Convección Forzada

150

Click here to load reader

description

Convección Forzada

Transcript of Convección Forzada

Page 1: Convección Forzada

1

Tema 4:

“Convección Forzada”

J. Bornscheuer

Page 2: Convección Forzada

2

Objetivos:

• Comprender el mecanismo físico de la convección y su clasificación.

• Visualizar el desarrollo de las capas límite de velocidad y temperatura en caso del flujo sobre superficies.

• Adquirir un conocimiento útil para las aplicaciones de los números adimensionales de Reynolds, Prandtl y Nusselt.

J. Bornscheuer

Page 3: Convección Forzada

3

Objetivos:

• Distinguir entre los flujo laminar y turbulento, y adquirir una comprensión de los mecanismos de la transferencia de la cantidad de movimiento y del calor en el flujo turbulento.

J. Bornscheuer

Page 4: Convección Forzada

4

Objetivos:

• Deducir las ecuaciones diferenciales que rigen la convección, sobre la base de los balances de masa, de cantidad de movimiento y de energía, y resolver estas ecuaciones para algunos casos sencillos, como el flujo laminar sobre una capa plana.

• Distinguir entre flujo interno y externo.

J. Bornscheuer

Page 5: Convección Forzada

5

Objetivos:

• Desarrollar una comprensión intuitiva del arrastre por fricción y del arrastre por presión, y evaluar los coeficientes promedios de arrastre y de convección en el flujo externo.

• Calcular la fuerza de arrastre ejercida sobre cilindros por el flujo cruzado, así como el coeficiente promedio de transferencia de calor.

J. Bornscheuer

Page 6: Convección Forzada

6

Mecanismo Físico de la Convección

• La conducción y la convección son semejantes pues requieren de la presencia de un medio material, pero difieren en que la convección requiere la presencia del movimiento de fluidos.

• La transferencia de calor a través de un sólido siempre es por conducción.

J. Bornscheuer

Page 7: Convección Forzada

7

Mecanismo Físico de la Convección

• La transferencia de calor a través de un fluido es por convección cuando se tiene un movimiento masivo de este último y por conducción cuando no existe dicho movimiento.

• Por lo tanto, la conducción en un fluido se puede concebir como el caso límite de la convección, correspondiente al caso de fluido en reposo.

J. Bornscheuer

Page 8: Convección Forzada

8J. Bornscheuer

Transferencia de calor de una superficie caliente hacia el flujo circundante, por convección y conducción.

Mecanismo Físico de la Convección

Page 9: Convección Forzada

9

Mecanismo Físico de la Convección

• El movimiento del fluido mejora la transferencia de calor, ya que pone en contacto porciones más calientes y más frías de ese fluido, iniciando índices más altos de conducción en un gran número de sitios.

• Por lo tanto, la velocidad de la transferencia de calor a través de un fluido es mucho más alta por convección que por conducción.

J. Bornscheuer

Page 10: Convección Forzada

10

Mecanismo Físico de la Convección

• De hecho, entre más alta es la velocidad del fluido, mayor es la velocidad de la transferencia de calor.

J. Bornscheuer

Transferencia de calor a través de un fluido comprimido entre dos placas paralelas.

Page 11: Convección Forzada

11

Mecanismo Físico de la Convección

• La transferencia de calor por convección depende con intensidad de las propiedades viscosidad dinámica µ, conductividad térmica k, densidad ρ y calor específico cp del fluido, así como de la velocidad del fluido V.

• También depende de la configuración geométrica y aspereza de la superficie sólida, además del tipo de flujo del fluido (el que sea laminar o turbulento).

J. Bornscheuer

Page 12: Convección Forzada

12

Mecanismo Físico de la Convección

• A pesar de la complejidad de la convección, se observa que la razón de la transferencia de calor por este mecanismo es proporcional a la diferencia de temperatura y se expresa de manera conveniente por la Ley de Newton de Enfriamiento como:

J. Bornscheuer

Page 13: Convección Forzada

13

Mecanismo Físico de la Convección

• Donde:

– h = Coeficiente de transferencia de calor por convección, W/m2 ºC

– AS = Área superficial de transferencia de calor , m2.

– TS = Temperatura de la superficie, ºC.

– T∞ = Temperatura del fluido suficientemente lejos de la superficie, ºC.

J. Bornscheuer

Page 14: Convección Forzada

14

Mecanismo Físico de la Convección

• El coeficiente de transferencia de calor por convección h se puede definir como la razón de la transferencia de calor entre una superficie sólida y un fluido por unidad de área superficial por unidad de diferencia en la temperatura.

J. Bornscheuer

Page 15: Convección Forzada

15

Mecanismo Físico de la Convección

• Un fluido en contacto directo con un sólido “se adhiere” a la superficie debido a los efectos viscosos y no se desliza. Esto se conoce como la condición de no deslizamiento.

• La región del flujo adyacente a la superficie en la cual los efectos viscosos (y, por lo tanto, los gradientes de velocidad) son significativos se llama capa límite.

J. Bornscheuer

Page 16: Convección Forzada

16

Mecanismo Físico de la Convección

• La propiedad del fluido responsable de la condición de no deslizamiento y del desarrollo de la capa límite es la viscosidad.

