CASA PERSIANA.docx

52
CASA PERSIANA - Mención Honrosa en el Concurso PGBC "Arquitectura sostenible con inclusión social" - Arq. Vanessa Montezuma Ramos VISTA PANORÁMICA DEL CONJUNTO Ubicación: Ciudad de Pisco Área construida: 80m2 Materiales: Bambú para los cerramientos. Concreto en estructura y cimentación. Carpintería de madera. Iluminación y energía de electrodomésticos con celdas fotovoltaicas. MEMORIA ARQUITECTÓNICA Debido a que la vivienda se ubica en la Ciudad de Pisco, un tema fundamental

Transcript of CASA PERSIANA.docx

CASA PERSIANA - Mencin Honrosa en el Concurso PGBC "Arquitectura sostenible con inclusin social" - Arq. Vanessa Montezuma Ramos

VISTA PANORMICA DEL CONJUNTO

Ubicacin: Ciudad de Piscorea construida: 80m2Materiales: Bamb para los cerramientos. Concreto en estructura y cimentacin. Carpintera de madera.Iluminacin y energa de electrodomsticos con celdas fotovoltaicas.

MEMORIA ARQUITECTNICA

Debido a que la vivienda se ubica en la Ciudad de Pisco, un tema fundamental para su emplazamiento es la influencia de la sismicidad en los centros poblados y las obras de ingeniera.

La fuente energtica ms importante en la costa peruana es la hidroenerga a travs de sistemas interconectados sensibles a los sismos y deslizamiento y complementados para mximas cargas con centrales trmicas consumidoras de carburantes. el uso de energas renovables no es significativo y aun no figuran en la normatividad vigente.

Por esta razn, se plantea el uso de celdas disponibles en el mercado que atenderan la demanda de la iluminacin y los aparatos elctricos fundamentales en una emergencia. Al mismo tiempo se ha diseado el uso de refrigeracin solar pasiva a travs de ventilacin cruzada y persiana de bamb en un 50% del proyecto.

Para el ahorro de agua en el uso domstico se utiliza un inodoro de seis litros, kit de ducha economizador, y un grifo ahorrador en el lavadero de cocina y el lavatorio del bao.

VISTA DE LA FACHADA PRINCIPAL

En las reas verdes se proyecto el cultivo de la Ponciana Real de flores rojas y naranjas, rbol de gran copa que consume poca agua y genera sombra y microclima para el desarrollo de actividades familiares en el rea libre de la vivienda; y de la Tacoma Fulva de flores amarillas, rosadas y rojas que tambin consume poca agua. Ambas especies son nativas de la costa peruana.

Los materiales seleccionados se encuentran dentro del mercado de insumos y el mercado de mano de obra de las ciudades costeras. As mismo, alcanzan las expectativas que la poblacin de bajos recursos tiene sobre su vivienda, las cuales se basan en criterios de durabilidad, mantenimiento accesible e innovacin formal.

Se trata de una vivienda urbana que se organiza formalmente en un cubo de albailera rodeado de una piel-persiana de bamb. La estructura seleccionada permite flexibilidad en la organizacin interior en los tres pisos.

VISTA DE LA ESCALERA

Los materiales se expresan en todas sus caractersticas, contrastando la simpleza del cubo con aristas definidas, tarrajeado y pintado en blanco, con la textura y color natural del bamb utilizado en diferentes densidades provocando diversos tonos de iluminacin natural interior. Los planos sobre la fachada expresan un composicin minimalista, generando sombras y contrastes.

La vivienda se desarrolla en un terreno de 120 m2 con un rea total techada de 80 m2 distribuidos en tres pisos. En el primer piso se ubica el rea social con la sala-comedor y la cocina abierta. Este constituye un ambiente de recepcin que se abre en uno de sus lados hacia el jardn posterior. En el segundo piso se ubican los dos dormitorios y los SSHH.

VISTA DEL DORMITORIO PRINCIPAL

[IMG]VISTA DEL DORMITORIO PRINCIPAL[/IMG]

VISTA DE LA TERRAZA / AREA DE ACTIVIDAD ARTESANAL

El tercer piso es una extensin de la piel de bamb que alberga un espacio ms privado para la familia o para el desarrollo de alguna actividad artesanal como un emprendimiento familiar complementario a sus ingresos.

La escalera que une los tres pisos de la vivienda tiene un protagonismo formal que integral el acceso con el tercer piso.

La vivienda se ha elevado 36 cms del piso natural debido a posibles inundaciones considerando un zcalo de piedra. Los pisos de toda la vivienda son de cemento pulido bruado color gris. Los pisos duros de las reas libres son de adoqun en color rojo.

Las paredes interiores estn tarrajeadas y pintadas en blanco. La puerta principal y la posterior tienen marco de madera y persiana de bamb. Las puertas interiores son de madera contraplacada. Los marcos de las ventanas son de madera con vidrio simple.

Read more:http://apuntesdearquitecturadigital....osa-en-el.html

.

July 1st, 2013, 11:00 PM #3

Don PachoUncle Frank

Join Date: Oct 2004Location: Bucaramanga, ColombiaPosts: 16,771Likes (Received): 4322

RENZO PIANO PRESENTA SU VIVIENDA PREFABRICADA: DIGENES

A pesar que el proyecto de la micro-vivienda Digenes tiene 10 aos, Vitra decidi apostar por el proyecto, fabricarlo y exponerlo en su campus junto a otros Star Architects como Herzog & de Meuron, SANAA y Zaha Hadid, entre otros. De ms esta decir que esta vivienda de 3 x 2.5 es el edificio ms pequeo del campus.

