9 Tecnologia Enzimatica Importante(2)

84
Tecnología Enzimática

Transcript of 9 Tecnologia Enzimatica Importante(2)

Page 1: 9 Tecnologia Enzimatica Importante(2)

Tecnología Enzimática

Page 2: 9 Tecnologia Enzimatica Importante(2)

INDICE

1. Introducción2. Producción de Enzimas3. Extracción de Enzimas4. Purificación de Enzimas5. Aplicaciones de los Enzimas

1. Aplicaciones en la Industria Alimentaria2. Aplicaciones en la Industria no Alimentaria

6. Problemas de la Tecnología Enzimática

Page 3: 9 Tecnologia Enzimatica Importante(2)

1.- INTRODUCCIÓN

1.1 CONCEPTO DE ENZIMA

1.2 CONCEPTO DE CATALIZADOR

1.3 NOMENCLATURA

1.4 CLASIFICACIÓN DE ENZIMAS

Page 4: 9 Tecnologia Enzimatica Importante(2)

Los enzimas son proteínas que catalizan reacciones químicas en los seres vivos . Como catalizadores, los enzimas actúan en pequeña cantidad y se recuperan indefinidamente.

No llevan a cabo reacciones que sean energé-ticamente desfavorables, no modifican el sentido de los equilibrios químicos, sino que aceleran su consecución.

1.1 COCEPTO DE ENZIMA

Page 5: 9 Tecnologia Enzimatica Importante(2)

Un catalizador es una sustancia que

acelera una reacción química, hasta hacerla instantánea o casi instantánea. Un catalizador acelera la reacción al disminuir la energía de activación.

1.2 CATALIZADOR

Page 6: 9 Tecnologia Enzimatica Importante(2)

Los enzimas son catalizadores específicos.

En una reacción catalizada por un enzima:

1.La sustancia sobre la que actúa el enzima se llama sustrato

2. El sustrato se une a una región concreta del enzima, llamada centro activo

3. Se forman los productos y el enzima ya puede comenzar un nuevo ciclo de reacción

ASPECTOS GENERALES SOBRE LOS ENZIMAS

Page 7: 9 Tecnologia Enzimatica Importante(2)

1.- El enzima y su sustrato

2.- Unión al centro activo

3.- Formación de productos

REACCIÓN CATALIZADA

Page 8: 9 Tecnologia Enzimatica Importante(2)
Page 9: 9 Tecnologia Enzimatica Importante(2)

1.3 NOMENCLATURA

Hay varias formas mediante las cuales se asigna un nombre a un enzima:

•nombres particulares

•nombre sistemático

•código de la comisión enzimática (enzyme comission)

Page 10: 9 Tecnologia Enzimatica Importante(2)

1.4 CLASIFICACIÓN DE LOS ENZIMAS

En función de su acción catalítica específica, dintiguimos 6 grandes grupos o clases:

•Clase 1: OXIDORREDUCTASAS

•Clase 2: TRANSFERASAS

•Clase 3: HIDROLASAS

•Clase 4: LIASAS

•Clase 5: ISOMERASAS

• Clase 6: LIGASAS

Page 11: 9 Tecnologia Enzimatica Importante(2)

Clase 1: OXIDORREDUCTASAS

Catalizan reacciones de oxidorreducción, es decir, transferencia de hidrógeno (H) o

electrones (e-) de un sustrato a otro, según la reacción general:

AH2 + B A + BH2

Ared + Box Aox + Bred

Ejemplos son la succinato deshidrogenasa o la citocromo c oxidasa.

