Cognitive control aplicacion a la agricultura

60
Laboratorio de Investigación Matemática Aplicada a Control LIMAC 1 COGNITIVE CONTROL: NUEVAS PERSPECTIVAS PARA APLICACIONES EN AGRICULTURA Disertante: Cristian Rodríguez Rivero Workshop Internacional WESIS 2014 11 de Agosto

description

Diapositivas de la Presentacion del Ing. Cristian Rodriguez Rivero en el WESCIS 2014 - Tucuman, Argentina

Transcript of Cognitive control aplicacion a la agricultura

Page 1: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

1

COGNITIVE CONTROL:

NUEVAS PERSPECTIVAS PARA APLICACIONES EN AGRICULTURADisertante: Cristian Rodríguez Rivero

Workshop Internacional

WESIS 201411 de Agosto

Page 2: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

2

Cristian Rodríguez Rivero

*Departamento de Ingeniería Electrónica,

Laboratorio de Investigación en Matemáticas Aplicadas a Control (LIMAC)

Universidad Nacional de Córdoba

en colaboración con Simon Haykin y Mehdi Fatemi del

Cognitive Systems Laboratory - Communications Research Lab (CRL) Building of the McMaster University,

Ontario, Canadá.en colaboracion con Daniel Patiño del

Instituto de Automatica

Universidad Nacional de San Juan

Page 3: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

3

Cristian Rodríguez Rivero - Simon Haykin

Page 4: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

4

McCulloch and Pitts

McCulloch, neuropsicólogo, y Pitts, matemático, contribuyeron a el desarrollo temprano de la cibernética en sus propios caminos pioneros. en su clásico artículo 1943 titulado "Un cálculo lógico de las ideas inmanentes en actividad nerviosa, "hicieron cinco supuestos sobre el funcionamiento de las neuronas en el cerebro: los supuestos llevaron a la formulación de un modelo neuronal ampliamente conocida como la neurona McCulloch-Pitts, que es un dispositivo binario con un umbral fijo.

Vernon Mountcastle

Su trabajo sobre la caracterización de la organización columnar de la cerebral corteza ha influido en la investigación llevada a cabo en este campo desde 1950. Me señaló que minicolumnas corticales son las unidades funcionales básicas de corteza. Basándose en la apariencia uniforme de la corteza, se propone que todas las regiones de la corteza pueden utilizar un algoritmo de procesamiento de información básica para realizar sus tareas.

Notas Históricas

Page 5: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

5

Joaquin Fuster

Él propuso el concepto de “COGNIT" para la representación del conocimiento en el corteza cerebral. También propuso un modelo abstracto para la cognición basada en cinco bloques de construcción fundamentales, a saber, la percepción, la memoria, la atención, la inteligencia y el lenguaje.

1) Ciclo de percepción-acción, que es la primera etapa en la cognición.

2) Memoria, que se construye en el ciclo perception-accion .

3) la atención basado en memoria, que es impulsado por el ciclo de percepción-acción.

4) Inteligencia, que es accionado por la atención, la memoria y el ciclo de la percepción-acción.

5) El lenguaje.

Notas Históricas

Page 6: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

6

La cognición es una característica distintiva del cerebro humano, que se distingue de todas las demás especies de mamíferos.

El control cognitivo reside en la parte ejecutiva del cerebro, recíprocamente acoplado a su persona parte conceptual a través de la memoria de trabajo.

Desde hace varios años se interactuo con los Principios básicos de Fuster de la cognición, es decir, percepción-ciclo de acción, la memoria, la atención y la inteligencia.

Durante los últimos años, el control cognitivo fue visto desde un perspectiva de la ingeniería:

1)el controlador no tiene la disposición para percibir la medio ambiente de una manera directa.

2)el algoritmo de programación dinámica con ninguna disposición que mira en el futuro; por lo tanto el nombre de optimización dinámica

Introducción y Notas Históricas

Page 7: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

7

Cognitive Radio: Brain-empowered Wireless Communications'' ``Cognitive Radar: A Way of the Future''

El modelo de dos estados, proporciona la noción más eficaz para evitar el problema de la información estado imperfecto.