Construido a partir de un ncleo de madera con una carcasa de aluminio, Digenes es una casa neutral pasiva, de consumo energtico nulo y que ofrece un alojamiento confortable para una o aceptable para dos personas. Su sistema energtico esta considerado como de alta ingeniera a pequea escala, donde no faltan detalles como un sistema de clulas fotovoltaicas, paneles solares, un tanque para agua de lluvia, bio-servicio, ventilacin natural y triple acristalamiento.

La vivienda satisface un programa mnimo de necesidades de una persona autosuficiente con espacio para un sof-cama, cocina y una ducha anexada. Para sacar conclusiones sobre la funcionalidad de la misma, una persona vivir en ella durante un perodo de tiempo, que servir para ir mejorando el prototipo y medir su uso de forma real. El tiempo dir si el gran Renzo Piano acierta otra vez.

Read more:http://gecohomeproject.wordpress.com...mber_253845980

.

July 7th, 2013, 04:11 PM #7

Don PachoUncle Frank

Join Date: Oct 2004Location: Bucaramanga, ColombiaPosts: 16,771Likes (Received): 4322

Beneficios de los Muros Verdes o Jardines Verticales

Los muros verdes son completamente diferentes a los jardines tradicionales, ya que se trata de un ecosistema sustentado en la hidroponia, no en la tierra. La recirculacin del agua es un factor que no existe en lo horizontal.

Adems estas superficies hacen el papel de fachada y una divisin natural entre los espacios. Incluso delimita de forma ms amable el adentro y el afuera de un lugar, ya que establece un dilogo entre un elemento que en principio vive a la intemperie, como las plantas, con la vivienda, smbolo de interioridad del ser humano. De esta forma las plantas se convierten en un paisaje exclusivo, privado e ntimo que siempre estar ah para reconfortarte luego de un mal da o de una exhaustiva jornada laboral.

Entre otros beneficios se encuentra la regulacin de temperatura: si tienes una pared, ventana, fachada donde le da el sol, baja el calor hasta cuatro grados centgrados al interior, gracias al efecto de conveccin fsica que se hace sobre el espacio un jardn vertical. Esto redituar en menos gastos de sistemas de aire acondicionado o calefaccin.

Las superficies verdes atrapan el polvo y smog, disminuyen hasta 40 decibeles en sonido en una calle hacia el interior y proveen el oxgeno suficiente por el metro cuadrado como para una persona.

No atraen ni permiten la proliferacin de insectos ni bacterias, puesto que este sistema aporta un repelente biolgico.

Estos muros ejercen una sensacin de tranquilidad y sofisticacin en las oficinas, en la casa e incluso en la calle.

Todas las empresas que quieran certificarse bajo el estatuto de calidad LEED ganarn puntos con jardines verticales en sus instalaciones.

Cuando se cultivan jardines verticales en espacios pblicos, estas reas se vuelven un punto de referencia e identidad, adems de aumentar la plusvala de la zona.

Leer mas:http://www.espaciosvivos.com/benefic...mber_255950152

.__________________

Pablito28,PanaLGliked this post

July 11th, 2013, 01:35 AM #8

Don PachoUncle Frank

Join Date: Oct 2004Location: Bucaramanga, ColombiaPosts: 16,771Likes (Received): 4322

7 ventajas de las terrazas verdes

Las terrazas verdes representan una innovacin en la arquitectura urbana que modifica el ambiente, mejorando la relacin entre la creciente poblacin de las ciudades y la naturaleza. Concretamente son cubiertas de plantas, construidas en las terrazas de los edificios y casas, colaborando a reconstruir el lazo entre las personas y la naturaleza.

Vista desde Aloha Tower, Honolulu, Hawaii; por Daniel Ramirez

Esta nueva tendencia de construccin de cubiertas verdes, incluyendo a los jardines verticales, que integra vegetacin y vida al cemento, reporta grandes beneficios como:

Absorben el agua de lluvia, mitigando inundaciones a partir de un efecto esponja en las plantas y la tierra, ayudando en muchas construcciones un sistema de reaprovechamiento del agua.

Reducen el calentamiento urbanoya que las reas verdes (como las plazas y otros) absorben hasta un 80% de la radiacin solar. Facilitan un clima ms fresco en la ciudad y en los apartamentos debajo de las terrazas.

Reducen los niveles de polvo y smogdel ambiente gracias a que la vegetacin ayuda a filtrar y retener las partculas contaminantes y a mejorar la calidad del aire transformando el dixido de carbono en oxgeno.

Transforman el paisaje urbanobrindando matices a la dureza del cemento, revalorizan el rea y brindan una mayor calidad de salud ambiental. Producen cambios que paulatinamente mejoran el aspecto y la composicin de la urbe.

Minimizan la huella ambientalque produce el crecimiento demogrfico desmesurado y los altos ndices de construccin ofreciendo una alternancia de superficies verdes, permeables y de oxigenacin natural.

Benefician a los habitantesde cada edificio o casa refrescando el lugar, aumentando la vida til del techo y disminuyendo la polucin sonora urbana.

Posibilitan el desarrollo de una cultura ambientalsostenible porque permite la inclusin de la naturaleza a la vida cotidiana facilitando las actividades de cuidado ambiental, ayudando a reconstruir la relacin entre las personas y el planeta integralmente.

Jardn en terraza, Fifth Avenue, New York; por WalkingGeek

Las terrazas verdes constituyen una realidad arquitectnica simple y, observando la sumatoria de los beneficios mencionados anteriormente, pone de manifiesto la posibilidad clara y sencilla de mejorar la calidad de vida a nivel personal y social; una muy buena posibilidad para el desarrollo de una cultura ecolgica.

Leer mas:http://www.ecosiglos.com/2013/07/ven...mber_256712992

.

