Esfuerzo

15
Instituto Universitario Politécnico “Santiago Mariño” Extensión Porlamar Prof. Ing. Julián Carneiro Realizado por: Richarvic Patiño C.I. 21.323.628 Ing. Industrial

Transcript of Esfuerzo

Page 1: Esfuerzo

Instituto Universitario Politécnico

“Santiago Mariño”

Extensión Porlamar

Prof. Ing. Julián Carneiro

Realizado por:

Richarvic Patiño C.I. 21.323.628

Ing. Industrial

Esfuerzo

Page 2: Esfuerzo

Las fuerzas internas de un elemento están ubicadas dentro del material por lo que se distribuyen en toda el área; justamente se denomina esfuerzo a la fuerza por unidad de área, la cual se denota con la letra griega sigma (σ) y es un parámetro que permite comparar la resistencia de dos materiales, ya que establece una base común de referencia.

Deformación

La deformación es el cambio en el tamaño o forma de un cuerpo debido a esfuerzos internos producidos por una o más fuerzas aplicadas sobre el mismo o la ocurrencia de dilatación térmica.

Origen

Page 3: Esfuerzo

Para entender el desarrollo de las estructuras geológicas como las fracturas, es necesario tomar en cuenta varios aspectos, comenzando con la idea que tanto el interior como en el exterior del planeta, los materiales pétreos se encuentran sujetos a una continua dinámica o movimiento debido a muchos factores, dentro de los cuales podríamos mencionar:

Que la Tierra dentro del Sistema Planetario Solar sufre los efectos físicos naturales (fuerzas gravitatorias, de radiación, centrífugas, de impacto o colisión, magnéticas, etc.), fuerzas que se producen y afectan a los planetas dentro de sus respectivas trayectorias u orbitas. Estas fuerzas se manifiestan con la intensidad de la luz solar, la atracción de la gravedad, el efecto de las mareas, el impacto de meteoritos etc.

En el análisis de las fuerzas se debe tomar en cuenta que al inicio, en el origen del planeta, este pudo haber empezado siendo una masa de materia heterogénea y no diferenciada, la cual ha estado evolucionando y transformándose, siendo evidente que actualmente la Tierra posee una dinámica muy activa tanto en las capas internas como externas. Lo que trae como consecuencia la deformación constante de los materiales de la corteza terrestre, provocada por los mecanismos de movimiento de las placas tectónicas, asociado a las corrientes de convección del magma en el manto superior que provocan la expansión del piso oceánico con la consecuente subducción y choque entre placas, en otros sitios; esta dinámica provoca el vulcanismo, la sismicidad, el levantamiento de cordilleras, el movimiento de los continentes, los ajustes corticales por Isostasia. etc.

Page 4: Esfuerzo

Esquema de las capas concéntricas del interior de la Tierra. Estas se presentan en varios estados físicos que van desde sólido, líquido y gas.

Incluyendo los núcleos, los mantos, las cortezas oceánica, y continental, la capa liquida (mares, lagos, ríos)

Clasificación de los esfuerzos

Fuerza. Son esfuerzos que se pueden clasificar debido a las fuerzas. Generan desplazamiento. Dependiendo si están contenidos (o son normales) en el plano que contiene al eje longitudinal tenemos:

Contiene al eje longitudinal:

Tracción. Es un esfuerzo en el sentido del eje. Tiende a alargar las fibras.

Compresión. Es una tracción negativa. Las fibras se acortan.

Normal al plano que contiene el eje longitudinal:

Cortadura. Tiende a cortar las piezas mediante desplazamiento de las secciones afectadas.

Momento. Son esfuerzos que se pueden clasificar debido a los momentos. Generan giros. Dependiendo si están contenidos (o son normales) en el plano que contiene al eje longitudinal tenemos:

Contiene al eje longitudinal:

Page 5: Esfuerzo

Flexión. El cuerpo se flexa, alargándose unas fibras y acortándose otras.

