D Fitoquimica ok · 2005. 7. 22. · 4. BIBLIOGRAFIA.....127 . D25 . Fitoquímica 1. INTRODUÇÃO...

108
D. Fitoquímica 24 D. FITOQUÍMICA 1. INTRODUÇÃO ................................................................................................................... 25 2. EXPERIMENTAL ............................................................................................................... 32 2.1. Métodos cromatográficos .............................................................................................. 32 2.1.1. Cromatografia em camada delgada comparativa (CCDC) ..................................... 32 2.1.2. Cromatografia em coluna ....................................................................................... 33 2.2. Estudo das folhas de Smallanthus sonchifolius ............................................................. 35 2.2.1. Origem do material vegetal .................................................................................... 35 2.2.2. Extrato de lavagem foliar de S. sonchifolius #130 ................................................. 35 2.2.3. Isolamento de LSTs do extrato de lavagem foliar de S. sonchifolius #130 ........... 36 2.2.4. Extratos de folhas com e sem tricomas glandulares de S. sonchifolius #101......... 38 2.2.5. Coleta de tricomas glandulares de folhas ............................................................... 39 2.2.6. Análise dos extratos glandulares por meio de CLAE ............................................ 39 2.3. Identificação e elucidação estrutural ............................................................................. 40 2.3.1. Métodos espectroscópicos e espectrométricos ....................................................... 40 2.3.1.1. Espectrometria de massas................................................................................ 40 2.3.1.2. Espectroscopia na região do IV....................................................................... 41 2.3.1.3. Espectroscopia de RMN .................................................................................. 41 2.3.2. Elucidação estrutural automatizada via SISTEMAT ............................................. 41 2.3.3. Confôrmeros de baixa energia................................................................................ 42 3. RESULTADOS E DISCUSSÕES ................................................................................... 43 3.1. Extrato de lavagem foliar de S. sonchifolius #130 ........................................................ 43 3.1.1. Isolamento de terpenóides da fase hidrometanólica de S. sonchifolius #130......... 43 3.1.2. Identificação e elucidação estrutural ...................................................................... 46 3.1.2.1. LST 1 (Enidrina) ............................................................................................. 46 3.1.2.2. LST 2 (Uvedalina) ........................................................................................... 54 3.1.2.3. LST 3 (Sonchifolina) ....................................................................................... 59 3.1.2.4. LST 4 (Fluctuanina) ........................................................................................ 62 3.1.2.5. LST 5 ............................................................................................................... 68 3.1.2.6. LST 6 ............................................................................................................... 72 3.1.2.7. LST 7 ............................................................................................................... 76 3.1.2.8. LST 8 (Polimatina B) ...................................................................................... 82 3.1.2.9. LST 9 ............................................................................................................... 90 3.1.2.10. LST 10 (Dímero de melampolidos) .............................................................. 97 3.1.2.11. Dados de RMN 1 H de todas LSTs ............................................................... 111 3.1.3. Características dos metabólitos secundários isolados .......................................... 113 3.1.3.1. LST 1 (Enidrina) ........................................................................................... 113 3.1.3.2. LST 2 (Uvedalina) ......................................................................................... 114 3.1.3.3. LST 3 (Sonchifolina) ..................................................................................... 115 3.1.3.4. LST 4 (Fluctuanina) ...................................................................................... 116 3.1.3.5. LST 5 ............................................................................................................. 117 3.1.3.6. LST 6 ............................................................................................................. 118 3.1.3.7. LST 7 ............................................................................................................. 119 3.1.3.8. LST 8 (Polimatina B) .................................................................................... 120 3.1.3.9. LST 9 ............................................................................................................. 121 3.1.3.10. LST 10 (Dímero de melampolidos) ............................................................ 122 3.2. Avaliação espectroscópica de extratos de folhas com e sem tricomas glandulares .... 124 3.3. Extrato glandular de S. sonchifolius e caracterização dos picos ................................. 125 4. BIBLIOGRAFIA................................................................................................................ 127

Transcript of D Fitoquimica ok · 2005. 7. 22. · 4. BIBLIOGRAFIA.....127 . D25 . Fitoquímica 1. INTRODUÇÃO...

  • D. Fitoquímica 24

    D. FITOQUÍMICA 1. INTRODUÇÃO ................................................................................................................... 25 2. EXPERIMENTAL ............................................................................................................... 32

    2.1. Métodos cromatográficos.............................................................................................. 32 2.1.1. Cromatografia em camada delgada comparativa (CCDC)..................................... 32 2.1.2. Cromatografia em coluna ....................................................................................... 33

    2.2. Estudo das folhas de Smallanthus sonchifolius............................................................. 35 2.2.1. Origem do material vegetal .................................................................................... 35 2.2.2. Extrato de lavagem foliar de S. sonchifolius #130 ................................................. 35 2.2.3. Isolamento de LSTs do extrato de lavagem foliar de S. sonchifolius #130 ........... 36 2.2.4. Extratos de folhas com e sem tricomas glandulares de S. sonchifolius #101......... 38 2.2.5. Coleta de tricomas glandulares de folhas............................................................... 39 2.2.6. Análise dos extratos glandulares por meio de CLAE ............................................ 39

    2.3. Identificação e elucidação estrutural ............................................................................. 40 2.3.1. Métodos espectroscópicos e espectrométricos....................................................... 40

    2.3.1.1. Espectrometria de massas................................................................................ 40 2.3.1.2. Espectroscopia na região do IV....................................................................... 41 2.3.1.3. Espectroscopia de RMN.................................................................................. 41

    2.3.2. Elucidação estrutural automatizada via SISTEMAT ............................................. 41 2.3.3. Confôrmeros de baixa energia................................................................................ 42

    3. RESULTADOS E DISCUSSÕES ................................................................................... 43 3.1. Extrato de lavagem foliar de S. sonchifolius #130 ........................................................ 43

    3.1.1. Isolamento de terpenóides da fase hidrometanólica de S. sonchifolius #130......... 43 3.1.2. Identificação e elucidação estrutural ...................................................................... 46

    3.1.2.1. LST 1 (Enidrina) ............................................................................................. 46 3.1.2.2. LST 2 (Uvedalina)........................................................................................... 54 3.1.2.3. LST 3 (Sonchifolina)....................................................................................... 59 3.1.2.4. LST 4 (Fluctuanina) ........................................................................................ 62 3.1.2.5. LST 5............................................................................................................... 68 3.1.2.6. LST 6............................................................................................................... 72 3.1.2.7. LST 7............................................................................................................... 76 3.1.2.8. LST 8 (Polimatina B) ...................................................................................... 82 3.1.2.9. LST 9............................................................................................................... 90 3.1.2.10. LST 10 (Dímero de melampolidos) .............................................................. 97 3.1.2.11. Dados de RMN 1H de todas LSTs............................................................... 111

    3.1.3. Características dos metabólitos secundários isolados .......................................... 113 3.1.3.1. LST 1 (Enidrina) ........................................................................................... 113 3.1.3.2. LST 2 (Uvedalina)......................................................................................... 114 3.1.3.3. LST 3 (Sonchifolina)..................................................................................... 115 3.1.3.4. LST 4 (Fluctuanina) ...................................................................................... 116 3.1.3.5. LST 5............................................................................................................. 117 3.1.3.6. LST 6............................................................................................................. 118 3.1.3.7. LST 7............................................................................................................. 119 3.1.3.8. LST 8 (Polimatina B) .................................................................................... 120 3.1.3.9. LST 9............................................................................................................. 121 3.1.3.10. LST 10 (Dímero de melampolidos) ............................................................ 122

    3.2. Avaliação espectroscópica de extratos de folhas com e sem tricomas glandulares .... 124 3.3. Extrato glandular de S. sonchifolius e caracterização dos picos ................................. 125

    4. BIBLIOGRAFIA................................................................................................................ 127

  • D. Fitoquímica 25

    1. INTRODUÇÃO

    Smallanthus sonchifolius (Poepp. & Endl.) H. Robinson, subtribo

    Melampodiinae, tribo Heliantheae (Bremer, 1994) foi originalmente

    classificada como Polymnia por Linnaeus em 1715. Blake, em 1917 e

    1930, fez a primeira revisão do gênero e Wells (Wells, 1965) manteve o

    termo Polymnia. Mais recentemente, Robinson (Robinson, 1978) dividiu

    o gênero Polymnia em dois: Polymnia e Smallanthus, mantendo ambos

    em Melampodiinae. A partir de então, yacón passou a pertencer ao

    gênero Smallanthus. Embora a classificação de Robinson seja bem aceita, a antiga ainda é

    muito utilizada. A espécie Smallanthus sonchifolius (Poepp. & Endl.) H. Robinson -

    sinonímia Polymnia sonchifolia Poepp. & Endl, é uma das 21 espécies deste gênero

    americano, o qual é apresentado na tabela D1 (Grau e Rea, 1999).

    A espécie possui inúmeros nomes populares em espanhol (yacón, llamón, arboloco,

    puhe, jícama e jíquima), em inglês (yacon, jiquima e yacon strawberry), em francês (poir de

    terre Cochet), em alemão (Erdbirne) e em italiano (polimnia) (Nieto, 1991). No Brasil, a

    espécie é popularmente conhecida como yacón.

    Tem origem na região andina, onde foi encontrada em tumbas Incas do Peru e hoje

    cresce livremente principalmente na Venezuela, Colômbia, Equador, Bolívia, Peru e noroeste

    da Argentina. Desenvolve-se a princípio em regiões de 880 a 3500 m de altitude, embora

    esteja se adaptando muito bem ao nível do mar (Valentová e Ulrichová, 2003).

    As espécies de Smallanthus parecem ter preferência por locais de distúrbio ecológico,

    como por exemplo, em locais de desmatamento, beira de rios e estradas. Assim, em função da

    agricultura baseada em desmatamento e queimadas, o yacón foi tornando-se cada vez mais

    freqüente como erva daninha, que aos poucos foi chamando a atenção pelas características de

    suas raízes tuberosas. Então essa erva passou a ser cultivada, o que deve ter ocorrido nas

    regiões norte da Bolívia e central do Peru. O primeiro registro sobre o yacón data de 1615,

    quando Felipe Guaman Poma de Ayala cita-o em uma lista de 55 plantas cultivadas pelos

    povos andinos. Depois o cronista Padre Barnabé Cobo, em 1653, deixa registrado em um

    livro a descrição do yacón, dizendo que é uma fruta que se come cru, que tem sabor muito

    bom e ainda melhor se exposta ao sol, também disse que é uma fruta maravilhosa para

    transporte em embarcações, pois dura muito, como no original: "Comense crudas por frutas y

    tienen muy buen sabor, y mucho mejor si se passan al sol. Es maravillosa fruta para

    embarcada, porque dura mucho tiempo" (Valentová e Ulrichová, 2003; Zardini, 1991). Há

    muito que o yacón chegou na Europa, na Itália foi bastante cultivado nos idos de 1930, mas o

  • D. Fitoquímica 26

    cultivo não resistiu à segunda guerra mundial (Grau e Rea, 1999). Atualmente o yacón vem

    conquistando o mercado internacional (Zardini, 1991), sendo cultivado na Itália, França,

    Alemanha, EUA, República Tcheca, Rússia, Japão e Brasil (Valentová et al., 2001; Valentová

    e Ulrichová, 2003). Sua produção aumentou durante um grande período de seca na região

    andina nos anos de 1982-1983, quando a produção de batata inglesa foi muito afetada. O

    problema da sua marginalização está conectada ao fato de não haver uma técnica de produção

    intensiva, talvez por não ser ainda costumeiramente consumida em áreas urbanas, embora

    vários estudos tenham sido realizados na área agrícola (Estrella e Lazarte, 1994; Grau e Rea,

    1999; Nieto, 1991; Zardini, 1991).

