BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA...

79
FACULTAD DE CIENCIAS AGRARIAS PROGRAMA DE DOCTORADO EN CIENCIAS AGRARIAS UNIVERSIDAD DE TALCA Título BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA LF, ERICACEAE. ESTUDIO DE DIVERSIDAD GENÉTICA Y PROTOCOLOS DE MULTIPLICACIÓN José Newthon Pico Mendoza Tesis para optar al grado de Doctor en Ciencias Agrarias Talca-Chile 2017

Transcript of BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA...

Page 1: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

FACULTAD DE CIENCIAS AGRARIAS

PROGRAMA DE DOCTORADO EN CIENCIAS AGRARIAS

UNIVERSIDAD DE TALCA

Título

BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA

LF, ERICACEAE. ESTUDIO DE DIVERSIDAD GENÉTICA Y

PROTOCOLOS DE MULTIPLICACIÓN

José Newthon Pico Mendoza

Tesis para optar al grado de Doctor en Ciencias Agrarias

Talca-Chile

2017

Page 2: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

II

BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA LF,

ERICACEAE. ESTUDIO DE DIVERSIDAD GENÉTICA Y PROTOCOLOS DE

MULTIPLICACIÓN

Profesores guía y comisión evaluadora

Directores de tesis:

Dr. Peter DS Caligari

Dr. Rolando García Gonzáles

Dra. Hermine Vogel

Comisión evaluadora:

Dr. Jorge Retamales Aranda

Facultad de Ciencias Agrarias

Universidad de Talca

Dr. Blas Lavandero Icaza

Instituto de Ciencias Biológicas

Universidad de Talca

Dr. Basilio Carrasco Gálvez

Facultad de Agronomía e Ingeniería Forestal

Pontificia Universidad Católica de Chile

Page 3: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

III

Agradecimientos

Secretaria Nacional de Ciencias Tecnología e Innovación (SENESCYT) y a la

Universidad Técnica de Manabí (UTM) por el apoyo brindado.

Al Gobierno Regional del Maule, por el apoyo en esta investigación a través del

proyecto Laboratorio Regional de Biotecnologías Aplicadas (VITOTRECH II-FIC-BIC

30.136.372-0.

Al Centro de Biotecnología de los Recursos Naturales, Departamento de Ciencias

Forestales, Universidad Católica del Maule.

Especial agradecimiento a:

Dr. Rolando García

Ing. Hugo Pino

Dr. Boris Chong

Page 4: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

IV

Dedicatoria

A mi familia

Page 5: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

V

Índice General

Título .............................................................................................................................. I

Profesores guía y comisión evaluadora ........................................................................ II

Agradecimientos ......................................................................................................... III

Dedicatoria .................................................................................................................. IV

Índice General ............................................................................................................... V

Índice de Tablas ........................................................................................................ VIII

Índice de Gráficos ....................................................................................................... IX

Introducción General .................................................................................................... 1

Objetivos ....................................................................................................................... 9

Objetivo General ....................................................................................................... 9

Objetivos Específicos ................................................................................................ 9

Hipótesis ....................................................................................................................... 9

1. Capítulo I ................................................................................................................. 10

Development and characterization of microsatellite loci in Gaultheria pumila Lf.

(Ericaceae) ...................................................................................................................... 10

Abstract ....................................................................................................................... 10

Introduction ................................................................................................................. 11

Methodology ............................................................................................................... 11

1.1.1 Samples collection and DNA extraction .................................................. 11

1.1.2 DNA sequencing and microsatellite identification ................................... 12

1.1.3 SSR validation .......................................................................................... 12

1.1.4 Analysis of data ........................................................................................ 13

Results and Discussion ............................................................................................... 13

1.1.5 Selection of polymorphic microsatellite ................................................... 13

1.1.6 Genetic diversity analysis ......................................................................... 15

Conclusions ................................................................................................................. 16

Literature cited ............................................................................................................ 17

2 Capítulo II ............................................................................................................... 20

Genetic diversity and population structure of Gaultheria pumila Lf. (Ericaceae) ......... 20

Abstract ....................................................................................................................... 20

Introduction ................................................................................................................. 21

Page 6: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

VI

Methodology ............................................................................................................... 23

2.1.1 Plant material ............................................................................................ 23

2.1.2 DNA extraction, PCR amplification, and microsatellite analysis ............ 24

2.1.3 Statistical analysis .................................................................................... 25

Results ......................................................................................................................... 26

2.1.4 Genetic diversity analysis for each locus SSR ......................................... 26

2.1.5 Genetic diversity analysis for each populations ....................................... 28

2.1.6 Population structure and genetic differentiation ....................................... 29

Discussion ................................................................................................................... 32

2.1.7 Genetic diversity of Gaultheria pumila .................................................... 32

2.1.8 Population structure .................................................................................. 34

Conclusion .................................................................................................................. 36

Literature cited ............................................................................................................ 37

3 Capítulo III .............................................................................................................. 45

In vitro propagation of Gaultheria pumila (Ericaceae), a Chilean native berry with

commercial potential ...................................................................................................... 45

Abstract ....................................................................................................................... 45

Introduction ................................................................................................................. 46

Methodology ............................................................................................................... 48

3.1.1 Plant material ............................................................................................ 48

3.1.2 Experimental design and statistical analysis ............................................ 48

3.1.3 General environmental conditions ............................................................ 49

3.1.4 Influence of the disinfection protocol and plant growth regulators on

explant decontamination and plant development during in vitro establishment ..... 50

3.1.5 Disinfection and establishment ................................................................. 50

3.1.6 Plant formation and stabilization of in vitro plantlets .............................. 50

3.1.7 Effect of plant growth regulator interaction on the in vitro multiplication

of G. pumila............................................................................................................. 51

3.1.8 Root development in vitro ........................................................................ 51

Results ......................................................................................................................... 52

3.1.9 Effect of the disinfection protocol and plant growth regulators on explant

decontamination and plantlet development during the in vitro establishment ........ 52

3.1.10 Disinfection and establishment ................................................................. 52

3.1.11 Plantlet formation and stabilization in vitro ............................................. 53

Page 7: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

VII

3.1.12 Effects of the interaction of auxin and citokinin on the morphogenic

response during in vitro multiplication ................................................................... 54

3.1.13 Evaluation of auxins on the in vitro rooting and pre-acclimatization of

individualized plantlets ........................................................................................... 55

Discussion ................................................................................................................... 57

Conclusion .................................................................................................................. 57

Literature cited ............................................................................................................ 62

4 Annex ...................................................................................................................... 66

5 Conclusión general .................................................................................................. 68

Page 8: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

VIII

Índice de Tablas

Table 1.1 Characteristics of 10 microsatellite loci and primer pair’s development for G.

pumila. For each locus, the name, primer sequence, products size, repeat motif, allele

size range (bp), Fluorescent dye, annealing temperature (Ta) and GenBank accession

number are indicated ...................................................................................................... 14

Table 1.2 Estimated genetic parameters Na, Ho, He, Fis and Hardy-Weinberg test for

ten microsatellite loci in three wild populations of G. pumila, Puyehue, Villarrica and

Punta Arenas ................................................................................................................... 15

Table 2.1 Description of sampled populations and subpopulation for G. pumila within

its range in Chile ............................................................................................................. 23

Table 2.2 Characterization of six microsatellite loci and primer pair’s development for

G. pumila ........................................................................................................................ 25

Table 2.3 Estimates of genetic diversity (per locus) in G. pumila based on six SSR loci.

Na, observed number of alleles, Ne, effective allele; I, Shannon index of genetic

diversity; Ho, observed heterozygosity; He, expected heterozygosity; Fis, inbreeding

coefficient; Fit; inbreeding coefficient at the total samples level; Fst, proportion of

differentiation among populations; Nm, gene flow; PIC, Polymorphism information

content; HW; Hardy-Weinberg equilibrium; F(Null) null allele. ................................... 27

Table 2.4 Descriptive statistics over all loci for each population of G. pumila. Pop;

populations where samples were taken; Na, number of alleles; Ne; number of effective

alleles; I, Shannon index; Ho, observed heterozygotes; He, expected heterozygotes; Fis,

Inbreeding coefficient; PPL, percentage of polymorphic loci. ...................................... 29

Table 2.5 Analyses of Molecular Variance (AMOVA) in different natural populations

of G. pumila, Chile. ........................................................................................................ 29

Table 3.1 Treatments applied for disinfection and in vitro establishment of G. pumila

explants ........................................................................................................................... 50

Table 3.2 Effect of culture media and plant growth regulators on plant morphogenesis

of G. pumila. Only treatments with the most explants with shoot formation are shown.

Different letters in the same column mean significant differences between treatments

according to the Kruskal-Wallis test (p ≤0.05). .............................................................. 54

Table 3.3 Morphogenic response of G. pumila in different culture media, concentration

and combination of plant growth regulators. Different letters in the same column refer to

significant differences between treatments. Tukey HSD test (p≤0.05). ......................... 55

Page 9: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

IX

Table 3.4 Root formation in G. pumila induced by different media and plant growth

regulators. sd: without response. Different letters within of same column indicate

significant differences between treatments. Kruskal-Wallis test (p≤0.05). .................... 56

Índice de Gráficos

Figure 2.1 Variability in morphometric characteristics in fruit of G. pumila as size and

shape, collected different site in volcano Villarrica, La Araucanía. ............................... 24

Figure 2.2 Genetic groups estimated by Bayesian analysis. 1) ∆K estimates of the

posterior probability distribution of the data for a given K. Ln (K) obtained is a

Structure analysis and an ad hoc quantity distribution. 2) Estimated population structure

and genetic cluster of the eleven populations of G. pumila and 160 individuals with K=2

to 6. ................................................................................................................................. 30

Figure 2.3 Factorial analysis of correspondence between eleven populations of G.

pumila of four regions in Chile ...................................................................................... 31

Figure 3.1 In vitro establishment of G. pumila. Efficiency of the different protocols

tested during in vitro establishment on disinfection protocols (Percentage of

contaminated explants) and morphogenic response (percentage of shoot formation per

treatment) in G. pumila. Below, behavior of explants during in vitro disinfection and

establishment; A: shoot formation from a decontaminated explant; B: oxidized explant

seven days after disinfection and culture on the regeneration medium; C: Explant

contaminated with fungi. ................................................................................................ 53

Figure 3.2 Response of the nodal segment to different multiplications treatments in G.

pumila. ............................................................................................................................ 55

Page 10: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

1

Introducción General

El género Gaultheria pertenece a la familia Ericaceae y su distribución en el continente

americano esta reportada desde México hasta Argentina (Luteyn 2002, Hermann and

Cambi 2006). En Chile se reportan doce especies dentro de este género, entre ellas está

Gaultheria pumila (Teillier and Escobar 2013).

Gaultheria pumila (Lf) Middleton, sub familia Vaccinioideae, del orden Ericales, tribu

Gaultherieae, es conocida comúnmente como "chaura o cola de zorro" y se distribuye

desde la Región Metropolitana hasta la Región de Magallanes, encontrándola desde los

bordes costeros hasta las faldas de la cordillera de los Andes.

G. pumila es un arbusto pequeño, dioico, de hojas alternas, coriáceas, de flores blancas,

de polinización abierta al igual que otras especies de la familia Ericaceae (Cane et al.

1985, Luteyn 2002). La especie presenta características deseables, como el color, el

sabor, el aroma de sus frutos y su alto contenido de antocianinas y pectinas, y un grado

importante de adaptabilidad a diferentes condiciones ambientales.

Los frutos presentan diversos colores (blanco, rosado y rojo), formas (globosas u

ovoides), y diámetros (6 a 12 mm). Estos son achatados en el ápice, carnosos,

aromáticos, de sabor intenso y poseen alto contenido de flavonoides (Middleton 1992,

Villagra et al. 2014). Mayormente el contenido de antocianinas está en los frutos de

color rojo, reportando un promedio de 5.942 mg, seguido por los frutos de color rosa,

con un promedio de 3.854 mg, y los frutos blancos tienen el menor contenido de

antocianina con un promedio de 626.2 mg antocianinas monoméricas por 100 g de

muestra (Villagra et al. 2014). Estos compuestos polifenólicos aportan con grandes

beneficios para la salud humana (Ruiz et al. 2010, Schreckinger et al. 2010, Nile and

Park 2013, Ramirez et al. 2015).

Page 11: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

2

Los frutos son una fuente de alimento y medicina para los pueblos originarios

Aónikenk, Selk’nam, Kawésqar, Yagan y Haush, en la Patagonia Austral de Chile

(Domínguez Díaz 2010). Poseen alrededor de 50 semillas por frutos, sin embargo, se

pudo determinar que tiene bajo potencial germinativo, lo que hace necesario recurrir a

técnicas eficientes de multiplicación in vitro.

Este arbusto, cuya expresión fenotípica varía entre individuos dentro de la misma

población, crece en suelos volcánicos, arenosos con bajos niveles de materia orgánica,

por lo que muestra poca exigencia en calidad de suelos. La rusticidad que presenta

permite que sea considerada como una especie colonizadora, al ser una de las primeras

en aparecer en áreas afectadas por desastres naturales (Luteyn 2002).

Posee un amplio rango de adaptación, adecuándose a diferentes condiciones gracias a la

plasticidad ecológica que presenta. Se han encontrado plantas que permanecen bajo la

nieve en época invernal y en verano expuesta a altas temperaturas y de radiación solar,

condición que para otras especies resulta ser una limitante (Larcher et al. 2010). Se le

atribuye también un efecto de simbiosis micorrícica (Medina et al. 2008), con alto valor

ecológico en los procesos de restauración de ecosistemas, ya que forma nuevos nichos

ecológicos junto a especies como el colihue (Chusquea culeou) o lenga (Nothofagus

pumilio).

Estos atributos hacen de esta especie un recurso fitogenético de alto valor, para su uso y

aprovechamiento en diferentes escenarios productivos (agrícola-farmacéutico), como ha

ocurrido en otras especies del genero Gaultheria (Apte et al. 2006, Liu et al. 2013,

Michel et al. 2016). Sin embargo, y a pesar de su alto potencial, esta especie ha sido

poco estudiada, permaneciendo aún como un recurso genético sin explorar, dejando de

lado sus atributos y reduciendo la posibilidad de convertirla en una opción de consumo.

Page 12: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

3

En este sentido, la identificación y selección de genotipos silvestres de chaura juega un

rol importante en las pretensiones de domesticarla y adaptarla (Gepts and Papa 2002,

Gepts 2004) y a su vez, pueden constituir la base científica y tecnológica para

implementar programas de selección y mejora de la especie, siguiendo un modelo de

desarrollo similar al aplicado para otras Ericaceas (Finn et al. 2003).

Los esfuerzos por descubrir y desarrollar nuevas especies son constantes, ya que de toda

la agrobiodiversidad que alberga la tierra, solo un pequeño porcentaje es aprovechado

ya sea mediante su cultivo o mediante explotación en su medio natural. Dentro de la

familia Ericaceae, 4050 especies existentes, solo 28 son aprovechadas en forma de

cultivo (Khoshbakht and Hammer 2008).

En Chile existen varios trabajos de selección orientados a la domesticación de especies,

con especial énfasis en berries nativos, cuyos frutos son ricos en contenido de

polifenoles y antioxidantes (Fredes 2009, Fredes et al. 2012). Dentro de las especies con

estudios o usos más o menos intensos se pueden mencionar: el calafate (Berberis

microphylla Lam) (Bottini et al. 2002, Ibarra et al. 2013, Varas et al. 2013), huarapo

(Myrteloa nummularia) (Arancibia et al. 2013), maqui (Aristotelia chilensis) (Bastías et

al. 2016, Voguel et al. 2016), frutilla chilena (Fragaria chiloensis) (Carrasco et al.