Normal al plano que contiene el eje longitudinal:

Torsión. Las cargas tienden a retorcer las piezas.

Otros:

Esfuerzos compuestos. Es cuando una pieza se encuentra sometida simultáneamente a varios esfuerzos simples, superponiéndose sus acciones.

Esfuerzos variables. Son los esfuerzos que varían de valor e incluso de signo. Cuando la diferencia entre el valor máximo y el valor mínimo es 0, el esfuerzo se denomina alternado. Pueden ocasionar rotura por fatiga.

Tipos de esfuerzos

Las cargas que tienen que soportar las estructuras producen en sus elementos fuerzas que tratan de deformarlos denominadas esfuerzos. Hay 5 tipos de esfuerzos: compresión, tracción, flexión, torsión y cortante.

Importancia

El estudio del esfuerzo y las deformaciones son importantes en la naturaleza, lo que observamos y podemos medir son justamente

Page 6: Esfuerzo

esfuerzo y deformaciones. Al intentar deformar un cuerpo nos encontramos que existe cierta resistencia al proceso deformante, esa resistencia puede deberse a múltiples causas por ejemplo cuando un cuerpo que está en contacto con otro presenta una resistencia al deslizamiento sobre la superficie de contacto, de manera semejante podemos encontrar resistencias a desplazamientos de las partículas que forman un cuerpo debido a que implican ruptura, no por desplazamiento sino por separación de las partes o bien por fricción entre partículas. Gracias al estudio de la deformación y el esfuerzo de los cuerpos; la ciencia ha logrado grandes avances en la evolución del hombre los grandes avances estructurales, las grandes construcciones, edificaciones, puentes y todo lo que actualmente se fabrica va relacionado directa o indirectamente en función de su esfuerzo y deformación.

Características del Esfuerzo y Deformación

Características de esfuerzo-deformación del concreto

Deformaciones elásticas

El término deformaciones elásticas es un poco ambiguo, puesto que la curva esfuerzo-deformación para el concreto no es una línea recta aun a niveles normales de esfuerzo (Figura 8), ni son enteramente recuperables las deformaciones. Pero, eliminando las deformaciones plásticas de esta consideración, la porción inferior de la curva esfuerzo-deformación instantánea, que es relativamente recta, puede llamarse convencionalmente elástica. Entonces es posible obtener valores para el módulo de elasticidad del concreto. El módulo varía con diversos factores, notablemente con la resistencia del concreto, la edad del mismo, las propiedades de los agregados y el cemento, y la definición del módulo de elasticidad en sí, si es el módulo tangente, inicial o secante. Aún más, el módulo puede variar con la velocidad de la aplicación de la carga y con el tipo de muestra o probeta, ya sea

Page 7: Esfuerzo

un cilindro o una viga. Por consiguiente, es casi imposible predecir con exactitud el valor del módulo para un concreto dado.

Deformaciones laterales

Cuando al concreto se le comprime en una dirección, al igual que ocurre con otros materiales, éste se expande en la dirección transversal a la del esfuerzo aplicado. La relación entre la deformación transversal y la longitudinal se conoce como relación de Poisson.

La relación de Poisson varía de 0.15 a 0.20 para concreto.

Deformaciones plásticas

La plasticidad en el concreto es definida como deformación dependiente del tiempo que resulta de la presencia de un esfuerzo.

Así definimos al flujo plástico como la propiedad de muchos materiales mediante la cual ellos continúan deformándose a través de lapsos considerables de tiempo bajo un estado constante de esfuerzo o carga. La velocidad del incremento de la deformación es grande al principio, pero disminuye con el tiempo, hasta que después de muchos meses alcanza un valor constante asintóticamente .

