Agua Residuales

14
LAS AGUAS RESIDUALES El término agua residual define un tipo de agua que está contaminada con sustancias fecales y orina, procedentes de desechos orgánicos humanos o animales. Su importancia es tal que requiere sistemas de canalización, tratamiento y desalojo. Su tratamiento nulo o indebido genera graves problemas de contaminación. A las aguas residuales también se les llama aguas servidas, fecales o cloacales. El término aguas negras también es equivalente debido a la coloración oscura que presentan. Todas las aguas naturales contienen cantidades variables de otras sustancias en concentraciones que varían de unos pocos mg/litro en el agua de lluvia a cerca de 35 mg/litro en el agua de mar. A esto hay que añadir, en las aguas residuales, las impurezas procedentes del proceso productor de desechos, que son los propiamente llamados vertidos. Las aguas residuales pueden estar contaminadas por desechos urbanos o bien proceder de los variados procesos industriales. La composición y su tratamiento pueden diferir mucho de un caso a otro, por lo que en los residuos industriales es preferible la depuración en el origen del vertido que su depuración conjunta posterior. CARACTERISTICAS DE LAS AGUAS RESIDUALES Sustancias químicas (composición) Las aguas servidas están formadas por un 99% de agua y un 1% de sólidos en suspensión y solución. Estos sólidos pueden clasificarse en orgánicos e inorgánicos. Los sólidos inorgánicos están formados principalmente por nitrógeno, fósforo, cloruros, sulfatos, carbonatos, bicarbon atos y algunas sustancias tóxicas como arsénico, cianuro, cadmio, cromo, cobre, mercurio, plomo y zinc. Los sólidos orgánicos se pueden clasificar en nitrogenados y no nitrogenados. Los nitrogenados, es decir, los que contienen nitrógeno en su molécula, son proteínas, ureas, aminas y aminoácidos. Los no nitrogenados son principalmente celulosa, grasas y jabones. La concentración de materiales orgánicos en el agua se determina a través de la DBO 5 , la cual mide material orgánico carbonáceo principalmente, mientras que la DBO20 mide material orgánico carbonáceo y nitrogenado DBO2.

description

aguas residuales concetos generales

Transcript of Agua Residuales

Page 1: Agua Residuales

LAS AGUAS RESIDUALES

El término agua residual define un tipo de agua que está contaminada con sustancias fecales y orina, procedentes de desechos orgánicos humanos o animales. Su importancia es tal que requiere sistemas de canalización, tratamiento y desalojo. Su tratamiento nulo o indebido genera graves problemas de contaminación.A las aguas residuales también se les llama aguas servidas, fecales o cloacales. El término aguas negras también es equivalente debido a la coloración oscura que presentan.Todas las aguas naturales contienen cantidades variables de otras sustancias en concentraciones que varían de unos pocos mg/litro en el agua de lluvia a cerca de 35 mg/litro en el agua de mar. A esto hay que añadir, en las aguas residuales, las impurezas procedentes del proceso productor de desechos, que son los propiamente llamados vertidos. Las aguas residuales pueden estar contaminadas por desechos urbanos o bien proceder de los variados procesos industriales.La composición y su tratamiento pueden diferir mucho de un caso a otro, por lo que en los residuos industriales es preferible la depuración en el origen del vertido que su depuración conjunta posterior.

CARACTERISTICAS DE LAS AGUAS RESIDUALESSustancias químicas (composición)Las aguas servidas están formadas por un 99% de agua y un 1% de sólidos en suspensión y solución. Estos sólidos pueden clasificarse en orgánicos e inorgánicos.

Los sólidos inorgánicos están formados principalmente por nitrógeno, fósforo, cloruros, sulfatos, carbonatos, bicarbonatos y algunas sustancias tóxicas como arsénico, cianuro, cadmio, cromo, cobre, mercurio, plomo y zinc.

Los sólidos orgánicos se pueden clasificar en nitrogenados y no nitrogenados. Los nitrogenados, es decir, los que contienen nitrógeno en su molécula, son proteínas, ureas, aminas y aminoácidos. Los no nitrogenados son principalmente celulosa, grasas y jabones.La concentración de materiales orgánicos en el agua se determina a través de la DBO 5, la cual mide material orgánico carbonáceo principalmente, mientras que la DBO20 mide material orgánico carbonáceo y nitrogenado DBO2.

