00077113

14
E.P.E.T. N° 2 - Centenario 6° año construcciones Unidad N° 5 - Medición directa e indirecta de distancias 5.1 Generalidades. 5.2 Distintos métodos e instrumentos para medición directa de distancias, listado y descripción.5.3 Método de medición con cinta métrica: Procedimientos, elementos y errores. 5.4 Distintos métodos e instrumentos para medición indirecta de distancias. 5.5 Reducción de distancias al horizonte. Apéndice. 5.1.-Generalidades: Entendemos como medición al acto de comparar una magnitud lineal cualquiera, con otra de la misma especie a la que se ha tomado como unidad de medida. A su vez podemos definir como directa, a la medición que se efectúa ocupando sucesivamente con el segmento que se ha tomado como unidad, toda la longitud del segmento a medir; y como indirecta la medición en que solo se ocupan los extremos del segmento a medir con los instrumentos de medición, obteniendo luego por cálculo el valor lineal de la magnitud. El método mas utilizado, era la medición con cinta métrica pero con la incorporación de los métodos electrónicos en los últimos tiempos (por la depreciación de sus precios en los mercados internacionales y nacionales) se está produciendo un recambio de tecnología introduciéndose en todos los campos el uso del E.D.M. (Electro- Distanció-Metro). Este método fue siempre considerado aun desde la invención de los primeros EDM's como el mas rápido y preciso, pero sus precios y dificultades de transporte lo hacían prohibitivos para trabajos de topografía reservándose solo para geodesia o topografía de alta precisión. Ahora es bastante común ver en trabajos viales o catastrales, un pequeño EDM o E.T. de 4 o 6 Kgs. de peso y de un valor de entre 6.000 a 15.000 U$S (hace 25 años ni se soñaba con instrumentos de menos de 10 Kg, mas 20 o 30 Kgs. para las baterías y entre 40.000 y 50.000 U$S ), aun así es posible que en trabajos civiles se sigan utilizando varios métodos que aunque antiguos continúan manteniendo vigencia ya que la precisión sigue siendo la misma, solo que se consideran obsoletos porque es difícil conseguir los instrumentos, aunque mantengan su vigencia técnica, por ello es que a continuación se verá una tabla que muestra todos los métodos e instrumentos de medición de distancias, aun los que ya no se usan. 5.2.- Distintos métodos e instrumentos para medición directa de distancias En el siguiente cuadro se verán los métodos e instrumentos de medición de distancias que han sido abandonados paulatinamente por la aparición de mejores instrumentos, los cuales serán aludidos a continuación mas como un dato histórico que como objeto de estudio pues, salvo las cintas, teodolitos y estaciones totales, los demás se consideran obsoletos. E.P.E.T. N° 2 – Apuntes de Topografía y Obras Viales 30

description

La medición es un proceso básico de la ciencia que consiste en comparar un patrón seleccionado

Transcript of 00077113

E.P.E.T. N° 2 - Centenario 6° año construcciones

Unidad N° 5 - Medición directa e indirecta de distancias

5.1 Generalidades. 5.2 Distintos métodos e instrumentos para medición directa de distancias, listado y descripción.5.3 Método de medición con cinta

métrica: Procedimientos, elementos y errores. 5.4 Distintos métodos e instrumentos para medición indirecta de distancias. 5.5 Reducción de

distancias al horizonte. Apéndice.

5.1.-Generalidades: Entendemos como medición al acto de comparar una magnitud lineal cualquiera, con otra de la misma especie a la que se ha tomado como unidad de medida. A su vez podemos definir como directa, a la medición que se efectúa ocupando sucesivamente con el segmento que se ha tomado como unidad, toda la longitud del segmento a medir; y como indirecta la medición en que solo se ocupan los extremos del segmento a medir con los instrumentos de medición, obteniendo luego por cálculo el valor lineal de la magnitud.