    S. sonchifolius (Fig. D1) é uma planta herbácea perene que multiplica-se por rizomas

    (Nieto, 1991). Os caules aéreos são cilíndricos, de coloração esverdeada, apresentam

    pilosidade em toda a superfície e chegam a medir até 2,5 m de altura. As folhas brotam de

    gemas do caule aéreo, são opostas, delgadas, apresentam as bordas lobuladas e formam uma

    ala de cada lado do pecíolo. Apresentam várias estruturas secretoras, tais como tricomas,

    idioblastos e hidatódios (Dip., 1986). As flores estão agrupadas nas extremidades dos ramos e

    são de dois tipos: as liguladas, que se encontram nos bordos, e as tubulares, na parte central da

    inflorescência.

  • D. Fitoquímica 27

    A

    B

    C Figura D1. Partes aéreas de Smallanthus sonchifolius. A e B mostram fotografias feitas no campo de

    cultivo do CERAT, UNESP em Botucatu, SP, e C foi obtida na internet.

  • D. Fitoquímica 28

    Suas raízes tuberosas, suculentas e translúcidas, são descritas como pêras ou maçãs,

    com odor que lembra a melancia (Ohyama et al., 1990; Valentová e Ulrichová, 2003). O

    sistema subterrâneo (Fig. D2) é constituído de três partes distintas: os tubérculos − que são

    ricos em frutanos e fibras não digeríveis − dos quais originam-se gemas que formarão uma

    nova planta, as raízes de absorção e fixação, e as raízes tuberosas ou de reserva, também ricas

    em frutanos, que chegam a pesar até 2 kg, sendo as preferidas para o consumo humano.

    Figura D2. Raízes tuberosas de Smallanthus sonchifolius.

    A maioria das raízes tuberosas em Asteraceae possui a capacidade de armazenar

    amido, polímero de glicose. Entretanto, o yacón é um enorme reservatório de inulina, um

    polímero de frutose com um resíduo de glicose (Carvalho et al., 2004). Também armazenam

    vários carboidratos como frutose, glicose, sacarose, oligossacarídeos de baixa polimerização e

    traços de amido. A inulina de alta polimerização é comum em espécies de Asteraceae, como

    Helianthus e Dahlia, mas no yacón está em baixa quantidade. Porém os oligofrutanos de

    baixa polimerização, de até doze graus, chegam a perfazer 67 % da matéria seca da batata do

    yacón, e o tipo de ligação de polimerização mostra que são do tipo existente na inulina (Grau

    e Rea, 1999). Os oligofrutanos auxiliam no desenvolvimento de bífido bactérias benéficas no

    intestino, na assimilação de cálcio, têm efeito favorável na diminuição do colesterol, de

    triglicérides e de microorganismos putrefativos (Carvalho et al., 2004). Assim o yacón pode

    prover redução de calorias e as fibras necessárias para o combate ao estresse da vida

    sedentária, que geralmente vem associado ao consumo de muito carboidrato e gordura.

    A síntese e degradação destes carboidratos ocorrem por meio de um sistema

    multienzimático. A enzima sacarose-sacarose-frutosiltransferase transfere um resíduo de

  • D. Fitoquímica 29

    frutose de uma molécula de sacarose, açúcar comum, para outra, resultando em um tri-

    sacarídeo, chamado de cetose, e mais um resíduo de glicose livre. A seguir, a enzima frutano-

    frutano-frutosiltransferase transfere outros resíduos de frutose para a cetose, promovendo a

    polimerização da cadeia (Carvalho et al., 2004).

    A afirmação do Padre Barnabé quanto à melhora do sabor das raízes quando expostas

    ao sol foi confirmada por meio de estudos bromatológicos (Carvalho et al., 2004; Nieto,

    1991). As investigações demonstram que com a exposição das raízes ao sol por 15 dias, o

    conteúdo de açúcar aumenta nove vezes (Nieto, 1991). Neste caso ocorre a despolimerização

    da molécula de inulina por meio da enzima frutano-hexohidrolase, o que acarreta o acúmulo

    de frutose e de glicose. O processo de despolimerização da inulina gera energia para o

    processo de respiração e transpiração celular.

    A batata do yacón é também rica em minerais como potássio, fósforo, ferro, zinco,

    magnésio, sódio, cálcio e cobre, além de caroteno, retinol, vitamina C, niacina e riboflavina

    (Grau e Rea, 1999).

    S. sonchifolius tem um alto potencial para tornar-se um importante alimento dietético,

    uma vez que a inulina não é hidrolisada por complexos enzimáticos de humanos (Alfaro e

    Melgarejo, 2005). A batata do yacón é comercializada na Europa, em feiras livres, como

    alimento funcional e suplemento alimentar, especialmente para idosos, diabéticos e mulheres

    no climatério. Nos mercados locais da região andina o yacón é vendido como fruta,

    juntamente com maçã, abacaxi, abacate, etc (Valentová e Ulrichová, 2003). A sua aparência

    pode parecer um pouco estranha, pois é vendida quando a pele da batata está enrugada. Tal

    fato ocorre porque a batata é exposta ao sol, processo para aumentar o seu sabor doce. O

    yacón é consumido cru, em saladas de frutas, cozido, frito em fatias finas, grelhado e até

    como suco. As folhas são utilizadas para alimentação bovina, mas a presença de LSTs na

    superfície das mesmas altera a sua palatabilidade (Grau e Rea, 1999).

    As folhagens de S. sonchifolius são utilizadas na medicina popular na forma de infusão

    para tratamento de diabetes (Valentová et al., 2001). Estudos realizados com animais normais,

    diabéticos e com diabetes induzida demonstram que além de normalizar os níveis de glicose

    no sangue, um infuso de folhas de yacón parece aumentar a concentração plasmática da

    insulina (Aybar et al., 2001). O extrato aquoso e o chá de folhas de yacón reduzem a produção

    de glicose por meio da diminuição da gliconeogênese e da glicogenólise em hepatócitos, além

    de atuar de forma similar à insulina e proteger contra danos oxidativos (Valentová et al.,

    2003; Valentová et al., 2004). A enidrina (1), a LST de maior concentração nos extratos de

    folhas de S. sonchifolius, foi administrada oralmente a ratos a 100 mg/kg com 1,5 mg/kg de

  • D. Fitoquímica 30

    glicose. Os resultados mostram que esta substância possui atividade antidiabética, pois os

    valores de glicose no sangue foram de 140,8 mg/dL para os ratos tratados e de 216,8 mg/dL

    para os controles (Kawashima et al., 2001). Além disso, a enidrina apresenta as atividades

    antiinflamatória (Hwang et al., 1996), antifúngica e antimicrobiana (Inoue et al., 1995).

    De S. sonchifolius foram isolados quatro diterpenóides do tipo caurano (Kakuta et al.,

    1992), flavonóides, vários derivados do ácido cinâmico como os ácidos caféico, cumárico,

    ferúlico e clorogênico (Simonovska et al., 2003), além de várias LSTs do tipo melampolido,

    dentre outros metabólitos secundários. O número de LSTs isoladas do gênero Smallanthus é

    apresentado na tabela D1.

    Tabela D1. Espécies do gênero Smallanthus, sua localização e número de LSTs (melampolidos) isoladas.

    Espécies Melampolidos isolados Localização geográfica S. apus (Blake) - S. connatus (Spreng.) - Brasil, Paraguai, Uruguai, Argentina S. fruticosus (Benth.) 5 (Bohlmann et al., 1980) Colômbia, Equador, Peru S. glabratus (DC.) 1 (Bohlmann et al., 1985) Chile, Equador, Peru S. jelksii (Hieron.) - Peru S. latisquamus (Blake) - Costa Rica S. lundellii - Guatemala S. macroscyphus (Baker ex. Martius) A. Grau

    8 (DePedro et al., 2003) Bolívia, Argentina

    S. maculatus (Cav.) - México, Guatemala, Honduras, Salvador, Costa Rica, Nicarágua

    S. macvaughii (Wells) 4 (Castro et al., 1989) México S. meridensis (Steyerm.) - Venezuela, Colômbia S. microcephalus - Equador S. oaxacanus (Sch. Bip. ex Klatt) - México, Guatemala, Honduras S. parviceps (Blake) - Peru, Bolívia S. pyramidalis (Triana) - Venezuela, Colômbia, Equador S. quichensis (Coult.) - Costa Rica, Guatemala S. riparius (H.B.K.) - México, Bolívia S. siegesbeckius (DC.) - Peru, Bolívia, Brasil, Paraguai S. sonchifolius (Poepp. & Endl.) 7 (Inoue et al., 1995; Lin

    et al., 2003; Valentová et al., 2003)

    Venezuela, Colômbia, Equador, Peru, Bolívia

    S. suffruticosus (Baker) - Venezuela S. uvedalius (L.) (Mackenzie) 7 (Bohlmann et al., 1985) Estados Unidos

    O yacón ainda possui uma característica interessante de manchar as mãos de quem

    manuseia suas folhas, o que é causado por peroxidases.

    A espécie é conhecida por sua alta resistência a pragas (Hashidoko et al., 1993; Inoue

    et al., 1995; Kakuta et al., 1992; Takasugi e Masuda, 1996), o que foi relacionado à presença

    de tricomas glandulares (Hashidoko et al., 1993; Inoue et al., 1995), especialmente porque

    estas são estruturas que armazenam LSTs, substâncias alergênicas e amargas.

    A localização de LSTs em tricomas glandulares de espécies de Heliantheae

    possibilitou a otimização de estudos fitoquímicos, reduzindo custos, tempo de análise e

  • D. Fitoquímica 31

    consumo de material (Spring, 1991; Spring e Buschmann, 1994). Isso foi possível através do

    emprego da técnica denominada microamostragem de tricomas glandulares. A metodologia

    analítica consiste em coleta manual de tricomas glandulares, preparo do extrato glandular e

    análise por meio da CLAE (Da Costa et al., 2001; Spring, 1991). Geralmente os metabólitos

    presentes nos tricomas podem ser indiretamente identificados por meio da comparação de

    seus dados cromatográficos com os de substâncias previamente conhecidas, cujos dados são

    compilados na forma de um banco de dados. A metodologia preparativa é uma adaptação da

    anterior. Ela compreende a obtenção de extrato glandular com grande número de tricomas,

    sendo, portanto necessária a lavagem das superfícies íntegras das folhas ou das flores do

    vegetal. O extrato é também analisado em CLAE e seus metabólitos são isolados em escala

    preparativa. Estes metabólitos são posteriormente submetidos à análise espectroscópica para

    sua elucidação estrutural.

    Neste trabalho, o intuito foi isolar quantidades suficientes de LSTs para que fossem

    utilizadas em ensaios biológicos.

  • D. Fitoquímica 32

    2. EXPERIMENTAL

    2.1. Métodos cromatográficos 2.1.1. Cromatografia em camada delgada comparativa (CCDC)

    As CCDCs foram realizadas em placas de vidro com 10 ou 20 x 20 cm. Estas eram

    recobertas com sílica gel 60 GF254, Merck (0,25 mm) com auxílio de um espalhador do tipo

    Desaga. Também foram empregadas placas de alumínio pré-fabricadas Merck, recobertas

    com o mesmo tipo de sílica. As amostras foram solubilizadas em solvente apropriado e

    aplicadas nas placas com auxílio de capilares de vidro ou por meio de câmara de aplicação de

    amostras. As placas foram eluídas em diferentes sistemas de fases móveis, contendo

    geralmente hexano, acetona, AcOEt, CHCl3 e HAc. As manchas referentes às substâncias

    foram detectadas por meio de luz UV a 254 e 366 nm, assim como por meio de reveladores

    químicos. Estes, como o anisaldeído sulfúrico, eram borrifados nas placas e estas eram então

    aquecidas até 100 °C, a fim de que houvesse a revelação, ou seja, o desenvolvimento de

    coloração através de reações químicas promovidas pelo calor.

