COMPARACION DE TRES FORMAS DE REFORZAR UNA...

19
JORNADAS DE INVESTIGACION CIENTIFICA DESDE LAS AULAS 1 COMPARACION DE TRES FORMAS DE REFORZAR UNA ESTRUCTURA Roberto Aguiar Falconí (1) , Juan Izurieta (2) , Guillermo Gómez (2) , Dayana Astudillo (3) , Nancy Jaya (3) , Valeria Mejia (3) , Garry Narváez (3) , Daniel Suárez (3) (1) Centro de Investigaciones Científicas Escuela Politécnica del Ejército, Quito [email protected] (2) Consultores de PLANMAN (3) Estudiantes de noveno nivel Carrera de Ingeniería Civil Escuela Politécnica del Ejército, Quito RESUMEN Se presenta tres formas de reforzar sísmicamente una estructura de tres pisos. Ubicada en la región sierra. La primera se refuerza considerando diagonales de acero. La segunda se refuerza colocando muros cabezales en los pórticos exteriores transversales. La última forma de reforzamiento es similar a la anterior con la diferencia de que los muros cabezales son más pequeños y se ubican en los pórticos exteriores transversales y en un pórtico interior Se utilizó el sistema de computación CEINCI-LAB para la realización del análisis sísmico considerando tres grados de libertad por planta y empleando el espectro del NEC-11. La comparación de las tres alternativas de reforzamiento se lo hace mediante la evaluación de la deriva de piso que es el parámetro que mejor se relaciona con el daño esperado. ABSTRACT We present three ways to seismically reinforce, a structure of three floors. Located in the Sierra region. First, considering reinforcing steel diagonals. The second is reinforced walls heads placing in transverse outer porches. The last form of reinforcement is similar to the previous one except that the walls heads are smaller and are located in the outer portico and inside portico We used the computer system CEINCI-LAB to perform seismic analysis considering three degrees of freedom per floor and using the NEC-11 spectrum. The comparison of the three alternatives is what makes reinforcement by assessing drift floor is the parameter that best relates to the expected damage.

Transcript of COMPARACION DE TRES FORMAS DE REFORZAR UNA...

Page 1: COMPARACION DE TRES FORMAS DE REFORZAR UNA …ia.espe.edu.ec/wp-content/uploads/2013/02/3-Tipos-de-Reforzamiento.… · jornadas de investigacion cientifica desde las aulas 1 comparacion

JORNADAS DE INVESTIGACION CIENTIFICA DESDE LAS AULAS

1

COMPARACION DE TRES FORMAS DE REFORZAR UNA

ESTRUCTURA

Roberto Aguiar Falconí(1), Juan Izurieta(2), Guillermo Gómez(2), Dayana Astudillo(3),

Nancy Jaya(3), Valeria Mejia(3), Garry Narváez(3), Daniel Suárez(3)

(1)Centro de Investigaciones Científicas

Escuela Politécnica del Ejército, Quito

[email protected]

(2)

Consultores de PLANMAN

(3)

Estudiantes de noveno nivel

Carrera de Ingeniería Civil

Escuela Politécnica del Ejército, Quito

RESUMEN

Se presenta tres formas de reforzar sísmicamente una estructura de tres pisos. Ubicada en

la región sierra. La primera se refuerza considerando diagonales de acero. La segunda se refuerza

colocando muros cabezales en los pórticos exteriores transversales. La última forma de

reforzamiento es similar a la anterior con la diferencia de que los muros cabezales son más

pequeños y se ubican en los pórticos exteriores transversales y en un pórtico interior

Se utilizó el sistema de computación CEINCI-LAB para la realización del análisis sísmico

considerando tres grados de libertad por planta y empleando el espectro del NEC-11. La

comparación de las tres alternativas de reforzamiento se lo hace mediante la evaluación de la

deriva de piso que es el parámetro que mejor se relaciona con el daño esperado.