El método mas utilizado, era la medición con cinta métrica pero con la incorporación de los métodos electrónicos en los últimos tiempos (por la depreciación de sus precios en los mercados internacionales y nacionales) se está produciendo un recambio de tecnología introduciéndose en todos los campos el uso del E.D.M. (Electro-Distanció-Metro). Este método fue siempre considerado aun desde la invención de los primeros EDM's como el mas rápido y preciso, pero sus precios y dificultades de transporte lo hacían prohibitivos para trabajos de topografía reservándose solo para geodesia o topografía de alta precisión. Ahora es bastante común ver en trabajos viales o catastrales, un pequeño EDM o E.T. de 4 o 6 Kgs. de peso y de un valor de entre 6.000 a 15.000 U$S (hace 25 años ni se soñaba con instrumentos de menos de 10 Kg, mas 20 o 30 Kgs. para las baterías y entre 40.000 y 50.000 U$S ), aun así es posible que en trabajos civiles se sigan utilizando varios métodos que aunque antiguos continúan manteniendo vigencia ya que la precisión sigue siendo la misma, solo que se consideran obsoletos porque es difícil conseguir los instrumentos, aunque mantengan su vigencia técnica, por ello es que a continuación se verá una tabla que muestra todos los métodos e instrumentos de medición de distancias, aun los que ya no se usan.

5.2.- Distintos métodos e instrumentos para medición directa de distancias

En el siguiente cuadro se verán los métodos e instrumentos de medición de distancias que han sido abandonados paulatinamente por la aparición de mejores instrumentos, los cuales serán aludidos a continuación mas como un dato histórico que como objeto de estudio pues, salvo las cintas, teodolitos y estaciones totales, los demás se consideran obsoletos.

MétodosDirectos

TroqueámetroHodómetroPodómetro

CadenaRegla

Alambre de Invar

MétodosIndirectos

PorInstrumentos

TelémetrosMicroondas

ÓpticoLáser

E.D.M. (s)

Luz visibleInfrarrojos

LáserMicroondas

Por CálculoEstadimétrico Teodolito - ET

TaquímetroParaláctico Teodolito - ET

Triangulación Teodolito - ET

E.P.E.T. N° 2 – Apuntes de Topografía y Obras Viales 30

Descripción de los instrumentos de medición directa

TROQUEAMETRO: Es un cuentavueltas que se adapta a la rueda de cualquier vehículo, luego de recorrida la distancia a medir se multiplica la longitud de la circunferencia de la rueda, por la cantidad de vueltas que acusa el troqueámetro y se obtiene la distancia.

HODOMETRO: Es una rueda, similar a la de una bicicleta, que se fija a la parte posterior de cualquier vehículo y tiene un cuentavueltas adaptado al eje de la misma con una reducción en relación directa con la longitud de su circunferencia (generalmente de 2,00 mts.), este cuentavueltas nos muestra en una pantalla numérica la distancia medida en metros directamente sin necesidad de cálculos de ninguna especie como el anterior instrumento.

PODOMETRO o CUENTAPASOS : Se utiliza para el conteo automático de los pasos dados por una persona, generalmente es un mecanismo de relojería que se fija a la pierna del caminante y se acciona con los movimientos generados al dar cada paso.

ALAMBRE DE INVAR: Como su nombre lo indica son alambres de aproximadamente 2 mm de espesor de una aleación de acero y níquel (64% de acero y 36% de Ni), cuyo nombre es la contracción de la palabra INVARIABLE, en alusión directa a su invariabilidad ante las condiciones térmicas, estos alambres son utilizados en geodesia para la medición de pequeñas bases de triangulaciones no mayores a 1Km.

CADENA: Son cadenas compuestas por varillas de latón o hierro unidas por argollas o anillos del mismo material, generalmente graduadas en medidas inglesas o francesas, no son usadas en la actualidad.

REGLA: Son espigas de madera de pino o abeto de unos 4 o 6 mts. de longitud graduadas o no; utilizadas para medir tramos cortos en terrenos quebrados, se usan en conjunción con un nivel de mano y una plomada o un clisímetro (ver gráfico)

Los anteriores métodos e instrumentos comentados no son de un uso cotidiano, ni hacen al objetivo de la materia, pero fueron

tratados con el propósito de aumentar el conocimiento general; en realidad existe solo un método de medición directa usado comúnmente, la medición con cinta métrica.