J. Bornscheuer

Page 17: Convección Forzada

17

Mecanismo Físico de la Convección

J. Bornscheuer

Desarrollo de un perfil de velocidad debido a la condición de no deslizamiento, conforme un fluido fluye sobre un cuerpo romo.

Page 18: Convección Forzada

18

Mecanismo Físico de la Convección

J. Bornscheuer

Un fluido que fluye sobre una superficie estacionaria, llega a detenerse por completo en la superficie a causa de la condición de no deslizamiento.

Page 19: Convección Forzada

19

Mecanismo Físico de la Convección

• Una implicación de la condición de no deslizamiento es que la transferencia de calor de la superficie del sólido hacia la capa del fluido adyacente a esa superficie se da por conducción pura, ya que la capa del fluido está inmóvil, y se puede expresar como:

J. Bornscheuer

Page 20: Convección Forzada

20

Mecanismo Físico de la Convección

• La determinación del coeficiente de transferencia de calor por convección cuando se conoce la distribución de temperatura dentro del fluido, se obtiene con:

J. Bornscheuer

Page 21: Convección Forzada

21

Mecanismo Físico de la Convección

• En general, el coeficiente de transferencia de calor por convección varía a lo largo de la dirección del flujo (o dirección x). En esos casos, el coeficiente promedio o medio de transferencia de calor por convección para una superficie se determina al promediar de manera adecuada los coeficientes locales sobre toda esa superficie.

J. Bornscheuer

Page 22: Convección Forzada

22

Número de Nusselt

• En los estudios sobre convección, es práctica común quitar las dimensiones a las ecuaciones que rigen y combinar las variables, las cuales se agrupan en números adimensionales, con el fin de reducir el número de variables totales. También es práctica común quitar las dimensiones del coeficiente de transferencia de calor h con el número de Nusselt, que se define como:

J. Bornscheuer

Page 23: Convección Forzada

23

Número de Nusselt

• También es práctica común quitar las dimensiones del coeficiente de transferencia de calor h con el número de Nusselt, que se define como:

• Número de Nusselt: Coeficiente adimensional de transferencia de calor por convección.

J. Bornscheuer

Page 24: Convección Forzada

24

Número de Nusselt

J. Bornscheuer

Page 25: Convección Forzada

25

Número de Nusselt

J. Bornscheuer

Transferencia de calor a través de una capa de fluido de espesor L y diferencia de temperatura ΔT.

Page 26: Convección Forzada

26

Número de Nusselt

• El número de Nusselt representa el mejoramiento de la transferencia de calor a través de una de una capa de fluido como resultado de la convección en relación con la conducción a través de la misma capa.

• Entre mayor sea el número de Nusselt, más eficaz es la convección. Un número de Nusselt de Nu = 1 para una capa de fluido representa transferencia de calor a través de ésta por conducción pura.

J. Bornscheuer

Page 27: Convección Forzada

27

Número de Nusselt

J. Bornscheuer

Se recurre a la convección forzada siempre que se necesite incrementar la razón de la transferencia de calor.

Page 28: Convección Forzada

28

Número de Nusselt

• En la vida diaria se usa la convección forzada más de lo que se piensa. Se recurre a la convección forzada siempre que se quiera incrementar la velocidad de la transferencia de calor desde un objeto caliente.

J. Bornscheuer

Page 29: Convección Forzada

29

Número de Nusselt

• Por ejemplo, se enciende el ventilador en los días cálidos de verano para ayudar a que nuestro cuerpo se enfríe de manera más eficaz. Entre mayor sea la velocidad del ventilador, mejor se siente.

• Se agita la sopa o se sopla sobre una rebanada de pizza caliente para hacer que se enfríen más rápido.

J. Bornscheuer

Page 30: Convección Forzada

30

Capa Límite Térmica

• Una capa límite térmica se desarrolla cuando un fluido a una temperatura específica fluye sobre una superficie que está a una temperatura diferente.

• La región del flujo sobre la superficie en la cual la variación de la temperatura en la dirección normal a la superficie es significativa es la capa límite térmica.

J. Bornscheuer

Page 31: Convección Forzada

31

Capa Límite Térmica

J. Bornscheuer

Capa límite térmica sobre una placa plana (el fluido está más caliente que la superficie de la placa).

Page 32: Convección Forzada

32

Capa Límite Térmica

• El espesor de la capa límite térmica t en cualquier lugar a lo largo de la superficie se define como la distancia, desde la superficie, a la cual el caso especial de TS = 0, se tiene T = 0,99V, para la capa límite de la velocidad.

J. Bornscheuer

Page 33: Convección Forzada

33

Capa Límite Térmica

• El espesor de la capa límite térmica aumenta en la dirección del flujo, ya que, corriente más abajo, se sienten los efectos de la transferencia de calor a distancias más grandes de la superficie.

• La forma del perfil de temperaturas en la capa límite térmica impone la transferencia de calor por convección entre la superficie sólida y el fluido que fluye sobre ella.