July 14th, 2013, 04:42 PM #9

Don PachoUncle Frank

Join Date: Oct 2004Location: Bucaramanga, ColombiaPosts: 16,771Likes (Received): 4322

Ventilacin de confort para viviendas de bajo consumo energtico

Con la instalacin del sistema Zehnder Comfosystems en la casa asturiana Entreencinas, la marca Suiza se convierte en referente de ventilacin para casas Pasivas.

Situada en un entorno rural, Entreencinas forma parte de un conjunto de 4 viviendas unifamiliares. Est construida bajo principios de diseo bioclimtico para alcanzar unos niveles muy bajos de consumo energtico. La solucin realizada respeta la escala del entorno integrando la vivienda en el paisaje, en un nico volumen compacto de dos alturas, abierto al sur como un captador solar y manteniendo una altura inferior a la de las copas de los rboles del entorno.

Con la premisa "La mejor energa es la que no se consume" se cre la vivienda lo ms autosuficiente posible. La envolvente trmica de corcho sin puentes trmicos y muy estanca minimiza las prdidas por infiltracin y con el doble acristalamiento bajo emisivo, la transmisin trmica media es de 0,2W/mK.

La vivienda no necesita abrir ventanas: aire interior puro y sano

En Entreencinas el sistema de ventilacin de confort instalado es Zehnder Comfosystems. Se trata de un sistema completo de ventilacin con muy bajo consumo de energa y que proporciona confort, bienestar y salud. El sistema de Zehnder introduce en la vivienda de forma continua aire fresco, eliminando la humedad y los olores. Favorece el descanso porque sus filtros especiales evitan la entrada de polvo y de polen y con ello evitan alrgias. El ahorro de energa es otro factor a tener en cuenta, gracias a la recuperacin del calor, superior al 90%, el ahorro energtico de la vivienda en calefaccin y refrigeracin es del 50%.

Certificado Passivhaus

Se entiende por casa pasiva una edificacin prcticamente autnoma en cuanto a sus necesidades de climatizacin y usabilidad. Es un edificio muy bien aislado, prcticamente hermtico, que se calienta principalmente por aportaciones solares y metablicas de sus habitantes. Una casa pasiva no puede sobrepasar un consumo de 15 Kwh/ m2 ao para calefaccin/refrigeracin. Y gracias a la suma de su aislamiento, hermeticidad y ventilacin de confort con recuperacin de calor, ahorra en energa entre el 85% y el 90%, si la comparamos al de una vivienda no pasiva.

El Certificado Passivhaus, concedido por el Passivhaus Institut de Alemania, es el estandar mundial que certifica que una vivienda cumple con los estndares constructivos establecidos por este instituto.

Leer mas:http://www.ambientum.com/boletino/no...energetico.asp

.

July 14th, 2013, 05:44 PM #10

Don PachoUncle Frank

Join Date: Oct 2004Location: Bucaramanga, ColombiaPosts: 16,771Likes (Received): 4322

La fachada bio-reactiva de la casa BIQ se ha exhibido por primera vez en la inauguracin de la Exposicin Internacional de la Construccin en Hamburgo.

La casa BIQ se convertir en el primer proyecto piloto en mostrar una fachada biorreactiva en la Exposicin Internacional de la Construccin (IBA) en Hamburgo el 23 de marzo. Con 200 m2 de foto-biorreactores integrados, esta casa pasiva genera energa de biomasa y el calor de fuentes de energa renovables. Al mismo tiempo, el sistema integra funcionalidades adicionales, como el sombreado dinmico, el aislamiento trmico y la reduccin del ruido, poniendo de relieve el potencial de esta tecnologa.

Las microalgas utilizados en las fachadas se cultivan en biorreactores planos en el panel de vidrio que miden 2,5m x 0,7 mm. En total, 129 biorreactores han sido instalado en las fachadas sur oeste y sur este del edificio residencial de cuatro pisos. El corazn del sistema es el centro de gestin de energa totalmente automatizado donde se recoge el calor producido por el sol y las algas en un bucle cerrado que se almacena y utiliza para generar agua caliente.

El sistema de fachada innovador es el resultado de tres aos de investigacin y desarrollo por Colt Internacional en base a un concepto de bio-reactor desarrollado por SSC Ltd y el trabajo de diseo dirigido por Arup. El apoyo financiero provino de la iniciativa del Gobierno alemn "ZukunftBau" investigacin.

"Utilizacin de procesos bioqumicos en la fachada de un edificio para crear sombra y la energa es un concepto realmente innovador. Bien podra llegar a ser una solucin sostenible para la produccin de energa en las zonas urbanas, por lo que es genial ver que se est probando en un real escenario de la vida. " -Jan Wurm, Europa Arup Lder de Investigacin.

Leer mas:http://www.construible.es/noticiasDe...mber_232333595

.

July 15th, 2013, 11:00 PM #11

Don PachoUncle Frank

Join Date: Oct 2004Location: Bucaramanga, ColombiaPosts: 16,771Likes (Received): 4322

Green Walls: Integrating Nature into Buildings

In recent years, green roof technology has become an accepted sustainable design strategy as the benefits and advantages have become better known and proven design options have become more available. A corresponding interest is emerging among designers and owners who are also considering installing vegetated green walls on the outsides of their buildings or on interior walls. There have been a number of historical or traditional strategies to add vegetation to walls, such as installing a trellis system, but recently the option of truly living walls has become viable. The overriding concept of such a green wall is based on planting or mounting a series of living, growing plants on a vertical surface. In response to this interest, there are now several manufacturers of green wall systems currently offering solutions to North American architects.

