Espinoza Ramos

(T ) Verificar que la hipótesis del teorema del valor medio se satisface para la función dada en el intervalo indicado. Luego encontrar un valor adecuado z, que satisfaga la conclusión del teorema del valor medio.

a) J'(x) = x ~ + 2 x - \ , [0,1]Solución

Se tiene que f(x) es continua y diferenciable V x y con esto satisface las condiciones del teorema. Ahora hallaremos un valor z en <0, 1>, haciendo

/ '( - ) = . / (1> - ./ (0) f(]) _ f(0) = 2 — (-1) = 3

como: f ‘(x) = 2x + 2 => / ' ( - ) = 2z + 2 = 3 , de donde r = y e < 0,1 >

b) / ( x) = x 1‘\ [0,1]Solución

2Calculamos la derivada: f ' ( x ) - — — entonces f(x) es diferenciable en

' 3.v<-oo, 0> u <0, +*> y por lo tanto es continua en [0,1],

. * . , , A b ) - . n a ) m - r n .Ahora hallaremos un valor para z haciendo / (z)= --------------=> /(z )= -------------=1' b - a 1-0

como f ' ( x ) = — => / ’( z ) =— = 1 => z1/3 = \ => z = ~ e <0, 1>3.v 3z 3 27

c) / ( .v ) = jr—1 h— í—-; [ | , 3 ].t + 1 7

Solución

3 1La función f(x) es continua en [—,3], y como f ' (x ) = 1---------- —=> f(x) es

7 ' (Jt + 1)-

diferenciable en <-oo, -1> u <-1, +to> en particular es diferenciable en < y ,3 >

ahora hallaremos un valor : e < - , 3 > haciendo7

Page 639: Espinoza Ramos 1

Aplicaciones de la Derivada 625

I _ L | C0m0 r ( x ) = ¡ —b - a i§. 40 (x + 1)'

7 7

, 1 33 , tl2 40 . ^ fio" . Í4Ó 3 .J ' (z) = 1----------- =-— =>(z+i)¿ = — :=> r = - l ± — => z = - l + J — e < - 3 >(z + 1)2 40 7 V 7 V 7 7

|8 — 4jc2 « x < 1

[4x~2 .y/ x >1en el intervalo [0. 2] en caso afirmativo hallar el valor ó valores que lo verifican.

Verificar si el teorema del valor medio es aplicable a la función: f ( x ) = ■

Solución

i) Analizamos la continuidad de la función f(x) en [0,2] para esto veremos si es continua en el punto sospechoso x = 1.

f(x) es continua en x = 1 <=> 3 Lint f (x) = f ( 1)x->\ '

3 Lim / ( x) => Lim f (x) = Lim f (x)>“»1 ' .v-»l jr—»1*

Lim f ( x ) = Lim 8 - 4 x 2 = 8 - 4 = 4X —>1 X~>\*

como 3 Lim f ( x ) = f( 1) = 4 => f(x) es continua en x = 1.x-*l '

por lo tanto f^x) es continua en [0,2]

-8 x , x < l8 y / ( I ) - = m r = -8 => f(x) es diferenciable

— r , x > l ‘x

ii) Como /*(x) =

en <0, 2> por lo tanto satisface las condiciones del teorema del valor medio, entonces 3 z e < 0 ,2> y lo hallaremos haciendo

m ) _ / ( 2 ) - / ( 0 ) _ l - ( 8 ) _ 7 ' 2 - 0 2 - 0 2

como / ’(I) = -8 => z < 1 ó z > 1 pero f'(x) = -8x para x < 1

Page 640: Espinoza Ramos 1

626 Eduardo Espinoza Ramos

=> /■'(-) = - 8r = - — => r = — g <0, 2> además f ' ( x ) = — p a r a x >l' 2 16 jc3

=> / ' ( - ) = - 3 = " | => - = ^ e <0, 2>

7 116Luego los valores que satisfacen el teorema del valor medio son — y 3/—- 16 V 7

( 5 ) Verificar si el teorema del valor medio es aplicable a la función f (x ) = — —- en el‘ 3jc- 4

intervalo [1,2], en caso afirmativo hallar el valor ó valores que lo verifican.

Solución

4F(x) no es continua en x = — e [1,2], por lo tanto no es diferenciable en <1 ,2>

Como ffl) = -1 y / (2 ) = ^ entonces no existe z e < l ,2 >

Talque / * ( , ) - Z M

Como ,/"(r) = | y / '( * ) = ------- = * ---------------- ^ - T = 4 => - = ^ r ^2 ( 3 x - 4 ) ( 3 z - 4 ) 2 2 3

Por lo tanto no existe z real que z e <1, 2>.

Luego no se cumple las condiciones del teorema del valor medio.

5.15 EJERCICIOS PROPUESTOS.-

I. Determinar los puntos críticos, intervalos donde la función es creciente y decreciente, los máximos y mínimos relativos.

f ( x ) = x 4 — 14jc2 -24jc + 1 Rpta. máx. x = -1 y mín. x = -2,3

Page 641: Espinoza Ramos 1

Aplicaciones de la Derivada 627

©©

©

©

f(x) = —.ï + 1X + X + 1

f ( x) = 2 - 3 x + x 3

@ / ( * ) = 1 - ( jc -2 )4/5

( ? ) f ( x ) = x 4 \ - x 2

© f ( x ) = x 2( \ - x 4 x )

© f ( x ) = x 2 + 2 x - 2 3x - 4

f(x) = -I + x~

f ( x ) =1 -x + jc ' T1 -f X-X"

10) /(.v) :X" + JC + 1,ÏZ - jc + 1

f ( x ) = 2.v3 - 6 x '- 1 8 x + 7

______ 1¿«(x4 + 4*3 +30)

12) ./(.v) =

/ (jc) = - x 2~Jx2 -t 2

14) f(x) = x —Ln(l —x)

Rpta: máx. x = 0 y inin. x = -2

Rpta. máx. x =-1 y min. x = 1

Rpta. máx. x = 2

„ . 1 . 1 Rpta. max. x - —7= y mm. x = — ;=42 42

Rpta. máx. x = 2 J — y min. x = 0 Af 49

Rpta. máx. x = 3 y min. x = 5

Rpta. máx. x = 1 y inin. x = -1

Rpta. min. x = —

Rpta. máx. x = 1 y min. x = -l

Rpta. máx. x = -1 y min. x = 3

Rpta. máx. x = -3

Rpta. máx. x = 0

Rpta. min. x = 0

15) 1(x)=x-Ln( ! + * - ) Rpta. No existe, crece.

Page 642: Espinoza Ramos 1

6 2 8 Eduardo Espinoza Ramos

0 Rpta. máx. x = 0 y mín. x = ±a

© ? 3 7 J (x) = (x~ — 2 x ) L n x - —x +4x Rpta. máx. x = 1 y mín. x = e

0 / W = - j — ^—.v2 - 6 jc- 16

Rpta. es decreciente <*,2>,<-2,8>,<8,+'»>

© f(\) = xLnx Rpta. mín. en x = — e

0 f(x) = arc.sen (1+x) Rpta. <-2, 0> crece.

© f { x ) = 2ex2~Ax Rpta. mín. en x = 2

© /( .x ) = % x 2 - l ) ‘ Rpta. mín. x =Z 1 y máx. x = 0

© x~Rpta. máx. en x = 3.2

0 f(x) = xarc.tgx Rpta. 3 máx ni mín.

0 ■sti*

OI

II'SJ' Rpta. máx. en i = -2-\/3 ; mín. en x = 2-Jl

0 f ( x ) = x { x—\)*{x—2)i Rpta. mín. x= 0.23, 1.43 y máx. x = 0

© f ( x ) =xLn2x„ . 1 . ,Rpta. max. en x = — y min. en x = 1

e '

0 ... . larc . tgx 1 x v / ( * ) = + are. tg( , )

J J 1-X"Rpta. No existe máx. ni mín.

© r t * ) - 16-2 . 2 Rpta. max. en ,v - —=■ y mín. en x =V3 V3.y( 4 - jc )

0 4/ w = r 7 —

4 x l +8Rpta. máx. en x = 0

Page 643: Espinoza Ramos 1

Aplicaciones de la Derivada 6 2 9

II.

O

®

©©

©©(5?)

(23)

(25)

Construir las gráficas de las funciones indicando, los puntos de discontinuidad, los puntos críticos, intervalos en donde es creciente y decreciente, los máximos y mínimos relativos los puntos de inflexión y los intervalos de concavidad.

f ( x ) = 3 jc 4 + 4 x 3 + 6 x 2 - 4

/ ( * ) = J f2 (JC + 4 ) 3

f ( x ) = x A - 3 x 3 + 3x2 +1

2

/ ( * ) = 'x —1

/ ( x) = 3x2/3 - 2 x

/ ( * ) = (. x + 2 ) 4 ^ x

J(x) = x -ln (x + l)

J(x) =3 - x

17) f ( x) = x -a rc tg x

. . , 2 a r c \ t g . v 1 jcf ( x ) = — —----- + - a re tg ----- T

i i \ - x ~

f ( x ) = (-v-1)~(-V+1)3

f ( x) = x 2 — 4 1 x | +3

f (x) =are. sen v

V i- x 2

©©

©©

(¿ y

(14)

f ( x) = x 4 - 4 x 3 + 16.r

f ( x) =3 x 5 + 5.v3

/(x ) = —---- 2x3 + 3x2 +22

/ ( * ) = —JC- - 4

1 0 ) f ( x) = x i n + 2 x 4/3

/ = (x + l)2/3( x - 2 ) 1/3

f ( x ) = Ln(x2 +1)

16) / ( * ) = —

Lux18) f ( x ) = x +

¿ 0) f ( x) = x e ' Z

.22) / ( x ) =x 3 + 2 x 2 + 7 x -3

2x2

24) f ( x ) = t f x 2 - x

*26) / ( x ) = are.sen(l -^[x2 )

Page 644: Espinoza Ramos 1

630 Eduardo Espinoza Ramos

@ / (x) = x + sen x @© / ( * ) = ------- !---

sen x + eos x0

© / (x ) = eos x - e o s2 X 0f (x ) = L n (e+ -)

X0

/ (x) = Ln(x~ -1) + — — x 2 -1

0

® / ( x ) = - £ -Lnx @

© ... , Lux/ ( x ) = - j —

Vx @

© f ( x ) = - ~ — - Zj(x-2)

©

@ /(x )= V (x + 4)2 - V ( x - 4 ) 2 0© / ( x ) = V l - x 1 0© /v 4 16

/ ( x ) = ,x (x —4)

0

© . / ( X ) = V 6x2 - x 3 0

© Vx“ +10

© / ( x ) = 2x4 - 4 x 3

28) f (x) = cos x. cos 2x

32) f ( x ) = sen x + eos x

Ln-J.x + 1 —1

36) f ( x ) = (x +1 )Ln (x +1)

X“1 -1

/ (x ) = 2x + 2 - 3 l j ( x + 2)2

f ( x ) = V8 + x —V 8 -x

4 x -12/ (x ) =

( x - 2 ) 2

/ (x ) = —y — Vx - 4

/(X ) =X- - 3 x - 4

x - 2

Page 645: Espinoza Ramos 1

Aplicaciones de la Derivada 631

55) f ( x ) = 2(18x + 6 r 2 - 2 x 3 -5 4 )1/3 (56) f ( x ) = ^ ~x 1 - 4x - 9

* 3- 25 ^ /(* ) = -------- (58) f ( x ) = arctg(lnx)

( x - \ )

(59) f ( x ) = L n ( 3 x - x 2) (óo) f ( x ) = e~x cosjc

III.

( 7 ) Si f ( x ) = ax3 + ¿ t 2 + ex , determine a, b y c de manera que la gráfica de f tenga un punto

de inflexión en (1,2) y que la pendiente de inflexión ahí sea-2 .

© Si f (x ) = axA +bxy + ex1 + d x + e , determine los valores de a, b, c, d y e de manera que la

gráfica de f tenga un punto de inflexión en (1,-1), tenga ahí su origen y sea simétrica respecto al eje y.

Obtener a y b tales que la función definida por: f ( x ) = x 3 +ax2 +b , tenga un extremo

relativo en (2,3).

( 4) Determine a, b y c tales que la función definida por f ( x ) = ax2 +bx + c , tenga un valor

máximo relativo de 7 en 1 y la gráfica y = f(x) pase por el punto (2, -2).

( ? ) Hallar a. b, c y d para y = ax3 + bx2 + ex + d , sea tangente al eje X en (2 ,0) y tenga punto

de inflexión (0, 4). Rpta. a = — , b = 0, c = -3, d = 44

( ó ) Determinar los coeficientes a, b, c y d de tal forma que la función f ( x ) - a x ’ +bxl +cx+d

tenga un máximo en (-1, 10) y un punto de inflexión en (1,-6).

Rpta. a = 1 , b = -3, c = -9, d = 5

( 7 ) Determinar las constantes a y b de manera que la función / (x) = x 3 + ax2 +bx + c , tenga

un máximo relativo en x = -1 y un mínimo relativo en x = 3. Rpta. a = -3, b = -9

Page 646: Espinoza Ramos 1

6 3 2 Eduardo Espinoza Ramos

( i ) Determinar la constante a de modo que la función f ( x ) = x 2 +— tenga unx

mínimo en x = 3. Rpta. a = 16

( 9) Determinar las constantes a y b de manera que la función / ( x) = x 3 +ax2 +bx+c tenga

un mínimo relativo en x = 4 y un punto de inflexión en x = 1. Rpta. a = -3 y b = -24

n o ) Determinar la constante a de modo que la función f (x) = x 2 +— tenga un punto dex

inflexión en x = 1. Rpta. a = -1

Sea f (.v) = x 4 + «x3 + bx2 + 2x - 2

a) ¿Qué condiciones deben satisfacer a y b para que en x = 1 exista punto de inflexión?

Rpta. 3a + b = -6

b) ¿Existen a y b de modo que en x = 1 exista punto de inflexión con tangentehorizontal en este punto? Rpta. a = -3, b = 0

(12) Si f ( x ) = \ x \ tt\ x ~ \ \ b , donde a y b son números racionales positivos, demuestre que f

a “bhtiene un valor máximo relativo igual a la expresión: ---------- —(a + b)a+

IV. PROBLEMAS SOBRE MAXIMOS Y MINIMOS

( 7 ) Encontrar el área del mayor triángulo isósceles que tenga un perímetro de 18 pulgadas.

Rpta. A = 9V3 u 2

(T ) Se debe construir una lata cilindrica (con tapa) de manera que se gaste el menor materialposible. Cuál debe ser la relación entre la altura y el radio de la base para que esto ocurra?

Rpta. h = 2r

( ? ) Encontrar la ecuación de la recta que pasa por P(3, 4) y forma con el primer cuadrante untriángulo de área mínima. Rpta. 4x + 3 y -2 4 = 0

Page 647: Espinoza Ramos 1

Aplicaciones de la Derivada 633

(T ) Un rectángulo tiene dos de sus vértices sobre el eje x los otros dos están respectivamente sobre las rectas y = x, 4y + 5x = 20. Hallar el valor de Y para que el área del rectángulo

• „ 1 0sea máximo. Rpta. —9

Una hoja de papel tiene Acnr de material impreso, con márgenes superior e inferior de

4cm. y márgenes laterales de 2cm. Determinar cuales deben ser las dimensiones de la

hoja para que se use la menor cantidad de papel. Rpta. ^ + Base y %+*JlA altura.

( ó ) Si los lados de un rectángulo son a y b, demostrar que el rectángulo más grande quepuede construirse de manera que sus lados pasen por los vértices del rectángulo dada es

un cuadrado de lado a + ~^=.42

( 7) Determinar la superficie lateral del cilindro recto que puede ser inscrito en un cono

circular recto dado. Rpta. A = .

Un alambre de longitud L es cortado en dos partes, con una parte se forma un cuadrado y con la otra una circunferencia. De que modo debe ser cortado para que la suma de las

áreas sea máxima? Rpta. x = ™—' ■ lado del cuadrado.n + 4

® Se quiere construir un jardín que tenga la forma de un sector circular con un perímetro de

30 mts. Hallar el jardín de mayor superficie. Rpta. 56.25mis2

10) Se tiene una hoja rectangular de papel, de lados 8 y 15, se desea hacer con ella una cajasin tapa, cortando en sus esquinas iguales y doblando convenientemente la parte restante. Determinar el lado de los cuadrados que deben ser cortados, afín de que el volumen sea

el mayor posible. Rpta. —

( í l ) Un punto móvil P describe la curva y = —, x > 0. Determinar la distancia mínimax

de P al origen. Rpta. 2-^2

Page 648: Espinoza Ramos 1

6 3 4 Eduardo Espinoza Ramos

12) Se necesita construir un embudo cónico cuya generatriz debe ser igual a 20 cm. Cuál debe

20J 3ser la altura del embudo para que su volumen sea el mayor posible. Rpta. ------- cm.

13J Si un paralelogramo y un triángulo tienen un vértice del paralelogramo está sobre los lados del triángulo dado. Probar que el área del mayor paralelogramo que se puede inscribir del modo descrito, es igual a la mitad del área del triángulo (se conoce la base y la altura del triángulo).

14) Se quiere construir un jardín en forma de sector circular con un perímetro de 30 mts.

Hallar el jardín de mayor superficie. Rpta. A = 56.25mis2

15) Hallar un punto sobre la parábola_y = 4 - x 2 , tal que la recta tangente en el segundo

cuadrante, determine un triángulo de área mínima (con los ejes coordenados).

D * 32^3Rpta. -------9

16) Hallar las dimensiones del rectángulo de mayor área y con los lados paralelos a los ejescoordenados que puede inscribirse en la figura limitada por las dos parábolas

3_y = 1 2 -x 2 , 6_y = x 2 -12 . Rpta. Base4, altura4.

YT) Hallar las dimensiones de un rectángulo de área máxima inscrito en un triángulo de lados 8, 10, 12, tal que un lado del rectángulo está contenido en el lado del triángulo de lado

5-J712. Rpta. Las dimensiones son — y 6.

18) Debe construirse una lámina triangular isósceles y de 60cm. de perímetro de manera tal que al rotar sobre su lado común a los ángulos congruentes determine un sólido de volumen máximo. Cuáles deben ser las dimensiones de los lados de la lámina triangular?

45Rpta. Las dimensiones son — y 15

19) Hallar la base y la altura de un triángulo isósceles de área mínima circunscrito a la elipse2 ,2

= 1, y cuya base sea paralela al eje X. Rpta. Altura 3b, base 2^3 a.a~ b~

Page 649: Espinoza Ramos 1

Aplicaciones de la Derivada 635

2tí) Dados los puntos A(l,4) y B(3,0) en la elipse 2x 2 + y 2 =18, Hallar un tercer vértice C

tal que el área del triángulo ABC sea máxima. Rpta. ( - 7 6 ,-7 6 )

21J Un cuadrado de altura 1.4 mts. Cuelga de la pared de modo que su borde inferior está 1.8 mts. por encima del radio de la vista de un observador. A qué distancia de la pared debe colocarse el observador para que su posición sea la más ventajosa para contemplar el cuadro? (Angulo visual: el mayor posible). Rpta. 2.4 mts.

