3.Sistemas inconsistentes y sis- temas...

21
3. Sistemas inconsistentes y sis- temas indeterminados 3.1 Ejercicios resueltos Ejercicio 3.1 Dado el sistema: 4x + 5y = 13 3x + 5y = 11 a) Realizar la factorizaci´ on QR de la matriz, y resolverlo bas´ andose en ella a.1) Mediante el m´ etodo de Gram-Schmidt, a.2) Mediante transformaciones de Householder. b) Calcular el n´ umero de condici´ on eucl´ ıdeo del sistema inicial y del trans- formado, comprobando que son iguales. Soluci´ on: a) El sistema a resolver es Ax = b ⇐⇒ 4 5 3 5 ! x y ! = 13 11 ! a.1) Utilizando el m´ etodo de Gram-Schmidt: v 1 = 4 3 ! v 2 = 5 5 ! + λ 4 3 ! v 1 v 2 = ⇒h v 1 ,v 2 i =0 = 35 + 25λ =0 = λ = - 7 / 5 por tanto, v 2 = 1 5 " 25 25 ! - 7 4 3 !# = - 3 / 5 4 / 5 ! Q = 4 / 5 - 3 / 5 3 / 5 4 / 5 ! 31

Transcript of 3.Sistemas inconsistentes y sis- temas...

Page 1: 3.Sistemas inconsistentes y sis- temas indeterminadosocwus.us.es/matematica-aplicada/algebra-numerica/... · 3.Sistemas inconsistentes y sis-temas indeterminados 3.1 Ejercicios resueltos

3. Sistemas inconsistentes y sis-temas indeterminados

3.1 Ejercicios resueltos

Ejercicio 3.1 Dado el sistema:

4x + 5y = 13

3x + 5y = 11

a) Realizar la factorizacion QR de la matriz, y resolverlo basandose en ella

a.1) Mediante el metodo de Gram-Schmidt,

a.2) Mediante transformaciones de Householder.

b) Calcular el numero de condicion euclıdeo del sistema inicial y del trans-

formado, comprobando que son iguales.

Solucion:

a) El sistema a resolver es Ax = b ⇐⇒

(4 5

3 5

)(x

y

)=

(13

11

)a.1) Utilizando el metodo de Gram-Schmidt:

v1 =

(4

3

)v2 =

(5

5

)+ λ

(4

3

)v1 ⊥ v2 =⇒ 〈 v1, v2 〉 = 0 =⇒ 35 + 25λ = 0 =⇒ λ = −7/5

por tanto,

v2 =1

5

[(25

25

)− 7

(4

3

)]=

(−3/5

4/5

)⇒ Q =

(4/5 −3/53/5 4/5

)

31

Page 2: 3.Sistemas inconsistentes y sis- temas indeterminadosocwus.us.es/matematica-aplicada/algebra-numerica/... · 3.Sistemas inconsistentes y sis-temas indeterminados 3.1 Ejercicios resueltos

32 Algebra Numerica

R = Q∗A =

(4/5 3/5

−3/5 4/5

)(4 5

3 5

)=

(5 7

0 1

)Se obtiene, por tanto, que A = QR donde Q es unitaria y R trian-

gular superior. El sistema se transforma en otro triangular de la

manera siguiente:

Ax = b ⇐⇒ QRx = b ⇐⇒ Rx = Q∗b

En nuestro caso:

Q∗b =

(4/5 3/5

−3/5 4/5

)(13

11

)=

(17

1

)

quedandonos el sistema triangular(5 7

0 1

)(x

y

)=

(17

1

)

cuya solucion es

x = 2 y = 1.

a.2) Utilizando transformaciones de Householder se obtiene:

x =

(4

3

)y =

( √42 + 32

0

)=

(5

0

)v = x− y =

(−1

3

)

H = I − 2

v∗vvv∗ =

(1 0

0 1

)− 1

5

(1 −3

−3 9

)=

(4/5 3/53/5 −4/5

)

Al solo ser necesaria una transformacion de Householder, se tiene

que

Q = H∗ = H =

(4/5 3/53/5 −4/5

)

R = Q∗A = HA =

(4/5 3/53/5 −4/5

)(4 5

3 5

)=

(5 7

0 −1

)Transformando el sistema obtenemos:

Ax = b ⇐⇒ QRx = b ⇐⇒ Rx = Q∗b = Hb

Page 3: 3.Sistemas inconsistentes y sis- temas indeterminadosocwus.us.es/matematica-aplicada/algebra-numerica/... · 3.Sistemas inconsistentes y sis-temas indeterminados 3.1 Ejercicios resueltos

3.1. EJERCICIOS RESUELTOS 33

Dado que

Hb =

(4/5 3/53/5 −4/5

)(13

11

)=

(17

−1

)nos queda el sistema triangular(

5 7

0 −1

)(x

y

)=

(17

−1

)cuya solucion

x = 2 y = 1.

b) El numero de condicion euclıdeo viene dado por κ2(A) =σ2

σ1

donde σ2 el

mayor y σ1 el menor de los valores singulares de la matriz A.