Page 12: 9 Tecnologia Enzimatica Importante(2)

Esquema de oxidorreductasas

Page 13: 9 Tecnologia Enzimatica Importante(2)

Clase 2: TRANSFERASAS

Catalizan la transferencia de un grupo químico (distinto del hidrógeno) de un sustrato a otro, según la reacción:

A-B + C A + C-B

Un ejemplo es la glucoquinasa, que cataliza la reacción siguiente:

glucosa + ATP ADP + glucosa-6-fosfato

Page 14: 9 Tecnologia Enzimatica Importante(2)

Ejemplo de la glucoquinasa

Page 15: 9 Tecnologia Enzimatica Importante(2)

Clase 3: HIDROLASAS

Catalizan las reacciones de hidrólisis:

A-B + H2O AH + B-OH

Un ejemplo es la lactasa, que cataliza la reacción:

lactosa + agua glucosa + galactosa

Page 16: 9 Tecnologia Enzimatica Importante(2)

Clase 4: LIASAS

Catalizan reacciones de ruptura o soldadura de sustratos:

A-B A + B

Un ejemplo es la acetacetato descarboxilasa, que cataliza la reacción:

ácido acetacético CO2 + acetona

Page 17: 9 Tecnologia Enzimatica Importante(2)

Clase 5: ISOMERASAS

Catalizan la interconversión de isómeros:

A B

Un ejemplo, la fosfotriosa isomerasa que cataliza las reacción representada:

gliceraldehído-3-fosfato dihidroxiacetona-fosfato

Page 18: 9 Tecnologia Enzimatica Importante(2)

Representación

Page 19: 9 Tecnologia Enzimatica Importante(2)

Clase 6: LIGASAS

Catalizan la unión de dos sustratos con hidrólisis simultánea de un nucleótido trifosfato (ATP, GTP, etc.):

A + B + XTP A-B + XDP + Pi

Un ejemplo es la piruvato carboxilasa

Page 20: 9 Tecnologia Enzimatica Importante(2)

2.- PRODUCCIÓN DE ENZIMAS2.0 Uso de enzimas

2.1 Características de la acción enzimática

2.2 Factores que influyen en las reacciones enzimáticas

Page 21: 9 Tecnologia Enzimatica Importante(2)

2.0 USO DE ENZIMASLa aplicación de la catálisis enzimática es un negocio de grandes proporciones.

Los enzimas se utilizan en cuatro campos bien diferenciados:

como agentes terapéuticos,

como herramienta para la manipulación de materiales biológicos,

como reactivos analíticos

y como catalizadores industriales.

Page 22: 9 Tecnologia Enzimatica Importante(2)

2.1 CARACTERÍSTICAS DE LA ACCIÓN ENZIMÁTICA

La acción enzimática se caracteriza por la formación de un complejo que representa el estado de transición del sustrato al producto.

E + S ES E + P El sustrato se une al enzima a través de numerosas interacciones débiles como son: puentes de hidrógeno, electrostáticas, hidrófobas, etc, en un lugar específico , el centro activo.

Page 23: 9 Tecnologia Enzimatica Importante(2)

Animación sobre la acción enzimática

Page 24: 9 Tecnologia Enzimatica Importante(2)

Algunas enzimas actúan con la ayuda de estructuras no proteícas. En función de su naturaleza se denominan:

1.Cofactor. Cuando se trata de iones o moléculas inorgánicas.

2.Coenzima. Cuando es una molécula orgánica. Se puede señalar, que muchas vitaminas funcionan como coenzimas.

Continuación...

Page 25: 9 Tecnologia Enzimatica Importante(2)

COFACTOR

COENZIMA

Page 26: 9 Tecnologia Enzimatica Importante(2)

2.2 FACTORES QUE INFLUYEN EN REACCIONES ENZIMATICAS

2.2.1 Cambios en el pH

2.2.2 Cambios en la temperatura

2.2.3 Presencia de cofactores

2.2.4 Las concentraciones del sustrato y de los productos finales

Page 27: 9 Tecnologia Enzimatica Importante(2)

2.2.1 EFECTO DEL pH SOBRE LA ACTIVIDAD ENZIMÁTICA

Los enzimas poseen grupos químicos ionizables (carboxilos -COOH; amino -NH2; tiol -SH; imidazol, etc.) en las cadenas laterales de sus aminoácidos. Según el pH del medio, estos grupos pueden tener carga eléctrica positiva, negativa o neutra. Como la conformación de las proteínas depende, en parte, de sus cargas eléctricas, habrá un pH en el cual la conformación será la más adecuada para la actividad catalítica. Este es el llamado pH óptimo.