22) Hallar el área del mayor rectángulo que tiene su base inferior en el eje X y con los

vértices en la curva y = 12 - ,v 2 Rpta. A = 3 2 u 2

23) Si un punto de una elipse inscrito en un semicírculo está sobre el diámetro y tiene otros dos puntos sobre la semicircunferencia en posición simétrica. Demostrar que su área será

2 n r 2un máximo igual a — = - donde r es el radio del círculo.

3V3

24) Un alambre de longitud L es cortado en dos secciones una para formar un cuadrado y la otra para formar un triángulo equilátero. Cómo debería cortarse el alambre

a) Para que la suma de las dos áreas sea máxima.

b) Para que la suma de las dos áreas sea mínima.

-73Z. 3 LRpta. a) Lado del cuadrado = ------- -¡= y Lado del triángulo9 + 4-73 9 + 4-73

b) Todo el cuadrado (área total máx.) = :Ú_16

25) Dado un sector circular de radio r; si el perímetro P mide 100 pies. ¿Qué valor del radio r producirá un área máxima? Rpta. r = 25

26) Hallar la base superior de un trapecio isósceles de base 12m. y lados 5m. si su área es

máxima. Rpta. 6+ -786

Page 650: Espinoza Ramos 1

636 Eduardo Espinoza Ramos

27) Hallar los puntos sobre la curva 5*2 - 6 x y + 5 y 2 = 4 que están:

a) más cercanas al origen. b) más alejadas del origen.

Rpta. a) ( - L I ) y ( I - I ) b) (1,1) y (-1,1)

2%) Un fabricante de cajas va ha producir cajas cerradas de volumen específico, cuya base es un rectángulo con longitud igual al triple del ancho. Encontrar las dimensiones más económicas. Rpta. La profundidad será la mitad de la longitud de la base.

29) La resistencia de una viga rectangular es proporcional al ancho y al cuadrado de suprofundidad. Encontrar las dimensiones de la viga más resistente que pueda ser cortada de un tronco, en forma de un cilindro recto circular de radio a.

2 2-yfóRpta. ancho -=■ a, profundidad------a

V3 3

30J Un cono recto circular va a ser circunscrito en una esfera de radio conocido. Encontrar la

razón de la altura al radio de la base del cono de volumen mínimo. Rpta. 2-JI

31) Demostrar que el triángulo isósceles de área máxima que puede inscribirse en una circunferencia es una triángulo equilátero.

32) Un cono es cortado por un plano paralelo a su base. A qué distancia debe ser echo el corte, para que el cono recto de base en la sección determinada y de vértice en el centro

del cono dado, tenga volumen máximo? Rpta. y de la altura del cono.

33) Una huerta rectangular ha de proyectarse al lado del solar de un vecino, y ha de tener

una área de 10,800w 2 . Si el vecino paga la mitad de la cerca mediana. ¿Cuáles deben ser

las dimensiones de la huerta para que el costo al cercarla sea para el dueño de la huerta sea mínimo?

2 234) En la elipse —^ + ■=- - = 1, se inscribe un triángulo isósceles cuyo vértice es el punto

a~ b~(0, b). Hallar la ecuación de la base correspondiente al triángulo de área máxima.

Rpta. 2y + b = 0

Page 651: Espinoza Ramos 1

Aplicaciones de la Derivada 637

Un triángulo isósceles está circunscrito a un círculo de radio R. Demostrar que el triángulo de perímetro mínimo tiene por altura 3R.

(36) Un agricultor quiere construir y cercar un campo que tenga la forma de un sector circular. Si para cercarlo posee un alambre de 200m. de longitud. Calcular el radio que debe tener el sector para que el campo sea la más grande posible. Rpta. r = 50 m.

y¡) Cada lado de un cuadrado tiene una longitud L. Demostrar que entre todos los cuadrados inscritos en el cuadrado dado, el de área mínimo tiene lados de longitud

L7 2 '

38J Entre lodos los cilindros circulares sector de área lateral dado “a”. Demostrar que la menor esfera circunscrita tiene el radio R igual al radio r del cilindro multiplicado por

7 2 .

39J Tres ciudades están situadas en los vértices de un triángulo isósceles. Las ciudades B y Cque distan entre sí 16 millas están situadas en la base, en tanto que A es el tercer vértice y a una distancia de 10 millas de la base. ¿A que distancia de A sobre la altura del triángulo, se debe ubicar una instalación de bombeo de manera que se emplee la menor longitud de

g .cañerías para abastecer de agua a las tres ciudades? Rpta. (10 V§) millas de A

40) Un recipiente abierto está formado por un cilindro terminado por su parte inferior en unasemiesfera; el espesor de sus paredes es constante. ¿Qué dimensiones deberá tener dicho recipiente para que, sin variar su capacidad, se gaste la menor cantidad de material?

Rpta. La altura de la parte cilindrica de ser igual a cero, es decir el recipiente debe tener forma semi-esférica.

4 lJ Inscribir un rectángulo de la mayor área posible en el segmento de la parábola y 2 =2 px

cortado por el área x = 2a. Rpta. Los vértices deben estar en ± 2 ^ ^ - )

(42) Hallar el área mínima del triángulo isósceles circunscrito a la elipse b 2x 2 + a 2x 2 = a 2b 2

cuyo lado desigual es paralelo al eje x. Rpta. ab 3^3

Page 652: Espinoza Ramos 1

638 Eduardo Espinoza Ramos

(43) Si los lados de un rectángulo son a y b. Demostrar que el rectángulo más grande que puede construirse de manera que sus lados pasan por los vértices del

rectángulo dado es un cuadrado de iat}0.V2

(44) Dado el volumen de un cilindro circular recto, hallar su altura y radio si la suma de las áreas de una de sus bases y de su superficie lateral es mínima. Rpta. b(altura)=r(radio)

45J De una lámina circular de radio “a” se quiere recortarotra como la figura para hacer un cono circular recto.Si el cono debe tener Volumen máximo: Determinar el

i J l ñángulo 0. Rpta. Q = ■■■ v/_ radianes

V3

(46) Un hombre puede remar a 2mk/ hora y caminar 4km/hora. Si está a 3 km. De la playa yquiere llegar al punto 0 que está a 4km. de P. Dónde tiene que desembarcar para que el

tiempo sea mínimo? Rpta. -J3km. de P.

(47) Encontrar las dimensiones del rectángulo de área máxima que se pueda inscribir en el rectángulo cuyas dimensiones son 10 y 15 cm, (los catetos). Dos lados del rectángulo están sobre los catetos del triángulo. Rpta. Las dimensiones son: 2.5 cm y 5 cm.

(48) Un jardín rectangular de 400 m 2 está rodeado por un camino de 2m. de ancho. ¿Que

dimensiones debe tener el jardín para que el área total del jardín y el área del camino sea mínima.? Rpta. 20 x 20 (m).

2 2

(4?) Se traza la tangente en un punto de la elipse = 1 de forma que el segmento de

ella interceptado por los ejes coordenados sea mínimo. Demostrar que la longitud de dicho segmento es 9 unidades.

(50) Una persona está en un bote a 3 millas del punto más cercano a la playa y desea alcanzaren el menor tiempo posible una caseta de la playa, situada a una distancia de 5 millas en la perpendicular a la recta que una la posición del bote y el punto de la playa, suponiendo que puede caminar a razón de 5 millas por hora y remar a la velocidad de 4 millas por hora. Determinar el lugar donde debe descender a tierra. Rpta. A una milla de la caseta.

Page 653: Espinoza Ramos 1

Aplicaciones de la Derivada 639

5.16. RAZON DE CAMBIO PROMEDIO Y RAZON DE CAMBIO CONS[ANTE.-___________________________________________________

Sea y una función de x y si xx, x 2 son dos valores de x; donde y x, y 2 son los

y *> — y\correspondientes valores de y, entonces el cociente de las diferencias ——— lex 2 ~ x x

llamaremos razón de cambio de y con respecto a x en el intervalo(x¡,x2) . La razón de

cambio promedio indica que y cambia en una cantidad y 2 - y , cuando x cambia de xx a

x 2 ■

Si la razón de cambio no es constante a casi constante no es de tanto interés salvo como medio de comparación , pero si la razón de cambio promedio es la misma para todos los valores del intervalo (x^ , x 2) , diremos que y está cambiando con respecto a x en una

razón constante.

y? ~yiEl valor del cociente — ------ se llama razón de cambio de y con respecto a x. PorX 2 - X ]

ejemplo, suponiendo que se está bombeando aceite, a razón constante en un tanque que

contiene 10 litros a las 10.2’ a.m. y 50 litros a las 10.12’a.m. se observa que el contenido

está aumentando a 40 litros en 10', o sea 4 litros por minuto, por lo tanto en los 5' serán

añadidos 5x4 = 20 litros más, en los siguientes 10' 40 más y así sucesivamente.

Este ejemplo expresaremos de un modo más formal: V = volumen de aceite en el

tanque (función del tiempo) que se mide a partir de las 10 a.m. los valores de t son tx - 2

y l 2 =12 y los correspondientes valores de V son V¡ =10 y V2 =50 entonces por

definición de razón de cambio promedio de V con respecto al tiempo en el intervalo

v, -v , 50-10 . .. .(2, 12) es: —— — = — — = 4 litros por minuto.

1 2 - 2 H

Puesto que la razón de cambio es constante.

Page 654: Espinoza Ramos 1

640 Eduardo Espinoza Ramos

5.17. FORM ULA QUE RELACIONA DOS VARIABLES CUVA RAZON

TEOREMA.- Si y es una función lineal de x, la razón de cambio de y con respecto a x

es constante y viceversa.

Demostración

Como y es una función lineal de x entonces y = mx + b siendo m y b constante, sean

x¡,x2 dos valores cualquiera de x; y sea y¡ , y2 los correspondientes valores de y,

entonces

Lo cual demuestra que la razón de cambio de y con respecto a x es constante

recíprocamente, si m es la razón de cambio de y con respecto a x donde x l , y l son

valores fijos correspondientes a x, y, y sean x, y, otro par de valores entonces por

definición se tiene:

DE CAMBIO ES CONSTANTE.-!

y 2 = mx2 + b

y y = mxx + b

y — y .-------i- = m => y - y i = m(x - x1 )

que es una ecuación de primer grado y por lo tanto y es una función lineal.

Para el caso del ejemplo anterior t = 2, v = 10Y

V — 10 = 4(t — 2) => V = 4t + 2

2

0 X

Page 655: Espinoza Ramos 1

Aplicaciones de Ia Derivada 641

5.18 RAZON DE CAMBIO PROVI EDIO.-

DEFINICION.- Si y es función de x, la razón de cambio promedio de y con respecto a

DEFINICIÓN.- Si y es función de x, la razón de cambio instantáneo de y con respecto

a x, cuando x = x, es el límite (si existe) de la razón de cambio

promedio en el intervalo (x,,x, + Ax) cuando Ax se aproxima a cero.

Expresado en otra forma se tiene: Si y = f(x), la función de cambio instantáneo de y con

respecto a x. para x = a, es el valor de — para x = a, es decir:dx

Razón instantánea = lim — = —

Ejemplo.- A medio día un barco que navega hacia el norte está a 60 km. Al sur de otro

x en el intervalo (x,,x, + Ax). es el valor de — para x = x,Ax

5.19 RAZONES INSTANTANEAS.*

a .í -»o Ax dx

barco que navega hacia el este. Si el primer barco navega a razón de 15 km/hora y el segundo barco a razón de lOkm/h. Encontrar la velocidad con que estaría cambiando la distancia entre ellos.

a) a las 14 horas b) a las 15 horas.Solución

B DSean A y B las posiciones iniciales de los barcos y

C y D las posiciones de t horas, entonces BD = lOt

y C'B = 60 — 15l, sea z la distancia entre ellos

= = 4 C B 2 +BD 2 = 7 (6 0 -1 5 /)2 +100í2 60

151

Para encontrar la razón a la cual está

cambiando z se halla la derivada: A

Page 656: Espinoza Ramos 1

642 Eduardo Espinoza Ramos

dy 325/-900 , . . . , , dz -250— = —¡ = . . a las 14 horas t = 2 , — = . = -6.9d' V3600 -1800/ + 325/2 dt V130

quiere decir que los barcos se están aproximando uno a otro a razón de 6.9Km/h. cuando

t= 3, —- = a/5 = 2.5 quiere decir que los barcos se estarán separando a razón de 2.5Km/h. di

5,20 VELOCIDAD Y ACELERACION RECTILlNEA,-

DEFINICIÓN.- Si s = s(t) es la ecuación de la posición de un objeto que se mueve a lo largo de una recta, la velocidad del objeto en el instante t está dado por:

Y ( t } * hmA? >ü . Át ■

DEFINICIÓN.- Si s = s(t) es la ecuación de la posición de un objeto que se mueve a lo largo de una recta, la aceleración del objeto en el instante t está dado por:

<«/)=» v‘(/> = .y” (0

S a i RAZONES DE CAM BIO RELACIONADQS.-

Frecuentemente se conoce la razón de cambio de una variable con respecto al tiempo, y sedesea encontrar la razón de cambio con respecto al tiempo de una segunda variable queestá relacionada con la primera, dichos problemas se resuelven fácilmente, derivando implícitamente, con respecto al tiempo, la ecuación que liga las variables, y sustituyen de los valores dados de las mismas.

_____________________________________ . _____________ I__________________________________ j l j n í ) l ? i h - ‘ / . -■ • \ ) d ~ ’ ■ _) V ______________

5.22 PROCEDIM IENTO ACONSEJADO PARA RESOLVER PROBLEM AS DE VARIABLES RELACIONADAS^

( 1 ) Asignar símbolos a todas las cantidades, tanto a las conocidas como a las incógnitas.Hacer un dibujo cuando resulta factible.

(T ) Establecer la ecuación que liga las variables tanto conocidas como las que se van acalcular.

Page 657: Espinoza Ramos 1

Aplicaciones de la Derivada 643

( ? ) Derivar implícitamente por la regla de la cadena ambos miembros de la ecuaciónrespecto al tiempo t.

( 4) Sustituir en la ecuación resultante todos los valores conocidos de las variables y de susrazones de cambio, despejando entonces la razón de cambio pedida.

5.23 PROBLEMAS DESARROLLADOS.-

Q Un globo está siendo inflado en tal forma que su volumen aumenta a razón de 5m 2 / min.

¿A qué rapidez aumenta el diámetro cuando éste tiene 12m?

Solución

4n rDatos del problema: V = Volumen del globo esférico = ^

D = 2r= 12 => r = 6

dD dr dV , 3 . .— = 2 — = ? y ---- = 5m / min.dt di di

4 /r r3 dV 2 drcomo V = --------= > — = 4n r —

3 dt dt

ahora reemplazando sus valores se tiene: 5 = 4;r(6) 2 — => — = 0.011 m / min.dt dt

= 2(0.01 \)m / min. = 0.022m / min.dt

( ? ) Un hombre de 1.8m de estatura camina hacia un edificio a razón de 1.5m/seg. Si hay una

lámpara sobre el suelo a 15m. del edificio. ¿Con qué rapidez se acorta la sombra del

hombre sobre el edificio cuando se encuentra a 9m. del mismo?

Solución

Page 658: Espinoza Ramos 1

644 Eduardo Espinoza Ramos

dxDatos del problema: — = 1.5m iseg

dt

z = 15 mts. y h = 1.8 mts.

dt? cuando x = 9m.

i

Ahora por semejanza de triángulos.

x h i i— = — => xy = :h = 15(1.8)m~ entonces xy =- 27m ", derivando implícitamente

dv dx . , , t dy 27 dx dy 27x — + y — = 0 reemplazando tenemos x — + ------— = 0 => 9 — + — (1.5) = 0

dx di dt x dt dt 9

9 — + 4.5 = 0 => — = -0.5 dt dt

©la sombra se acorta con una rapidez de — = 0.5 mi seg.

dt

Un muchacho lanza una cometa a una altura de 150m. sabiendo que la cometa se aleja del muchacho a una velocidad de 20m/seg. Hallar, la velocidad a la que suelta el hilo cuando la cometa se encuentra a una distancia de 250 metros del muchacho.

Solución

Datos del problema: H = 150m. z = 250m.

— 20m / seg. y — = ?dt dt

En el A ABC, por pitágoras

Se tiene: z = -Jx2 + 22500 derivando implícitamente con respecto a t.

Page 659: Espinoza Ramos 1

Aplicaciones de la Derivada 645

©

dzdx~dt reemplazando valores se tiene

dl Va'2 +22500

— = ---- f . = .— , donde jt = -7-2 —1502dl V-v2 +22500 dl

para z = 250 => a: = ^62500-22500 =200

200 _ 4000 4000— = -, i- — . (20) = , = ——- = 16í// 740000 + 22500 762500 250

= 16 m! seg.

Dentro de un tanque cónico está entrando agua a razón constante de 3 w / .veg .El radio

del cono es de 5m. y su altura de 4m. encontrar:

a) La velocidad con que asciende la superficie libre de agua.

b) La razón de cambio (0 variaciones) respecto al tiempo de la velocidad de subida cuando la profundidad del agua es de 2m. (considere el vértice del cono haciaabajo).

Solución

Datos del problema: = 3m ' / seg.

V t = (está aumentando).; H = 4 r = 5

a) El volumen del cono: V = -3

por semejanza del triángulo AABC = AADE

/• 5 5h , 2 5 ^ ,3— = — => r = — entonces V = ----- hh 4 4 48

derivando implícitamente con respecto a t.

1 1

Page 660: Espinoza Ramos 1

646 Eduardo Espinoza Ramos

dV 75/r , -> dh _ 15n dh— - = ----- \ r — => 3 = ------ ( 2 ) '—di 48 dt 48 di

dh 12 / ,, u o— = ----- m / seg. cuando h = 2.di 25 n

b) Ahora calcularemos — (— ) = — ^ -, cuando h = 2m di di d l2

, dV 75 , , dh , 25 , , dhcomo 3 — = — n I r — => 3 = — n f r —

dt 48 di 16 dt

dh 48di 257 r/r

d -h 96 _ 96 12d i2 ~ 25n h 3 ' d l ~ (25tt)(8) ' 25tt

dt- 25n

^5 ) Una lampara está a 15 pies sobre una recta horizontal. Si un hombre de 6 pies de altura camina alejándose de la luz a razón de 5 pies/seg. ¿Con qué rapidez se alarga su sombra?