J. Bornscheuer

Page 34: Convección Forzada

34

Número de Prandtl

• La mejor manera de describir el espesor relativo de las capas límite de velocidad y térmica es por medio del parámetro número de Prandlt adimensional, definido por:

J. Bornscheuer

Page 35: Convección Forzada

35

Número de Prandtl

J. Bornscheuer

Page 36: Convección Forzada

36

Número de Prandtl

• Los números de Prandtl para los gases son de alrededor de 1, lo cual indica que tanto la cantidad de movimiento como el calor se disipan a través del fluido a más o menos la misma velocidad.

• El calor se difunde con mucha rapidez en los metales líquidos (Pr << 1) y con mucha lentitud en los aceites (Pr >> 1) en relación con la cantidad de movimiento.

J. Bornscheuer

Page 37: Convección Forzada

37

Número de Prandtl

• Como consecuencia, la capa límite térmica es mucho más gruesa para los metales líquidos y mucho más delgada para los aceites, en relación con la capa límite de la velocidad.

J. Bornscheuer

Page 38: Convección Forzada

38

Flujo Paralelo sobre Placas Planas

• La transición de flujo laminar hacia turbulento depende de la configuración geométrica de la superficie, de su aspereza, de la velocidad corriente arriba, de la temperatura superficial y del tipo de fluido, entre otras cosas, y se le caracteriza de la mejor manera por el número de Reynolds.

J. Bornscheuer

Page 39: Convección Forzada

39

Flujo Paralelo sobre Placas Planas

• El número de Reynolds a una distancia x desde el borde de ataque de una placa plana se expresa como:

J. Bornscheuer

Page 40: Convección Forzada

40

Flujo Paralelo sobre Placas Planas

J. Bornscheuer

Regiones laminar y turbulenta de la capa límite durante el flujo sobre una placa plana.

Page 41: Convección Forzada

41

Flujo Paralelo sobre Placas Planas

• Un valor generalmente aceptado para el número crítico de Reynolds es:

J. Bornscheuer

Page 42: Convección Forzada

42

Flujo Paralelo sobre Placas Planas

• El valor real del número crítico de Reynolds en ingeniería, para una placa plana puede variar desde 105 hasta 3 x 106, dependiendo de la aspereza superficial, el nivel de turbulencia y la variación de la presión a lo largo de la superficie.

J. Bornscheuer

Page 43: Convección Forzada

43

Flujo Paralelo sobre Placas Planas

• El número local de Nusselt en una ubicación x, para el flujo laminar sobre una placa plana es:

J. Bornscheuer

Page 44: Convección Forzada

44

Flujo Paralelo sobre Placas Planas

• La relación correspondiente para el flujo turbulento es:

J. Bornscheuer

Page 45: Convección Forzada

45

Flujo Paralelo sobre Placas Planas

J. Bornscheuer

Variación de los coeficientes de fricción locales y de transferencia de calor para el flujo sobre una placa plana.

Page 46: Convección Forzada

46

Flujo Paralelo sobre Placas Planas

• Los coeficientes locales de fricción y de transferencia de calor son más altos en el flujo turbulento que en el laminar.

• Asimismo, hx alcanza su valor más alto cuando el flujo se vuelve por completo turbulento y, a continuación, decrece en un factor de x-0,2 en la dirección del flujo.

J. Bornscheuer

Page 47: Convección Forzada

47

Flujo Paralelo sobre Placas Planas

• Números de Nusselt para placas con flujos laminar y turbulento:

J. Bornscheuer

Page 48: Convección Forzada

48

Flujo Paralelo sobre Placas Planas

• El número promedio de Nusselt sobre la placa completa es (laminar + turbulento):

J. Bornscheuer

Page 49: Convección Forzada

49

Flujo Paralelo sobre Placas Planas

• Los metales líquidos, como el mercurio, tienen conductividades térmicas elevadas y por lo común se usan en aplicaciones que requieren altas velocidades de transferencia de calor. Sin embargo, tienen números de Nusselt muy pequeños y, por consiguiente, la capa límite térmica se desarrolla con mucha mayor rapidez que la de velocidad.

J. Bornscheuer

Page 50: Convección Forzada

50

Flujo Paralelo sobre Placas Planas

• Entonces, se puede suponer que la velocidad en la capa límite térmica es constante en el valor de la corriente libre, obteniendo:

J. Bornscheuer

Page 51: Convección Forzada

51

Flujo Paralelo sobre Placas Planas

• Aplicación para todos los fluidos y todos los números de Prandtl:

J. Bornscheuer

Page 52: Convección Forzada

52

Flujo Paralelo sobre Placas Planas

J. Bornscheuer

Representación gráfica del coeficiente de transferencia de calor promedio para una placa plana con flujos laminar y turbulento combinados.

Page 53: Convección Forzada

53

Placa Plana con Tramo Inicial No Calentado

• Números de Nusselt locales:

J. Bornscheuer

Page 54: Convección Forzada

54

Placa Plana con Tramo Inicial No Calentado

• Coeficientes de transferencia de calor por convección promedios:

J. Bornscheuer

Page 55: Convección Forzada

55

Placa Plana con Tramo Inicial No Calentado

J. Bornscheuer

Flujo sobre una placa plana con un tramo inicial no calentado.