Page 28: 9 Tecnologia Enzimatica Importante(2)

Representación del efecto del pH

Page 29: 9 Tecnologia Enzimatica Importante(2)

2.2.2 EFECTO DE LA TEMPERATURA SOBRE LA ACTIVIDAD ENZIMÁTICA

Los aumentos de temperatura por lo general aceleran las reacciones químicas. Las reacciones catalizadas por enzimas siguen esta ley, solo que al ser proteínas a partir de cierta temperatura se empiezan a desnaturalizar.

Esa temperatura se llama temperatura óptima y es aquella en la que la velocidad enzimática es máxima.

Page 30: 9 Tecnologia Enzimatica Importante(2)

2.2.3 EFECTO DE LOS COFACTORES SOBRE LA ACTIVIDAD ENZIMÁTICA

Los cofactores son sustancias no proteícas que colaboran en la catálisis con la enzima para realizar su función.

Los cofactores pueden ser:

Iones inorgánicos: Fe++, Mg++, Mn++, Zn+

+ ,etc...

Moléculas orgánicos: que son las coenzimas

Page 31: 9 Tecnologia Enzimatica Importante(2)

Muchos de estos coenzimas se sintetizan a partir de vitaminas. En la siguiente figura podemos observar una molécula de hemoglobina (proteína que transporta oxígeno) y su coenzima (el grupo hemo).

Cuando los cofactores y las coenzimas se encuentran unidos covalentemente al enzima se llaman grupos prostéticos. La forma catalíticamente activa del enzima, es decir, el enzima unida a su grupo prostético, se llama holoenzima. La parte proteica de un holoenzima (inactiva) se llama apoenzima, de forma que:

Page 32: 9 Tecnologia Enzimatica Importante(2)

2.2.4 EFECTO DE LAS CONCENTRACIONES SOBRE LA ACTIVIDAD ENZIMÁTICA

La velocidad de una reacción enzimática depende de la concentración de sustrato.

En la siguiente figura observamos la velocidad de una reacción enzimática a 6 concentraciones distintas de sustrato.

Page 33: 9 Tecnologia Enzimatica Importante(2)

Además, la presencia de los productos finales puede hacer que la reacción sea más lenta, o incluso invertir su sentido.

Continuación...

Page 34: 9 Tecnologia Enzimatica Importante(2)

2.2.5 EFECTO DE LOS INHIBIDORES SOBRE LA ACTIVIDAD ENZIMÁTICA

Ciertas moléculas pueden inhibir la acción catalítica de un enzima: estos son los inhibidores. Estos inhibidores bien pueden ocupar temporalmente el centro activo por semejanza estructural con el sustrato original (inhibidor competitivo) o bien alteran la conformación espacial del enzima, impidiendo su unión al sustrato (inhibidor no competitivo)

Page 35: 9 Tecnologia Enzimatica Importante(2)

Inhibidor competitivo

Page 36: 9 Tecnologia Enzimatica Importante(2)

Inhibidor no competitivo

Page 37: 9 Tecnologia Enzimatica Importante(2)

COSTE

La consideración dominante en el contexto del procesado industrial es la del coste.

De poco sirve dar con un enzima que es teóricamente mejor, si su coste es prohibitivo.

Hay q tener en cuenta el coste tanto por unidad de conversión como en porcentaje respecto al coste total del procesado.

Page 38: 9 Tecnologia Enzimatica Importante(2)

DISPONIBILIDAD

La abundante disponibilidad del enzima y, por lo tanto, de su fuente, es de importancia fundamental.

No sólo debe el enzima ser fácilmente disponible, sino que tanto él como su fuente han de ser aceptables desde el punto de vista de la inocuidad. Esto es de vital importancia cuando se vayan a destinar al procesado de alimentos o puedan entrar en contacto con las personas.