    O aplicador de amostras consiste em aparelho Camag Automatic TLC Sampler 4

    acoplado a um computador com software winCATS, detetor Camag Reprostar 3 e Camag

    TLC Scanner 3. As amostras eram solubilizadas em pequeno volume de solvente em frascos

    apropriados. Alguns microlitros de amostra eram aplicados sobre a placa, na forma de bandas

    muito finas e pré-determinadas.

    Vale ressaltar que os reveladores empregados corriqueiramente não estavam sendo

    efetivos para as amostras analisadas. Foi realizada então uma pesquisa sobre reveladores

    específicos para LST, conforme a tabela D2. Observa-se na CCDC (Fig. D3) que a amostra

    (fração 130.6, ver item D2.2.3) possui basicamente duas substâncias predominantes, sendo

    uma delas a enidrina (1), a de rf maior (0,70). O revelador à base de vanilina sulfúrica, mais

    concentrada do que a normalmente utilizada (Tab. D2), foi escolhido para utilização posterior,

    em função da facilidade de obtenção da vanilina em relação ao p-dimetilaminobenzaldeído. O

    revelador com sulfato cérico amoniacal não revelou as LSTs.

  • D. Fitoquímica 33

    A B

    Enidrina (rf = 0,70)

    Figura D3. Amostra (10 µg da fração 130.6) com enidrina em CCDCs eluídas em CHCl3/acetona 6:1. A: revelado com p-dimetilaminobenzaldeído; B: revelado com vanilina sulfúrica.

    Tabela D2. Reveladores para LSTs. Revelador vanilina sulfúrica

    (Picman et al., 1980) p-dimetilaminobenzaldeído(Picman et al., 1980)

    sulfato cérico amoniacal (Zamyatina e Shvets, 1995)

    Quantidade 0,5 g 0,5 g 0,5 g 9 mL EtOH (95 %) 9 mL EtOH (95 %) 45 mL H2O 0,5 mL H2SO4 0,5 mL H2SO4 5 mL H2SO4 Preparo 3 gotas HAc 3 gotas HAc -

    Fase móvel CHCl3/acetona 6:1 CHCl3/acetona 6:1 hexano/AcOEt/ CHCl3 3:4:3 com 2 % HAcCor da mancha (10 µg amostra)

    Azul forte, fundo amarelo marrom não revelou

    2.1.2. Cromatografia em coluna Foram empregados os seguintes materiais e fases móveis:

    a) cromatografia líquida a vácuo (CLV)

    A técnica é apropriada para extratos brutos com massa menor que 1 g (Coll e Bowden,

    1986), possibilitando análises em tempo reduzido, de minutos até poucas horas. O

    equipamento consiste de um funil de vidro com placa sinterizada e um balão coletor.

    A fase estacionária, sílica gel 60 H, Merck (0,040-0,063 mm), é empacotada no funil

    e, para forçar a passagem do eluente, utiliza-se pressão reduzida, gerada por uma

    bomba de vácuo acoplada abaixo da coluna (Pelletier et al., 1986). A amostra é

    solubilizada em pequeno volume de solvente apropriado, adicionada de sílica gel 60 e

    misturada até total adsorção da amostra na sílica, que é então depositada no topo da

    coluna seca. A fase móvel utilizada foi em esquema de gradiente crescente de

    polaridade, iniciando-se com 100 % de hexano até 100 % de AcOEt, e finalmente com

    100 % de MeOH para a limpeza da coluna.

  • D. Fitoquímica 34

    b) cromatografia flash

    A técnica constitui-se basicamente de cromatografia de adsorção em coluna, sendo que

    a aparelhagem necessária consiste de uma coluna de vidro e uma válvula controladora

    de fluxo, onde a pressão é geralmente produzida com gás nitrogênio, o qual é

    introduzido acima da coluna. A coluna possui aproximadamente 46 cm de altura, de

    base achatada, com torneira de teflon e junta de vidro esmerilhado 24/40 na parte

    superior. A seleção da fase móvel é feita por meio de CCDC, sendo escolhida a fase

    móvel que move o componente desejável para um rf = 0,35, e a eluição é sempre

    isocrática. Ao contrário da CLV, nesta técnica deve-se ter o cuidado de sempre manter

    a fase estacionária coberta com solvente, pois a ausência do mesmo no interior da

    coluna danifica o empacotamento e, por conseguinte, a separação. A fase estacionária

    geralmente utilizada é a sílica gel 60, Merck (0,040 – 0,063 mm). A maior vantagem

    da cromatografia flash, além de promover uma melhor eficiência na separação, quando

    comparada com a cromatografia clássica em coluna de vidro, é o tempo reduzido de

    análise, por vezes de apenas 15 minutos (Still et al., 1978). A fase móvel empregada

    era composta de hexano, AcOEt, CHCl3 com HAc e fluxo de aproximadamente 5

    cm/min. A amostra foi solubilizada em pequeno volume de fase móvel e

    cuidadosamente depositada no topo da coluna.

    c) cromatografia líquida a média pressão (CLMP)

    O sistema consiste em coluna de vidro de 550 mm de altura e 10 mm de diâmetro,

    empacotada com fase estacionária LiChroprep RP8 Merck (fase reversa, 25-40 µm),

    uma bomba Latek (modelo S 1990), cânulas de silicone, fases móveis pré-misturadas

    em sistema gradiente, detetor Labomatic de UV regulável, registrador Goerz

    Metrawatt (modelo SE 120) com papel milimetrado a 12 cm/h e coletor automático. A

    amostra é solubilizada em pequeno volume da fase móvel e aplicada no injetor. A

    análise pode durar de minutos até horas e estas dimensões de coluna são próprias para

    amostras de até 200 mg. O fluxo é regulável, por exemplo, 1,6 mL/min ocasionam

    pressão de 0,07 MPa.

    d) cromatografia líquida de alta eficiência (CLAE)

    As análises em CLAE foram realizadas em cromatógrafo Shimadzu, modelo SCL 10

    AVP, equipado com três bombas Shimadzu, modelo LC-10AD, detetor de arranjo de

    diodos UV-Vis-DAD Shimadzu, modelo SPD-M10A, injetores manual e automático e

  • D. Fitoquímica 35

    sistema de integração computadorizado com software CLASS-VP versão 5.02. Foi

    utilizada coluna analítica C18 (4,6 x 250 mm; 5 µm, 100 Å) e coluna semipreparativa

    C18 (20 x 250 mm; 15µm, 100 Å), Shimadzu. O padrão externo para as análises

    cromatográficas em CLAE foi o 2,5-dimetilfenol (DMP), Aldrich, injetado sempre

    imediatamente antes da injeção da amostra.

    2.2. Estudo das folhas de Smallanthus sonchifolius 2.2.1. Origem do material vegetal

    Folhas de S. sonchifolius foram coletadas por K. Schorr. A estabilização e secagem

    foram realizadas em estufa de ar circulante a 50 °C por 10 dias. Suas exsicatas foram

    depositadas no herbário da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da

    Universidade de São Paulo sob códigos SPFR conforme segue:

    - código de coleta #101 (SPFR 07646): 12/1999 Departamento de Horticultura do Centro de

    Raízes Tropicais (CERAT) da Universidade Estadual Paulista (UNESP), campus Lajeado,

    em Botucatu, SP;

    - código de coleta #130 (SPFR 07645): 01/2002 Departamento de Horticultura do CERAT

    da UNESP, campus Lajeado em Botucatu, SP.

    2.2.2. Extrato de lavagem foliar de S. sonchifolius #130 Em cuba metálica contendo CH2Cl2 foram lavadas individualmente, durante 20

    segundos, 248 g ou 146 folhas (média de 1,76 g/folha) secas e inteiras de S. sonchifolius

    #130. Optou-se por lavagem individual em função do tamanho de cada folha, com mais de 20

    cm de comprimento, visto que se as mesmas fossem despedaçadas, causaria extravasamento

    de metabólitos presentes em outras organelas, ocasionando a extração de substâncias de pouco

    interesse para este estudo. Esta lavagem foi efetuada com auxílio de pinça e com a face

    inferior das folhas voltada para baixo, uma vez que os tricomas glandulares localizam-se

    justamente nesta face. O extrato obtido foi filtrado em papel de filtro e evaporado, resultando

    em 2,6 g de extrato diclorometânico seco (1,05 % de peso seco da droga). O extrato seco foi

    solubilizado em MeOH e o material graxo foi precipitado com um terço do volume de água,

    resultando em 2,2 g de fase hidrometanólica seca (0,89 % de peso seco da droga). Os extratos

    foram submetidos à espectroscopia na região do IV.

  • D. Fitoquímica 36

    2.2.3. Isolamento de LSTs do extrato de lavagem foliar de S. sonchifolius

    #130 Por meio de CLV foram obtidas dez frações da fase hidrometanólica do extrato de

    lavagem foliar de S. sonchifolius #130. A CLV foi feita com 110 g de sílica gel 60 H em

    coluna de 4,5 cm de diâmetro e 10 cm de altura. A eluição foi feita em esquema de gradiente

    crescente de polaridade de hexano a AcOEt e a coluna foi limpa com MeOH (Tab. D3). Todas

    as amostras foram submetidas à análise espectroscópica na região do IV. Por meio de CCDC

    (hexano/AcOEt/CHCl3 3:4:3 com 2 % HAc) e de CLAE (MeOH/H2O, 55:45, 1 mL/min, C-

    18) as frações foram selecionadas para obtenção dos espectros de RMN ou para um novo

    fracionamento.

    Tabela D3. CLV da fase hidrometanólica do extrato de lavagem foliar de S. sonchifolius #130.

    Solvente Proporção Volume (mL)

    Fração Massa (mg)

    hexano - 250 130.1 9 hexano/AcOEt 80:20 250 130.2 6 hexano /AcOEt 70:30 250 130.3 62 hexano /AcOEt 65:35 250 130.4 148 hexano /AcOEt 30:20 250 130.5 321 hexano /AcOEt 55:45 250 130.6 942 hexano /AcOEt 50:50 500 130.7 594 hexano /AcOEt 30:70 250 130.8 167

    AcOEt - 500 130.9 263 MeOH - 500 130.10 323

    Conforme dados do espectro de RMN 1H, a fração 130.2 compreende um

    diterpenóide, porém em função do alto grau de impurezas presentes não foi possível

    identificá-lo. Já a fração 130.3 consiste na LST sonchifolina (3).

    A fração 130.4 foi submetida a novo fracionamento em escala preparativa em CLAE

    com MeOH/H2O 55:45, 9,5 mL/min em coluna semipreparativa C18, resultando em sete

    subfrações, sendo seis LSTs puras (Tab. D4).

    Tabela D4. Subfrações de 130.4 (CLAE escala semipreparativa em MeOH/H2O). Subfração Massa (mg) LST

    130.4.1 4,0 2 130.4.2 3,0 4 130.4.3 2,5 - 130.4.4 2,5 5 130.4.5 4,0 6 130.4.6 2,5 7 130.4.7 3,0 8

    A fração 130.5 corresponde à LST uvedalina (2).

