Aplicacion de la astronomia ancestral

22
La Astronomía Es la ciencia que se ocupa del estudio de los cuerpos celestes del universo, incluidos los planetas y sus satélites, los cometas y meteoroides, las estrellas y la materia interestelar, los sistemas de materia oscura, estrellas, gas y polvo llamados galaxias y los cúmulos de galaxias; por lo que estudia sus movimientos y los fenómenos ligados a ellos. Su registro y la investigación de su origen vienen a partir de la información que llega de ellos a través de la radiación electromagnética o de cualquier otro medio. La astronomía ha estado ligada al ser humano desde la antigüedad y todas las civilizaciones han tenido contacto con esta ciencia. Personajes como Aristóteles, Tales de Mileto, Anaxágoras, Aristarco de Samos, Hiparco de Nicea, Claudio Ptolomeo, Hipatia de Alejandría, Nicolás Copérnico, Tycho Brahe, Johannes Kepler, Galileo Galilei, Christiaan Huygens o Edmund Halley han sido algunos de sus cultivadores. Es una de las pocas ciencias en las que los aficionados aún pueden desempeñar un papel activo, especialmente en el descubrimiento y seguimiento de fenómenos como curvas de luz de estrellas variables, descubrimiento de asteroides y cometas, etc. La astronomía se divide en astronomía clásica y astrofísica. Las ramas de la primera son: la astronomía de posición – también llamada astrometría o astronomía esférica–, que se ocupa de la localización de los astros mediante el establecimiento de distintos sistemas de coordenadas de espacio y tiempo, y la mecánica celeste, que estudia el movimiento de los planetas, satélites y otros astros, y se basa fundamentalmente en la ley de la gravitación universal de Newton. La astrofísica aplica al estudio de los astros las teorías y técnicas surgidas en la física básicamente desde principios

Transcript of Aplicacion de la astronomia ancestral

Page 1: Aplicacion de la astronomia ancestral

La Astronomía

Es la ciencia que se ocupa del estudio de los cuerpos celestes del universo, incluidos los planetas y sus satélites, los cometas y meteoroides, las estrellas y la materia interestelar, los sistemas de materia oscura, estrellas, gas y polvo llamados galaxias y los cúmulos de galaxias; por lo que estudia sus movimientos y los fenómenos ligados a ellos. Su registro y la investigación de su origen vienen a partir de la información que llega de ellos a través de la radiación electromagnética o de cualquier otro medio. La astronomía ha estado ligada al ser humano desde la antigüedad y todas las civilizaciones han tenido contacto con esta ciencia. Personajes como Aristóteles, Tales de Mileto, Anaxágoras, Aristarco de Samos, Hiparco de Nicea, Claudio Ptolomeo, Hipatia de Alejandría, Nicolás Copérnico, Tycho Brahe, Johannes Kepler, Galileo Galilei, Christiaan Huygens o Edmund Halley han sido algunos de sus cultivadores.

Es una de las pocas ciencias en las que los aficionados aún pueden desempeñar un papel activo, especialmente en el descubrimiento y seguimiento de fenómenos como curvas de luz de estrellas variables, descubrimiento de asteroides y cometas, etc.

La astronomía se divide en astronomía clásica y astrofísica. Las ramas de la primera son: la astronomía de posición –también llamada astrometría o astronomía esférica–, que se ocupa de la localización de los astros mediante el establecimiento de distintos sistemas de coordenadas de espacio y tiempo, y la mecánica celeste, que estudia el movimiento de los planetas, satélites y otros astros, y se basa fundamentalmente en la ley de la gravitación universal de Newton.

La astrofísica aplica al estudio de los astros las teorías y técnicas surgidas en la física básicamente desde principios del siglo XX, como las técnicas de la fotometría, la espectroscopia y el análisis de las ondas de radio emitidas por los cuerpos celestes o radioastronomía.

Dentro de la astrofísica se distingue la física de las estrellas o estelar, que es el estudio de su estructura y composición; la cosmogonía, que trata el origen y la evolución de todos los cuerpos celestes, y la cosmología, que estudia la estructura y la evolución del Universo como un todo.

Etimología

Etimológicamente, la palabra "astronomía" proviene del latín astronomĭa, que a su vez proviene del griego αστρονομία ('astronomía' compuesto por άστρον 'astron' «estrella» y seguido de νόμος 'nomos' «regla, norma»). La mayor parte de las ciencias utilizan el sufijo griego λογια ('logía' «tratado, estudio»), como por ejemplo cosmología y biología. De hecho, "astronomía" debía propiamente haberse

Page 2: Aplicacion de la astronomia ancestral

llamado "astrología", pero esta denominación ha sido usurpada por la pseudociencia que hoy en día es conocida con dicho nombre. Por ello no debe confundirse la astronomía con la astrología. Aunque ambas comparten un origen común, son muy diferentes. Mientras que la astronomía es una ciencia estudiada a través del método científico.