Page 39: 9 Tecnologia Enzimatica Importante(2)

3. EXTRACCIÓN DE ENZIMAS

Page 40: 9 Tecnologia Enzimatica Importante(2)

3. EXTRACCIÓN DE ENZIMAS.

• 3.1. ETAPAS EN LA OBTENCIÓN DE ENZIMAS.• 3.2. TIPOS DE ENZIMAS.• 3.3. MÉTODOS DE ROTURA.• 3.4. ELECCIÓN DEL MÉTODO DE ROTURA.

Page 41: 9 Tecnologia Enzimatica Importante(2)

3.1. ETAPAS EN LA OBTENCIÓN DE ENZIMAS INDUSTRIALES

• Selección de la fuente de enzimas.• Rotura celular (enzimas intracelulares)• Eliminación de los restos celulares (enzimas

intracelulares)• Concentración y enriquecimiento• Purificación con alta resolución (dependiendo de su

uso final)• Concentración y terminado

Page 42: 9 Tecnologia Enzimatica Importante(2)

3.2.TIPOS DE ENZIMAS.

• ENZIMAS INTRACELULARES:• Glucosa isomerasa, glucosa oxidasa, penicilin acetilasa,

asparraginasa

• ENZIMAS EXTRACELULARES:• Dado que la molécula es segregada fuera de la célula, no se

requieren técnicas de ruptura celular • El número de proteínas que se segregan es limitado y por eso es

relativamente fácil aislar una enzima concreta a partir de una mezcla

• Estructura más compacta y menos susceptibles a la desnaturalización que las correspondientes intracelulares.

Page 43: 9 Tecnologia Enzimatica Importante(2)

4. PURIFICACIÓN DE ENZIMAS.

Page 44: 9 Tecnologia Enzimatica Importante(2)

4. PURIFICACIÓN DE ENZIMAS

• 4.1. PROCESOS.• 4.2.ELIMINACIÓN DE ÁCIDOS NUCLÉICOS.• 4.3.ELIMINACIÓN DE PARTÍCULAS SÓLIDAS.• 4.4.PURIFICACIÓN Y CONCENTRACIÓN.• 4.5.CONCENTRACIÓN Y ENVASADOS.

Page 45: 9 Tecnologia Enzimatica Importante(2)

4.1 PROCESOS

CONCENTRACIÓN Y ENVASADO

PURIFICACIÓN FINAL

CONCENTRACIÓN

PURIFICACIÓN PRELIM INAR

ELIM INACIÓN DE RESTOS CELULARES

ELIM INACIÓN DE ÁCIDOS NUCLEICOS

Page 46: 9 Tecnologia Enzimatica Importante(2)

4.2 ELIMINACIÓN DE ÁCIDOS NUCLÉICOS

• Los métodos de extracción rompen la célula, liberando al medio los ácidos nucleicos.

• Los ácidos nucléicos aumentan la viscosidad de la solución.• SOLUCIÓN:

• Adición de policationes de alto peso molecular (caros, poco frecuente). Precipitación de los ácidos.

• Nucleasas (acorta los ácidos nucléicos) Digestión enzimática.

Page 47: 9 Tecnologia Enzimatica Importante(2)

4.3 ELIMINACIÓN DE PARTÍCULAS SÓLIDAS

• Restos: ácidos nucleicos precipitados, paredes celulares, fragmentos de membranas, células parcialmente rotas...

• Métodos:• Centrifugación.(Eliminar material viscoso o gelatinoso)• Filtración.( Grandes volúmenes de precipitados floculados)

• Elección del método:• Escala de uso• Naturaleza de los sólidos presentes.

Page 48: 9 Tecnologia Enzimatica Importante(2)

4.3 ELIMINACIÓN DE PARTÍCULAS SÓLIDAS

TIPOS DE CENTRÍFUGAS:

• Centrífugas discontinuas • Centrífugas continuas

• De cestillo• De taza• Cilíndrica• Sharples Super

Page 49: 9 Tecnologia Enzimatica Importante(2)

4.4 PURIFICACIÓN Y CONCENTRACIÓN

• Eliminación de los contaminantes no deseados, moléculas pequeñas , orgánicas e inorgánicas, otras proteínas y la mayor parte del agua, si no toda.