Page 56: Convección Forzada

56

Flujo Uniforme de Calor

• Cuando una placa plana se sujeta a flujo uniforme de calor en lugar de a temperatura uniforme, el número de Nusselt local se expresa por:

J. Bornscheuer

Page 57: Convección Forzada

57

Flujo Uniforme de Calor

• Estas relaciones dan valores que son 36% más altos para el flujo laminar y 4% más altos para el turbulento, en relación con el caso de la placa isotérmica.

J. Bornscheuer

Page 58: Convección Forzada

58

Flujo Uniforme de Calor

• Cuando se prescribe el flujo de calor, la razón de la transferencia de calor hacia la placa, o desde ésta, y la temperatura superficial a una distancia x se determinan a partir de:

J. Bornscheuer

Page 59: Convección Forzada

59

Flujo a través de Cilindros y Esferas

• En general, los flujos a través de cilindros y esferas comprenden separación del flujo, el cual es difícil de manejar en forma analítica.

• El flujo a través de cilindros y esferas ha sido estudiado de manera experimental por numerosos investigadores y se han desarrollado varias correlaciones empíricas para el coeficiente de transferencia de calor.

J. Bornscheuer

Page 60: Convección Forzada

60

Flujo a través de Cilindros y Esferas

J. Bornscheuer

Variación del coeficiente de transferencia de calor local a lo largo de la circunferencia de un cilindro circular en flujo cruzado de aire.

Page 61: Convección Forzada

61

Flujo a través de Cilindros y Esferas

• El número de Nusselt promedio en lo relativo al flujo cruzado sobre un cilindro, presentando la propuesta de Churchill y Bernstein:

J. Bornscheuer

Page 62: Convección Forzada

62

Flujo a través de Cilindros y Esferas

• Para el flujo sobre una esfera, Whitaker recomienda la correlación:

J. Bornscheuer

Page 63: Convección Forzada

63

Flujo a través de Cilindros y Esferas

• El número de Nusselt promedio para los flujos a través de cilindros se puede expresar en forma compacta como:

• Donde, n = 1/3 y las constantes experimentales determinadas C y m se dan por tabla.

J. Bornscheuer

Page 64: Convección Forzada

64

Flujo a través de Cilindros y Esferas

• Las relaciones para los cilindros antes dadas son para un solo cilindro o para cilindros orientados de tal forma que el flujo sobre ellos no resulte afectado por la presencia de otros.

J. Bornscheuer

Page 65: Convección Forzada

65J. Bornscheuer

Page 66: Convección Forzada

66J. Bornscheuer

Page 67: Convección Forzada

67

Flujos Laminar y Turbulento en Tubos

• El flujo en un tubo puede ser laminar o turbulento, dependiendo de las condiciones del mismo. El flujo de fluidos sigue líneas de corriente y, como consecuencia, es laminar a velocidades bajas, pero se vuelve turbulento conforme se incrementa la velocidad más allá de un valor crítico.

J. Bornscheuer

Page 68: Convección Forzada

68

Flujos Laminar y Turbulento en Tubos

• La transición de flujo laminar a turbulento no ocurre de manera repentina, más bien, se presenta sobre algún intervalo de velocidad, donde el flujo fluctúa entre laminar y turbulento antes de volverse por completo turbulento.

J. Bornscheuer

Page 69: Convección Forzada

69

Flujos Laminar y Turbulento en Tubos

• La mayor parte de los flujos en tubos que se encuentran en la práctica son turbulentos. El flujo laminar se encuentra cuando fluidos intensamente viscosos, como los aceites, fluyen en tubos de diámetro pequeño o pasos angostos.

J. Bornscheuer

Page 70: Convección Forzada

70

Flujos Laminar y Turbulento en Tubos

• Para el flujo en un tubo circular, el número de Reynolds se define como:

J. Bornscheuer

Page 71: Convección Forzada

71

Flujos Laminar y Turbulento en Tubos

• En las condiciones más prácticas, el flujo en un tubo es laminar para Re < 2300, turbulento para Re >10000 y, en los valores intermedios, de transición. Pero se debe tener presente que, en muchos casos, el flujo se vuelve completamente turbulento para Re > 4000.

J. Bornscheuer

Page 72: Convección Forzada

72

Flujos Laminar y Turbulento en Tubos

• Cuando se diseñan redes de tuberías y se determina la potencia de bombeo, se aplica un enfoque conservador y se supone que los flujos con Re > 4000 son turbulentos.

J. Bornscheuer

Page 73: Convección Forzada

73

Flujos Laminar y Turbulento en Tubos

J. Bornscheuer

Perfiles real e idealizado de temperatura para el flujo en un tubo (la velocidad a la cual se transporta la energía con el fluido es la misma para ambos casos).