Los valores singulares son las raıces cuadradas positivas de los autovalo-

res de la matriz A∗A.

Cuando calculamos el numero de condicion de la matriz R del sistema

transformado, realizaremos el mismo proceso con esta nueva matriz, es

decir, debemos calcular los autovalores de la matriz R∗R.

Dado que

A∗A =

(4 3

5 5

)(4 5

3 5

)=

(25 35

35 50

)

R∗R =

(5 0

7 1

)(5 7

0 1

)=

(25 35

35 50

)los valores singulares de las matrices A y R son los mismos, por lo que

se obtiene el mismo numero de condicion euclıdeo.

El polinomio caracterıstico de A∗A es p(λ) = λ2 − 75λ + 25, por

lo que sus autovalores son λ1 ' 74.665 y λ2 ' 0.335 y, por tanto,

los valores singulares de la matriz A son σ2 '√

74.665 ' 8.64 y

σ1 '√

0.335 ' 0.58, de donde

κ2(A) = κ2(R) =σ2

σ1

' 14.9

Ejercicio 3.2 Resolver por el metodo de Householder el sistema: 1 −1 −1

2 0 1

−2 7 1

x

y

z

=

0

4

−7

Page 4: 3.Sistemas inconsistentes y sis- temas indeterminadosocwus.us.es/matematica-aplicada/algebra-numerica/... · 3.Sistemas inconsistentes y sis-temas indeterminados 3.1 Ejercicios resueltos

34 Algebra Numerica

Solucion:

x =

1

2

−2

y =

3

0

0

v1 = x− y =

−2

2

−2

H1 = I3 − 2v∗1v1

v1v∗1 = I3 −

2

12

−2

2

−2

( −2 2 −2)

=

= I3 −1

3

2 −2 2

−2 2 −2

2 −2 2

=

1/3 2/3 −2/32/3 1/3 2/3

−2/3 2/3 1/3

Aplicando la transformacion al sistema se obtiene 3 −5 −1/3

0 4 1/3

0 3 5/3

x

y

z

=

22/3

−10/31/3

Dado que la segunda transformacion no va a afectar ni a la primera ecuacion

ni a la primera columna de la matriz A, la calculamos solo para el menor

asociado al elemento a11.

x =

(4

3

)y =

(5

0

)v2 = x− y =

(−1

3

)

H2 = I2 −2

v∗2v2

v2v∗2 = I2 −

1

5

(−1

3

)(−1 3

)=

(4/5 3/53/5 −4/5

)

H2

(4 1/3

3 5/3

)=

(5 19/15

0 −17/15

)H2

(−10/3

1/3

)=

(−37/15

−34/15

)

Por lo que nuestro sistema ha quedado reducido a 3 −5 −1/3

0 5 19/15

0 0 −17/15

x

y

z

=

22/3

−37/15

−34/15

cuya solucion es x = 1, y = −1, z = 2.

Page 5: 3.Sistemas inconsistentes y sis- temas indeterminadosocwus.us.es/matematica-aplicada/algebra-numerica/... · 3.Sistemas inconsistentes y sis-temas indeterminados 3.1 Ejercicios resueltos

3.1. EJERCICIOS RESUELTOS 35

Ejercicio 3.3 Buscar la solucion de mınimos cuadrados del sistema Ax = b,

siendo:

A =

3 −1

4 2

0 1

y b =

0

2

1

a) A traves de sus ecuaciones normales.

b) Por el metodo de Householder.

Solucion:

a) Las ecuaciones normales, dadas por A∗Ax = A∗b son(3 4 0

−1 2 1

) 3 −1

4 2

0 1

( x

y

)=

(3 4 0

−1 2 1

) 0

2

1

Es decir: (

25 5

5 6

)(x

y

)=

(8

5

)sistema que es equivalente a(

25 5

0 5

)(x

y

)=

(8

17/5

)y cuya solucion (la solucion en mınimos cuadrados buscada) es

x =23

125, y =

17

25.

b)

x1 =

3

4

0

=⇒ y1 =

‖x1‖0

0

=

5

0

0

=⇒ v1 = x1−y1 =

−2

4

0

H1 = I3 − 2v∗1v1

2v1v∗1 = I3 −

2

20

−2

4

0

( −2 4 0)

=

=

3/5 4/5 04/5 −3/5 0

0 0 1

Page 6: 3.Sistemas inconsistentes y sis- temas indeterminadosocwus.us.es/matematica-aplicada/algebra-numerica/... · 3.Sistemas inconsistentes y sis-temas indeterminados 3.1 Ejercicios resueltos

36 Algebra Numerica

Aplicando la transformacion al sistema, se obtiene 5 1

0 −2

0 1

( x

y

)=

8/5

−6/5

1

Para que x(1)2 =

(−2

1

)se transforme en y

(1)2 =

(‖x(1)

2 ‖0

)=

( √5

0

)construimos la transformacion H

(2)2 de Householder asociada al vector

v2 = x(1)2 − y

(1)2 =

(−2−

√5

1

)

H(2)2 =

(−2√

5/5√

5/5√5/5 2

√5/5

)=⇒ H2 =

1 0 0

0 −2√

5/5√

5/5

0√

5/5 2√

5/5

que aplicada al sistema anterior nos da 5 1

0√

5

0 0

( x

y

)=

8/517/5√

54/5√

5

porlo que la pseudosolucion del sistema es x =

23

125, y =

17

25y el error

viene dado por

∣∣∣∣ 4

5√

5

∣∣∣∣ ' 0.3578.