• Métodos:• Precipitación.• Adsorción.• Separación en dos fases líquidas.• Cromatrografía en columna

Page 50: 9 Tecnologia Enzimatica Importante(2)

4.4 PURIFICACIÓN Y CONCENTRACIÓN• 1. Precipitación.

• Para la purificación inicial.• Tipos:• Negativo (precipito la impureza).• Positiva( precipito el enzima, también concentro).

• Muy usado ( simple y barato, consigo altos grados de purificación y concentración).

• Inconvenientes: Realizarlos por tandas, difícil de integrar en procesos continuos.

• Sustancias:• Sulfato amónico, sulfato sódico, disolventes orgánicos.

Page 51: 9 Tecnologia Enzimatica Importante(2)

4.4 PURIFICACIÓN Y CONCENTRACIÓN• 2. Adsorción.• Muy usada la adsorción sobre materiales insolubles, por tandas.

• Se añaden al extracto los adsorbentes , se remueve.• Se sedimenta en una centrífuga basculante• Se resuspende el adsorbente.• Se centrifuga de nuevo.

• Tres tipos de materiales: resinas, dextranos sustituidos o agarosa y celulosas sustituidas.

Page 52: 9 Tecnologia Enzimatica Importante(2)

4.4 PURIFICACIÓN Y CONCENTRACIÓN

• 3. Separación en dos fases líquidas.• Método actual.• Proteína + dos polímeros inmiscibles = Fases distintas• Ventajas :

• Separación de proteínas por un lado y paredes celulares y residuos semisolubles por otro

• Posibilidad de funcionar en continuo

Page 53: 9 Tecnologia Enzimatica Importante(2)

4.4 PURIFICACIÓN Y CONCENTRACIÓN

• 4. Cromatografía en columna:• Para las fases finales del procesado ( poco volumen a tratar).• Tipos:

• Filtración en geles.• Intercambio iónico.• Cromatografía de afinidad.

Page 54: 9 Tecnologia Enzimatica Importante(2)

4.4 PURIFICACIÓN Y CONCENTRACIÓN

• 5.Electroforesis en continuo.• Aplicación de un potencial eléctrico a través de un caudal continuo de

solución de proteínas.• Técnica en desarrollo (caros).• En la actualidad para el fraccionamiento de las proteínas de sangre.

Page 55: 9 Tecnologia Enzimatica Importante(2)

4.4 PURIFICACIÓN Y CONCENTRACIÓN• 6. Ultrafiltración y diálisis.• Aplicación de membranas semipermeables.• Para las últimas fases del proceso :

• Eliminación de sales y concentración.• Separación por tamaños.

• Filtros: ultrafiltros de fibra hueca o de lecho plano.( bajo coste y facilidad para mantener la esterilidad)

Page 56: 9 Tecnologia Enzimatica Importante(2)

4.5 CONCENTRACIÓN Y ENVASADO

• Grado de concentración final

• Características

• Presentación de un enzima

• Transporte de enzimas a grandes distancias.

Page 57: 9 Tecnologia Enzimatica Importante(2)

5. Aplicación de enzimas

Page 58: 9 Tecnologia Enzimatica Importante(2)

5.1 Aplicaciones en la Industria Alimentaria

Page 59: 9 Tecnologia Enzimatica Importante(2)

Enzimas en la Industria Alimentaria• Son muy antiguas sus aplicaciones• Se usaron enzimas de un modo inconsciente

hasta finales del siglo XIX en que se descubrieron los artífices de las reacciones• Es un gran activo económico, y la investigación

va encaminada a la purificación y la obtención de enzimas concretos para funciones concretas

Page 60: 9 Tecnologia Enzimatica Importante(2)

Industrias LácteasFabricación del Queso

• Es una de las mas antiguas aplicaciones enzimáticas en la industria alimentaria

• Para la producción de queso se usaban cuajos, estómagos enteros de vacas y otros rumiantes

• En otras culturas, el queso se conseguía con vegetales como la papaya, que contienen otra clase de enzimas