Overview of Vegetated Living Walls

Introducing vegetation onto building surfaces is hardly a new concept. The Greeks and Romans as far back as the third century BC are known to have used grape arbors on their villas for the fruit they produced and the shade they provided. Medieval and Renaissance Europe saw many prestigious castle walls become covered with ivy or other plants that led to a similar desirable practice on buildings in America. In fact, in 1956 sportswriter Stanley Woodward (NY) coined the phrase Ivy League as a direct reference to the ivy so commonly grown on the buildings of some of the most respected educational facilities in the country. What is new is the recent research and application of systems and designs to optimize the benefits of vegetation on buildings without causing any harm to the building. During the 1980s and 1990s green wall research and development efforts were boosted by incentives offered in Germany which gave rise to collaborative efforts of landscape architects, scientists, and private companies. Part of the basis of some of the German research is the observation that man made surfaces like roofs and streets influence urban microclimates through solar radiation changes. As a result of these changes, air temperatures inside buildings also rise and lead to discomfort or increased energy consumption for cooling. A logical solution to create more comfortable air temperatures inside and outside of buildings is to add green plants to faades and roofs, thereby using the natural processes of the plants to create comfort.

The two key fundamental natural processes that plants provide are 1) evaporation of moisture from the soil or growing medium and 2) transpiration of moisture out of the leaves of the plants into the atmosphere. Collectively these two processes carry away excess heat and the term evapotranspiration is used to refer to their combined activity. According to some experiments in Berlin, extensive green roofs were found to transfer as much as 58 percent of net incident radiation into evapotranspiration during the summer months thus providing significant cooling. Green faades were also studied where plants provided shade during summer, while during the winter, when the plants lose their foliage, the suns radiation was able to pass through the glass-front of the building. In the summer months it was observed that a significant cooling value was achieved.

Orchard Shopping Mall roofdeck, Singapore

Elsewhere French botanist Patrick Blanc displayed the first Plant Wall in 1994 as a true hydroponic system, not dependent on soil as the growing medium for the plants. The same year, the first indoor living wall used for bio-filtration was displayed in Toronto, Canada. And in Japan, the Bio Lung became the landmark of the EXPO 2005 Aichi, symbolizing the wisdom of nature by featuring over 300 green wall panels from various systems. It uses 3,500 square meters of vegetated wall systems that are made for the purpose of improving the environment of busy city areas where an enormous amount of CO2 is emitted. Bio Lung was born to introduce plants in these urban areas with densely packed buildings where there is very little or no suitable open space left to grow plants on the ground or other horizontal surfaces.

In this country, the City of Seattle, Washington has been a leader by adopting, in 2007, a program called The Green Factor. As a result, it is now required that all new developments must have 30 percent vegetation coverage, or the functional equivalent (e.g., permeable surfaces in commercially zoned areas). A building applicant, architect or landscape architect chooses from a menu of landscape strategies including large trees, permeable paving, rain gardens, green roofs and green walls, similar to the German Green Area Factor. The main drivers of the program include improving microclimates, reducing the urban heat island effect, maintaining and improving soil function and water quality, and enhancing the quality and quantity of plant and animal habitats.

Recent work such as Patrick Blancs hydroponic walls in France show new ways to make green walls viable.

As the research, development, and application of different types of vegetated wall systems have grown in recent decades, it is important to be clear on the distinctions between these types and the common current nomenclature being used: Green walls is an all-encompassing term that is used to refer to all forms of vegetated wall surfaces. However, there are two major system categories that fall under this terms rubric: green faades and living walls. These two terms, as defined below, will be the focus of this article. A Green Faade (or faade greening), are systems in which climbing plants or cascading groundcovers are trained to grow onto and over specially designed supporting structures. There are two primary types of green faades: modular trellis systems, and cable / rope wire systems. Both of these systems afford a high degree of design flexibility since they can be wall mounted, freestanding, or used as columns. Modular trellis products can be installed vertically in either a wall mounted or freestanding application. Cable/rope wire systems can span long distances, but special or complex designs may defeat the simplicity of the system. Green facades with climbing plants are assembled on site, drawing on common skill sets (e.g., carpentry), virtually eliminating the need for specialized design and installation professionals. Nursery plants are usually planted at the base, sometimes in intermediate planters or on rooftops, and may take some time before growing in to achieve full plant coverage. Pruning and pinching may be required as part of a regular maintenance plan.

A modular trellis hybrid system as part of a green faade. A Living Wall is an integral part of an exterior building envelope system or an interior wall. In either case, a living wall is comprised of distinct panels that are either pre-vegetated or planted on site and include growing medium or liquid nutrient. The panels are installed into or on top of a frame and can either be secured to a structural wall or designed to be self-supporting. The living wall panels are typically made of plastic, expanded polystyrene, clay, or concrete and can support a great diversity and density of plant species (e.g., a lush mixture of groundcovers, ferns, low shrubs, perennial flowers and/or edible plants). They can also be used to create stunning and creative visual designs on walls. When used for interior applications, living walls can provide natural bio-filtration of indoor air. A Landscape Wall is an exterior engineered living structure that is designed to stabilize a slope, while having the advantage of supporting vegetation cover. They provide the structural strength to resist the lateral forces exerted by angles greater than the natural angle of repose of soil and protect the slope against erosion. This type of green wall has also been frequently used for noise attenuation purposes. Since this type of application is not usually affixed to a building, it is pointed out here for clarification, but is not the focus of the remainder of our discussion here.

Living Walls can take many different forms, colors, and textures.

Regardless of whether a green faade or a living wall is selected, all green walls share many of the same benefits and follow essentially similar design processes.