3.2 Ejercicios propuestos

Ejercicio 3.4 Se considera el sistema de ecuaciones Ax = b con

A =

1 2

1 0

1 1

1 1

y b =

3

2

0

1

.

Se pide:

Page 7: 3.Sistemas inconsistentes y sis- temas indeterminadosocwus.us.es/matematica-aplicada/algebra-numerica/... · 3.Sistemas inconsistentes y sis-temas indeterminados 3.1 Ejercicios resueltos

3.2. EJERCICIOS PROPUESTOS 37

a) Calcular la pseudosolucion, a traves de las ecuaciones normales, utili-

zando el metodo de Cholesky.

Sol : x = 1, y = 1/2.

b) Sea v = (−1, 1, 1, 1)T . Demostrar que la transformacion de Householder

asociada al vector v transforma la primera columna de la matriz A en el

vector (2, 0, 0, 0)T dejando invariante la segunda columna de A ası como

al vector b.

c) Calcular la pseudosolucion del sistema utilizando transformaciones de

Householder, ası como la norma del error.

Sol : x = 1, y = 1/2, E = 3√

2/2.

d) Si la matriz A del sistema fuese cuadrada y su numero de condicion fuese

mayor que 1, ¿que ventajas e inconvenientes tendrıa el resolver el sistema

multiplicando por la traspuesta de A y el resolverlo por transformaciones

de Householder?

Sol : Si κ(A) > 1, κ(ATA) >> 1 mientras que Householder no altera el

condicionamiento.

Ejercicio 3.5 Hallar la recta de regresion de los puntos:

(1.1, 5), (1, 5.1), (2, 7.3), (1.8, 6.9), (1.5, 6.1), (3, 8.8), (3.1, 9) y (2.9, 9.1)

Sol : y = mx+ n = 1.959803x+ 3.1449029.

Ejercicio 3.6 Hallar la parabola de regresion de los puntos:

(1, 0), (0, 0), (−1, 0), (1, 2) y (2, 3)

Sol : y = ax2 + bx+ c =1

2x2 +

1

2x.

Ejercicio 3.7 Dado el sistema superdeterminado:1 1 0

1 0 1

1 1 1

1 2 1

x

y

z

=

1

2

0

−1

calcular, mediante transformaciones de Householder, la solucion en mınimos

cuadrados (pseudosolucion) ası como la norma del error.

Sol : x = 5/2, y = −3/2, z = −2/3, ‖E‖ =√

6/6.

Page 8: 3.Sistemas inconsistentes y sis- temas indeterminadosocwus.us.es/matematica-aplicada/algebra-numerica/... · 3.Sistemas inconsistentes y sis-temas indeterminados 3.1 Ejercicios resueltos

38 Algebra Numerica

Ejercicio 3.8 Resolver el sistema 2 1

2 0

−1 2

( x

y

)=

1

1

−5

y obtener la norma del error:

a) Mediante sus ecuaciones normales.

b) Mediante transformaciones de Householder.

c) Hallando la inversa generalizada de la matriz del sistema.

Sol : x = 1, y = −9/5, ‖E‖ = 3√

5/5, A+ =

(2/9 2/9 −1/9

1/5 0 2/5

)

Ejercicio 3.9 Se considera el sistema superdeterminado Ax = b con

A =

1 7 15

1 4 8

1 0 1

1 3 6

y b =

7

7

−5

−9

a) Resolverlo mediante transformaciones de Householder, dando la norma

del vector error.

Sol : x1 = −8, x2 = −2, x3 = −2, ‖E‖ = 10.

b) Hallar la inversa generalizada A+ de la matriz A.

Sol : A+ =1

100

−49 43 49 57

−86 102 −114 98

50 −50 50 −50

.

c) Utilizar la inversa generalizada para resolver el sistema y hallar la norma

del vector error.

Ejercicio 3.10 Resolver el sistema superdeterminado−3 1 1

1 −3 1

1 1 −3

1 1 1

x

y

z

=

8

4

0

4

Page 9: 3.Sistemas inconsistentes y sis- temas indeterminadosocwus.us.es/matematica-aplicada/algebra-numerica/... · 3.Sistemas inconsistentes y sis-temas indeterminados 3.1 Ejercicios resueltos

3.2. EJERCICIOS PROPUESTOS 39

calculando la inversa generalizada de la matriz A.