ABSTRACT

We present three ways to seismically reinforce, a structure of three floors. Located in the Sierra

region. First, considering reinforcing steel diagonals. The second is reinforced walls heads placing

in transverse outer porches. The last form of reinforcement is similar to the previous one except that

the walls heads are smaller and are located in the outer portico and inside portico

We used the computer system CEINCI-LAB to perform seismic analysis considering three degrees

of freedom per floor and using the NEC-11 spectrum. The comparison of the three alternatives is

what makes reinforcement by assessing drift floor is the parameter that best relates to the expected

damage.

Page 2: COMPARACION DE TRES FORMAS DE REFORZAR UNA …ia.espe.edu.ec/wp-content/uploads/2013/02/3-Tipos-de-Reforzamiento.… · jornadas de investigacion cientifica desde las aulas 1 comparacion

JORNADAS DE INVESTIGACION CIENTIFICA DESDE LAS AULAS

2

1. INTRODUCCIÓN

El Ecuador se halla ubicado en una de las zonas de mayor peligrosidad sísmica

del mundo, de tal forma que los proyectistas estructurales tienen que diseñar sus edificios

considerando que lo más importante es la acción sísmica. (1)

A continuación se va a realizar el análisis de la estructura con tres grados de

libertad por planta.

Figura 1 Estructura a reforzar con las tres alternativas

Figura 2 Vista espacial de la estructura (Quitar las columnas del volado)

Page 3: COMPARACION DE TRES FORMAS DE REFORZAR UNA …ia.espe.edu.ec/wp-content/uploads/2013/02/3-Tipos-de-Reforzamiento.… · jornadas de investigacion cientifica desde las aulas 1 comparacion

JORNADAS DE INVESTIGACION CIENTIFICA DESDE LAS AULAS

3

2. PROPUESTAS DE REFORZAMIENTO

Se presenta cada uno de los procesos de reforzamiento:

REFORZAMIENTO No. 1

En este reforzamiento se colocarán diagonales de acero en el pórtico 1 y pórtico 3 y

columnas de acero en el pórtico 3. En la Figura 1 se muestra la ubicación de los elementos de

acero.

Figura 3 Propuesta 1: Columnas de acero en voladizo y diagonales de acero

Los elementos de acero tanto de las columnas como de las diagonales presentan las siguientes dimensiones:

Figura 4 Sección transversal de los perfiles empleados en Propuesta 1

Page 4: COMPARACION DE TRES FORMAS DE REFORZAR UNA …ia.espe.edu.ec/wp-content/uploads/2013/02/3-Tipos-de-Reforzamiento.… · jornadas de investigacion cientifica desde las aulas 1 comparacion

JORNADAS DE INVESTIGACION CIENTIFICA DESDE LAS AULAS

4

Figura 5 Reforzamiento de Propuesta 1.

REFORZAMIENTO No. 2

Para la segunda opción de reforzamiento se colocaran muros cabezales inicialmente de

4.75 m en los pórticos A y F, posteriormente se realiza el cálculo de las estructura con una

dimensión de 4.26m de altura y 0.28m de base para el muro cabezal, dimensión adoptada

considerando una sección equivalente.

Figura 6 Propuesta 2: Incorporación de muros de corte en los extremos de la estructura.

Page 5: COMPARACION DE TRES FORMAS DE REFORZAR UNA …ia.espe.edu.ec/wp-content/uploads/2013/02/3-Tipos-de-Reforzamiento.… · jornadas de investigacion cientifica desde las aulas 1 comparacion

JORNADAS DE INVESTIGACION CIENTIFICA DESDE LAS AULAS

5

Se trabajará con la sección equivalente:

Sección equivalente:

DATOS:

Figura 1

Base= 0,2 m

Altura= 4,75 m

Figura 2

Base= 0,3 m

Altura= 0,4 m

Figura 3

Base= 0,3 m

Altura= 0,4 m

Centro de Gravedad

AREA Y A*Y INERCIA d A*d^2

A1= 0,950 0,4000 0,3800 1,7862 0,0504 0,0024

A2= 0,120 0,1500 0,0180 0,0016 0,1996 0,0048

A3= 0,120 0,1500 0,0180 0,0016 0,1996 0,0048

Σ= 1,190

0,4160 1,7894

0,0120

Calculo de Ȳ:

A

YAY

*

190.1

4160.0Y

3495.0Y

Calculo de inercia:

Page 6: COMPARACION DE TRES FORMAS DE REFORZAR UNA …ia.espe.edu.ec/wp-content/uploads/2013/02/3-Tipos-de-Reforzamiento.… · jornadas de investigacion cientifica desde las aulas 1 comparacion

JORNADAS DE INVESTIGACION CIENTIFICA DESDE LAS AULAS

6

Calculo de altura equivalente:

A

Iheq

12

190.1

8014.1*12heq

mheq 26.4

Calculo de la base equivalente:

heq

Abeq

26.4

190.1beq

mbeq 28,0

REFORZAMIENTO No. 3

En esta opción de reforzamiento se colocan muros cabezales de menor longitud que los

anteriores. Estos muros se colocaran en los pórticos A, C y E. Posteriormente se realiza el cálculo

de las estructura con una dimensión de 1.09m de altura y 0.36m de base para el muro cabezal,

dimensión adoptada considerando una sección equivalente.

Figura 7 Propuesta 3: Reforzamiento con tres muros.

Page 7: COMPARACION DE TRES FORMAS DE REFORZAR UNA …ia.espe.edu.ec/wp-content/uploads/2013/02/3-Tipos-de-Reforzamiento.… · jornadas de investigacion cientifica desde las aulas 1 comparacion

JORNADAS DE INVESTIGACION CIENTIFICA DESDE LAS AULAS

7

Sección equivalente:

Calculo de Ȳ:

A

YAY

*

3600.0

1140.0Y

3167.0Y

Calculo de inercia:

Calculo de altura equivalente:

A

Iheq

12

36,0

0354,0*12heq

mheq 09,1

DATOS:

Base= 0,2 m

Altura= 1,2 m

Base= 0,3 m

Altura= 0,4 m

Base= 0 m

Altura= 0 m

Figura 3

Figura 2

Figura 1

Y A*Y INERCIA d A*d^2

A1= 0,24 0,4 0,096 0,0288 0,08333333 0,00166667

A2= 0,12 0,15 0,018 0,0016 0,16666667 0,00333333

Σ= 0,360 0,114 0,0304 0,005

Centro de Gravedad

AREA

Page 8: COMPARACION DE TRES FORMAS DE REFORZAR UNA …ia.espe.edu.ec/wp-content/uploads/2013/02/3-Tipos-de-Reforzamiento.… · jornadas de investigacion cientifica desde las aulas 1 comparacion

JORNADAS DE INVESTIGACION CIENTIFICA DESDE LAS AULAS

8

Calculo de la base equivalente:

heq

Abeq

09,1

36,0beq

mbeq 36,0

3. MARCO TEÓRICO

MATRIZ DE RIGIDEZ

Análisis sin nudo rígido En el análisis sísmico de un pórtico plano, se considera que todo el piso se mueve lateralmente lo mismo. Por lo tanto, estos elementos deben modelarse como axialmente rígidos, A= ∞, como se indica en la figura 8

Figura 8 Sistema de coordenadas locales para un elemento axialmente rígido.

La matriz de rigidez es la siguiente.

(8.1)

La forma de la matriz de rigidez, indicada en (4.1) es válida para elementos de sección constante o de variable. Para elementos de sección constante, se tiene:

Page 9: COMPARACION DE TRES FORMAS DE REFORZAR UNA …ia.espe.edu.ec/wp-content/uploads/2013/02/3-Tipos-de-Reforzamiento.… · jornadas de investigacion cientifica desde las aulas 1 comparacion

JORNADAS DE INVESTIGACION CIENTIFICA DESDE LAS AULAS

9

Para la columna hay dos opciones para modelar el elemento, la primera consiste en suponer que el elemento es totalmente flexible, Ao, Io y la segunda considerar que el elemento es axialmente rígido. En la figura 9 se presenta la primera forma de modelaje en coordenadas globales. Aguiar (2004)

Figura 9 Sistema de coordenadas globales para un elemento vertical, totalmente flexible.