2007, 2013), y murtilla (Ugni molinae Turc) (Seguel et al. 2000, Seguel and Torralbo

2004).

Estas iniciativas para aprovechar los beneficios de las especies nativas, se deben a la

necesidad que existe de potenciar especies que puedan ser una opción para la

producción agrícola, la agregación de valor y el desarrollo de nuevos suplementos

alimenticios y medicamentos. En este contexto el presente trabajo se centra en

determinar la diversidad y composición genética de las poblaciones naturales de G.

Page 13: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

4

pumila, así como el desarrollo de tecnologías de propagación in vitro, con el objetivo de

crear las bases científicas y metodológicas para desarrollar un programa de

domesticación y aprovechamiento de la especie.

Page 14: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

5

Referencias

Apte, G. S., R. A. Bahulikar, R. S. Kulkarni, M. D. Lagu, B. G. Kulkarni, H. S.

Suresh, P. S. N. Rao, and V. S. Gupta. 2006. Genetic diversity analysis in

Gaultheria fragrantissima Wall. (Ericaceae) from the two biodiversity hotspots in

India using ISSR markers. Curr. Sci. 91: 1634–1640.

Arancibia, P., G. Shela, T. Fernando, and J. Pamela. 2013. Myrteloa nummularia:

Un nuevo berry comestible chileno con propiedades antioxidantes, creciendo sobre

Sphagnum. In Congr. Chil. Berries. 27 y 28 junio Talca.

Bastías, A., F. Correa, P. Rojas, R. Almada, C. Muñoz, and B. Sagredo. 2016.

Identification and characterization of microsatellite loci in maqui (Aristotelia

chilensis [molina] stunz) Using Next-Generation Sequencing (NGS). PLoS One.

11: 1–17.

Bottini, M. C. J., A. De Bustos, N. Jouve, and L. Poggio. 2002. AFLP

characterization of natural populations of Berberis (Berberidaceae) in Patagonia,

Argentina. Plant Syst. Evol. 231: 133–142.

Cane, J. H., G. C. Eickwort, F. R. Wesley, and J. Spielholz. 1985. Pollination

Ecology of Vaccinium stamineum ( Ericaceae : Vaccinioideae ) Am. J. Bot. 72:

135–142.

Carrasco, B., M. Garc, P. Rojas, G. Saud, R. Herrera, and J. B. Retamales. 2007.

The Chilean strawberry [ Fragaria chiloensis ( L .) Duch .]: genetic diversity and

structure. J. Am. Soc. Hortic. Sci. 132: 501–506.

Carrasco, B., J. B. Retamales, K. Quiroz, M. Garriga, and P. D. S. Caligari. 2013.

Inter Simple Sequence Repeat markers associated with flowering time duration in

the Chilean Strawberry ( Fragaria chiloensis ). J. Agr. Sci.Tech. 15: 1195–1207.

Domínguez Díaz, E. 2010. Flora de interés etnobotánico usada por los pueblos

Page 15: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

6

originarios : Aónikenk , Selk ’ nam , Kawésqar , Yagan y Haush en la Patagonia

Austral. Dominguezia. 26: 19–29.

Finn, C. E., J. . Hancock, T. Mackey, and S. Serce. 2003. Genotype × Environment

interactions in highbush blueberry ( Vaccinium sp . L .) Families grown in

Michigan and Oregon. J. Amer. Soc. Hort. Sci. 128: 196–200.

Fredes, C. 2009. Antioxidants in Chilean native berries. Boletín Latinoam. y del Caribe

Plantas Med. y Aromáticas. 8: 469–478.

Fredes, C., G. Montenegro, J. P. Zoffoli, M. Gómez, and P. Robert. 2012.

Polyphenol content and antioxidant activity of maqui (Aristotelia chilensis. Molina

STUNTZ) during fruit development and maturation in Central Chile. Chil. J.

Agric. Res. 72: 582–589.

Hermann, P. M., and V. N. Cambi. 2006. Gaultheria nubigena ( Ericaceae ), una

especie rara en la Argentina. Bol. Soc. Argent. Bot. 41: 317–322.

Ibarra, P., W. Lobos A, E. Mariangel, and M. Reyes D. 2013. Calafate: potencial

biorecurso para la fruticultura del Sur de Chile. In Congr. Chil. Berries Talca. 27 y

28 Junio 2013.

Khoshbakht, K., and K. Hammer. 2008. How many plant species are cultivated?

Genet. Resour. Crop Evol. 55: 925–928.

Larcher, W., C. Kainm??ller, and J. Wagner. 2010. Survival types of high mountain

plants under extreme temperatures. Flora Morphol. Distrib. Funct. Ecol. Plants.

205: 3–18.

Liu, W.-R., W.-L. Qiao, Z.-Z. Liu, X.-H. Wang, R. Jiang, S.-Y. Li, R.-B. Shi, and

G.-M. She. 2013. Gaultheria: Phytochemical and pharmacological characteristics.

Molecules. 18: 12071–12108.

Luteyn, J. L. 2002. Diversity, adaptation, and endemism in neotropical Ericaceae:

Page 16: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

7

biogeographical patterns in the Vaccinieae. Bot. Rev. 68: 55–87.

Medina, J., F. Davinson, R. Carrillo, and M. Rodriguez. 2008. Simbiosis micorricica

presente en Nothofagus dombeyi ( Mirb .) Oerst y Gaultheria pumila ( L . f )

Middleton . Especies colonizadoras de escoriales volcánicos en la Región de la

Araucanía, Chile. I Congr. Nac. la Conserv. la Biodivers. a través su uso, 25 al 29

Noviembre 2009, Sucre Boliv. 1–10.

Michel, P., A. Owczarek, M. Kosno, D. Gontarek, M. Matczak, and M. A.

Olszewska. 2016. Variation in polyphenolic profile and in vitro antioxidant

activity of eastern teaberry (Gaultheria procumbens L.) leaves following foliar

development. Phytochem. Lett. 1–9.

Middleton, D. J. 1992. A chemotaxonomic survey of flavonoids and simple phenols in

the leaves of Gaultheria L. and related genera (Ericaceae). Bot. J. Linn. Soc. 110:

313–324.

Nile, S. H., and S. W. Park. 2013. Edible berries: Review on bioactive components

and their effect on human health. Nutrition. 30: 1–11.

Ramirez, J. E., R. Zambrano, B. Sepúlveda, E. J. Kennelly, and M. J. Simirgiotis.

2015. Anthocyanins and antioxidant capacities of six Chilean berries by HPLC-

HR-ESI-ToF-MS. Food Chem. 176: 106–114.

Ruiz, A., I. Hermosín-Gutiérrez, C. Mardones, C. Vergara, E. Herlitz, M. Vega, C.

Dorau, P. Winterhalter, and D. Von Baer. 2010. Polyphenols and antioxidant

activity of calafate (Berberis microphylla) fruits and other native berries from

Southern Chile. J. Agric. Food Chem. 58: 6081–6089.

Schreckinger, M. E., J. Lotton, M. A. Lila, and E. G. de Mejia. 2010. Berries from

South America: A Comprehensive review on chemistry, health potential, and

commercialization. J. Med. Food. 13: 233–246.

Page 17: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

8

Seguel, I., Enrique Peñaloza H, Nelba Gaete, Adolfo Montenegro B, A. Torres P,

E. Peñaloza H, N. Gaete C., and A. Montenegro B. 2000. Colecta y

caracterizacion molecular de germoplasma de murta (Ugni molinae Turcz) en

Chile. Agro Sur. 28: 32–41.

Seguel, I., and L. Torralbo. 2004. Murtilla : El berry nativo del sur de Chile. Tierra

Adentro. 57: 20–50.

Teillier, S., and F. Escobar. 2013. Revisión del género Gaultheria L. (Ericaceae) en

Chile. Gayana Botánica. 70: 136–153.

Varas, B., M. H. Castro, R. Rodriguez, D. Von Baer, C. Mardones, and P.

Hinrichsen. 2013. Identification and characterization of microsatellites from

calafate ( Berberis microphylla , Berberidaceae). Appl. Plant Sci. 1: 1–5.

Villagra, E., C. Campos-Hernandez, P. Caceres, G. Cabrera, Y. Bernardo, A.

Arencibia, B. Carrasco, P. D. S. Caligari, J. Pico, and R. Garcia-Gonzales.

2014. Morphometric and phytochemical characterization of chaura fruits

(Gaultheria pumila): A native Chilean berry with commercial potential. Biol. Res.

47: 1–8.

Vogel, H., B. Gonzalez, G. Catenacci, and U. Doll. 2016. Domestication and

sustainable production of wild crafted plants with special reference to the Chilean

Maqui berry (Aristotelia chilensis). Julius-Kühn-Archiv. 0: 50–52.

Page 18: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

9

Objetivos

Objetivo General

Determinar la diversidad y estructura genética de G. pumila mediante marcadores

moleculares SSRs y establecer protocolos de multiplicación in vitro

Objetivos Específicos

a) Desarrollar marcadores moleculares SSRs específicos de G. pumila

utilizando tecnología de última generación para el estudio de diversidad

genética

b) Determinar la estructura y variabilidad genética de G. pumila a través de

marcadores moleculares SSRs

c) Diseñar un protocolo de multiplicación, enraizamiento in vitro y de

adaptación ex vitro de G. pumila

Hipótesis

a) La mayor variabilidad genética se encuentre dentro de las poblaciones

b) La capacidad morfogénica de G. pumila puede ser explotada a través de

técnicas de multiplicación in vitro

Page 19: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

10

1. Capítulo I

Development and characterization of microsatellite loci in

Gaultheria pumila Lf. (Ericaceae)

Abstract

Polymorphic microsatellite markers were developed for Gaultheria pumila (Ericaceae)

to evaluate genetic diversity and population structure within its native range in Chile.

This is one of the most important Ericaceae species endemic to Chile. It has a large

commercial potential and can be a very interesting target for breeding programs since it

is very resistant to different abiotic conditions. Ten polymorphic Simple Sequence

Repeat (SSR) loci were isolated from Gaultheria pumila using new-generation 454 FLX

Titanium pyrosequencing technology. The mean number of alleles per locus ranged

from 2 to 4. Observed and expected heterozygosity ranged from 0.00 to 1.0 and 0.00 to

0.64, respectively. From 10 SSR markers developed for G. pumila, nine markers are

promising candidates for analyzing genetic variation within and between natural

populations of G. pumila and other species from the same genus.

Key words: molecular marker, pyrosequencing, Chilean berry.

Page 20: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

11

Introduction

The Gaultheria genus belongs to the Ericaceae family and it is adapted to tropical and

temperate conditions. All of these species are commonly known as “chaura” or “murta”

(Teillier and Escobar 2013). Gaultheria pumila is one of the most important species in

terms of population size; colonizing plant (Luteyn 2002) and has a symbiotic

mycorrhiza effect (Medina et al. 2009) even a botanic variety has been identified

(Gaultheria pumila var. leucocarpa). It is an interesting species for domestication as has

shown a high level of phenotypic variability and high levels of polyphenols and

anthocyanins (Middleton 1992, Villagra et al. 2014). However, the lack of basic

knowledge of agronomically important traits as well about the organization of its

genetic variability provides serious limitations to the domestication process and its

conversion to new crop. For this reason, the aim of this study was to develop a set of

polymorphic microsatellite markers can be used as a tool to assess the diversity and

genetic structure of Gaultheria genus.

Methodology

1.1.1 Samples collection and DNA extraction

In order to carry out complete sequencing, four samples of G. pumila were collected in

two places, 1) Villarrica volcano in Región de La Araucanía Chile, S: 39º21'570, W:

71'57'865 (El Playón sector), and 2) near the Puyehue volcano, in the Región de Los

Lagos, Chile, S: 40°41’484,W: 72°32’719 (Orilla de Rio). The genomic libraries were

built selecting samples based on fruit color (red-pink and white). Total genomic DNA

of G. pumila was extracted from young leaves with a modified CTAB

(cetyltrimethylammonium bromide) method (Murray and Thompson 1980) . The quality

and quantity of isolated DNA was determined using a Nanodrop and agarose gel

electrophoresis for 30 minutes.

Page 21: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

12

1.1.2 DNA sequencing and microsatellite identification

The library preparation and shotgun pyrosequencing of 5 μg DNA aliquot on a 454 GS-

FLX Titanium instrument (Roche Applied Science, MACROGEN, Ltd. Seoul, South

Korea) was prepared with the kit of Titanium Pico Titer Plate (Roche Diagnostics)

following the manufacturer’s protocols. A total of 164 sequences were read, with an

average length of 417 pb, which were generated by three independent runs. The

sequences were assembled using the software GS De Novo Assembler (V2.9). The

MSATCOMANDER (http://code.google.com/p/msatcommander/) program was used

for locating microsatellites.

1.1.3 SSR validation

The PCR fragment amplification and validation of selected SSRs was performed

following the method developed by Schuelke (2000) which uses three primers: a

forward primer with an M13 (-21) tail at its 5' end, a normal reverse primer and the

universal M13 (-21) primer labeled with either 6-FAM, VIC, PET or NED

fluorochromes. The microsatellite information and GenBank accession numbers are

listed in Table 1. PCR amplifications were performed in a 20 μl reaction mixture with

10 ng templates DNA, 0.15 mM of each dNTP; 1 X Taq polymerase reaction buffer; 1.5

mM MgCl2; 0.025 μM forward primer; 0.1 μM reverse primer; 0.1 μM M13 primer and

0.35 U Taq DNA polymerase. PCR amplifications were performed in an Applied

Biosystems Veriti (Life Technologies) under the following conditions: initial

denaturation at 94 °C for 5 min; 30 cycles of 30s at 94 °C, annealing temperature

specific to each primer pair for 45 s, extension at 72 °C for 45 s, followed by 8 cycles of

30 s at 94 °C, annealing at 53 °C for 45 s, extension at 72 °C for 45 s and a final

extension at 72 °C for 30 min. The annealing temperature (°C) requirements of primers

are specified in Table 1. PCR products were resolved as following: 2 μL of PCR

Page 22: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

13

products were mixed with 10 μL HiDi formamide (Applied Biosystems) and 0.2 μL

GeneScan 500LIZ size standard (Life Technologies, Foster City, CA) and separated by

capillary electrophoresis on an ABI 3130xl Prism Genetic Analyzer with POP-7

polymer (Life Technologies, Foster City, CA) in the Genetic Resources Unit, La

Platina-INIA, Chile. Allele sizes were automatically calculated with GeneMapper

software v4.0 and manually checked.

1.1.4 Analysis of data

Three populations of G. pumila were selected to evaluate the variability in the isolated

loci: Región de La Araucanía, (Villarrica volcano, n= 10); S 39°34’463, W 71°28´509,

Región de Los Lagos, (Puyehue volcano, n= 10), S 40°40'538 W 72°07´103, Región de

Magallanes (Punta Arenas, n=10) S 53°9’413 W 71°1’437. Genetic parameters, such as

observed number of alleles (Na) and observed and expected heterozygosity (Ho-He),

were estimated with PopGene (Yeh et al. 1997). The inbreeding coefficient (FIS) (Weir

and Cockerham 1984) was determined using Genetix (Belkhir et al. 2003). Deviation

from the Hardy-Weinberg equilibrium was determined with GENEPOP v 4.2 (Raymond

and Rousset 1995). The presence of null alleles was checked using MICRO-CHECKER

version 2.2.3 (Van Oosterhout et al. 2004). In addition, tested cross-amplification with

two species, G. mucronata and G. caespitosa collected in the same population as G.

pumila were carried out.