Solución

Datos del problema: h = 15 pies

dxdi

= 5pies/seg.

por semejanza de triángulos: AADE = AABC

V 6 2x . . . .—:— = — => v = — derivando se tiene: v + x 15 • 3

dv 2 dx dy 2 10 .— = ------=> — = — (5 = — pies/seg.di 3 di di 3 3

(T ) En una pila cónica se está dejando caer arena a razón de 10 pies Vmin. Si la altura de la

pila es siempre el doble del radio de la base. ¿En que razón aumenta la altura cuando la pila tiene 8 pies de altura?

Page 661: Espinoza Ramos 1

Aplicaciones de la Derivada 647

Solución

dV ,Datos del problema: = lOpies /m in .

tc r 2hh = 2r, Volumen de la pila cónica V =

implícitamente con respecto a t.

— f,2 — reemplazando cuando h = 8 di A di

1A 64;r dh dh 5 . , .10 = ----------=> — = — pies/mia

4 di di 87r

© Un punto se mueve sobre la parte superior de la parábola semicúbica y 2 = .y3 de tal

manera que hace que su abscisa aumente 5 unidades por segundo cuando x = 4. ¿Con qué

rapidez cambia la ordenada?

Solución

Datos del problema: = 5u/seg. y = ?

como y2 = jr3 derivando implícitamente con

respecto al tiempo t

2\ — = 3x2 — , ahora para x = 4, y= 8 y — = 5 di dt dt

dv 7 dyal reemplazar en la ecuación se tiene: 2(8) = — = 3(4) * (5) => — = 15 pies/seg.

dt dt

( ü ) Un punto se mueve la parábola y 2 =12 x , de manera que la abscisa aumenta

uniformemente 2 cm/seg. En qué punto aumenta la abscisa y la ordenada a la mismarazón?

Page 662: Espinoza Ramos 1

648 Eduardo Espinoza Ramos

Solución

Se tiene: — = 2cm/seg di

Hallar p(x, y) tal que — = — di di

como y~ = 12x derivando implícitamente con

respecto a t.

~ dv dx dx dv 2 y — = 12-— com o— = — " di dt dt dt

2 — = 12 — di dt

• 2y = 12 => y = 6 de donde x = 3 P(3, 6)

Se tiene un reloj de arena de 3 cm. de radio y 6cm. de altura. Se pasa la arena a un solo

lado y se voltea para que la arena comience a fluir a razón de 2cm3 / seg . Suponga que la

arena en la parte inferior forma un tronco de cono. Cuál es la velocidad de aumento de h

para una altura dada?

Solución

Haciendo un gráfico de los datos del problema:

Sea r el radio del cono como indica la figura

u-- • dV . 3 ..también se tiene — = 2cm .seg. Ahora dt

mediante la regla de la cadena: dV__dV^ dh ^dt dh dt

para calcular — es necesario hallar una función dt

que relacione V y h, y esto se obtiene por la

fórmula de la diferencia de los dos volúmenes de

conos.

Page 663: Espinoza Ramos 1

Aplicaciones de la Derivada 649

V ^ K ( 3 ) 26 - ^ ( T c ) r 2( 6 - h ) => V = 1 8 t t - ^ — ( 6 - h )

, . . . . . . r 6 - h 6 - hahora por semejanza de triángulos se tiene: — = ------ => r = -------

3 6 2

F = 1 8 ; r - - ( — - ) 2 ( 6 - / ; ) = 18;r- — ( 6 - / i ) 33 2 12

dV n i k ■> dV dV dh - n 2 dh— = ()+—(6 - //) = —(6-A ) com o:— = — .— => 2 = —(6 - h ) —dh 4 4 di dh di 4 di

dh 8 ,— = ---------- - cm/seg.dt 7T (6 — //) ~

10J Un jugador golpea una bola de billar, haciéndola moverse en línea recta. Si “s” cm. es la

distancia de la bola desde su posición inicial a los t seg. entonces s = 100/2 +100/, si la

bola da en una banda que se encuentra a 39 cm. de su posición inicial. ¿A qué velocidad

pega en la banda?

Solución

Como s = 100/2 -i-100/ por datos del problema s = 39

=> 100/2 +100/ = 39 => tx = 0 .3 , / 2 = -1 .3

el valor t2 = -1.3 por ser negativo no es para nuestro problema.

Además se conoce V = — = 200/ +100 dt

V(t) = 200t + 100 => V(0.3) = 60 + 100 = 160

Si una pelota es empujada hacia abajo en un cierto plano inclinado de manera que tenga

una velocidad inicial de 24 pies/seg. Entonces s = 24/ +10/2 , donde s pies es la distancia

de la pelota desde el punto inicial a los t seg. y el sentido positivo es hacia abajo del plano

inclinado.

Page 664: Espinoza Ramos 1

650 Eduardo Espinoza Ramos

a) ¿Cuál es la velocidad instantánea de la pelota a los /, seg.?

b) ¿Cuánto tarda la pelota en llegar a los 48 pies/seg.?

Solución

Como V0 = 24 pies/seg. velocidad inicial, además:

.v(/) = 24/ + 10/2 => F(/) = .v'(/) = 24 + 20/ por lo tanto la velocidad instantánea de la

pelota a los /, seg. será: (20/, + 24)pies/seg. según el problema se tiene:

20t + 24 = 48 l = - seg. = l.2seg.

por lo tanto la velocidad tarda — seg. en llegar a los 48 pies/seg.

Rpta: a) (20/, +24)pies/seg. b) — seg. = 1.2 seg.

En un instante dado la longitud de un cateto de un triángulo rectángulo es de 10 pies. Y está aumentando a razón de 1 pie/min. Y el otro cateto es de 12 pies y esta disminuyendo a razón de dos pies/min. Hallar la razón de cambio respecto al tiempo del ángulo agudo opuesto al cateto que en ese instante mide 12 pies.

Solución

Datos del problema: para x = 10, y = 12

— = 1 p ie / min. y — = -2 pies / min. di dt

tg 6 = — => 0 = are. tg(—) -V x

derivando implícitamente:

, dy d x . . i

i + £ )'-x

dy dxX dt '* di

■) 1 x- + y

Page 665: Espinoza Ramos 1

Aplicaciones de la Derivada 651

reemplazando se tiene:dd 10(—2 )—12(1) -32 8dt 100 + 144 244 61

d e 8 . . .— = ----- pies/min.dt 61

13) Un cohete se lanza verticalmente hacia arriba y está a Sp sobre el suelo, t seg. después de

ser encendido. Donde .v = 560? -1 6 /2 y la dirección positiva hacia arriba. Encontrar:

a) La velocidad del cohete 2seg. después de haber sido encendido.

b) Cuánto tardará en alcanzar m altura máxima.

Solución A

La ecuación del movimiento es: S(t) = 560/ - 1 6 /2

La velocidad del cohete, /¡seg. después de haber sido

encendido será: V (/,) = S' (/,)

como ^(z) = 560/ — 16/2 entonces: S ' (/) = 560-32/

:.V(tx) = 560-32/,

a) V(2) = 560 —64 = 496 seg.

b) Como V(/¡) = 0 , es para que alcance su altura máxima crece.

0 = 5 6 0 -3 2 t => t = 17.5 seg.

£ _ A' ( l l l ' l ' IM ' l ' I I IM ' l l l l li ni i ni i ni i lintI III I¡111*1 III I III H li • ii 111 ii ■11 li 11111•• i ii

5.24 PROBLEMAS PROPUESTOS.-

© Un depósito de agua, en forma de un cono invertido, es vaciado a razón de 6ny / min. La

altura del cono es de 24m. y el radio de su base es de 12m. Calcule la rapidez con la que

el nivel de agua desciende cuando el agua tiene lOm. de profundidad.

Page 666: Espinoza Ramos 1

652 Eduardo Espinoza Ramos

(T ) Cierta cantidad de aceite fluye hacia el interior de un depósito en forma de cono invertido

a razón de 3n w 3 / min. Si el depósito tiene un radio de 2.5m. en su parte superior y una

profundidad de l()m. ¿Qué tan rápido cambia dicha profundidad cuando tiene 8m?

Rpta. — = 0.75m / min. di

( 3) Un automóvil que se desplaza a razón de 30 pies/seg. se aproxima a un crucero, cuandoel auto está a 120 pies de la intersección, un camión que viaja a razón de 40 pies/seg. cruza la intersección. El auto y el camión se encuentran en carreteras que forman un ángulo recto entre sí. ¿Con qué rapidez se separan 2 seg. después de que el camión pasa

dicho crucero? Rpta. — = 14 pies/seg.di

(7) Una vía de ferrocarril cruza una carretera bajo un ángulo de 60°. Una locomotora dista160m. del cruce y se aleja de él a la velocidad de lOOkm/hora, un automóvil dista del cruce 160m. y se acerca a él a la velocidad de 50km/hora. ¿A que razón se altera la

distancia entre los dos? Rpta. Aumenta 25 km/hora ó 25-j3km/h.

© El radio de la base de cierto cono aumenta a razón de 3cm. por hora y la altura disminuyea razón de 4cm por hora. Calcule como varía el área total del cono cuando el radio mide

7cm. y la altura 24 cm. Rpta. Aumenta 96n cm1 / h

© Un aeroplano que vuela en dirección norte a 640 millas por hora pasa sobre cierta ciudada mediodía; un segundo aeroplano que va a dirección oeste a 600 millas por hora está verticalmente sobre la misma ciudad 15 minutos más tarde, si los aeroplanos están volando a la misma altura, ¿con qué rapidez se estarán separando a la 1.15 p.m.?

Rpta. 872 millas por hora.

( 2 ) Un tendedor de alambres trepa a un poste telefónico a razón de 2.5 pies por segundo,mientras su jefe está sentado a la sombra de un árbol vecino observando. Si el terreno es llano y el jefe está a 36 pies de la base del poste. ¿Cuántos segundos tiene que trepar el tendedor de alambres para que la distancia entre él y el jefe crezca a razón de un pie por segundo? Rpta. 6.2847 segundos.

Page 667: Espinoza Ramos 1

Aplicaciones de la Derivada 653

( ? ) Un objeto que se lanza verticalmente hacia abajo desde la azotea de un edificio, con unavelocidad inicial de Vfí pies/seg. Viaja aproximadamente según la ecuación

S = K,,/ + 16/2 pies en t segundos. Si toca el suelo a los 2.5seg. con una velocidad de 110

pies/seg. ¿Cuál es su altura del edificio? Rpta. 175 pies.

Una escalera de 25 pies de longitud está apoyada en una casa. Si la base de la escalera se separa de la pared de la casa a razón de 2 pies por segundo. ¿A qué velocidad está bajando el extremo superior cuando la base de la escalera está a

a) 7 pies de la pared? b) 15 pies de la pared? c) 24 pies de la pared?

7 3 48Rpta. a) pies/seg. b) pies/seg. c) — — pies/seg.

(ío ) En una planta de arena y grama, la arena está cayendo de una cinta transformadora

formando una pila cónica a razón de 10pies1 / min . El diámetro de la base del cono es

aproximadamente tres veces la altura. ¿A qué razón está cambiando la altura de la pilag

cuando tiene 15 pies de altura? Rpta. ------- pies/min.4057T

© La arista de un cubo se expande a razón de 3cm/seg. ¿A qué velocidad cambia el volumencuando cada arista tiene:

a) lcm. b) lOcm.

Rpta. a) 9cm3 / seg. b) 900cwi3 / seg.

( í ^ Al caer una gota esférica de lluvia, alcanza una capa de aire más seco en los niveles másbajos de la atmósfera y comienza a evaporarse. Si esta evaporación se produce a una

velocidad proporcional al área de la superficie (s = 4n r 2) de la gota, probar que el radio

se contrae a la velocidad constante.

( u ) Un avión vuela a 31,680 pies de altura, pasando la trayectoria de vuelo exactamente sobreuna antena de radar. El radar detecta el avión y calcula que la distancia s al avión cambiaa razón de 4 millas/min. Cuando tal distancia es de 10 millas, calcular la velocidad delavión en millas por hora. Rpta. 300 millas/hora.

Page 668: Espinoza Ramos 1

654 Eduardo Espinoza Ramos

Un barco A navega hacia el sur a una velocidad de 16 millas por hora, y otro B, situado 32 millas al sur de A, lo hace al este con una velocidad de 12 millas por hora. Hallar la velocidad a la que dichos barcos se aproximan o separan al cabo de una hora de haber iniciado el movimiento. Rpta. Se aproxima a razón de 5.6 millas/hora

©

©

En que punto de la parábola y~ =18.v, la ordenada crece dos veces más deprisa que la

abscisa?9 9 Rpta. ( - , - ) 8 2

Un peso W está unido a una cuerda de 50 metros de longitud que pasa por una polea P situada a una altura de 20 metros con respecto al suelo. El otro extremo de la Cuerda, se encuentra unido a un vehículo en el punto A, situado a una altura de 2 metros como indica la figura, sabiendo que el vehiculo se mueve a una velocidad de 9 metros por segundo, calcular la velocidad a la que se eleva el cuerpo cuando se halle a

una altura de 6 metros. Rpta. — = — -</3m/seg. di 2 5

Un tren que sale a las 11 horas de la mañana se dirige hacia el este a una velocidad de 45 kilómetros por hora, mientras que otro, que sale al medio día desde la misma estación, se dirige hacia el sur a una velocidad de 60 kilómetros por hora. Hallar la velocidad a que se

separan ambos trenes a las tres de la tarde.V2Rpta. 150 -y - Km/hora

Un hombre en un muelle tira de una soga atada al nivel del agua a una bola a razón 50 pies/min. Si las manos del hombre están a 16 pies sobre el nivel del agua. ¿Con qué rapidez se acerca el bote al muelle cuando la cantidad de soga suelta es de 20 pies?

Rpta. Se aproxima a razón de250

pies/min.

19) Se bombea aire a un globo, de modo que su volumen se incrementa en 200c'»!'1 / seg. Despreciando la comprensión del aire. ¿A qué ritmo crece el radio cuando el diámetro

llega a 30cm? Rpta. — cm/seg.9 n

Page 669: Espinoza Ramos 1

Aplicaciones de la Derivada 655

2tí) Huyendo de un perro una ardilla trepa por un árbol, corre a 12m/seg. y la ardilla a 6 m/seg. ¿Cuál será el cambio de distancia relativa entre los dos cuando el perro está a 12m. del árbol y la ardilla ha trepado 5 metros? Rpta. -8.77m/seg.

21) Un cometa que vuela a lOOmts. de altura es empujado horizontalmente por el viento a una velocidad de 4m/seg. Si la cuerda se va soltando desde un punto fijo. ¿A qué velocidad se aleja el cometa en el instante en que se han soltado 125m. de la cuerda? Rpta. 2.4 m/seg.

22) Una partícula se mueve a lo largo de la curva 3 y = x 3 + 2 . Encuentre los puntos sobre la

curva en los cuales la ordenada está cambiando 9 veces más rápido que la abscisa.

29 25Rpta. (3,y ) y (-3 ,——)

23) Un cono recto circular va a ser inscrito en una esfera de radio conocido. Encontrar la2

razón de la altura al radio del cono de volumen máximo. Rpta. — -Jl3

24) En lo alto de un farol brilla una luz a 20 pies del suelo, una mujer con una estatura de 5pies se aleja caminando desde el farol. Hallar la razón en que aumenta su sombra si se aleja a razón de: a) 4 pies/seg. b) 3 pies/seg.

Rpta. a) 4/3 pies/seg. b) 1 pie/seg.

25,) Un avión vuela paralelo al suelo a una altura de 2km y a una velocidad de 4.5km./min. Si el aparato vuela directamente sobre la estatua de la libertad. ¿Con qué intensidad cambia la distancia según una línea visual entre el aparato y la estatua, a los 20 segundos posteriores? Rpta. 2.7 Km./min.

26) Cuando un péndulo con longitud de lOcm. ha oscilado de modo que 0 es el ángulo en

radianes formado por el péndulo y la vertical, entonces sí h(0) cm. es la altura del extremo

del péndulo sobre su posición más baja, h(Q) = 20 sen2 (6 / 2) . Determinar la rapidez de

variación de h(0) con respecto a 0 cuando:

a) 6 = - b) 0 = —3 2

Rpta. a) 5y[3 b) 10

Page 670: Espinoza Ramos 1

656 Eduardo Espinoza Ramos

Una piedra es arrojada a un estanque tranquilo, una serie de anillos circulares

concéntricos se extienden por el estanque y el radio de la región perturbada aumenta a

razón de 16 cm/seg. ¿Con qué rapidez aumenta dicha área cuándo el radio es de 4 cm?

Rpta. 128n cm2 / s e g .

Un avión vuela con velocidad constante a una altura de 10 000 pies en una trayectoria

recta que lo llevará directamente sobre un observador en tierra. En un instante dado el

observador advierte que el ángulo de elevación del aeroplano es n/3 radianes, y aumenta a

razón de — rad/seg. Determine la velocidad del avión. 60

Rpta. 200pies/seg.

El lado de un triángulo equilátero mide a cms; si aumenta a razón de k cm/hora. ¿A

razón de cuántos centímetros cuadrados por hora aumenta el área?

Rpta. — -J3cm2 / hora .

Una escalera de 20m. descansa sobre una pared, la parte inferior de la escalera es

empujada horizontalmente a la velocidad de 2m/seg. ¿Cuál es la velocidad del extremo

superior.' Rpta. — =■ m / seg . V3

A un recipiente como el que se muestra en la

figura, entra agua a la velocidad constante de

1 m 3 / min ¿con qué velocidad sube el nivel del

agua cuando la profundidad es de un metro?

Rpta. dv 1 . .— = — mi min. dx 10

A un recipiente semiesférico de radio lOm. entra agua a la velocidad constante de

4 m } / min. ¿Con qué velocidad sube el agua cuando su profundidad es 5m?

4Rpta.

75 n- m / min.

Page 671: Espinoza Ramos 1

Aplicaciones de la Derivada 657

33J Un cohete se lanza formando un ángulo de 30° con la horizontal a la velocidad v = (80 + 40t) m/seg. siendo t el tiempo (seg.) después del lanzamiento. Si 20 segundos después del lanzamiento el sol está directamente encima de él, hallar la

velocidad con que se desplaza su sombra sobre la horizontal. Rpta. 440-^3m / seg.

34J Un avión vuela horizontalmente a la velocidad de 100 m/seg. y a una altura de lOOOm., volando en la dirección de un observador que está en tierra. ¿Con qué velocidad se acerca

al avión el observador cuando la distancia entre los dos es de 2000m? Rpta. 50^3 m/seg

¿ y Un avión vuela a lOOOm. de altura a la velocidad de 500 m/seg. y comienza aterrizar formando su ruta de descenso un ángulo de 30° con la pista y disminuyendo su velocidad a la razón de 20 m/seg. Si el sol está directamente sobre el avión. ¿Con qué velocidad se

desplaza la sombra 2 segundos después de comenzar a aterrizar? Rpta. 230^/3m / seg.