Sol : x = −1, y = 0, z = 1, ‖E‖ = 8, A+ =

−1/4 0 0 1/4

0 −1/4 0 1/4

0 0 −1/4 −1/4

Ejercicio 3.11 Dado sistema superdeterminado Ax = b con

A =

1 5 5

1 2 3

1 1 3

1 2 1

y b =

7

16

−3

10

a) Resolverlo mediante transformaciones de Householder, dando la norma

del vector error.

Sol : x = 9, y = 3, z = −3, ‖E‖ = 12.

b) Teniendo en cuenta el rango de la matriz A, hallar su inversa generali-

zada.

Sol : A+ =1

36

−20 10 12 34

8 −4 −12 8

3 3 9 −15

.

c) Utilizar la inversa generalizada obtenida en el apartado anterior para

calcular la pseudosolucion del sistema y hallar la norma del vector error.

Ejercicio 3.12 Consideremos el sistema de ecuaciones Ax = b, con

A =

2 −2

1 −1

−2 2

, x =

(x1

x2

)y b =

6

3

3

,

y un vector unitario u. Se pide:

a) Demostrar que si H = I−2uuT es la matriz de Householder, asociada al

vector u, entonces: H es ortogonal, H2 = I y ‖Ha‖2 = ‖a‖2 cualquiera

que sea el vector a.

b) Obtener la matriz de Householder que transforma el vector (2, 1,−2)T

en otro de la forma (α, 0, 0)T , con α > 0.

Page 10: 3.Sistemas inconsistentes y sis- temas indeterminadosocwus.us.es/matematica-aplicada/algebra-numerica/... · 3.Sistemas inconsistentes y sis-temas indeterminados 3.1 Ejercicios resueltos

40 Algebra Numerica

Sol : H =

2 1 −2

1 2 2

−2 2 −1

.

c) Aplicando el metodo de Householder, probar que el sistema Ax = b

posee infinitas soluciones en cuadrados mınimos y que el error cometido,

al considerar cualquiera de ellas, es el mismo.

Sol : x = (1 + λ, λ)T ∀λ ∈ R, ‖E‖ = 3.

d) Obtener la pseudosolucion del sistema Ax = b.

Sol : (1/2 , −1/2)T .

Ejercicio 3.13 Sea el sistema Ax = b, donde

A =

0 3

−3 5

4 0

, x =

(x

y

)y b =

−10

6

−8

.

a) Probar que la matriz ATA es definida positiva, obteniendo la factori-

zacion de Cholesky.

Sol : ATA =

(25 −15

−15 34

)=

(5 0

−3 5

)(5 −3

0 5

).

b) Plantear la iteracion Xn+1 = L1 · Xn + c que se obtiene de aplicar el

metodo de Gauss-Seidel a las ecuaciones normales del sistema Ax = b.

¿Sera convergente el proceso iterativo a la pseudosolucion?

Sol : xn+1 =

(0 3/5

0 9/34

)(xn

yn

)+

(−2

−15/17

). Convergente por ser un

sistema de diagonal dominante.

c) Hallar la matriz Hu = I − βuuT de la reflexion que transforma el vector

a = (0,−3, 4)T en el vector r = (−5, 0, 0).

Sol : Hu =1

25

0 15 −20

15 16 12

−20 12 9

.

d) Obtener la solucion en mınimos cuadrados del sistema Ax = b, utilizando

el metodo de Householder, y determinar la norma del error.

Page 11: 3.Sistemas inconsistentes y sis- temas indeterminadosocwus.us.es/matematica-aplicada/algebra-numerica/... · 3.Sistemas inconsistentes y sis-temas indeterminados 3.1 Ejercicios resueltos

3.2. EJERCICIOS PROPUESTOS 41

Sol : x = −68/25, y = −6/5, ‖E‖ = 8.

e) Sin haber resuelto el apartado anterior, ¿podrıan predecirse HuA y Hub

de las relaciones geometricas entre L =< u >, L⊥ y los vectores columnas

implicados?

Sol : Sı. Si A = (a1 a2), Hua1 = (−5, 0, 0)T , Hua2 = a2, Hub = −b.

Ejercicio 3.14 Se considera el sistema superdeterminado Ax = b con

A =

3 2

4 5

12 0

y b =

3

1

13

a) Calcular la pseudosolucion (solucion de mınimos cuadrados) ası como la

norma del error utilizando transformaciones de Householder.

Sol : x = 71/65, y = −3/5, ‖E‖ = 1.

b) Sea T =

1 0 0

0 1 0

0 0 1/12

la matriz asociada a la transformacion elemen-

tal que divide por 12 la tercera de las ecuaciones del sistema:

TAx = Tb ⇐⇒

3 2

4 5

1 0

( x

y

)=

3

113/12

Calcular su pseudosolucion haciendo uso de las ecuaciones normales. De-

terminar la norma del error.

Sol : x = 113/72, y = −37/36, ‖E‖ = 5√

78/72.

c) ¿A que se debe que no coincidan las pseudosoluciones obtenidas en los

dos apartados anteriores? ¿Que habrıa ocurrido si la matriz T hubiese

sido unitaria?