Aprendizaje Q- que representa una forma aproximada de programación dinámica.

el nuevo controlador cognitiva sigue una ley lineal de complejidad computacional medido en términos de las medidas adoptadas sobre el medio ambiente

Introducción y Notas Históricas

Page 8: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

8

Desde una perspectiva de la neurociencia cognitiva, control cognitivo desempeña un papel clave en la corteza prefrontal en el cerebro; lo más importante, el control cognitivo implica dos procesos importantes:

el aprendizaje, y la planificación.

Ambos procesos son dependientes del modelo de DOS-ESTADOS, así como la información cíclico dirigido en el diagrama bloques de CPA.

LIBRO: Cognitive Dynamic Systems” por Simon Haykin, donde se encara el estudio de cognitive radar y cognitive radio.

Nos centramos en el ciclo de percepción-acción, la memoria, la atención y la inteligencia, como los fundamentos básicos de cómo un sistema de control cognitivo se puede implementar; el lenguaje no se considera en este documento, ya que está fuera del alcance de este documento.

COGNITIVE CONTROL

Page 9: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

9

¿Qué podemos aprender del cerebro humano?

Las Ideas neuropsicológicos se han convertido directamente relacionada con la probabilística

vista del sistema físico.

Este punto de vista es de vital importancia para definir un terreno común para ambas neurociencias y la ingeniería, cerrando estas ideas en sistemas y conceptos de control.

Por ejemplo, como Feldman y Friston explican, a través de la ATENCION, el cerebro optimiza

su representación probabilística del medio ambiente. Es decir, en la terminología de teoría de la información, una representación probabilística con entropía mínima.

Tanto en el cerebro humano y en sistemas dinámicos cognitivas, el proceso de percepción se realiza en las mediciones sensoriales. El papel de la PERCEPCION es extraer la información disponible de las mediciones sensoriales, que son ruidoso.

CONSIDERACIONES PREVIAS DE COGNITIVE CONTROL

Page 10: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

10

¿Qué podemos aprender del cerebro humano?

nuestro cerebro disminuye el nivel de incertidumbre mediante la optimización (con respecto a la entropía) su punto de vista probabilístico del medio ambiente no sólo en el tiempo, sino también transcurrido el tiempo.

CONSIDERACIONES PREVIAS DE COGNITIVE CONTROL

Page 11: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

11

¿Qué podemos aprender del cerebro humano?

El cerebro humano lleva a cabo acciones con el fin de "aumentar" la información privilegiada en las mediciones sensoriales en pasos de tiempo posteriores.

Todas estas acciones están basadas en nuestros conocimientos procedentes de la corriente y mediciones sensoriales anteriores (de los oídos / ojos) con el fin de mitigar la incertidumbre en las mediciones subsiguientes, pero no con el objetivo de cambiar el comportamiento físico del medio ambiente.

Llamaremos a estas acciones “ACCIONES COGNITIVAS” y el proceso de búsqueda de acciones cognitivas óptimas “CONTROL COGNITIVO”.

CONSIDERACIONES PREVIAS DE CONTROL COGNITIVO

Page 12: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

12

El modelo de dos estados es un elemento esencial para derivar el algoritmo de control cognitivo.

Se basa en dos estados distintos:

El primero se llama el estado de destino, perteneciente a un objetivo de interés en el medio ambiente.

La segunda se llama el estado entrópico del perceptor, la fuente de la que es atribuido a la presencia inevitable de las incertidumbres en el medio ambiente, así como las imperfecciones en el propio perceptor.

MODELO DE 2-ESTADOS

Page 13: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

13

El aprendizaje y la planificación como los dos procesos importantes en la ejecución del control cognitivo.

Los objetivos de los procesos de aprendizaje y de planificación son la mejora de una entidad llamada política cognitiva

La política cognitiva es la distribución de probabilidad de las acciones cognitivas en el ciclo de percepción-acción k + 1, que incluye la influencia de las medidas adoptadas en el ciclo k

FORMALISMO DEL PROCESO DE APRENDIZAJE EN COGNITIVE CONTROL

Page 14: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

14

Diagrama de Bloque – Ciclo Percepcion-Accion CPA

Page 15: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

15

El PAC es iniciada por el perceptor, donde la percepción de la Bayesiano se realiza medio ambiente.

1) La información de realimentación es el estado entrópico, que se pasa a la controlador por el perceptor.

2) Con el fin de tener una recompensa entrópico correcta, el estado entrópico es también almacenado en una memoria a corto plazo para el siguiente ciclo. Esto a corto plazo memoria se sobrescribe de un ciclo al siguiente.