Aniones y cationes inorgánicos y compuestos orgánicos

Características bacteriológicasUna de las razones más importantes para tratar las aguas residuales o servidas es la eliminación de todos los agentes patógenos de origen humano presentes en las excretas con el propósito de cortar el ciclo epidemiológico de transmisión. Estos son, entre otros:

Coliformes totales Coliformes fecales Salmonellas Virus

Materia en suspensión y materia disuelta

A efectos del tratamiento, la gran división es entre materia en suspensión y materia disuelta.

Page 2: Agua Residuales

La materia en suspensión se separa por tratamientos fisicoquímicos, variantes de

la sedimentación y filtración. En el caso de la materia suspendida sólida se trata de

separaciones sólido - líquido por gravedad o medios filtrantes y, en el caso de la materia

aceitosa, se emplea la separación L-L, habitualmente por flotación.

La materia disuelta puede ser orgánica, en cuyo caso el método más extendido es

su insolubilización como material celular (y se convierte en un caso de separación S-L) o

inorgánica, en cuyo caso se deben emplear caros tratamientos fisicoquímicos como la

ósmosis inversa.

Los diferentes métodos de tratamiento atienden al tipo de contaminación: para la materia en

suspensión, tanto orgánica como inorgánica, se emplea la sedimentación y la filtración en todas

sus variantes. Para la materia disuelta se emplean los tratamientos biológicos (a veces

la oxidación química) si es orgánica, o los métodos de membranas, como la ósmosis, si es

inorgánica.

Principales parámetrosLos parámetros característicos, mencionados en la Directiva Europea, son:

temperatura pH sólidos en suspensión totales (SST) o materia orgánica valorada como DQO y DBO nitrógeno total Kjeldahl (NTK) nitrógeno amoniacal y nitratos

También hay otros parámetros a tener en cuenta como fósforo total, nitritos, sulfuros, sólidos disueltos.

Influencias del medio receptorSe entiende por contaminación, la acción y el efecto de introducir materias o formas de energía, o inducir condiciones en el agua que, de modo directo o indirecto, impliquen una alteración perjudicial de su calidad en relación con los usos posteriores o con su función ecológica.

1. Vertido de sustancias orgánicas degradables: producen una disminución del oxígeno disuelto, ya que los microorganismos que degradan la materia orgánica consumen oxígeno para su oxidación. Si la demanda de oxígeno es superior a la aireación por disolución de oxígeno atmosférico, se puede llegar a un ciclo anaerobio: se consume oxígeno combinado en lugar de molecular, creándose un ambiente reductor, con la aparición de amoníaco, nitrógeno y ácido sulfhídrico, y la reducción de sulfatos a sulfuros; el agua se torna oscura, de olor desagradable y con gérmenes patógenos.

2. Incorporación de compuestos tóxicos, tanto orgánicos como inorgánicos. Eliminan los organismos depuradores, o bien inhiben su desarrollo impidiendo reacciones enzimáticas. Intoxican también a varios niveles de la cadena trófica, desde microorganismos hasta animales superiores.

3. Incorporación de materia en suspensión, que reduce la entrada de luz y atasca los órganos respiratorios y filtradores de muchos animales.

4. Alteración del equilibrio salino (balance en sodio, calcio, etc.) y del pH.

Page 3: Agua Residuales

Análisis para aguas residualesEntre los principales análisis se tienen los siguientes:

• DBO• DQO• pH• Temperatura• Sólidos totales• Sólidos suspendidos• Sólidos sedimentables

Determinación de sólidos totales1. Evaporar al baño María 100 ml de agua bruta tamizada.2. Introducir el residuo en la estufa y mantenerlo a 105 °C durante 2 horas.3. Pasarlo al desecador y dejar que se enfríe.4. Pesar. Sea Y el peso del extracto seco a 105 °C5. Calcinar en un horno a 525± 25 °C durante 2 horas.6. Dejar que se enfríe en el desecador.7. Pesar. Sea Y´ el peso del residuo calcinado.8. Cálculos

Peso de la fracción orgánica de los sólidos totales de la muestra= Y-Y´, siendo Y el peso de las materias totales de la muestra e Y’ el peso de la fracción mineral de las materias totales de la muestra.