Sol : T no es unitaria. Si T hubiese sido unitaria se hubiesen obtenido

las mismas pseudosoluciones.

Ejercicio 3.15 Sea el sistema Ax = b, donde

A =

3 −2

0 3

4 4

, x =

(x

y

)y b =

2

0

1

.

Page 12: 3.Sistemas inconsistentes y sis- temas indeterminadosocwus.us.es/matematica-aplicada/algebra-numerica/... · 3.Sistemas inconsistentes y sis-temas indeterminados 3.1 Ejercicios resueltos

42 Algebra Numerica

a) Probar que la matriz B = ATA es definida positiva, obteniendo la fac-

torizacion de Cholesky B = GTG.

Sol : B =

(25 10

10 29

), G =

(5 2

0 5

).

b) Hacer uso de la factorizacion obtenida en el apartado anterior para hallar

la pseudosolucion mediante las ecuaciones normales del sistema. Calcular

el numero de condicion, κ∞(B), de la matriz B para la norma ‖ ‖∞.

¿Hasta que punto se podrıa considerar fiable la pseudosolucion obtenida

con aritmetica de ordenador?

Sol : x = 58/125, y = −4/25, κ∞(B) = 1521/625 ' 2.4336. Es fiable.

c) Hallar la matriz de la reflexion (matriz de Householder) Hu que trans-

forma el vector a = (3, 0, 4)T en el vector r = (−5, 0, 0)T . Una vez de-

terminado el vector u, justificar que se pueden conocer HuA y Hub sin

necesidad de efectuar los productos.

Sol : Hu =

−3/5 0 −4/5

0 1 0

−4/5 0 3/5

. Si A = (a1 a2), Hua2 = a2 H2b = −b.

d) Obtener la solucion en mınimos cuadrados del sistema Ax = b, utilizando

el metodo de Householder y determinar la norma del error. Operando

con el ordenador, ¿puede obtenerse una pseudosolucion distinta de la

obtenida en el apartado b? Si ası ocurriera, ¿puede ser mayor el error?

Sol : x = 58/125, y = −4/25, ‖E‖ = 3/5. Es posible obtener en el

ordenador soluciones distintas. Nunca, ya que las transformaciones de

Householder son unitarias.

Ejercicio 3.16 Sea el sistema Ax = b, donde

A =

1 −1 2

0 3 −3

0 −4 4

, x =

x

y

z

y b =

0

1

2

.

a) Hallar ‖A‖∞. ¿Que se puede decir sobre el numero de condicion de la

matriz A para la norma infinito? ¿Que estimacion darıa MATLAB para

el numero de condicion espectral obtenido con el comando cond(A)?

Sol : cond(A) =∞.

Page 13: 3.Sistemas inconsistentes y sis- temas indeterminadosocwus.us.es/matematica-aplicada/algebra-numerica/... · 3.Sistemas inconsistentes y sis-temas indeterminados 3.1 Ejercicios resueltos

3.2. EJERCICIOS PROPUESTOS 43

b) Utilizar la descomposicion LU de la matriz ATA para resolver el sistema

ATAx = AT b. ¿Que propiedad caracteriza a las soluciones en relacion al

sistema Ax = b? Interpreta geometricamente el resultado.

Sol : x = t− 1/5, y = 3t− 1/5, z = t.

c) Encontrar una matriz ortogonal Q que transforme el vector a=(0, 3,−4)T

en el vector r = (0, 5, 0)T . Obtener la norma del error para las soluciones

en mınimos cuadrados del sistema QAx = Qb.

Sol : Q =

1 0 0

0 3/5 −4/5

0 −4/5 −3/5

. ‖E‖ = 2.

d) ¿Que relacion hay entre las soluciones obtenidas en los apartados ante-

riores?

Si se obtienen las soluciones en mınimos cuadrados del sistema Ax = b,

escalonando previamente la matriz A, ¿se debe obtener mismo resultado

que en alguno de los apartados anteriores?

Sol : Son las mismas. No, el escalonado no se hace mediante transforma-

ciones unitarias.

e) Probar que la matriz P =

23

325− 4

25

13

325− 4

25

13

0 0

es la pseudoinversa de A,

verificando las propiedades de Penrose. (Hacer la comprobacion solo con

dos de ellas).

De entre todas las soluciones en mınimos cuadrados del sistema Ax = b,

hallar la de menor norma euclıdea.

Solucion: x = −1/5, y = −1/5, z = 0.

Ejercicio 3.17

a) En lo que sigue, Hv denota la transformacion de Householder asociada al

vector v. Sean x, y, v, z vectores no nulos, con Hvx = y y z ⊥ v. Probar

que Hvv = −v y Hvz = z. Determinar razonadamente todos los vectores

w tales que Hwx = y.