36j Se apoyan los puntos de un compás sobre una mesa, los brazos del mismo son de50 cm. de longitud. Si la parte superior del compás desciende a lcm/seg. ¿Cómo varia la

gdistancia entre las puntas cuando están a 60 cm.? Rpta. — m / seg.

37j Para gases ideales se sabe que PV = constante, siendo P la presión del gas y V el volumendel recipiente que lo contiene. ¿Cómo varía la presión de un gas conteniendo en un

recipiente que disminuye su volumen a la razón de 10c»/3 / seg ?. Cuando V = 500c/n3 y

P = 15kg/crn2. Rpta. — kg/ern2

38) Un helicóptero deja una base, elevándose verticalmente a una velocidad de 15pies/seg. al mismo tiempo que despega un helicóptero, un observador parte desde un punto situado a 100 pies de la base y se mueve en línea recta, alejándose de la base a la velocidad de 80 pies/seg. ¿Con qué velocidad crece el ángulo de elevación del helicóptero respecto al observador cuando este último esté:

a) a 400 pies de la base? b) a 600 pies de la base?

„ v 1500 . . , 1500Rpta. a ) ---------- — — rad/seg. b) ------------— — rad I seg.4002 + (-^— )2 4002 + (— )2

4 4

Page 672: Espinoza Ramos 1

658 Eduardo Espinoza Ramos

Una torre está al final de una calle, un hombre va en un automóvil hacia la torre a razón

de 50 m/seg. La torre tiene 500m . de altura. ¿Con qué rapidez crece el ángulo

subtendido por la torre y el ojo del hombre cuando éste se encuentra a 1 OOOm. de la torre?

Rpta. 0.02 rad/seg.

del origen. Hallar la velocidad con que se mueve las proyecciones de la posición de la

Las razones de cambio en el campo de la economía, no se miden con respecto al tiempo;

por ejemplo los economistas se refieren al beneficio marginal, ingreso marginal y costo

marginal, como las razones de cambio del beneficio, ingreso y costo respecto al número

de unidades producidas ó vendidas.

La ecuación que relaciona estas tres cantidades es: P(x) = R(x) — C(x)

donde: P(x) = beneficio total, R(x) = ingreso total, C(x) = Costo total.

Ahora la derivada de cada una de estas da los marginales términos usados en Economía.

— = beneficio marginal, — = ingreso marginal, = costo marginal dx dx dx

O = S(P) función de oferta ; D = f(P) función de demanda.

OBSERVACION

Los problemas planteados son problemas de máximos y mínimos.

Para estudiar el efecto de los niveles de producción en el costo. Los Economistas usan la

función de costo medio c(x) definida por c(x) = donde c(x) función de costo total.

© Una partícula se mueve sobre la curva y 2 = 4kx con velocidad constante v y alejándose

partícula sobre los ejes OX y OY.

5.25 APLICACIÓN A LA ECONOMIA.-

X

Page 673: Espinoza Ramos 1

Aplicaciones de la Derivada 659

ELASTICIDAD

La elasticidad de una función y = f(x) en el punto x se define como la tasa de cambioEy

proporcional de y con respecto a x y denotaremos por: M = —— y es definido por:Ex

ÉL

Ex dx y dxx ■ ■

La elasticidad es un concepto importante en la teoría económica y se aplica en el estudio

de la demanda, la oferta, el costo y la productividad.

a) INGRESO NACIONAL CONSUMO, NACIONAL Y AHORRO

Llamaremos función de consumo a la relación entre el ingreso nacional (total) disponible y el consumo nacional (total).

La función de consumo se caracteriza porque a medida que aumenta (o disminuye)

el ingreso, el consumo aumenta (o disminuye) lo cual se da en menor intensidad y es

la llamada “propensión marginal al consumo” que significa que es mayor que cero y

menor que uno, donde la propensión marginal es la tasa de cambio del consumo con

respecto al cambio en el ingreso disponible. Si c = f(x) es la función de consumo,

donde c representa al consumo nacional y x el ingreso nacional entonces la

propensión nacional es:

En el análisis teórico elemental del ingreso nacional se supone que el ingreso disponible es igual al consumo c más el ahorro s lo cual expresaremos x = c + s, de donde la propensión marginal al ahorro es:

Page 674: Espinoza Ramos 1

660 Eduardo Espinoza Ramos

b) EQUILIBRIO ECONOMICO

El objetivo principal de toda empresa es maximizar su utilidad total (o lucro total), o minimizar pérdida.

El punto de utilidad máxima es el punto de equilibrio y ocurre cuando el ingreso marginal (I. mag) es igual al costo marginal (c. mag).

Y>

/Cmg.

Cmg.

p

1 7 ' i /i/ P = Img

111

0 x 0 X

En las gráficas mostradas en ambos casos x () es la cantidad de equilibrio.

Si u(x) = ganancia o utilidad total, entonces escribiremos U(x) = l(x) — C(x).

Ahora nuestro objetivo es obtener la cantidad de x que maximice la utilidad u(x).

La cantidad de equilibrio de la empresa es el valor de x que maximiza U(x) y el punto de equilibrio es P(x0,u(x0)) donde ¡t0 es la cantidad de equilibrio.

_ , . ... . . . . , , dU(x) . d 2U ( x ) , .Para obtener la utilidad maxima debe tenerse que-------- = 0 y ------- -— L < 0

M dx ’ dx2 0

OBSERVACION

En el punto de equilibrio, el ingreso marginal debe ser igual al costo marginal.

Es decir: como U(x) = I(x) — C(x) entonces

dU(x) _ dl(x) dC(x) _ dl(x) _ dC(x)dx dx dx dx dx

.-. Im g = Cmg

Page 675: Espinoza Ramos 1

Aplicaciones de la Derivada 661

OBSERVACION

En el caso especial de competición pura, se tiene que: I = Px luego P = Img

Esto quiere decir que existe utilidad máxima sí Cmg = P

5.26 EJERCICIOS DESARROLLADOS.-

© Un fabricante de televisores desea vender un promedio de 1000 televisores al mes a S50,000. El fabricante piensa que puede vender 100 televisores adicionales al mes por cada S 2,000 de reducción en el precio. ¿Cuál es el precio que produce el mayor ingreso?

Solución

Sea x el nuevo precio del televisor que produce el mayor ingreso, donde:

I = Ingreso = (precio del televisor)(número de televisores vendidos).

El número de televisores que se desea vender es 1000 más 100 televisores por cadaS 2000 de reducción sobre S50000.

El precio rebajado es el precio original menos el precio nuevo x es decir: 50000 - x.

La cantidad de reducción de $2000 es: 50000——.2000

Luego el número de televisores, excedentes de los 1000 vendidos será:

50000 — jc 50000-*2000 ” 20

el número de total de televisores vendidos: 1000 +100(~ ^ ^ - ■■-*-)2000

, , X /,HA 50000-jc 70000*- x 2 .entonces: /(* ) = *(100+------------- ) = -----------------ahora derivando20 20

70000*-2* i cnrm/ ( x) = ------------------------------ = 0 => x = 35,00020

Page 676: Espinoza Ramos 1

662 Eduardo Espinoza Ramos

/" (* ) = — => /"(35000) < O entonces se tiene un máximo en x = 3500010

Por lo tanto el precio de venta por televisor es de $35000.

( 2) Una compañia de transporte, con una tarifa de S20, transporta 8000 pasajeros por día, alconsiderar un aumento de la tarifa, la compañía determina que perderá 800 pasajeros por cada S5 de aumento en estas condiciones. ¿Cuál debe ser el aumento para que el ingreso sea máximo?

Solución

Sea x el número de aumentos de S5 en la tarifa entonces 20 + 5x es la tarifa resultante y el número de pasajeros será 8000 - 800x donde el ingreso es:

I(x) = (20+5x)(8000-800x) entonces I(x) = 4000(40 + 6 x - x 2) , derivando

/ ' (jc) = 4000(6- 2 x ) = 0 para el número crítico, de donde: 6 — 2x = 0 =>x = 3

I" (x) = -8000 => I(x) < 0 V x

Luego x = 3 se tiene máximo. El aumento en el pasaje debe ser de 3 x 5 = 15

Y el nuevo valor del pasaje es S35.

© El número de dólares del precio total de la manufactura de x relojes en cierta fábrica está

20dada por: C(x) = 1500 + 30jc + — , Encontrar:x

a) La función del costo marginal

b) El costo marginal cuando x = 40 y

c) El costo de la manufactura del cuadragésimo primer reloj.

Solución

Como la función costo total C(x) es dado: C(x) = 1500 + 30.v + — entoncesx

Page 677: Espinoza Ramos 1

Aplicaciones de la Derivada 663

20a) La función costo marginal = C'(.x) = 30 — —x

20b) El costo marginal cuando x = 40 es: C '(4 0 )= 3 0 --------- = S29.29

6 1600

c) Costo de manufactura del 4 lavo, del reloj es C(41) — C(40) = S29.95.

( 7 ) Supóngase que un liquido se produce por cierto proceso químico y que la función del

costo total C(x) está dado por C(x) = 6 + A^fx, donde C(x) S es el costo total de la

producción de x galones del líquido. Encontrar:

a) El costo marginal cuando se produce 16 galones y

b) El número de galones producidos cuando el costo marginal es de 40 centavos por galón.

Solución

C(x) = La función del costo total para producir x galones: C(x) =6 + 4-Jx

2a) Costo marginal: CM = C"(x) = ~ j= , el costo marginal cuando x = 16 galones

4 x

CM = C' (16) = —p = = — = 0 / 5$ / galón.a/Í6 2 S

b) número de galones cuando el CM. es 0.40 cent/gal

2 4S0.40 = - t= => x = -------- r = 25 galones , \ x = 25 galones.

4 x (0.40)

Suponiendo que la función precio está dado por P(x) = 24 - 8x y la función costo por

C(x) = 4x + 10x supóngase además que el gobierno grava las ventas con un impuesto de

t% por cada unidad.

Determinar en términos de t. la cantidad de producción que maximiza la utilidad.

Determinar también el valor de t que maximiza la renta del gobierno por concepto de impuesto.

Page 678: Espinoza Ramos 1

664 Eduardo Espinoza Ramos

Solución

La función utilidad = U(x) = I(x) — C(x) donde I(p) = xP(x) = ingreso = 40.v - 8jc2

C(x) = 4x + 10* + t x - costo total :.U(x) = 4 0 x -8 jr -4 .V -1 0 8 - t x

U'(x) = 4 0 - 1 6 * - 4 - / = 0 => x - 1 unidades (en millones)

Renta del gobierno es = / g (/) = xt = (—■— )<,36-1 .

16

Igit) = ü f~ ^ /s(/) = l 6^ = ° ■' t=18%

Có) Si la ley de la demanda es P = ——c . Demuéstrese que el ingreso total disminuirá cuando

la producción aumenta, siendo el ingreso marginal una constante negativa.

Solución

Como la demanda es: P = - - c entonces I(x) = xP = a — ex por lo tanto, si x aumenta, elx

término ex aumenta y su diferencia con “a” disminuirá además lm e = - ^ ^ = -cdx

constante negativa.

( l ) Si la función de costo total esC(x) = O.lx2 +5x + 200. Determinar el costo promedio y

costo marginal.Solución

Como la función costo total C(x) = 0. l .r + 5x + 200

- C(x) — ? 00c ( x ) ~ ------ = función costo promedio; entonces C(x) = 0. lx + 5 + ------

x x

dC(x) .--------= costo marginal = 0.2x + 5.

dx

Page 679: Espinoza Ramos 1

Aplicaciones de la Derivada 665

© El número de dólares del costo total de la producción de x unidades de una mercancía es

C(x) = .V2 + 4a : + 8 . Encontrar la ecuación que defina.

a) El costo promedio.

b) El costo marginal y costo promedio marginal.

c) Encontrar el mínimo absoluto del costo unitario promedio.

d) Trazar las curvas del costo total, del costo promedio y del costo marginal en el mismo sistema de coordenadas verificar que los costos promedios y marginales son iguales cuando el costo promedio tiene un valor mínimo.

Solución

La función del costo total por manufactura x artículos es: C(x) = x 2 + 4a: + 8.

a) El costo promedio por definición es: C(x) es decir: C(x) = x + 4 + —X X

b) El costo marginal: Cmg(x) = C'(x) = 2x + 4 y el costo marginal promedio es:

C (x ) = l ~X ~

c) El mínimo absoluto del costo unitario promedio se obtiene haciendo_ g _C" (x) = 1 — — = 0 => x = 2V2 es decir que x = 2 ^2 es el número crítico de C(x)

x "- 16 - r- -¡2 — r-C ' ( x )= — de donde C"(2v2) = — >0=> C(x) tiene mínimo relativo en x = 2V2

jc3 2

OC(2V2) = 2^2 + 4 + — — = 4^2 + 4 = $9.64

2-/2

_ gademás se tiene que C ( x ) = x + 4 + — es continua en <(),+*>. Luego como

x

x = 2^2 . Entonces C(2-j2) = $9.64 es un valor mínimo absoluto del costo unitario.

Page 680: Espinoza Ramos 1

666 Eduardo Espinoza Ramos

d)

Una empresa tiene una producción de x toneladas de cierto artículo con un costo variable

total dado por C(x) = ax3 - b x 2 + e x . Demostrar que la curva de costo medio es una

parábola, hallar la producción que corresponde al costo medio mínimo y el valor del costo

medio respectivo.

Solución

C(x)El costo medio = Cme = — — = ax2 - bx + c completando cuadrados se tiene:

x

7 b h2 c h 1 b 7 b 2 b 7 4a c - b 2Cme(x) = a(x~----x + — - + ---------- ) = a ( x - — )- + c ~ — = a ( x —— )~ +---- ------

a 4 a a 4a 2a 4a 2a 4 a

de donde Cme+—— 4- — = a ( x - — )2 ecuación que representa una parábola, con vértice4 a 2a

b b2 - 4 ac , - , , . . Cme(x) ben (— ,-), ahora veremos el Cme(x) m ínim o---------------------- = 2a x - b = 0 =>x = —2 a 4a dx 2a

d 2Cme(x) . b------- -— - = 2a > 0 V x => x = —

dx~ 2a

Será la producción que corresponde al Cme(x) mínimo.

El valor del costo medio mínimo será: Cme(— ) = a(— )2 - b ( — )+c = — —2a 2a 2a 4a

Las gráficas son:

Yt

Page 681: Espinoza Ramos 1

Aplicaciones de la Derivada 667

Hy La curva del costo total del producto ó artículo está dado por y = 15x - 8.r2 + 2x3, de

donde y representa el costo total y x representa la cantidad producida. Suponga que las condiciones del mercado indican que deberán producirse entre 3 y 10 unidades (esto es3 < x < 10), Determine la cantidad en este intervalo para lo cual el costo medio ó promedio es mínimo.

Solución

Costo medio = y C(x) = — = 15 - 8x + 2x2x

tLL = - s + 4.v = 0 => x = 2 número critico dx

d 2~ d 2~— -- = 4 , Vx =;• — \x =2 = 4 > 0 = > 3 mínimo en x = 2 pero 2 no está en el intervalo dx~ dx' '

3 < x < 1 0 : si: x = 3, y = 9 y x = 10, y = 135

por lo tanto en el intervalo 3 < x < 10, el valor mínimo de y ocurre cuando x = 3 y el

valor máximo en x = 10 en ninguno de estos puntos — es igual a cero.dx

Luego entre 3 y 10 artículos, el costo promedio es mínimo para 3 unidades.

Para cada una de las siguientes funciones de costo promedio obtenga el valor mínimo del costo promedio mínimo, y demuestre que dicho costo promedio mínimo, el costo marginal y el costo promedio son iguales.

a) y = C (x ) = 2 5 - i x + x 2

Page 682: Espinoza Ramos 1

668 Eduardo Espinoza Ramos

Solución

— y —

Como y - — => y = x y = C(x) = costo total

y = C(x) = 25x - 8x1 + x l

= -8 + 2x = 0 => x = 4 número críticodx

d y d ' y . , .— — = 2 — — | v=4 = 2 > 0 => 3 mínimo en x = 4dx~ dx~

y = C(4) = 2 5 -3 2 + 16 = 9, ...(1)

Cntg(x) = C (x) = 25 - 1 6 x +3 x2 =C' (4) = 2 5 -6 4 + 4 8 = 9 ...(2)

de (1) y(2) y = C (x )

b) _y = 2 + * ln xSolución

v=C(x) = x v = 2x + x 2Lwc de donde — - = Lnx + l = 0=> x = e 1dx

d y 1 d l y . n a - -i— — = — =? — — _-, = e > 0 =>3 mínimo en x = edx 2 x dx 2 x=e

y = C(e x)-=2 + e lLne 1 entonces y = 2 - —e

1 2 1 1 2 1 1C'mg(x)=2 + 2xLnx + x reemplazando Cmg(—) = 2 + — —h— - 2 — + - = 2 —e e e e e e e

Page 683: Espinoza Ramos 1

Aplicaciones de la Derivada 6 6 9

12) El costo total de producir x artículos por semana es de: (ax2 +bx + c) pesos, el precio (en

pesos) al que cada artículo puede venderse es de P - ( P - a x 2). Demostrar que la

J a 2 + 3 a ( P - b ) - aproducción total para la ganancia G es: x = —------------------------

3a

Solución

Ingreso total l ( x ) = x P = x P ~ a x 3

Utilidad ó ganancia = U(x) = I(x) — C(x)

U(x) = x f ) - a x J - ( a x 2 +bx + c) derivando U'(x) = P - 3 a x 2 - 2 a x - b = 0

3 a x 2 + 2ax + b - p = 0 resolviendo:

- 2 a ± J 4 a 2 -A (3a)(b - p) - 2 a ± 2 j a 2 - 3 a b + 3apx = --------- ------------------------- = ------------ —— ----------------

6a 6a

- a ± J a 1 +3 a ( p - b ) - a + J a 2 + 3 a ( P - b )x - -----------------------------=> x = --------------------------------

3a 3a

13) Un fabricante de radios averigua que puede vender x instrumentos por semana a P pesos

xcada uno, siendo 5x = 375 - 3P. El costo de la producción es (500 + 15x + — ) pesos.

Demostrar que se obtiene la máxima ganancia cuando la producción es alrededor de 30 instrumentos por semana.