3) Entonces, el aprendizaje y la planificación están preformados en el controlador.

4) Por otra parte, Exploit / explore estrategia se lleva a cabo en dos lugares: la planificación y la formulación de políticas.

Descripción del Ciclo Percepción-Acción CPA

Page 16: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

16

5) Por último, se selecciona la acción de la política y luego se aplican a la medio ambiente; y con ella PAC se repite.

6) El perceptor percibe el medio ambiente, por lo tanto, el uso de modelo de espacio de estado.

7) La parte ejecutiva del sistema observa la entorno indirectamente mediante el procesamiento de las votaciones información proporcionada por el perceptor.

8) La Programación dinámica de Bellman para un control óptimo requiere acceso directo al medio ambiente con el fin de satisfacer la suposición de Markov. Sin embargo, tal proposición es no es posible en sistemas dinámicos cognitivas.

Descripción del Ciclo Percepción-Acción CPA

Page 17: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

17

Diagrama de Bloque – Sistema de Control Cognitivo

Page 18: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

18

Diagrama de Bloque – Sistema de Control Cognitivo

BLOQUE PERCEPCION

La función del PERCEPTOR es detectar el medio ambiente que separa desde el controlador y extraer información de las mediciones sobre el medio ambiente.

miramos a la inferencia bayesiana para la estimación de la sate oculto del medio ambiente; utilizando un modelo de espacio de estado que consta de un par de ecuaciones.

La solución óptima del problema de estimación de estado está dada por el conocido Filtro Bayesiano, al menos en términos conceptuales. En el caso especial de un modelo de espacio-estado lineal, en la que el ruido del sistema al igual que el ruido como la medición son Gaussiana distribuido, el filtro bayesiano se reduce al filtro de Kalman célebre.

Filtro bayesiano es el filtro conocido Extended Kalman (EKF) utilizando un desarrollo en serie de Taylor.

Page 19: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

19

Diagrama de Bloque – Sistema de Control Cognitivo

BLOQUE CONTROLLER

El estado está oculta para el perceptor y y el único acceso que el controlador tiene que

el estado del medio ambiente es a través de la información de realimentación desde el perceptor.

Se plantea una difícil situación en términos matemáticos, que se conoce como el problema de la información de estado imperfecto.

Se aproxima con un algoritmo de programación dinámica.

Page 20: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

20

Diagrama de Bloque – Sistema de Control Cognitivo

BLOQUE PERCEPTUAL MEMORY

La memoria perceptual es una parte integral de como el perceptor percibe el medio ambiente.

La Memoria perceptual es la experiencia el conocimiento que se obtiene por el receptor a través de un proceso de aprendizaje a partir de la medioambiente, de tal manera que el contenido de memoria cambia continuamente con el tiempo de acuerdo con los cambios en el medio ambiente; el conocimiento experiencial de manera adquirida mediante el aprendizaje se convierte en una inextricable parte de la memoria perceptual.

La memoria perceptual se suministra con una biblioteca interna, cada elemento representa un elemento de conocimiento sobre el medio ambiente o cognit, utilizando la terminología de Fuster.

La percepción en el perceptor consiste en la coincidencia de adaptación de un particular modelo ambiental recuperado de la biblioteca interna a los estímulos entrantes en cada ciclo.

Page 21: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

21

Diagrama de Bloque – Sistema de Control Cognitivo

BLOQUE ATENCIÓN PERCEPTUAL E INTELIGENCIA

La atención como un mecanismo tiene por objeto dar prioridad a la asignación de recursos en términos de importancia práctica.

Desde la perspectiva del perceptor en un sistema dinámico cognitiva, la atención perceptiva consiste en enfocar el poder de procesamiento computacional del perceptor en un objetivo específico que es de interés especial para la aplicación.

Page 22: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

22

1) Esquemas tecnológicos Métodos para la modelización y simulación de la dinámica de los procesos agrícolas. Optimización en el control. Modelización de la incertidumbre, la aleatoriedad, el tiempo de la variabilidad,

perturbaciones externas.

2) Conceptos de control Estructura de control basada en la teoría del control óptimo y automático. Algoritmos de optimización basados en bio-sistemas. Neuro programación dinámica,

programación dinámica o sus variantes como la dinámica iterativa.

3) Desafíos tecnológicos El diseño y análisis de las nuevas tendencias de la agricultura de precisión a nivel

regional y mundial para que los productos resulten atractivos y sean aprovechados por el sector agropecuario.