Page 14: 3.Sistemas inconsistentes y sis- temas indeterminadosocwus.us.es/matematica-aplicada/algebra-numerica/... · 3.Sistemas inconsistentes y sis-temas indeterminados 3.1 Ejercicios resueltos

44 Algebra Numerica

b) Se considera el sistema de ecuaciones dado por −12

1 0

1 2 1

1 0 −1

x

y

z

=

2

−1

−1

b.1) Estudiar el condicionamiento del sistema, utilizando la norma 1.

Sol : κ1(A) = 6.

b.2) Resolver el sistema por medio de transformaciones de Householder.

Sol : x = −2, y = 1, z = −1.

b.3) Desde un punto de vista numerico, ¿serıa razonable resolver el sis-

tema escalonando por Gauss? Razonar la respuesta.

Sol : No.

c) Demostrar que el vector c = (−4

3,1

2,−4a

3− 1)T y la matriz

L1 =

0 −23

0

0 0 −12

0 −2a3

0

son los propios del metodo de Gauss-Seidel asociado al sistema

32

1 0

0 2 1

a 0 −1

x

y

z

=

−2

1

1

d) Estudiar, en funcion del parametro a, el caracter diagonal dominante

por filas de la matriz de coeficientes del sistema dado, ası como el radio

espectral de L1. ¿Para que valores de a es convergente el metodo ante-

rior?

Sol : Diagonal dominante si |a| < 1, ρ(L1) =√

a/3. Converge si |a| < 3.

e) Para a = 0 el metodo resulta convergente. Utilizando aritmetica exacta,

y tomando como vector inicial x0 = (0, 0, 0)T , realizar dos iteraciones,

acotando el error cometido. Razonar que ocurre cuando se itera por

tercera vez. ¿Hubiera ocurrido otro tanto al trabajar con aritmetica de

ordenador?

Page 15: 3.Sistemas inconsistentes y sis- temas indeterminadosocwus.us.es/matematica-aplicada/algebra-numerica/... · 3.Sistemas inconsistentes y sis-temas indeterminados 3.1 Ejercicios resueltos

3.2. EJERCICIOS PROPUESTOS 45

Sol : x1 =

−4/31/2

−1

y x2 =

−5/3

1

−1

, ‖E‖ = 1/2. x3 es la solucion

exacta pero con aritmetica de ordenador es solo una buena aproximacion.

Ejercicio 3.18 Sea el sistema Ax = b, donde

A =

1 1

α 0

−2 2

, x =

(x

y

)y b =

2

β

γ

con α > 0 y β, γ ∈ R

a) Hallar α sabiendo que que existe una matriz de Householder, Hv, que

transforma la primera columna de la matriz A en el vector r = (3, 0, 0)T .

¿Quien es Hv?

Sol : α = 2, Hv =

1/3 2/3 −2/32/3 1/3 2/3

−2/3 2/3 1/3

.

b) Determinar el conjunto de vectores b para los que se verifica Hvb = b,

siendo Hv la matriz del apartado anterior. Encontrar, entre ellos, el que

tiene menor norma euclıdea.

Sol : b = (2, β, β − 2)T con β ∈ R. (2, 1,−1)T .

c) Hallar la pseudosolucion del sistema Ax = bm, para α = 2 y bm =

(2, 1,−1)T , utilizando transformaciones ortogonales para determinar el

error.

Sol : x = 5/6, y = 1/2, ‖E‖ = 1.

d) Probar que si una matriz real B tiene sus columnas linealmente inde-

pendientes, entonces BTB es definida positiva.

e) Sea el sistema ATAx = AT bm, con α y bm como en el apartado (c).

e.1) ¿Serıa posible utilizar una descomposicion ATA = GGT , con G

triangular inferior, para resolver el sistema?

Sol : Sı, ATA admite factorizacion de Cholesky.

e.2) Utilizando la norma ‖ ‖∞ para medir el condicionamiento, ¿es un

sistema mal condicionado para utilizar aritmetica de ordenador en

Page 16: 3.Sistemas inconsistentes y sis- temas indeterminadosocwus.us.es/matematica-aplicada/algebra-numerica/... · 3.Sistemas inconsistentes y sis-temas indeterminados 3.1 Ejercicios resueltos

46 Algebra Numerica

su resolucion?

Sol : No.

e.3) Sea (s0, s1, s2, . . .) la sucesion que se obtiene al aplicar el metodo

de Gauss-Seidel al sistema, con s0 = (0, 0)T . Probar que, operando

en aritmetica exacta, la sucesion (sn) es convergente y obtener su

lımite s.

Sol : ATA simetrica y definida positiva =⇒ Gauss-Seidel converge.

Al tratarse de las ecuaciones normales, lo hace a la pseudosolucion.

Ejercicio 3.19 Se considera el sistema Ax = b con

A =

0 5

3 0

4 0

, x =

(x

y

)y b =

5

2

11

a) ¿Existe alguna transformacion de Householder que permute las columnas

de la matriz A? Justificar la respuesta.

Sol : Sı, ambas tienen igual norma.

b) Calcular la pseudosolucion del sistema mediante transformaciones de

Householder dando la norma del vector error.