Page 61: 9 Tecnologia Enzimatica Importante(2)

Industrias LácteasFabricación del Queso• La operación mas importante es la coagulación

de la caseina• Para ello utilizamos una serie de enzimas que

podemos encontrar en vegetales o animales• La pepsina y la quimosina son las enzimas mas

importantes en esto• Se encuentran en el cuajo de varios animales,

entre ellos los rumiantes

Page 62: 9 Tecnologia Enzimatica Importante(2)

Industrias LácteasFabricación del Queso

• Otras enzimas como papaina o rennina• Estos producen coágulos elásticos• La utilización de unas u otras enzimas repercute activamente en el

sabor y en la naturaleza del queso

Page 63: 9 Tecnologia Enzimatica Importante(2)

Industrias Lácteas

• La lactasa es el enzima que consigue romper la lactosa, que es el azúcar que contiene la leche• Mucha gente es intolerante a la lactosa• Existen en el mercado leches que vienen con

lactasa

Page 64: 9 Tecnologia Enzimatica Importante(2)

Industria Panadera• La mas comúnmente utilizada es la lipoxidasa, que

conjuntamente con el blanqueante, le da a la masa un carácter mas manejable

• Esta contenida en la harina de soja y de otras leguminosas

Page 65: 9 Tecnologia Enzimatica Importante(2)

Industria Panadera• Para aumentar la acción de la levadura se añade amilasa, en

forma de harina de malta• Se usan para ello también algunos mohos que contienen la

enzima• La harina de malta, tiene un inconveniente, y es que cambia el

color del pan

Page 66: 9 Tecnologia Enzimatica Importante(2)

Industria Panadera• La proteasa rompe el gluten, una proteína contenida en

algunos cereales• La rotura del gluten conlleva una mayor plasticidad de la masa• Es un aditivo importante en la fabricación de bizcochos

Page 67: 9 Tecnologia Enzimatica Importante(2)

Industria Cervecera• La papaina se usa para romper algunas proteínas de la cerveza

para evitar que se enturbie cuando se almacena o se refrigera• Se pueden conseguir estos enzimas y otros parecidos, de

similares funciones de algunas frutas tropicales como la piña

Page 68: 9 Tecnologia Enzimatica Importante(2)

Industria Cervecera

• El proceso fundamental es la rotura del almidón• Los azucares simples formados son fermentados

por las levaduras• Esto se lleva a cabo con las amilasas,

provenientes de la malta• A veces se añaden otros almidones como de

arroz o patata para aprovechar al máximo la actividad de las enzimas

Page 69: 9 Tecnologia Enzimatica Importante(2)

Fabricación de Zumo• Las peptinas provocan que los zumos sean demasiado

viscosos y turbios.• Esto se elimina con enzimas, amilasas, contenidos en el propio

zumo o que se pueden añadir• En el proceso, como subproducto tenemos metanol, que

aparece en muy baja concentración

Page 70: 9 Tecnologia Enzimatica Importante(2)

Obtención de Glucosa y Fructosa a a partir de Maíz

• Con la harina del maíz, ayudados por las enzimas alfa-amilasas y amiloglucosidasas conseguiremos jarabes de gran calidad• Antes se conseguía por la hidrólisis del almidón por

parte de un ácido• Posteriormente, la glucosa se puede transformar a

fructosa (mas dulce) por la acción de la glucosa-somerasa

Page 71: 9 Tecnologia Enzimatica Importante(2)

Obtención de Glucosa y Fructosa a a partir de Maíz• Estos jarabes se usan como edulcorantes en bebidas

refrescantes• Se han conseguido producir a un precio muy competitivo• La UE ha pasado a proteger a la industria azucarera

convencional (remolacha y caña) para evitar su hundimiento por esta nueva forma de conseguir azucares

Page 72: 9 Tecnologia Enzimatica Importante(2)

Refinado de Azúcar• La rafinosa puede complicar la extracción de la sacarosa• El enzima raffinosutilizer, producido por el hongo morteirella

vinaceae se encarga de degradar la rafinosa, facilitando la cristalización y produciendo además sacarosa