¿Para qué sirve la Astronomía?

Básicamente para aumentar nuestro conocimiento del Cosmos. No hay una aplicación práctica directa e inmediata del conocimiento astronómico hacia nuestra vida diaria. Sin embargo, las tecnologías que tienen que ser utilizadas para efectuar el trabajo astronómico como lo es el desarrollo de instrumentación y programación, sí tienen repercusión directa.

Abrir una enciclopedia o consultar tranquilamente un libro de cualquier tema, significa estar viendo en forma ordenada y acumulada un conocimiento que han reunido generaciones completas y en forma no fácil. Hacer investigación en Astronomía, como en cualquier otra ciencia, significa escribir un poco más en esos libros.

La Astronomía sirve para ampliar el conocimiento del universo, probar las teorias de la física, comprender la materia y despejar atras los mitos y leyendas.

A partir del tiempo, el hombre ha explorado constantemente los cielos y gracias al instrumento llamado telescopio, puede tener una perspectiva mas amplia de los astros.

Primeros Calendarios

El Calendario es una cuenta sistematizada del transcurso del tiempo, utilizado

para la organización cronológica de actividades. Se trata de un conjunto de reglas

o normas que tratan de hacer coincidir el año civil con el año trópico.

Antiguamente, muchos estaban basados en los ciclos lunares, perdurando su uso

en el calendario musulmán, en la fecha de varias fiestas religiosas cristianas y en

el uso de la semana (correspondiente a las cuatro fases lunares,

aproximadamente).

En la actualidad, la mayor parte de los calendarios tienen por referencia el ciclo

que describe la Tierra alrededor del Sol y se denominan calendarios solares. El

calendario sideral se fundamenta en el movimiento terrestre respecto de otros

astros diferentes al Sol.

Las "calendas" eran los primeros días de cada mes. El "calendario" era pues el

registro de las calendas para un año. El comienzo del año en la era romana era el

mes de marzo, y se llamó de esa manera en honor a "Marte", dios de la

guerra; abril, fue llamado por "Apru" que era la diosa etrusca de la fertilidad (como

Page 3: Aplicacion de la astronomia ancestral

Aphrodita para los griegos); mayo, en honor a "Maia", la diosa de la

primavera; junio, en honor a "Juno", esposa de Júpiter y diosa del matrimonio.

En la época de Julio César, Quinctilis se cambió por julio en su honor, y un poco

más tarde, en los años del emperador Augusto, se cambió Sextilis por agosto. Los

meses de enero y febrero, como se explica más adelante, se añadieron después.

Febrero fue llamado así en honor a Februa, el festival de la purificación, y enero

por el dios Jano, dios de las puertas.

El calendario más antiguo fue encontrado en un monumento mesolítico de

Aberdeenshire, Escocia por arqueólogos británicos. Se cree que data de alrededor

del año ocho mil a.n.e., y mide el tiempo a partir de las fases del Sol y de la Luna.1

El calendario egipcio surge a principios del tercer milenio antes de Cristo y es el

primer calendario solar conocido de la Historia.

El primer año de la era romana, denominado el Año de Rómulo, consistía en diez o doce meses, según la bibliografía que se cite.

La imperfección del Calendario Juliano dio pie para que en el año 1582 el

Papa Gregorio XIII encargara a Luis Lilio y al jesuita alemán Christopher Clavius la

reforma por la cual se creó el Calendario Gregoriano.

Esta reforma tuvo dos aspectos principales. Por una parte, dado que

el equinoccio de primavera se había adelantado 10 días, se suprimieron estos

para ajustar el ciclo de las estaciones. Este ajuste se llevó a cabo el jueves 4 de

octubre de 1582, por lo que el siguiente día se consideró viernes 15 de octubre.

Además para conseguir que este resultado pudiera mantenerse en el futuro, se

acordó que los años bisiestos cuyas dos últimas cifras fueran ceros no serían

bisiestos, excepto si sus dos primeras son divisibles por cuatro. Así pues de los

años 1600, 1700, 1800, 1900 y 2000, que en el calendario juliano son bisiestos, en

el gregoriano lo son sólo el 1600 y el 2000, de modo que cada cuatro siglos

quedan suprimidos tres días.

Este calendario fue gradualmente adoptado por varios países y es en la actualidad

el calendario cívico más utilizado en el mundo.

Las aproximaciones del calendario gregoriano tienen un desfase de 1 día cada

3,300 años respecto al año tropical. Sin embargo, debido a la precesión de los

equinoccios el error respecto al equinoccio de primavera es de 1 día cada 7,700

años.