Solución

Ingreso total = I(x) = por la venta de número de instrumentos: I(x) = xP

x 2Costo total = c(x) = 500 +15x + —

5

Ganancia ó utilidad = u(x) = I (x )-c (x ) ...(1 )

Pero 5x = 375 — 3P => P = - 75~ 5*

Page 684: Espinoza Ramos 1

670 Eduardo Espinoza Ramos

/(*) =xP = 37 5 * -*

Luego

c(x) = 500 + 15* + :

...(2)

375*-5* xReemplazando (2) en (1) se tiene: u(x) = ------- ----------(500 + 15* + — ) , derivando

„ 375-10* 1£r 2x 1 8 7 5 -5 0 * -2 2 5 -6 * .u (*)---------------15------ -- ---------------------------- = 0

3 5 15

1650 - 56x = 0 => x = 1 ^ 2 = 29.46 valor crítico 56

«"(*) = - — => u " (29.46) = - — < 0 => d máximo en x = 29.4615 15

La máxima ganancia se obtiene al producir alrededor de 30 instrumentos por semana.

Si el problema 13 se supone que la relación entre x y P es * = 1 0 0 - 2 0 . Demostrar

que la producción que corresponde a una ganancia máxima es la de unos 25 instrumentos por semana.

Solución

l(x) = ingreso total = Xp c(x) = costo total = 500 +15* + —5

como * = 100-20,1— => 20-1— = 1 0 0 -*V 5 V 5

P , 1 0 0 -* 2 p _ (ÍOO-JC)25 20 80

/ (x) = xP = * (1 0 0 -* ) '80

U(x) = I(x) - c(x) reemplazando se tiene:

Page 685: Espinoza Ramos 1

Aplicaciones de la Derivada 671

_ ,v(l00—x)— — 1 5jc—— derivando se tiene80 5

„ . w = S O ^ _ i (100z í ) _ 2 i8 40 5 80 5

_ 100—jc 75 + 2x (100 - jc)(100 - 3x) -16(75 + 2x)~ 80 X 5 80

. . . . 1 3.r2 -4 3 2 + 8800 „ . . 256U (x) = --------------------- = 0 => x = 25, x = -------80 3

U"(x) = - — - 32- => í/"(25) = - — < 0 80 40

en x = 25, por lo tanto la máxima ganancia se obtiene al producir 25 instrumentos.

15 Esta semana en una fábrica se produjeron 50 unidades de cierta mercancía y la cantidad de producción aumenta a razón de 2 unidades por semana. Si C(x) dólares es el costo de

producción de x unidades donde: C(x) = 0.08*3 - x 2 +10*+ 48 , calcule la rapidez

actual a la que el costo de producción aumenta.

Solución

Sea x = número de mercancía

— = 2 unid/semana de

= rapidez actual en la que el costo de producción aumenta.

Como c(x) = 0.08x3 - x 2 +10x + 48 derivando se tiene:

Page 686: Espinoza Ramos 1

672 Eduardo Espinoza Ramos

= 0.24(50)2 (2) — 2(50)(2) + 10(2) =0.48(50)2 -4 (5 0 )+ 20 = 1020di

D,c{50) = 1020

El costo aumenta a razón de 1020 por semana.

16j En cierto mercado, la demanda por una clase especial de cereal para el desayuno está indicada por la ecuación de la demanda: Px + 25P = 4000, donde P centavos es el precio de una caja y x miles de cajas es la cantidad semanal demandada. Si el precio actual de dicho cereal es de 80 centavos por caja y ese precio aumenta a razón de 0.2 centavos semanales, calcule la razón de cambio de la demanda.

Solución

dP dxDatos: — = 0.2 centavos /semana ; — = ? para P = 80

dt dt

, nAft 4000-25Pcomo Px + 25P = 4000 => x = ---------------P

4000 „ dv 4000 dPx = ---------25 => — = -•------------P dt 2 dt

^ = - « 0 0 --------W _ = ^ 1 0 ; _ ! = _dt (80)2 (80)(80) 80 8

La demanda disminuye a razón de 0.125 miles de cajas por semana.

© La ecuación de la oferta de cierta mercancía es: x = 1000-^3P 2 +20P donde cada mes se

surten x unidades cuando P dólares es el precio por unidad. Calcule la razón de cambio en el suministro si el precio actual es de S20 por unidad y está aumentando a razón de $0.50 por mes.

Solución

dP dxDatos: — = 0.5 $/mes ; — = ? cuando P = $20

dt dt

x = m<h¡3P* + 20P se surten x unidades cuando p S es el precio por unidad

Ahora calculamos la derivada implícita.

Page 687: Espinoza Ramos 1

Aplicaciones de la Derivada 673

dx 1000(3^+10) dP , _ _n— = ----- -— cuando P = 20V3P2 +20P

1 0 0 0 ( 7 ^ 0 70000 ?5

di -^1200 + 400 40

El suministro aumenta a razón de 875 unidades por mes.

18j Suponga que “y” es el número de trabajadores en la fuerza laboral necesaria para producir

x unidades de cierta mercancía y, x = 4 y 2 . Si la producción de esta mercancía, este año,

es de 250,000 unidades y la producción aumenta a razón de 18000 unidades anuales. ¿Cuál es la razón actual a la que se debe incrementar dicha fuerza laboral?

Solución

Datos: x = 250,000 unidades ; — = 18,000 unidades anuales ; — = ?dt dt

como x = 4y 2 , cuando x = 250,000, y = 250 ahora derivando implícitamente la ecuación

x = y 2 con respecto al tiempo.

— = 8y— reemplazando los datos 18000 = 8(250)— => — = 11222. =gdt ' dt dt dt 8(250)

= 9 trabajadores anuales.

5.27 PROBLEMAS PROPUJE S TOS«-

O Un monopolista determina que si c(x) centavos es el costo total de la producción de x unidades de cierta mercancía, entonces c(x) = 25x + 20000, la ecuación de la demanda es x + 50P = 5000, donde son demandas x unidades cada semana, cuando el precio unitario es de P centavos, si se desea maximizar la utilidad semanal encontrar:

a) El número de unidades que deben producirse cada semana.

b> El precio de cada unidad.

Rpta. a) x = 1875 unidades b) P = $62.5

Page 688: Espinoza Ramos 1

674 Eduardo Espinoza Ramos

( 2) La ecuación de la demanda de cierta mercancía es P = ( x - 8 ) 2 y la función del costo

total está dada por C(x) = 1 8 x -x 2 donde c(x) dólares es el costo total cuando se compra

x unidades.

a) Determinar los valores permisibles de x.

b) Encontrar las funciones del ingreso marginal y del costo marginal.

c) Encontrar el valor de x que rinde la máxima utilidad.

d) Trazar las gráficas de las funciones del ingreso marginal y del costo en el mismosistema de coordenadas.

empleará una barda adicional para dividir el campo por la mitad. Si el costo de la barda central es de S 2 por metro lineal y el de la barda a lo largo de los lados es de S 3 por metro lineal encontrar las dimensiones del campo que haga que el costo de la barda sea mínima.

Rpta. a) x e [0 ,8] b) /'(x ) = (x -8 )(3 x -8 ) , c'(x) = 1 8 - 2 x

c) x = 1.89

( ? ) La ecuación de la demanda para cierta mercancía es Px2 - 9 P - 1 8 = 0 donde P dólares

es el precio por unidad cuando 1 OOx unidades son solicitadas. Encontrar:

a) La función del precio. b) La función del ingreso total.

c) La función del ingreso marginal.

d) Encontrar el ingreso total máximo absoluto.

1 ORpta. a ) -----— b)

Q -v-29 + x1800x

9 + x 2

( 4) Un campo rectangular que tiene un área de 2700w2, será cerrado con una barda y se

Rpta. Las dimensiones del campo que hacen que el costo mínimo son: 45 de ancho por60 de largo.

Page 689: Espinoza Ramos 1

Aplicaciones de la Derivada 675

© Un fabricante puede tener una utilidad de $20 en cada artículo si se producensemanalmente no más de 800 artículos. La utilidad decrece a 2 centavos por artículo que

sobre pasa los 800. ¿Cuántos artículos deben fabricarse a la semana para obtener la

utilidad máxima? Rpta. 900 artículos.

( ó ) Un fabricante puede producir grabadoras de cassette a un costo de $20 cada una. Calcular

que si las vende a x pesos cada una podrá vender aproximadamente 120 — x grabadoras

de cassette al mes. Determinar el precio de venta x que producirá la mayor utilidad para el

fabricante. Rpta. $ 70 cada una.

© Para cada una de las siguientes funciones de costo total, evalúe el costo marginal ydetermine el comportamiento del costo marginal (sí es creciente ó decreciente)

a) y = IOOOjc - 1 80x2 + 3jc3 b) y = 220 + 5 5 x - 2 x J + x 4

( ? ) Determinar el comportamiento de las funciones de costo promedio y marginal (creciente

o decreciente) para cada una de las siguientes funciones de costo total.

a) y = *Jx + 25 , 0 < x < 10 b) y = 9x + 5xe~2x

Rpta. a) 0 < x < 10 creciente el costo promedio y marginal

b) El costo marginal es decreciente para x < 1 y creciente para x > 1, el costo

promedio siempre es creciente.

( 9) La función de ingreso total de la empresa Compañía Manufacturera de Muebles

Coloniales se expresa mediante la ecuación I(x) = 2 4 x - 3 x 2 , en la que I(x) es el ingreso

y x es la cantidad vendida.

a) ¿Cuál es el ingreso máximo que la compañía puede esperar suponiendo que la ecuación anterior es válida?

b) ¿Cuál es la ecuación correspondiente a la función de ingreso marginal de esta compañía?

Page 690: Espinoza Ramos 1

676 Eduardo Espinoza Ramos

La compañía ANTO SA. fabrica gabinetes para aparatos de televisión, y el costo total de

producir cierto modelo está representando por la ecuación: y = 4 x - x 2 + 2x3 , en donde y

representa el costo total y x representa la cantidad producida (su valor numérico son millares de unidades). El departamento de ventas ha indicado que la producción x debe estar entre 2 y 6. ¿En que cantidad es mínimo el costo marginal?

si los vende a x pesos cada uno podrá vender aproximadamente 50 - x marcos al mes.

a) Exprese la utilidad mensual del fabricante como una función del precio de venta x y represente gráficamente esta función de utilidad.

b) Use el cálculo para determinar el precio de venta que ha de elevar al máximo la utilidad del fabricante.

Rpta. a) P(x) = (x-10) (50-x)

b) Precio óptimo de venta $30 utilidad máxima $370

El costo total de una firma que manufactura x bicicletas es c(x) = - 5x2 4-170x4 300.

a) ¿A qué nivel de producción decrece el costo marginal?

b) ¿A qué nivel de producción crece el costo marginal?

c) ¿Cuál es el mínimo costo marginal?

Rpta. En el intervalo 2 < x < 6, CM. es mínimo en x = 2

Un fabricante puede producir para camas de agua a un costo de $10 cada uno, calcula que

Rpta. a) 0 < x < 20 b) x > 20 c) c'(20) = 70

© Un fabricante de accesorios eléctricos tienen unos costos de producción diarios de1

X ~¿• = 8 0 0 -1 0 x 4 — . ¿Cuántos accesorios x se habrían de producir cada día para4

minimizar los costos? Rpta. 20

Page 691: Espinoza Ramos 1

Aplicaciones de la Derivada 677

14) Un fabricante de radios cobra $90 por unidad cuando el costo medio de producción por

unidad es de $60, para seguir, sin embargo, mayores pedidos de los distribuidores, el

fabricante reducirá el precio en $0.10 por unidad pedida a partir de las 100 primeras.

Hallar el menor pedido que podría admitir el fabricante para obtener beneficio máximo.

Rpta. 200

15) Una empresa que fabrica y vende escritorios trabaja en competición perfecta y puede

vender a un precio de $200 el escritorio, todos los escritorios que produce si x escritorios

se produce y se vende cada semana y c(x) dólares es el costo total de la producción

semanal, entonces c(x) = x 2 + 4x+3000. Determine cuántos escritorios deberán

fabricarse por semana para que la empresa obtenga la mayor utilidad total por semana.

¿Cuál es dicha utilidad total máxima por semana? Rpta. 80, $ 3400

16) Suponga que en una situación de monopolio la ecuación de la demanda de cierto artículo

es P = 6 -y-y /jt-100 , donde P dólares es el precio por artículo cuando se demanda x

artículos y x e[100, 1000]. Si c(x) dólares es el costo total de la producción de xartículos, entonces: c(x) = 2x + 100

a) Encuentre las funciones del ingreso marginal y del costo marginal.

b) Calcule el valor de x que arroje la máxima utilidad.

1 yRpta. a) Img(jc) = 6 — V x -1 0 0 ----------------- -:— ; Cmg(x) = 2

5 10Vjc-100

b) 200 ó 100

17) En competencia perfecta, una firma puede vender a un precio de 100 dólares por unidad

todo lo que produce de una cierta mercancía. Si a diario se produce x unidades, el número

de dólares del costo total de la producción diaria, es x 2 + 20*+ 700. Hallar el número de

unidades que deben producirse diariamente para que la firma obtenga la máxima utilidad

total diaria. Rpta. La mayor utilidad diaria es cuando se produce 40 unidades por día.

Page 692: Espinoza Ramos 1

678 Eduardo Espinoza Ramos

(Í8) Un fabricante en la producción de cierto artículo, ha descubierto que la demanda del

artículo viene representando por x = .^22. suponiendo que el ingreso total I(x) está porP 2

I(x) = xP que el costo de producción x artículos está dado por: c(x) = 0.5x + 500, hallar el

precio por unidad que dé un beneficio máximo. Rpta. SI.00

19) La función de demanda de un cierto artículo está dado por P = (1 6 -x )1,2.0 < x < 16,

calcular para que precio y cantidad el ingreso es máximo. Rpta. P ■= , x = ~

(20) Un cierto artículo tiene una función de demanda dada por P = 100 - y la función de

costo total es C(x) = 40x + 375.

a) Qué precio da el beneficio máximo?

b) Cuál es el costo medio por unidad si se produce para obtener el beneficio máximo?

Rpta. a) $80.00 b) $99.29

5.28 LA REGLA DE L HOSPITAL.-

Para calcular límites de funciones que asumen formas indeterminadas, se debe tener en

cuenta las siguientes formas indeterminadas.

a) lera. De La Forma 20

Consideremos dos funciones derivables f y g en un intervalo abierto I, excepto posiblemente en a e I. Suponiendo que V x * a en I, g' (x ) 0 y sí lim f (x ) = 0 y

x-*a

lim g(x) = 0 , entonces:

¿YvV fVvi.. .d)Hmi í s

g(x) » > « g ü ) :

Page 693: Espinoza Ramos 1

Aplicaciones de la Derivada 679

OBSERVACION

f wi) En el caso que / ' (a) - 0 , g'(a) = 0 se aplica la expresión (1) al cociente------- esg ’M

decir:

») En algunos casos puede ocurrir que sea necesario repetir el procedimiento variasveces.

¡íi) Si a = oo, la sustitución de x = — el problema se reduce a evaluar el límitez

cuando z —>0 esto es:

, , = l im------7- = lim1, 1 z -* 0 . , 1 , jr->oo g ' (x )

g ' M2

b) De La Forma

f ( x )Para determinar él l im------ cuando él lim / ( x ) = o o , y lim g(x) = o o , es

x —>a g(x) x->a x —>a

suficiente aplicar la regla establecida en (1).

c) De La Forma O.oo

Para determinar él lim f (x) .g(x) cuando lim f (x) = 0 y lim g(x) = <*>, a lax —>a x —>a * x~>a

0 00función f(x). g(x) se expone dé tal manera que adopte una de las formas — ó — es

O oo

decir:

ó también

Luego se aplica la regla establecida en (1)

Page 694: Espinoza Ramos 1

680 Eduardo Espinoza Ramos

d) De La Forma oo - oo

Para determinar él l i m ( f ( x ) - g ( x )) cuando: lim f ( x ) = oo, l img(x) = oo, lax —>a ' x->a x —>a

función f(x) - g(x) se expresa en la forma siguiente:

y de esta manera cuando x -> a, toma la forma — luego se aplica la forma

establecida en (1)

e) De la forma 0o, °o0, 1“

Para determinar el lim ( / (x)g('x)) que toma la forma: 0o , oo°, 100, cuando x —» a,x->a

se debe tener en cuenta que / (x) g(-x) = e .

5.29 EJERCICIOS DESARROLLADOS.

©

©

©

Lnx l im------*-»1 X ~ 1

Um — = l i m - = 1x-> l X — 1 *->1 X

X — 1lim --1

lim —— = lim - 1 x n -1 x~*1 H X

.V - Xe - eJim-----------sen x

n-1 n

Solución

Solución

x -1 1.limx-> i x ” - 1 n

Solución

Page 695: Espinoza Ramos 1

Aplicaciones de la Derivada 681

® limx- - -*n

X » Xa - nx ->0 „V

Solución

a * - b x a ' L n ( a ) - b xLn(b) T T , a x - b x Tlint---------- = l im------------------------ - = Lna - Lnb h m ----------- = Lnt-» 0 X Jr—»0 1 jr-»0 x

( ¿ ) lim x" sen —, n >0JT-.II X

Solución

a a sen - , , a a , nhm x sen — = h m ----------------- , donde r = — => x = — cuando x oo, z -> 0

X z-»*1 ~n X Z

„ a a senz .. a cosz a lim x sen — = h m -----------= h m -------- — - —— = oox z ->0 z-»0 f¡ ~ n 1 o

® limsen k x

*2 2 - xSolución

, sen n x , n eos n x h m --------- = hm —-........ - = - n•r->2 2 - X -1

0 1im e - eos x■V >o x sen x

Solución

.. ex -e o s * .. e ^ - s e n x 1 + 0h m -------------= h m ------------------- = ------ = oox-+o x senx *->osenx + xcosx 0

® limv-O. x - 2

2 x - 2Solución

n -»n n-1x - 2 nx „^«-il im---------- = l im -------- = n i■>'->2 X-2 a ~>2 1

cr | C

l

Page 696: Espinoza Ramos 1

682 Eduardo Espinoza Ramos

¿«(sen x)© lim ,

x-ntii (n - 2 x )Solución

Z,w(senx) c tg x -co s ec~x 1lim -----------— = lim -------------- = lim --------------- = —

Jr-xr/2 (ft — 2x) x-*n!2 —4(n —2x) x-*n!2 8 8

10) lim ( n - 2 are. tg x)Lnx^ .r-»or-

Solución

l i m ( n - 2 are. tg x)Lnx = lim —— 2arc-t^ xx —>zr x —>cc 1

Lnx

-2

® lim xLn(senx)x->0

1+ x2 ,■ 2xLn2x .. 2Ln2x + 4 2= lim — = l im ------- — = l i m ------------- = h m — = 0X—»00 1 x —>00 \ + X x—»00 2.X x —>co X

xLn2x

Solución

Ln(senx) .. c t g x lim xLn(sen x) = l im ------ ------= lim — —x-+0 x —fO 1 x —»0 1

I " I 7

-e o s ec2x x 3 .. 3x2 3x 0 .l im -------------= - l im ---------— = - l im---------- = - l im ------------= — = 0*->o _2_ x-to 2 sen x 2 sen 2x *->o 2 eos 2x 2

3

12} lim x senxx->0

Solución

. lim sen x.Lnx — -— —• „ , --------------- nlim x senx = lim esenxLnx = = lim e ULnx = e ^ ° VxLn x = e “ = e ° = 1x —>0 x-+0 x—>0

•. lim x senx = 1jr-*0

Page 697: Espinoza Ramos 1

Aplicaciones de la Derivada 683

©\[x - \ f a

'" '■ -Tx- raSolución

\ [ x - \ [ a 2-Jx 2a1,2lint - t=---- = - = lim■\lx-4a x~*a i lfx* 3a 2n 3a 1/6

lim ----- -x-m) sen*

Solución

'1 = Uní —lim ■jr-»o sen * *->ocosx

■ = 1

© limx~*0

L n eos *

Ln eos* . . . . -l im -------— = lim ( - tg x) = 0jr-*0 X jr~*0

limx~-,° -e o s P x

Solución

Solución

e ^ - c o s a x a e ^ - a s e n a x al im---- —------------ = l im ------------------------= —x~*° f ie^* -eo s fí x x->° p e ^ * - p sen p x P

limX- *{)

x - are. tg *

Solución

x - a r c A g x l im --------;——— = lim

1 -l + x 2 1= — lim -

*-*» 3x 3 *->o x ( l + x ) 3

Page 698: Espinoza Ramos 1

684 Eduardo Espinoza Ramos

lint ea^ -1'-*0 -Jscnbx

Solución

e ^ - l ahm , -------= lim — ;=e ^ = lima sen bx

r~+° Vscn bx x M) 2-Jx b eos bx x->‘o b eos bx.-Jx2-Jsenbx

Vsenbx a .. 2-Jsenbx a b jxco sb x= — lim ■ ■ — lim -

b >->o eos bx *->o ~Jx b *->o 1 b *-»o -Jseñbx2^/x

1 a- a lim - .---------- r

•t->0 I b sen bx -4bbx

l i m - -----—*-*0 c x - d x

a - tlim« » c 1 - d x

■ = lim

Solución

a xL n a - b xLnb _ Ln a -L n b _ ^ d ^c x L n c . -d x Lnd L n c - L n d i n(^L\

d

©Lnx

limx - *q Ln(sen*)

limLnx

= lim x

Solución

senje , l im-------- 1 = 1Lu(sen x) *-»o eos* x->o x eos x

sen*

5.30 EJERCICIOS PROPUESTOS.-

Hallar los límites siguientes aplicando la Regla de L’Hospital.