Determinación de la DBOLa demanda biológica de oxígeno (DBO), es un parámetro que mide la cantidad de materia susceptible de ser consumida u oxidada por medios biológicos que contiene una muestra líquida, disuelta o en suspensión. Se utiliza para medir el grado de contaminación, normalmente se mide transcurridos cinco días de reacción (DBO5), y se expresa en miligramos de oxígeno diatómico por litro (mgO2/l). El método de ensayo se basa en medir el oxígeno consumido por una población microbiana en condiciones en las que se han inhibido los procesos fotosintéticos de producción de oxígeno en condiciones que favorecen el desarrollo de los microorganismos. Es un método que constituye un medio válido para el estudio de los fenómenos naturales de destrucción de la materia orgánica, representando la cantidad de oxígeno consumido por los gérmenes aerobios para asegurar la descomposición, dentro de condiciones bien especificadas, de las materias orgánicas contenidas en el agua a analizar.El método pretende medir, en principio, exclusivamente la concentración de contaminantes orgánicos. Sin embargo, la oxidación de la materia orgánica no es la única causa del fenómeno, sino que también intervienen la oxidación de nitritos y de las sales amoniacales, susceptibles de ser también oxidadas por las bacterias en disolución. Para evitar este hecho se añade N-aliltiourea como inhibidor. Además, influyen las necesidades de oxígeno originadas por los fenómenos de asimilación y de formación de nuevas células.

Determinación de la DQOLa demanda química de oxígeno (DQO) es un parámetro que mide la cantidad de materia orgánica susceptible de ser oxidada por medios químicos que hay en una muestra líquida. Se utiliza para medir el grado de contaminación y se expresa en miligramos de oxígeno diatómico por litro (mg O2/l). Aunque este método pretende medir exclusivamente la concentración de materia orgánica, puede sufrir interferencias por la presencia de sustancias inorgánicas susceptibles de ser oxidadas (sulfuros, sulfitos, yoduros).

Page 4: Agua Residuales

La DQO está en función de las características de las materias presentes, de sus proporciones respectivas, de las posibilidades de oxidación, etc. Es por esto que la obtención de los resultados y su interpretación no podrán ser satisfechas más que en condiciones de metodología bien definidas y estrictamente respetadas.

TRATAMIENTO DEL AGUA RESIDUALToda agua servida o residual debe ser tratada, tanto para proteger la salud pública como para preservar el medio ambiente. Antes de tratar cualquier agua servida debemos conocer su composición. Esto es lo que se llama caracterización del agua. Permite conocer qué elementos químicos y biológicos están presentes y da la información necesaria para que los ingenieros expertos en tratamiento de aguas puedan diseñar una planta apropiada al agua servida que se está produciendo. de manera que el agua sea devuelta al medio ambiente en condiciones adecuadas. El proceso, además, debe ser optimizado de manera que la planta no produzca olores ofensivos hacia la comunidad en la cual está inserta. Una planta de aguas servidas bien operada debe eliminar al menos un 90% de la materia orgánica y de los microorganismos patógenos presentes en ella.La etapa primaria elimina el 60% de los sólidos suspendidos y un 35% de la DBO. La etapa secundaria, en cambio, elimina el 30% de los sólidos suspendidos y un 55% de la DBO.

Etapas del tratamiento del agua residualEl proceso de tratamiento del agua residual se puede dividir en cuatro etapas: pretratamiento, primaria, secundaria y terciaria. Algunos autores llaman a las etapas preliminar y primaria unidas como etapa primaria.

Etapa preliminarLa etapa preliminar debe cumplir dos funciones:

1. Medir y regular el caudal de agua que ingresa a la planta2. Extraer los sólidos flotantes grandes y la arena (a veces, también la grasa).

Page 5: Agua Residuales

Normalmente las plantas están diseñadas para tratar un volumen de agua constante, lo cual debe adaptarse a que el agua servida producida por una comunidad no es constante. Hay horas, generalmente durante el día, en las que el volumen de agua producida es mayor, por lo que deben instalarse sistemas de regulación de forma que el caudal que ingrese al sistema de tratamiento sea uniforme.Asimismo, para que el proceso pueda efectuarse normalmente, es necesario filtrar el agua para retirar de ella sólidos y grasas. Las estructuras encargadas de esta función son las rejillas, tamices, trituradores (a veces), desgrasadores y desarenadores. En esta etapa también se puede realizar la preaireación, cuyas funciones son: a) Eliminar los compuestos volátiles presentes en el agua servida, que se caracterizan por ser malolientes, y b) Aumentar el contenido de oxígeno del agua, lo que ayuda a la disminución de la producción de malos olores en las etapas siguientes del proceso de tratamiento.