Design Goals and Green Wall Benefits

The benefits of green wall systems apply not only to the individual buildings that they are a part of, but also their surrounding community. Indeed, a concentration of buildings with green walls has the collective potential to make a dramatic impact on that community. This concept was developed and popularized in the Garden City Movement in England and in the US in the 1900s and continues today. Further, the work of the US Green Building Council and the LEED program has promulgated the building specific and community benefits of creating green buildings, some of which can be accomplished through green wall systems as discussed further below: Urban Heat Island (UHI) Reduction. The urban heat island (UHI) effect is the temperature increase in urban centers caused by the replacement of natural vegetation with pavements, buildings, and other structures necessary to accommodate growing populations (Wong 2005). These impermeable surfaces convert sunlight to heat, while the disappearance of vegetation and construction of tall buildings prohibit the occurrence of natural cooling processes such as evapotranspiration and wind. UHI has been shown to increase the incidence of smog days and summer time demand for cooling. It has been reported that as many as a thousand people in the US die each year due to extreme heat, a figure higher than all other weather events combined. The reintroduction of vegetation into urban environments promotes the occurrence of natural cooling processes through evapotranspiration since the sunlight absorbed by vegetation would otherwise be converted into heat energy. These processes contribute significantly to the reduction of ambient temperature in densely packed urban environments. Furthermore, with strategic placement of green walls, plants can create enough turbulence to provide wind breaks cooling air at the same time as it slows it down. Building Energy Efficiency. Greening a buildings envelope is one technique used to improve its thermal properties through external temperature regulation. Those structures located in more extreme climate zones are exposed to a higher degree of fluctuating conditions and require more energy to maintain constant interior conditions than those in milder climates. Green walls have been shown to reduce temperature fluctuations at the wall surface from 5 to 30 C (41 to 86 F). The natural processes that contribute to this improved energy condition include wind, shading, and evapotranspiration. Improved Exterior Air Quality. Air quality is directly linked to the UHI effect. A reduction in urban temperatures (e.g. through the reintroduction of greenery) would positively affect air quality through the reduction of smog days and the reduction of air born particulates. Beyond the temperature benefit, plants directly absorb carbon dioxide while giving off oxygen in their life-dependent process of photosynthesis. This natural air filtering and processing of one of the more significant greenhouse gases is a notable improvement to air quality. Further, plants can act as collection sites for dust and other air particles. Leaf surfaces collect dust particulates until they are washed to the ground during a rainstorm. The degree to which plants can fulfill this air quality improvement function depends upon the Leaf Area Index (the ratio of total upper leaf surface of vegetation divided by the surface area of the land on which the vegetation grows) meaning that, the greater the leaf surface, the more particulate matter a plant or green wall will retain. Therefore, dust and particulate matter counts can be reduced by as much as 75 percent downwind of urban plantings. Similarly, fumes and bad odors can be intercepted by plants or even masked by the scent of some plants to further improve air quality. Improved Interior Air Quality. Living walls located inside of buildings can directly contribute to improved interior air quality. It is commonly acknowledged that most North Americans spend 80 to 90 percent of their time indoors and as a result are highly influenced by the effectiveness of interior air circulation systems. Poor indoor air quality can be caused by such things as inadequate ventilation and chemical contaminants from indoor or outdoor sources. Scientific testing has established a list of indoor plants that have the ability to filter at least three of these chemical contaminants: benzene, formaldehyde and trichloroethylene. Benzene is a solvent used in ink, oil, paint, plastic and rubber. Formaldehyde is present in virtually all indoor environments: urea formaldehyde resins are used in foam insulation, particleboard and pressed-wood products; it is also present in tobacco smoke, natural gas and kerosene. Trichloroethylene is used in metal degreasers, dry cleaning solvents, inks, paints, lacquers, varnishes and adhesives. Green walls that use appropriate plants can act as natural bio-filters for these chemicals as well as others when implemented as part of an integrated building strategy. Urban Agriculture. There is an emerging trend to grow more local food, particularly in urban locations. Green wall systems are well suited for this possibility as long as several design factors are addressed that influence their ability to produce food. These include the level of desired maintenance (food growing and harvesting requires more maintenance than ornamental plants), the level of nutrients available, sun exposure, and the height of building.

Chef Mario Batali's Pizzeria Mozza restaurant in Los Angeles grows a variety of vegetables and herbs on this living wall on premises.

Read more:http://continuingeducation.construct...hp?L=260&C=808

.

July 17th, 2013, 07:36 AM #12

juanniRegistered User

Join Date: Dec 2010Location: BOGPosts: 144Likes (Received): 52

Don Pacho, lo felicito, muy interesante su Thread !__________________

Don Pacholiked this post

July 17th, 2013, 06:38 PM #13

Don PachoUncle Frank

Join Date: Oct 2004Location: Bucaramanga, ColombiaPosts: 16,771Likes (Received): 4322

A Net-Zero Passivhaus Duplex in Portland

A two-unit project in Portland, Oregon, should generate as much electricity as the occupants use

[IMG]http://i42.************/21e1eu1.jpg[/IMG]The two units at this Passivhaus project in Portland, Oregon, sold quickly. One of the spec units unit was sold before it was listed.

[IMG]http://i39.************/2lxxliq.jpg[/IMG]Finished concrete floors on the first floor provide thermal mass. The first floor contains two bedrooms and a bathroom.

[IMG]http://i42.************/vh848x.jpg[/IMG]The main living area has plenty of natural light, thanks to windows on all four sides of the space.

[IMG]http://i44.************/2qjln5t.jpg[/IMG]The kitchen features an induction cook top. Both units in the duplux are 100% electric.

[IMG]http://i42.************/wm1es6.jpg[/IMG]A linear slot diffuser in the entry to the right of the staircase supplies conditioned air from a concealed minisplit heat pump.