La matriz de rigidez en coordenadas globales es la siguiente.

(8.4) La variable todavía no definida es:

Análisis con nudo rígido Para el análisis con los sismos frecuente (47 años de período de retorno) y ocasional (72 años) se espera que la estructura trabaje en el rango elástico. No se admite daño. Por lo tanto,

Page 10: COMPARACION DE TRES FORMAS DE REFORZAR UNA …ia.espe.edu.ec/wp-content/uploads/2013/02/3-Tipos-de-Reforzamiento.… · jornadas de investigacion cientifica desde las aulas 1 comparacion

JORNADAS DE INVESTIGACION CIENTIFICA DESDE LAS AULAS

10

para el análisis sísmico se debe utilizar un modelo con nudos rígidos. Lo propio debe hacerse cuando se considera solo cargas verticales. La longitud de los elementos que ingresa al nudo, tienen rigidez axial infinita y rigidez a flexión infinita. Sean c1 y c2 las longitudes de rigidez infinita de un elemento, como el indicado en

la figura 4.3. En este caso L, es la luz libre (distancia entre cara y cara de columna).

Figura 10 Coordenadas locales para un elemento A = ∞ , con dos sectores de rigidez infinita.

La matriz de rigidez para un elemento con dos sectores de rigidez infinita es la siguiente:

(8.5)

La matriz de rigidez del elemento, en este caso, es la indicada en (8.6).

Figura 11 Coordenadas globales para un elemento vertical, con dos sectores de rigidez infinita.

Page 11: COMPARACION DE TRES FORMAS DE REFORZAR UNA …ia.espe.edu.ec/wp-content/uploads/2013/02/3-Tipos-de-Reforzamiento.… · jornadas de investigacion cientifica desde las aulas 1 comparacion

JORNADAS DE INVESTIGACION CIENTIFICA DESDE LAS AULAS

11

(8.6)

MATRIZ DE RIGIDEZ ESPACIAL DE LA ESTRUCTURA

DESCRIPCIÓN DEL MODELO:

La numeración de los tres grados de libertad por planta es arbitrario sin embargo es

conveniente numerar primero todas las componentes de desplazamiento horizontal según el eje X

empezando desde la primera planta hasta la última planta; luego todas las componentes de

desplazamiento horizontal según el eje “Y” así mismo empezando desde la primera planta hasta la

última y finalmente las rotaciones de piso como lo muestra la figura. A éstos tres grados de libertad

por planta se denomina sistema Q – q ya que son coordenadas de la estructura. Donde Q es el

vector de cargas aplicadas en el centro de masa de la estructura y q el vector de coordenadas de

piso.

Figura 12 Modelo de tres grados de libertad por planta.

MATRIZ KE:

Se recuerda que la matriz de rigidez lateral KL es aquella matriz que está asociada a las

coordenadas laterales de piso, con esta matriz se obtiene la matriz de rigidez en coordenadas de

piso KE aplicando la ecuación:

Page 12: COMPARACION DE TRES FORMAS DE REFORZAR UNA …ia.espe.edu.ec/wp-content/uploads/2013/02/3-Tipos-de-Reforzamiento.… · jornadas de investigacion cientifica desde las aulas 1 comparacion

JORNADAS DE INVESTIGACION CIENTIFICA DESDE LAS AULAS

12

La forma de la matriz A (i) es la siguiente:

SUB-MATRICES DE KE:

MATRIZ DE MASAS

Para sistemas de varios grados de libertad, la energía cinética se puede escribir en forma

matricial de la siguiente manera:

Page 13: COMPARACION DE TRES FORMAS DE REFORZAR UNA …ia.espe.edu.ec/wp-content/uploads/2013/02/3-Tipos-de-Reforzamiento.… · jornadas de investigacion cientifica desde las aulas 1 comparacion

JORNADAS DE INVESTIGACION CIENTIFICA DESDE LAS AULAS

13

Donde es el vector de velocidades y M es la matriz de masas, que es simétrica, con

respecto a la diagonal principal. Además todos los elementos de la diagonal son positivos. Aguiar

(2012,1)

FACTORES DE PARTICIPACION MODAL

El factor de participación del modo i se encuentra con la siguiente ecuación.