Page 74: Convección Forzada

74

Flujos Laminar y Turbulento en Tubos

• Las propiedades del fluido en el flujo interno suelen evaluarse en la temperatura media del fluido con respecto a la masa, la cual es el promedio aritmético de las temperaturas medias en la admisión y la salida, es decir:

J. Bornscheuer

Page 75: Convección Forzada

75

Flujo Constante de Calor en la Superficie

• En el caso de qs = constante, la velocidad de la transferencia de calor también se puede expresar como:

J. Bornscheuer

Page 76: Convección Forzada

76

Flujo Constante de Calor en la Superficie

• Entonces, la temperatura media del fluido en la salida del tubo queda:

J. Bornscheuer

Page 77: Convección Forzada

77

Flujo Constante de Calor en la Superficie

• En el caso de flujo de calor constante en la superficie, qs, la temperatura superficial se puede determinar a partir de:

J. Bornscheuer

Page 78: Convección Forzada

78

Flujo Constante de Calor en la Superficie

J. Bornscheuer

Variación de las temperaturas superficial del tubo y media del fluido a lo largo del tubo para el caso del flujo constante de calor en la superficie.

Page 79: Convección Forzada

79

Flujo Constante de Calor en la Superficie

J. Bornscheuer

Interacciones energéticas para un volumen diferencial de control en un tubo.

Page 80: Convección Forzada

80

Flujo Constante de Calor en la Superficie

• Se puede determinar la pendiente de la temperatura media del fluido Tm en un diagrama T-x mediante la aplicación de un balance de energía de flujo estacionario a una rebanada del tubo de espesor dx, mostrada en la figura anterior. Esto da:

J. Bornscheuer

Donde p es el perímetro del tubo.

Page 81: Convección Forzada

81

Flujo Constante de Calor en la Superficie

• Puesto que qs y h son constantes, la derivación de la ecuación de la temperatura superficial, respecto a x da:

J. Bornscheuer

Page 82: Convección Forzada

82

Flujo Constante de Calor en la Superficie

• Asimismo, el requisito de que el perfil de temperatura adimensional permanezca inalterado en la región completamente desarrollada da:

J. Bornscheuer

Page 83: Convección Forzada

83

Flujo Constante de Calor en la Superficie

• Puesto que Ts – Tm = constante. Al combinar las ecuaciones anteriores, obtenemos:

J. Bornscheuer

Page 84: Convección Forzada

84

Flujo Constante de Calor en la Superficie

• Para un tubo circular, P = 2πR y m = ρVpromAc = ρ Vprom(πR2), la ecuación queda:

J. Bornscheuer

Page 85: Convección Forzada

85

Flujo Constante de Calor en la Superficie

J. Bornscheuer

La forma del pretil de temperaturas permanece inalterada en la región completamente desarrollada de un tubo sujeto a flujo de calor constante en la superficie.

Page 86: Convección Forzada

86

Temperatura Superficial Constante

• Con base en la Ley de Newton del enfriamiento, la razón de la transferencia de calor desde o hacia un fluido, que fluye en un tubo se puede expresar como:

J. Bornscheuer

Page 87: Convección Forzada

87

Temperatura Superficial Constante

• En el caso de la temperatura superficial constante (Ts = constante), ΔTprom se puede expresar aproximadamente por la diferencia media aritmética de temperatura ΔTma como:

J. Bornscheuer

Page 88: Convección Forzada

88

Temperatura Superficial Constante

• Donde Tb = (Ti + Te)/2 es la temperatura media de masa del fluido, la cual es el promedio aritmético de las temperaturas medias del fluido en la admisión y la salida del tubo.

• Inherente a esta definición, se supone que la temperatura media del fluido varía linealmente a lo largo del tubo, lo cual difícilmente es el caso cuando Ts = constante.

J. Bornscheuer

Page 89: Convección Forzada

89

Temperatura Superficial Constante

• Esta simple aproximación a menudo proporciona resultados aceptables, pero no siempre. Por lo tanto, se necesita una mejor manera de evaluar ΔTprom.

J. Bornscheuer

Page 90: Convección Forzada

90

Temperatura Superficial Constante

• Consideraremos el calentamiento de un fluido en un tubo de sección transversal constante cuya superficie interior se mantiene a una temperatura constante de Ts.

• Se sabe que la temperatura media del fluido Tm aumenta en la dirección del flujo como resultado de la transferencia de calor. El balance de energía sobre un volumen diferencial de control, da:

J. Bornscheuer

Page 91: Convección Forzada

91

Temperatura Superficial Constante

• Dado que el área superficial diferencial es dAs = pdx, donde p es el perímetro del tubo, y que dTm = - d(Ts - Tm), puesto que Ts es constante, la relación antes dada se puede reacomodar como:

J. Bornscheuer

Page 92: Convección Forzada

92

Temperatura Superficial Constante

• Al integrar desde x = 0 (admisión del tubo donde Tm = Ti), hasta x = L (salida del tubo donde Tm = Te) da:

• Donde As = pL es el área superficial del tubo y h es el coeficiente de transferencia de calor por convección promedio constante.

J. Bornscheuer

Page 93: Convección Forzada

93

Temperatura Superficial Constante

• Al tomar la exponencial de ambos miembros y despejar Te se obtiene la siguiente relación, la cual resulta muy útil para la determinación de la temperatura media del flujo en la salida del tubo:

J. Bornscheuer

Page 94: Convección Forzada

94

Temperatura Superficial Constante

J. Bornscheuer

Variación de la temperatura media del fluido a lo largo del tubo para el caso de temperatura constante.

Page 95: Convección Forzada

95

Temperatura Superficial Constante

• Combinando ecuaciones y reemplazando valores llegamos a:

• Donde:

J. Bornscheuer

Diferencia media logarítmica de temperatura.