Results and Discussion

1.1.5 Selection of polymorphic microsatellite

Primers were considered successful when one clear band was detected on 2% agarose

gel. The mononucleotide repeat lengths were 10, the dinucleotide were six and four for

the tri - tetra - penta and hexanucletides. The sequences that contained more repetition

were the mononucleotides averaging 59%, while the dinucleotides were 23%

Page 23: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

14

trinucleotides 12% tetranucleotides 3% and pentanucleotide 2%. A total of 17 loci

microsatellite were tested, which included 4 mono, 5 di, 4 tri, 3 tetra, and 1

pentanucleotide. The first test consisted of selecting the best SSRs that showed

amplification, and were visualized in 2% agarose gel. Ten microsatellites were selected

for further development and analysis (Table 1.1). From these microsatellite loci, nine

were variable and polymorphic between populations. The microsatellite locus GP.7 was

inconsistent in different tested conditions, and it was not included further.

Table 1.1 Characteristics of ten microsatellite loci and primer pair’s development for G. pumila. For each

locus, the name, primer sequence, products size, repeat motif, allele size range (bp), Fluorescent dye,

annealing temperature (Ta) and GenBank accession number are indicated

Locus Primer sequences (5'-3')ᵃ Repeat

motif

Allele

size (bp)

Dye Ta(◦c) GenBank

GP.7 F:CGCATTCACTCACCCTCTCA (ACTC)^4 360 FAM 52.1 KX719822

R:TGGTTGGTGAAGGCTTTGGA

GP.9 F:ACCCGCTCTAGATCCTCTCT (T)^10 378-380 FAM 60.5 KX719823

R:AGGGGGAGTAATCAAGCCTCT

GP.10 F:GGGTACGGCGTAGTGGTAAT (AT)^8 323-327 VIC 60.5 KX719824

R:TCGTACAAAACCGCCCTCAA

GP.12 F:AGGATTATAGAGAGCCAGGTGGA (CTT)^4 198-201 NED 52.1 KX719825

R:CAGAAGACGAAATCGAAGCCG

GP.13 F:AGAGTAAGAGCTCTCTTCCGA (ATT)^4 161-278 NED 52.1 KX719826

R:GCAGACTCGAATCGGCAGTA

GP.14 F:GCATAGCCCGGTTGTCAAAC (ACGC)^4 196-228 PET 52.1 KX719827

R:ACCGAAAGATCCGACCATCG

GP.15 F:GGGCTGCTGCTCAATCAATT (T)^10 347-351 VIC 52.1 KX719828

R:ACCCGCTTCAAGTCATGATGA

GP.16 F:GCTATTTCTAGGGCCGGACC (AT)^6 281-283 FAM 52.1 KX719829

R:GCACAATACATAGATTCTGGATCGA

GP.17 F:GAGAGAAATCCACCAGGGCA (T)^10 202-205 VIC 60.5 KX719830

R:CAAGCGGACGACGTATACGA

GP.18 F:ACCGAAAGATCCGACCATCG (GCGT)^4 192-228 PET 52.1 KX719831

R:GCATAGCCCGGTTGTCAAAC

Page 24: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

15

1.1.6 Genetic diversity analysis

The mean number of alleles per locus ranged from 1 to 4, with an average of 1.96.

Observed and expected heterozygosity ranged from 0.00 to 1.0 and 0.00 to 0.67,

respectively (Table 1.2). In addition, three microsatellite loci: GP.12, GP.13 and GP.17

exhibited significant deviation from Hardy-Weinberg Equilibrium (HWE), for the

Puyehue population. In the Villarrica population the locus GP.14 was monomorphic,

while the loci GP.9, GP.10, GP. 12, GP.13 and GP.18 had no significant deviations. For

the Punta Arenas samples, four loci did not show significant deviations from HWE,

which were GP.9, GP.10, GP.12 and GP.15. Such deviations can be due to the small

sample size, selfing, or to the substructure of the populations. Additionally, out of ten

SSR loci, five were reproducible in G. mucronata and six were reproducible in G.

caespitosa, which suggests that the markers could be useful in will carrying out studies

of genetic diversity in other Gaultheria species.

Table 1.2 Estimated genetic parameters Na, Ho, He, Fis and Hardy-Weinberg test for ten microsatellite

loci in three wild populations of G. pumila, Puyehue, Villarrica and Punta Arenas

Puyehue (n=10) Villarrica (n=10) P. Arenas (n=10) Cross-amplification

Locus Na Ho He Fis Na Ho He Fis Na Ho He Fis G.

mucronata

G.

caespistosa

GP.7 1 0.00 0.00 NA 1 0.00 0.00 NA 1 0.00 0.00 NA - -

GP.9 1 0.00 0.00 -0.24 2 0.20 0.19* -0.34 2 0.56 0.42 -0.06* - +

GP.10 2 0.30 0.27 -0.27 3 0.67 0.50* -0.10 2 0.22 0.21 -0.27* - -

GP.12 2 0.00 0.18* 1.00 2 0.00 0.19* 1.00 2 0.00 0.19* 1.00* - -

GP.13 2 1.00 0.53* -0.46 4 0.60 0.59* -1.00 2 1.00 0.53* -0.46 - +

GP.14 2 0.10 0,10 -0.00 1 0.00 0.00 0.00 1 0.00 0.00 0.00 + +

GP.15 3 0.70 0.67 0.45 3 0.22 0.52 0.13 3 0.40 0.58 0.22* + +

GP.16 1 0.00 0.00 1 2 0.00 0.34 1.00 2 0.00 0.51* -1.00 + +

GP.17 2 1.00 0.53* 0.70 2 1.00 0.53 -1.00 2 1.00 0.53* 0.49 + -

GP.18 2 0.10 0.10 0.13 3 0.10 0.28* -0.03 1 0.00 0.00 0.10 + +

Note: + = Successful PCR amplification; - = unsuccessful PCR amplification; Na= number of alleles; Ho= observed heterozygosity; He= expected heterozygosity; Fis= fixation index. * Significant deviation from Hardy-Weinberg Equilibrium (p = <0.05).

Page 25: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

16

Conclusions

For G. pumila, ten microsatellite loci were identified; however, only nine proved to be

suitable markers to be used in population genetics, for studying genetic structure and

genetic variability. These findings provide a basis for starting a domestication program

for this species, which potentially could include other relatives in the Ericaceae family.

Further research should be done to find out new SSR microsatellite markers and to test

them among G. pumila and other species of this genus.

Page 26: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

17

Literature cited

Belkhir, K., P. Borsa, L. Chikhi, N. Raufaste, and F. Bonhomme. 2003. Genetix:

4.05 Logiciel sous WindowsTM pour la genetique des populations. In: U. d.

Montpellier Ed. Montpellier, France.

Luteyn, J. L. 2002. Diversity, adaptation, and endemism in Neotropical Ericaceae:

Biogeographical patterns in the Vaccinieae. Bot. Rev. 68: 55–87.

Medina, J., F. Davinson, R. Carrillo, and M. Rodriguez. 2009. Simbiosis micorrícica

presente en Nothofagus dombeyi (Mirb.) Oerst y Gaultheria pumila (L. fil)

Middleton. Especies colonizadoras de cscoriales volcánicos en la Región de la

Araucanía, Chile. I Congr. Nac. Conserv. la Biodivers. a través su uso, 23 al 25

Noviembre 2009, Sucre Boliv. 1–10.

Middleton, D. J. 1992. A chemotaxonomic survey of flavonoids and simple phenols in

the leaves of Gaultheria L. and related genera (Ericaceae). Bot. J. Linn. Soc. 110:

313–324.

Murray, M. G., and W. F. Thompson. 1980. Rapid isolation of high molecular weight

plant DNA. Nucleic Acids Res. 8: 4321–4326.

Raymond, M., and F. Rousset. 1995. GENEPOP (Version 1.2): population genetics

software for exact tests and ecumenicism. J. Hered. 86: 248–249.

Schuelke, M. 2000. An economic method for the fluorescent labeling of PCR

fragments. Nat. Biotechnol. 18: 233–234.

Teillier, S., and F. Escobar. 2013. Revisión del género Gaultheria L. (Ericaceae) en

Chile. Gayana Botánica. 70: 136–153.

Page 27: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

18

Van Oosterhout, C., W. F. Hutchinson, D. P. M. Wills, and P. Shipley. 2004.

MICRO-CHECKER: Software for identifying and correcting genotyping errors in

microsatellite data. Mol. Ecol. Notes. 4: 535–538.

Villagra, E., C. Campos-Hernandez, P. Caceres, G. Cabrera, Y. Bernardo, A.

Arencibia, B. Carrasco, P. D. S. Caligari, J. Pico, and R. Garcia-Gonzales.

2014. Morphometric and phytochemical characterization of chaura fruits

(Gaultheria pumila): A native Chilean berry with commercial potential. Biol. Res.

47: 1–8.

Weir, B. S., and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of

population structure. Evolution 38: 1358–1370.

Yeh, F., Y. Rong-cai, T. Boyle, and M. W. Freeware. 1997. POPGENE, the user-

friendly shareware for population genetic analysis. Mol. Biol. Biotechnol. Center,

Univ. Alberta, Edmonton, Alberta, Canada. 1–29.

Page 28: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

19

Pico-Mendoza et al. – Gaultheria microsatellite

DEVELOPMENT AND CHARACTERIZATION OF MICROSATELLITE LOCI

IN GAULTHERIA PUMILA LF. (ERICACEAE)1

Documento enviado como Prime Note a la revista Applications in Plant Sciences

Page 29: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

20

2 Capítulo II

Genetic diversity and population structure of Gaultheria pumila

Lf. (Ericaceae)

Abstract

Gaultheria pumila Lf. is a berry native from Chile, with high contents of polyphenols

and anthocyanins. This species has a high potential for consumption due to its

organoleptic qualities and morphometric characteristics. There are few reports on its

utility and potential uses. Sampling was carried out in 11 populations from four Regions

of Chile. A total of 160 individuals were collected and analysed using a set of six

microsatellite markers. The neutral test did not show selective force acting on the

analysed SSR loci. The genetic diversity per locus, showed a mean observed

heterozygosity of Ho=0.53 while the expected heterozygosity was He=0.54. The

polymorphic information content was 0.47. The average Shannon diversity index was

moderate to high with a value of 0.99. The fixation index showed an average of -0.16.

The average level of polymorphic loci in all populations was 96.97. The analysis of

molecular variance indicated that the species has a low level of genetic fragmentation

showing 94% of the genetic diversity within populations while there was only 6 %

between populations. Significant correlations were found between genetic and

geographic distance. The multivariate and Bayesian analysis showed that the genetic

structure is conformed of two genetic groups. The species appears to be highly

connected, probably due to the activity of pollinators and small animals that feed on its

fruits and subsequently spread the seeds. These observations on the genetic diversity in

the natural populations of G. pumila, will allow the design of efficient strategies for

carrying out selection of suitable types for exploitation and developing a breeding

program.

Page 30: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

21

Key words: Allelic frequency, heterozygosity, inbreeding coefficient, AMOVA

Introduction

The genus Gaultheria belongs to the Ericaceae family and it is adapted to tropical and

temperate climates. This genus is important in terms of functional human nutrition as

many of its species contain high levels of flavonoids and simple phenols (Middleton

1992, 1993, Villagra et al. 2014). It is also important because it contains different

compounds with anti-rheumatic effects (Liu et al. 2013). Many of these species are

diploids, but some of them are tetraploid or hexaploid (Mukhopadhyay et al. 2016). The

distribution of this genus in the American continent has been documented from México

to Argentina (Luteyn 2002, Hermann and Cambi 2006). In Chile, twelve species of this

genus have been reported, including Gaultheria pumila (Teillier and Escobar 2013).

The genus is found from the Región Metropolitana to the Región de Magallanes. The

species G. pumila is a dioecious evergreen shrub, commonly known as “chaura or

mutilla del zorro” depending on the site where it is found. It has been observed that G.

pumila has a high degree of adaptability to extreme conditions, and can be found either

under snow in the winter or exposed to high temperatures and high UV radiation during

the summer. This species is found in the understory of the native Araucano forests, and

is present as a colonizing plant, being one of the first to appear in areas affected by

disasters (Luteyn 2002). It has symbiotic mycorrhizal associations (Medina et al. 2009)

that introduce a high ecological value in ecosystem restoration processes. G. pumila is

used by the native people of the Austral Patagonia, where it has been used for food and

medicines (Dominguez 2010). In natural populations the species shows a huge

phenotypic variation. Fruits have different forms (globose or ovoid) with sizes between

6 to 12 mm in diameter, and colours (white, pink or red). Additionally, the fruits are

very aromatic and tasty, flattened at the apex, fleshy, have intense flavour and contain

Page 31: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

22

different phytochemical (Villagra et al. 2014). The red fruits had average values of

monomeric anthocyanins of 5.94 ± 0.42 g per 100 g of sample, while pink and white

fruits had lower values of 3.85 ± 0.19 g and 0.626 ± 0.41g (Villagra et al. 2014).

Morphological differences could easily be detected between individuals within the

natural populations of G. pumila. All attributes of G. pumila previously mentioned,

make this species an interesting target for domestication, regarding its potential use as

functional food. Unfortunately, little is known about the propagation of the species out

of its natural habitat, cultural techniques, nutritional requirements and even less about

its genetic composition. Thus, this species remains as unexploited genetic resource. To

take advantage of this resource, it is necessary to develop basic studies concerning the

composition of its genetic diversity and how the populations are associated (Gepts

2004).

Molecular markers, such as microsatellites (SSRs), offer a powerful tool for population

genetic studies in G. pumila. These markers are highly polymorphic, inherited in a

Mendelian, codominant manner, are abundant in the genome, highly reproducible and

selectively neutral (Vendramin et al. 1996). For these reasons, microsatellites have been

widely used in various studies, such as molecular characterization of different species,

as well as for analyzing the diversity and genetic relationships within or among species

(Gostimsky et al. 2005). In the Ericaceae family these markers have been used to

perform molecular studies for example in Rhododendron genus: R. decorum (Wang et

al. 2009), R. delavayi (Wang et al. 2010), R. simsii (Wang et al. 2016) and R.

ferrugineum (Delmas et al. 2011). In the Vaccinium genus, these markers have been

useful for population genetic studies as well as cultivar identification (Boches et al.

2005, 2006, Garriga et al. 2013). At the same time studying phenotypes and genetic

diversity in natural populations and landrace collections is important for germplasm

Page 32: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

23

conservation, selection and breeding (Ahmad et al. 2010). This study aims to determine

the genetic diversity and population structure of G. pumila in its range of distribution in

order to generate scientific information that would underlie any domestication programs

and for the selection of potential genotypes in breeding programs. The final objective is

to develop sustainable exploitation of these underutilized genetic resources.

Methodology

2.1.1 Plant material

Leaves of 160 accessions of G. pumila were collected from 11 sectors distributed in

four of Chile´s administrative Regions: Maule, La Araucanía, Los Lagos and

Magallanes (Table 2.1). The sampled sites were georeferenced through the Global

Positioning System. Samples were collected from March to August 2013. Once

collected, leaf samples were placed in plastic bags and immediately conserved in ice;

then they were transported to the lab where they were placed at -80 ºC until they were

processed for DNA extraction.