  • D. Fitoquímica 37

    A fração 130.6 foi selecionada para refracionamento por meio de cromatografia flash

    com 30 cm de altura de sílica gel 60 para flash seca em coluna de 4 cm de diâmetro. A eluição

    foi realizada com fase móvel hexano/AcOEt/CHCl3 5:2:3 com 2 % HAc e a coluna foi limpa

    com acetona e MeOH. Foram obtidas 40 subfrações e avaliadas por meio de CCDC com fase

    móvel hexano/AcOEt/CHCl3 3:4:3 com 2 % HAc, sendo reunidas em oito subfrações, de

    130.6.1 a 130.6.8, sendo a subfração 130.6.4 (200 mg) correspondente à enidrina (1).

    A fração 130.7 trata-se também da LST enidrina (1).

    A fração 130.8 foi refracionada por meio de diferenças de solubilidade. A amostra

    seca foi adicionada de AcOEt, solubilizando-se apenas uma porção da mesma. A parte

    insolúvel em AcOEt (subfração 130.8.1, 36 mg) foi refracionada por meio de CLMP. A parte

    solúvel (subfração 130.8.2, 130 mg) corresponde à LST 9.

    A subfração 130.8.1 foi purificada por meio de CLMP com coluna de vidro (550 x 10

    mm), fase estacionária LiChroprep RP8 Merck e as fases móveis foram inicialmente misturas

    de MeOH/H2O 1:1 até MeOH apenas, com fluxo de 1,6 mL/min, durante quatro horas. Todas

    as frações (Tab. D5) foram analisadas por meio de CCDC com fase móvel

    hexano/AcOEt/CHCl3 2,5:4,5:3 com 2 % de HAc. Foram isolados dois picos (10 mg) largos

    parcialmente sobrepostos, porém ambos são referentes à mesma substância 10.

    Tabela D5. CLMP da subfração 130.8.1. MeOH/H2O Subfração LST

    50:50 130.8.1.1 55:45 130.8.1.2 60:40 130.8.1.3 65:35 130.8.1.4 70:30 130.8.1.5 75:25 130.8.1.6 80:20 130.8.1.7 85:15 130.8.1.8 10 90:10 130.8.1.9 100 % 130.8.1.10

    A fração 130.9 foi purificada em escala semipreparativa em CLAE com MeOH/H2O

    55:45, 9,5 mL/min em coluna C18, resultando em 15 mg da LST 9.

    A fração 130.10 foi também fracionada por meio de CLV. A CLV foi realizada com 5

    cm de sílica gel 60 H em coluna de 4,5 cm de diâmetro e 12 cm de altura. A eluição foi feita

    em esquema de gradiente crescente de polaridade de hexano a AcOEt e a coluna foi limpa

    com MeOH, resultando em 15 subfrações, porém nenhum metabólito secundário foi

    identificado.

  • D. Fitoquímica 38

    mistura com diterpeno

    130.2

    3(62 mg)

    130.3

    2(4 mg)

    130.4.1

    4(3 mg)

    130.4.2

    5(2,5 mg)

    130.4.4

    6(4 mg)

    130.4.5

    7(2,5 mg)

    130.4.6

    8(3 mg)

    130.4.7

    CLAEC18 (20 x 250 mm)MeOH/H2O 55:45

    9,5 mL/min

    130.4

    2(321 mg)

    130.5

    1(200 mg)

    130.6.4

    flashhexano/AcOEt/CHCl3

    5:2:3+2 % HAcsilica gel 60

    130.6

    1(594 mg)

    130.7

    10(10 mg)

    CLMPRP-8 (550 x 1 mm)grad. MeOH/H2O

    130.8.1

    9(130 mg)

    130.8.2

    AcOEtMeOH

    130.8

    9(15 mg)

    130.9

    CLVgrad. hexano - AcOEt

    siligal gel 60H

    S. sonchifolius #130fase hidrometanólica

    A figura D4 apresenta um esquema resumido do fracionamento.

    Figura D4. Fracionamento da fase hidrometanólica do extrato glandular de lavagem foliar de S. sonchifolius #130.

    2.2.4. Extratos de folhas com e sem tricomas glandulares de S. sonchifolius

    #101 O extrato de lavagem foliar de S. sonchifolius #101 foi obtido como mostra o item

    E2.1.2 (Schorr, 2001).

    Cerca de 180 g de folhas lavadas secas (Schorr, 2001), ou seja, sem tricomas

    glandulares, de S. sonchifolius #101, foram trituradas em liquidificador metálico. Cerca de

    152 g do pó foram colocados em Erlenmeyer de 3 L, sendo posteriormente adicionados 2 L de

    água fervente. A suspensão foi mantida por 20 min em chapa de aquecimento e sob agitação,

    sendo então colocada em uma coluna de vidro para percolação. O infuso foi escoado

    inicialmente na velocidade de 84 gotas/min. Depois a velocidade caiu bem e o escoamento

    total se deu após dois dias. Obteve-se assim o extrato aquoso. O resíduo de pó foi então

    macerado com 2 L de EtOH por seis dias e então escoado e evaporado em evaporador

    rotativo, resultando em 6,9 g de extrato etanólico. Por meio de maceração do pó residual com

    2 L de CH2Cl2, seu escoamento e evaporação, obteve-se 2,2 g de extrato diclorometânico. O

    resíduo foi então submetido à maceração por seis dias com 1 L de hexano, escoado e

    evaporado resultando em 12,4 mg de extrato hexânico. Todos os extratos foram submetidos à

    análise espectroscópica na região do IV.

  • D. Fitoquímica 39

    A 1 g de pó foram adicionados 10 mL de água e a mistura foi fervida por 10 min,

    produzindo um decoto. Um infuso foi preparado com 1 g de pó, 50 mL de água fervente e 20

    min de repouso (Aybar et al., 2001).

    Também foram preparados infuso e decoto com pedaços de folhas com tricomas

    glandulares. As folhas foram controladas sob estereomicroscópio antes e após o preparo dos

    chás.

    2.2.5. Coleta de tricomas glandulares de folhas Para a coleta manual dos tricomas glandulares utilizou-se estereomicroscópio

    Olympus, modelo SZ 6045-CHI. Os extratos glandulares foram preparados em tubos tipo

    Eppendorf com capacidade para 1,5 mL. A centrifugação foi realizada em microcentrífuga

    Sanyo, modelo Microcentaur.

    Da face inferior das folhas de S. sonchifolius, com uma agulha de dissecação os tricomas

    glandulares foram coletados e carregados para Eppendorf contendo 40 µL de solvente para

    dissolução. Aproximadamente 60 glândulas foram sonicadas em MeOH por alguns segundos e,

    após adição de 40 µL de água, foram centrifugadas por 20 segundos em microcentrífuga. O

    sobrenadante límpido do extrato glandular foi analisado em CLAE.

    2.2.6. Análise dos extratos glandulares por meio de CLAE As condições de trabalho incluem coluna analítica C18 fases MeOH/H2O (55:45; 1,0

    mL/min) e CH3CN/H2O (35:65; 1,3 mL/min) e detecção simultânea a 225 e 265 nm à

    temperatura ambiente (22 a 25 °C). Tais condições foram monitoradas adequadamente, o que

    se reflete na estabilidade e reprodutibilidade do tempo de retenção do padrão 2,5-dimetilfenol

    (DMP, 20 µL a 10-8M). Sendo dois sistemas de fase móvel, cada amostra corresponde ao

    conteúdo glandular de aproximadamente 30 tricomas provenientes de um mesmo extrato, o

    que proporcionou maior uniformidade dos resultados. As análises dos extratos glandulares

    ocorreram em seqüência para cada sistema de fase móvel, evitando assim eventuais alterações

    a que o sistema pudesse estar sujeito. Uma vez obtidos os cromatogramas dos extratos glandulares a 225 e 265 nm, em 60

    min de eluição, foram calculados, para cada pico, os seguintes dados:

    - tempo de retenção relativo ao padrão interno no sistema 1 (MeOH/H2O) - trr1;

    - tempo de retenção relativo ao padrão interno sistema 2 (CH3CN/H2O 3:7) - trr2;

  • D. Fitoquímica 40

    - comprimento de onda máximo no UV - λmáx (obtidos através do detetor de arranjo

    de diodos).

    Inicialmente expandiu-se a escala do eixo das ordenadas (mAU) do cromatograma

    para visualizar a presença de picos com baixa intensidade de absorção. O tempo de retenção

    obtido de cada pico foi dividido pelo tempo de retenção do padrão DMP, injetado

    imediatamente antes. A relação entre os dois tempos de retenção é sempre constante para uma

    mesma substância (trr). O espectro na região do UV de cada pico também pode ser

    confrontado com os espectros das substâncias presentes no banco de dados sobre LSTs

    conhecidas e a porcentagem de similaridade pode ser considerada. O comprimento de onda de

    absorção máxima na região do UV, λmáx, pode ser utilizado como um dos critérios para

    caracterização de uma substância.

    2.3. Identificação e elucidação estrutural 2.3.1. Métodos espectroscópicos e espectrométricos 2.3.1.1. Espectrometria de massas

    Os espectros de massas foram obtidos por meio dos métodos EI, CI, APCI e ESI.

    - Electron impact (EI) - substâncias 2, 4, 5, 6, 7, 8, 9 e 10:

    Aparelho: Finnigan MAT 8200

    Energia de ionização: 70 eV

    Fonte de íons: 230 °C, 1 mA, 3kV

    - Chemical ionization (CI) - substâncias 2, 4, 5, 6, 7, 8 e 9:

    Aparelho: Finnigan TSQ 7000

    Energia de ionização: 250 eV

    Fonte de íons: 200 °C, 500 µA

    Gás reagente: isobutano (1205 mT)

    - Atmosphere pressure chemical ionization (APCI) - substância 10:

    Aparelho: Finnigan TSQ 7000

    - Electrospray ionization (ESI) - substâncias 9 e 10:

    Aparelho: Finnigan TSQ 7000

    Energia de ionização: 70 eV

  • D. Fitoquímica 41

    - Electrospray ionization (ESI)- substância 10:

    Aparelho: Finnigan LTQ-FT

    Energia de ionização: 250 eV

    Fonte de íons: 250 °C, 4-4,5 kV

    2.3.1.2. Espectroscopia na região do IV

    Os espectros na região do IV foram obtidos em espectrômetro Perkin-Elmer 1600.

    Nesse espectrômetro utilizam-se pastilhas de KBr em micropastilhador para substâncias

    sólidas e cela de NaCl onde se depositam as amostras (geralmente goma) solúveis em CHCl3

    ou EtOH, em forma de filme.

    2.3.1.3. Espectroscopia de RMN

    Os espectros de RMN foram registrados nos seguintes aparelhos:

    - Bruker DPX 300, operando em 300 MHz para 1H e em 75 MHz para 13C

    - Bruker DRX 400, operando em 400 MHz para 1H e em 100 MHz para 13C

    - Variant Unity 300, operando em 300 MHz para 1H e em 75 MHz para 13C

    As amostras foram solubilizadas em solvente deuterado Aldrich, sendo que o sinal de

    CDCl3 e de TMS serviram como referência interna. As constantes de acoplamento (J) são

    fornecidas em Hz e o deslocamento químico (δ) em ppm.