5.2.-Método de medición con cinta

Es el único método no-electrónico que aún mantiene su vigencia debido a lo fácil, rápido y económico de su utilización Las cintas métricas utilizadas en medición de distancias se construyen en una delgada lámina de acero al cromo, o de aluminio, o de un tramado de fibras de carbono unidas mediante un polímero del teflón (las más modernas). Siendo las mas usadas de 10; 15; 20; 25; 30; 50 y 100 metros. Las dos últimas son llamadas de agrimensor y se construyen únicamente en acero ya que la fuerza necesaria para tensarlas podría producir la extensión de las mismas si estuvieran construidas en un material menos resistente a la tracción. Las mas pequeñas están centimetradas e incluso algunas milimetradas, con las marcas y los números pintados o grabados sobre la superficie de la cinta; mientras que las de Agrimensor están marcadas mediante remaches de cobre o bronce fijos a la cinta cada 20 cms. ; un remache algo mayor para los números impares y un pequeño óvalo numerado para los números pares. Por lo general están protegidas dentro de un rodete de latón o PVC, las de agrimensor tienen dos manijas de bronce en sus extremos para su exacto tensado y es posible desprenderla completamente del rodete para mayor comodidad.

E.P.E.T. N° 2 – Apuntes de Topografía y Obras Viales 31

Distintos modelos de

cintas métricas

Procedimiento Operativo Normal (P.O.N.) de medición con cinta

El problema que generalmente nos encontramos cuando debemos medir una distancia con una cinta es que por lo común la distancia a medir es mayor que la longitud de la cinta con que contamos; para subsanar este inconveniente debemos obtener algunos jalones y un juego de fichas (estos son pequeños pinchos de acero, generalmente diez, unidos a un anillo de transporte). Con los jalones se materializa la línea que se ha de medir, de la siguiente manera: Se coloca un jalón en cada extremo del segmento a medir y luego se alinean (a ojo) uno o mas jalones, de manera que los subsegmentos obtenidos sean menores que la longitud de la cinta que tenemos.Una vez materializada la línea por donde pasará la cinta, uno de los integrantes del equipo de medición (de ahora en mas el "delantero"), tomará un extremo de la cinta y el juego de fichas, y comenzara a recorrer el segmento a medir, donde se termine la cinta será alineado (a ojo) por el otro integrante del equipo (de aquí en mas el "zaguero"), y allí clavará la primera ficha por dentro de la manija que tiene en sus manos. Este procedimiento se repetirá tantas veces como sea necesario para llegar hasta el otro extremo del segmento. A medida que se vaya avanzando, el delantero irá clavando sus fichas y el zaguero colocará la manija de su extremo por fuera de la ficha encontrada, levantando la misma y guardándola en otro anillo de transporte, cuando el delantero haya alineado y clavado una nueva ficha; al final se contarán las fichas que el zaguero tenga en su anillo (que serán el número de cintadas) y se las multiplicará por la longitud de la cinta, a ello se sumará el resto de segmento que se encuentre entre la última ficha y el jalón de llegada, lo que nos dará la distancia medida total.

Elementos demedicióncon cinta métrica

5.7.- Errores mas comunes en medición con cinta

5.7.1.-Falta de alineación: Ocurre cuando la cinta se sale de la recta que une los dos extremos de la magnitud a medir. Siempre es positivo, es decir el valor obtenido en realidad es mayor que el real, por ello si podemos averiguar el valor de la desviación de la recta podremos calcularlo según la siguiente fórmula:

= D2 / 2L Donde D = Desviación y L = Longitud medida

5.7.2.-Falta de contraste: No es muy importante en la mayoría de los casos, pues aunque la cinta no esté contrastada, en general las técnicas de producción modernas permiten que las cintas salgan de fábrica con una precisión suficiente, pero puede darse el caso de la existencia de un error en la cadena de producción de la fábrica productora de cintas y esto implicaría defectos de fabricación en todo un lote importante de cintas, el cual solo sería descubierto al ocurrir los errores, para evitar estos inconvenientes las fábricas deben mandar una parte de su

E.P.E.T. N° 2 – Apuntes de Topografía y Obras Viales 32

producción a algún ente donde son contrastadas y se les entrega un certificado de contrastación donde consta la precisión con que fueron construidas las cintas . 5.7.3.-Catenaria: Catenaria es la "panza" que forma la cinta cuando medimos a cierta altura sobre el suelo, por el peso de la cinta en el centro. Esto ocasiona un error tal que la longitud real es menor que la medida. De ser posible detectar y medir la catenaria el error se puede calcula mediante la siguiente fórmula y por lo tanto anularlo.