FUERZAS MÁXIMAS MODALES

Para encontrar las fuerzas en cada modo de vibración Q(i)

se tiene que:

Del problema de vibración libre sin amortiguamiento, se tiene:

(K − λ M)φ = 0 ⇒ K φ = λ Mφ

Luego:

DESPLAZAMIENTOS INELÁSTICOS

De acuerdo al NEC-11 los desplazamientos inelásticos, qine se encuentran con la siguiente ecuación. Aguiar (2012,2,3)

Para inercias agrietadas:

elasticoep qRoqinelastic max*)**(*75.0

Para inercias gruesas:

elasticoep qRoqinelastic max*)**(*1

Page 14: COMPARACION DE TRES FORMAS DE REFORZAR UNA …ia.espe.edu.ec/wp-content/uploads/2013/02/3-Tipos-de-Reforzamiento.… · jornadas de investigacion cientifica desde las aulas 1 comparacion

JORNADAS DE INVESTIGACION CIENTIFICA DESDE LAS AULAS

14

DERIVAS DE PISO

Se trabaja con los tres primeros valores de qinelástico :

hi

qq iinelasticoiinelastico

i

)1()( max

3.1. SUBRUTINAS DE CEINCI_LAB

CEINCI_LAB Es un programa creado de forma tal que el usuario lo vaya armando

como un rompecabezas, contiene varias subrutinas las mismas que se complementan para

su funcionamiento; a continuación vamos a explicar detalladamente para que llamamos a

cada una de ellas.

PROGRAMAS:

KL_EJ_MURO_A: Este programa nos reporta la matriz de rigidez lateral de cada pórtico,

considerando que en el reforzamiento No.2 y No.3 se tienen los muros cabezales. En este

programa se debe ingresar las longitudes del nudo rígido, ya que se tiene el muro cabezal.

KL_EJ_HOR_MAMP_C: Reporta la matriz de rigidez lateral de cada pórtico, considerando

solo los pórticos que presentan mampostería.

KL_EJ_HOR_BD: Reporta la matriz de rigidez lateral de cada pórtico, considerando solo

los pórticos que presentan hormigón.

matriz_es (ntot,iejes,alt,r,KL,RT): Este programa reporta la matriz de rigidez espacial.

iejes: # de ejes de columnas en dirección de análisis sísmico.

ntot: Número total de pórticos

NP: Número de Pisos

KL: Matriz que contiene las matrices de rigidez lateral de todos los pórticos. Primero

los del sentido de análisis.

r: Vector que contiene la distancia del pórtico al centro de masa, de cada uno de los

pórticos, con signo, positivo anti horario.

RT: Archivo de datos que contiene todos los vectores r, en todos los pisos.

orden_eig: Reporta los valores propios, periodos y modos de vibración.

espectro NEC-11 (R,fip,fie,T): Reporta las aceleraciones espectrales.

R: Factor de reducción de las fuerzas sísmicas

fip: Factor de irregularidades en planta

fie: Factor de irregularidades en elevación

T: Períodos de vibración.

Fact_part_modal: Reporta los factores de participación modal de la estructura.

Page 15: COMPARACION DE TRES FORMAS DE REFORZAR UNA …ia.espe.edu.ec/wp-content/uploads/2013/02/3-Tipos-de-Reforzamiento.… · jornadas de investigacion cientifica desde las aulas 1 comparacion

JORNADAS DE INVESTIGACION CIENTIFICA DESDE LAS AULAS

15

desplazamientos_modales: Reporta los desplazamientos elásticos de la

estructura.

SUBRUTINAS A USARSE:

cg_sismo: Programa para determinar las coordenadas generalizadas del pórtico.

Datos para el uso del programa:

nod= Numero de nudos.

np= Numero de pisos

nr= Numero de restricciones.

gn_portico: Programa para generar el nudo inicial y final de los elementos, nos presenta

los vectores del nudo inicial y del nudo final de la estructura.