    2.3.2. Elucidação estrutural automatizada via SISTEMAT Os dados de RMN 13C propostos foram analisados por meio do sistema especialista

    SISTEMAT (Emerenciano et al., 1994). Este é um sistema especialista que foi desenvolvido

    para estudos das áreas de quimiotaxonomia e elucidação estrutural automatizada de produtos

    naturais. As estruturas propostas foram analisadas por meio dos programas SISCONST e

    C13MATCH, sendo cada subestrutura analisada individualmente. No caso das LSTs, são

    considerados subestruturas os ésteres, o anel lactônico, anéis restantes e outras cadeias

    laterais. Esta abordagem permite ao SISTEMAT propor substâncias desconhecidas ao

    sistema.

    Os dados de RMN 13C de cada LST foram fornecidos ao programa que procurou

    estruturas com os deslocamentos químicos fornecidos, com uma faixa tolerável de erro em

    gradiente de 0,1 a 1,5 ppm.

  • D. Fitoquímica 42

    2.3.3. Confôrmeros de baixa energia As fórmulas estruturais foram desenhadas com o programa ChemDraw® Ultra,

    Chemical Structure Drawing Standard (CambridgeSoft Corporation).

    Para todas as estruturas foi realizado um estudo para determinar seus confôrmeros de

    menor energia. Todas as minimizações de energia foram realizadas com o programa

    Molecular Modelling-System HyperChemTM Version 7.0 Professional (Hypercube, Inc.) em

    um computador com sistema operacional Microsoft Windows XP, Home Edition, Version

    2002, processador Intel Pentium, 1500 MHz.

    A minimização de energia foi efetuada com o HyperChemTM implementado com

    campo de força MM+ e com a utilização do alogarítmo Polak-Ribière. MM+ é uma

    modificação do campo de força MM2 de N. L. Allinger (Allinger, 1977). A minimização de

    energia foi realizada por meio do método semi-empírico AM1, Austin Model 1 (Dewar et al.,

    1985; Dewar e Dieter, 1986).

    Os cálculos foram efetuados por meio da opção conformational search do

    HyperChemTM. As geometrias iniciais foram fornecidas pelo HyperChemTM em campo de

    força MM+ sob um gradiente RMS < 0,01 kcal mol-1 Å-1. O próximo passo foi realizado com

    a utilização da opção usage directed search method, o que significa que cada confôrmero de

    baixa energia encontrado passou a ser utilizado como ponto de partida para a próxima

    minimização. Todas as ligações passíveis de rotação nos anéis foram consideradas variáveis.

    Os testes de duplicata foram efetuados a partir das geometrias iniciais. Os ésteres não foram

    inicialmente considerados na busca pelos confôrmeros de menor energia porque o tempo de

    cálculo e o número de confôrmeros aumentariam drasticamente. A minimização de energia foi

    calculada para 2500 geometrias para cada estrutura e 20 confôrmeros foram selecionados. Os

    ésteres foram adicionados aos confôrmeros selecionados e a sua energia foi novamente

    minimizada sob o campo de força MM+ e pelo método semi-empírico AM1.

  • D. Fitoquímica 43

    3. RESULTADOS E DISCUSSÕES

    3.1. Extrato de lavagem foliar de S. sonchifolius #130 O extrato diclorometânico de lavagem foliar da população #130 foi avaliado quanto à

    absorção na região do IV (Fig. D5). O espectro apresenta como principal característica bandas

    de absorção de estiramento de grupamento carbonila de γ-lactonas em torno de 1760 cm-1.

    Esta característica sugere a presença de LSTs. Já no espectro da fase hidrometanólica, estas

    bandas são mais intensas, sugerindo uma maior concentração de LSTs.

    4000 3500 3000 2500 2000 1500 1000 500

    0

    20

    40

    60

    80

    100

    120

    1760

    A

    % tr

    ansm

    itânc

    ia

    comprimento de onda (cm-1)

    4000 3500 3000 2500 2000 1500 1000 500

    0

    20

    40

    60

    80

    100

    120

    1760

    B

    % tr

    ansm

    itânc

    ia

    comprimento de onda (cm-1)

    Figura D5. Espectros na região do IV (filme em CHCl3) dos extratos de lavagem foliar de S. sonchifolius

    #130; A: extrato diclorometânico; B: fase hidrometanólica.

    3.1.1. Isolamento de terpenóides da fase hidrometanólica de S. sonchifolius

    #130 A fase hidrometanólica foi fracionada por meio de CLV. Posteriormente, as frações

    130.4, 130.6 e 130.8 foram refracionadas, levando ao isolamento de dez LSTs. Destas oito já

    haviam sido isoladas anteriormente, sendo seis (1-4, 7-8, item D3.1.2.11 e Fig. D68) de S.

    sonchifolius, tribo Heliantheae, (Inoue et al., 1995; Lin et al., 2003), uma (5) de Enydra

    anagallis, tribo Heliantheae, (Bardón et al., 2001) e uma (6) de Grazielia intermedia, tribo

    Eupatorieae, (Bohlmann et al., 1981b).

    O primeiro grupo de frações (130.1 a 130.10) foi submetido à análise por meio de

    espectroscopia na região do IV e os espectros são apresentados a seguir:

  • D. Fitoquímica 44

    4000 3500 3000 2500 2000 1500 1000 500

    0

    20

    40

    60

    80

    100

    130.117

    20

    % tr

    ansm

    itânc

    ia

    comprimento de onda (cm-1)4000 3500 3000 2500 2000 1500 1000 500

    0

    20

    40

    60

    80

    100

    130.2

    1720

    % tr

    ansm

    itânc

    ia

    comprimento de onda (cm-1)

    4000 3500 3000 2500 2000 1500 1000 500

    0

    20

    40

    60

    80

    100

    130.3

    1720

    1770

    % tr

    ansm

    itânc

    ia

    comprimento de onda (cm-1)4000 3500 3000 2500 2000 1500 1000 500

    0

    20

    40

    60

    80

    100

    130.4

    17201

    770

    % tr

    ansm

    itânc

    ia

    comprimento de onda (cm-1)

    4000 3500 3000 2500 2000 1500 1000 500

    0

    20

    40

    60

    80

    100

    130.5

    174017

    70% tr

    ansm

    itânc

    ia

    comprimento de onda (cm-1)

    4000 3500 3000 2500 2000 1500 1000 500

    0

    20

    40

    60

    80

    100

    120

    130.6

    1740

    1770

    % tr

    ansm

    itânc

    ia

    comprimento de onda (cm-1)

    Figura D6. Espectros na região do IV (filme em CHCl3) das frações 130.1 a 130.6 provenientes da CLV com a fase

    hidrometanólica do extrato glandular de lavagem foliar de S. sonchifolius #130.

  • D. Fitoquímica 45

    4000 3500 3000 2500 2000 1500 1000 500

    0

    20

    40

    60

    80

    100

    120

    130.7

    1760

    % tr

    ansm

    itânc

    ia

    comprimento de onda (cm-1)

    4000 3500 3000 2500 2000 1500 1000 500

    0

    20

    40

    60

    80

    100

    120

    130.8

    1710

    1760

    % tr

    ansm

    itânc

    ia

    comprimento de onda (cm-1)

    4000 3500 3000 2500 2000 1500 1000 500

    0

    20

    40

    60

    80

    100

    120

    130.9

    17201760

    % tr

    ansm

    itânc

    ia

    comprimento de onda (cm-1)

    4000 3500 3000 2500 2000 1500 1000 500

    0

    20

    40

    60

    80

    100

    130.10

    17201

    760

    % tr

    ansm

    itânc

    ia

    comprimento de onda (cm-1)

    Figura D7. Espectros na região do IV (filme em CHCl3) das frações 130.7 a 130.10 provenientes da CLV

    com a fase hidrometanólica do extrato glandular de lavagem foliar de S. sonchifolius #130.

    Os espectros das frações 130.1 e 130.2 apresentam basicamente bandas de absorção de

    estiramento C-H entre 2.850 e 2.960 cm-1 e bandas de estiramento de carbonila em torno de

    1.720 cm-1 (baixa intensidade). Este fato justifica o não isolamento de LSTs destas frações,

    uma vez que não foram observadas as já mencionadas bandas de estiramento de carbonila de

    γ-lactonas.

    Nos espectros das frações 130.3 a 130.10 aparecem bandas de absorção de estiramento

    de C-H entre 2.850 e 2.960 cm-1, de estiramento de carbonila de ésteres entre 1.720 e 1.740

    cm-1, de grupos -OH de álcoois e fenóis entre 3.600 e 3.200 cm-1 e bandas de absorção

    características de estiramento de carbonila de γ-lactonas em 1.760 e 1.770 cm-1. Na fração

    130.10, a banda de carbonila de lactonas é de intensidade relativamente menor do que nos

    espectros das outras frações que a contém. Sendo assim, LSTs foram isoladas apenas destas

    sete frações.

    A fração 130.1, as subfrações de 130.10 e de 130.6 (com exceção da 130.6.4) foram

    submetidas à análise por meio de RMN, mas não foram detectadas substâncias de interesse

    para este estudo.

  • D. Fitoquímica 46

    nm

    200 220 240 260 280 300 320 340 360 380 400 420

    mAU

    0

    100

    200

    300 10.09 min

    O

    O

    O O

    OO

    O

    O

    O

    O

    12

    34

    56

    7

    8910

    11

    12

    13

    14

    15

    1' 2'3'

    4'

    5'1''

    2''

    1'''

    3.1.2. Identificação e elucidação estrutural Os confôrmeros de baixa energia calculados pelo HyperChemTM são apresentados no

    início da discussão sobre a identificação ou elucidação estrutural de cada susbtância. Os

    átomos de hidrogênio não são mostrados. A cor cinza representa átomos de carbono e a cor

    branca representa átomos de oxigênio. A apresentação das moléculas tridimensionais teve

    como intuito fornecer mais uma possibilidade de se avaliar a estereoquímica, conformação ou

    até algumas interações atômicas, podendo desta forma facilitar a interpretação de alguns

    dados dos espectros de RMN.

    3.1.2.1. LST 1 (Enidrina)

    4α,5β-epóxi-8β-(2’S,3’S-epóxi-angeloilóxi)-9α-acetoilóxi-germacra-1(10)Z,11(13)-dien-

    6α,12-olido-14-oato de metila

    A substância foi submetida a análises através dos seguintes métodos espectroscópicos:

    UV, RMN 1H, 13C e 1H−1H COSY 45°. A figura D8 apresenta o espectro na região do UV,

    onde o máximo de absorção ocorre em 212 nm. Vale ressaltar que para todas as outras LSTs

    isoladas, os espectros na região do UV são muito semelhantes a este.

    Figura D8. Espectro na região do UV para LST 1.

  • D. Fitoquímica 47

    O espectro de RMN 1H apresenta em δ 6,33 e 5,84 sinais característicos de

    hidrogênios de dupla exocíclica de anel γ-lactônico α,β-insaturado. Esses sinais são dubletos

    referentes aos H13a/b que acoplam com o sinal em δ 3,01, referente ao H7, com constantes de

    acoplamento iguais ou maiores do que 3,0 Hz. A magnitude deste acoplamento indica que o

    anel lactônico é transóide, uma vez que em cis-lactonas esta magnitude é menor do que 3,0

    Hz. No espectro de 1H−1H COSY é possível observar que o sinal de H7 ainda acopla

    fracamente com um sinal em δ 6,71, um duplo dubleto característico para H8 ligado a um

    carbono substituído por um átomo de oxigênio. Em função da pequena magnitude da

    constante de acoplamento entre H7 e H8, conclui-se que os mesmos formam um ângulo

    diedro pouco menor que 90°, o que indica que os mesmos estão em relação cisóide. Assim, se

    H7 está orientado em α, característico de trans-lactonas, então H8 também deve possuir a

    mesma orientação em α. Observa-se a sobreposição de outros dois sinais sobre o de H7.