5.7.4.-Por tracción: Todos los materiales ceden a la tracción en menor o mayor grado, mas aún si se lo hace en su máxima extensión, a las cintas durante su contrastación y fabricación se las tracciona con una fuerza de módulo conocido (20 Kgs), si durante su utilización la tracción es de distinto módulo se cometerá un error que se puede calcular mediante:

F . L / Y . S

Donde: F = Diferencia de Tracción (Kg) L = Longitud medida (mts)

Y = Módulo de Young (0.000002 Kg/cms²) S = Sección de la cinta (cms²).

5.7.5.-Por variación de temperatura: Las cintas, como todo metal, se dilatan según el efecto térmico causado por la variación de la temperatura ambiente (la cual es aumentada al ser transmitida a un piso de tierra, piedra o arena afectada por los rayos solares llegando hasta valores de 50° C., o mas), cuando son contrastadas o fabricadas se busca crear una temperatura artificial semejante a la media del territorio donde serán utilizadas, en el caso de la República Argentina esta temperatura es de 20° C. El valor del error cometido al medir con una cinta en un lugar donde la temperatura ambiente es muy distinta con la de contrastación se puede calcular como:

T . L . C

Donde, T = Diferencia de temperatura L= Longitud medida

C = Coeficiente de dilatación del Acero (0.0008 Cms/°)

5.7.6.-Por rugosidad de la superficie (a medir): Siendo el más simple y más fácil de solucionar este error es, generalmente, el más común de los cometidos durante la medición con cinta. En todos los casos es cometido por desidia del operador y puede ser solucionado limpiando el lugar a medir.

Este error es un caso especial del error por falta de alineación y se podría calcular su módulo de la misma manera, pero en el caso anterior estamos hablando de obstáculos mayores, no removibles, donde es mas fácil calcular el error que remover el obstáculo, en este caso la solución es quitar del paso el hecho físico que esté causando el error.

5.8.- Métodos Indirectos de medición

5.8.1.- Método estadimétrico: Es un método sumamente simple y era ampliamente usado, si bien su precisión no alcanzaba la requerida para un levantamiento catastral, era usado normalmente en trabajos topográficos, esto quiere decir que si bien no podía ser usado durante el amojonamiento de un lote o manzana, o para replantear los cimientos de un edificio, sí era usado con toda confianza para efectuar el relevamiento de un lote o una superficie que debía ser representada en un plano, o para medir una distancia en un lugar donde los obstáculos hacían imposible la utilización de una cinta.

E.P.E.T. N° 2 – Apuntes de Topografía y Obras Viales 33

Se basa en la relación de igualdad existente entre el foco del sistema óptico del aparato utilizado (teodolito o nivel) (F) y la distancia entre los hilos estadimétricos del retículo (H); por un lado y la distancia entre el centro del sistema óptico con la mira (D) y el trozo de mira comprendido entre las lecturas de los hilos superior e inferior (L)

O sea que la distancia es igual a la lectura mayor, menos la lectura menor, multiplicado por cien

Los errores introducidos en este método se producen en función de las lecturas sobre la mira, por ello la distancia a la que se está midiendo es el factor que mas influye en la posibilidad de error (a mayor distancia, mayor error), y el factor que mas influye en mejorar la medición es el N° de aumentos del anteojo ya que aumenta la precisión de la lectura. La distancia empíricamente recomendable para mediciones estadimétricas es de 3A , donde A es el N° de aumentos del anteojo, respetando este distancia se puede esperar un error relativo de 1/400 o sea de 2,5 cms por cada 10 mts. medidos.

5.8.2.- Método Paraláctico: No era un método de un uso muy extendido, ya que la mira paraláctica tenía un costo excesivo, pero su alcance y su precisión lo hacían especialmente útil en trabajos topográficos. Consiste en la resolución de un triángulo rectángulo angosto del que se mide el ángulo mas agudo; el cateto menor es conocido ya que es la mitad de una mira (llamada Paraláctica), horizontal fabricada en un material sumamente estable, generalmente Invar, de dos metros de largo (se eligió esta longitud de 2,00 mts porque la mitad es 1,00 m lo que luego facilita el cálculo); y el cateto mayor es la distancia que queremos averiguar, la cual deberemos calcular.