Sol : x = 2, y = 1, ‖E‖ = 5.

c) Calcular la inversa generalizada A+ de la matriz A a traves de su des-

composicion en valores singulares y hacer uso de ella para encontrar la

pseudosolucion del sistema Ax = b dando la norma del vector error.

Sol : A+ =

(0 3/25 4/25

1/5 0 0

)d) ¿Hubiesemos podido, en este caso, calcular la inversa generalizada sin

necesidad de realizar su descomposicion en valores singulares?

Sol : Sı ya que rgA = 2.

Ejercicio 3.20 Se considera el sistema Ax = b con

A =

1 2

4 8

−1 −2

, x =

(x

y

)y b =

1

5

3

Page 17: 3.Sistemas inconsistentes y sis- temas indeterminadosocwus.us.es/matematica-aplicada/algebra-numerica/... · 3.Sistemas inconsistentes y sis-temas indeterminados 3.1 Ejercicios resueltos

3.2. EJERCICIOS PROPUESTOS 47

Determinar la pseudosolucion del sistema dando la norma del error:

a) Mediante transformaciones de Householder.

Sol : x = 1/5, y = 2/5, ‖E‖ =√

17.

b) A traves de la inversa generalizada de la matriz A.

Sol : A+ =

(1/90 2/45 −1/90

1/45 4/45 −1/45

).

Ejercicio 3.21 Hallar la pseudosolucion del sistema Ax = b en el que

A =

3 −4

4 3

0 12

y b =

65

−65

0

ası como la norma del error a traves de la pseudoinversa de la matriz A calcu-

lada mediante la descomposicion en valores singulares.

Sol : A+ =

3/25 4/25 0

−4/169 3/169 12/169

, x = −13/5, y = −35/13, ‖E‖ = 84.

Ejercicio 3.22 Se considera el sistema superdeterminado Ax = b con

A =

2 1

2 0

1 −2

0 2

x =

(x

y

)y b =

3

6

0

3

a) Encontrar una transformacion de Householder que transforme la primera

columna de la matriz A en el vector r = (3, 0, 0, 0)T .

Sol : H =

2/3 2/3 1/3 02/3 −1/3 −2/3 01/3 −2/3 2/3 0

0 0 0 1

.

b) Probar que el producto de dos matrices de Householder es una matriz

unitaria.

Page 18: 3.Sistemas inconsistentes y sis- temas indeterminadosocwus.us.es/matematica-aplicada/algebra-numerica/... · 3.Sistemas inconsistentes y sis-temas indeterminados 3.1 Ejercicios resueltos

48 Algebra Numerica

Hallar una matriz ortogonal Q tal que A = QR siendo R una matriz

triangular superior de las mismas dimensiones que A.

Sol : Q =

2/3 1/3 0 2/32/3 0 −1/3 −2/31/3 −2/3 2/3 0

0 2 2 −1/3

.

c) Probar que si Q es ortogonal, los sistemas Ax = b y QTAx = QT b tienen

las mismas soluciones en mınimos cuadrados.

Hallar el error cometido al obtener la pseudosolucion del sistema Ax = b,

utilizando transformaciones ortogonales.

Sol : x = 2, y = 1, ‖E‖ = 3.

d) Teniendo en cuenta el rango de la matriz A, calcular el vector s = A+b

donde A+ representa la pseudoinversa de la matriz A.

Sol : A+ =

(2/9 2/9 1/9 01/9 0 −2/9 2/9

).

e) Sea xn+1 = L1xn+c la sucesion resultante de aplicar el metodo de Gauss-

Seidel a la resolucion de las ecuaciones normales del sistema Ax = b.

¿Cuantas iteraciones son necesarias para la convergencia del metodo?

Determina la pseudosolucion ası como la norma del error.

Sol : Solo una iteracion.

Ejercicio 3.23 El equipo Astronomıa para aficionados, adquirido por el pro-

fesor Dana este verano, permitıa determinar el plano Π ≡ αx + βy + γz = 1

donde se encuentra la trayectoria de Marte alrededor del Sol. En las instruc-

ciones indicaba introducir en el “calculador magico” una serie de coordenadas

locales (xi, yi, zi), obtenidas con el “telescopio marciano”, y automaticamente

proporcionarıa los coeficientes α, β, γ. Entre otras cosas, sugerıa introducir

entre 5 y 10 coordenadas para que el ajuste obtenido en el sentido de

los mınimos cuadrados promediara “cientıficamente” los errores de obser-

vacion...

a) Plantear el sistema superdeterminado, Aα= b, con α=(α, β, γ)T , para

determinar el plano Π, cuando las coordenadas locales son

(2, 1, 0), (−1, 2, 1), (0, 1, 2), (−1, 0, 1), (0, 1, 0).

Page 19: 3.Sistemas inconsistentes y sis- temas indeterminadosocwus.us.es/matematica-aplicada/algebra-numerica/... · 3.Sistemas inconsistentes y sis-temas indeterminados 3.1 Ejercicios resueltos

3.2. EJERCICIOS PROPUESTOS 49

¿Puede ser nulo el error cometido para la pseudosolucion del sistema?