    Portanto, a orientação do éster epóxi-angelato deve ser β, de acordo com o esperado para a

    tribo Heliantheae (Bohlmann, 1990). A presença deste éster foi confirmada devido à

    observação de um multipleto para H3’ em δ 3,01, um dubleto para H4’ em δ 1,17 e um

    singleto para H5’ em δ 1,45.

    Um dubleto em δ 5,87 que acopla com o sinal de H8, o duplo dubleto em δ 6,71, foi

    atribuído ao H9. Com base no valor deste deslocamento, conclui-se que C9 está também

    substituído por alguma função oxigenada, além de ser alílico. A magnitude deste acoplamento

    (8,5 Hz), observado também no espectro de 1H−1H COSY, indica que H8/H9 devem estar em

    relação transóide. Logo, se o H8 está orientado em α, o H9 deve estar em β.

    O deslocamento paramagnético de H8 (δ 6,71) é causado pela orientação de um grupo

    carbonílico do substituinte que o deixa no mesmo plano da ligação, causando sua

    desblindagem, o que é comum em outros melampolidos que possuem o mesmo padrão de

    substituição. Assim, entende-se que o substituinte no C9 é também um éster, o qual está

    orientado em α, fato confirmado pela presença do sinal característico dos hidrogênios da

    metila de um acetato em δ 2,05.

    Um sinal de uma metoxila em δ 3,83, a ausência de sinais que indicam a presença de

    uma metila em C14 e a presença de um sinal para um carbono carbonílico no espectro RMN 13C em δ 165,5, indica a presença de um éster metílico (COOCH3) no C10. Os outros três

    sinais de carbonos carbonílicos observados no espectro fazem parte do éster epóxi-angelato

    no C8 (δ 170,3), do grupo acetato no C9 (δ 168,0) e do C12 (δ 168,3) no anel lactônico.

  • D. Fitoquímica 48

    A ausência de sinal para o H10, o deslocamento paramagnético de H1 (δ 7,15, dd) e a

    presença de quatro sinais para carbonos sp2, sendo dois deles correspondentes ao C11 e C13,

    indicam que há uma insaturação na ligação C1(10). Os deslocamentos químicos dos carbonos

    1 e 10 são, respectivamente, δ 149,5 e 130,0.

    Um singleto largo integrado para 3H em δ 1,71 é característico de hidrogênios de

    grupo metila sobre carbono substituído por alguma função oxigenada ou insaturado. Em

    função do valor do deslocamento químico do sinal de H5 (δ 2,68, d), que está acoplado

    apenas com H6 (9,6 Hz), entende-se que o mesmo não é olefínico. Sinais para quatro

    carbonos oxigenados aparecem entre δ 59 e 63 no espectro de RMN 13C. Como dois destes

    carbonos são conhecidos por fazerem parte do grupamento epóxido do éster epóxi-angelato,

    os outros dois sinais correspondem a um outro grupamento epóxido entre C4 e C5. A

    magnitude da constante de acoplamento entre H5 e H6 (9,6 Hz) indica que estes estão em

    relação transóide, portanto H5 está em posição α axial, uma vez que se trata de trans-lactona,

    estando H6 em posição β axial. Este fato leva à concluir que a ligação entre o átomo de

    oxigênio do epóxido e C5 está em β equatorial. Então a orientação mais esperada para a

    ligação do oxigênio com o C4 é também equatorial, portanto α. A estereoquímica do

    grupamento epóxido entre C4 e C5 foi comprovada por cristalografia (Tak et al., 1994).

    Os multipletos em δ 2,47 e 2,39 são atribuídos a H2a e H2b. Já os sinais de H3a e H3b

    apresentam-se em δ 3,00 e 1,20, em função do primeiro estar dentro do cone de desblindagem

    da ligação C4−O.

    Os dados dos espectros de RMN 1H e RMN 13C foram comparados com aqueles da

    literatura (Inoue et al., 1995), comprovando tratar-se da enidrina, uma LST do tipo

    melampolido anteriormente isolada de S. sonchifolius. Os seus dados de RMN estão na tabela

    D6 e os espectros nas figuras D10-12.

  • D. Fitoquímica 49

    BA

    O confôrmero de menor energia (Fig. D9) encontrado por meio do HyperChemTM para

    a enidrina (1) condiz com a estrutura molecular determinada via cristalografia (Tak et al.,

    1994).

    Figura D9. A: Confôrmero de menor energia e B: estrutura molecular determinada por

    cristalografia (Tak et al., 1994) para LST 1 (Enidrina).

  • D. Fitoquímica 50

    Tabela D6. Dados experimentais e da literatura de espectros de RMN 1H e 13C - LST 1, δ (ppm), J (Hz).

    *: observado

    Posição

    Enidrina

    O

    O

    O O

    OO

    O

    O

    O

    O

    12

    34

    56

    7

    8910

    11

    12

    13

    14

    15

    1' 2'3'

    4'

    5'1''

    2''

    1'''

    1H (* 400 MHz) 1H (Inoue et al., 1995) 13C (* 100MHz) 13C (Inoue et al., 1995)

    1 7,15 dd (10,6; 7,6) 7,15 dd (10,8; 7,5) 149,5 147,4 2a 2,47 m (13,8) 2,46 m 2b 2,39 m (13,8) 2,35 m 24,7 24,7

    3α 3,00 m (11,8) 3β 1,20 m (11,8) 35,3 39,4

    4 59,3 58,9 5 2,68 d (9,6) 2,67 d (10) 62,7 62,7 6 4,28 t (9,6) 4,28 dd (10) 75,9 75,8 7 3,01 m 3,00 m 45,4 45,5 8 6,71 dd (8,5; 1,2) 6,71 dd (9,1; 1,3) 71,1 71,3 9 5,87 d (8,5) 5,87 d (9,1) 70,4 70,7 10 130,0 130,3 11 133,2 134,4 12 168,3 168,5 13a 5,84 d (3,2) 5,81 d (3,3) 13b 6,33 d (3,5) 6,34 d (3,0) 122,9 121,7

    14 165,5 165,5 15 1,71 sl 1,71 s 52,5 51,8 1’ 168,0 167,9 2’ 59,4 59,1 3’ 3,01 m (5,4) 3,00 m 59,8 59,5 4’ 1,17 d (5,4) 1,17 d (5,0) 13,5 13,6 5’ 1,45 s 1,45 s 19,0 19,1 1’’ 170,3 170,2 2’’ 2,05 s 2,05 s 20,8 20,2 1’’’ 3,83 s 3,83 s 17,45 17,4

  • D. Fitoquímica 51

    10

  • D. Fitoquímica 52

    11

  • D. Fitoquímica 53

    12

  • D. Fitoquímica 54

    3.1.2.2. LST 2 (Uvedalina)

    8β-(2’S,3’S-epóxi-angeloilóxi)-9α-acetoilóxi-germacra-1(10)Z,4E,11(13)-trien-6α,12-olido-14-oato de metila

    A LST 2 foi analisada através de espectroscopia de RMN 1H, de 13C e de

    espectrometria de massas. O espectro de massas EI (Fig. D14) apresenta o fragmento do íon

    molecular m/z 448 [M]+, além de um fragmento m/z 43 característico para o grupo acetato

    [C2H3O]+. Já o espectro de massas CI (Fig. D15) apresenta um fragmento m/z 449

    representando o íon quasimolecular [M + H]+. Além deste, há ainda um outro fragmento m/z

    405 que indica o íon molecular sem o grupo acetato [M - C2H3O]+, além de um outro m/z 389

    [M - C2H3O2]+. Esses dados (Fig. D13) mostram que a LST 2 tem a fórmula molecular de

    C23H28O9 e massa molecular de 448, portanto com apenas um átomo de oxigênio a menos do

    que a LST 1.

    Figura D13. Fragmentações da LST 2 (Uvedalina).

    O

    O

    O

    O

    O O

    12

    34

    56

    7

    98

    10

    11

    12

    13

    14

    15

    1' 2'3'

    5'

    4'

    O

    O

    1''

    2''

    1'''

    O

    O

    O

    O

    O

    O O

    OO

    [C2H3O]m/z 43

    [C21H25O8]m/z 405

    O

  • D. Fitoquímica 55

    Base M/z=449. 100%

    Low Resolution M/z100 150 200 250 300 350 400 450 500

    Inte

    nsity

    (%ag

    e)

    0 10 20 30 40 50 60 70 80 90

    100

    79

    85

    105 117

    145 185 213 229241

    257

    273

    289

    291

    313

    333

    349 361

    371

    389

    405

    449

    465

    491

    [M+H]+

    Base M/z=43. 100%

    Low Resolution M/z50 100 150 200 250 300 350 400 450 500

    Inte

    nsity

    (%ag

    e)

    0 10 20 30 40 50 60 70 80 90

    100 43

    71 83

    105 115 128 154 175 185

    213

    229

    240259

    272

    291348 356 448

    [M]+

    Figura D14. Espectro de massas EI da LST 2 (Uvedalina).

    Figura D15. Espectro de massas CI da LST 2 (Uvedalina).

    Os espectros de RMN da LST 2 são muito semelhantes aos da LST 1. Porém, alguns

    sinais tiveram um deslocamento paramagnético considerável, como ocorreu com os sinais de

    H5, H6 e dos hidrogênios da metila ligada ao C4. Um singleto largo integrado para 6H em δ

    1,94 é característico de hidrogênios de grupo metila sobre carbono quaternário substituído por

    função oxigenada ou insaturado. Entretanto, neste caso 3H são referentes à metila do grupo

    acetato, C2’’. Em função do deslocamento químico de um único sinal para H5 (δ 4,89, d) que

    está acoplado apenas com H6 (δ 5,04, dd), conclui-se que os outros 3H do sinal em δ 1,94 são

    relativos à uma metila ligada a um carbono insaturado, o C4.

  • D. Fitoquímica 56

    Dois multipletos em δ 2,60 e 2,34 devem-se à presença de H2α e H2β,

    respectivamente. H3α/β aparecem em δ 2,40 e 1,98, uma vez que, nesta molécula, eles não

    sofrem o efeito do cone de desblindagem do oxigênio do epóxido, como na LST 1.

    Os demais sinais apresentam deslocamentos químicos semelhantes àqueles da LST 1.

    Os dados de RMN desta LST são apresentados na tabela D7 e os espectros nas figuras D16 e

    D17.