O x - sen xl im■V“*0 J C - t g X

Rpta. - 1

Page 699: Espinoza Ramos 1

Aplicaciones de la Derivada 685

©

m m

( ? ) lim ------—x - a

( 4) lim —------ —x ->() COS X — 1

© lim ■e ~e-v->n sen x. eos x

© l m e‘ ' e ' - 2x*->0 x - sen x

® l im

x X 3 x 2e ----------------x — 1

6___ 2____x —>0

eos*+ :----- 11

Ln( 1 + x )4 - 4 x + 2x2 - - x 3 + x 4( i ) l im------------------------------ j-

-v-»° 6 se n x -6 x + x

© limL / / ( l - X ) + tg —

r-» l t ' t g 7T X

eos x .Lnx -a l im------- ---------v~>fl I« (e r - e a )

12J //« (—-------— )1 Zwx Lux

Rpta. 2

Rpta. — an

Rpta. -2

Rpta. 2

Rpta. 2

Rpta. 1

Rpta. 16

Rpta. -2

Rpta. I

Rpta. eos a

Rpta. -1

Page 700: Espinoza Ramos 1

686 Eduardo Espinoza Ramos

® Iim x x Rpta. 1x~*0

© l im ( - ) seax Rpta. 1^ x - ,0 x

© l im x [ + x 2 ~ l x ~ 15 Rpta. 26/5x~* x — 5x ■+* 8x “ 6

sen2x + 2sen2 x -2 s e n x „ x .l i m .......... .................. ---------- Rpta. 4-v eos x -e o s x

m senx-senm x _ , ni17) lint---------------------- Rpta. —*->o x(cosx-cos/wx) 3

18) l i ni xLn (sen x) Rpta. 0^ X —>0

19) lint e +SWC 1 Rpta. 2*-><> Ln( 1 + x)

20) lint ■■■■■ x + Lnx= Rpta. -1• ^ ' l - ^ x - x 2

21) lint ?*-- °°Sx + e - ■ Rpta. 2v->o xsenx

. . . , sen (o ¡+ x )-sen (a -x ) _22) ! im----- ------- -------- ------- - Rpta. -ctga »<> cos(a + x) - cos(a - x)

( x - 2 ) e x + x + 2 1lim------ ----- —— Rpta. -.r o (ex - l f 6

24) H m - tg — Rpta. -k J JT-+0 x 2 2

7 1 125) Hm----- ------------ Rpta. -" .v->osen2 1 -co sx 2

Page 701: Espinoza Ramos 1

Aplicaciones de la Derivada 687

26J lim x 1 ' Rpta. e 1.r—>0

u \ 2/3 , /, 2x3/4(LtlX) + (1—X )27) l im---------- — ---- ------- Rpta. 1

sen (x -1 )

28) lim (senx)tg' Rpta. 1

291 Rpta. «.<•->() tg X - X

(30) lim(------—= --------- Rpta. —^ '-*1 2(1-V x ) 3(1-V x ) 12

5.31 FUNCIONES HIPERBOLICAS.-

A las funciones trigonométricas a veces se llaman funciones circulares debido a la

estrecha relación que tiene con él circulo x 2 +y~ = 1.

En la misma forma ciertas combinaciones de las exponenciales ex , e~x se relaciona con la hipérbola que son:

Seno hiperbólico, coseno hiperbólico, tangente hiperbólica cotangente hiperbólica , secante hiperbólica, cosecante hiperbólica y que denotaremos por: Senh, Cosh, Tgh, Ctgh, Sech, cosech. respectivamente. Ahora daremos las definiciones de cada una de estas funciones hiperbólicas.

a) DEFINICION.- La función seno hiperbólico f : R -> R, se define de la formasiguiente:

/(x ) - s c n h x ~e * - e ‘

lili

donde D f = < - 00,+00 > y R f = < - 00,+00 > . Su gráfica es:

Page 702: Espinoza Ramos 1

688 Eduardo Espinoza Ramos

b) DEFINICION.- La función coseno hiperbólica f: R —> R, se define de la forma siguiente:

f Or) = cosh x~-e*+e~x

donde D f ~ <-oo,+oo> y R , = < -oo,+go > . Su gráfica es:

A la gráfica del coseno hiperbólico se le llama “cateriana”

La cual adopta la forma de un cable flexible y uniforme que cuelga de dos puntosfijos.

OBSERVACIÓN.- Las funciones Senh x y Cosh x no son independientes pues, de las dos funciones se tiene:

senh .x ■

Cosh x =X . - xe +e

senh2 x • e2x - 2 + e ~2x

, de donde, cosh2 x - senh2 x = 1

Cosfrx2x -2 v

2 e + 2 + e

Page 703: Espinoza Ramos 1

Aplicaciones de la Derivada 689

además de:

senh x = e - e

X . - x

Cosh x = e +e

ex =senh x + cosh x

e x = cosh x. senh x

c) DEFINICIÓN.- La función tangente hiperbólica f: R —>R se define de la forma siguiente:

_i- * e ~ e+e

donde D r = <-*>,+00 > y R f = < - ! , ! > . Su gráfico es:

d) DEFINICIÓN.- La función cotangente hiperbólica f: R —>R se define de la forma siguiente:

x

donde D f = < -oo,0 > U < 0,+oo > y Rf = < -oo,-l > U < l,+oo > . Su gráfica es:

Page 704: Espinoza Ramos 1

6 9 0 Eduardo Espinoza Ramos

e) DEFINICIÓN.- La función secante hiperbólica f: R-4R define de la formasiguiente:

donde D f = < -oo,+oo > y R f = < 0,1]. Su gráfica es:

f) DEFINICIÓN.- La función cosecante hiperbólica f: R->R, se define de la forma siguiente.

/ Ix) ~

donde D f ~ < -oo,0 > U < 0,+oo > y R f — < -oo,0 > U < 0,+» > . Su gráfica es:

g) IDENTIDADES FUNDAMENTALES DE LAS FUNCIONESHIPERBÓLICAS.-

0 cosh2 x -s e n h 2 x = l ( 2) 1 - tg h 2 x = sech2x

(T ) l - c t g h 2 x = - c o sech 2x ( 7 ) tg h x = — -—^ c tgh x

Page 705: Espinoza Ramos 1

Aplicaciones de la Derivada 691

©©©

©

tío )

senh 2x = 2senh x cosh x ©

senh(x ± y) = senh x.cosh y ± coshx . senhy

cosh(x ± y) = cosh x . cosh y ± senh x.senh y

tgh x ± tgh .y

cosh 2x = cosh2 x + senh2 x

tgh(jc ± y) =l l tg h x . tgh y

©

. _ y .A + B A — Bsenh A + senh B - 2 senh(------- ).cosh(------- )

cosh A + cosh B - 2 cosh( +- ^ ). cosh(———)

,2 cosh 2 x - l 2 cosh 2x +1senh' x = -------------- , cosh x = ---------------

©

©

EJEM PLOS DE APLICACION:

Demostrar que: tg(lnx) = x 2 - \ x 2 +1

Solución

Como tgh x ■ e - e e 21 -1e +e

tgh(lnx) =2Lnx * Lnx2 -i 2 ie - l e -1 X -1

+ 1 e Lnx +1 X +1

NOTA.- Se ha aplicado las siguientes propiedades

(T ) e Lna=a ©

x 2 - l tgh(lnx) = — — x +1

Arlna = lna

_ 1 + tg h x -,tDemostrar q u e : ----------- = e~

1 — tgh x

Como tgh x = e 2x- le2x +1

Solución

. al reemplazar se tiene

Page 706: Espinoza Ramos 1

6 9 2 Eduardo Espinoza Ramos

1 +2x i 2x , i . ^ x i 2xe -1 e +l + e -1 2e

1 + tgh x _ g^ + i 1 -tg h x e

2x . ie +1-1 e 2x + l - e 2x +1

e 2* + l _ 2e2x _ _ 2*

e 2x +1 e 2x +1 e 2x+l

( T ) Demostrar que: (senh x + cosh x )" =cosh n x +senh n x

Solución

1 + tgh x 1 -tg h x

= e

senh x = e - e

cosh x + senh x = ex

Cosh x = -

(cosh x + senh x)" = e nx

senh (nx) ■

cosh (nx) ■

nx -n xe - e

cosh (nx) + senh (nx) = e" ...(2)

Luego comparando (1) y (2) se tiene que: (coshx + senhx )n = cosh nx + senh nx

© Demostrar que: tgh(-x) = -tghx

Solución

- x - (- x ) - x X X - x. , . . e - e v ' e - e e - e . .tgh(-.v) = — ;------------------- — = — ----- = —--— = - tgh xe +e 1 ' e +e e +e

tgh(-x) = -tgh x.

© Calcular el valor de x si: tgh(lnx) = —4

Solución

ln * , - ln x -ié? ~~ (2 1 1tgh(lnx) : [n +------ bT = - ^ ’ aplicando las propiedades e - a se tiene:

Page 707: Espinoza Ramos 1

Aplicaciones de la Derivada 693

©

I.

©©©

©

©©

©

* — 1___ x_ ___£_1 4x + —X

X -1 _ 1x~ +1 _ 4

4x2 - 4 = - x 2 -1 => 5*2 =3

x = ± , |— de donde

Calcular el valor de x si senh (ln 2x) = cosh (ln x)

Solución

senh (ln 2x) = cosh (ln x) por definición se tiene:

í,ln2-' - e~,n2x e ,nx+ e- lDX i i------------------ = -----------------de donde 2 x ------- = x + — simplificando-i *2 2 2 x x

4x2 -1 = 2 x 2 +2 => 2x2 =3 => * , [ J . ¡3= ± J — por lo tanto x = J —

Demostrar las identidades siguientes:

cosh (x ± y) = cosh x. cosh y ± senh x. senh y

senh (x ± y) = senh x. cosh y ± cosh x. senh y

tgh x ± tgh ytgh(.v ± y) =

1± tgh*. tgh>>

sen A + senh B = 2 senh(-------- ) cosh(—— )

cosh A + coshB - 2 cosh(^ + -g)cosh(———)

, , x - v senh x - senh ytgh(—— ) = — ---------- r 1-

2 cosh * + cosh y

sech (-x) = sechx ( s ) cosech(-x) = -cosech x

Page 708: Espinoza Ramos 1

694 Eduardo Espinoza Ramos

® » n h í = ± f e < Í L £ l i 110) coSh | = ± , lcOShlr + 1

11.

©

Demostrar que:

senh 2xtgh x :

cosh 2x + l ©cosh 2x + cosh 4 y senh 2x +senh 4 y

= c tgh(x + 2y)

( 3) senh2 x - senh2 y = senh(x + y) senh(x - y)

@ senh 3x = 3 senh x + 4 senh3 x © cosh 3x = 4 cosh3 x - 3 cosh;

5,33 DERIVADAS DE LAS FUNCIONES HIPERBGLICAS.-

Mediante la regla de la derivada de la función exponencial se puede deducir las fórmulas de derivación de las funciones hiperbólicas.

Sea u una función de x diferenciable, entonces

© Si y - senh u => ~~ - cosh u.~~' ih iíx

Si v = coshw =?> w.—dx dx

( 7 ) Si y = igb 11 => ~ = %cc/r«.dx

( 4 ) Si y “ ctghu ech2u dud\

,,. : í;: ' ., dy . > i . , ■ , > daSi y = seen u s? ™ s= -see h u. tgh u .—

dx dx

Si y - cosech a ~ oc «.í'tgh a . ~' / í/x " dx

Page 709: Espinoza Ramos 1

Ejemplo.- Hallar la derivada de las siguientes funciones

0 / (x) = ln(senhx3)Solución

u k f u x (senhx3)' coshx3(x3)' , . 3 , 2 f (x) = ln (senhx ') => f (x) = ---------- — = ------------ — = c tghx 3 xsenh x senh x

: . f ' ( x ) = 3x2c tgh x3

( 2) f (x) = sech2x + 3cosech2xSolución

f ( x ) = sech 2x + 2 eose c h 2x => f ' ( x ) = 2 sec/)x.(scnhx) + 6 eosechx.(cosechx)'

= -2 sec h2x. tgh x - 6 eos ech2x.c tgh x

© / ( * ) = .

Aplicaciones de la Derivada 695

tgh x + senh x senh x - tgh x

Solución

2 cosh2 ~~~tgh x + senh x senh x(l + cosh x) 1 + cosh x ? , 2 x------------------= ----------------------- = --- — — = -------------- — = c tgh —senhx - tghx senhx(coshx-l) coshx-1 2 h 2 * ^

... , tghx +senhx , 2 x , x/ ( * ) = , —----------- — - Jc tg h — = e ig h ­

ty sen h x -tg h x y 2 2

f ' (x ) = -eos ech2 eos ech2 —' 2 2 2 2

@ cosh-* . . . „ i .

^ 2 - v i + cosh2 xSolución

Simplificando V x * 0 se tiene:

Page 710: Espinoza Ramos 1

696 Eduardo Espinoza Ramos

. . v y¡2 +Vl-I COSh2 X ,2 (V2 +Vl + COSh2 x )2 2f ( x ) = - ------.................---.senhz x = i — — ---------- — — .senh2 xV 2 - v l + cosh2 x 2 -1 -c o sh " x

(42 + VT+cosh2 x ) 2 , 2 (V? + Vi + cosh2 x ) 2 , 2= ----------------- ---------- senh x = ---------------------------- .senh* a1 - cosh x senh“ x

f (x) = -(V 2 + v i + cosh2 x ) 2 , derivando se tiene.

rz í. 71 senhx coshx f (x) = -2(V2 + y l + cosh~ x )(0 + - ----- ....)Vi + cosh2 x

..., , - (V2 + Vi + cosh2 x ) senh 2*••• J w =--------- 1— — —-------

Vi + cosh x

dvEjemplo.- Usando derivación implícita; hallar y'= —' dx

y = sen h (x -y )Solución

y = senh(x - y) => y' = cosh(x - y).(l - y ' )

=> y'+ cosh(x - y)y' = cosh(x - y)

=> [1 + cosh(x - y)]y' = cosh(x - y) y'

( 2) y = senh(cosh( x 2 + y 2 ))Solución

y' = cosh(cosh (x 2 + y 2 )).(cosh( x 2 + y2))'

>•'= cosh(cosh( x 2 + y 2 )).senh(x2 + y 2).(2x + 2y.y')

y'—2 y cosh(cosh( x 2 + y 2 )).senh(x2 + y 2 ).y'

= 2xcosh(cosh( x 2 + y 2 ) ) senh(x2 + y 2 )

cosh(x - y)1 + cosh(x - y)

Page 711: Espinoza Ramos 1

Aplicaciones de la Derivada 697

[l-2_ycosh(cosh(x2 + y 2))senh(x2 + y 2)]y' = 2xcosh(cosh( x 2 + y 2 ))senh(x2 + y 2)

2x cosh(cosh(x2 + y 2 ))senh(x2 + y 2)1 - 2 y cosh(cosh(x2 + y 2))senh(x2 + y 2)

@ f ( x ) = x seDhASolución

Tomando logaritmo a ambos miembros se tiene:

Ln( f ( x ) ) = Lnx™hx = senh x.Liix aplicando derivación implícita.

