005 Larutan Koloid(1)

32
LARUTAN DAN KOLOID Macam-Macam Campuran • Larutan andingan larutan dispersi Koloid & Suspensi LARUTAN DISPERSI KOLOID SUSPENSI Semua bentuk partikel dari atom, ion atau molekul (0,1 – 1 nm) Parikel paling sedikit satu komponen atom, ion atau molekul kecil (1 – 1000 nm) Partikel paling sedikit satu komponen yang dapat dilihat di bawah mikroskop Stabil terhadap gravitasi Kurang Stabil Tidak stabil Homogen Perbatasan homogen Tidak Homogen Tembus Cahaya Buram Tidak tembus Tidak ada efek Tyndall Efek Tyndall Tidak transparan • Dispersi Koloid • Suspensi 1

description

materi

Transcript of 005 Larutan Koloid(1)

  • LARUTAN DAN KOLOID

    Macam-Macam Campuran

    Larutan

    Perbandingan larutan dispersi Koloid & Suspensi

    Dispersi KoloidSuspensi

    1

    LARUTANDISPERSI KOLOIDSUSPENSISemua bentuk partikel dari atom, ion atau molekul (0,1 1 nm)Parikel paling sedikit satu komponen atom, ion atau molekul kecil (1 1000 nm)Partikel paling sedikit satu komponen yang dapat dilihat di bawah mikroskopStabil terhadap gravitasiKurang StabilTidak stabilHomogenPerbatasan homogenTidak HomogenTembus CahayaBuramTidak tembusTidak ada efek TyndallEfek TyndallTidak transparanTidak ada gerak BrownGerak BrownPartikel terpisahTidak dapat dipisahkan dengan penyaringanTidak dapat dipisahkan dengan penyaringanDapat dipisahkan dengan penyaringan
  • SUSPENSI

    Dapat dipisahkan dengan penyaringan atau dengan sentrifugasi

    DISPERSI KOLOID

    2

    JENISFASA TERDISPERSIMEDIA PENDISPERSICONTOHBuasGasCairBusa sabunBusa PadatGasPadatBatu apungAerosol CairCairGasKabut, halimun, awanEmulsi CairCairKrim, susu, saosEmulsi PadatCairPadatMentega, kejuAsapPadatGasDebu, partikulat dalam asapSolPadatCairPati dalam air, jeli, catSol PadatpadatpadatAloy, mutiara
  • Muatan Elektron partikel Koloid

    FIGURE Colloidalparticlesoftenbearelectricalchargesthatstabilize

    the dispersion. On the left is a particle whose extremely large molecules

    carry negatively charged groups. On the right the colloidalparticles has

    attracted chloride ions to itself. In either case, these colloidal particles repel

    each other and cannot join together.

    Colloidal particle with

    organic ionic groups

    Colloidal particle with

    adsorbed chloride ions

    3

  • 4

  • 5

  • Efek Tyndall

    The Tyndall effect,

    A pencil line thin red laser beam

    passes through the liquid in three

    Rest tubes. The first contain a

    colloidal dispersion of starch, the

    second a solution of sodium

    chrornate, and the third a colloidal

    dispersion of Fe2O3, All three

    appear transparent, and in the ab

    sence of the ryndall effect we

    might think they are all solutions,

    However, the Tyndilll effect reveals

    that the fist and third are coilds,

    Not true solutions

    LARUTAN

    CAMPURAN HOMOGEN

    6

  • Larutan Gas

    Gas dalam gasCair dalam gasPadat dalam gas

    Udara

    Sistem koloid

    Sistem koloid

    Larutan Cairan

    Gas dalam cairCair dalam cairPadat dalam cair

    Coca-cola

    Cuka, Gasolin

    Gula dalam cair

    Larutan Padat

    Gas dalampadatCair dalam padat Padat dalam padat

    Aloy hidrogen dim paladium

    Benzen dalam karet

    Karbon dalam besi

    7

  • Mengapa Terbentuk Larutan

    Larutan Dalam Cairan

    -

    +

    Ion ion force of attraction asin sodium chploride

    + -

    + -

    Polar molecule

    Dipole-dipole force of attraction as in sugar of water

    8

  • Larutan cair Dalam Cair

    Figure Ethyl alcohol molecules, C2H5 O H, experience hydrogen bonding ( ) between themselves in pure alcohol. Hydrogen bonds also occur in pure water. When these two liquids for a solution, hydrogen bonds can easily form between molecules of water and those of alcohol thus, attractive forces between molecules in the pure liquids are replaced by similar forces in the solution, and the solution easily forms

    9

  • Larutan padat dalam cair

    Portion of surface and edge of NaCl cristal in contact with water

    FIGURE

    Hydration of ions

    Hydration involves a complex

    redirection of force of attrac-

    tion and repulsion. Before this

    solution forms, water mole-

    cules are attracted only to

    each other; and Na+ and CI-

    ions have only each other in

    crystal to be attracted to.