In Portland, Oregon, both units of a two-unit Passivhaus project sold before they were complete one of them after being on the market for only two days and the second before it was ever listed with a real estate agent.The net-zero energy O2Haus is the work of PDX Living, a company that is co-owned by Rob Hawthorne and Bart Bergquist. An earlier duplex project in Portand, called TrekHaus, was described in a GBA post by Richard Defendorf early last year.

The 02Haus units are 1,690 sq. ft. each, with three bedrooms, two bathrooms, and a one-car garage. Hawthorne says the project is the first net-zero Passivhaus spec project he's aware of in Portland. The project is in the Montavilla neighborhood.After the first unit sold, the company had hoped to complete the second unit and schedule an open house before listing it. "But," Hawthorne said, "a couple of people had heard about it and someone came in and said, 'Please, please take my offer.' It was hard to refuse it. So one of the units was never listed."The units sold for $379,000 and $405,000. He called the quick sale of the properties, at or above the asking price, a "good sign for the green building industry."

A tight, superinsulated building enclosure

The building's heating load is only 4,500 Btu/h, thanks to a lot of insulation and very careful air-sealing. It's built on a concrete slab that was placed over 9 inches of EPS foam insulation (R-36). Walls were framed with 2x8s, packed with blown-in cellulose, and then insulated on the outside with 4 inches of rigid polyisocyanurate foam insulation (R-52).PDX framed the roof with 14-inch-deep I-joists, also filled with cellulose, and capped the roof assembly with 7 inches of polyisocyanurate foam, for a total R-value of 95.Windows are Intus Eforte, a triple-paned European tilt-and-turn design with vinyl frames.The builders took extra steps to insulate exterior doors because they couldn't locate a high-performance door at a price they wanted to pay. Starting with a Thermatru fiberglass door, they built an extra frame on the interior and insulated it with 1 in. thick vacuum insulated panels made by Dow Corning.With an R-value of 39 per inch, the panels helped get the whole-door R-value to 16, Hawthorne said, about three times as effective as a stock door.When tested with a blower door, the units showed 0.33 and 0.35 air changes per hour at 50 pascals, roughly half the leakage allowed by the Passivhaus standard.

Ducted minisplit for heating and cooling

Because of the extremely low heating and cooling loads, the builders needed only a single minisplit per housing unit. Instead of opting for a wall-mounted unit, they chose a ducted Mitsubishi design, even though it's not quite as efficient as ductless unit. The long, narrow grille is located on the wall of the foyer."I know the coefficient of performance is a little lower for the ducted version," Hawthorne said. "You do take a little bit of a performance hit, but I think for me every decision is kind of a balancing act. In terms of efficiency, yes, I want those units to be extremely high efficiency but there are certain things I'm not really willing to compromise on, and in this case it's the aesthetics."We really racked our brains on how to get a true ductless head somewhere in the unit and make it look good," he said. "We spent a lot of time on trying to make that work. But we just couldn't find a place where it could fit in with the modern, clean aesthetic of the rest of the project. So this was just a compromise we decided to make."

Other features include: A Zehnder heat recovery ventilator. A heat-pump water heater made by Airgenerate. A 4.8-kW photovoltaic array for each unit.

Read more:http://www.greenbuildingadvisor.com/...mber_258489098

.

July 18th, 2013, 09:51 PM #14

Don PachoUncle Frank

Join Date: Oct 2004Location: Bucaramanga, ColombiaPosts: 16,771Likes (Received): 4322

50 grandes ejemplos de techos verdes alrededor del mundo

Los jardines y zonas naturales sobre techos y terrazas hacen parte de un aspecto arquitectnico que me ha fascinado desde que conozco del concepto. No solo tienen muchas ventajas decorativas y ambientales, sino que permiten a las personas encontrar un lugar para relajarse al aire libre, combinando dos aspectos fundamentales en las vidas de quienes habitamos en la ciudad: el descanso y la privacidad.

Estos espacios pasan, por lo general, desapercibidos desde el momento de su construccin, pues no se planean con intenciones adicionales a las de cubrir (en el caso de los techos) o de contemplar momentneamente el exterior (en el caso de las terrazas). Nos acostumbramos a ver nuestro propio hogar como un lugar de paso, y con razn, pues parece que cada vez ms vivimos en otros sitios.

Sin embargo, tener un espacio natural propio nos permite ocupar nuestro tiempo libre, bien sea en el cuidado de las plantas o huertos que all tengamos, como en los simples placeres de leer un libro en un ambiente diferente o cenar con las personas que complementan nuestras vidas. Es un espacio que tiene el poder de cambiar nuestra percepcin de la vida; potenciar nuestra creatividad, nivelar nuestras preocupaciones al punto de hallar soluciones, y mejorar nuestra relacin con el entorno. por eso hoy he recolectado las fotografas de terrazas y techos verdes que ms me han gustado, y que tienen como finalidad inspirarte, para que te decidas a tener uno propio

Leer mas:http://www.ecosiglos.com/2013/07/50-...mber_258903643

.

July 20th, 2013, 04:11 PM #15

Don PachoUncle Frank

Join Date: Oct 2004Location: Bucaramanga, ColombiaPosts: 16,771Likes (Received): 4322

ALTERNATIVAS PARA PAGAR MENOS EN AGUA CALIENTE

El 16% de la energa producida en el sector de la edificacin se utiliza para uso residencial. Dentro de ese porcentaje, gran parte de energa se destinada a ACS (Agua Caliente Sanitaria) y en su mayora provienen de fuentes de energas agotables como el gasleo o el gas natural. Una alternativa a estas fuentes son las energas renovables que contaminan menos al medio ambiente y son fuentes inagotables de energa.