Identificación del problema general en estudio

Page 23: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

23

Aplicación al Control automático para procesos agrícolas

Controlador

u

x

Sistema

Page 24: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

24

Guiado de cultivo en climas protegidos

Objetivo de control– Generar las condiciones adecuadas para que el cultivo se

desarrolle de acuerdo a un criterio.

0 100 200 300 4000

0.05

0.1

0.15

0.2

0.25Peso seco por platín [gr]

Tiempo [Hs.]0 100 200 300 400

0

1

2

3

4

5Número de hojas

Tiempo [Hs.]

Page 25: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

25

Predicción en cultivos extensivos

A campo abierto, normalmente en grandes extensiones de terreno, donde las estaciones de siembra están cuasi-determinadas.

El riesgo productivo se debe a la disponibilidad de diferentes recursos:– Disponibilidad de agua, la evolución de temperatura, humedad,

radiación solar, etc. durante el futuro desarrollo vegetal.

Page 26: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

26

Aplicaciones de inteligencia computacional para Control ej: guiado de cultivos

Motivación del guiado

– Planificación de la producción en la agricultura

• Decidir las características de producción.

• Aumentar el volumen de producción.

• Disponer del producto en una fecha predefinida.

– Introducir tecnología con el fin de disminuir los costos, y maximizar los beneficios.

Objetivos

– Obtener una solución al problema del guiado del desarrollo de cultivos en invernaderos y extensivos usando la teoría de control óptimo.

– Que la solución sea atractiva de implementar.

Page 27: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

27

El CONCEPTO DEL PROBLEMA DE CONTROL consiste en Generar una secuencia de acciones de control u a partir del estado actual y el tiempo de proceso para obtener un valor deseado de las variables de estado en el tiempo tf (tiempo final) predefinido minimizando los costos operativos asociados a las acciones de control u y cumpliendo las restricciones en la temperatura que se encuentre entre 8 y 36 grados a lo largo de la evolución.

Page 28: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

28

Control Basado en Aprendizaje AutomaticoRealimentación del estado del cultivo mediante estimación basada en modelo, con muestreo de 1Hs

Observación mediante las variables de entorno, donde se estima el modelo en función del número de hojas, que a su vez es dependiente de la temperatura mediante una función lineal a tramos.

Observación utilizando imágenes del cultivo.

Page 29: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

29

La Agromática, es la aplicación de los principios y técnicas de la informática y la computación a las teorías y leyes del funcionamiento y manejo de los sistemas agropecuarios.

Como tecnología de avanzada en lo referido al tratamiento de datos del sector agropecuario, no está sola, está integrada con la electrónica y las telecomunicaciones.

La Agromática considera a los subsistemas biológicos mediante los modelos de simulación del crecimiento y desarrollo de cultivos. Estos modelos de simulación representan matemáticamente el comportamiento productivo de los sistemas biológicos: cuantificando las variables de suelo, clima, vegetales. Los modelos nos permiten calcular cuál será el resultado de un cultivo. Y así podemos evaluar el impacto de distintas alternativas de manejo bajo diversas condiciones climáticas, proyectando los posibles rendimientos y los costos asociados.

Page 30: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

30

Se presenta la PREDICCIÓN DE FENÓMENOS NATURALES como un tópico desafiante útil para los problemas de control dentro de la actividad agrícola.

En la actualidad, se enfrenta la problemática del pronostico de lluvia para la disponibilidad de agua en el guiado de crecimiento de cultivo abierto usando inteligencia computacional.

El esquema de control a lazo cerrado considera las condiciones futuras para el diseño de la ley de control.

Este controlador contempla el estado actual x(k) del cultivo por un observador de estado así como las variables meteorológicas Ro

Page 31: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

31

Problemáticas de entorno

Manejo óptimo del recurso hídrico. Combatir heladas. Cantidad y calidad de luz solar.

Page 32: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

32

Page 33: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

Metodología: Ciencias básicas y Tecnologías Aplicadas.

33

¿Cómo se hace?

Caso, Problema o

Proyecto matemático

Solución matemática

Problema del mundo real

Matemática

Abstracción

Constatación

Interpretación

0 200 4000

0.05

0.1

0.15

0.2

0.25Peso seco por platín [gr]

Tiempo [Hs.]0 200 400

0

1

2

3

4Número de hojas

Tiempo [Hs.]