Calendarios de uso generalizado en el mundo

Page 4: Aplicacion de la astronomia ancestral

Calendario gregoriano

Calendario budista

Calendario chino

Calenderio Ezidi (Ezidi = Êzîdî)

Calendario hebreo, relacionado con el Anno Mundi (existe calendario hebreo

antiguo y el usado actualmente calendario judío, creado por Hillel Ilin en 258,

puesto en uso desde el siglo XI del calendario gregoriano)

Calendario hindú (denominación común del calendario civil de la India)

Calendario japonés

Calendario musulmán

Calendario persa

Calendario maya

Calendario azteca

Calendario Badí’ (Calendario bahai)

Calendario andón

Calendario taboada aramayo

Calendarios de antiguas culturas

Calendario ático

Calendario azteca

Calendario celta

Calendario egipcio

Calendario helénico

Calendario hispánico

Calendario inca

Calendario irlandés

Calendario juliano

Calendario romano

Calendario maya

Calendario ruso

Calendario kurdo

Calendario colombiano

Calendario kidt

Page 5: Aplicacion de la astronomia ancestral

Calendarios experimentales

Calendario sueco (1-III-1700-"30-II"-1711) (*)

Calendario republicano francés (1792-1806)

Calendario patafísico (8-IX-1873)

Calendario revolucionario soviético (1-X-1929-1940)

Medidas del Tiempo “LAS ESTACIONES”

El eje de rotación de la Tierra está inclinado unos 23,5º aproximadamente con respecto al plano de la órbita que describe alrededor del Sol. Hemos visto que el eje de rotación de la Tierra parece siempre apuntar en la misma dirección, que coincide muy aproximadamente con la posición de la estrella polar hace el norte. ¿Por qué el eje de la Tierra apunta siempre en la misma dirección?.

La respuesta es porque se comporta como un giróscopo. Un giróscopo no es más que un objeto sólido en rotación. Los giróscopos tienen tendencia a mantener la dirección del eje de rotación en una posición fija. El lector puede comprobar esto con facilidad si coge una rueda de bicicleta que tenga un eje sobre el que se pueda girar y pone ésta a rotar con rapidez. Después de que está rotando, intentar cambiar la dirección del eje se hace difícil (por eso es posible mantener el equilibrio en una bicicleta). Otro ejemplo de giróscopo es un trompo que gira en el suelo. ¡Pero un momento! ; si nos fijamos en un trompo que gira, su eje no se mantiene en una dirección fija, sino que parece describir un cono suavemente alrededor de la línea vertical; ¿cómo es esto?.

La razón de es un poco compleja. El asunto es que el trompo tiene una tendencia a mantener su eje de rotación, y una tendencia a caer por efecto de la gravedad. La forma en que estas dos tendencias pueden convivir juntas para crear una situación es un movimiento del eje de rotación alrededor de la línea vertical, al que se conoce como precesión. Con la Tierra debería de pasar lo mismo, puesto que la gravedad solar tira del eje de rotación de la Tierra y éste debería preceder. Pero efectivamente precede y esto fue descubierto mucho tiempo atrás por el astrónomo griego Hipparcos (160-125 a.C.) al descubrir un fenómeno que se conoce como precesión de los equinoccios. Pero vayamos más despacio.

Durante el año, las estaciones cambian dependiendo de la cantidad de luz solar que llega a la Tierra mientras gira alrededor del Sol.

Las estaciones ocurren a medida que la Tierra, que tiene unainclinación sobre su eje, da una vuelta alrededor del Sol cada año. Es verano en el hemisferio que está inclinado hacia el Sol e invierno en el hemisferio que está inclinado lejos del Sol. A

Page 6: Aplicacion de la astronomia ancestral

medida que la Tierra viaja alrededor del Sol, el hemisferio que está inclinado cerca o lejos del Sol cambia.

El hemisferio que está inclinado hacia el Sol es más caliente porque la luz solar viaja más directamente hacia la superficie de la Tierra y menor cantidad de luz se esparce por la atmósfera. Esto significa que cuando es verano en el hemisferio norte, es invierno en el hemisferio sur. El hemisferio que está inclinado hacia el Sol tiene días más largos y noches más cortas. Por eso es que durante el verano los días son más largos que durante el invierno.

En general, durante verano e invierno, las temperaturas bajan a medida que nos alejamos del ecuador. En el ecuador no hay estaciones porque todos los días los rayos del Sol arrivan, aproximadamente, en el mismo ángulo. Todos los días del año el ecuador recibe unas 12 horas de luz solar. Los polos se mantienen fríos porque nunca están inclinados en dirección a la trayectoria de los rayos del Sol. La luz debe viajar a través de tanta atmósfera que gran parte se esparce antes de llegar a la superficie de la Tierra. A mediados del invierno, cuando un polo está inclinado lejos del Sol, no hay luz diurna en el polo. El Sol nunca sale. Sin embargo, durante el verano, ¡un polo recibe luz solar todo el tiempo y no hay noche!.