Table 2.1 Description of sampled populations and subpopulation for G. pumila within its range in Chile

Regions Pop Samples

number

Latitude S Longitude

W

Maule

Reserva Radar Siete

Tazas

Parque Inglés (PI)

10

35º29'420

70º56'667

La Araucanía

Villarrica

Parque Araucaria (PT) 15 39º21'570 71'57'865

Playón (PZ) 7 39°34’463 71°28’509

El Mirador (EM) 22 39º23'209 71º58'006

Centro Sky (CK) 15 39º22'915 71º55'565

Conguillio (CN) 15 38º34’400 71º46’973

Los Lagos

Puyehue

Parque Nacional (PN) 9 40°40'538 72°07´103

Camino Puyehue (CH) 19 40°40’599 72°34’501

Magallanes

Punta Arenas

Punta Arenas (PA) 20 53°9’413 71°1’437

Reserva Magallanes

(RM)

11 53°10’490 71°10’120

Reserva Laguna Parrillar

(PL)

17 53º24'140 71º15'099

Page 33: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

24

Figure 2.1 Variability in morphometric characteristics in fruit of G. pumila as size, diameter and shape,

collected different site in volcano Villarrica, La Araucanía.

2.1.2 DNA extraction, PCR amplification, and microsatellite analysis

Two hundred milligrams of young leaves of G. pumila were placed in 2.0 ml tubes

(LabCon, Petaluna, California, USA) and cooled in liquid nitrogen. Leaf samples were

smashed with the help of Precellis 24 and Cryollys systems (Bertin Technologies,

France) at 6000 rpm with three cycles of 30 seconds each. Total DNA extraction of all

samples was performed using a modified CTAB (cetyltrimethylammonium bromide)

protocol (Doyle 1990, Carrasco et al. 2007). After that, all samples were precipitated

with 90% ethanol. The concentration of DNA was estimated using a NanoDrop

spectrophotometer (ND-1000 Peqlab, Erlangen, Germany). The DNA concentration was

of 200 ng/μl, the absorbance relationship 260/280 and 260/230 were 1.70 and 0.63,

respectively. The DNA integrity was checked through electrophoresis in agarose gel at

1% during 30 minutes at 100 volts. The Polymerase Chain Reaction (PCR) was carried

out with an initial denaturation step at 94°C for 5 min, followed by 30 cycles of

denaturation at 94 °C for 30 s, annealing temperature specific to each primer pair for 45

s, (Table 2.2) and extension at 72 °C for 45 s, followed by 8 cycles of 30 s at 94 °C,

annealing at 53 °C for 45 s, and extension at 72 °C for 45 s and a final extension at

72°C for 30 min. Each PCR reaction had 20 μl reaction mixture with 10 ng templates

DNA, 0.15 mM of each dNTP; 1 X Taq polymerase reaction buffer; 1.5 mM MgCl2;

0.025 μM forward primers; 0.1 μM reverse primer; 0.1 μM M13 primer and 0.35 U Taq

Page 34: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

25

DNA polymerase. PCR products were separated by capillary electrophoresis in an ABI

3130xl Prism Genetic Analyzer with POP-7 polymer (Life Technologies, Foster City,

CA). Allele sizes were automatically calculated with GeneMapper software v4.0.

Table 2.2 Characterization of six microsatellite loci and primer pair’s development for G. pumila

Locus

Primer sequences (5'-3')ᵃ

Repeat

motif

Allele

size

range

(bp)

Fluores

cent

dye

Ta(◦c) GenBank

accession nº

GP.10

F GGGTACGGCGTAGTGGTAAT

(AT)^8

323-327

VIC

60.5

KX719824 R TCGTACAAAACCGCCCTCAA

GP.12

F AGGATTATAGAGAGCCAGGTGGA (CTT)^4

198-201

NED

52.1

KX719825

R CAGAAGACGAAATCGAAGCCG

GP.13

F AGAGTAAGAGCTCTCTTCCGA (ATT)^4

161-278

NED

52.1

KX719826

R GCAGACTCGAATCGGCAGTA

GP.14

F GCATAGCCCGGTTGTCAAAC

(ACGC)^4

196-228

PET

52.1

KX719827 R ACCGAAAGATCCGACCATCG

GP.16

F GCTATTTCTAGGGCCGGACC

(AT)^6

281-283

FAM

52.1

KX719829 R GCACAATACATAGATTCTGGATCGA

GP.18

F ACCGAAAGATCCGACCATCG

(GCGT)^4

192-228

PET

52.1

KX719831 R GCATAGCCCGGTTGTCAAAC

Note: Ta (oC) = annealing temperature

2.1.3 Statistical analysis

Genetic diversity index was estimated for each microsatellite locus and each population.

POPGENE v 1.31 (Yeh et al. 1999) was used to calculate the observed number of

alleles (Na), effective number of alleles (Ne), gene flow (Nm), Shannon’s Information

index (I), percentage of polymorphic loci (PPL), observed heterozygosity (Ho) and the

expected heterozygosity (He). Also, the Test of Neutral Evolution of Ewens-Watterson

(Ewens 1972) was performed for all microsatellite loci. The inbreeding coefficient for

each locus (FIT FST FIS) (Weir and Cockerham 1984) was estimated by resampling

using the Jack-knife method with FSTAT v 2.9.3 (Goudet 1994), while the Factorial

Analysis of Correspondence (FCA) was determined using Genetix (Belkhir et al. 2003).

Polymorphic information content (PIC) and null allele (F Null) estimation were

calculated using CERVUS (Kalinowski et al. 2007). The null allele was calculated

using an iterative algorithm based on the observed and expected frequencies of various

Page 35: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

26

genotypes (Summers and Amos 1997). Deviation from the Hardy-Weinberg equilibrium

(EHW) and Linkage disequilibrium (LD) were determined with GenePop v 4.2

(Raymond and Rousset 1995) with the sequential Bonferroni correction carried out for

all SSR´s. The molecular analysis of variance (AMOVA) was applied to estimate the

variance components of individuals among and within the populations using GenAlex

software (Peakall and Smouse 2006). The Mantel Test (Mantel 1967) was also carried

out to determine the correlation between genetic and geographic distance. Analysis of

population Genetic Structure was carried out through the Bayesian clustering method

with the STRUCTURE v. 2.3.3 software (Evanno et al. 2005). For each analysis

different population genetic clusters (K=1-10) were evaluated with 10 runs per K value.

For each run, the initial burn-in period was set to 100.000 with 1.000.000 MCMC

iterations, under the admixture model. The ∆K measure obtained with STRUCTURE

HARVESTER (Earl and vonHoldt 2012) was used as an ad hoc quantity to detect the

rate of change in the log probability of data between successive K value and the

corresponding variance of log probabilities.

Results

2.1.4 Genetic diversity analysis for each locus SSR

Six polymorphic microsatellites markers were applied to 160 samples of G. pumila from

the different geographical Regions (Table 2.3). The average null allele frequency was

very low for all loci (mean of 0.10). The neutral test for all loci showed no evidence of

positive selection. Two SSR markers were in Hardy-Weinberg equilibrium (GP14 and

GP18). In the analysis of the 330 possible binary combinations, none showed significant

linkage disequilibrium (LD) after applying Bonferroni correction (p<0.00003046). The

observed number of alleles (Na) was different for all the markers with an average of

5.67, where the highest value in loci GP18 (10) and the lowest value in the loci GP12

Page 36: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

27

and GP16 (3). The mean of observed heterozygosity (Ho) and expected heterozygosity

(He) was 0.53 and 0.54, respectively. The range of observed heterozygosity moved from

0.03 (GP12) to 0.98 (GP10). Meanwhile the expected heterozygosity ranged from 0.34

(GP14) to 0.74 (GP13). Overall, Shannon index (I) for genetic diversity was 0.99,

fluctuating from 0.743 (GP12) to 1.46 (GP13). In addition, the polymorphism

information content (PIC) for all loci ranged from 0.32 (GP14) to 0.70 (GP13) with an

average of 0.47. The F-statistics analysis for all loci showed negative values for the loci

GP10, GP13, GP14, GP18 and two positive values for GP12 and GP 16. The average

Fis values were -0.16 which was significantly different from zero (P=0.0007). The Fst

value ranged from 0.04 (GP10) to 0.39 (GP16). This result evidenced the high genetic

cohesion of all populations. The overall gene flow (Nm) between all populations was

2.05 providing an estimate of the average number of migrations between the

populations. GP10 was the locus that showed the highest value of migration (4.71) and

GP16 showed the lowest values (0.31) (Table 2.3).

Table 2.3 Estimates of genetic diversity (per locus) in G. pumila based on six SSR loci. Na, observed

number of alleles, Ne, effective allele; I, Shannon index of genetic diversity; Ho, observed

heterozygosity; He, expected heterozygosity; Fis, inbreeding coefficient; Fit; inbreeding coefficient at the

total samples level; Fst, proportion of differentiation among populations; Nm, gene flow; PIC,

Polymorphism information content; HW; Hardy-Weinberg equilibrium; F(Null) null allele.

Locus Na Ne I Ho He Fis Fit Fst Nm PIC HW F

(Null)

GP10 4 2.34 0.97 0.98 0.57 -0.77 -0.69 0.04 4.71 0.48 * -0.28

GP12 3 2.04 0.74 0.03 0.51 0.93 0.93 0.11 1.15 0.39 * 0.88

GP13 6 3.92 1.47 0.94 0.74 -0.44 -0.25 0.13 1.34 0.70 * -0.13

GP14 8 1.52 0.76 0.39 0.34 -0.29 -0.14 0.11 1.70 0.32 n/s -0.1

GP16 3 2.17 0.84 0.25 0.54 0.24 0.54 0.39 0.31 0.43 * 0.34

GP18 10 2.12 1.18 0.61 0.53 -0.21 -0.15 0.04 3.12 0.50 n/s -0.09

Mean 5.67 2.35 0.99 0.53 0.54 -0.16 0.01 0.14 2.05 0.47 0.10

SD 2.875 0.817 0.282 0.380 0.129 0.258 0.246 0.055 0.650

Page 37: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

28

2.1.5 Genetic diversity analysis for each populations

The genetic analysis showed an average of 96.97 % of polymorphic loci, with almost all

the populations having 100% of polymorphism. The lowest percentage of polymorphic

loci (83%) was found in the Parque Inglés (PI) populations in the Región del Maule,

and Parque de Araucarias (PT) in the Región de la Araucanía (Table 2.4). The observed

heterozygosity ranged from 0.46 in Parque de Araucarias (PT) from Región de La

Araucanía, to 0.66 in the Reserva de Magallanes (RM) from Región de Magallanes and

Antártica. The lowest expected heterozygosity (He) value was found in the population

of Conguillio (CN) 0.37 and the highest in the population of Camino Puyehue (CH)

0.56, from Región de Los Lagos.

The mean values of observed heterozygosity (Ho=0.54) was higher than the expected

heterozygosity (He=0.47).The average Shannon diversity index (I) varied between

populations, showing an average of 0.75, and ranging from 0.57 (CN) to 0.91 (CH). The

highest level of genetic diversity was found in the Puyehue populations (CH) from the

Región de Los Lagos (He=0.56, I= 0.91). The lowest was found in Conguillio (CN) and

Parque Araucaria (PT) from the Región La Araucanía (He= 0.37, I= 0.57; He=0.38, I=

0.60) respectively. The inbreeding coefficient (Fis) was positive only for two

populations PN (0.03) and CH (0.16) respectively, with other populations showing

negative values. These ranged from -0.39 in the Playón site (PZ) of the Region La

Araucanía, to 0.16 in the site Camino Puyehue (CH) from the Región Los Lagos with an

average of -0.16.

The genetic diversity was estimated for each population, based on the amplified

polymorphic alleles by microsatellites markers. Over all populations 96.97% of the loci

showed polymorphism. The lowest percentage of polymorphic loci (83%) was shown in

the sector of Parque Ingles (PI) and Parque de Araucaria (PT) that belong to Maule and

Page 38: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

29

La Araucania Regions, respectively. While in the remaining populations, the average of

polymorphic loci was 100% (Table 2.4).

Table 2.4 Descriptive statistics over all loci for each population of G. pumila. Pop; populations where

samples were taken; Na, number of alleles; Ne; number of effective alleles; I, Shannon index; Ho,

observed heterozygotes; He, expected heterozygotes; Fis, Inbreeding coefficient; PPL, percentage of

polymorphic loci.

Regions Pop Na Ne I Ho He Fis PPL

Maule PI 3.16 2.07 0.77 0.62 0.45 -0.39 83 %

Araucanía

PT 2.50 1.75 0.60 0.46 0.38 -0.21 83 %

PZ 2.33 1.80 0.65 0.61 0.45 -0.39 100 %

EM 3.66 2.02 0.80 0.50 0.47 -0.06 100 %

CK 3.50 2.36 0.89 0.53 0.53 -0.008 100 %

CN 2.33 1.69 0.57 0.48 0.37 -0.32 100 %

Los Lagos

PN 2.16 1.90 0.68 0.54 0.52 0.03 100 %

CH 3.00 2.49 0.91 0.47 0.56 0.16 100 %

Magallanes

PA 2.83 1.89 0.72 0.49 0.45 -0.10 100 %

RM 2.83 2.14 0.79 0.66 0.50 -0.33 100 %

PL 3.16 2.08 0.84 0.58 0.51 -0.12 100 %

MEAN 2.86 2.02 0.75 0.54 0.47 -0.16 96.97%

2.1.6 Population structure and genetic differentiation

The analysis of molecular variance (AMOVA) showed that a high proportion of the

variation was observed within populations (94 %) with the remaining variance (6 %)

being attributed to genetic variation between populations (Table 2.5).

Table 2.5 Analyses of Molecular Variance (AMOVA) in different natural populations of G. pumila,

Chile

Sources of

Variation

df Sum of

Squares

Estimated

variance

Percentage

variation

Fixation

index

P value

Among Population 10 18.836 0.062 6%

Fst= 0.058

p=0.001 Within Population 149 148.562 0.997 94%

Total 159 167.398 1.059

The Mantel Test showed a significant positive correlation between genetic distance and

geographical distance (correlation coefficient Rxy= 0.718, p=0.010). These results

would suggest that there is isolation by distance. The organization between populations,

Page 39: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

30

based on Nei´s genetic distance revealed that the maximum value (0.55) was detected

between the populations of CN and RM, and the minimum genetic distance (0.017) was

between the populations of CN and PZ. The populations belonging to the regions of La

Araucanía to Magallanes, showed a high degree of admixture, based on results obtained

from Bayesian model-based Structure analysis of 160 samples of G. pumila.

Application of this model indicated that there are two genetic groups (Fig. 2.2).

Figure 2.2 Genetic groups estimated by Bayesian analysis. 1) ∆K estimates of the posterior probability

distribution of the data for a given K. Ln (K) obtained is a Structure analysis and an ad hoc quantity

distribution. 2) Estimated population structure and genetic cluster of the eleven populations of G. pumila

and 160 individuals with K=2 to 6.

Both groups were found in all collecting points except in PI in the Región del Maule.

While maximal ∆K was obtained at K=2, as the best number of clusters. The K= 3, 4, 5

and 6 were complex admixture, that did not fit with the criteria to be considered as

genetic groups. In order to further investigate the genetic distribution situation, a

factorial analysis of correspondence (AFC) between populations was used to generate a

scattergram. The first three factors explained 71.4 % of the variation. These analyses

again gave two genetic groups, as shown in Fig 2.3, with most of the individuals

Page 40: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

31

belonging to one genetic group, except in the case of Parque Inglés (PI) where most of

the individuals clustered in the second group.

Figure 2.3 Factorial analysis of correspondence between eleven populations of G. pumila of four regions

in Chile. The axe 1 (component 1) axe 2 (component 2) axe 3 (component 3) refer to 30.88%, 28.55% and

11.99% of the total variation, respectively.

These results can be explained considering that it is the northern population sampled

and to the influence of geographic distance on the genetic relations between all the

populations. The scattergram showed clearly the differentiate of all populations. The

cluster one composed the largest number of genotypes from all regions and was

homogenous in Magallanes, La Araucanía and Los Lagos. The Cluster two has

genotype only from the Región del Maule.