    In the solution, the ions

    have water molecules to

    takes the places

    of their oppositely

    charged counterparts; and

    water molecules

    find ion more attactive than

    even other water molecules.

    10

  • Panas Larutan

    Terjadi pertukaran energi sistem dan sekelilingnya apabila 1 mol zat terlarut dilarutkan dalam bentuk ( pada tekanan konstan) untuk membuat larutan encer.

    H : Fungsi keadaan yang tidak bergantung pada jalannya perubahan

    FIGURE Enthalpy diagram for a solid dissolving in liquid. In the real word, the solution is formed directly as indicated by the red arrow. We can analyze the energy change by imagining the two separate steps, because entrhalpy changes are fuctions of state and are independent of path. The energy change along the direct path is the algebraic sum of step 1 and step 2.

    11

  • FIGURE The Formation of aqueous potassium iodide

    Step 1:

    Step 2:

    Kl(s) K+(g) + l-(g)

    K+(g) + l-(g) K+(g) + l-(g)

    H = +632 kJ

    H = -619 kJ

    Net:

    Kl(s) K+(g) + l-(g)

    Hlarutan = +13 kJ

    12

  • Larutan cairan dalam cairanLarutan gas dalam cairan Energi solvasi eksoterm

    13

  • Pengaruh Suhu pada Kelarutan

    Kelarutan : Massa zat terlarut yang membentuk larutan jenuh dengan massa pelarut pada suhu tertentu

    Satuan : gram zat terlarut / 100 gram pelarut

    Solut (tidak larut)Solut (larut)

    Kelarutan naik jika mengabsorpsi panas

    Solut (tidak larut) + Panas Solut (larut)

    14

  • FIGURE Solubilty in water versus temperature for several substances

    Gas larut secara eksoterm dalam cairan pada semua konsentrasi

    Gas (tidak larut)Gas (larut) + Panas

    15

  • Pengaruh Tekanan Pada Kelarutan dalam Gas

    Kelarutan gas dalam cairan naik dengan niaknya tekanan

    Gas + pelarutLarutan

    FIGURE

    Solubility in water versus pressure for two gases

    FIGURE

    How pressure inueases the solubility of a gas in a liquid. (a) At some specific pressure, equilibrium exists between the vapor phase and the solution. (b) An Increase in pressure puts stress on the equilibrium. (c) More gas dissolves and equilibrium is restored

    16

  • Hukum Henry : Konsentrasi gas dalam cairan pada suhu yang diberikan secara langsung sebanding dengan tekanan gas pada larutan.

    Cg = Kg . Pg

    Kelarutan gas yang terhidrasi kuat

    SO2, NH3 & CO2 lebih mudah larut dibanding S2 & N2

    NH3 Ikatan H, SO2 & CO2 bereaksi dengan air kesetimbangan

    CO2(aq) + H2O H2CO3(aq) H+(aq) + HCO3-(aq)

    SO2(aq) + H2O H+(aq) + HSO3-(aq)

    NH3(aq) + H2O NH4+(aq) + OH-(aq)

    17

  • * % konst. % berat (% b/b) : jumlah gram zat terlarut / 100 g larutan

    % volume (% v/v) : jumlah mL zat terlarut / 100 mL larutan

    18

    *

    Konsentrasi

    * Fraksi mol dan % mol

    Mol fraksi : Perbandingan jumlah mol suatu komponen terhadap

    jumlah mol total komponen yang ada.

    XA =

    nA

    nA + nB nC + dst

    Hukum gas ideal : nA =

    PA . V

    R. T

  • Perubahan di antara satuan dan konsentrasi

    Merubah dari % berat ke molalMerubah dari % berat ke fraksi molMenghitung % berat dari fraksi molMerubah molal ke fraksi molMerubah % berat ke molarMerubah dari molar ke % berat

    Penurunan Tekanan Uap

    Tek uap campuran turun dengan adanya komponen lainTek uap larutan (zat terlarut : non volatil) < tek uap pel murniHukum Raoult

    Plarutan = Xpelarut . Popelarut

    19

    Sifat Koligatof Larutan

  • CALCULATING THE MOLE FRACTION OF A GAS FROM PARTIAL PRESSURE

    Problem : What are the mole percents of nitrogen and oxygen in air when the partial pressure are 160 torr for oxygen and 600 torr for nitrogen ? (Asumme no other gases are present)

    20

    Solution : Let us use Equation to find the mole fraction of N2 fist.

    But the total pressure is the sum of the partial pressures, so

    = 0,789, or 78.9 mole percent of N2

  • Now we do the same for oxygen

    You can easlly see that the two mole percents add up to 100%

    CALCULATING MOLAL CONCENTRATION

    Problem : An experiment calls for an aqueous 0,150 m solution of sodium chloride. To prepare a solution with this concentration, how many grams of NaCl would have to be dissolved in 500 g of water ?