Page 96: Convección Forzada

96

Temperatura Superficial Constante

• El NTU es un parámetro adimensional que da una medida de la efectividad de los sistemas de transferencia de calor.

• Para NTU > 5, la temperatura de salida del fluido se vuelve casi igual a la temperatura superficial, Te ≈ Ts.

J. Bornscheuer

Page 97: Convección Forzada

97

Temperatura Superficial Constante

• Dado que la temperatura del fluido puede aproximarse a la superficial pero no puede cruzarla, un NTU de alrededor de 5 indica que alcanza el límite para la transferencia de calor y ésta no aumenta, sin importar cuánto se extienda la longitud del tubo.

J. Bornscheuer

Page 98: Convección Forzada

98

Temperatura Superficial Constante

J. Bornscheuer

Un NTU mayor que 5 indica que el fluido que fluye en un tubo alcanzará la temperatura superficial a la salida sin importar cuál sea la temperatura de admisión.

Page 99: Convección Forzada

99

Flujo Laminar en Tubos

• El balance de Energía de flujo estacionario para un elemento con forma de capa cilíndrica, de espesor dr y longitud dx, se puede expresar como:

• Donde:

J. Bornscheuer

Page 100: Convección Forzada

100

Flujo Laminar en Tubos

• Al sustituir y dividir entre 2πr dr dx da, después de reordenar:

• O bien:

J. Bornscheuer

Page 101: Convección Forzada

101

Flujo Laminar en Tubos

• Pero:

• Al sustituir y utilizar

J. Bornscheuer

Page 102: Convección Forzada

102

Flujo Laminar en Tubos

• La última ecuación expresa que la razón de transferencia neta de energía al volumen de control por el flujo de masa es igual a la razón neta de conducción de calor en la dirección radial.

J. Bornscheuer

Page 103: Convección Forzada

103

Flujo Laminar en Tubos

J. Bornscheuer

Elemento diferencial de volumen usado en la deducción de la relación del balance de energía.

Page 104: Convección Forzada

104

Flujo Constante de Calor en la Superficie

• Para el flujo completamente desarrollado en un tubo circular sujeto a flujo de calor constante en la superficie, se tiene:

J. Bornscheuer

Page 105: Convección Forzada

105

Flujo Constante de Calor en la Superficie

• Al sustituir la ecuación anterior y la relación para el perfil de velocidades, da:

• La cual es una ecuación diferencial ordinaria de segundo orden.

J. Bornscheuer

Page 106: Convección Forzada

106

Flujo Constante de Calor en la Superficie

• La solución general de la ecuación anterior se obtiene mediante la separación de las variables e integrar dos veces, para dar:

J. Bornscheuer

Page 107: Convección Forzada

107

Flujo Constante de Calor en la Superficie

• La solución deseada para el problema se obtiene al aplicar las condiciones de frontera dT/dx = 0 en r = 0 (debido a la simetría), y T = Ts, en r = R. Se obtiene:

J. Bornscheuer

Page 108: Convección Forzada

108

Flujo Constante de Calor en la Superficie

• La temperatura media de la masa Tm se determina al sustituir las relaciones de los perfiles de velocidades y de temperaturas en las ecuaciones anteriores y llevar a cabo la integración, para dar:

J. Bornscheuer

Page 109: Convección Forzada

109

Flujo Constante de Calor en la Superficie

• Luego, al combinar la relación anterior con:

• Obtenemos:

J. Bornscheuer

Page 110: Convección Forzada

110

Flujo Constante de Calor en la Superficie

• O bien:

J. Bornscheuer

Page 111: Convección Forzada

111

Flujo Constante de Calor en la Superficie

• Por lo tanto, para el flujo laminar completamente desarrollado en un tubo circular sujeto a flujo de calor constante en la superficie, el número de Nusselt es constante. No se tiene dependencia con respecto a los números de Reynolds o de Prandtl.

J. Bornscheuer

Page 112: Convección Forzada

112

Temperatura Superficial Constante

• La conductividad térmica k a usarse en las relaciones de Nu antes dadas debe evaluarse en la temperatura media de la masa del fluido.

J. Bornscheuer

Page 113: Convección Forzada

113

Temperatura Superficial Constante

• Para el flujo laminar el efecto de la aspereza superficial sobre el factor de fricción y el coeficiente de transferencia de calor es despreciable.

J. Bornscheuer

Page 114: Convección Forzada

114

Temperatura Superficial Constante

J. Bornscheuer

En el flujo laminar en un tubo con temperatura superficial constante tanto el factor de fricción como el coeficiente de transferencia de calor permanecen constantes en la región completamente desarrollada.

Page 115: Convección Forzada

115

Flujo Laminar en Tubos No Circulares

• En la tabla que se mostrará a continuación se darán las relaciones del factor de fricción f y el número de Nusselt para el flujo laminar completamente desarrollado en tubos de diversas secciones transversales.

• Los números de Reynolds y de Nusselt para el flujo en estos tubos están basados en el diámetro hidráulico Dh = 4Ac/p, donde Ac es el área de la sección transversal del tubo y p es el perímetro.