Page 41: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

32

Discussion

2.1.7 Genetic diversity of Gaultheria pumila

Microsatellites markers have been widely used to detect genetic variability in the

distinct species of Ericaceae family, especially in the Vaccinium genus (Boches et al.

2006, Hirai et al. 2010, Česoniene et al. 2013). However, this is the first time that this

kind of study, using SSR markers, has been carried out in any wild species from the

Gaultheria genus. Genetic diversity per locus in G. pumila showed that the observed

heterozygosity (Ho) ranged from 0.25 to 0.98 and expected heterozygosity ranged from

0.343 to 0.748. These results are similar to those reported in other Ericaceae, such as

Rhododendron simsii (Wang et al. 2016), R. ferrugineum (Delmas et al. 2011) and Erica

coccinea (Segarra-Moragues et al. 2009) where Ho and He showed large range of

variation.

In this study, the descriptive statistics for diversity genetic over all loci showed

moderate to high levels of genetic diversity for G. pumila (Na = 5.67, Ho= 0.538, He=

0.542, I= 0.993). This moderate value of genetic diversity could be due to factors such

as: number of individuals sampled and isolation by distance, or influential factors from

forest fragmentation (Kramer et al. 2008). These levels of variability are similar to those

reported in species with high economic and ornamental values such as in Prunus

pseudocerasus Lindl (Chen et al. 2015).

In Gaultheria fragantissima, Bantawa et al. (2011) found a high level of polymorphism

(68.52%) using RAPDS. This level of polymorphism in this related species was later

confirmed using ISSR markers ( 82.82%) (Apte et al. 2006).

In Gaultheria shallon (Wilkin et al. 2005), the percentage of polymorphic loci detected

with AFLP markers reached 89%. These similarities between G. pumila and its relatives

from the genus could be explained by the fact that they are all open pollinated species,

Page 42: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

33

normally inhabiting extreme ecological conditions (Luteyn, 2002) and this forced them

to retain a large genetic background in order to adapt to these conditions.

It is also important to mention that some species of Ericaceae, which also had high

genetic diversity in the wild, have already been cultivated and represent very important

commercial plants, such as in Vaccinium macrocarpon (Fajardo et al. 2013), o with

promising characteristic as V. meridionale (Ligarreto et al. 2011), as well in other

species such as grapevine (Vitis sp.) (Emanuelli et al. 2013), Prunus pseudocerasus

(Chen et al. 2015), P. salicina (Carrasco et al. 2012), Fragaria chiloensis (Carrasco et

al. 2007, 2013) and Vasconcellea chilensis (Carrasco et al. 2014). However, it is

important to note that all these species have been affected by a selection process and

improvement, highlighting certain characteristic features in each of them.

The inbreeding coefficient (Fis) shown in this study had an average negative value and

showed had an excess of heterozygosity that could be due to the immigration process or

absence of selfing (Balloux 2004). These negative values would imply that the excess of

heterozygosity is probably caused by the reproductive biology of the species, since it is

open pollinated. Also, genetic flow is due to the mobility of wild animals that eat fruit,

and then disperse their seeds, causing a permanent distribution. Through the four years

of this study, it was possible to observe visits of pollinator insects especially of genus

Bombus spp. (Montalva et al. 2011). The insects were seen around the plants, as well as

wild animals, such as rabbits (Camus et al. 2008), birds, lizards and foxes feeding on the

fruits. Precisely because this plant is commonly a food source of the foxes in the wild,

G. pumila is usually named in rural areas as “Mutilla del Zorro”.

Page 43: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

34

2.1.8 Population structure

The evaluated populations were sampled from four regions of the country, covering the

whole latitudinal distribution range of the species. The northernmost population was

collected from the Región del Maule while the southernmost population was from the

Región de Magallanes, the limits of the species distribution. The analysis of molecular

variance AMOVA showed a very high level of variation within population (94%),

indicating that most of the genetic variation is explained by the genetic exchange among

individuals, and not because of the genetic differentiation of the geographically isolated

groups. These results coincide with previously reported observations that found a high

level of phenotypic variation in natural populations of the species (Villagra et al. 2014).

This pattern of distribution of the genetic variability is very similar to that detected for

“maqui” Aristotelia chilensis (Salgado et al. 2017), a wild berry native to Chile which

is currently subject to an intense domestication process. Indeed, it was found in this

species that 95 % of the genetic variability was within population and 5 % between

populations; which is remarkably similar to G. pumila in Chile. Bayesian based analysis

of genetic grouping detected only two groups in G. pumila. The first group contains the

individuals from the populations belonging to La Araucanía, Los Lagos, and

Magallanes, where a consistent mixture of alleles suggested a constant dynamism which

does not allow the development of differentiation (Hartl and Clark 1998). The second

group comprises only one population Parque Inglés (PI) in the Región del Maule, the

population from the most northern limit of the species distribution. This can be

explained because population density here is lower and also the distribution is more

fragmented than in the southern populations, making this a different situation to the

more southern population and maybe the extreme edge of the species distribution. Also,

the positive correlation between distance and genetic flow, detected by the Mantel Test,

suggest a lower genetic connectivity of this small population to the others, which are

Page 44: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

35

more closely packed in the southern Region sampled. These results show that the

populations that belong to extreme Regions share few alleles, where they tend to

differentiate. Consequently, the isolation of these populations can be affected by factors

such as pollen dispersal, plant longevity, life forms, ranges and geographic variations

(Hamrick and Godt 1996, Ramanatha Rao and Hodgkin 2002). This reduces their

abundance and frequency, affecting the genetic connectivity (Hamrick and Godt 1996).

In this case, each region that was sampled differs in the characteristics such as latitude,

altitude and temperature. These results are in agreement with the positive relation that

the Mantel Test presented, the results shown that there is isolation by distance, and

precisely those populations represent one of the limits of its distribution. From these

results it is postulated that the genetic diversity contained in G. pumila is uniformly

distributed through most to the distribution range in Chile. This organization of the

genetic variability allows the identification of a strategy to select those genotypes that

have desirable agronomic traits of interest, and that can be considered in future breeding

work aimed at domestication.

.

Page 45: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

36

Conclusion

Microsatellite markers detected genetic diversity in G. pumila from eleven wild

populations along its distribution range in Chile. The species shows a moderate to high

level of genetic diversity and a very low level of genetic fragmentation, indicating a

high degree of genetic connectivity and gene exchange throughout its geographical

distribution. These results can provide useful information to continue the domestication

programs already initiated in the species, in order to support the selection of individuals

from most genetically rich populations.

Page 46: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

37

Literature cited

Ahmad, F., A. I. Khan, F. S. Awan, B. Sadia, H. A. Sadaqat, and S. Bahadur. 2010.

Genetic diversity of chickpea (Cicer arietinum L.) germplasm in Pakistan as

revealed by RAPD analysis. Genet. Mol. Res. 9: 1414–1420.

Apte, G. S., R. A. Bahulikar, R. S. Kulkarni, M. D. Lagu, B. G. Kulkarni, H. S.

Suresh, P. S. N. Rao, and V. S. Gupta. 2006. Genetic diversity analysis in

Gaultheria fragrantissima Wall. (Ericaceae) from the two biodiversity hotspots in

India using ISSR markers. Curr. Sci. 91: 1634–1640.

Balloux, F. 2004. Heterozygote excess in small populations and the heterozygote-

excess effective population size. Evolution. 58: 1891–1900.

Bantawa, P., A. Das, P. D. Ghosh, and T. K. Mondal. 2011. Detection of natural

genetic diversity of Gaultheria fragrantissima landraces by RAPDs: An

endangered woody oil bearing plant of Indo-China Himalayas. Indian J.

Biotechnol. 10: 294–300.

Belkhir, K., P. Borsa, L. Chikhi, N. Raufaste, and F. Bonhomme. 2003. Genetix:

4.05 Logiciel sous WindowsTM pour la genetique des populations. In: U. d.

Montpellier Ed. Montpellier, France.

Boches, P., N. V. Bassil, and L. Rowland. 2006. Genetic diversity in the highbush

blueberry evaluated with microsatellite markers. J. Am. Soc. Hortic.Sci. 131: 674–

686.

Boches, P. S., N. V. Bassil, and L. J. Rowland. 2005. Microsatellite markers for

Vaccinium from EST and genomic libraries. Mol. Ecol. Notes. 5: 657–660.

Camus, P., S. Castro, and F. Jaksic. 2008. European rabbits in Chile : the history of a

biological invasion. Historia Santiago. 4: 1–24.

Page 47: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

38

Carrasco, B., C. Díaz, M. Moya, M. Gebauer, and R. García-González. 2012.

Genetic characterization of Japanese plum cultivars (Prunus salicina) using SSR

and ISSR molecular markers. Cienc. e Investig. Agrar. 39: 533–543.

Carrasco, B., M. Garc, P. Rojas, G. Saud, R. Herrera, and J. B. Retamales. 2007.

The Chilean strawberry [ Fragaria chiloensis ( L .) Duch .]: genetic diversity and

structure. J. Am. Soc. Hortic. Sci. 132: 501–506.

Carrasco, B., R. García-Gonzáles, C. Díaz, P. Ávila, P. Cáceres, G. A. Lobos, H.

Silva, and P. D. S. Caligari. 2014. Genetic and morphological characterization of

the endangered Austral papaya Vasconcellea chilensis (Planch. ex A. DC.) Solms.

Genet. Resour. Crop Evol. 61: 1423–1432.

Carrasco, B., J. B. Retamales, K. Quiroz, M. Garriga, and P. D. S. Caligari. 2013.

Inter Simple Sequence Repeat markers associated with flowering time duration in

the Chilean Strawberry ( Fragaria chiloensis ). J. Agr. Sci.Tech. 15: 1195–1207.

Česoniene, L., R. Daubaras, A. Paulauskas, J. Žukauskiene, and M. Zych. 2013.

Morphological and genetic diversity of European cranberry (Vaccinium oxycoccos

L., Ericaceae) clones in Lithuanian reserves. Acta Soc. Bot. Pol. 82: 211–217.

Chen, T., X. Huang, J. Zhang, Q. Chen, Y. Liu, H. Tang, D. Pan, and X. Wang.

2015. Genetic diversity and population structure patterns in Chinese cherry

(Prunus pseudocerasus Lind) landraces. Plant Mol. Biol. Report. 34: 1–14.

Delmas, C. E. L., E. Lhuillier, A. Pornon, and N. Escaravage. 2011. Isolation and

characterization of microsatellite loci in Rhododendron ferrugineum (Ericaceae)

using pyrosequencing technology. Am. J. Bot. 98: 120–122.

Dominguez, E. 2010. Flora de interés etnobotánico usada por los pueblos originarios :

Aónikenk , Selk ’ nam , Kawésqar , Yagan y Haush en la Patagonia Austral.

Page 48: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

39

Dominguezia. 26: 19–29.

Doyle, J. J. 1990. Isolation of plant DNA from fresh tissue. Focus. 12: 13–15.

Earl, D. A., and B. M. vonHoldt. 2012. STRUCTURE HARVESTER: A website and

program for visualizing STRUCTURE output and implementing the Evanno

method. Conserv. Genet. Resour. 4: 359–361.

Emanuelli, F., S. Lorenzi, L. Grzeskowiak, V. Catalano, M. Stefanini, M. Troggio,

S. Myles, J. M. Martinez-Zapater, E. Zyprian, F. M. Moreira, and M. S.

Grando. 2013. Genetic diversity and population structure assessed by SSR and

SNP markers in a large germplasm collection of grape. BMC Plant Biol. 13: 13–

39.

Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of

individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14:

2611–2620.

Ewens, W. J. 1972. The sampling theory of selectively neutral alleles. Theor. Popul.

Biol. 3: 87–112.

Fajardo, D., J. Morales, H. Zhu, S. Steffan, R. Harbut, N. Bassil, K. Hummer, J.

Polashock, N. Vorsa, and J. Zalapa. 2013. Discrimination of American cranberry

cultivars and assessment of clonal heterogeneity using microsatellite markers.

Plant Mol. Biol. Report. 31: 264–271.

Garriga, M., P. A. Parra, P. D. S. Caligari, J. B. Retamales, B. A. Carrasco, G. A.

Lobos, and R. Garcia-Gonzales. 2013. Application of inter-simple sequence

repeats relative to simple sequence repeats as a molecular marker system for

indexing blueberry cultivars. Can. J. Plant Sci. 5: 913–921.

Gepts, P. 2004. Crop domestication as a long-term selection experiment. Plant Breed.

Page 49: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

40

Rev. 24: 1–23.

Gostimsky, S. A., Z. G. Kokaeva, and F. A. Konovalov. 2005. Studying plant genome

variation using molecular markers. Russ. J. Genet. 41: 378–388.

Goudet, J. 1994. FSTAT ( Version 1 . 2 ): A computer program to calculate F-

Statistics. J. Hered. 86: 485–486.

Hamrick, J. L., and J. W. Godt. 1996. Effects of life history traits on genetic diversity

in plant species. Philos. Trans. R. Soc. London Biol. Sci. 351: 1291–1298.

Hartl, D. L., and A. G. Clark. 1998. Principles of population genetics. Sinauer

Associates. Inc. Publishers. Massachusetts, USA.

Hermann, P. M., and V. N. Cambi. 2006. Gaultheria nubigena ( Ericaceae ), una

especie rara en la Argentina. Bol. Soc. Argent. Bot. 41: 317–322.

Hirai, M., S. Yoshimura, T. Ohsako, and N. Kubo. 2010. Genetic diversity and

phylogenetic relationships of the endangered species Vaccinium sieboldii and

Vaccinium ciliatum (Ericaceae). Plant Syst. Evol. 287: 75–84.

Kalinowski, S. T., M. L. Taper, and T. C. Marshall. 2007. Revising how the

computer program CERVUS accommodates genotyping error increases success in

paternity assignment. Mol. Ecol. 16: 1099–1106.

Kramer, A. T., J. L. Ison, M. V. Ashley, and H. F. Howe. 2008. The paradox of

forest fragmentation genetics. Conserv. Biol. 22: 878–885.

Ligarreto, G. A., M. del P. Patiño, and S. V Magnitskiy. 2011. Phenotypic plasticity

of Vaccinium meridionale (Ericaceae) in wild populations of mountain forests in

Colombia. Rev. Biol. Trop. 59: 569–583.

Liu, W.-R., W.-L. Qiao, Z.-Z. Liu, X.-H. Wang, R. Jiang, S.-Y. Li, R.-B. Shi, and

G.-M. She. 2013. Gaultheria: Phytochemical and pharmacological characteristics.

Page 50: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

41

Molecules. 18: 12071–12108.

Luteyn, J. L. 2002. Diversity, adaptation, and endemism in neotropical Ericaceae:

biogeographical patterns in the Vaccinieae. Bot. Rev. 68: 55–87.

Mantel, N. 1967. The detection of disease clustering and a generalized regression

approach. Cancer Res. 27: 209–220.

Medina, J., F. Davinson, R. Carrillo, and M. Rodriguez. 2009. Simbiosis micorrícica

presente en Nothofagus dombeyi (Mirb.) Oerst y Gaultheria pumila (L. fil)

Middleton. Especies colonizadoras de escoriales volcánicos en la Región de la

Araucanía, Chile. I Congr. Nac. Conserv. la Biodivers. a través su uso, 23 al 25

Noviembre 2009, Sucre Boliv. 1–10.

Middleton, D. J. 1992. A chemotaxonomic survey of flavonoids and simple phenols in

the leaves of Gaultheria L. and related genera (Ericaceae). Bot. J. Linn. Soc. 110:

313–324.