Page 73: 9 Tecnologia Enzimatica Importante(2)

Más Aplicaciones Alimentarias

• En productos derivados del huevo, se añade glucosa-oxidasa y catalasa para evitar que se oscurezcan

• Bromelaína y papaína se usan para ablandar la carne, ya que rompen proteínas

• La lactoperóxidasa ayuda a conservar productos lácteos

Page 74: 9 Tecnologia Enzimatica Importante(2)

5.2 Otras Aplicaciones no Alimentarias

Page 75: 9 Tecnologia Enzimatica Importante(2)

Otras AplicacionesNo Alimentarias:Detergentes

• Estos llevan enzimas que ayudan a limpiar• Las proteasas facilitan la eliminación de manchas de origen proteico• Las lipasas eliminan las manchas de grasa y otros compuestos

orgánicos• Estos detergentes que llevan enzimas se denominan detergentes

biológicos

Page 76: 9 Tecnologia Enzimatica Importante(2)

Otras AplicacionesNo Alimentarias:Tratamiento de Residuos I

• El principal objetivo es reducir materiales poliméricos que puedan suponer un peligro medioambiental o un estorbo en determinados procesos industriales

• Existen enzimas que hidrolizan materiales poliméricos para su posterior degradación microbiológica

Page 77: 9 Tecnologia Enzimatica Importante(2)

Otras AplicacionesNo Alimentarias:Tratamiento de Residuos II

• Las proteinasas y amilasas son degradantes de polímeros grasos muy complejos

• Limpian tuberías de plantas dedicadas a diferentes procesos• Forman parte de los detergentes comerciales

Page 78: 9 Tecnologia Enzimatica Importante(2)

Otras AplicacionesNo Alimentarias:Tratamiento de Residuos III

• Existen enzimas capaces de degradar elementos altamente tóxicos• Por ejemplo, se usa la peroxidasa para degradar productos como

fenoles o aminas aromáticas• Son de un gran interés medioambiental en el tratamiento de aguas

residuales

Page 79: 9 Tecnologia Enzimatica Importante(2)

Otras AplicacionesNo Alimentarias:Curtición• Se lleva a cabo una acción enzimática para que se produzca la

“hinchazón” de las pieles• La enzima protealitinasa es la encargada de llevar a cabo esta

función• Esta actividad representa la segunda industria en uso de

enzimas después de la alimentaria

Page 80: 9 Tecnologia Enzimatica Importante(2)

Otras AplicacionesNo Alimentarias:Medicina y Farmacia

• El uso de enzimas en el sector médico y farmacéutico es potencialmente inmensa

• A pesar de ello, su utilización es mínima• Se usan en puntos en los que se tiene una seguridad absoluta de su

aprovechamiento y de su eficacia

Page 81: 9 Tecnologia Enzimatica Importante(2)

Otras AplicacionesNo Alimentarias:Medicina y Farmacia II

• Podemos dividir esa utilización en tres campos• Terapia enzimática• Uso analítico• Productos farmacéuticos

• Para cada una de estas áreas necesitamos enzimas muy purificadas, para que no se produzcan efectos secundarios

Page 82: 9 Tecnologia Enzimatica Importante(2)

6. Problemas en la Tecnología Enzimática

Page 83: 9 Tecnologia Enzimatica Importante(2)

Problemas de la Tecnología Enzimática

• A pesar de ser muy útiles, los enzimas que requieren coenzimas se usan muy poco porque son poco rentables

• La reutilización de estos coenzimas o su reciclaje, sería una solución que abarataría costes

• Son importantes por la importancia de las reacciones que catalizan

Page 84: 9 Tecnologia Enzimatica Importante(2)

Problemas de la Tecnología Enzimática• La utilización de enzimas en medios acuosos no

siempre es muy efectiva• La solubilidad toma un papel importante a la

hora de producirse la reacción• La reacción en medios orgánicos, mas solubles,

puede verse adulterada o modificada en su naturaleza• Se investiga con buenos resultados, la utilización

de solventes orgánicos