Datos para el uso del programa:

GEN= Matriz con: elemento, nudo inicial, nudo final, elemento a generar, incremento

en elemento, incremento en el nudo inicial, incremento nudo final

glinea_portico: Programa para generar las coordenadas de los nudos en forma lineal.

NUDOS=Matriz con: Nudo, coordenadas en x, coordenadas en y, nudos a generar, incremento numero de nudo, incremento en x, incremento en y

dibujo: Programa para dibujar la estructura la cual se nos presenta en una ventana grafica que nos permite verificar las dimensiones para poder continuar con el desarrollo del programa. Datos para el uso del programa:

Vector de coordenadas en X

Vector de coordenadas en Y

Vector de nudos iniciales (de cada elemento)

Vector de nudos finales (de cada elemento)

vc: Programa para calcular el vector de colocación de un pórtico plano. Datos para el uso del programa:

Vector de nudos iniciales (de cada elemento)

Vector de nudos finales (de cada elemento)

Matriz que contiene las coordenadas generalizadas de los nudos

longitud: Programa que calcula la longitud, seno y coseno de los elementos. Datos para el uso del programa:

Vector de coordenadas en X

Vector de coordenadas en Y

Vector de nudos iniciales (de cada elemento)

Vector de nudos finales (de cada elemento)

glem_portico: Programa para generar elementos de un pórtico plano.

Page 16: COMPARACION DE TRES FORMAS DE REFORZAR UNA …ia.espe.edu.ec/wp-content/uploads/2013/02/3-Tipos-de-Reforzamiento.… · jornadas de investigacion cientifica desde las aulas 1 comparacion

JORNADAS DE INVESTIGACION CIENTIFICA DESDE LAS AULAS

16

Datos para el uso del programa:

SECCION= Matriz con: Elemento, base, altura, incremento a generar, incrementó en el elemento

krigidez: Programa para calcular la k de rigidez de un pórtico plano mostrándonos como resultado la matriz de rigidez de la estructura. Datos para el uso del programa

ELEM= Matriz que contiene: la base y la altura de los elementos

Vector que contiene la longitud de los elementos

Vector que contiene los senos de los elementos

Vector que contiene los cosenos de los elementos

Matriz que contiene los vectores de colocación de elementos

Modulo de elasticidad del material

krigidez_acero: Programa para calcular la k de rigidez de un pórtico plano mostrándonos como resultado la matriz de rigidez de la estructura con elementos de acero. krigidez_mamposteria: Programa para calcular la k de rigidez de un pórtico plano mostrándonos como resultado la matriz de rigidez de la estructura con elementos de mampostería.

4. DESCRIPCIÓN DE LA ESTRUCTURA

La estructura analizada consta de tres pisos. Entre los ejes A y C existe una aula, lo propio sucede entre los ejes C y E. Los pórticos se indican en la figura14. Es importante notar que la altura de los pisos es de 3.24 m.

Figura 13 Pórticos en el sentido de corto.

El modelo numérico de cálculo con el cual se halla la matriz de rigidez lateral, considera

que todos los elementos son axialmente rígidos. Se trabajó con un módulo de elasticidad

Page 17: COMPARACION DE TRES FORMAS DE REFORZAR UNA …ia.espe.edu.ec/wp-content/uploads/2013/02/3-Tipos-de-Reforzamiento.… · jornadas de investigacion cientifica desde las aulas 1 comparacion

JORNADAS DE INVESTIGACION CIENTIFICA DESDE LAS AULAS

17

E=1800000 T/m2 para los elementos de hormigón, E=120000 T/m

2 para los elementos de

mampostería y E=21000000 T/m2 para los elementos de acero.

Figura 14 Geometría de los pórticos en sentido longitudinal

En sentido longitudinal los pórticos 1 y 3 tienen las mismas dimensiones y son las

indicadas en la figura 14. Se realiza un análisis sísmico, pseudo espacial, considerando tres grados de libertad por

planta, dos componentes de desplazamiento horizontal y una rotación con respecto a un eje perpendicular a la losa. Los grados de libertad en coordenadas de piso, son los indicados en la figura 15. Los grados de libertad se han colocado en el Centro de Masas de cada piso. Se considera que el Centro de Masa está ubicado en el Centro de Gravedad de toda la plana.