Middleton, D. J. 1993. A systematic survey of leaf and stem anatomical characters in

the genus Gaultheria and related genera (Ericaceae ). Bot. J. Linn. Soc. 113: 199–

215.

Montalva, J., L. Dudley, M. K. Arroyo, H. Retamales, and A. H. Abrahamovich.

2011. Geographic distribution and associated flora of native and introduced

bumble bees (Bombus spp.) in Chile. J. Apic. Res. 50: 11–21.

Mukhopadhyay, M., P. Bantawa, T. K. Mondal, and S. K. Nandi. 2016. Biological

and phylogenetic advancements of Gaultheria fragrantissima: Economically

important oil bearing medicinal plant. Ind. Crops Prod. 81: 91–99.

Peakall, R., and P. Smouse. 2006. GENALEX 6: genetic analysis in Excel. Population

genetic software for teaching and research. Mol. Ecol. Notes. 6: 288–295.

Page 51: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

42

Ramanatha Rao, V., and T. Hodgkin. 2002. Genetic diversity and conservation and

utilization of plant genetic resources. Plant Cell. Tissue Organ Cult. 68: 1–19.

Raymond, M., and F. Rousset. 1995. GENEPOP (Version 1.2): population genetics

software for exact tests and ecumenicism. J. Hered. 86: 248–249.

Salgado, P., K. Prinz, R. Finkeldey, C. C. Ramírez, and H. Vogel. 2017. Genetic

variability of Aristotelia chilensis (“maqui”) based on AFLP and chloroplast

microsatellite markers. Genet. Resour. Crop Evol. 1–9.

Segarra-Moragues, J. G., S. Donat-Caerols, and F. Ojeda. 2009. Isolation and

characterization of microsatellite loci in the Cape fynbos heath Erica coccinea

(Ericaceae). Conserv. Genet. 10: 1815–1819.

Summers, K., and W. Amos. 1997. Behavioral, ecological, and molecular genetic

analyses of reproductive strategies in the Amazonian dart-poison frog,

Dendrobates ventrimaculatus. Behav. Ecol. 8: 260–267.

Teillier, S., and F. Escobar. 2013. Revisión del género Gaultheria L. (Ericaceae) en

Chile. Gayana Botánica. 70: 136–153.

Vendramin, G., L. Lelli, P. Rossi, and M. Morgante. 1996. A set of primers for the

amplification of 20 chloroplast microsatellites in Pinaceae. Mol. Ecol. 5: 595–598.

Villagra, E., C. Campos-Hernandez, P. Caceres, G. Cabrera, Y. Bernardo, A.

Arencibia, B. Carrasco, P. D. S. Caligari, J. Pico, and R. Garcia-Gonzales.

2014. Morphometric and phytochemical characterization of chaura fruits

(Gaultheria pumila): A native Chilean berry with commercial potential. Biol. Res.

47: 1–8.

Wang, N., Z. C. Qin, J. B. Yang, and J. L. Zhang. 2010. Development and

characterization of 15 microsatellite loci for Rhododendron delavayi franch.

Page 52: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

43

(Ericaceae). HortScience. 45: 457–459.

Wang, S., Z. Li, W. Jin, F. Xiang, J. Xiang, and Y. Fang. 2016. Development and

characterization of polymorphic microsatellite markers in Rhododendron simsii

(Ericaceae). Plant Species Biol. 1: 1–4.

Wang, X., Y. Huang, and L. Cgun-lin. 2009. Isolation and characterization of twenty-

four microsatellite loci for Rhododendron decorum Franch ( Ericaceae ).

HortScience. 44: 2028–2030.

Weir, B. S., and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of

population structure. Evolution. 38: 1358–1370.

Wilkin, J. E., S. F. Shamoun, C. Ritland, K. Ritland, and Y. A. El-Kassaby. 2005.

Population genetics of Gaultheria shallon in British Columbia and the implications

for management using biocontrol. Can. J. Bot. 83: 501–509.

Yeh, F., Y. Rong-cai, T. Boyle, and M. W. Freeware. 1999. POPGENE, Microsoft

Window-based freeware for population genetic analysis. v1.31. Mol. Biol.

Biotechnol. Center, Univ. Alberta, Edmonton, Alberta, Canada. 1–29.

Page 53: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

44

Pico-Mendoza et al. – Genetic diversity

GENETIC DIVERSITY AND POPULATION STRUCTURE OF GAULTHERIA

PUMILA LF. (ERICACEAE)

Documento enviado a la revista Genetic Resources and Crop Evolution

Page 54: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

45

3 Capítulo III

In vitro propagation of Gaultheria pumila (Ericaceae), a Chilean native

berry with commercial potential

Abstract

A micropropagation protocol for multiplication of G. pumila Lf (Ericaceae), a wild

Chilean native berry, was developed. Young shoots collected during the growing season

(October to December) belong to a wild population on the Villarrica Volcano, in Región

de la Araucanía, Chile. Nodal segments were used for in vitro establishment after

testing several disinfection treatments with different concentrations of sodium

hypochlorite. In order to evaluate the best regeneration media during in vitro

establishment, disinfected explants were placed onto WPM100 supplemented with a

range of concentrations of 2-iP. Disinfection with 1% of sodium hypochlorite for 40

minutes, followed by a second disinfection round with 2% of sodium hypochlorite for

25 minutes and cultivation on MS medium supplemented with 2.0 mgL-1

of 2-iP gave

the highest efficiency of disinfected plants. In the propagation stage, the highest

multiplication rates were obtained when 1mgL-1

Zeatin was added to the basal

WPM100 medium. In vitro rooting and pre-acclimation were better when elongated

plants were cultivated on WPM100 medium supplemented with 3 mgL-1

of naphthalene

acetic acid. This general protocol will be useful to propagate genotypes of this native

species, being also an important tool towards its domestication and commercial use.

Keywords: In vitro culture, native berries, multiplication, rooting

Page 55: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

46

Introduction

Gaultheria pumila, belong to the family Ericaceae, is a wild berry species native from

Chile. It is commonly known as chaura or mutilla del zorro, because its fleshy,

attractive fruits are eaten by small mammalians and other animals. In addition, G.

pumila has several attributes, such as high diversity of fruits, morphometric traits,

adaptability to several ecological conditions and high content of polyphenols

(Middleton 1992, Villagra et al. 2014).

All of these properties make this species very attractive for cultivation as a commercial

plant, particularly taking advantages of its nutritional potentials as a functional food

(Lasekan 2014) as well as its ecological plasticity. As many other Chilean native fruits,

G. pumila has a rich and diversified composition of bioactive compounds with potential

health benefits (Schreckinger et al. 2010, Ruiz et al. 2013).

Chaura has been used as a food and a medicinal plant by the indigenous people in Chile

like the Aónikenk, Selk’nam, Kawésqar, Yagan and Haush people, from Southern

Chilean Patagonia (Dominguez 2010). In species of the genus Gaultheria, several

attractive compounds have been identified such as polyphenols (Middleton 1992),

anthocyanins (Villagra et al. 2014) and essential oils (Bantawa et al. 2011). Also, it has

been shown that species from this genus can show anti-inflammatory, anti-oxidative,

antibacterial and analgesic activities (Liu et al. 2013).

However, propagation of the Gaultheria genus outside the wild has been hard to

achieve. In G. fragrantissima Wall, a species with high content of methyl salicylate rich

essentials oils, in which there is an increasing commercial interest, they had to develop

efficient propagation technologies before using it on a commercial scale (Ranyaphi et

al. 2012). Regarding G. pumila, the species is mainly reproduced by seeds in the wild.

Page 56: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

47

The seeds are small and each fruit contains around of 50 seed per fruit. However,

preliminarily we have determined that the germination potential of seed seems low.

The species can also be propagated asexually by underground stems forming shoots

during the warmer seasons, thus producing new plant colonies around the original plant.

However, no information has been previously generated for asexual propagation of G.

pumila under nursery conditions.

In vitro culture techniques are very suitable for propagating high volumes of plants in a

limited period. Tissue culture may be defined as the aseptic culture and isolation of

cells, tissues, organs or whole plants under controlled nutritional and environmental

conditions (Höxtermann 1997, Thorpe 2007).

Plant tissue culture has been successfully used to obtain disease free plants, germplasm

conservation, massive propagation of selected genotypes, genetic transformation,

embryo rescue and some others important applications (García-Gonzáles et al. 2010,

González-Benito and Martín 2010). The micropropagation of plants through in vitro

culture has five fundamental stages: Stage 0: preparation of donor plant, Stage I:

introduction and establishment, Stage II: propagation of plants, Stage III: rooting and

explant preparation for the ex vitro conditions and Stage IV: ex vitro adaptation or plant

acclimatization (García-Gonzáles et al. 2010).

Considering the efficiency of in vitro propagation techniques, their application in G.

pumila would be ideal for providing a fast and efficient propagation while maintaining a

high health status. One of the more relevant applications of tissue culture in plants is the

support of domestication projects of non-cultivated plants (Gepts 2004a, 2004b) since it

is necessary to produce enough plants from selected genotypes in a limited period in

order to evaluate the agronomic performance under cultivated conditions.

Page 57: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

48

Micropropagation is also needed to develop disease free germplasm from the studied

species and to rapidly scale-up for commercial exploitation (García-Gonzáles et al.

2010). This study aimed to develop a general protocol for micropropagation of G.

pumila, addressing the different steps of the tissue culture process.

Methodology

3.1.1 Plant material

Plants of G. pumila were selected from the sector of Parque Nacional Villarrica, Región

La Araucanía S: 39°34’463, W: 71°28’509. The plants were transported with soil in a

humid cooler box to the nursery of the Universidad Católica del Maule, Chile. Once in

the greenhouse, the plants were planted in five pounds pots containing soil brought from

the sampling location. The mother plants were watered daily with 200 ml water per

plant. No fertilizer or pesticides were used during preparation of the plants. Light

pruning was done to eliminate older branches in order to stimulate the formation of

newa shoots. After shoot production, healthy, 10 cm long explants were collected and

prepared in 1.0 cm pieces containing two to three vegetative buds.

3.1.2 Experimental design and statistical analysis

For the disinfection step six treatments were tested (Table 3.1). Each treatment had

three repetitions with seven nodal segments per replication. Only one nodal segment

was planted per flask. The effects of each treatment on the number of contaminated

explants and the number of regenerated plants was evaluated five weeks after planting

to choose the best disinfection protocol.

To successfully establish the plant tissue cultures the effects of the basal medium,

cytokynin type and concentration on plantlet recovery were studied. Twenty four

treatments with three replicates and fifteen explants per replication were assayed. Five

nodal segments were planted per plant in this experiment (Annex 1).

Page 58: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

49

For the in vitro multiplication step, twelve treatments combining the interaction

between auxins and citokinins to obtain the best multiplication rate were tested (Annex

2). For this study, each treatment was replicated four times with five nodal explants per

replication. Only one nodal segment was planted per culture flask. The effect of the

different treatments was considered in order to choose the best micropropagation

condition.

For in vitro rooting and plantlet preparation before acclimatization, the effect of

different auxins at different concentrations on plant development and in vitro rooting

was evaluated. Twelve treatments were evaluated, and each treatment included three

replications and ten explants per replication (Annex 3).

Statistical analysis were performed using the InfoStat statistic software (Balzarini et al.

2008). Normality of the data was determined by the Q-Q plot graphic and corroborated

with Shapiro-Wilks test of residues. For detecting the best treatment an analysis of

variance (ANOVA) and Tukey HSD test with 95% confidence level was done in the

case of the date had a normal distribution of the variance. For those data, not complying

with the normality assuptions a Kruskal-Wallis test with a level of significance of 95%

was performed.

3.1.3 General environmental conditions

For all experiments in this study the basal media was supplemented with 30 g L-1

of

sucrose and 8 gL-1

of Agar. The pH of the media was adjusted to 5.7 before sterilization

by autoclaving for 20 minutes at 1 kg cm-2

and 121oC. For all the experiments described

above, the cultures were transferred into a culture room at 24±1°C and 12 hours light 12

hours dark photoperiod under cool white fluorescent lamps (60 μmol m-2

s-1

).

Page 59: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

50

3.1.4 Influence of the disinfection protocol and plant growth regulators on

explant decontamination and plant development during in vitro

establishment

3.1.5 Disinfection and establishment

Explants of 1.0 cm length containing two to three vegetative buds were used. A

previous wash of the selected explants was done with distilled water and common

detergent for twenty minutes, followed with a deep wash in sterile distilled water (500

ml) with three drops of Tween 20 for 20 min. After that the explants were three times

washed with sterile distilled water to eliminate any detergent residues under a laminar

flow cabinet. Once washed, the disinfection treatments were applied as follows: A first

wash with 1% (v/v) sodium hypochlorite for 30 or 40 min, depending on the

disinfection treatment; a second wash with 2% sodium hypochlorite for 25 min. After

disinfection, the explants were washed three times with sterile distilled water. Oxidized

tissues were removed from the explants before planting on semisolid Murashige and

Skoog (MS) medium (Murashige and Skoog 1962), supplemented with different

concentrations of 2-iP (0.5, 1.0 and 2.0 mgL-1

). The general designs of the experiments

are shown in table 3.1. The Final evaluation of the experiment was done five weeks

after planting in each treatment.

Table 3.1 Treatments applied for disinfection and in vitro establishment of G. pumila explants

Treatments T1 T2 T3 T4 T5 T6

2-iP (mg/L-1) + Murashige and Skoog

(MS) medium

0.5

1.0

2.0

0.5

1.0

2.0

Concentration of sodium hypochlorite

(%v/v) and disinfection time (minutes)

1% : 40

2% : 25

1% : 40

2% : 25

1% : 40

2% : 25

1% : 30

2% : 25

1% : 30

2% : 25

1% : 30

2% : 25

3.1.6 Plant formation and stabilization of in vitro plantlets

After selecting the best disinfection and in vitro establishment condition, it was

necessary to stabilize the behaviour of the established explants. The type of cytokinin (2

isopentenil adenine, 2-iP; 6-Bencil aminopurine, BAP; Zeatin, Zea) as plant growth

Page 60: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

51

regulator and their concentration (0.5, 1.0 or 2.0 mgL-1

) on the morphogenic response of

established explants were evaluated.

Each growth regulator in different concentration was added to four different basal

media: full strength MS (MS100), half strength MS medium (MS50), full strength

WPM (WPM100) and half strength WPM medium (WPM50). Only explants coming

from the selected disinfection and in vitro establishment protocol were used in this

experiment. Media preparation and sterilization were developed as described above. All

treatments were grown under the environmental conditions previously described

(Section 3.1.3). For selecting the best treatment, the following morphogenic responses

were evaluated, such as: number of shoot , percentage of shoot, shoots formation per

explant, average shoot length (mm) and number of leaves.

3.1.7 Effect of plant growth regulator interaction on the in vitro multiplication of

G. pumila

For the multiplication step, all in vitro plants were grown in the best stabilization

medium for two cycles of four weeks each. Plants coming from this condition were

selected and prepared as nodal explants harbouring at least one bud. The explants were

then planted on the WPM100 medium with different concentrations of IBA combined

with Zeatin or 2-iP, to obtain the best multiplication rate. The environmental conditions

for this experiment were as indicated above (Section 3.1.3). After six weeks of culture

the effect of the different treatments on shoot number per explant, shoot length, were

evaluated for selecting the best multiplication conditions.

3.1.8 Root development in vitro

In vitro rooting and preparation of the individual plantlet is critical to obtain high rates

of plant survival during the ex vitro phase. The effect of the auxins such as Indolbutiric

acid (IBA), Indol-3-acetic acid (IAA) and Naftalenacetic acid (NAA), added at different

Page 61: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

52

concentrations to the basal WPM medium, on rooting and plant development was

tested. All treatments were kept under the same environmental conditions described for

the previous experiments (Section 3.1.3) for 40 days before evaluation. The percentages

of roots, roots per explant and calli formation, were evaluated for selecting the best in

vitro rooting conditions.