    Solution : As with almost all problems involving concentrations; our first step is to prepare a conversion factor. Thus, 0,150 m NaCl gives us the following, two rations, where we substitute 1000 g for 1 kg.

    21

  • and

    To calculate the moles of NaCl we need for 500 g of H2O, we use the first ratio, because then the units will cancel property

    This gives us the moles of NaCl needed. We next convert 0.0750 mol of NaCl to grams of NaCl. (The formula weight of NaCl is 58,5 which means, of course, 58.5 g NaCl/mol NaCl)

    22

  • Thus, when 4,39 g of NaCl is dissolved in 500 g of H2O, the concentration is ), 150 m NaCl. With a little practice, you will be able to set up a string of conversion factors and do the calculation at the end. For example,

    USING WEIGHT/WEIGHT PERCENT

    Problem : How many grams of a 4.00% (w/w) solution of NaCl needed to obtain 0.500 g of NaCl ?

    Solution : The given concentration gives us the following conversion factors

    23

  • and

    We want 0.500 g of NaCl from this solution, so we use the second conversion factor

    Thus, if we take 12.5 g to the 4.00% (w/w) NaCl solution, we will also be taking 0.500 g of

    24

  • FIGURE

    The vapor pressure of an ideal, two-component solution of volatile compounds

    25

  • Larutan ideal dan penyimpangan hukum Raoult

    FIGURE

    Typical deviations from ideal behavior, of the total vapor pressure of real, two-componen solutions of volatile substances.

    26

  • KenaikanTitik Didih

    th = kb . m

    FIGURE

    Boiling point elevation: Shown here are plots of vapor pressures versus temperatures for a solvent (upper curve) and for a solution of a non volatile solute in the same solvent (lower curve).

    27

  • Tabel. molal boiling point elevation and freezing point depression constants

    Menghitung kenaikan titik didih dari molar harga konstanta kenaikan titik dan molalMenghitung BM dari kenaikan titik didih

    28

    SolventBp (oC)KbMp (oC)KfWater1000.1501.86Acetic acid118.33.0716.63.57Benzen8022.535.455.07Chloroform61.23.63--Camphor--178.437.7Cyclohexane80.72.696.520.0
  • Penurunan Titik Beku

    th = kb . m

    Menghitung penurunan titik beku dari molar harga konstanta penurunan titik dan molalMenghitung BM dari kenaikan titik beku

    Dialisis dan Osmosis

    Dialisis : Jika 2 larutan dengan konstrasi berbeda dipisahkan oleh suatu membran, konst akan berubah hingga setimbang. Membran bersifat semipermiabel (hanya ion dan molekul kecil yang dapat lewat)

    Osmosis : Jika hanya molekul pelarut yang dapat lewat pada membran

    Tekanan Osmosis : Tekanan untuk menjaga aliran osmosis

    = MRT

    29

  • 30

  • 31

  • Sifat sifat Koligatif pada Larutan Elektrolit

    Memperkirakan sifat koligatif pada larutan elektolitIneraksi ion-ion dalam larutan cairan

    32

    % ionisasi elektrolit elektrolit lemah

    pelarut

    kg

    terlarut

    zat

    mol

    Molal

    Konst.

    =

    =

    m

    tot

    A

    A

    P

    P

    X

    =

    (

    )

    (

    )

    elektrolit

    non

    an

    penghitung

    f

    pengukuran

    f

    t

    t

    :

    Hoff

    t

    Van'

    faktor

    =

    i

    ada

    yang

    asam

    mol

    i

    terionisas

    asam

    mol

    %ionisasi

    K

    t

    m

    f

    =

    =

    =

    total

    total

    N

    N

    P

    torr

    600

    P

    P

    X

    2

    2

    =

    =

    torr

    160

    torr

    600

    torr

    600

    X

    2

    N

    +

    =

    2

    O

    O

    to

    up

    add

    percents

    mole

    21.1

    or

    0.211,

    torr

    160

    torr

    600

    torr

    160

    X

    2

    =

    +

    =

    O

    H

    g

    1000

    NaCl

    mol

    0,150

    2

    NaCl

    mol

    0,150

    O

    H

    g

    1000

    2

    NaCl

    mol

    0,0750

    O

    H

    g

    1000

    NaCl

    mol

    0,150

    x

    O

    H

    500g

    2

    2

    =

    NaCl

    g

    4,39

    NaCl

    mol

    1

    NaCl

    g

    58,5

    x

    NaCl

    mol

    0,0750

    =

    NaCl

    g

    4,39

    NaCl

    mol

    1

    NaCl

    g

    58,5

    O

    H

    g

    1000

    NaCl

    mol

    0,150

    x

    O

    H

    g

    500

    2

    2

    =

    =

    solution

    g

    100

    NaCl

    g

    4.00

    NaCl

    g

    4.00

    solution

    g

    100

    solution

    (w/w)

    4.00%

    of

    g

    12.5

    NaCl

    g

    4.00

    solution

    g

    100

    x

    NaCl

    g

    0.500

    =