Etapa primariaTiene como objetivo eliminar los sólidos en suspensión por medio de un proceso de sedimentación simple por gravedad o asistida por coagulantes y floculantes. Así, para completar este proceso se pueden agregar compuestos químicos (sales de hierro, aluminio y polielectrolitos floculantes) con el objeto de precipitar el fósforo, los sólidos en suspensión muy finos o aquellos en estado de coloide.Las estructuras encargadas de esta función son los estanques de sedimentación primarios o clarificadores primarios. Habitualmente están diseñados para suprimir aquellas partículas que tienen tasas de sedimentación de 0,3 a 0,7 mm/s. Asimismo, el período de retención es normalmente corto, 1 a 2 h. Con estos parámetros, la profundidad del estanque fluctúa entre 2 a 5 m.En esta etapa se elimina por precipitación alrededor del 60 al 70% de los sólidos en suspensión. En la mayoría de las plantas existen varios sedimentadores primarios y su forma puede ser circular, cuadrada a rectangular.

Etapa secundariaTiene como objetivo eliminar la materia orgánica en disolución y en estado coloidal mediante un proceso de oxidación de naturaleza biológica seguido de sedimentación. Este proceso biológico es un proceso natural controlado en el cual participan los microorganismos presentes en el agua residual, y que se desarrollan en un reactor o cuba de aireación, más los que se desarrollan, en menor medida en el decantador secundario. Estos microorganismos, principalmente bacterias, se alimentan de los sólidos en suspensión y estado coloidal produciendo en su degradación anhídrido carbónico y agua, originándose una biomasa bacteriana que precipita en el decantador secundario. Así, el agua queda limpia a cambio de producirse unos fangos para los que hay que buscar un medio de eliminarlos.En el decantador secundario, hay un flujo tranquilo de agua, de forma que la biomasa, es decir, los flóculos bacterianos producidos en el reactor, sedimentan. El sedimento que se produce y que, como se dijo, está formado fundamentalmente por bacterias, se denomina fango activo.Los microorganismos del reactor aireado pueden estar en suspensión en el agua (procesos de crecimiento suspendido o fangos activados), adheridos a un medio de suspensión (procesos de crecimiento adherido) o distribuidos en un sistema mixto (procesos de crecimiento mixto).Las estructuras usadas para el tratamiento secundario incluyen filtros de arena intermitentes, filtros percoladores, contactores biológicos rotatorios, lechos fluidizados, estanques de fangos activos, lagunas de estabilización u oxidación y sistemas de digestión de fangos.

Etapa terciariaTiene como objetivo suprimir algunos contaminantes específicos presentes en el agua residual tales como los fosfatos que provienen del uso de detergentes domésticos e industriales y cuya

Page 6: Agua Residuales

descarga en cursos de agua favorece la eutrofización, es decir, un desarrollo incontrolado y acelerado de la vegetación acuática que agota el oxígeno, y mata la fauna existente en la zona. No todas las plantas tienen esta etapa ya que dependerá de la composición del agua residual y el destino que se le dará.

Porque deben ser tratadasLas aguas para abastecimiento humano deben ser tratadas, con mucho más razón las aguas residuales, que resultan después de que el agua es utilizada para satisfacer las necesidades humanas, ya sean domésticas, agrícolas o industriales porque contienen compuestos y organismos que son altamente peligrosos para la salud humana.Además de que su aspecto y olor resultan desagradables también pueden contaminar cuerpos de agua que se utilizan para la pesca, para practicar la natación o como fuentes de abastecimiento de agua potable. En virtud de que los microorganismos patógenos que se encuentran en las aguas residuales consumen el oxígeno disuelto que se encuentra en las mismas, el parámetro que se utiliza para medir esta característica es la demanda bioquímica de oxígeno (DBO) que nos sirve también para medir la carga de materia orgánica que entra en las plantas de tratamiento y la efectividad de las mismas.Las plantas de tratamiento de aguas residuales utilizan gran variedad de métodos para remover los contaminantes. Los más comunes son una combinación de métodos físicos, químicos y biológicos.

Con relación a las bacterias, éstas se dividen en aerobias y anaerobias, las primeras son las que utilizan oxígeno para activar su metabolismo y las segundas no toleran el oxígeno libre, pero utilizan agentes oxidantes y reductores como alimento para su metabolismo.En las plantas modernas de tratamiento, las aguas que se obtienen después de los tratamientos biológicos deben desinfectarse por cloración o por cualquier otro método para este fin, dado que las bacterias que se utilizan para estos tratamientos, una vez que han cumplido su función de destruir la materia orgánica no hay garantía de que no puedan ocasionar enfermedades.