Results

3.1.9 Effect of the disinfection protocol and plant growth regulators on explant

decontamination and plantlet development during the in vitro establishment

3.1.10 Disinfection and establishment

The highest disinfection efficiency (p=0.01) was obtained when the explants were

exposed to disinfection treatment T3 (disinfection with 1% sodium hypochlorite for 40

minutes, followed by a second wash with 2% sodium hypochlorite for 25 minutes and

cultivation on Murashige and Skoog medium (MS) supplemented with 2.0 mgL-1

of 2-

iP). Using this treatment only 5% of the explant was contaminated (Fig. 1). Fungi and

bacteria were the main contaminants observed both associated to the explants or the

medium. However, the highest morphogenic response was seen in treatment two, where

the 2-iP was reduced to 1 mgL-1

compared to treatment three, but the disinfection

protocol was the same. Using this 2-iP concentration shoot production per explant

increased up to 56%, which was statistically different to the rest of the treatments

(p=<0.01).

Page 62: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

53

Figure 3.1 In vitro establishment of G. pumila. Efficiency of the different protocols tested during in vitro

establishment on disinfection protocols (Percentage of contaminated explants) and morphogenic response

(percentage of shoot formation per treatment) in G. pumila. Below, behavior of explants during in vitro

disinfection and establishment; A: shoot formation from a decontaminated explant; B: oxidized explant

seven days after disinfection and culture on the regeneration medium; C: Explant contaminated with

fungi.

3.1.11 Plantlet formation and stabilization in vitro

The stabilization of the established explants after disinfection was necessary to

homogenize their morphogenic response. It was found that cultivation of the disinfected

explants on treatment 18 (WPM100 +1.0 mgL-1

Zeatin) produced more shoots than the

rest of the treatments (p=0.01), this was followed by treatment 24 (WPM50 + 1.0 mgL-1

Zeatin). In general, shoots developed very well in these two treatments, had expanded

leaves at each node. Shoots also grew more in T18 (8.3± 4.67 mm of shoot length) with

more leaves per shoots (4.2±2.2 leaves per shoot) (Table 3.2).

Page 63: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

54

Table 3.2 Effect of culture media and plant growth regulators on plant morphogenesis of G. pumila. Only

treatments with the most explants with shoot formation are shown. Different letters in the same column

mean significant differences between treatments according to the Kruskal-Wallis test (p ≤0.05).

Treatments Number of

shoot

evaluated

% Shoot Shoots

formation per

explant

Average shoot

length (mm)

Number of

leaves/shoot

T13 (WPM100%+2-iP 1.0 mg L-1) 2 4 2.0±1.0a 7.5±6.3b 4.5±6.3b

T14 ( WPM100%+2-iP 2.0 mg L-1) 7 16 2.1±1.4a 13.8±4.4b 6.7±1.9ab

T16 ( WPM100%+BAP2.0 mg L-1) 3 7 1.0±0.0a 24.3±10a 11.0±6.5a

T18 (WPM100%+Zeatin 1.0 mg L-1) 21 47 2.1±1.0a 8.3±2.9b 4.2±2.2b

T23 ( WPM50%+Zeatin 0.5 mg L-1) 7 16 1.1±0.3a 9.7±3.3b 1.7±1.7b

T24 (WPM50%+Zeatin 1.0 mg L-1) 13 29 2.5±1.0a 11.5±3.9b 6.0±2.6ab

p= values >0.05 <0.01 <0.01

3.1.12 Effects of the interaction of auxin and cytokinin on the morphogenic

response during in vitro multiplication

Micropropagation was significantly influenced by the different treatments tested

(p=<0.05). When placed on treatment T1 (WPM100 + 1.0 mgL-1

Zeatin), an average of

six shoots per explant was obtained with an average shoot length of 4.8 cm. Treatment 2

(WPM100 2.0 mgL-1

Zeatin) produced an average of 3.3 cm of shoot length per explant,

with 4.3 shoots per explant (Table 3.3). After six weeks of culture, the regenerated

shoots showed expanded leaves and grew vigorously (Fig. 3.2). Oxidation of the explant

was very low in all the experiment with no statistical differences between treatments

(p= >0.05).

Page 64: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

55

Table 3.3 Morphogenic response of G. pumila in different culture media, concentration and combination

of plant growth regulators. Different letters in the same column refer to significant differences between

treatments. Tukey HSD test (p≤0.05).

Treatments Average of shoot

length (cm)

Number of new shoots per

explant

T1(WPM100+1mgL-1 Zeatin) 4.8±1.0 a 6.0±0.8 a

T2(WPM100+2mgL-1 Zeatin) 3.3±1.0 b 4.3±0.5 bcd

T3(WPM100+1mgL-1 Zeatin +0.25 mg L-1 IBA) 2.3±0.5 cd 3.3±0.5 de

T4(WPM100+2mgL-1 Zeatin +0.25 mg L-1 IBA 1.5±0.6 de 2.8±1.0 e

T5(WPM100+1mgL-1 Zeatin +0.5 mg L-1 IBA) 2.5±0.6 bc 3.0±0.0 e

T6(WPM100+2mgL-1 Zeatin +0.5 mg L-1 IBA) 2.5±0.6 bc 3.5±1.3 cde

T7(WPM100+2mgL-1 2-iP) 3.0±0.8 bc 4.5±0.6 bc

T8(WPM100+3mgL-1 2-iP) 2.8±0.6 bc 4.8±1.0 b

T9(WPM100+2.0mgL-1 2-iP + 0.25 mgL-1 IBA) 1.3±1.0 e 3.3±0.5 de

T10(WPM100+3mgL-1 2-iP + 0.25 mgL-1 IBA) 1.0±0.0 e 2.8±0.5 e

T11(WPM100+2mgL-1 2-iP +0.5 mgL-1 IBA) 0.8±0.5 e 2.5±0.6 e

T12(WPM100+3mgL-1 2-iP +0.5 mgL-1 IBA) 0.8±0.5 e 2.8±0.5 e

p value <0.01 <0.01

Figure 3.2 Response of nodal segments to different multiplication treatments in G. pumila.

3.1.13 Evaluation of auxins on the in vitro rooting and pre-acclimatization of

individualized plantlets

Addition of auxins to the basal medium increased significantly in the root formation. At

the same time, addition of 3 mgL-1

of NAA induced the highest rooting efficiency (47%

rooted explants, p=0.01), followed by the addition of 4 mgL-1

of NAA that produced 40

% of explants rooting, with a mean of 1.23 and 1.13 root per explant in the treatments

11(WPM +3 mgL-1

NAA) and 12 (WPM +4 mgL-1

NAA) respectively (Table 3.4).

However, the treatments T1, T2, T3, T4, T5, T6 and T8, did not produce roots. Callus

formation was induced when media were supplemented with NAA and IBA.

Page 65: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

56

Table 3.4 Root formation in G. pumila induced by different media and plant growth regulators. sd:

without response. Different letters within of same column indicate significant differences between

treatments. Kruskal-Wallis test (p≤0.05).

Treatments Percentage of

roots

Roots per explant Calli

formation

T1(WPM +1 mgL-1 IBA) sd sd 0.40±0.50bc

T2 (WPM +2 mgL-1IBA) sd sd 0.17±0.38c

T3(WPM +3 mgL-1IBA) sd sd 0.47±0.51b

T4(WPM +4 mgL-1IBA) sd sd 0.40±0.50bc

T5(WPM +1 mgL-1 IAA) sd sd sd

T6(WPM +2 mgL-1IAA) sd sd sd

T7(WPM +3 mgL-1IAA) 3 0.03 ±0.18b sd

T8(WPM +4 mgL-1IAA) sd sd sd

T9(WPM +1 mgL-1NAA) 23 0.43± 0.9ab 0.83±0.38a

T10(WPM +2 mgL-1NAA) 27 1.0±1.86ab 0.93±0.25a

T11(WPM +3 mgL-1 NAA) 47 1.23±1.5a 0.97±0.18a

T12(WPM +4 mgL-1 NAA) 40 1.13±1.96a 1.00±0.00a

Page 66: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

57

Discussion

Any plant explant to be introduced in vitro needs a surface disinfection process that

have to be accurate and efficient (García-Gonzáles et al. 2010). This phase is key and

one of the most important for the in vitro establishment of plant tissues, suggesting the

combination of bactericide and fungicide products. The selection of disinfection

products will depends on the type of explants that will be introduced.

Among the most commonly used during the disinfection step sodium hypochlorite

(Tilkat et al. 2009), calcium hypochlorite (Garcia et al. 1999) and ethanol (Singh and

Gurung 2009) are listed. However, some tissues with a high content of lignin or

cellulose, such as woody plants and organ tissues developed in the soil require more

drastic disinfection treatments, as short immersion in mercury chloride (HgCl2) (Husain

and Anis 2009).

In this work, two cycles of disinfection using 1% of sodium hipoclorite for 40 minutes

and a 2 % of sodium hipoclorite for 25 minutes gave the best results with 95% of

explant disinfection. Previous studies carried out in Rhododendron ponticum L., a

related species from the Ericaceae family, with commercial bleach 25% (v/v) (5% of

sodium hypochlorite) for 20 minutes, produced 43% of contaminated explants (Almeida

et al. 2005).

The combination of sterilization products is often used to improve explant disinfection

efficiency. In Vaccinium arctostaphylos L and V. myrtillus L., surface sterilization with

70% ethanol for 1 min followed with a disinfection for 15 min with 3% of sodium

hypochlorite gave positive disinfection results (Cüce et al. 2013, Cüce and Sökmen

2015).

Page 67: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

58

Despite the degree of toxicity of mercury chloride (HgCl2), its utility is very frequent in

the disinfection process of difficult species, presenting over 80% of efficiency on

decontamination of species in Ericaceae family during disinfection and in vitro

establishment (Georgieva et al. 2016. Alekseevna Erst et al. 2015)

Some related species from the Ericaceae genus have demonstrated to be very hard to be

disinfected and established in vitro, forcing the combination of different chemicals to

increase the disinfection efficiency. In Rhododendron ledebourii, a first wash with 70%

of ethanol for 30 seconds followed by a 15 min wash in a 0.15% (w/v) solution of

HgCl2 produced only 40% and 20 % of disinfected explants in two different genotypes

(Erst et al. 2014). Similar combinations of Ethanol and HgCl2 have given different

results in other berries such as Fragaria vesca L., Rubus idaeus L., Vaccinium myrtillus

L., Vaccinium vitis-idaea L. (Georgieva et al. 2016).

The differences between regarding disinfection efficiency and morphogenic response of

the established explants obtained in G. pumila, when compared with other species from

the same family, might be based on the use of decreasing concentrations of sodium

hypochlorite, in two separate washes, avoiding explant toxicity but eliminating most of

the contaminating microorganisms.

However, disinfection procedure is not the only factor affecting the in vitro

establishment of any explant. During this step it is also critical to induce the

morphogenic responses for obtaining new plants and/or new organs. The best

morphogenic responses in G. pumila established explants were obtained when

disinfected explants were cultivated on WPM100 medium, supplemented with Zeatin at

1.0 mgL-1

, giving 47% of regenerated explants.

Page 68: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

59

Despite there is not previous results of in vitro culture in G. pumila, the results reported

here are similar to those obtained for other Ericaceae species. In Vaccinium

arctostaphylos, explants cultivated on WPM medium supplemented with 1.0 mgL-1

Zeatin and 0.1 mgL-1

of IBA induced shoot formation in 74% of the cultivated explants

(Cüce et al. 2013). Also, using Zeatin as cytokinin source very effectively stimulated

the shoot induction, leaf formation, and the shoot development and growth in other

species of the Vaccinium genus (Gajdosová et al. 2006, Cüce et al. 2013).

In the multiplication stage, the addition of cytokinins to the WPM100 medium produced

higher propagation efficiencies since shoot formation as well as shoot elongation were

significantly higher in these conditions. On the other hand, supplementing the media

with auxin did not have any significant effect on plants morphogenesis.

Despite of it has been demonstrated that the interaction between auxins and cytokinins

can play a key role in plant development (Su et al. 2011), it has been found that in G.

pumila this interaction did not significantly influenced on the multiplication efficiency.

According to the results previously showed the best results for plant morphogenesis was

obtained when only cytokinins were present in the basal medium.

These results are similar to those informed for Vaccinium macrocarpon, where the the

single effect of 2-iP as cytoquinin source produced the best plant general development

the multiplication of the species (Debnath and McRae 2001). Also, it has been

demonstrated that the morphogenic response to cytokinin could depend strongly on

genotype, as shown in Arbutus unedo L., (Gomes et al. 2010) and some raspberry

genotypes (Gajdošová et al. 2006).

Page 69: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

60

On the contrary, in Fragaria chiloensis, a wild berry plant native from Chile the

interaction between auxins and cytokinins induced the highest efficiency in shoots and

leaves formation (Quiroz 2014). Also, this combination of grow regulator induces to the

formation of roots in specie as Eucomis (Aremu et al. 2016).

Finally, as in many Ericaceae species, in vitro rooting in G. pumila is very hard to

obtain. Addition of auxins, in general, produced some roots, but the efficiency is still

very low (46% in medium supplemented with NAA). However, the general plant

development is very good and will probably help to obtain high survival efficiencies

during the ex vitro step.

Contrasting to these results in the related species Vaccinium corymbosum L. cv. ‘Elliot’,

the addition of BAP produced more than 90% of rooted explantes (Vescan et al. 2012).

Also, in other blueberry cultivars addition of IBA induced 75% of rooted plants

(Guang-Jie et al. 2008).

At this stage, in addition to the production of roots, the induction of calli and shoots are

stimulated. In Casuarina cunninghamiana Miq., first the callus is formed and later the

adventitious roots are formed from the callus (Shen et al. 2010). The formation of new

organs in the rooting stage, allows the survival of the explant, giving opportunity for the

formation of roots in the longer term, especially in species difficult to root, as in the

Ericaceae family.

Page 70: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

61

Conclusion

For the first time a micropropagation technology for the in vitro multiplication of G.

pumila was developed. This technology will allow the massive propagation of this

species to assist its domestication and commercial uses. However, further studies must

be developed to extend this protocol to other species from the genus in Chile, as well as

to standardize the technology among the different G. pumila selected genotypes. Also, it

is still necessary to assess the behavior of the in vitro produced plants during ex vitro

adaptation.

Page 71: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

62

Literature cited

Almeida, R., S. Gonçalves, and A. Romano. 2005. In vitro micropropagation of

endangered Rhododendron ponticum L. subsp. baeticum (Boissier & Reuter)

Handel-Mazzetti. Biodivers. Conserv. 14: 1059–1069.

Aremu, A. O., L. Placková, A. Pencík, O. Novák, K. Doležal, and J. Van Staden.

2016. Auxin-cytokinin interaction and variations in their metabolic products in the

regulation of organogenesis in two Eucomis species. N. Biotechnol. 33: 883–890.

Balzarini, M. G., L. Gonzalez, M. Tablada, F. Casanoves, J. A. Di Rienzo, and

C.W. Robledo. 2008. Manual del Ususario. Editorial Brujas, Córdoba, Argentina.

Bantawa, P., A. Das, P. D. Ghosh, and T. K. Mondal. 2011. Detection of natural

genetic diversity of Gaultheria fragrantissima landraces by RAPDs: An

endangered woody oil bearing plant of Indo-China Himalayas. Indian J.

Biotechnol. 10: 294–300.