Mira paraláctica o estadía de invar Es una mira especial para su uso exclusivo en mediciones paralácticas, su longitud es de 2,00 mts. entre las marcas, generalmente construida en aluminio tiene en su interior un ánima de invar que le da su estabilidad térmica.

5.8.3.-Método de triangulación: Es un método de neto corte geodésico, se puede trabajar con lados de algunas decenas de metros o de algunas decenas de kilómetros indistintamente, y con ángulos medidos a la centésima de segundo.

El método se basa en la resolución de triángulos mediante procesos trigonométricos, para ello se miden con altísima precisión: una base lineal (AB) y todos los ángulos de la cadena

E.P.E.T. N° 2 – Apuntes de Topografía y Obras Viales 34

(1;2;3;4;5;...;n) que sean necesarios para poder calcular una distancia determinada o todos los lados de la cadena

Este método aunque extremadamente preciso y rápido para grandes distancias se vuelve infructuoso en distancias de menos de 1 Km, para las cuales es preferible una cinta o un E.D.M.

5.8.4.- Instrumentos de Medición indirecta

5.8.4.1.-Telémetro Eran instrumentos utilizados para medir distancias con aproximación, en muchos casos se utilizaba el término "telémetro" como genérico para todos los instrumentos electrónicos de medición de distancias, pero este término debe ser reservado solo para aquellos instrumentos electrónicos u ópticos utilizados para medir distancias desde una sola estación lo que le impide una mayor precisión, los utilizados con una precisión acorde con trabajos técnicos son los llamados ElectroDistancióMetros (E.D.M.).

Existían dos tipos de telémetros, los ópticos y los electrónicos; ambos fueron utilizados desde principios del S. 20 para las actividades militares, como observación y situación del enemigo para conocer sus movimientos o para reglar el tiro de artillería. Los primeros son conocidos desde hace ya mucho tiempo (la primera guerra mundial) y los segundos se remontan a unos pocos años atrás (década del sesenta) cuando comenzaron a ser colocados sobre plataformas móviles de artillería o tanques, como el utilizado en el TAM. En ambos casos la precisión no es muy importante ya que poco influyen algunas decenas de metros cuando el objetivo es bombardear zonas de 2 o 3 Has. Los telémetros ópticos miden las distancias mediante la resolución de un triángulo rectángulo cuyos vértices son: dos espejos (E1 y E2 , cuya separación es conocida) y el punto objetivo.

Uno de los espejos es fijo (E1) y forma un ángulo recto con la base, el otro es móvil (E2) y cuando se acciona el tornillo T, que lo hace mover, la imagen del objetivo aparece en el ocular superpuesta sobre la imagen que ya veríamos reflejada por E1, en ese momento, cuando ambas imágenes forman una sola, en el visor D se estará viendo la distancia existente entre el telémetro y el objetivo (en realidad lo que se está viendo es el valor del ángulo convertido a medidas lineales mediante un sistema mecánico.)

Los telémetros láser miden en realidad el tiempo que tarda un haz láser en ir y volver hasta un objetivo determinado; luego un calculador electrónico incorporado calcula la distancia en función del tiempo medido y la velocidad del haz ( la velocidad es la de la luz, ya que el láser es un haz de luz, su nombre lo indica; pues la palabra LASER en realidad es la sigla de Light Amplification by Stimulation of the Emited Radiation = Amplificación de la luz por estimulación de la radiación emitida), la distancia recorrida, y luego la expresa en un LCD en forma de unidades lineales.

Estos aparatos constan de cuatro sistemas dependientes entre sí, el primero de ellos es un cañón láser de neodimio con un alcance de entre 1 a 15 Kms. (según el modelo), el segundo es un cronómetro que se pone en funcionamiento cuando el haz es emitido, el tercero es una célula fotoeléctrica que capta el rebote del láser en el objetivo y corta el funcionamiento del

E.P.E.T. N° 2 – Apuntes de Topografía y Obras Viales 35

cronómetro rescatando el tiempo transcurrido, por último encontramos un calculador que en primera instancia divide el tiempo medido en dos y usa este resultado para el cálculo de la distancia según la fórmula E = V x T.