Equinoccio y Solsticios

Equinoxios

Momento del año en que el Sol está situado en el plano del ecuador terrestre. Ese día y para un observador en el ecuador terrestre, el Sol alcanza el cenit. El paralelo de declinación del Sol y el ecuador celeste entonces coinciden. La palabra equinoccio proviene del latín “aequinoctium” y significa (noche igual).

Ocurre dos veces por año: el 20 o 21 de marzo y el 22 o 23 de septiembre de cada año,3 épocas en que los dos polos terrestres se encuentran a una misma distancia del Sol, así la luz se proyecta por igual en ambos hemisferios.

En las fechas en que se producen los equinoccios, el día tiene una duración igual a la de la noche en todos los lugares de la Tierra. En el equinoccio sucede el cambio de estación anual contraria en cada hemisferio de la Tierra.

Los equinoccios ocurren cuando el Sol está en el primer punto de Aries o en el primer punto de Libra. El primero es el punto del ecuador celeste donde el Sol en su movimiento anual aparente por la eclíptica pasa de sur a norte respecto al plano ecuatorial, y su declinación pasa de negativa a positiva. En el primer punto de Libra sucede lo contrario: el Sol aparenta pasar de norte a sur del ecuador celeste, y su declinación pasa de positiva a negativa.

Page 7: Aplicacion de la astronomia ancestral

Actualmente ninguno de los equinoccios se encuentra en la constelación que los nombra, debido a la precesión: el primer punto de Aries está en Piscis, y el primer punto de Libra se halla en Virgo. Las coordenadas ecuatoriales de cada equinoccio son: a) para el equinoccio vernal, ascensión recta y declinación nulas; b) para el primer punto de Libra, ascensión recta, 12 horas, y declinación nula.

Movimiento diurno del Sol en los equinoccios

En los equinoccios el Sol sale exactamente por el este y se pone exactamente por el oeste, siendo la duración del día igual a la duración de la noche. En el movimiento diurno media circunferencia ocurre por arriba del horizonte (día) y la otra media por debajo (noche). La figura muestra la trayectoria del Sol según la latitud del observador, situado en el punto C de su horizonte local.

Desde el ecuador -latitud 0º-, el Sol sigue aparentemente una trayectoria vertical, desde que nace por el Este hasta que se pone por el oeste, alcanzando al mediodía el cenit del observador (amarillo).

Por el contrario, desde los polos, bien sea el norte o el sur (azul), el Sol no se levanta sobre el horizonte, sino que describe un círculo rasante. Prescindiendo de la refracción, se verá sólo medio disco solar durante todo el día: ni amanece, ni culmina ni se pone.

En cuanto a las latitudes medias (naranja) el observador verá nacer al Sol por el este y ponerse por el oeste, pero su culminación será distinta según estemos en el hemisferio Norte o en el hemisferio Sur.

Solsticio de invierno

El significado estacional del solsticio de invierno se manifiesta en la reversión de la tendencia al alargamiento de la duración de las noches y al acortamiento de las horas diurnas. Distintas culturas definen esto de diversas maneras, puesto que en algunas ocasiones se considera que, astronómicamente, puede señalar, ya sea el comienzo o la mitad del invierno del hemisferio. El invierno es una palabra de significado subjetivo, puesto que no tiene un principio o mitad que esté científicamente establecido, sin embargo en el caso del solsticio de invierno podemos calcular con exactitud el segundo en el que ocurre. Aunque en teoría el solsticio de invierno solo dura un instante, este término también se usa normalmente para referirse a las 24 horas del día en que tiene lugar.

El significado o interpretación de este evento ha variado en las distintas culturas del mundo, pero la mayoría de ellas lo reconoce como un período de renovación y re-nacimiento, que conlleva festivales, ferias, reuniones, rituales u otras celebraciones.