^ x y = cosh x.L//x +senhx.— entonces f ' ( x ) = /(x)(cosh x,L>vc + sen^ X)f ( x ) X ‘ ‘ X

y , / \ / , . S e n h X senh j: . f (x) = (cosh x.Lnx+-------- )x

y + sennx + y - s e n n x _ ^ y j - s e n h x \ y + senhx

Solución

Elevando el cuadrado a ambos miembros de la igualdad

( f c y e n h £ + b ^ X j . ^ 2

y y -se n h x y y + senhx

y + senhx y-se:nhx , . y + senhx y -se n h x _ -------------+------------- + 2 = 5 simplificando se tiene - ------------+ --------------- = 3_y-senhx .y + senhx y -s e n h x y + senhx

(y + senhx)2 + (y - s e n h x )2 =3(.y2 -se n h 2 x)

2y 2 + 2 senh2 x = 3,y2 - 3 senh2 x simplificando

>'2 = 5senh2 x derivando implícitamente 2yy’ = 10 senhx coshx despejando y'

, 5 senhx coshx 5senh2x , 5senh2xV = -------------------------------- = — - — ••• y = — z—y 2 y 2 y

Page 712: Espinoza Ramos 1

698 Eduardo Espinoza Ramos

5,34 EJERCICIOS PROPUESTOSmi

Hallar la derivada de las siguientes funciones

( ? ) f ( x ) = scnh(^¡— i-)x ' - 2

Q ) f ( x ) = co sh (^ — 10x+9)x- + 10X+9

©

©

1 — X + X f { x ) = senh( - )1+ x + x

f ( x ) = (— + — ^ —) senh x cosh x cosh x

©

©

©

©

/(-*) =senh x. cosh x

4 a cosh2 + b see / r ;

/ ( x ) = tg (^— ) x -1

f i \ . ur*2 ~18x + 32/ W = tgh(— — — )x~ + 18x+32

, , , coshx , , , , x >xf ( x ) = -------- ~ L n ( c tgh(—))

senh . 2

©

©

f ( x ) = tgh(---------- - )1 -x + x

f ( x ) = tgh (x -^ /x3 +26)

10) / (x) = ln(cosh x) + -1

2 cosh"x

12) f ( x ) =a + b tgh(x / 2) a-Z>tgh(x/2)

f ( x ) = ln[arcsec(cos(tgh-\/x + -7x)

)]

v 1 , -J2 , + tghx^/ (x) — — tghx + ~ — ln( V- s )

2 8 1 —s/2 tghx

©

/ ( x ) =eos ecAx+ c tgh x eose c h x -c tghx

/ (x) = are. sen(tgh x ")

,, v , . x 2 + 7x + 10, /íx )= t- tg h (— —-----—)x 2 - 7x +10

16j f(x)=arcAg(senhx~)

18) / (x) = ln(c tgh 3x - eos ech3x)

t-, * í./ X + 1 i /(x ) = seeA(— --------- )x +x + l

Page 713: Espinoza Ramos 1

Aplicaciones de la Derivada 699

II. Usando derivación implícita hallar y'= —' dx

© ctg(xy) + xy = 0 © cosh (x + y) = y senh x

tgh y = 3x2 + tgh(x + y) y = sen(cosh( x 2 + y 2))

OBSERVACIÓN.- Por medio de las derivadas de las funciones hiperbólicas y la regla de L’Hospital se puede establecer las propiedades siguientes:

c 0 //w senh x = 0 ( 2 J lim cosh x = 1vxi ' —' v->n

® / /» 2 £ ! 5 £ = i @ / » M í^ J >0 X — jf—>0 X

■ 1

1-senhx „ 1 -co sh x -1hm© //wi z ! “ 5£ = o (6 )

^ jr—>0 rj r —» 0 x jt- > 0 2

Ejemplo.- Calcular el límite de las siguientes fondones

© i,,,,w <->o 1 - cosh I x

Solución

® lin,v-__vn

l-c o sh 2 x -2senh2x , 4 cosh 2* 4h m ---------------= l im ---------------- = l im ---------------- —

1 - cosh I x x-»o - 7 senh7x *-><» 49 cosh I x 49

senh 9 x -sen h 5xx cosh x

Solución

senh9x-senh5x 9cosh9x-5cosh5x 9 - 5 „h m ---------------------- -- h m ------------------ -------- = ------- = 4v->o x cosh x .v—>o coshx + xsenhx 1 + 0

® limx -sen h 4x

>i» x + senh 5xSolución

, x -se n h 4 x , l-4 c o sh 4 x 1 -4 -3 1h m -------------- = h m -----------------= -------= — = —v >n x + senh 5x >>o l + 5 cosh 5x 1 + 5 6 2

Page 714: Espinoza Ramos 1

700 Eduardo Espinoza Ramos

( 4) lintsenh(Tr-jt)

© lintr —*11

x ( n - x )Solución

senh(7r-jc) -c o s h (^ -x ) -1 1h m ------------- - = lint----------------- = --------- —*-nt x ( n - x ) x->x n - 2 x n - 2 n n

1 - cosh a xt-»() 2

Solución

, 1 - cosh a x , - a senh a x , - a 2 cosh a x a 2lint------------- = lint--------------- = lint-------- ------------------*-»() x ~ x >0 2x x —>n 2 2

EJERCICIOS PROPUESTOS

Calcular los límites que se indican

senh 15x „ , ,lint------------ Rpta. 15. «»o x

© , senh 3x „ 3lint---------- Rpta. —*-><> sen 5* 5

® 2 - Jcosh x - cosh x 3lint---- ^ -------------------- Rpta. - -.v—>0 2 4

l-co s(sen h x ) „ 1lint------------------- Rpta. -*-+° sen (senh 2x) 8

Page 715: Espinoza Ramos 1

Aplicaciones de la Derivada 701

5.35 FUNCIONES HIPERBOLICAS INVERSAS.-

Las funciones hiperbólicas senh x, tgh x, ctgh x y cosech x son inyectivas en todo su

dominio por lo tanto tiene inversas, y las funciones hiperbólicas cosh x, senh x no son

inyectivas, pero si restringimos su dominio en el intervalo [0,+*>>, en éste intervalo las

funciones cosh x, sech x son inyectivas por lo tanto se puede determinar su inversa.

Ahora definiremos la inversa de cada una de estas funciones.

a) DEFINICIÓN.- A la inversa de la función seno hiperbólico denotaremos por

are.senh ó sen h '1 y es definida del modo siguiente:

y ~ arc.scnh x <» % - senh y

í senh(arc. senh x) = x de donde < . Su gráfica es:

[ are. senh(senh y) = y

b) DEFINICIÓN.- A la inversa de la función coseno hiperbólico denotaremos por

arc.cosh ó cosh 1 y es definido del modo siguiente:

y - a r c * c » s h x o x * cosh y, y > 0

donde su dominio es [l,+x>> y el rango es [0,+«»

í cosh(arc. cosh jc) = x, x > 1 además < . Su gráfica es:

[ are. cosh(cosh y) = y, V S 0

Page 716: Espinoza Ramos 1

702 Eduardo Espinoza Ramos

c) DEFINICIÓN.- A la función inversa de la tangente hiperbólica denotaremos por

arc.tgh ó tgh”1 y es definida del modo siguiente.

Donde su dominio es < -1 ,1> y su rango es R. Su gráfica es:

d) DEFINICIÓN.- A la inversa de la función cotangente hiperbólica denotaremos

por arc.ctgh ó c tg h '1 y es definido del modo siguiente.

y - arc.ctgb x , x - ctgh y

Donde su dominio es <-*>,-1> u <1, +oo> y el rango R —{0}. Su gráfica es:

Page 717: Espinoza Ramos 1

Aplicaciones de la Derivada 703

e) DEFINICIÓN.- A la inversa de la función secante hiperbólica denotaremos por

arc.sech ó sec h 1 y es definida del modo siguiente:

y = arc.sech x o x M seeb y

donde su dominio es <0, 1] y el rango [0, +«£>. Su gráfico es:

f) DEFINICIÓN.- A la inversa de la función cosecante hiperbólica denotaremos por

arc.cosech x ó eos ech [ y es definida del modo siguiente

; y » arccosecb eose¿#f ;

Donde su dominio es <-oo ,0> U <0, +x> y el rango <-oo, 0> U <0, +oo>.

Su gráfico es:

OBSERVACION.- También a las {unciones hiperbólicas inversas se puede expresar en términos de logaritmo natural.

Page 718: Espinoza Ramos 1

704 Eduardo Espinoza Ramos

arc . fó tú lx~Lt t (x+4x2 +3}; V x e R

an .cosh x ~ Ln(x + ^ x 2 +1 ) , para x ¿ 1

1 1 + xare. Igb x = — !« ( -—~ ) . para [x¡ < 1

2 l ~ x

an x tgh x - -- ¿«f-—~ ) . para |xi> 1 ~ 2 1 - x

5.36 DERIVACION DE LAS FUNCIONES HIPERBOLICAS INVERSAS.- . . v

Sea u una función diferenciable de x, entonces

* 1 1

( l ) y - arc.cosh — - - ~ ^ = , u > }4 u 2 ~ i

( 3} y - a t e . tgh u(x) => “ » U} X , luj < 1

( 4 ) y = arc.etglt u{x> => ~ ~ ~ — —r ; ju¡ > !:? . : ■ : sá s :§ls¡: § il sí?;:::: w: »I»!:!: 1 ~ U ‘ m i

d* W i --ffilí

( f i) y = arc.coseeh u(x) => 4~ ~ , u *■ 0W ^ i u \ 4 u ^

Page 719: Espinoza Ramos 1

Aplicaciones de la Derivada 705

Ejemplo.- Calcular la derivada de las siguientes funciones

( 1 ) / (x) = x 2 arccos hx1Solución

2x 2 x^/ ' (x) = 2xarc.coshx2 + x 2 — / ' (x) = 2x arc.coshx2 + -Vx4 -1 a/x4 -1

( 2) f ( x ) = Ln(— V /6 + ^ - a r e . tgh(-£=r)w x +1 3 si 2

Solución

Aplicando propiedades de logaritmo se tiene: f ( x) = — Ln(-—-) + — - are. tg h (-^ )6 x +1 3 V 2

14 1 r 1 1 1 , V2 V2 1 , 2 2 1 2

/ W = t [ -----r -------r] + — = t (-5---- ) + ------ í ~ = -----5------------- 5------6 x -1 x + 1 3 6 * 2 - l 3(2x ) 3(x -1) 3(x2 - 2 )

2

2

••• / ’(X ) = - *3(x4 - 3x2 + 2)

J(x) = are. senhe* + are. tgh(—)x

Solución

Aplicando la regla de derivación se tiene:

e x v2 ex 1 ex/ '( * ) = / ! + ^ h - = , f - ^ r — ••• / '(* > = -

Ve2jr+1 l - J - 4 e 2x+l x 2 - l " ■ 4 e lx +1 * 2 - l

f(x) = arc.senh (Lnx) + Ln(arc.tgh x)

Solución

Page 720: Espinoza Ramos 1

706 Eduardo Espinoza Ramos

Aplicando la regla de la derivación se tiene

f ' ( x ) | (arc-tgh*)' 1 , (*)'4 L h2x + 1 are. tgh x V ¿n2x + 1 ( l - x 2)a /t.tg h x

■■■ f ' w = — = L = + — — ------------xV¿« x + 1 (1 -x )arc.tgh x

537 EJERCICIOS PROPUESTOS,-

I. Hallar / ' ( x) si f(x) es dado por:

® /(.x) = tgh”1 (sen 3x) © f ( x ) = árceos h( eos ecx)

© f ( x ) = are. tgh(cos e x ) © f ( x ) = Ln4x 2 +1 - x are. tghx

© f ( x ) = arcsen/í(tgx) © / (x) = xarc. senh x - Vi + * 2

© / (x) = arctg(senhx) - arcsec(coshx) © /(x ) = arcsen/;(lnx) + ln(arctg/¡x)

©, 1

/ (x) = arc. senh e + are. tgh—X

© f ( x )= 3 a 2 arctg/;J— -----(3a + 3x)4axV x + a

- x 2 , a > 0

II. Hallar — donde dx

© arc.tg x = arc.tgh y © y 2 +xcosh v + senh2 x = 30

© arc.senx = sech y © cosh2 x -c o s h 2 y = 1

© arc.tgh x + x arc.cosh y = arc.senh (x+y)

© arctg h(x + >') = -- [arctg h x + arctg h y]

Page 721: Espinoza Ramos 1

Aplicaciones de la Derivada 707

0 ) v = arctgh — + arctgh — (IT) v = arctgh{ ^ + scnx' x 2 4 - 5 eos*

y = arctg h{—) + —------— , a>0' n v

III.

a x

(T ) La gráfica de la ecuación: x = a m e .senh J ~ T ~ 1 - ^ a 2 - y 2 se denomina tractriz.

— V

Demuestre que la pendiente en la curva en cualquier puesto (x, y) es- J n - y 2

( 2 ) Sea P(cosh a, sen a). Demostrar que la recta tangente a la hipérbola x 2 - y 2 =1 en su

vértice (1,0) intercepta a la recta OP en el punto (1, tgh a)

^ 3 ) Dadas las funciones definidas por:

x 1/ (.t) = 4 - are. tg(-----—) + are. tg — y R(x) = 4 + are.senh (x+2)

l + X - 2

g(x) = - 2 + tg h (x - l ) y h(x) = are.tgh('V■■ + ~'X + 4 ) - - L n ( - ) - 2x - - 5 jc + 4 2 5

Hallar el área del rectángulo, tal que el primer vértice en el punto de inflexión de g(x), el segundo vértice en el punto máximo relativo de f(x), el tercer vértice en el punto extremo

relativo de h(x), y el cuarto vértice en el punto de inflexión R(x). Rpta. 18«2

( 4) Dadas las funciones definidas por f(x) = arc.tg(x + 6) — 1, g(x) = ^ /(x -3 )2 - 1 ,

v2 + x + 9 1h(x) = 2 - are tghf—----------) + — L11 6 y la curva dada por la ecuación paramétricasx - x + 9 2

x = 61 6 /2y = -----—, t * 1. Hallar el área del trapecio isósceles con base paralela al ejel - / 3 ’ ’ 1 - /

x, tal que el primer vértice A es el punto de inflexión de f(x), el segundo vértice B punto máximo relativo de h(x), el tercer vértice c es un punto que está sobre la asíntota oblicua de la curva y el cuarto vértice D está sobre ésta asíntota y es punto extremo relativo de

g(x). Rpta. A(-6,-l), B(-3,2), C(0,2), D(3,-l), área = \%u2

Page 722: Espinoza Ramos 1

708 Eduardo Espinoza Ramos

© Sea L la recta tangente a la hipérbola x 2 - y 2 =1 en el punto A(cosh u. sen u).

Demostrar que L corta el eje X en el punto (sech u, 0) y el eje Y en (0, -cosech u).

f ó ) Dadas las funciones f y g definidas por f (x) =4 +are. tg(—^— )-are. tg — y" ' 1+x 2

/ , -> l/* 2 + 10x + 9 v 1 r 3 TT „ , . , , .. , . .gíx) = -3 + are.tgh(—------------- ) — Ln— . Hallar el area del triangulo cuyos verdeesx -10x + 9 2 5

son: El punto (1, -3), el segundo vértice es un extremo relativo de g(x) y el tercer vértice

es el máximo relativo de f(x). Rpta. A = \4u2

5 3 8 P1FERENC1ALÉS.-

Consideremos una función f: R —> R, MN el arco de la gráfica de la función y = f(x);

MT es la tangente a la curva en el punto M ( x x, / fx-,))

Sea Ax = x - Xj, al cual llamaremos incremento del argumento x en el segmento [x¡, x]

Ay = f ( x ) - f (x j) , pero como x = x 1 +Ax , entonces:

Ay = /(X j + A x ) - / (x j) , el cual llamaremos incremento del argumento de la funciónAy

y = f(x) en el segmento [x{ ,x] la razón — = tg a , representa el coeficiente angular de laAx

recta Ls .

Page 723: Espinoza Ramos 1

Aplicaciones de la Derivada 709

©

©

A . ■ , , A v ' /(* ! + A x ) - / (x i)Ademas wZ,v = tg a = — = ------------------------ y la pendiente de la recta tangente L,Ax Av­

en e! punto A/(x, , / ( x , )) es:

m i , - & U . Á - f ' ( x x) ^ Kmcix |i |p :

a) DEFINICION.- La diferencial de x. es un incremento cualquiera de la variable independiente x es decir:

d x ~ A x

b) DEFINICIÓN.- La función de la diferencial f (ó variable dependiente y) en un punto X] es igual al producto de la derivada de f en x¡ por la

diferencial de x es decir: dy = d( f (x j)) = / ’ (x, )dx

d y ~ f ’(xx)dx

c) FÓRMULAS PARA DIFERENC1ALES.-

C'onsideremos dos funciones de x; u = f(x), v = g(x) y c constante, entonces:

© í de = tí © d(cu) = ciiu

© ; d(u + v ) ~ d u + d v ; G ) d(uv) = udv + vdu

©vdu- ud v

d{V V

Ejemplo.- Hallar la diferencial dy de las siguientes funciones

y = x Lnx-xSolución

dy = y'dx = (ln.v + 1 - 1 )dx - Inx.rfx

V = are. tg — a

dy=lnx.dx

Page 724: Espinoza Ramos 1

710 Eduardo Espinoza Ramos

Solución

Ejemplo.- Hallardysí x 2 + 2 x y - y 2 =a~

Solución

Como dy = y'dx entonces calculando y' se tiene:

i i i , x + vx ‘ + 2.vv- v" = a " => v = -—

x - y

dv = y'dx = - ——— dx x - y

5.39 DIFERENCIALES COM O UNA A PRO X i MAC! O N.~

Se conoce que dx = Ax. es decir que la diferencial de la variable independiente x coincide con su incremento además tenemos que:

Ay = f ( x + A.v) — f ( x ) , dy = J ' (c)dx

se observa en el gráfico que el incremento de la función no es igual a la diferencial de la variable dependiente, es decir que son aproximadamente iguales. Ay = dy, de donde

f ( x + Á x ) - f ( x ) = f ' ( x ) d x .

í(x+ Aí) s f(x) + f ’íx) Ax

Para calcular el error introducido cuando se utiliza dy para aproximar Ay, cuando Ax es suficientemente pequeño se tiene:

E = A y - d y

dv = - ^ - d x x - v

: .d vx - +a-

dx

Page 725: Espinoza Ramos 1

Aplicaciones de Ia Derivada 711

dv

/ ( * , )se le conoce con el nombre de error relativo

A ——— 100% se le llama error porcentual./ (* i )

Es decir:m )

dy/ ( i ,) !

5.40 DIFERENCIALES DE ORDEN SUPERIOR.«

Sea f: R-»R una función tal que y = f(x) a la diferencial de f se ha definido por

ahora calcularemos la diferencial de segundo orden de f

d 1 y = d(dy) = d( f ' (x)dx) = (f ' (x)dx) 'dx = [ f " (x)dx + f ' (x)(dx)']dx = ( f " ( x ) d x + 0)dx

= (f ' ' (x)dx)dx = f ' ( x ) ( d x ) 2

puesto que ( d x ) ' -0 , debido a que dx es independiente de x entonces:

d 2y ~ f ' ( x ) ( d x ) ’

en forma análoga se tiene para: d 3y = f "{x)(dx)3

Luego en general se tiene que: Si y = f(x) entonces:

EJEM PLO DE APLICACIÓN

( I ) Calcular dysi y = (3x2 -2 jt + 1)3

Page 726: Espinoza Ramos 1

712 Eduardo Espinoza Ramos

Solución

y = (3.v2 - 2.v +1)3 => dy = 3(3.v2 - 2x +1 )(6x — 2)dx

dy = 6(3x2 - 2x + l)(3.v-1 )dx

^2) Si y = 4 x 2 -3.y + 1, encontrar A y ,dy .A y-dy para cualquier x y Ax

Solución

Como y = / ( .x) = 4.x2 - 3.x +1, entonces:

Ay = f(x + A x )- T(x) = 4(.v + Ax)2 -3 (x +Av) + l~ (4 x 2 -3 x + l)

= 4x + 8xAx + 4(Av)2 - 3x - 3A.v +1 - 4 x2 + 3.x -1 =8.vAv-3A,v + 4(Ax)2

Ay = (8* - 3) At + 4( Ax)2

también: dy = / ’(x)dx = (8x- 3)Ax dy=(8x-3)A x

calculando A v-í/y = (8x-3)Ax + 4(Ax)2 -(8x -3 )A x = 4(Ax)2

Hallar Ay, dy y E = A y -d y si f ( x ) = x 2 + 5,x , xx = -1 , Ax = 0.02

Solución

Se conoce que Ay = / (x¡ + Ax) - / (.x,)

Av = / ( - 1 + 0.02) - / ( - l ) = fí-0.98)-fl-1) = (-0.98)2 + 5(-0.98) - (1 - 5)

= 0.9604 - 4.90 + 4 = -3.9396 + 4 = 0.0604.

además dy = f ' ( x )d x => dy = / ’(-1).(0.02) =(-2+5).(0.02) =3(0.02) = 0.06

dy = 0.06

E = Ay - dy = 0.0604 - 0.06 = 0.0004.