    Tabela D7. Dados experimentais e da literatura de espectros de RMN 1H e 13C - LST 2, δ (ppm), J (Hz). Posição

    Uvedalina

    O

    O

    O

    O

    O O

    12

    34

    56

    7

    98

    10

    11

    12

    13

    14

    15

    1' 2'3'

    5'

    4'

    O

    O

    1''

    2''

    1'''

    O

    1H (* 400 MHz) 1H (Inoue et al., 1995) 13C (* 100MHz) 13C (Inoue et al., 1995)

    1 6,94 dd (10,3; 7,8) 7,05 dd (10,3; 7,5) 148,8 148,1 2α 2,60 m (12,6; 10,3; 2,2) 2,43 2β 2,34 m (12,6; 2,0) 26,5 26,1

    3α 2,40 m (10,0 2,0) 3β 1,98 m (10,0) 37,3 36,8

    4 131,0 131,1 5 4,89 d (10,3) 4,95 d (10,8) 126,5 126,9 6 5,04 dd (10,3; 9,8) 5,11 t (10) 75,6 74,9 7 2,72 m (9,8; 1,5) 2,79 m 51,3 51,1 8 6,59 dd (8,3; 1,5) 6,66 dd (8,5; 1,3) 71,4 71,3 9 5,34 d (8,3) 5,41 d (8,5) 71,5 71,1 10 134,8 135,5 11 139,1 137,9 12 169,5 168,6 13a 5,66 d (3,0) 5,73 d (3,3) 13b 6,19 d (3,5) 6,26 d (3,3) 122,0 120,6

    14 166,3 165,7 15 1,94 s 2,01 s 17,4 17,0 1’ 168,9 168,7 2’ 59,8 59,2 3’ 2,96 q (5,3) 3,02 ddd (5,3) 60,3 59,6 4’ 1,12 d (5,3) 1,19 d (5,3) 14,0 13,7 5’ 1,40 s 1,47 s 19,6 19,3 1’’ 170,7 170,0 2’’ 1,94 s 2,01 s 21,4 20,3 1’’’ 3,73 s 3,81 s 52,8 51,8

    *: observado

  • D. Fitoquímica 57

    16

  • D. Fitoquímica 58

    17

  • D. Fitoquímica 59

    O

    O

    O

    O

    O O

    12

    34

    56

    7

    98

    10

    11

    12

    13

    14

    15

    1' 2'3'

    5'

    4'

    1''

    3.1.2.3. LST 3 (Sonchifolina)

    8β-angeloilóxi-germacra-1(10)Z,4E,11(13)-trien-6α,12-olido-14-oato de metila

    A LST 3 foi submetida à espectroscopia de RMN 1H. O espectro de RMN 1H

    apresenta em δ 6,16 e 5,50 sinais característicos de hidrogênios de dupla exocíclica de anel

    lactônico α,β-insaturado. Esses sinais são dubletos referentes aos H13a/b (3,0 e 3,5 Hz) que

    acoplam com o sinal em δ 2,54, referente ao H7. Este, por sua vez, acopla fracamente com um

    sinal em δ 6,22, um duplo dubleto característico para H8 ligado a um carbono substituído. Em

    função da pequena magnitude de acoplamento entre H7 e H8, conclui-se que os mesmos estão

    em relação cisóide. Um éster do tipo angelato, com sinais característicos de um quádruplo

    quadrupleto em δ 6,03 (1,5 e 7,3 Hz) para H3’, duplo quadrupleto para H4’ em δ 1,90 (1,5 e

    7,3 Hz) e quintupleto para H5’ em δ 1,78 (1,5 Hz), está ligado ao carbono 8 em posição β.

    Dois sinais de multipleto em δ 1,97 e 2,78, que acoplam entre si como hidrogênios

    geminais, caracterizam-se como H9α/β. O sinal em δ 1,97 acopla com o sinal de H8 em δ 6,22

    com constante de acoplamento de 10,6 Hz. Já com o sinal em δ 2,78 o acoplamento é menor

    (7,8 Hz), indicando que o H8 e o sinal em δ 1,97 estão em relação transóide, ou seja, o sinal

    em δ 1,97 está em β e o sinal em δ 2,78 em α.

    Um singleto largo integrado para 3H em δ 1,83 é característico de hidrogênios de

    grupo metila sobre carbono substituído por função oxigenada ou insaturado. Em função do

    deslocamento químico de um único sinal integrado para 2H em δ 5,03, que representam H5 e

    H6, entende-se que H5 está ligado a carbono sp2. A ausência de sinal para o H10 e o

    deslocamento paramagnético de H1 (δ 6,76 dd) indicam que há uma insaturação na ligação

    C1(10), como na maioria dos melampolidos isolados da subtribo Melampodiinae.

  • D. Fitoquímica 60

    Dois multipletos em δ 2,26 e 2,07 devem-se à presença de H2a/b. Já os sinais de H3a/

    apresentam-se em δ 2,27 e 2,07.

    Os dados dos espectros de RMN 1H foram comparados com aqueles da literatura,

    comprovando sua identidade. Os dados de RMN desta LST são apresentados na tabela D8 e o

    espectro na figura D18.

    Tabela D8. Dados experimentais e da literatura de espectros de RMN 1H e 13C - LST 3, δ (ppm), J (Hz) .

    *: observado

    Posição

    Sonchifolina

    O

    O

    O

    O

    O O

    12

    34

    56

    7

    98

    10

    11

    12

    13

    14

    15

    1' 2'3'

    5'

    4'

    1''

    1H (* 400 MHz) 1H (Inoue et al., 1995) 13C (Inoue et al., 1995)

    1 6,76 dd (9,8; 7,3) 6,83 dddl (10,0; 7,5; 1,6) 142,0 2a 2,07 m 2,12 tl (12,0) 2b 2,26 m 2,36 m 25,4

    3a 2,07 m 2,06 tl (10,0) 3b 2,27 m 2,31 m 37,0

    4 137,8 5 5,03 m 5,09 m 125,5 6 5,03 m 5,11 m 75,8 7 2,54 m 2,61 m 49,5 8 6,22 ddd (10,6; 7,8; 1,8) 6,31 dddl (9,8; 7,5; 1,0) 66,4 9α 2,78 m (12,6; 7,8) 2,86 m 9β 1,97 m (10,6) 2,03 tl (10,4) 30,0

    10 131,2 11 135,2 12 169,5 13a 5,50 d (3,0) 5,56 dl (3,5) 13b 6,16 d (3,5) 6,23 dl (3,5) 120,0

    14 167,0 15 1,83 sl 1,89 s 17,0 1’ 166,2 2’ 127,0 3’ 6,03 qq (7,3; 1,5) 6,10 ql (7,5) 139,0 4’ 1,90 dq (7,3; 1,5) 1,98 dl (7,5) 15,5 5’ 1,78 quin (1,5) 1,85 s 20,5 1’’’ 3,71 s 3,78 s 52,0

  • D. Fitoquímica 61

    18

  • D. Fitoquímica 62

    3.1.2.4. LST 4 (Fluctuanina)

    4α,5β-epóxi-8β-angeloilóxi-9α-acetoilóxi-germacra-1(10)Z,11(13)-dien-6α,12-olido-14-oato de metila

    Da LST 4 foram obtidos espectros de RMN 1H, 13C, 1H-1H COSY 90-45° e espectros

    de massas. O espectro de massas EI (Fig. D20) apresenta o fragmento do íon molecular m/z

    448 [M]+, um fragmento m/z 388 [M - C2H4O2]+ e um fragmento m/z 83 característico para o

    grupo angelato [C5H7O]+. Já o espectro de massas CI (Fig. D21) apresenta um fragmento m/z

    449, representando o íon quasimolecular [M + H]+. Além deste, há ainda um fragmento m/z

    389 [M - C2H3O2]+ e um fragmento m/z 83 para o éster angelato [C5H7O]+. Esses dados (Fig.

    D19) indicam que a LST 4 tem a fórmula molecular de C23H28O9 e massa molecular de 448.

    Figura D19. Fragmentações da LST 4 (Fluctuanina).

    O

    O

    O

    O

    O O

    12

    34

    56

    7

    98

    10

    11

    12

    13

    14

    15

    1' 2'3'

    5'

    4'

    O

    O

    1''

    2''

    1'''

    O

    [C21H25O7]m/z 389

    [C5H7O]m/z 83

    O

    O

    O

    O

    O

    O O

    O

  • D. Fitoquímica 63

    Base M/z=389. 100%

    Low Resolution M/z100 150 200 250 300 350 400 450 500

    Inte

    nsity

    (%ag

    e)

    0 10 20 30 40 50 60 70 80 90

    100

    83

    149 227 229

    245

    257275

    289

    313316

    331

    349

    359

    375

    389

    429 431

    449

    487

    [M+H]+

    Base M/z=83. 100%

    Low Resolution M/z50 100 150 200 250 300 350 400 450 500

    Inte

    nsity

    (%ag

    e)

    0 10 20 30 40 50 60 70 80 90

    100

    55

    69

    83

    105 115 129 149 167 179 201 229 245 256 279 289

    348

    356

    388

    417 448

    (*5)

    [M]+

    Figura D20. Espectro de massas EI da LST 4 (Fluctuanina).

    Figura D21. Espectro de massas CI da LST 4 (Fluctuanina).

    Os espectros de RMN da LST 4 são praticamente idênticos aos da LST 1, com

    exceção apenas dos deslocamentos químicos referentes aos sinais para os hidrogênios e

    carbonos do éster ligado ao C8. Na LST 1, este éster é o epóxi-angelato, mas na LST 4 é o

    angelato. Os deslocamentos químicos dos sinais de angelato são bem mais desblindados em

    função da dupla ligação entre C2’ (δ 126,5) e C3’ (δ 140,2 e 6,02, qq). Os sinais para as duas

    metilas também aparecem mais desblindadas no espectro de RMN 1H (δ 1,71 e 1,88). O

    espectro de 1H-1H COSY foi importante para a confirmação das correlações entre os

  • D. Fitoquímica 64

    hidrogênios, especialmente do éster. Os dados de RMN desta LST são apresentados na tabela

    D9 e figuras D22-24.

    O sistema especialista SISTEMAT foi capaz de propor uma estrutura para a LST 4, a

    partir dos deslocamentos químicos dos seus carbonos, o que confirma a estrutura proposta.

    Tabela D9. Dados experimentais e da literatura de espectros de RMN 1H e 13C - LST 4, δ (ppm), J (Hz).

    *: observado

    Posição

    Fluctuanina

    O

    O

    O

    O

    O O

    12

    34

    56

    7

    98

    10

    11

    12

    13

    14

    15

    1' 2'3'

    5'

    4'

    O

    O

    1''

    2''

    1'''

    O

    1H (* 400 MHz) 1H (Lin et al., 2003) 13C (* 75 MHz) 13C (Lin et al., 2003)

    1 7,08 dd (10,5; 7,4) 7,15 dd (9,0; 7,5) 149,3 149,3 2a 2,91 m (11,3) 2,98 m 2b 2,39 m 2,34 m 22,7 24,7

    3a 2,28 m 2,44 m 3b 2,28 m 1,24 m 31,9 35,4

    4 59,4 59,4 5 2,61 d (9,8) 2,68 m 62,9 62,9 6 4,21 t (9,8) 4,29 dd (10,0; 9,5) 76,0 76,2 7 2,91 m 2,98 m 45,7 45,6 8 6,66 dd (8,8; 1,2) 6,74 dl (9,0) 70,7 70,7 9 5,79 d (8,8) 5,86 d (8,5) 69,3 69,3 10 130,2 130,0 11 133,4 133,3 12 168,3 168,4 13a 5,85 d (3,2) 5,92 d (3,5) 13b 6,28 d (3,5) 6,35 d (3,5) 123,0 123,1

    14 165,5 165,5 15 1,65 s 1,70 s 17,6 17,6 1’ 165,9 165,9 2’ 126,5 126,5 3’ 6,02 qq (7,3; 1,5) 6,09 dq (7,0; 1,5) 140,2 140,2 4’ 1,88 dq (7,3; 1,5) 1,94 m 15,8 15,8 5’ 1,71 quin (1,5) 1,79 m 20,4 20,7 1’’ 170,3 170,3 2’’ 1,94 s 2,01 s 20,7 20,4 1’’’ 3,76 s 3,84 s 52,5 52,5

  • D. Fitoquímica 65

    22

  • D. Fitoquímica 66

    23

  • D. Fitoquímica 67

    24

  • D. Fitoquímica 68

    3.1.2.5. LST 5

    8β-metacriloilóxi-9α-acetoilóxi-germacra-1(10)Z,4E,11(13)-trien-6α,12-olido-14-oato de metila

    Da LST 5 foram obtidos espectros de RMN 1H e de massas. O espectro de massas EI

    (Fig. D26) apresenta o fragmento do íon molecular m/z 418 [M]+, um fragmento m/z 358 [M -

    C2H4O2]+, um fragmento m/z 69 característico para o grupo metacrilato [C4H5O]+ e um

    fragmento m/z 43 característico para o grupo acetato [C2H3O]+. Já o espectro de massas CI

    (Fig. D27) apresenta um fragmento m/z 419 representando o íon quasimolecular [M + H]+.