Page 8: Aplicacion de la astronomia ancestral

Solsticio de invierno en Guatemala

El sitio arqueológico Uaxactún se localiza a 22 kilómetros del Parque Nacional Tikal. El primer observatorio astronómico de la Civilización Maya se erigió en la ciudad de Uaxactún, situada en el norteño departamento de Petén en Guatemala, el cual durante los períodos Preclásico y Clásico fue utilizado para medir el tiempo y conocer con certeza las fechas adecuadas para la siembra de los principales cultivos de aquella época. El sitio arqueológico Uaxactún cuenta con diez edificaciones, y la principal consiste en una estructura con tres espacios utilizados por sus antiguos habitantes para observar la rotación del Sol durante los equinoccios y solsticios, que se registraban cada tres meses. Según los historiadores, el movimiento señalaba una fecha propicia para engendrar hijos. Actualmente, el llamado equinoccio de primavera, que se registra en la madrugada del 21 de marzo, es motivo de celebración, se reúnen decenas de personas en una de las ciudades más antiguas del Período Clásico Maya, donde se encuentra el observatorio astronómico más antiguo de esa civilización.  La observación  El movimiento del Sol se presencia en la pirámide de Los Mascarones, frente al observatorio, desde donde se pueden ver los tres espacios alineados de norte a sur. El otro equinoccio, el de otoño, es visible el 21 de septiembre, y durante los dos acontecimientos, el día dura el mismo tiempo que la noche en todo el planeta. El primero de los dos solsticios se puede observar el 21 de junio, y es llamado de verano, y el segundo es conocido como de invierno, y se presenta el 21 de diciembre. Durante ambos espacios de tiempo se producen cambios estacionales y se registra la máxima diferencia entre el día y la noche. Según el coordinador turístico de Uaxactún, Erwin Maas, el solsticio de verano da comienzo al verano en el hemisferio Norte y al invierno en el hemisferio Sur. Y el solsticio de invierno marca el inicio del invierno en el hemisferio Norte y el verano en el hemisferio Sur.  Los vestigios de la gran civilización  Uaxactún es tan solo una muestra de la magnitud de lo que un día fue la Civilización Maya, que se extendió en lo que hoy es Guatemala, Honduras, Belice y el sureste de México; y se se encuentran vestigios también dentro de la Reserva de la Biosfera Maya (RBM), área creada en 1990 mediante un decreto legislativo.

La Astronomía y la Relación que Existe entre las Medidas del Tiempo

Page 9: Aplicacion de la astronomia ancestral

Desde la más remota antigüedad el hombre se ha sentido fascinado por el paso del tiempo y ha ido desarrollando diversos artilugios (relojes) para medirle. Todos ellos han estado basados en el movimiento de rotación de la Tierra que, como hemos visto, produce la alternancia periódica de los días y las noches.

Tras muchas y largas observaciones y razonamientos, construyeron los primeros relojes diurnos (relojes de Sol) y nocturnos (nocturlabio). Para ello era necesario encontrar alguna observación de nuestro entorno astronómico que sirviera de punto de referencia fijo, algún fenómeno que ocurriera una sola vez día. El tiempo transcurrido entre dos observaciones sucesivas daba un intervalo fijo de tiempo que puede tomarse como base para su medida.

El segundo

Un segundo es la duración de 9192631770 oscilaciones de la radiación emitida en la transición entre los dos niveles híper finos del estado fundamental del isótopo 133 del átomo de Cesio (133Cs), a una temperatura de 0 K. Pero, ¿cómo hemos llegado hasta aquí?¿No era el segundo la 60ava parte del minuto, que era la 60ava parte de la hora, que es la 24ava parte de un día? Y el día está ligado a la rotación del Sol (o terrestre, si se prefiere). ¿Qué ha pasado? El tiempo solar durante toda la historia de la humanidad y hasta bien entrado el siglo XX el tiempo se ha medido siempre basándose en el movimiento aparente del Sol en el cielo.

El Cenit

Se define el cenit como la dirección vertical y el meridiano (celeste) como el semicírculo que va desde el punto más al Norte del horizonte hasta el punto más al sur del mismo pasando por el cenit.

El día Definición (Día)

Son dos cruces consecutivos del Sol por el meridiano celeste. Esto tiene la ventaja de no depender de la salida o puesta del Sol, ni de cuánto dura cada día concreto.

De hecho, los días varían su duración entre 24 horas menos 22 segundos y 24 horas más 30 segundos. ¿Por qué?

Recordemos que la trayectoria aparente del Sol por el cielo se denomina la eclíptica. Si pudiéramos ver a la vez las estrellas y el Sol notaríamos que éste se desplaza lentamente hacia el Este a lo largo de la eclíptica a razón de casi un grado por día (nótese: 360◦frente a 365 días).

Page 10: Aplicacion de la astronomia ancestral

La eclíptica

La eclíptica está inclinada respecto del Ecuador terrestre 23◦27’, o si se quiere, el eje de rotación de la Tierra está inclinado ese ángulo con respecto al plano de la eclíptica, que es el plano de la órbita terrestre, claro está.