Cüce, M., E. BektaŞ, and A. Sökmen. 2013. Micropropagation of Vaccinium

arctostaphylos l. via lateral-bud culture. Turkish J. Agric. For. 37: 40–44.

Cüce, M., and A. Sökmen. 2015. Micropropagation of Vaccinium myrtillus L.

(Bilberry) naturally growing in the Turkish flora. Turkish J. Biol. 39: 233–240.

Debnath, S., and K. McRae. 2001. An efficient in vitro shoot propagation of cranberry

(Vaccinium macrocarpon Ait.) by axillary bud proliferation. Vitr. Cell. Dev. Biol.

37: 243–249.

Dominguez, E. 2010. Flora de interés etnobotánico usada por los pueblos originarios :

Aónikenk , Selk ’ nam , Kawésqar , Yagan y Haush en la Patagonia Austral.

Dominguezia. 26: 19–29.

Erst, A. A., A. V. Karakulov, and A. S. Erst. 2014. Propagation and conservation in

vitro unique genotypes of Rhododendron ledebourii pojark. (Ericaceae Dc). Adv.

Environ. Biol. 8: 276–282.

Gajdosová, A., M. G. Ostrolucká, G. Libiaková, E. Ondrusková, and S. Daniel.

2006. Microclonal propagation of Vaccinium sp. and Rubus sp. and detection of

genetic variability in vitro. J. Fruit Ornam. Plant Res. 14.

García-Gonzáles, R., K. Quiroz, B. Carrasco, and P. D. S. Caligari. 2010. Plant

Page 72: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

63

tissue culture: current status, opportunities and challenges. Cienc. e Investig.

Agrar. 37: 5–30.

Garcia, R., R. Moran, D. Somontes, J. Mena, E. Pimentel, Z. Zaldua, A. Lopez,

and M. Garcia. 1999. Sweet Potato (Ipomoea batatas L.) Biotechnology: Progress

and Perspectives. Plant Biotechnol. Vitr. Biol. 21st Century SE - 33, Current Plant

Science and Biotechnology in Agriculture. 36: 143–146.

Georgieva, M., I. Badjakov, I. Dincheva, S. Yancheva, and V. Kondakova. 2016. In

vitro propagation of wild Bulgarian small berry fruits (Bilberry, Lingonberry,

Raspberry and Strawberry). Bulg. J. Agric. Sci. 22: 46–51.

Gepts, P. 2004a. Crop Domestication as a Long-term Selection Experiment, Evol. Sci.

Soc. Educ. a New Gener. American Institute Biological Sciences, Washington,

DC.

Gepts, P. 2004b. Plant and Animal Domestication as Human-Made Evolution, pp. 1–

23. In Evol. Sci. Soc. Educ. a New Gener.

Gomes, F., M. Simoes, M. L. Lopes, and J. M. Canhoto. 2010. Effect of plant growth

regulators and genotype on the micropropagation of adult trees of Arbutus unedo

L. (strawberry tree). N. Biotechnol. 27: 882–892.

González-Benito, M. E., and C. Martín. 2010. In vitro preservation of Spanish

biodiversity. Vitr. Cell. Dev. Biol. - Plant. 47: 46–54.

Guang-Jie, Z., W. Zhan-Bin, and W. Dan. 2008. In vitro propagation and ex vitro

rooting of blueberry plantlets. Plant Tissue Cult. Biotechnol. 18: 187–195.

Höxtermann, E. 1997. Cellular " elementary organisms " in vitro . The early vision of

Gottlieb Haberlandt and its realization. Physiol. Plant. 100: 716–728.

Husain, M., and M. Anis. 2009. Rapid in vitro multiplication of Melia azedarach L. (a

multipurpose woody tree). Acta Physiol. Plant. 31: 765–772.

Lasekan, O. 2014. Exotic berries as a functional food. Curr. Opin. Clin. Nutr. Metab.

Care. 17: 589–595.

Liu, W.-R., W.-L. Qiao, Z.-Z. Liu, X.-H. Wang, R. Jiang, S.-Y. Li, R.-B. Shi, and

G.-M. She. 2013. Gaultheria: Phytochemical and pharmacological characteristics.

Molecules. 18: 12071–12108.

Page 73: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

64

Middleton, D. J. 1992. A chemotaxonomic survey of flavonoids and simple phenols in

the leaves of Gaultheria L. and related genera (Ericaceae). Bot. J. Linn. Soc. 110:

313–324.

Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bio assays

with tobacco Tissue Cultures. Physiol. Plant. 15: 26.

Quiroz, K. 2014. Evaluacion de sistemas de propagacion in vitro para Fragaria

chiloensis (L) Duch. Tesis doctoral. Facultad de Ciencias Agrarias. Universidad de

Talca. Talca Chile.

Ranyaphi, R. A., A. A. Mao, and S. K. Borthakur. 2012. In vitro plant regeneration

of wintergreen (Gaultheria fragrantissima Wall.): Assessment of multiple nutrient

formulations and cytokinin types. Indian J. Biotechnol. 11: 197–204.

Ruiz, A., I. Hermosin-Gutierrez, C. Vergara, D. von Baer, M. Zapata, A.

Hitschfeld, L. Obando, and C. Mardones. 2013. Anthocyanin profiles in south

Patagonian wild berries by HPLC-DAD-ESI-MS/MS. FOOD Res. Int. 51: 706–

713.

Schreckinger, M. E., J. Lotton, M. A. Lila, and E. G. de Mejia. 2010. Berries from

South America: A comprehensive review on chemistry, health potential, and

commercialization. J. Med. Food. 13: 233–246.

Shen, X., W. S. Castle, and F. G. Gmitter. 2010. In vitro shoot proliferation and root

induction of shoot tip explants from mature male plants of Casuarina

cunninghamiana Miq. HortScience. 45: 797–800.

Singh, K. K., and B. Gurung. 2009. In Vitro Propagation of R . maddeni Hook . F . an

endangered Rhododendron species of Sikkim Himalaya. Not. Bot. Horti Agrobot.

Cluj-Napoca. 37: 79–83.

Su, Y. H., Y. B. Liu, and X. S. Zhang. 2011. Auxin-cytokinin interaction regulates

meristem development. Mol. Plant. 4: 616–625.

Thorpe, T. A. 2007. History of plant tissue culture. Mol. Biotechnol. 37: 169–180.

Tilkat, E., A. Onay, H. Yildirim, and E. Ayaz. 2009. Direct plant regeneration from

mature leaf explants of pistachio, Pistacia vera L. Sci. Hortic. (Amsterdam). 121:

361–365.

Page 74: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

65

Vescan, L. A., D. Pamfil, D. Clapa, A. Fira, C. R. Sisea, I. F. Pop, I. V. Petricele, O.

Ciuzan, and R. Pop. 2012. Efficient micropropagation protocol for highbush

blueberry (Vaccinium corymbosum L.) cv. ‘Elliot’. Rom. Biotechnol. Lett. 17:

6893–6902.

Villagra, E., C. Campos-Hernandez, P. Caceres, G. Cabrera, Y. Bernardo, A.

Arencibia, B. Carrasco, P. D. S. Caligari, J. Pico, and R. Garcia-Gonzales.

2014. Morphometric and phytochemical characterization of chaura fruits

(Gaultheria pumila): A native Chilean berry with commercial potential. Biol. Res.

47: 1–8.

Page 75: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

66

4 Annex

Annex 1. Treatments for the establishment of G. pumila in different medium and different growth

regulators

Treatments Medium Dilution of

culture medium

Grown

regulator

Concentration of grown

regulators

T1 MS 100% 2-iP 1.0 mg L-1

T2 MS 100% 2-iP 2.0 mg L-1

T3 MS 100% BAP 1.0 mg L-1

T4 MS 100% BAP 2.0 mg L-1

T5 MS 100% Zeatin 0.5 mg L-1

T6 MS 100% Zeatin 1.0 mg L-1

T7 MS 50% 2-iP 1.0 mg L-1

T8 MS 50% 2-iP 2.0 mg L-1

T9 MS 50% BAP 1.0 mg L-1

T10 MS 50% BAP 2.0 mg L-1

T11 MS 50% Zeatin 0.5 mg L-1

T12 MS 50% Zeatin 1.0 mg L-1

T13 WP 100% 2-iP 1.0 mg L-1

T14 WP 100% 2-iP 2.0 mg L-1

T15 WP 100% BAP 1.0 mg L-1

T16 WP 100% BAP 2.0 mg L-1

T17 WP 100% Zeatin 0.5 mg L-1

T18 WP 100% Zeatin 1.0 mg L-1

T19 WP 50% 2-iP 1.0 mg L-1

T20 WP 50% 2-iP 2.0 mg L-1

T21 WP 50% BAP 1.0 mg L-1

T22 WP 50% BAP 2.0 mg L-1

T23 WP 50% Zeatin 0.5 mg L-1

T24 WP 50% Zeatin 1.0 mg L-1

Annex 2. Treatments performed in the multiplication stage of G. pumila, with different concentrations of

growth regulators and their interactions

IBA Zeatin 2 -iP

1.0 mg L-1 2.0 mg L-1 2.0 mg L-1 3.0 mg L-1

0 T1 T2 T7 T8

0.25mg L-1 T3 T4 T9 T10

0.5mg L-1 T5 T6 T11 T12

Page 76: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

67

Annex 3. Treatments made in the rooting stage of G. pumila, with different concentrations of auxins

Treatments Concentration of grow regulators

T0 -

T1 WPM +1 mgL-1 IBA

T2 WPM +2 mgL-1 IBA

T3 WPM +3 mgL-1 IBA

T4 WPM +4 mgL-1 IBA

T5 WPM +1 mgL-1 IAA

T6 WPM +2 mgL-1 IAA

T7 WPM +3 mgL-1 IAA

T8 WPM +4 mgL-1 IAA

T9 WPM +1 mgL-1 NAA

T10 WPM +2 mgL-1 NAA

T11 WPM +3 mgL-1 NAA

T12 WPM +4 mgL-1 NAA

Page 77: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

68

5 Conclusiones generales

El propósito de este trabajo, radicó en sentar las bases para la domesticación de

Gaultheria pumila, a través de dos ejes de investigación: el primero, determinar la

diversidad genética contenida en la especie a través de marcadores moleculares

microsatélites (SSR); y segundo, buscar los mecanismos idóneos de propagación a

través de técnicas de cultivo in vitro.

Para el primer caso, se desarrollaron marcadores moleculares microsatélites específicos

de la especie, seleccionados a partir de cuatro librerías genómicas. Estas librerías fueron

obtenidas a través de técnicas de secuenciación masiva 454 FLX Titanium

pyrosequencing technology. La secuencia con mayor repetición fueron las

mononucleótidas, con un promedio del 59%, seguido por los dinucleótidos 23%,

trinucleótidos 12%, tetranucleótidos 3% y pentanucleótido 2%. La validación de los

SSR, se realizó utilizando tres cebadores: un cebador directo con una cola M13 (-21) en

su extremo 5', un cebador inverso normal, y el cebador universal M13 (-21) marcado

con fluorocromos de 6-FAM, VIC, PET o NED, separados por electroforesis por

capilaridad. La variabilidad de los loci microsatélites fueron probados en 30 individuos

pertenecientes a tres regiones (La Araucanía, Los Lagos y Magallanes), 10 individuos

por Región. De estos marcadores, seis fueron polimórficos, tres fueron

mononucleótidos, y un marcador no amplificó. Los marcadores desarrollados

presentaron amplificación en otras especies del genero Gaultheria, siendo reproducibles

en especies emparentadas. Las secuencias constan en el banco de genes GENEBANK.

Los marcadores microsatélites desarrollados, fueron aplicados en 160 individuos, de

once sitios, pertenecientes a cuatro regiones dentro del rango de distribución en Chile.

Se realizó el test de neutralidad de los marcadores microsatélites, donde no mostraron

Page 78: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

69

evidencias de selección positiva. Cuatro loci SSR presentaron desequilibrio de Hardy-

Weinberg. En el análisis de combinaciones binarias, no mostraron desequilibrio de

ligamiento, por lo que cada partidor segrega de forma independiente. Los loci SSR

mostraron un alto polimorfismo en todas las poblaciones, con una media de 97.5%. Los

valores detectados sugieren un nivel moderado a alto de diversidad genética. Referente

a los índices de fijación (F-statics), el valor promedio de Fis muestra valores negativos,

lo que sugiere un exceso de heterocigotos observados. Estos valores se relacionan con la

biología reproductiva de la especie y sobre todo con el número de migrantes, cuyo flujo

génico mantiene en constante dinamismo a las poblaciones. Los valores de Fst,

muestran una alta cohesión entre poblaciones, es decir, posee poca estructura, lo que nos

lleva a concluir que las poblaciones de G. pumila tienen una distribución continua,

sobre todo en las poblaciones de las regiones céntricas (La Araucanía y Los Lagos y

Magallanes) y apenas diferenciándose con las poblaciones límites de su distribución, en

este caso Maule. Referente al análisis de la varianza molecular (AMOVA), la mayor

variabilidad genética se encontró dentro de las poblaciones, representando el 94% de la

variabilidad y entre poblaciones apenas 6%. El análisis bayesiano, nos mostró dos

clúster genéticos. El primer clúster, agrupa las poblaciones de las regiones de La

Araucanía, Los Lagos y Magallanes, y el segundo clúster, los individuos de la Región

del Maule. Este agrupamiento tiene varias connotaciones, entre ellas, que Maule

corresponde a una Región limite en su distribución, donde la frecuencia y abundancia de

individuos es menor que en las otras regiones. Además, existe una relación positiva

entre distancias genéticas y geográficas, corroborado con en el test de Mantel.

Paralelamente al estudio molecular, se trabajaba en el segundo eje, que consistía en

buscar los mecanismos idóneos para la propagación de G. pumila a través de técnicas de

cultivo in vitro. En este proceso tecnológico, pudimos desarrollar tres etapas

Page 79: BASES PARA LA DOMESTICACIÓN DE GAULTHERIA PUMILA …repositorio.educacionsuperior.gob.ec/bitstream/28000/5216/1/T-SENESCYT-01755.pdf · población, crece en suelos volcánicos, arenosos

70

(desinfección- establecimiento, multiplicación y enraizamiento in vitro) con protocolos

eficientes en cada una de ellas. Partiendo con la selección del material a introducir,

deben provenir de una planta donante bien formada, con brotes nuevos y sobre todo sin

problemas de agentes contaminantes. Limpieza superficial con abúndate agua y

detergentes común, más desinfecciones con hipoclorito de sodio en dos concentraciones

(1 y 2%) y en dos tiempos (40 y 25 min), mostraron un alto porcentaje de asepsia.

Además, los explantes se establecieron bien en un medio bajo en sales como el de

Murashige and Skoog (MS) suplementado con 2mg L-1

de 2-iP. Esta etapa es muy

importante, de aquí depende que el material esté libre de contaminantes y pueda

garantizar las etapas venideras dentro del proceso de multiplicación. En la etapa de

multiplicación, pudimos darnos cuenta que la interacción de auxinas y citoquininas no

presentó mayor incidencia en la formación y altura de brotes. Los mejores resultados

fueron originados en los tratamientos que fueron suplementados solo con zeatina en

concentraciones de 1 mgL-1

. En la etapa de enraizamiento in vitro, se utilizó explantes

que provenían de un medio WPM suplementados con zeatina. En esta etapa, los

explantes estimulados con NAA, presentaron el mayor número de raíces, donde el 46%

de los explantes presentaron al menos una raíz.

Los resultados obtenidos en esta investigación, se utilizarán para continuar con las

pretensiones de domesticar a G. pumila, partiendo desde la caracterización de genotipos

de interés hasta su multiplicación masiva, de tal modo que sus atributos puedan ser

aprovechados de forma sostenible.