Se ha encontrado que la deformación por flujo plástico en el concreto depende no solamente del tiempo, sino que también depende de las proporciones de la mezcla, de la humedad, de las condiciones del curado, y de la edad del concreto a la cual comienza a ser cargado. La deformación por flujo plástico es casi directamente proporcional a la intensidad del esfuerzo.

Deformaciones por contracción

Page 8: Esfuerzo

Las mezclas para concreto normal contienen mayor cantidad de agua que la que se requiere para la hidratación del cemento. Esta agua libre se evapora con el tiempo, la velocidad y la terminación del secado dependen de la humedad, la temperatura ambiente, y del tamaño y forma del espécimen del concreto. El secado del concreto viene aparejado con una disminución en su volumen, ocurriendo este cambio con mayor velocidad al principio que al final.

De esta forma, la contracción del concreto debida al secado y a cambios químicos depende solamente del tiempo y de las condiciones de humedad, pero no de los esfuerzos.

La magnitud de la deformación de contracción varía por muchos factores. Por un lado, si el concreto es almacenado bajo el agua o bajo condiciones muy húmedas, la contracción puede ser cero. Puede haber expansiones para algunos tipos de agregados y cementos. Por otro lado, para una combinación de ciertos agregados y cemento, y con el concreto almacenado bajo condiciones muy secas, puede esperarse una deformación grande del orden de 0.001.

La contracción del concreto es algo proporcional a la cantidad de agua empleada en la mezcla. De aquí que si se quiere la contracción mínima, la relación agua cemento y la proporción de la pasta de cemento deberá mantenerse al mínimo.

La calidad de los agregados es también una consideración importante. Agregados más duros y densos de baja absorción y alto módulo de elasticidad expondrán una contracción menor. Concreto que contenga piedra caliza dura tendrá una contracción menor que uno con granito, basalto, y arenisca de igual grado, aproximadamente en ese orden.

La cantidad de contracción varía ampliamente, dependiendo de las condiciones individuales.

Para propósitos de diseño, un valor promedio de deformación por contracción será de 0.0002 a 0.0006 para las mezclas usuales de concreto empleadas en las construcciones pres forzadas.

El valor de la contracción depende además de las condiciones del ambiente.

Page 9: Esfuerzo

Diagrama de Esfuerzo-Deformación

La curva usual Esfuerzo - Deformación (llamada también convencional, tecnológica, de ingeniería o nominal), expresa tanto el esfuerzo como la deformación en términos de las dimensiones originales de la probeta, un procedimiento muy útil cuando se está interesado en determinar los datos de resistencia y ductilidad para propósito de diseño en ingeniería.

La curva Esfuerzo real - Deformación real (denominada frecuentemente, curva de fluencia, ya que proporciona el esfuerzo necesario para que el metal fluya plásticamente hacia cualquier deformación dada), muestra realmente lo que sucede en el material. Por ejemplo en el caso de un material dúctil sometido a tensión este se hace inestable y sufre estricción localizada durante la última fase del ensayo y la carga requerida para la deformación disminuye debido a la disminución del área transversal, además la tensión media basada en la sección inicial disminuye también produciéndose como consecuencia un descenso de la curva Esfuerzo - Deformación después del punto de carga máxima. Pero lo que sucede en realidad es que el material continúa endureciéndose por deformación hasta producirse la fractura, de modo que la tensión requerida debería aumentar para producir mayor deformación. A este efecto se opone la disminución gradual del área de la sección transversal de la probeta mientras se produce el alargamiento.

Page 10: Esfuerzo

Diagrama esfuerzo-deformación obtenido a partir del ensayo normal a la tensión de una manera dúctil. El punto P indica el límite de proporcionalidad; E, el límite elástico Y, la resistencia de fluencia convencional determinada por

corrimiento paralelo (offset) según la deformación seleccionada OA; U; la resistencia última o máxima, y F, el esfuerzo de fractura o ruptura.

Ejercicios

Page 11: Esfuerzo
Page 12: Esfuerzo
Page 13: Esfuerzo