ObservadaEsperadaMedida

Page 34: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

34

Identificación y Control de Sistemas usando RNs

En la teoría de sistemas tanto la caracterización como la identificación son dos problemas fundamentales.El problema de caracterización está relacionado a la representación matemática del sistema.El problema de identificación se está relacionada a la obtención de un modelo matemático que caracterice su dinámica, a partir del conocimiento a priori y del análisis de pares de datos entrada-salida obtenidos mediante experimentación o simulación.Dos partes principales de la identificación lo constituyen: la elección del modelo de identificación, es decir su parametrización y estructura, y elmétodo de ajuste de sus parámetros basado en el error de identificación.

Page 35: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

35

Algunas estructura básica de identificación basadas en Redes Neuronales para Control

Page 36: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

36

Relación entre Control Automático y Redes Neuronales

Page 37: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

37

Page 38: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

38

Formulación del problema de control

La Presentación esquemática del problema de guiado se define según las acciones de control que van a utilizarse, que en éste caso son a(t) (Humedad y Ventilación) y CO2(t).

Para poder controlar el desarrollo del cultivo con estas variables, se deben establecer condiciones adecuadas en las Variables complementarias, que son por ejemplo, el suministro de agua y nutrientes, el manejo de plagas, hongos, malezas, niveles adecuados de humedad relativa ambiente (HR) y radiación solar PAR. E

El manejo de estas variables es de vital importancia para poder llevar a cabo el control del desarrollo del cultivo mediante las ya citadas variables a(t) y CO2(t).

Page 39: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

39

Dificultad de la realimentación del estado del cultivo

– La medición directa del vector de estado: número de hojas y medición del peso seco.

– Evitar el efecto borde.

– Perturbación y daño irreversible en el cultivo.

Page 40: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

40

Supervisado. • Pares entrada salida.

No supervisado • Auto organizado, basado en competencia. • Reforzado, a desarrollar ahora.

Aprendizaje reforzado

Page 41: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

41

Problema de aprendizaje de comportamiento. Hay una interacción entre el sistema que aprende y su

entorno. El sistema busca alcanzar un objetivo específico a pesar

de incertidumbres en el entorno. Hay dos líneas para estudiar al aprendizaje reforzado: Clásica: el aprendizaje consiste en el proceso premio-

castigo. Moderna: programación dinámica.

Aprendizaje reforzado

Page 42: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

42

Programación dinámica (NPD)

Técnica para toma de decisiones en etapas. No se toman en forma aislada, se ponderan según el bajo costo en el presente

contra un alto costo en el futuro. Pondera el desempeño a largo plazo aunque se sacrifique buen desempeño a

corto plazo. Neuro-programación dinámica:

– La programación dinámica provee los fundamentos teóricos.

– Las redes neuronales provee la capacidad de aprendizaje.

– La NPD permite a un sistema a aprender cómo tener buenas decisiones observando su propio comportamiento, y mejorando estas acciones utilizando un mecanismo incorporado a través del refuerzo.

Page 43: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

Solución propuesta Programación dinámica (Bellman, 1962).

– Resuelve el problema numéricamente.– Las restricciones son inherentes al cálculo.– Problema de dimensionalidad. (35 35 100=122500;11 11).

Disminuir los valores de la tabla (Luus, 2000). PD Aproximada (Bertsekas, 1996). (400; 11).

43

Page 44: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

44

Neurocontrolador

Se aproxima a J y a µ.

Se obtiene una expresión

compacta del controlador.

S~

i

2i .C,iJ

~minarg rrr

i. ,jJ~

,iIminargiiUu

ru

Si

2i,i~minarg sss

Page 45: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

5 10 15-30

-20

-10

0

10W

1aT

Evolución de parámetros

Iteraciones5 10 15

-10

-5

0

5

10

15Evolución de parámetros

Iteraciones

W1a

C

0 500 1000 15000

500

1000

1500

2000

Aproximada

Des

eada

Salidas aproximada vs. deseada

ObtenidaIdeal

0 5 10 15 200

500

1000

1500

2000Valores de Jµ(0)

Iteraciones

45

Page 46: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

0 100 200 300 400-100

-50

0

50

100a(t)

Tiempo [Hs.]