La variación de los días

La Tierra describe una órbita kepleriana elíptica alrededor del Sol, de manera que está unos 5 millones de Km más cerca del Sol en el perihelio (el 3(±1) de Enero) que en el afelio (el 4(±1) de Julio). Alrededor del perihelio la Tierra se mueve más deprisa en su órbita, lo que hace que el Sol tenga una velocidad aparente en la eclíptica de 1,019◦/día frente a 0,953◦/día en el afelio. Esto hace que los días sean más cortos en verano (boreal) que en invierno.

Pero hay otro efecto debido a la inclinación del eje terrestre, que hace que el Sol se desplace hacia el Norte en primavera y hacia el Sur en otoño. Sólo en los solsticios el movimiento del Sol está orientado únicamente de Oeste a Este, en cualquier otro momento tiene una componente extra hacia el Sur o el Norte.

Relación entre la Astronomía y la Agricultura

Apabullada por la falta de planes educativos que la fomenten, de abuelos que la conviertan en anécdotas y leyendas, de espacios para la observación, de su empleo en la vida cotidiana, la astronomía languidece entre las nuevas generaciones mayas.

 Eje en el pasado de los ciclos agrícolas, del esplendor de las ciudades mayas, de la relación simbiótica entre astros y dioses, la práctica de la astronomía maya actual entabla una férrea batalla contra la tecnología que impide al hombre moderno ver a la bóveda celeste.

 Para el arqueólogo e investigador del INAH, José Huchim Herrera, ‘cuando hablamos de los conocimientos astronómico mayas, tenemos que pensar en toda la integración de la naturaleza, de los astros que regulan la vida cotidiana de los mayas, tenía que ver con la vida ordinaria, con el calendario, con los procesos de cultivo del maíz’.

 La astronomía para los mayas, agregó, tenía que ver con la época de plantar, de cosechar, el momento adecuado de preparar la semilla, aspectos que se han perdido aunque no en su totalidad, pero languidece. En nuestros días aún existe gente que conserva la tradición de cortar los árboles durante la época de luna llena, que mira a la luna para saber cuándo es la época adecuada de plantar o injertar.

Page 11: Aplicacion de la astronomia ancestral

 Huchim Herrera, actual titular de las tareas de investigación, conservación y rescate de la región maya del Puuc, refirió que muchos de estos procesos de cultivo asociados al movimiento de los astros se deben a la modernización de las prácticas de siembra: la mecanización de suelos y la implementación de sistemas de riego.

 Recordó que en la zona suroeste del estado aún existe una comunidad donde su vida agrícola se rige por un fenómeno astronómico: la presencia en el firmamento de la lluvia de estrellas conocida como Pléyades. Durante el mes de junio, a la llegada del solsticio de verano, la población va en busca de iguanas y culebras que meten en cántaros y el día 22, a las 4:00 horas cuando las Pléyades están en su máxima declinación, se rompen los cántaros y los animales salen anunciando la benevolencia de los dioses para con los cultivos.

 Sin embargo, para la mayor parte de los jóvenes, la astronomía maya, caracterizada por la observación metódica y sistemática que se inculcaba en la familia, se limita al esfuerzo de algunas asociaciones por promoverla.

 La tradición de observar los astros y su relación con el conocimiento cotidiano era algo que fomentaban los abuelos, eran ellos los que integraban el conocimiento tradicional de la comunidad, los que enseñaban su asociación con la agricultura.

Astronomía Egipcia

Para los egipcios de la Antigüedad, el aspecto del cielo siempre revistió una significación mitológica y religiosa; sin embargo los egipcios observaron que las estrellas realizan un giro completo en poco más de 365 días. Además, este ciclo de 365 días del Sol concuerda con el de las estaciones, y ya antes del 2500 a.C. los egipcios usaban un calendario basado en ese ciclo, por lo que cabe suponer que utilizaban la observación astronómica de manera sistemática desde el cuarto milenio.

La noche comenzaba con el CREPÚSCULO (película) y terminaba con el AMANECER. Las doce estrellas que servían para la división de la noche en horas estaban asociadas a los « doce guardianes del cielo » encargados de acompañar a los faraones difuntos en su viaje nocturno con RA, la divinidad solar. Contrariamente a su importancia en los decanos del zodiaco, las constelaciones no desempeñaban prácticamente ningún rol aquí. La representación más antigua del cielo estrellado ha sido encontrada pintada sobre la tabla inferior de un sarcófago de Asiut que data del PRIMER PERIODO INTERMEDIO DE EGIPTO.