Sol : El error no puede ser nulo.

b) Poniendo A = [a1 a2 a3], donde ai indica la correspondiente columna de

A, razonar si es posible encontrar una transformacion de Householder

que transforme a1 en a2. Hallar una matriz unitaria, Q, de modo que

Qa1 = a3.

Sol : Q =

0 0 1 0 00 −1 0 0 01 0 0 0 00 0 0 −1 00 0 0 0 1

.

c) Obtener las ecuaciones normales, Bα= c, del sistema inicial Aα= b.

¿Esta la matriz B mal condicionada para la norma || ||∞?

Sol : κ∞(B) = 15/2. Bien condicionada.

d) Probar que los metodos iterados de Jacobi y Gauss-Seidel aplicados al

sistema Bα= c son convergentes. ¿Cual de ellos converge mas rapido?

Sol : Gauss-Seidel mas rapido que Jacobi.

e) Partiendo de α0= (0, 0, 0)T , obtener la aproximacion α3, al aplicar 3

pasos del metodo de Gauss-Seidel al sistema Bα= c, operando con dos

cifras decimales. ¿Cual es el error obtenido al tomar α3 como la solucion

en mınimos cuadrados de Aα= b?

Sol : α3 = (0.09, 0.55, 0.33)T con ‖E3‖ ' 1.01.

Ejercicio 3.24 Dada la matriz A =

1 5 5

1 2 1

1 2 3

, se pide:

a) Estudiar si admite factorizaciones LU y/o de Cholesky.

Sol : Solo LU .

b) Utilizar dichas factorizaciones (en caso de existir) para resolver el sistema

Ax = b con x =

x

y

z

y b =

3

2

1

.

Page 20: 3.Sistemas inconsistentes y sis- temas indeterminadosocwus.us.es/matematica-aplicada/algebra-numerica/... · 3.Sistemas inconsistentes y sis-temas indeterminados 3.1 Ejercicios resueltos

50 Algebra Numerica

Sol : x = 1/2, y = 1, z = −1/2.

c) Resolver, mediante transformaciones de Householder el sistema superde-

terminado resultante de anadir a nuestro sistema la ecuacion x+y+3z =

α. Hallar la norma del error.

Sol : x = (2α + 3)/6, y = (3− α)/3, z = (α− 2)/4, ‖E‖ = |α|/2.

d) ¿Se puede calcular el valor de α que minimiza la norma del error sin

resolver el sistema anterior?

Sol : Sı, α = 0.

Ejercicio 3.25 En R4 se busca un hiperplano de la forma αx + βy + γz = t

que pase por los puntosx

y

z

t

1

0

0

0

1

2

4

1

−1

0

1

2

a) Plantear el sistema de ecuaciones y resolverlo usando la factorizacion LU

de la matriz del sistema.

Sol : El hiperplano buscado es 7y − 4z + 2t = 0.

b) Comenzando por el vector x0 = (2, 2, 2)T , resolverlo iterativamente por

los metodos de Jacobi y Gauss-Seidel. ¿Que metodo es mas rapido?

Razona la respuesta.

Sol : Jacobi 3, Gauss-Seidel 1 aunque ambos son igualmente convergentes.

c) Al obligar que, ademas, pase por el punto (−1, 2, 0,−1) se obtiene una

ecuacion mas que hace incompatible al sistema.

Usar transformaciones de Householder para encontrar la pseudosolucion

del sistema incompatible dando la norma del error.

Sol : x = −2/3, y = −8/9, z = 8/9, ‖E‖ =√

2/3.

Ejercicio 3.26 Se sabe que un movil en R3 sigue una velocidad instantanea

dada por una expresion de la forma V (x, y, z) = ax + by + cz con a, b, c ∈ R.

Page 21: 3.Sistemas inconsistentes y sis- temas indeterminadosocwus.us.es/matematica-aplicada/algebra-numerica/... · 3.Sistemas inconsistentes y sis-temas indeterminados 3.1 Ejercicios resueltos

3.2. EJERCICIOS PROPUESTOS 51

Con un velocımetro se han tomado los datos siguientes:

V (1, 2,−53) = −3

V (1, 2,−4) = 2

V (2,−1, 2) = −2

V (1, 0,−2) = −1

V (3, 2,−1) = −2

a) Demostrar que el velocımetro esta desajustado. Es decir, que los datos

obtenidos son incompatibles.

b) Una vez planteado el sistema incompatible y usando las ecuaciones nor-

males de dicho sistema, usar el metodo de Cholesky para calcular el

grado de desajuste del velocımetro. Es decir, el error al suponer la pseu-

dosolucion como los verdaderos valores de a, b y c.

Sol : ‖E‖ = 3.0651.

c) Calcular el error usando transformaciones de Householder en el sistema

incompatible.

Sol : ‖E‖ = 3.0651.