En una comparación entre los diferentes métodos, es importante analizar en qué cantidad se reduce la demanda bioquímica de oxígeno (DBO) y los sólidos suspendidos (SS). En la sedimentación se reduce la DBO 35% y los SS 50%. En los tratamientos biológicos en ambos parámetros se obtiene una reducción de 85%. Lo anterior es importante mantenerlo presente en virtud de que en cualquier tratamiento lo que se busca es la reducción de la DBO, de los sólidos suspendidos, del nitrógeno total, del fósforo y del amoniaco.

De los tratamientos de aguas se obtienen como productos secundarios los lodos residuales. El manejo de estos lodos y su disposición es un problema grave que tiende a incrementarse dado que varía considerablemente su composición. Algunos se encuentran libres de sustancias tóxicas y pueden ser utilizados como abono para el suelo, otros contienen altas concentraciones de materia orgánica, inorgánica, contaminantes tóxicos y organismos patógenos, por lo que resulta difícil su disposición final.

También es importante mencionar que las plantas de tratamiento de aguas residuales municipales no están diseñadas para remover ciertos contaminantes, por lo que las industrias deben eliminarlos a través de un pretratamiento.Uno de los contaminantes difíciles de remover es el plomo proveniente de baterías y cianuros que, además, puede dificultar el tratamiento de las aguas residuales porque interfiere en algunas reacciones de remoción de contaminantes e incrementa los costos por su difícil disposición.

Page 7: Agua Residuales

Tratamiento de aguas residualesDesinfección: Las aguas servidas tratadas normalmente contienen microorganismos patógenos que sobreviven a las etapas anteriores de tratamiento. Las cantidades de microorganismos van de 10.000 a 100.000 coliformes totales y 1.000 a 10.000 coliformes fecales por 100 ml de agua, como también se aíslan algunos virus y huevos de parásitos. Por tal razón es necesario proceder a la desinfección del agua. Esta desinfección es especialmente importante si estas aguas van a ser descargadas a aguas de uso recreacional, aguas donde se cultivan mariscos o aguas que pudieran usarse como fuente de agua para consumo humano.Los métodos de desinfección de las aguas servidas son principalmente la cloración y la iozonización, pero también se ha usado la bromación y la radiación ultravioleta. El más usado es la cloración por ser barata, fácilmente disponible y muy efectiva. Sin embargo, como el cloro es tóxico para la vida acuática el agua tratada con este elemento debe ser sometida a decloración antes de disponerla a cursos de agua natural.Desde el punto de vista de la salud pública se encuentra aceptable un agua servida que contiene menos de 1.000 coliformes totales por 100 ml y con una DBO inferior a 50 mg/L.La estructura que se usa para efectuar la cloración es la cámara de contacto. Consiste en una serie de canales interconectados por los cuales fluye el agua servida tratada de manera que ésta esté al menos 20 minutos en contacto con el cloro, tiempo necesario para dar muerte a los microorganismos patógenos.

Sistema de filtros: pueden ser utilizados para tratamiento aeróbico de aguas residuales industriales y domésticas, y su efectividad es de 85% para reducir la demanda bioquímica de oxígeno (DBO) y los sólidos suspendidos totales (SST). Requieren de supervisión técnica mínima y sus costos de operación comparados con otros tratamientos (sistemas de lodos activados) son mucho más bajos. El sistema de filtros consta de los siguientes componentes en el orden en que se enlistan: cribas, tanques de remoción de arena, clarificador primario, filtro, clarificador secundario, sistema de desinfección y tratamiento y disposición de lodos.Después de la sedimentación primaria, el agua residual es bombeada a una cama de arena y se le hace pasar a través de ésta. En esta forma, una cama de bacterias se forma a la mitad y se remueve la materia orgánica del agua residual. El agua residual y los sólidos son transportados a un tanque de sedimentación secundaria en donde son separados. Una porción del agua residual tratada es reciclada nuevamente al filtro para mejorar la calidad del efluente final.El lodo producido en el sistema de filtros proviene de la clarificación primaria y los sólidos, que incluyen la biomasa y son recolectados en los clarificadores finales. Este lodo es digerido aeróbica o anaeróbicamente y después se dispone en rellenos sanitarios.