Dos propuestas para el ACS son la energa solar trmica y la biomasa. Ambas permiten reducir el consumo de energas convencionales y ahorrar en la factura del agua. En el caso de la energa solar trmica puede llegar a sustituir el 60-70% de la energa convencional.

La energa solar trmica consiste en el aprovechamiento de la energa solar mediante placas solares trmicas permitiendo un bajo consumo y reduciendo la utilizacin de otras energas. El sistema funciona mediante colectores o placas de captacin solar que recogen la energa solar durante el da transmitiendo el calor al agua o algn otro fluido. Una vez calentada el fluido pasa por un circuito de tuberas convencional hasta un acomulador o dispositivo de almacenamiento. El fluido caliente pasa a la caldera y el fluido fro vuelve al captador solar para empezar de nuevo el ciclo.

Otra energa renovable es la biomasa; materiales orgnicos de vegetales o animales que se aprovechan como combustibles en calderas. Son un sistema respetuoso con el medioambiente evitando producir olores, como con el gasleo, o escapes peligrosos en el caso del gas. Los nicos inconvenientes son la necesidad de espacio,la falta de distribuidores para el combustible y la retirada de las cenizas de la caldera. Hay una gran variedad de combustibles como son las astillas, huesos de aceitunas, cscaras de frutos secos, poda de olivar, poda de vid, etc; pero el ms utilizado son los pelets gracias a su gran poder calorfico.

Cul de las dos alternativas te parece ms til?Conoces a alguien que utilice estos sistemas?

Leer mas:http://inarquia.es/eficiencia-energe...mber_258640696

.

July 20th, 2013, 10:42 PM #16

ftcr92Registered User

Join Date: Jan 2009Location: Southern FacePosts: 4,037Likes (Received): 2927

Edificio bioclimtico Enap, Pta. Arenas, Chile.

Con una superficie de 1.776 m y una altura de 14 m, la obra, de cuatro niveles, posee una piel exterior consistente en una gran fachada de cristal que envuelve una segunda piel de madera y hormign que alberga el edificio, un bloque rectangular de 9 metros de luz, con tres plantas libres destinadas a oficinas, ms un altillo mecnico para archivo. A travs de su longitud y altura, la construccin se comunica armnicamente con los rboles que abundan en el parque ubicado en la vereda frente a su fachada.

El sistema de "doble piel" dio origen a una suerte de gran invernadero -muy abundantes en la zona dada la inclemencia del tiempo-, logrndose dentro del edificio una temperatura promedio de 12C sin ningn tipo de calefaccin ni moradores, slo por concepto de eficiencia en el diseo, la que, finalmente, se elev a 18C como mnimo para garantizar el confort de los ocupantes.

El doble muro genera un microclima, aumentando en invierno la temperatura base, aislando el edificio interior y tomando aire templado para la calefaccin. En verano, en tanto, el edificio se ventila y enfra mediante la apertura de ventanas mecanizadas en el zcalo y en la cumbrera, lo que genera un "efecto chimenea".

Cabe sealar que la proyeccin de ahorro energtico del edificio alcanza un 68%, de acuerdo a estudios de ENAP, logrndose una recuperacin de la inversin en la caja de cristal antes de 20 aos.

El cuerpo de oficinas posee muros de hormign armado con losas colaborantes sobre vigas de acero, estructura aislada en su cara exterior con lana de vidrio y placas de madera. En lo que respecta a las ventanas, son de doble vidrio, aumentando la inercia trmica.

Simulando una verdadera "caja de cristal", el cuerpo del invernadero, en tanto, tiene una estructura de acero apoyada en el hormign armado. Los vidrios que conforman los muros cortina son cristales laminados, los cuales poseen una o ms lminas de Polivinil Butiral (PVB), capaz de filtrar el 99% de los rayos UV.

Debido al clima existente en Punta Arenas, caracterizado por bajas temperaturas y fuertes vientos, la construccin de esta "caja de cristal" fue un gran desafo, debido las distintas uniones que haba que efectuar y a que no era posible instalar las ventanas del muro cortina sin fijaciones mecnicas.

As, el cuerpo del invernadero se soporta en una estructura de acero, apoyada en el edificio de hormign armado, con excepcin de algunas reas en que marcos metlicos rgidos de acero se alzan de manera independiente. Por su parte, los vidrios laminados de esta caja de cristal van adosados en sus extremos a una subestructura de aluminio, y, para evitar desprendimientos causados por el viento, cada uno de ellos cuenta, adems, con cuatro perfiles L de aluminio. Al ser de distintos largos (entre los 50 y 80 cm), estos refuerzos mecnicos potencian los juegos de reflejos y de transparencias de las fachadas.__________________

To view links or images in signatures your post count must be 10 or greater. You currently have 0 posts..

To view links or images in signatures your post count must be 10 or greater. You currently have 0 posts..

Don Pacholiked this post

July 22nd, 2013, 09:19 PM #17

Don PachoUncle Frank

Join Date: Oct 2004Location: Bucaramanga, ColombiaPosts: 16,771Likes (Received): 4322

Top 10 Green Technology Ideas That Are Crazy Enough To Work

The simple things in life can also be some of the greenest. Check out our list of the Top 10 Green Technology Ideas That Are Crazy Enough To Work.

1. Eco-Concrete:

Eindhoven University of Technology scientists have installed air-purifying photo catalytic pavement onto a city block in Hengelo, Netherlands. According to their study titled Full scale demonstration of air-purifying pavement, they found that the cement reduced nitrogen oxide air pollution by up to 45 percent in ideal weather conditions. This amounts to an average reduction of 19 percent each day. Now thats smart cement.