Esquema de un Telémetro Láser

Este tipo de instrumento, aunque mas preciso que el anterior aun no se adecua a la precisión exigida por los trabajos topográficos, excepto los expeditivos. Existen también dos tipos de telémetros que sí pueden ser utilizado para trabajos, no ya topográficos pero si civil o arquitectónico, uno llamado estimador, salió al mercado a principios de los ´90 es un pequeño instrumento del tamaño y peso de una cinta métrica mide con una exactitud tal que se los utiliza en relevamiento de edificios (por ej. en planos de conforme a obra), con tal que las medidas no excedan el alcance práctico del instrumento que oscila entre 7 y 20 mts. (según el modelo), utilizan como onda medidora a las microondas, el funcionamiento es muy simple y constan de un pequeño oscilador que crea una onda portadora de radiofrecuencia y una microonda medidora, que es dirigida por una antena direccional, hacia el objetivo (una pared o un techo), donde la onda rebotará y será recogida por la misma antena. El otro es mucho mas moderno y de un tamaño algo mayor; utiliza como onda medidora un haz láser, tiene mayor alcance y puede ser montado sobre un teodolito, existen varias marcas y modelos el primero de ellos es el Leica Disto que se comercializa desde 1.999. En los últimos dos años han aparecido con gran suceso varios modelos de E.T. cuyo E.D.M. es un telémetro láser, como la Pentax R-315NX que permite la medición sin prismas.Cuyas características técnicas mas sobresalientes son:

- Memoria interna de 16.000 puntos - Enfoque Automático.- Puntero Láser visible que no daña la vista.- Nivel Electrónico, sin burbuja tubular.- Compensador de Doble Eje.- Plomada láser de serie.- Corrección Atmosférica Automática.- Peso, 5,7 kg. c/batería.- Alcance sin prismas: 90 a más de 270 mts. - Alcance con tarjeta reflectora: 800 mts.- Alcance con un miniprisma: 1.600 mts.- Alcance con 1 prisma : más de 4.000 mts.- Alcance con 3 prismas : más de 5.000 mts.- Precisión en la medición de distancia con prismas de ±(2mm. + 2ppm)

5.8.4.2.-Electrodistanciómetro (o E.D.M.) Estos instrumentos funcionan de una manera similar a los telémetros pero se diferencian en que estos deben ser operados desde ambos extremos de la longitud a medir, y no debe haber obstáculos entre ellos, esta diferencia que parece simple tiene la gran importancia de que la onda utilizada (lumínica o hertziana), es enviada, rebotada, y recibida con una gran precisión, alrededor de algunos milímetros en un kilómetro, precisión impensada con cualquiera de los demás métodos de medición. En los instrumentos anteriores la onda rebotada se disemina en la atmósfera o es interceptada por obstáculos físicos o incluso rebotada de manera que no es recibida nuevamente por el instrumento emisor lo que no ocurre en los E.D.M. Existen dos tipos de onda utilizados en los E.D.M. las ondas hertzianas (Microonda o VHF) y ondas lumínicas (luz visible, infrarroja o láser). Los E.D.M. mas utilizados para trabajos de campo en la actualidad son los de luz infrarroja de un alcance entre 1 y 15 Kms. (según el modelo), la forma de medir de estos instrumentos es la siguiente: Se coloca sobre uno de los extremos de la longitud a medir el E.D.M. y sobre el otro extremo un espejo (o una batería de espejos, según el modelo y la distancia a medir), generalmente ambos operadores están en comunicación mediante handys o banderas, por lo que el operador del E.D.M. apunta el instrumento al espejo y avisa al ayudante que está con el espejo que mantenga al mismo fijo sobre el punto, luego pulsa el botón de lectura y anota o

E.P.E.T. N° 2 – Apuntes de Topografía y Obras Viales 36

guarda en la memoria del instrumento la distancia del LCD, a continuación avisa al ayudante el término de la medición para que este se dirija al siguiente punto o regrese a la estación principal.