Sistema de lodos activados: es un proceso de tratamiento biológico donde O2 adicional es utilizado para activar las bacterias aerobias. Estos lodos activados se adicionan en los sólidos residuales sedimentados que serán tratados. La mezcla se agita utilizando aire comprimido del centro del tanque la cual maximiza la absorción del oxígeno de la atmósfera. Los microorganismos en los lodos activados oxidan la materia orgánica soluble y capturan partículas sólidas para convertirlas en otras de mayor tamaño en presencia de oxígeno molecular disuelto. La mezcla de microorganismos, partículas sólidas y aguas residuales es aireada y después sedimentada para separar los sólidos biológicos del agua tratada. La mayor porción de los sólidos biológicos son removidos por la sedimentación y reciclados a los recipientes de aireación para ser combinados con el agua residual entrante.Una variación del proceso de lodos activados que es aplicable en situaciones donde el flujo es muy grande es la oxidación continua. El sistema recircula el agua de manera continua en canales cerrados donde se lleva a cabo la aireación. El agua residual se circula de 18 a 24 horas y se utilizan aireadores mecánicos para mezclar y mover el agua, y no sólo provee el oxígeno necesario para la oxidación sino que también remueven los sólidos remanentes.

Page 8: Agua Residuales

Lagunas: son los métodos que se utilizan con más frecuencia en el tratamiento de aguas residuales. Pero no pueden tratar residuos al nivel requerido legalmente sin tener que utilizar procesos adicionales. Todas las lagunas funcionan bajo un mismo principio, utilizando las propiedades naturales de las bacterias o las algas para reducir el contenido de materia orgánica en las aguas residuales. Durante el día, la fotosíntesis de las algas proveen el oxígeno necesario para la respiración de las bacterias. Existen diferentes tipos de tratamientos que incorporan sistemas de aireación adicional.

Sistemas de lagunas de estabilización: se clasifican en dos tipos; 1) las lagunas de estabilización, que no tienen una profundidad mayor a 1.8 metros, trabajan con bacterias aerobias y se llevan más de 30 días en destruir los residuos, y 2) las lagunas de aireación, que pueden procesar mayor volumen de aguas residuales y requieren de menor tiempo para destruir los contaminantes. Este tipo de lagunas tiene una profundidad entre 1.2 y 1.8 metros. El agua que se encuentra cerca de la superficie es aeróbica debido al oxígeno en la atmósfera y la respiración de las algas, la parte del fondo es anaerobia y contiene sólidos sedimentados y a la parte de la mitad se le llama zona facultativa. Las algas que se encuentran cerca de la superficie toman el dióxido de carbono y lo transforman en oxígeno y este fenómeno hace que se eleve el pH arriba de 10, lo cual ayuda a volatilizar el amoniaco de la laguna. El oxígeno producido por las algas es utilizado por las bacterias para destruir el material orgánico de la superficie. Estas lagunas se mezclan utilizando aireadores flotantes de superficie. La remoción efectiva de materia orgánica soluble se puede conseguir con el tiempo apropiado de mezclado. El siguiente paso después del proceso de aireación es la descarga del efluente en los receptores del agua que están conformados por grandes estanques o secciones de la laguna de aireación aislada por diques.En algunos casos, estas lagunas se utilizan como dispositivos de pretratamiento.La diferencia principal entre este proceso y el de lodos activados es que la biomasa no es reciclada entre la etapa de sedimentación y la de aireación.

Remoción de los compuestos orgánicos biodegradables: en las lagunas de aireación depende de muchos factores, como el tiempo de retención, temperatura y la naturaleza del residuo. Este proceso reduce considerablemente la demanda bioquímica de oxígeno y se pueden tratar aguas residuales con una gran variedad de compuestos orgánicos presentes si se diseñan adecuadamente. Los problemas que llegan a presentarse con las lagunas de aireación son el excesivo crecimiento de algas, olores desagradables por la presencia de sulfatos y el poco oxígeno disuelto.

Filtración: los filtros intermitentes de arena se utilizan como tratamiento adicional para los efluentes de las lagunas o de los sistemas de tanques sépticos. Esta operación se puede realizar sólo en una ocasión cuando el agua residual se mueve a través del filtro de arena o en más de una ocasión cuando es recirculada. En cualesquiera de los casos, el sistema de filtración consiste en una cama de arena con un grosor de aproximadamente tres pies instalándose una bomba debajo de la grava para que drene. El área total de la cama de arena se divide en dos o más filtros. El agua residual se pasa en ciclos alternados que permiten que el lecho de arena drene completamente, lo cual es necesario para mantener las condiciones aeróbicas.