0 100 200 300 4000

5

10

15

20

25

Temperatura externa [°C]

0 100 200 300 400300

350

400

450

500

Concentración de CO2 [ppm]

0 100 200 300 4005

10

15

20

25

30

35Temperatura interna [°C]

Tiempo [Hs.]

0 100 200 300 400-100

-50

0

50

100a(t)

Tiempo [Hs.]

0 100 200 300 4000

5

10

15

20

25

Temperatura externa [°C]

0 100 200 300 400300

350

400

450

500

Concentración de CO2 [ppm]

0 100 200 300 4005

10

15

20

25

30

35Temperatura interna [°C]

Tiempo [Hs.]

0 100 200 300 4000

0.05

0.1

0.15

0.2

0.25Peso seco por plantín [gr]

Tiempo [Hs.]0 100 200 300 400

0

0.5

1

1.5

2

2.5

3Número de hojas

Tiempo [Hs.]

0 100 200 300 4000

20

40

60

80

100

120Acumulación de costo

Tiempo [Hs.]0 0.05 0.1 0.15 0.2 0.25

0

0.5

1

1.5

2

2.5

3Espacio de estados

Peso seco

Núm

ero

de h

ojas

46

Page 47: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

Experimentación: variables de control

0 100 200 300 40015

20

25

30Temperatura externa [°C]

0 100 200 300 400250

300

350

400

450

500

Concentración de CO2 [ppm]

0 100 200 300 40024

26

28

30

32

34

36Temperatura interna [°C]

Tiempo [Hs.]0 100 200 300 400

-100

-80

-60

-40

-20Acción de control a(t)

Tiempo [Hs.]

0 100 200 300 40015

20

25

30Temperatura externa [°C]

0 100 200 300 400250

300

350

400

450

500

Concentración de CO2 [ppm]

0 100 200 300 40024

26

28

30

32

34

36Temperatura interna [°C]

Tiempo [Hs.]0 100 200 300 400

-100

-80

-60

-40

-20Acción de control a(t)

Tiempo [Hs.] 47

Page 48: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

0 100 200 300 4000

0.05

0.1

0.15

0.2

0.25Peso seco por platín [gr]

Tiempo [Hs.]0 100 200 300 400

0

1

2

3

4

5Número de hojas

Tiempo [Hs.]

ObservadaEsperadaMedida

0 100 200 300 4000

0.05

0.1

0.15

0.2

0.25Peso seco por platín [gr]

Tiempo [Hs.]0 100 200 300 400

0

1

2

3

4

5Número de hojas

Tiempo [Hs.]0 100 200 300 400

0

0.05

0.1

0.15

0.2

0.25Peso seco por platín [gr]

Tiempo [Hs.]0 100 200 300 400

0

1

2

3

4

5Número de hojas

Tiempo [Hs.]

Evolución de las variables de estado Variables calculadas (Esperada). Estimadas durante la experimentación (Observadas). Medidas al finalizar el proceso.

48

Page 49: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

Control Cognitivo con Reinforcement Learning

49

Page 50: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

USO DE DRONES EN AGRICULTURA

50

Page 51: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

51

Los drones pueden usarse también para realizar relevamientos topográficos, confeccionar mapas detallados de labores agrícolas, identificar zonas del terreno susceptibles de erosión y hasta detectar plagas.

En el 21º edición de AGRISHOW Brasil 2014, la muestra de tecnología agrícola más importante de Latinoamérica. Allí se exhibieron dos modelos de “drones” (abejorro, en inglés), como se los conoce popularmente en todo el mundo, equipados con cámaras y dotados de diferentes softwares desarrollados por la empresa para brindar servicios agrícolas.

USO DE DRONES EN AGRICULTURA

Page 52: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

VENTAJAS DE DRONES

52

Este punto de vista de baja altitud (desde unos pocos metros por encima de las plantas a unos 120 metros.

En comparación con las imágenes de satélite, que es mucho más barato y ofrece una resolución más alta. Debido a que se adoptará en las nubes, es sin obstrucciones y disponible en cualquier momento.

También es mucho más barato que las imágenes de los cultivos con una aeronave tripulada, que puede costar $ 1.000 la hora. Los agricultores pueden comprar los drones de plano por menos de $ 1,000 cada uno.

Page 53: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

VENTAJAS DE DRONES

53

El advenimiento de drones este pequeño, barato y fácil de usar se debe en gran parte a los avances notables en la tecnología: sensores MEMS (acelerómetros diminutos, giroscopios, magnetómetros, sensores de presión y con frecuencia), pequeños módulos GPS, procesadores increíblemente poderosas, y una gama de radios digitales.