Figura 15 Grados de libertad en coordenadas de piso.

Se realizó el análisis sísmico empleando el Método de Superposición Modal, utilizando un espectro

inelástico.

Page 18: COMPARACION DE TRES FORMAS DE REFORZAR UNA …ia.espe.edu.ec/wp-content/uploads/2013/02/3-Tipos-de-Reforzamiento.… · jornadas de investigacion cientifica desde las aulas 1 comparacion

JORNADAS DE INVESTIGACION CIENTIFICA DESDE LAS AULAS

18

5. RESULTADOS

Luego de resolver cada uno de los pórticos en el programa CEINCI_LAB, se

obtienen los siguientes resultados para cada una de las formas de reforzamiento:

Modelo Kxx Kyy Kθθ

1

2

37763127607075130

266070624381379834

75130379834683274

32661384137276

384135786924245

72762424535255

235330031047008637000

310470070449004298600

863700042986007726600

3

PERIODOS:

Modelo T1 T2 T3

1 0.5977 0.4175 0.3263

2 0.4728 0.1471 0.0836

3 0.9616 0.3571 0.2111

DESPLAZAMIENTOS INELASTICOS:

Modelo SENTIDO TRANSVERSAL SENTIDO LONGITUDINAL

Piso 1 Piso 2 Piso 3 Piso 1 Piso 2 Piso 3

1 0.0437 0.0928 0.1361 0.0136 0.0278 0.0397

2 0.00049 0.00089 0.00097 0.0348 0.0686 0.0785

3 0.0175 0.0372 0.0461 0.0264 0.0566 0.0694

DERIVAS DE PISO:

Modelo SENTIDO TRANSVERSAL SENTIDO LONGITUDINAL

Piso 1 Piso 2 Piso 3 Piso 1 Piso 2 Piso 3

1 1.3% 1.5% 1.3% 0.42% 0.44% 0.36%

2 0.015% 0.011% 0.0024% 1.07% 1.04% 0.305%

3 0.54% 0.61% 0.27% 0.81% 0.93% 0.81%

Es importante notar que los resultados más satisfactorios se presentan en la

segunda forma de reforzamiento.

Page 19: COMPARACION DE TRES FORMAS DE REFORZAR UNA …ia.espe.edu.ec/wp-content/uploads/2013/02/3-Tipos-de-Reforzamiento.… · jornadas de investigacion cientifica desde las aulas 1 comparacion

JORNADAS DE INVESTIGACION CIENTIFICA DESDE LAS AULAS

19

6. CONCLUSIONES:

Se realizó el análisis símico de una estructura de tres pisos, de tres maneras diferentes,

de lo cual se obtuvo que el modelo más optimo es la propuesta de reforzamiento numero 2,

ya que presento las derivas de piso menores al 1% en el sentido transversal y menores al

2% en el sentido longitudinal. Además en los que respecta a costos es mucho más

económica la construcción de muros cabezales que la utilización de elementos de acero.

7. REFERENCIAS:

(1) http://www.espe.edu.ec/portal/files/libros/ANALISISSISMICODEEDIFICIOS.pdf

2. Aguiar R., (2004), “Análisis Matricial de Estructuras”, Centro de Investigaciones

Científicas. Escuela Politécnica del Ejército, Capitulo 17, p523-455 Quito.

3. Aguiar R., (2012,1), “Dinámica de Estructuras”, Centro de Investigaciones Científicas.

Escuela Politécnica del Ejército, Capitulo 5, p. 165 Quito.

4. Aguiar R., (2012,2), “Dinámica de Estructuras”, Centro de Investigaciones Científicas.

Escuela Politécnica del Ejército, Capitulo 6, p. 203 Quito.

6. Aguiar R., (2012,3), “Dinámica de Estructuras”, Centro de Investigaciones Científicas.

Escuela Politécnica del Ejército, Capitulo 9, p. 325 Quito.