Los principios astronómicos fueron puestos a la disposición de los edificios sagrados, especialmente en las pirámides; pero no se han podido rescatar los

Page 12: Aplicacion de la astronomia ancestral

métodos utilizados y existen diversas opiniones al respecto. Algunos documentos permiten profundizar sobre la Ciencia del Antiguo Egipto, más particularmente en lo que respecta a la Medicina Y Las Matemáticas. La astronomía egipcia se ha podido beneficiar de una mayor atención en vista de los numerosos monumentos que testimonian ritos funerarios asociados a la posición de las estrellas. Por tanto, esta profusión de documentos astrológicos, aunque devela ciertos aspectos complejos de la astronomía egipcia, no permite hacer conclusiones en toda su extensión, dado su rol estrictamente religioso, y existen lagunas sobre estos conocimientos.

En la época romana, Clemente de Alejandría daba una idea de la importancia de las observaciones astronómicas en los ritos sagrados.

El año civil egipcio tenía 12 meses de 30 días, más 5 días llamados epagómenos. La diferencia, pues, era de ¼ de día respecto al año solar. No utilizaban años bisiestos: 120 años después se adelantaba un mes, de tal forma que 1456 años después el año civil y el astronómico volvían a coincidir de nuevo.

El Nilo empezaba su crecida más o menos en el momento en que la estrella Sothis, nuestro Sirio, (el Sepedet de los egipcios), tras haber sido mucho tiempo invisible bajo el horizonte, podía verse de nuevo poco antes de salir el Sol.

El calendario egipcio tenía tres estaciones de cuatro meses cada una:- Inundación o Akhet.- Invierno o Peret, es decir, "salida" de las tierras fuera del agua.- Verano o Shemú, es decir, "falta de agua".

La apertura del año egipcio ocurría el primer día del primer mes de la Inundación, aproximadamente cuando la estrella Sirio comenzaba de nuevo a observarse un poco antes de la salida del Sol.

De finales de la época egipcia (144 d.C.) son los llamados papiros de Carlsberg, donde se recoge un método para determinar las fases de la Luna, procedente de fuentes muy antiguas. En ellos se establece un ciclo de 309 lunaciones por cada 25 años egipcios, de tal forma que estos 9.125 días se disponen en grupos de meses lunares de 29 y 30 días. El conocimiento de este ciclo permitió a los sacerdotes egipcios situar en el calendario civil las fiestas móviles lunares.

La orientación de templos y pirámides es otra prueba del tipo de conocimientos astronómicos de los egipcios. Se construyeron pirámides como la de Gizeh, alineada con la estrella polar, con la que les era posible determinar el inicio de las estaciones usando para ello la posición de la sombra de la pirámide. También utilizaron las estrellas para guiar la navegación.

Page 13: Aplicacion de la astronomia ancestral

El legado de la astronomía egipcia llega hasta nuestros días bajo la forma del calendario. Herodoto, en sus Historias dice: "los egipcios fueron los primeros de todos los hombres que descubrieron el año, y decían que lo hallaron a partir de los astros".

Medidas del Tiempo “RELOJES”

Hace muchos años, antes de que existieran los relojes, el tiempo se media por la rotación de la tierra al observar las posiciones del sol en el cielo, las mareas y las fases de la luna. Sin embargo, los relojes se hicieron necesarios para medir fracciones del día con más exactitud.

En palabras mas simples, el reloj marca nuestra posición en la tierra, con respecto al lugar en que se encuentran el sol en cada momento. Asi, a las 12 de mediodía, el sol esta encima de nuestras cabezas; a la 13 del mediodía se halla un poco mas hacia el lado del mar, y así avanza hacia adelante cada hora que pasa.

Reloj de sol:

Hace 4,000 años, en Egipto, se inventó el primer reloj y fue, precisamente, el reloj del sol, solo que este no podía medir el tiempo cuando era de noche o no había sol.

El reloj de agua:

Indica la hora durante la noche al vaciarse el agua que contiene; el mas antiguo de estos se encontró en un tempo egipcio y se dice que fue fabricado hace 3.356 años, aproximadamente.

Reloj de arena:

En 1840 Alexander Bain construyo un reloj eléctrico accionado por la atracción y repulsión eléctrica.

Basado en los estudios realizados por Galileo, Christian Huygens diseño el primer reloj de péndulo en 1656. Este era el más exacto hasta ese momento, con un error de solo 5 diarios. El reloj de tipo péndulo mas conocido es el llamado reloj de cucú.

Reloj mecánico:

Aun no se sabe quién invento el primer reloj mecánico, pero lo que si que es cierto es que los primeros que se encontraron eran del año 1290. Su mecanismo consistía en un conjunto de ruedas giratorias accionadas por un peso colgado de cuerda.

Page 14: Aplicacion de la astronomia ancestral

Reloj de cristal:

Hace 70 años, Warren Alvin Morrinson, le puso cristales de cuarzo a un reloj eléctrico. Así surge el reloj de cristal de cuarzo. Son relojes muy exactos, solo se atrasan o adelantan 3 segundos al año.