Los E.D.M. basados en ondas lumínicas constan en general de cinco subsistemas :

A.- La fuente lumínica: para los de luz visible una lámpara de gas de mercurio, para las de luz infrarroja un diodo de arseniuro de Galio y para los de luz Láser un láser de neodimio o los nuevos láseres gaseosos de argón.

B.- Una célula fotoeléctrica que recoja el rebote desde los espejos.

C.- Un lector de longitud de onda que compara la longitud de onda del rayo emitido por la fuente lumínica, con el de entrada en la célula fotoeléctrica.

D.- Un calculador que convierte la diferencia de longitud de onda en medidas lineales y los muestra en un LCD numérico. Algunos calculadores traen la opción de calcular también reducciones al horizonte, desniveles, correcciones atmosféricas, etc.

E.- Un prisma o batería de prismas que reflejan la onda.

Existen varias marcas y modelos en el mercado internacional las mas conocidas y de mayor prestigio son las suizas Leica y Kern, la alemana Zeiss, la norteamericana Keffler & Ezzer, y las japonesas Topcon, Sokkia, Pentax y Nikon. Estos modelos varían en su construcción y manejo pero en general los métodos de utilización y los rangos de medición están estandarizados y todas las marcas tienen modelos dentro de rangos definidos es decir modelos de obra civil que miden entre los 3 y 1000 mts.; modelos topográficos entre 10 y 5000 mts. y modelos geodésicos entre 1 y 12 Kms.

Distintos modelos de E.D.M. adosables a teodolitos

Los E.D.M. laséricos en general son aparatos de alta precisión, gran alcance y elevado precio, no hay modelos de obra civil o topografía, todos o casi todos los modelos son utilizados en trabajos geodésicos y su alcance oscila en los 20; 30 o hasta 50 Kms., que se aumentan a 55 y 60 Kms. en condiciones atmosféricas perfectas.Los E.D.M. basados en ondas hertzianas fueron los primeros en diseñarse y entrar en producción y en el mercado, y en su momento fueron los mas precisos y los mas utilizados, pero el avance de la técnica corre a favor de los anteriores (los lumínicos), y hoy quedan solo

E.P.E.T. N° 2 – Apuntes de Topografía y Obras Viales 37

algunas marcas con modelos de ondas hertzianas, así podemos encontrar viejos modelos de la marca Telurometer (llamados telurómetros en Argentina), y los nuevos modelos de la Siemens-Alvis, estos E.D.M. que son tan o mas precisos que los lumínicos, tienen algunos defectos que los hacen menos usados como por ejemplo: son aparatos mas grandes, pesados e incómodos que los lumínicos; tienen una tecnología muy compleja de reparar y las ondas hertzianas son muy influidas por las condiciones meteorológicas, manchas solares y campos magnéticos (líneas de alta tensión, antenas, etc.).

Para su utilización se deben seguir los siguientes pasos:

- Se colocan sendos aparatos en los extremos del segmento a medir. - Se ponen en funcionamiento ambos y se ponen en comunicación mediante el microteléfono que traen incorporado. - Mediante la comunicación ambos operadores se ponen de acuerdo sobre cual de los aparatos medirá primero. - Una vez establecido lo anterior uno de los operadores coloca su aparato en posición Master (maestro) y el otro lo pone en Remote (estación remota). - Se realiza una primera medición llamada "de ida", luego los operadores cambian el modo de funcionamiento de sus aparatos (de master a remote y viceversa) y se hace una nueva medición en sentido contrario, llamada "de vuelta" - Se calcula el promedio de las dos mediciones y ya tenemos el valor lineal de la longitud medida. Estos instrumentos están constituidos por cinco subsistemas interconectados, que son los siguientes: A.- Un oscilador que crea una onda portadora y una medidora, las cuales al salir del oscilador se encuentran "en fase", es decir mantienen una misma amplitud de onda (aunque su frecuencia sea distinta), y una antena parabólica emisora receptora. B.- Un fasor que testea la longitud de las ondas al volver al master luego de haber rebotado en el remote, y mide el desfasaje que se produjo. C.- Un calculador que convierte el desfasaje medido en medidas lineales y lo muestra en un display numérico. D.- Un Transceptor que permite la fluida comunicación entre los operadores.