Page 727: Espinoza Ramos 1

Aplicaciones de la Derivada 713

( 7 ) Usando diferenciales calcular el valor de f(3.002). Sí f (x) = x 3 + 2x2 - x +1

Solución

Se sabe que: f ( x + Ax) » f ( x ) + / ' (x)Ax

Luego / (3+ 0.002) * /(3 ) + / ' (3)(0.002)

f (x ) = .x3 + 2x2 - x + l => f ' ( x ) = 3x2 + 4 x - l

/ ' (3) = 27 + 12—1 = 38

f(3) = 27+ 1 8 -3 + 1 = 43

f(3.002) » 43 + 38(0.002) = 43.076 f(3.002)« 43.076

© Usando diferenciales usar el valor aproximado de ^28

Solución

Sea fia función definida por f ( x ) = \[x

De donde x = 27 y Ax = 1 reemplazando se tiene: /(2 7 + 1) * / ( 2 7 ) + / '(2 7 ) .( l)

f ( c ) = l¡x í / (2 7 )= 3 ^ 2 7 = 3

/ ’(*) = —T T ^ I / “(27) = — = 0.037 3V*2 l 27

/ (28) a / (2 7 + / ' (27)Ax => / (2 8 )* 3 + (0.037)(l) = 3.037

.-. /(2 8 ) * /(2 7 ) + / ' (27)0) = 3.037 .'. /(2 8 ) *3.037

Hallar el valor aproximado de £ = -J%L64&L6 mediante diferenciales.

Solución

Definiendo la función / ( * ) = ■Jx'Jx donde x = 81, Ax = 0.6

Page 728: Espinoza Ramos 1

714 Eduardo Espinoza Ramos

Como £ = /(8 1 + 0.6) * /(81) + /'(81)(0.6)

£ = / ( 8 1 .6 ) / ( 8 1 ) + /'(81)(0.6)

f i x ) = - J x jx /(81) = V W sT = 27

E = 1Í81.6) s 27 + (0.25K0.6) /. V^L6V8L6 »27.15

7; Hallar un valor aproximado mediante diferenciales de (

Solución

5(-l .91)- 4 ( - l ,91)3 +2 2/,

(1.91)2 -0.91

Definamos la función f por:

donde x = 2 y Ax = -0.09, puesto que

(5(-1.91)-4(-1.91)3 + 2 )2/:, _ (5(-1.91) + 4(-1.91)3 + 2 )2n(1.91)2 -0.91 (1.91)2 -0.91

como f ( x + Aí) « f ( x ) + f ' ( x)Ax

/ ( 2 + (-0.09)) = / ( 2 ) + /'(2 ).(-0 .09)

/ ( jc) = (- + + 2 )2n derivando se tiene:‘ -v2 - jc + 1

2 x 2 - x + l . i / 3 / 4x4 — 8x3 +17.V2 — 4 x —3 •/ W = T Í — í-----------) (------------^ --------->3 4x3 - 5x + 2 (x —X + 1)-

/■( 2 ) = - (2 4 - 2 + 1 1,3 6 4 -6 4 + 6 8 - 8 - 3 J9 193 3 2 -10 + 2 ~ ( 4 - 2 + 1)2 ) _ 3 ( 3 ) _ 9

Page 729: Espinoza Ramos 1

Aplicaciones de la Derivada 715

como / (1.91) * / ( 2 ) + /'(2 ).(-0 .09)

( 5(-1.91)-4(-1.91)3 + 2 )2/3 ^ , + 19 ^

(1.91) -0.91 9

( ? ) Calcular aproximadamente el valor de sen 59° si: Sen 60° = 0.86603 y eos 60° = 0.5, mediante diferenciales.

Solución

Sea f(x) = senx , donde x = 60° y Ax = -1°

Como / (x + Ax)« / (x) + / ' (x)Av entonces / ( 6 0 o + (-1 °)) * / ( 6 0 o) + / ' (60°)(-l°)

j (x) = senx / ( 6 0 o) = sen 60° = 0.86603 / '( x ) = cosx ^ / '( 6 0 o) = eos 60° = 0.5

. . . . . .v R n n ?ademas por trigonometría se tiene: -----= — => R = -— -

180 n 180

x = 60° = — , Ax = -1° = — ( - 1 ) = - — = -0.017453 180 180

como / (59o) * / (6 0 o) + / ' (60°)(—1 °)

sen 59° « 0.86603 + (0.5)(-0.01745) .-. sen 59° * 0.857305

© Hallar aproximadamente la variación experimentada por el volumen de un cubo de aristax cuando esta se incrementa en 1%

Solución

Sabemos que: v = x 3 => dv = 3x2dx

como dx = l%x = O.Olx reemplazando se tiene: dv = 3x2 (O.Olx) = 0.03x 2,en?

(ío) Un disco metálico se dilata por la acción del calor de manera que su radio aumenta desde5 a 5.06 centímetros. Hallar el valor aproximado del incremento del área.

Solución

Page 730: Espinoza Ramos 1

716 Eduardo Espinoza Ramos

Como el radio aumenta de 5cm a 5.06cm entonces

5.06 = 5 + 0.06, de donde r = 5 y dr = 0.06.

además: A = r i r 2 diferenciando dA = 2Flr dr reemplazando

dA = 2IT(5)(0.06) = 0.6rr de donde dA = 1.88cm 2

^ 1 ) Una bola de hielo de lOcm de radio, se derrite hasta que su radio adquiera el valor de 9.8cm. Hallar aproximadamente, la disminución que experimenta su volumen.

Solución

Por dato del problema r = lOcm, dr = 0.2 cm

Además v = diferenciando dv = 4 n r 2dr = 4;r(100)(0.2) =%0ncm3

dv = 80/T c« r

12J Un cilindro circular recto tiene 10 cm de altura, si el radio cambia de 2 a 2.06 cm. calcularel cambio aproximado correspondiente al volumen del cilindro y hallar el error porcentual de cambio en el volumen.

Solución

El volumen del cilindro: V = n r 2h dondeh = 1 Ocm, r = 2 cm y dr = 0.06cm

como V = n r 2/¡ => dV = 2rr rh dr

dV = 2tt(1 0)2(0.06) = 2.4/r por lo tanto dv = 2.4tt cm3

dV 2 4nel error porcentual es: — 100% = --------jcI 00% =- 6%

v 40tt

13j Demostrar que si se comete un error al medir el diámetro de una esfera, el error relativodel volumen de la esfera es tres veces el error relativo del radio.

Solución

Page 731: Espinoza Ramos 1

Aplicaciones de la Derivada 717

El volumen de la esfera V =4 7T r

. , dv 4 n r 2dr drCalculando — -=------- — = 3 —

v 4 /r r ' **

5.41 EJERCICIOS PROPUESTOS.

I.

©

©

©

©©

©

Calcular dy sí

y = x 2 -Jlx + 3

3x.v- + 2

y = tg" .v.sen" x

x + l' 2 .v-l

v = 4.v3 + 5.y2 +1

y =-Y +1

A '2 - 1

II. Hallar Ay, dy yE = Ay—dy sí

( ? ) f { x ) - x ' + 3 x 2 - 6 x - 3 , * 1 = 2 , Ax = 0.01

© / (-Y) = ——— , .Y, = 0 , Ax = 0.11 + .Y

© / (x) — — , A-, = 4 , Ax = 0.01VA '

dV_= 3 cfr V ~ r

© y = ctg 2x. cosec2x

® 2 + eos xy = -

2 -sen a:

2 1 1y = x sen— x eos —

( ? ) y — x~J\~x2

lo) >■ = 3x2 + 2*Jx

3axy ~ , 2 . ,.2

Page 732: Espinoza Ramos 1

718 Eduardo Espinoza Ramos

©x 3/ (x) = — — , x, = 1, Ax = 0.3

x~ +1

IH. Usando diferenciales, calcular el valor que se indica.

© /(.y) = -v3 + 2 x 2 - x +1, f(3.002) © f i x ) = .t4 +5.V2

© f ( x) - ^ 5 + 2x . f(2.024) © f i x )X V1 + JC

© f i x ) = x 31 + 2 x 32 + 3*5 + 2 x 2 + x + 3, f(0.00009)

© / ( J ) = ^ ± L . f(i.91) x +1

IV. Calcular el valor aproximado de

© 735.5 © 77.45

© V37.5 0 70.00098

© a/0.042 © \l0.009

© ^ 8 2 + 7 8 2 © \j63

© V83 ©1

TToT

©1

\¡25 © -750

© VÍ28 Rpta. 5.04

© E’ = [(3.01)2 + (4.0)2 + (12.08)2 ]1/2 © V63Ò

©(2.037)2 - 3 Rpta. 0.355

i (2.037)2 +5

{(-2.97)

Page 733: Espinoza Ramos 1

Aplicaciones de la Derivada 719

17) - 4 = Rpta. 0.5032“ J V31

18) '^0.999 Rpta. 0.9999

19) VÍ22 Rpta. 4.96

20) ¿ = 7+[5 + (2.99) ] Rpta. 0.99918^ [270-(2.99) ]

V.

Se encontrará con un posible error de 0.01 pulg. Que la medida de la arista de un cubo es

15 pulg. Usando diferenciales encontrar el error aproximado al calcular con esta medida.

a) El volumen b) El área de una de las caras

Rpta. a) dV = 6.75pwlg3 b) dA = 0.3pu\g2

© La altura de un cono recto circular es el doble del radio de la base. Al medir se encontró

que la altura es de 12 pulg. Con un posible error de 0.005 pulg. Encontrar el error

aproximado en el volumen calculado del cono. Rpta. dV = 0.18zr pu lg3

© Un tanque cilindrico abierto tiene una capa de 1/8 pulg. de espesor. Si el radio interior es

de 6 pulg. y la altura es de 10 pulg, encontrar usando diferenciales, la cantidad

aproximada de pintura que se necesita. Rpta. dV = pu lg3 .8

© La medida de la arista de un cubo de 15cm, con un error posible de 0.0lcm. Empleando

las diferenciales, halle el error aproximado al evaluar.

a) el volumen

Rpta. a) 6.75 cm3

b) el área de una de las caras

b) 0.3cm2

Page 734: Espinoza Ramos 1

720 Eduardo Espinoza Ramos

( ? ) Un tanque cilindrico tendrá un revestimiento de 2cm de espesor. Si la radio interior tiene

6m y la altura es de lOm, calcule mediante las diferenciales la cantidad aproximada de

12 ,material de revestimiento que se usara. Rpta. — n m

© Una quemadura en la piel de una persona tiene la forma de una circunferencia tal que si r

centímetros es el radio de A cm2 es el área de la lesión, entonces A = n r 2. Use la

diferencial para determinar la disminución aproximada en el área de la quemadura cuando

el radio decrece de 1 cm a 0.8cm. Rpta. 0.47T cm2

© Un tumor situado en el cuerpo de una persona tiene una forma esférica tal que si r

centímetros es el radio y V cm3 es el volumen del tumor, entonces v = — r 3 utilice la3

diferencial para hallar el crecimiento aproximado en el volumen del tumor cuando el

radio aumenta de 15cm a l.cm. Rpta. 0.9n c m 2'.

© La medida de la resistencia eléctrica de un alambre es proporcional a la medida de su

longitud e inversamente proporcional a la medida de su diámetro. Suponga que la

resistencia de un alambre de longitud dada se calcula a partir de una medición del

diámetro con un error posible del 2%. Encuentre el posible error porcentual en el valor

calculado de la resistencia. Rpta. 4%

El error posible en la medición del volumen de un gas es de OApie3 y el error permitido

en la presión es de 0.001 cldr ¡ p ie2 . Halle el tamaño del recipiente más pequeño con el

cual es válida la ley de Boye.

© Una caja metálica de forma cúbica de 64pu lg3 de volumen interior, tiene por caras,

planchas de % pulgadas de espesor. Si el costo de metal a emplearse es de 8 dólares

por pu lg3 aplicando las diferenciales hallar el costo aproximado del metal que se

empleará en la construcción de la caja. Rpta. 96 dólares

Page 735: Espinoza Ramos 1

Aplicaciones de la Derivada 721

(7?) El diámetro de una esfera de 9cm, al medirlo se introduce un posible error de

± 0.05cm ¿Cuál es el error porcentual posible en el cálculo del volumen?

(Í2) Se mide el diámetro de una esfera y con el resultado se calcula el valor de su volumen, si

el máximo error posible al medir el diámetro es 0.02cm y el error máximo aceptable al

calcular el volumen es de 3cm3 ¿cuál es el diámetro aproximado de la esfera más grande a

f3"la que puede aplicarse estas condiciones? Rpta. 10J-— cm.

V n

Si el radio de la base de un cono circular recto es la mitad de su altura y si el radio de la

base mide 2 cm. con un posible error de 0.01, aproximar el error posible cometido al

calcular el volumen. Rpta. AV = 0.80n

© Un contratista acuerda pintar ambos lados de 1,000 rótulos redondos, cada uno de los

cuales tiene un radio de 3m. Al recibir los rótulos, se descubre que el radio tiene lem

más. Emplee las diferenciales para calcular el aumento porcentual aproximado de pintura

que se necesitará. Rpta. 2.77% de aumento.

Page 736: Espinoza Ramos 1

722 Eduardo Espinoza Ramos

BIBLIOGRAFÍA

(1 ^ Calculus Volumen I por: Tom M. Apóstol

0 Análisis Matemático por: Protter Morrey

© Análisis Matemático Tomo 1 por: L. D. Kudriavtsev

( 7 ) Cálculo con Geometría por: Louis Leithold

( ? ) Cálculo y Geometría Analítica por: Larson —Hostetle

( 7 ) Análisis Matemático Volumen I por: Hasser - Lasalle - Sullivan

( 7) Cálculo de una y Varias Variables con Geometría

Analítica por: Saturnino L. Sales, Einar Hile

( ? ) Cálculo con Geometría por: Edwin J. Purcell

© Cálculo y Geometría Analítica por: Sherman K. Stein

Matemática Superior para Ingeniería por: C. R. Wylie J. R.

( f ¡ ) Matemática Superior para matemáticos, físicos e

ingenieros Volumen I por: R. Rothe

^ 2) Cálculo Avanzado por: Murray R. Spiegel

(d ) Cálculo Diferencial e Integral por: Banach

^ 4) Cálculo Infinitesimal por: Smith - Longly y Wilson

( í ^ Cálculo con Geometría Analítica por: John B. Fraleich

^ 6 ) Análisis Matemático por: M. N. Bentebol, J. Margalef

© Ejercicios y problemas de matemática superior

Tomo I por: P. Danko Popov.

Page 737: Espinoza Ramos 1

Bibliografia 723

(18) Problemas y Ejercicios de Análisis Matemático por: B. Demidovich.

(T9) Problemas y Ejercicios de Análisis Matemático por: G. N, Berman

^ o ) Cálculo Diferencial e Integral Tomo I. II por: N. Piskunov

(21) 5000 problemas de Análisis Matemático por: B. P. Demidovich

(22) Análisis de una Variable Real por: Celso Martínez, Carracedo, Miguel A. Sanz Alix

(23) Cálculo Diferencial e integral por: Granville-Smith - Langley

(24) Cálculo con Geometría Analítica por: R.E. Johnson - F.L. Kiokemeister - E.S. Wolk.

(25) Cálculo por: James Stewart

(26) Calculus Tomo 1, II por: Michel Spivak

(27) Problemas de las Matemáticas Superiores I, II por: V. Bolgov, A. Karakulin, R.

(28) Cálculo Diferencial e Integral por: Yu Takeuchi

(29) Cálculo Infinitesimal con Geometría Analítica por: G.B. Thoinas

(30) Principios de Análisis Matemático por: E. LINÉS.

(3 ^ Calculo con Geometría Analítica por: EDWARDA y PENNEY

(32) Calculo de una Variable por: FINNEY - DEMANA - WAITS - KENNEDY

^ 3 ) Calculo de una Variable por: CLAUDIO PITA RUIZ

(34) Calculo I por: ALVARO PINZON

Page 738: Espinoza Ramos 1

PEDIDOS AL POR MAYOR Y MENOR

AV. GERARDO UNG ER N° 247 OF. 202 Urbanización Ingeniería (Frente a la UNI)

Teléfono: 3888564-

LIMA — PERU

. )

; 'i

IMPRESO EN:

EDITORIAL SERVIVIOS GRAFICOS J.J

Page 739: Espinoza Ramos 1

- I p . é. - i a a ^

O B R A S DEL A U T C►l

1

■ Matemática Básica para estudiantes de Ciencias e Ingeniería■ Análisis Matemático I para estudiantes de Ciencias é Ingeniería■ Análisis Matemático II para estudiantes de Ciencias é Ingeniería■ Análisis Matemático III para estudiantes de Ciencias é Ingeniería

^ ■ Análisis Matemático IV para estudiantes de Ciencias é Ingeniería■ Transformada de Laplace

K0 Sucesiones y Seríes Infinitas' | j | Geometría Analítica Plana

■ Vectores, Matrices y sus Aplicaciones■ Algebra Lineal■ Rectas, Planos y Superficies■ Números Complejos y Polinomios■ Variable Compleja■ Solucionarío de Makarenko (Ecuaciones Diferenciales)■ Solucionarío de Análisis Matemático I por Deminovich■ Solucionarío de Análisis Matemático II por Deminovich■ Solucionarío de Análisis Matemático III por Deminovich■ Solucionarlo de Análisis Matemático III por G. Berman■ Solucionarío de Leithold 2da. Parte■ Solucionarlo de Matemática para Administración y Economía

porWeberPre - Universitario:■ Trigonometría Plana■ Algebra