J. Bornscheuer

Page 116: Convección Forzada

116

Flujo Laminar en Tubos No Circulares

• Una vez que se cuenta con el número de Nusselt, el coeficiente de transferencia de calor por convección se determina a partir de h = kNu/Dh.

J. Bornscheuer

Page 117: Convección Forzada

117J. Bornscheuer

Page 118: Convección Forzada

118

Desarrollo del Flujo Laminar en la Región de Entrada

• Para un tubo circular de longitud L sujeto a temperatura superficial constante, el número promedio de Nusselt para la región de entrada térmica se puede determinar a partir de:

J. Bornscheuer

Page 119: Convección Forzada

119

Desarrollo del Flujo Laminar en la Región de Entrada

• Cuando la diferencia entre las temperaturas de la superficie y del fluido es grande, puede ser necesario tomar en cuenta la variación de la viscosidad con la temperatura:

J. Bornscheuer

Page 120: Convección Forzada

120

Desarrollo del Flujo Laminar en la Región de Entrada

• Todas las propiedades se evalúan en la temperatura media de la masa del fluido, excepto s, la cual se evalúa en la temperatura de la superficie.

J. Bornscheuer

Page 121: Convección Forzada

121

Desarrollo del Flujo Laminar en la Región de Entrada

• El número de Nusselt promedio para la región de entrada térmica de flujo entre placas paralelas isotérmicas de longitud L se expresa como:

• Donde Dh es el diámetro hidráulico, el cual es el doble del espaciamiento entre las placas. Esta relación se puede usar para Re ≤ 2800.

J. Bornscheuer

Page 122: Convección Forzada

122

Flujo Turbulento en Tubos

• Para tubos lisos, el factor de fricción en el flujo turbulento se puede determinar a partir de la primera ecuación de Petukhov explícita, dada como:

J. Bornscheuer

Page 123: Convección Forzada

123

Flujo Turbulento en Tubos

• El número de Nusselt en el flujo turbulento está relacionado con el factor de fricción a través de la analogía de Chilton – Colburn, expresada como:

J. Bornscheuer

Page 124: Convección Forzada

124

Flujo Turbulento en Tubos

• Con respecto a lo anterior, una vez que se cuenta con el factor de fricción, se puede usar esta ecuación de manera conveniente con el fin de evaluar el número de Nusselt tanto para los tubos lisos como para los ásperos.

J. Bornscheuer

Page 125: Convección Forzada

125

Flujo Turbulento en Tubos

• Para el flujo turbulento completamente desarrollado en tubos lisos, se puede obtener una ecuación simple para el número de Nusselt al sustituir en la ecuación anterior de la simple relación de la ley de potencia f = 0,184Re-0,2 para el factor de fricción. Esto da:

J. Bornscheuer

Page 126: Convección Forzada

126

Flujo Turbulento en Tubos

• La ecuación anterior se conoce como ecuación de Colburn. Se puede mejorar la precisión de esta ecuación al modificarla como:

• Donde n = 0,4 para el calentamiento y 0,3 para el enfriamiento del flujo que fluye por el tubo.

J. Bornscheuer

Page 127: Convección Forzada

127

Flujo Turbulento en Tubos

• Cuando la variación en las propiedades es grande, debido a una diferencia grande en las temperaturas, puede usarse la ecuación que sigue, debida a Sieder y Tate:

J. Bornscheuer

Page 128: Convección Forzada

128

Flujo Turbulento en Tubos

• Para el caso anterior, todas las propiedades se evalúan en Tb, temperatura media del fluido (promedio de entrada y salida), excepto μs, la cual se evalúa en Ts.

J. Bornscheuer

Page 129: Convección Forzada

129

Flujo Turbulento en Tubos

• Las relaciones del número de Nusselt que acaban de darse son bastante simples, pero pueden dar errores tan grandes como de 25%.

• Este error se puede disminuir de manera considerable, hasta menos de 10%, mediante relaciones más complejas, pero precisas, como la segunda ecuación de Petukhov.

J. Bornscheuer

Page 130: Convección Forzada

130

Flujo Turbulento en Tubos

• Segunda ecuación de Petukhov:

J. Bornscheuer

Page 131: Convección Forzada

131

Flujo Turbulento en Tubos

• Se mejora en exactitud al modificarla en la ecuación de Gnieliski:

• Donde se puede determinar el factor de fricción f a partir de una ecuación apropiada, como la primera ecuación de Petukhov. En los cálculos debe preferirse Gnieliski.

J. Bornscheuer

Page 132: Convección Forzada

132

Flujo Turbulento en Tubos

• Las relaciones dadas hasta ahora no se aplican a los metales líquidos debido a sus números de Prandtl muy bajos. Para los metales líquidos (0,004 < Pr < 0,01), Sleicher y Rouse recomiendan las relaciones siguientes para 104 < Re < 106:

J. Bornscheuer

Page 133: Convección Forzada

133

Flujo Turbulento en Tubos

J. Bornscheuer

Page 134: Convección Forzada

134

Desarrollo del Flujo Turbulento en la Región de Entrada

• Las longitudes de entrada para el flujo turbulento son típicamente cortas, a menudo sólo de 10 diámetros de tubo de largo y, por tanto, se puede usar de manera aproximada el número de Nusselt determinado para el flujo turbulento completamente desarrollado para todo el tubo.