Reloj atómico:

Reloj atómico empezó a desarrollarse en 1946. Tiene una gran precisión, su margen de error es de un segundo cada 300 años. Es el más exacto de todos los relojes que existen hasta ahora.

Actualmente los relojes que más se utilizan para medir el tiempo son los más analógicos (agujas) y los digitales.

Mapas Antiguos

1. Colección Mendoza

Dentro del ambiente científico en que se desarrolló la actividad profesional de los

marinos españoles en el siglo XVIII, destaca la personalidad del Capitán de

Fragata José Mendoza Ríos, que realizó importantes tareas en el campo científico,

como la de reunir, por orden del primer ministro Manuel Godoy, una colección de

mapas para el Gabinete Geográfico, que se había creado adscrito a la Primera

Secretaría de Estado. Colección que hoy día se custodia en el Servicio de

Cartografía de la Biblioteca Nacional.

La Colección reunida por Mendoza, está compuesta por 2.405 mapas, divididos en

dos series: la primera, formada por 1.697, impresos en su mayoría en Gran

Bretaña, en la segunda mitad del S. XVIII; se completó con una segunda serie de

708 mapas, grabados en otros países, como Francia, Alemania, España, Rusia,

etc. Los mapas están cuidadosamente iluminados, la mayor parte de ellos están

entelados y se conservan en perfecto estado. Son mapas importantes y valiosos,

realizados en aquel tiempo que fue el de la eclosión de la geografía científica en

toda Europa.

2. Mapas de la familia López

Mapa del Mundo, Tomás López, 1771 (pulsar imagen para ampliar)

Tomás López de Vargas Machuca es la figura más representativa de la cartografía

española del siglo XVIII. Fue discípulo de Bourguignon D’Anville, ilustre cartógrafo

francés de quien aprendió la técnica del trazado de mapas, conocida como

“geógrafo de gabinete”, no efectuando levantamientos personalmente, sino

Page 15: Aplicacion de la astronomia ancestral

cotejando diversos mapas de un mismo territorio. A lo largo de su vida realizó más

de doscientos mapas, cubriendo todo el territorio nacional y zonas de América.

La importancia de los mapas de López, a pesar de la poca exactitud que este

procedimiento tenía, reside en ser el primer cartógrafo español que, de una

manera sistemática, grabó y publicó mapas en este país, librándolo de la

dependencia de los mapas extranjeros que hasta ese momento se utilizaban. En

sus mapas aparecen ya las divisiones administrativas conforme al esquema

trazado por Felipe V en los Decretos de Nueva Planta y que estuvo vigente todo el

siglo XVIII y en el comienzo del XIX, hasta que en el 1833 se adoptó la nueva

división en provincias y Partidos Judiciales, que ha durado hasta nuestros días.

Esta colección, casi completa, contiene los mapas levantados, grabados y

publicados por Tomás López y sus hijos Juan y Tomás Mauricio. Son mapas y

planos, en hoja suelta o formando atlas, en su mayoría de España y sus

provincias, posesiones de las órdenes militares y colonias americanas. También

incluye mapas de todos los continentes y de los países más importantes de

Europa.

El planeta Tierra es conocido en su totalidad desde hace milenios, y que de ello existen referencias indudables en casi todas las culturas. Platón escribió: "... el Atlántico es navegable desde una isla situada al oeste de los estrechos que vosotros llamáis las columnas de Hércules; desde ella podían alcanzarse otras islas y desde éstas era factible pasar al continente que había frente a ellas y que circunda al verdadero océano". Eso quiere decir que más allá del estrecho de Gibraltar, haciendo escala en las Islas Canarias, se llegaba a las Antillas y desde allí a América, el continente que circunda o limita el océano Atlántico. 

En los primeros años del siglo XVIII se encontraron, entre otros valiosos documentos históricos, en el palacio Topkapi de Estambul, unos extraños mapas distorsionados, pero que citaban y a veces describían lugares concretos. Entonces no pudieron ser bien interpretados, quedando como una reliquia del pasado, sin otro valor que el de ser una antigüedad. En los documentos figuraba que aquellos mapas habían pertenecido a Piri Reis, un navegante turco del siglo XVI. 

De la colección se conserva casi su totalidad en su país de origen, menos dos mapas que pueden estudiarse en la Biblioteca Nacional de Berlín, y en los que aparecen la cuenca del Mediterráneo y el mar Muerto. El mismo Piri Reis anotó en los márgenes que para la confección de sus cartas de navegación, que es lo que son los mapas, había utilizado una compilación de ellos que ya existía con anterioridad y que se conocía con el nombre de Bahriye, que significa colección. 

Page 16: Aplicacion de la astronomia ancestral