5.8.4.3.-Taquímetro, Taquímetro autoreductor, y Electrotaquímetro Un taquímetro es un instrumento topográfico muy similar a un teodolito de poca precisión destinado específicamente a la medición de distancias, para esto tiene un especial retículo con un par de hilos estadimétricos curvos que permiten medir en todo el campo visual del anteojo, sobre las miras, que a su vez son miras especiales para taquímetros, estos instrumentos están construidos para ser utilizados en distancias de alrededor del centenar de metros, ya que hasta esa distancia las lecturas son de gran precisión y directas, otra prestación es el cálculo mental de los desniveles entre el punto estación y el punto relevado. Taquímetro auto reductor es aquel cuyas mediciones están reducidas al horizonte mediante la especial construcción de sus hilos taquimétricos. En general estos instrumentos han sido superados por la tecnología de las E.T. y la mayoría de los modelos ya no se fabrican. Los electrotaquímetros son aquellos taquímetros que traen incluido un E.D.M. que le permite la medición electrónica de distancias.

5.8.5.-Reducción de distancias al horizonte A los efectos de graficar las superficies relevadas sin incurrir en errores planimétricos, se le deben efectuar a las medidas tomadas en el terreno la correspondiente reducción al horizonte, para ello las distancias inclinadas deben ser multiplicadas por el Cos del ángulo de inclinación (con respecto al horizonte), como si se resolviera un triángulo a partir de la hipotenusa y del ángulo medido

E.P.E.T. N° 2 – Apuntes de Topografía y Obras Viales 38

En las E.T. esta función viene por defecto y en los LCD de todos los modelos podemos ver tanto la distancia inclinada (DI) como la distancia horizontal (DH)

Glosario

Clisímetro: Instrumento para estimar las pendientes del terreno.

LCD: Liquid Cristal Display o Pantalla de cristal líquido, pequeñas pantallas de visualización de resultados numéricos y alfanuméricos muy utilizados por los instrumentos electrónicos o electroópticos de medición.

Procedimiento Operativo Normal (P.O.N.): Procedimiento recomendado u obligatorio para utilizar alguna herramienta o método y obtener resultados positivos con el mínimo esfuerzo.

Paraláctico: ángulo que se debe calcular en astronomía para medir la paralaje de las estrellas, y por extensión, todos los ángulos agudos muy angostos.

Zaguero: que está o va a la zaga o detrás de otro.

Apéndice

"Cuando un pueblo es devorado por la sed de libertad y tiene por jefes a torpes escanciadores que le sirven cuanto él quiere hasta embriagarlo, sucede que si los gobernantes se oponen a los pedidos cada vez mas exigentes se los declara réprobos y se los acusa de querer arrebatar la libertad. Y sucede que se declara hombre servil y sin carácter a quien se muestra disciplinado con sus superiores, que el padre atemorizado acaba por tratar como iguales a sus hijos, que el hijo ya no teme ni respeta a sus padres, que el maestro no se atreve a reprender a sus alumnos, y los adula; de modo que estos reclaman los mismos derechos y las mismas consideraciones que los ancianos. Y para no parecer severos los ancianos conceden la razón a los jóvenes, entonces el alma de los ciudadanos se muestra por demás tolerante y dondequiera se observan casos de sumisión y la mayoría los mira con desprecio y no acepta obedecer, y acaba despreocupándose de las leyes escritas y no escritas, y ya no hay consideración ni respeto para nadie. En medio de tanta licencia nace y se desarrolla la mala hierba: la tiranía. En realidad cada exceso suele acarrear el exceso contrario, tanto en las estaciones, como en las plantas y los cuerpos y con mayor razón en las cosas políticas" Platón

"Los gobernantes se preocupan mas por sus intereses personales que por los negocios de la comunidad, los hijos no respetan a sus padres, las costumbres sociales son escandalosas, y por doquier se advierten señales de la decadencia, la corrupción y el desenfreno. En que terminará todo este bochorno." Arquíloco de Parcos (siglo VII A.J.C.)

E.P.E.T. N° 2 – Apuntes de Topografía y Obras Viales 39

E.P.E.T. N° 2 – Apuntes de Topografía y Obras Viales 40