    Além deste, há ainda um fragmento m/z 359 [M - C2H3O2]+. Estas informações (Fig. D25)

    indicam que a LST 5 tem a fórmula molecular de C22H26O8 e massa molecular de 418.

    Figura D25. Fragmentações da LST 5.

    O

    O

    O

    O

    O O

    12

    34

    56

    7

    98

    10

    11

    12

    13

    14

    15

    1' 2'3'

    4'O

    O

    1''

    2''

    1'''

    O

    O

    O

    O

    O O[C4H5O]m/z 69

    [C20H23O6]m/z 359

    O

    [C2H3O]m/z 43

    O

  • D. Fitoquímica 69

    [M+H]+

    Base M/z=285. 100%

    Low Resolution M/z150 200 250 300 350 400 450 500

    Inte

    nsity

    (%ag

    e)

    0 10 20 30 40 50 60 70 80 90

    100

    215 229

    239 245

    257

    275

    285

    293

    313

    327

    331

    342

    359

    369 383 391 405

    419

    465

    [M]+

    Base M/z=69. 100%

    Low Resolution M/z50 100 150 200 250 300 350 400 450

    Inte

    nsity

    (%ag

    e)

    0 10 20 30 40 50 60 70 80 90

    100

    43

    69

    73 93 112

    129 142

    149 167 185 206

    213

    240 256

    272

    284

    358 418

    Figura 26. Espectro de massas EI da LST 5.

    Figura D27. Espectro de massas CI da LST 5.

    O espectro de RMN 1H da LST 5 é praticamente idêntico ao da LST 2, com exceção

    apenas para os deslocamentos químicos dos sinais para os hidrogênios do éster ligado ao C8.

    Na LST 2, este éster é o epóxi-angelato, mas na LST 5 é o metacrilato. O éster metacrilato

    não possui a metila 5’, portanto o espectro apresenta dois sinais para os 2H da dupla ligação

    H3’a/b (δ 5,96 e 5,51, sl). O sinal para a metila 4’ aparece em δ 1,98. Os dados de RMN desta

    LST são apresentados na tabela D10 e figura D28.

  • D. Fitoquímica 70

    Tabela D10. Dados experimentais e da literatura de espectros de RMN 1H e 13C - LST 5, δ (ppm), J (Hz).

    *: observado

    Posição

    O

    O

    O

    O

    O O

    12

    34

    56

    7

    98

    10

    11

    12

    13

    14

    15

    1' 2'3'

    4'O

    O

    1''

    2''

    1'''

    1H (* 400 MHz) 1H (Bardón et al., 2001) 13C (Bardón et al., 2001)

    1 6,94 dd (10,1; 7,3) 7,00 dd (10,0; 7,2) 148,3 2a 2,59 m 2,65 dddd (12,4; 12,4; 10,4; 2,0) 2b 2,44 m 2,44 dddd (12,0; 8,0; 6,0; 2,0) 26,1

    3a 2,39 m 2,39 ddd (12,0; 6,0; 2,0) 3b 2,28 m 2,03 tl (11,6) 36,9

    4 130,6 5 4,89 dl (10,3) 4,96 dl (10,4) 126,3 6 5,05 dd (10,3) 5,11 t (10,0) 75,3

    7 2,70 dddd (10,3; 3,5; 3,0; 1,5) 2,76 dddd (10,0; 3,2; 2,8; 1,2) 50,9

    8 6,56 dd (8,5; 1,7) 6,62 dd (8,8; 1,4) 70,2 9 5,37 d (8,5) 5,43 d (8,4) 71,1 10 134,3 11 138,5 12 170,2 13a 5,75 d (3,0) 6,26 d (3,2) 13b 6,20 d (3,2) 5,81 d (3,2) 121,8

    14 170,2 15 1,83 s 1,89 s 16,9 1’ 165,9 2’ 135,4 3’a 5,96 sl 6,02 sl 3’b 5,51 sl 5,57 t (1,6) 126,6

    4’ 1,98 sl 1,93 s 18,3 1’’ 165,9 2’’ 2,03 s 2,03 s 20,8 1’’’ 3,76 s 3,79 s 52,3

  • D. Fitoquímica 71

    28

  • D. Fitoquímica 72

    O

    O

    O

    O

    H O

    12

    34

    56

    7

    98

    10

    11

    12

    13

    14

    15

    1' 2'3'

    4'

    5'

    3.1.2.6. LST 6

    8β-angeloilóxi-14-oxo-germacra-1(10)Z,4E,11(13)-trien-6α,12-olido

    A LST 6 foi submetida à espectroscopia de RMN 1H e à espectrometria de massas. O

    espectro de massas CI (Fig. D30) apresenta um fragmento m/z 345 representando o íon

    quasimolecular [M + H]+. Além deste há ainda um fragmento m/z 245 [M - C5H7O2]+ e um

    fragmento m/z 83 característico para o grupo angelato [C5H7O]+. O espectro de massas EI

    (Fig. D31) apresenta o fragmento m/z 244 [M – C5H8O2]+ e um fragmento m/z 83 [C5H7O]+.

    Esses dados (Fig. D29) mostram que a LST 6 tem a fórmula molecular de C20H24O5 e massa

    molecular de 344.

    Figura D29. Fragmentações da LST 6.

    O

    O

    H O [C15H17O3]m/z 245

    [C5H7O]m/z 83

    O

  • D. Fitoquímica 73

    Base M/z=345. 100%

    Low Resolution M/z100 150 200 250 300 350 400 450 500

    Inte

    nsity

    (%ag

    e)

    0 10 20 30 40 50 60 70 80 90

    100

    83

    84 149 199 227

    245

    273 291 313 333

    345

    359

    391 421 449 450

    [M+H]+

    Base M/z=83. 100%

    Low Resolution M/z50 100 150 200 250 300 350

    Inte

    nsity

    (%ag

    e)

    0 10 20 30 40 50 60 70 80 90

    100

    43

    55

    69

    83

    91 105 118 134 147 215244

    256 272

    Figura D30. Espectro de massas CI da LST 6.

    Figura D31. Espectro de massas EI da LST 6.

    O espectro de RMN 1H da LST 6 é praticamente idêntico ao da LST 3. Porém,

    constata-se a ausência do sinal para a metoxila em δ 3,70. Entretanto, o espectro apresenta um

    sinal integrado para 1 H em δ 9,3, indicando a presença de um grupo aldeído. Isto mostra que

    nesta molécula existe um grupamento aldeído em C14 ao invés do éster metílico. Os

    deslocamentos químicos foram comparados com dados da literatura (Bohlmann et al., 1981a).

    Os dados de RMN desta LST são apresentados na tabela D11 e figura D32.

  • D. Fitoquímica 74

    Tabela D11. Dados experimentais e da literatura de espectros de RMN 1H e 13C - LST 6, δ (ppm), J (Hz).

    ** derivado isovalerato da LST 6. *: observado

    Posição

    O

    O

    O

    O

    H O

    12

    34

    56

    7

    98

    10

    11

    12

    13

    14

    15

    1' 2'3'

    4'

    5'

    1H (* 400 MHz) 1H (Bohlmann et al., 1981a) 13C (Kijoa et al., 1993)*

    1 6,55 ddd (9,8; 7,0; 1,7) 6,62 ddd (10,0; 7,0; 2,0) 153,9 2a 2,27 m 2,29 ddl (13,0; 2,0) 2b 2,27 m 2,50 m 26,1

    3a 2,27 m 2,12 ddl (13,0; 2,0) 3b 2,27 m 2,40 ddd (13,0; 6,0; 2,0) 37,1

    4 42,9 5 5,00 m 5,08 m 126,3 6 5,00 m 5,08 m 75,3 7 2,43 m 2,50 m 49,3 8 6,41 ddd (10,1; 7,5; 2,0) 6,49 ddd (10,0; 7,0; 2,0) 65,5 9α 2,76 m 2,84 dd (14,0; 10) 28,8 9β 2,08 m 1,98 m (1,5) 10 135,1 11 137,7 12 169,4 13a 5,53 d (3,0) 5,60 d (3,0) 13b 6,17 d (3,5) 6,25 d (3,5) 120,9

    14 9,30 s 9,49 d (1,5) 195,3 15 1,85 sl 1,93 s 16,9 1’ 171,6* 2’ 43,3* 3’ 6,03 qq (7,0; 1,5) 6,10 qq 25,7* 4’ 1,98 dq (7,0; 1,5) 1,98 dq 22,3* 5’ 1,77 quin (1,5) 1,85 dq 22,3*

  • D. Fitoquímica 75

    32

  • D. Fitoquímica 76

    3.1.2.7. LST 7

    8β-metacriloilóxi-germacra-1(10)Z,4E,11(13)-trien-6α,12-olido-14-oato de metila

    Da LST 7 foram obtidos espectros de RMN 1H, 13C, 1H-1H COSY 90-45° e de massas.

    O espectro de massas EI (Fig. D34) apresenta o fragmento do íon molecular m/z 360 [M]+, um

    fragmento m/z 291, que indica o íon molecular sem o éster metacrilato [M - C4H5O]+ e um

    fragmento m/z 69 característico para o grupo metacrilato [C4H5O]+. Já o espectro de massas

    CI (Fig. D35) apresenta um fragmento m/z 361 representando o íon quasimolecular [M + H]+.

    As informações (Fig. D33) mostram que a LST 7 tem a fórmula molecular de C20H24O6 e

    massa molecular de 360.

    Figura D33. Fragmentações da LST 7.

    O

    O

    O

    O

    O O

    12

    34

    56

    7

    98

    10

    11

    12

    13

    14

    15

    1' 2'3'

    4'

    1''

    O

    O

    O

    O O[C16H19O5]

    m/z 291

    [C4H5O]m/z 69

    O

  • D. Fitoquímica 77

    Entries=888. Base M/z=69. 100%

    Low Resolution M/z50 100 150 200 250 300 350 400

    Inte

    nsity

    (%ag

    e)

    0 10 20 30 40 50 60 70 80 90

    100

    43

    55

    69

    83

    105 118 134 147 152 169 186 197214

    224

    242

    256 272

    274

    291

    300

    329 360

    (*5)

    [M]+

    Base M/z=361. 100%

    Low Resolution M/z100 150 200 250 300 350 400 450 500

    Inte

    nsity

    (%ag

    e)

    0 10 20 30 40 50 60 70 80 90

    100

    79 85 179 215 229243 257

    275

    288300 316 329

    343

    361

    373

    433

    [M+H]+

    Figura D34. Espectro de massas EI da LST 7.

    Figura D35. Espectro de massas CI da LST 7.

    O espectro de RMN 1H da LST 7 é praticamente idêntico ao da LST 3, com exceção

    apenas para os deslocamentos químicos dos sinais dos hidrogênios do éster ligado ao C8. Na

    LST 3, este éster é o angelato, mas na LST 7 é o metacrilato. O éster metacrilato não possui a

    metila 5’, portanto o espectro apres