J. Bornscheuer

Page 135: Convección Forzada

135

Desarrollo del Flujo Turbulento en la Región de Entrada

• Este simple procedimiento proporciona resultados razonables para la caída de presión y la transferencia de calor, en el caso de tubos largos, y resultados conservadores para los tubos cortos.

• Para obtener una mayor exactitud, en la literatura se dispone de correlaciones para los coeficientes de fricción y de transferencia de calor para las regiones de entrada.

J. Bornscheuer

Page 136: Convección Forzada

136

Flujo Turbulento en Tubos No Circulares

• Las características de caída de presión y de la transferencia de calor del flujo turbulento en los tubos son dominados por la subcapa viscosa muy delgada próxima a la superficie de la pared y la forma de la región central no tiene mucho significado.

J. Bornscheuer

Page 137: Convección Forzada

137

Flujo Turbulento en Tubos No Circulares

• Como consecuencia, también se pueden usar, con razonable exactitud, las relaciones para el flujo turbulento antes dadas para los tubos circulares en los no circulares, al reemplazar el diámetro D en la evaluación del número de Reynolds por el diámetro hidráulico Dh = 4Ac/p.

J. Bornscheuer

Page 138: Convección Forzada

138

Flujo Turbulento en Tubos No Circulares

J. Bornscheuer

En el flujo turbulento, el perfil de velocidades es casi una recta en la región del núcleo y se tienen cualesquiera gradientes significativos de velocidad de la subcapa viscosa.

Page 139: Convección Forzada

139

Flujo por la Sección Anular entre Tubos Concéntricos

• Considerando una corona circular concéntrica de diámetro interior Di y exterior D0, el diámetro hidráulico de la corono es:

J. Bornscheuer

Page 140: Convección Forzada

140

Flujo por la Sección Anular entre Tubos Concéntricos

• Cuando se conocen los números de Nusselt, los coeficientes de convección para las superficies interior y exterior se determinan a partir de:

J. Bornscheuer

Page 141: Convección Forzada

141

Flujo por la Sección Anular entre Tubos Concéntricos

J. Bornscheuer

Un intercambiador de calor de tubo doble consta de dos tubos concéntricos.

Page 142: Convección Forzada

142

Flujo por la Sección Anular entre Tubos Concéntricos

• Para el flujo turbulento completamente desarrollado, los coeficientes de convección interior y exterior son aproximadamente iguales entre sí y la corona circular del tubo se puede considerar como un tubo no circular con un diámetro hidráulico de Dh = D0 – Di.

J. Bornscheuer

Page 143: Convección Forzada

143

Flujo por la Sección Anular entre Tubos Concéntricos

• En este caso, se puede determinar el número de Nusselt con base en una relación adecuada del flujo turbulento, como la ecuación de Gnielinski.

J. Bornscheuer

Page 144: Convección Forzada

144

Flujo por la Sección Anular entre Tubos Concéntricos

• Para mejorar la exactitud de los números de Nusselt obtenidos a partir de estas relaciones para el flujo anular, Petukhov y Roizen recomiendan multiplicarlos por los siguientes factores de corrección, cuando una de las paredes del tubo es adiabática y la transferencia de calor se lleva a cabo a través de la otra pared:

J. Bornscheuer

Page 145: Convección Forzada

145

Flujo por la Sección Anular entre Tubos Concéntricos

• Factores de corrección:

J. Bornscheuer

Page 146: Convección Forzada

146

Flujo por la Sección Anular entre Tubos Concéntricos

J. Bornscheuer

Page 147: Convección Forzada

147

Mejoramiento de la Transferencia de Calor

• Los tubos con superficies ásperas tienen coeficientes de transferencia de calor mucho más altos que aquellos con superficies lisas. Por lo tanto, a menudo las superficies de los tubos se hacen intencionalmente ásperas, corrugadas o con aletas con el fin de mejorar el coeficiente de transferencia de calor por convección, y de este modo la velocidad de transferencia de calor por ese medio.

J. Bornscheuer

Page 148: Convección Forzada

148

Mejoramiento de la Transferencia de Calor

• La transferencia de calor en el flujo turbulento en un tubo se ha incrementado tanto como 400% al ser áspera la superficie, por supuesto, también se incrementa el factor de fricción y, en consecuencia, la necesidad de potencia para la bomba o el ventilador.

J. Bornscheuer

Page 149: Convección Forzada

149

Mejoramiento de la Transferencia de Calor

• También se puede incrementar el coeficiente de transferencia de calor por convección al inducir flujo pulsante mediante generadores de pulsos, al inducir remolinos mediante la introducción de una cinta en espiral dentro del tubo, o bien, induciendo flujos secundarios formando un serpentín con el tubo.

J. Bornscheuer

Page 150: Convección Forzada

150

Mejoramiento de la Transferencia de Calor

J. Bornscheuer

Con frecuencia las superficies de los tubos se hacen intencionalmente ásperas, se corrugan o se le colocan aletas para mejorar la transferencia de calor por convección.