Más y mejores datos pueden reducir el uso de agua y reducir la carga química en nuestro entorno y nuestra comida.

Page 54: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

VENTAJAS DE DRONES

54

Los Drones puede proporcionar a los agricultores, con tres tipos de vistas detalladas.

1) ver a un cultivo del aire puede revelar patrones que exponen todo, desde los problemas de riego a la variación del suelo y las infestaciones de plagas y hongos incluso que no son evidentes al nivel del ojo.

2) las cámaras de aire pueden tomar imágenes multiespectrales, la captura de datos desde el infrarrojo, así como el espectro visual, que se puede combinar para crear una vista de la cosecha que pone de relieve las diferencias entre plantas sanas y en dificultades en una manera que no se puede ver con el ojo desnudo.

3) un avión no tripulado puede vigilar una cosecha cada semana, cada día, o incluso cada hora. Combinado para crear una animación de series de tiempo, que las imágenes puede mostrar cambios en la cosecha, dejando al descubierto los puntos conflictivos o las oportunidades para un mejor manejo de los cultivos.

Page 55: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

55

Se presento una introducción a los sistemas dinámicos cognitivos con futura aplicación a la agricultura.

Se puede aplicar en todas las áreas en las que el nivel de incertidumbre es controlable.

Incluye los sistemas con sensores ajustables, sistema de sistemas con periferia (red de) los sensores, los problemas en los que las características probabilística del medio ambiente es controlable.

Conclusiones

Page 56: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

56

LIBROS

Pucheta, J., Sauchelli, V. “Control Óptimo y Sistemas Estocásticos”, Número 13997 e ISBN 978-3-659-03577-7, Editorial Académica Española es una marca comercial de LAP LAMBERT Academic Publishing GmbH&  Co. KG Heinrich-Böcking-Str. 6-8 66121, Saarbrücken, Germany.  www.eae-publishing.com.

Julián Pucheta, C. Rodríguez Rivero, Martín Herrera, Carlos Salas, Víctor Sauchelli, H. Daniel Patiño, Departments of Electrical and Electronic Engineering, Mathematics Research Laboratory Applied to Control (LIMAC), at Faculty of Exact, Physical and Natural Sciences – National University of Córdoba, Córdoba, Argentina, and others, Capítulo titulado , “Non-parametric methods for forecasting time series from cumulative monthly rainfall” del libro Rainfall: Behavior, Forecasting and Distribution Editors: Olga E. Martín and Tricia M. Roberts, Nova Science Publishers, Inc.  ISBN: 978-1-62081-551-9. https://www.novapublishers.com/catalog/product_info.php?products_id=30548.

Pucheta, J., Patino, D. and Kuchen, B. “A Statistically Dependent Approach For The Monthly Rainfall Forecast from One Point Observations”. In IFIP International Federation for Information Processing Volume 294, Computer and Computing Technologies in Agriculture II, Volume 2, eds. D. Li, Z. Chunjiang, (Boston: Springer), pp. 787–798. (2009). http://www.springerlink.com/content/v4651015hn60t7g8/?p=c2668d5d24fc41ef914d439a9ec86142

Referencias

Page 57: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

57

R. W. Gardner, P. S. Holzman, G. S. Klein, H. P. Linton, and D. P. Spence, “Cognitive control: A study of individual consistencies in cognitive behavior,” Psychological Issues, vol. 1, no. 4, pp. 1–186, 1959. M. Buss, S. Hirche, and T. Samad, “Cognitive control,” in The Impact of Control Technology, T. Samad and A.

Annaswamy, Eds. IEEE Control Systems Society, 2011. Gazzaniga, Ed., Handbook of Cognitive Neuroscience. New York, Plenum Press, 1984. M. Fuster, Cortex And Mind, Unifying Cognition. Oxford University Press, 2003. S. Haykin, Cognitive Dynamic Systems. Cambridge University Press, December 2011. Feldman and K. Friston, “Attention, uncertainty, and free-energy,” Frontiers in Human Neuroscience, vol. 4, no.215,

2010. R. Rao and D. Ballard, “Dynamic model of visual recognition predicts neural response properties in the visual cortex,”

Neural Computation, pp. 721–763, 1997. A. No¨e, Action in Perception. MIT Press, 2004. Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation. John Wiley & Sons, Inc., 2001. M. Fatemi, “Cognitive control in cognitive dynamic systems,” August 2011, technical report, Cognitive Systems Lab, McMaster Univeristy. Y. Niv, “Reinforcement learning in the brain,” Journal of Mathematical Psychology, vol. 53, no. 3, pp. 139 – 154, 2009, special issue: Dynamic Decision Making. R. S. Sutton and A. G. Barto, Reinforcement Learning MIT Press, 1998.