Smog-Eating Concrete in Netherlands neighborhood (Photo: Science Direct/Los Angeles Times)

2. Poop Power:

A farmer from Pennsylvania turned to technology to combat rising energy costs on his farm. Shawn Saylor decided to use manure from about 600 cows and put it into a 19,000-gallon tank to be generated into energy through a process known as anaerobic digestion. The mixture then moves into the digester and is then heated there for about 16 days while the bacteria break down the organic matter in order to produce methane gas. The gas is burned in two engine generators to make electricity. The electricity is used to power his farm and a few dozen neighboring homes according to Saylor. There is also some electricity leftover, which he sells back to the grid.

3. Tio, the friendly ghost:

Designed by Tim Holley, a ghost-shaped light switch named Tio gives children a visual reminder of how much energy theyve used by leaving lights on. Tio starts out green and smiling. However, if the light is left on for more than four hours, he turns yellow and looks shocked. If they dare, to leave the light on for more than eight hours, Tio transforms into a raging red beast complete with a frowning mouth and angry face. Tio doesnt just visually remind children of their energy using habits, but the information is sent to Tios computer program where the children can grow a virtual tree which gets larger and healthier with the more energy they save.

Tio, the energy conserving ghost (Photo:www.inhabitots.com)

4. Energy Harvesting Tiles:Developed by London-based Pavegen Systems and first used this year at the Paris Marathon when the runners ran over the tiles for a 25 meter stretch during the race. Unbeknown to the runners, when they scampered their feet across the tiles, hybrid black technology was being used to convert the energy of their footsteps into electricity, which was then stored into either a battery or fed directly into devices. The power generated can be used to run low-voltage equipment such as streetlights and vending machines.

Pavegen Energy Harvesting Tiles (Photo: mages Pavegen, Kyle Taylor) -

5. Rocking Chair:

Igor Gitelstain, a graduate of the Shenkar College of Engineering in Israel created a model of a rocking chair with a built in electricity generator. When someone sits in the chair and rocks, a magnet slides along a copper coil within the base of the chair. As the magnet moves back and forth with the movements of the person rocking in the chair, a current is generated. That current can be stored in a large battery or can theoretically be used to charge an electronic device like a smartphone or a laptop.

Electric generating rocking chair (Photo: The Next Web)

6. Flying Wind Turbines:

Produced by Makani, based in Alameda, California created large robot-piloted kites that fly in circles while collecting energy using wing-mounted turbines and transferring it back to earth using a conductive tether. Airborne wind power has a few more theoretical advantages over windmills. First, wind is much more powerful and consistent at higher altitudes. The tallest windmills are about 600 feet tall, but the Makani planes will fly at heights between 800 and 1,950 feet. Second, the autopilot is able to detect the windiest spots and will fly in circles around that area. Also, the planes take much less material to build than a windmill, so Makani claims that theyll be faster to produce and deploy.

Flying Wind Turbine (Photo: James Burgess ofOilprice.com)

7. Air-cooled LED light bulb:

ZETA LED has developed an air-cooled LED light bulb. The Lifebulb uses 10 watts of power and emits as much light as a standard 60 watt incandescent (much like existing LED bulbs). The major difference: is the absence of an aluminum heat sink, the large piece of metal found on most LED bulbs that adds extra weight and cost. The LifeBulb stays cool by funneling air through its vents in the structure itself.

Zeta LED LifeBulb (Photo:www.forbes.com)

8. Power from windowpanes:

Justin Hall-Tipping questions the possibilities of generating power form our windowpanes. He has explored the resources that could make this possible, and how questioning our opinions of normal can lead to unexpected discoveries.

Waka Waka Power Charger (Photo: Off-Grid Solutions)

10. Flashlight powered by body heat:

Created by 15 year old Ann Makosinski from British Columbia, used her prototype as a finalist in this years Google Science Fair competition. The flashlight is a an aluminum tube and a PVC tube that work together so that the hollow would allow air to cool one side of the Peltier tile while the users hand transfers heat to the other.

Read more:http://blog.greenwizard.com/wp/2013/...mber_259719403

.

July 22nd, 2013, 09:46 PM #18

Don PachoUncle Frank

Join Date: Oct 2004Location: Bucaramanga, ColombiaPosts: 16,771Likes (Received): 4322

Ideas alucinantes de edificios futuristas que cuidaran el medio ambiente

Este concepto, el puente de Paik Nam June tendra casas, parques, oficinas y hasta un museo en una estructura que cruzara el ro Han, cerca de Seul, Corea del Sur.

La firma de arquitectos franceses Vincent Callebaut propone unas "pistas de aterrizaje de algas", usando algas marinas productoras de hidrgeno de manera que le permitiran a las estructuras flotar.

Por dentro, estas vainas flotantes desde jardines de fito purificacin, pozos de carbono y huertos hasta apartamentos ecolgicos, un hotel, laboratorios y un museo.

Otro diseo de Vincent Callebaut Architectures es King Forest, un complejo de descanso en Marruecos.Las habitaciones son elevadas lo que le da la sensacin al husped de estar sobre el bosque.

Visto desde arriba, el complejo Kings Forest muestra algunas de sus credenciales verdes, como sus techos, los paneles solares y su acoplamiento al entorno.

En Alemania, este edificio fue el primero en tener una fachada "bio-reactiva": tiene paneles con algas que producen energa y pueden refrescar el interior.

La eco-ciudad Sino-Singapore Tianjin es un proyecto de los gobiernos de Singapur y China para crear un modelo practico, escalable y replicable para el desarrollo sostenible.

Edificio 100% verde. La ciudad, a 40 km de la magaurbe de Tianjin, revitalizara la tierra contaminada, incluyendo un viejo estanque de aguas residuales