Métodos de tratamiento por tierra: existen gran cantidad de sistemas de aplicación por tierra que pueden ser utilizados como sistema de disposición de efluentes o como un tratamiento avanzado de efluentes. Este tipo de sistemas de tratamiento tiene grandes beneficios como la recuperación de nutrientes, la recarga del agua subterránea y la conservación del agua por irrigación de las distintas áreas. Estos sistemas son muy recomendables en áreas donde los requerimientos de descarga en la superficie del agua son estrictos y la tierra es relativamente

Page 9: Agua Residuales

barata. El tipo de suelo y su textura deben ser adecuados para el tratamiento de tierra. La aplicación por tierra es un método avanzado pero sencillo de tratamiento de aguas residuales. El agua residual pretratada, se aplica a la tierra por infiltración, flujo o métodos de irrigación y se lleva a cabo a través de un proceso natural en el que el efluente fluye a través de la vegetación y el suelo, el nitrógeno es removido por las plantas a través del ciclo del nitrógeno. Cierta cantidad del agua residual se pierde por transpiración y evaporación, pero la mayoría se reincorpora al agua a través de la percolación del suelo.Algunas veces en este tipo de tratamiento por tierra, el agua residual se aplica en las áreas de terreno altas y se colecta en el centro de la colina, después, se desinfecta y se descarga a un cuerpo de agua. En este proceso los sólidos suspendidos que contiene el agua se dispersan en la vegetación y se descomponen. Las bacterias del pasto y del suelo consumen la materia orgánica y los nutrientes consumidos por la vegetación. El efluente resultante reduce notablemente los contaminantes más que los sistemas de tratamiento secundario. La demanda bioquímica de oxígeno (DBO) y los sólidos suspendidos totales (SST) se remueven entre 85 y 92%, el nitrógeno entre 60 y 80% y el fósforo entre 20 y 50%. Este tipo de sistema es muy efectivo y requiere de un equipo mínimo.Una variación del sistema de tratamiento por tierra es la irrigación de suelos, en el cual el agua residual se bombea a diferentes áreas en suelos con alta permeabilidad. En este sistema convergen diferentes tratamientos como la filtración, adsorción y actividad microbiana cuando se percola el agua a través del suelo.

Disposición de lodos: como se ha mencionado previamente, la mayoría de los tratamientos de aguas residuales generan lodos que deben ser tratados de forma apropiada para su disposición final; sin embargo, antes deben estabilizarse, lo que removerá organismos patógenos y reducirá el contenido de materia orgánica. Después de la estabilización, en algunas ocasiones se elimina el agua de los lodos para eliminar su volumen total y son depositados en la tierra como disposición final. La estabilización es complementada por digestión aerobia o aplicación de lime, donde los lodos son bombeados a un digestor y retenido por un periodo de entre 20 y30 días para reducir los sólidos suspendidos y los patógenos. Durante esta etapa de estabilización, los lodos son aireados y mezclados de manera rutinaria.Algunos lodos limpios se pueden utilizar como acondicionadores del suelo en virtud de que contienen nutrientes como el nitrógeno, fósforo y potasio. Esto hace a los lodos un excelente complemento a los fertilizantes comerciales. También los lodos pueden ser aplicados debajo de la tierra por inyección o cuando se les ha eliminado el agua se pueden esparcir sobre la superficie de la tierra.

Deshidratación de los fangosSe han hecho diversas estructuras para el secado por aire de los fangos. Entre ellas están: lechos de arena, lechos asistidos de arena, lagunas de fangos, lechos adoquinados y eras de secado.Para el secado mecánico existen filtros banda, filtros prensa, filtros de vacío y centrífugas.Los fangos deshidratados deben disponerse en una forma ambientalmente segura. Para ello, según el caso, pueden llevarse a rellenos sanitarios, ser depositados en terrenos agrícolas y no agrícolas o incinerados. La aplicación en terrenos agrícolas requiere que el fango no presente sustancias tóxicas para las plantas, animales y seres humanos. Lo habitual es que sí las contengan por lo que lo normal es que sean dispuestos en rellenos sanitarios o incinerados.