Referencias

Page 58: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

58

Pucheta, J., Patiño, H., Schugurensky, C., Fullana, R., Kuchen, B. “Optimal Control Based-Neurocontroller to Guide the Crop Growth under Perturbations”. Dynamics Of Continuous, Discrete And Impulsive Systems Special Volume Advances in Neural Networks-Theory and Applications. DCDIS A Supplement, Advances in Neural Networks, Vol. 14(S1) 618—623 Watam Press. (2007). Disponible en http://bbcr.uwaterloo.ca/~journal/Book2-Neural.pdf.

J.A. Pucheta, C. Schugurensky, R. Fullana, H. Patiño and B. Kuchen. “Optimal greenhouse control of tomato-seedling crops”. Computers and Electronics in Agriculture, Volume 50, Issue 1, January 2006, Pages 70-82.

J.A. Pucheta, C. Schugurensky, R. Fullana, H. Patiño and B. Kuchen. “A Neuro-Dynamic Programming-Based Optimal Controller for Tomato Seedling Growth in Greenhouse Systems”. Neural Processing letters. Editorial Springer Verlag (Springer Netherlands). ISSN 1370-4621 1370-4621 (Print) 1573-773X (Online) DOI 10.1007/s11063-006-9022-9, Volume 24, Number 3 / December, 2006, Pages 241-260.

Pucheta, J., Sauchelli, V. “Control Óptimo y Sistemas Estocásticos”, Nº 13997, ISBN 978-3-659-03577-7, Editorial Académica Española, marca comercial de LAP LAMBERT Academic Publishing GmbH & Co. KG Heinrich-Böcking-Str. 6-8 66121, Saarbrücken, Germany. www.eae-publishing.com.

Bertsekas D. and J. Tsitsiklis, 1996. “Neuro-dynamic programming”. Athena Scientific. Øksendal, B. 2000. Stochastic Differential Equations An Introduction with Applications. Fifth Edition, Corrected

Printing. Springer-Verlag HeidelbergNew York. Durrett, R. 2004. “Probability: Theory and Examples (Probability: Theory & Examples)”. Duxbury Press; 3 edition. Ogata, K., 1997. “Modern Control Engineering”. Prentice Hall, Upper Saddle River, New Jersey.

Referencias

Page 59: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

59

Neural Network‐Based Irrigation Control for Precision Agriculture. Capraro F., Patiño H. D., Tosetti S., Schugurensky C. IEEE International Conference on Networking, Sensing and Control, 2009.

Intelligent irrigation control in agricultural soils: an application to grapevines", F. Capraro, C. Shugurensky, F. Vita, S. Tosetti, A. Lage, J. Pucheta. 2008 IEEE International Conference on Networking, Sensing and Control, China, April 6‐8, 2008.

Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006, ISBN: 0387310738. Ethem Alpaydın (2004) Introduction to Machine Learning (Adaptive Computation and Machine Learning), MIT

Press, ISBN 0-262-01211-1 Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar (2012). Foundations of Machine Learning, The MIT

Press. ISBN 9780262018258. Inteligencia Artificial Un Enfoque Moderno Segunda edición, Stuart J. Russell y Peter Norvig, 2004. Ajoy K. Palit, Dobrivoje Popovic Computational Intelligence in Time Series Forecasting: Theory and Engineering

Applications (Advances in Industrial Control) (Kindle Edition), Springer, 2005. Bertsekas D. and J. Tsitsiklis, 1996. “Neuro-dynamic programming”. Athena Scientific.

Referencias

Page 60: Cognitive control aplicacion a la agricultura

Laboratorio de Investigación Matemática Aplicada a Control

LIMAC

60

MUCHAS GRACIAS POR SU ATENCIÓN

¿PREGUNTAS?

LIMAC – Laboratorio de Investigación en Matemática aplicada a Control

www.inv.limac.efn.uncor.edu