Introducción al Estado Sólido: El amarre fuerterbaquero/amarre_fuerte_I.pdf · setiembre 2008...

Post on 04-Jun-2018

221 views 0 download

Transcript of Introducción al Estado Sólido: El amarre fuerterbaquero/amarre_fuerte_I.pdf · setiembre 2008...

setiembre 2008 amarre fuerte 1

Introducción al Estado Sólido:El amarre fuerte

(tight-binding, en inglés)

R. BaqueroDepartamento de Física

Cinvestav

Introducción al Estado Sólido. R. Baquero

setiembre 2008 amarre fuerte 2

Introducción al Estado Sólido. R. Baquero

¿Por qué estudiamos el método de amarre fuerte?

Uno de los objetos de estudio del Estado Sólido, es el estudio de la materia en estado cristalino.

El estado cristalino es un arreglo periódico de átomos en interacción.

El arreglo periódico se llama red. Una red cubre, en teoría todo el espacio.

La periodicidad se describe por medio de la Teoría de Grupos

Hay diferentes tipos de periodicidad, es decir diferentes grupos cristalinos que se manifiestan por la colocación de los átomos en la red.

El grupo cúbico tiene simetría cúbica, es decir la misma que tiene un cubo. A ese grupo pertenecen tres redes:

1- Cúbica simple (CS): simple cubic, en inglés (sc).

2- Cúbica centrada en el cuerpo (CCC); body centered cubic, en inglés, (bbc).

3- Cúbica centrada en las faces (CCF); face centered cubic, en inglés, (fcc)

setiembre 2008 amarre fuerte 3

Introducción al Estado Sólido. R. Baquero¿Por qué estudiamos el método de amarre fuerte?

Red Cúbica Simple, CS

Simple cubic lattice (sc)

Encontrar 4 elementos de simetría

setiembre 2008 amarre fuerte 4

Introducción al Estado Sólido. R. Baquero¿Por qué estudiamos el método de amarre fuerte?

Red Cúbica centrada (CC)

Body centered cubic lattice (bcc)

Encontrar 4 elementos de simetría

setiembre 2008 amarre fuerte 5

Introducción al Estado Sólido. R. Baquero¿Por qué estudiamos el método de amarre fuerte?

Red Cúbica centrada en las caras (CCC)

Face cubic centered (fcc)

Encontrar 4 elementos de simetría

setiembre 2008 amarre fuerte 6

Introducción al Estado Sólido. R. Baquero¿Por qué estudiamos el método de amarre fuerte?

Interacciones en la

Red Cúbica Simple, CS

Simple cubic lattice (sc)

a

R2

R4

R6

R1 R3

R5i

jkR = pa i + qa j + ra k

Encontrar los segundos y los terceros vecinos

setiembre 2008 amarre fuerte 7

Introducción al Estado Sólido. R. Baquero¿Por qué estudiamos el método de amarre fuerte?

Interacciones en la

Red Cúbica Simple, CS

Simple cubic lattice (sc)

a

i

jkR = pa i + qa j + ra k

Metal

Semi-conductor

aislante

Dependiendo del enlace:

setiembre 2008 amarre fuerte 8

Introducción al Estado Sólido. R. Baquero¿Por qué estudiamos el método de amarre fuerte?

Interacciones en la

Red Cúbica Simple, CS

Simple cubic lattice (sc)

a

i

jkR = pa i + qa j + ra k

Metal

Los electrones están “libres” dentro del espacio de la red

setiembre 2008 amarre fuerte 9

Introducción al Estado Sólido. R. Baquero¿Por qué estudiamos el método de amarre fuerte?

Interacciones en la

Red Cúbica Simple, CS

Simple cubic lattice (sc)

a

i

jkR = pa i + qa j + ra k

Semi-conductor y aislante

Los electronesseencuentran atrapados

en los enlaces

setiembre 2008 amarre fuerte 10

Introducción al Estado Sólido. R. Baquero

De amarre(bonding)

Anti-enlace

(anti-bonding)

Ejemplos de estados electrónicos en el enlace

setiembre 2008 amarre fuerte 11

Introducción al Estado Sólido. R. Baquero¿Por qué estudiamos el método de amarre fuerte?

¿QUÉ QUEREMOS SABER?

1- Estados electrónicos (función de onda y energía

2- Estados de vibración de los iones (función de onda y energías)

(fonón es la diferencia en energía y momento entre dos estados vibracionales)

3- Interacción entre iones y electrones: cómo se intercambia energía entre ellos. (interacción electrón-fonón)

setiembre 2008 amarre fuerte 12

Introducción al Estado Sólido. R. Baquero¿Por qué estudiamos el método de amarre fuerte?

¿QUÉ QUEREMOS SABER?1- Estados electrónicos (función de onda y energía

2- Estados de vibración de los iones (función de onda y energías)

(fonón es la diferencia en energía y momento entre dos estados vibracionales)

3- Interacción entre iones y electrones: cómo se intercambia energía entre ellos. (interacción electrón-fonón)

PARA CALCULAR, EN FORMA SENCILLA, AUNQUE APRXIMADA, LOS ASPECTOS ANTERIORES, ESTUDIAMOS EL MÉTODO DE AMARRE FUERTE

setiembre 2008 amarre fuerte 13

Introducción al Estado Sólido. R. BaqueroLINEAMIENTOS GENERALES DEL CÁLCULO

EL método es útil porque preserva la simetría exacta del sistema, es decir, el Hamiltoniano tiene la misma simetría que la red cristalina descrita.

.( ) ( )j

j

in n jeφ ψ= −∑ k R

Rr r R

Para construir la matriz hamiltoniana, necesitamos una base completa de funciones. En nuestros caso, si queremos describir un metal (los electrones, las vibraciones y la interacción electrón-fonón) , esas funciones deben ser soluciones de la Ecuación de Shrödinger que incluya la periodicidad del sistema. Los electrones pueden ser descritos por medio de ondas de Bloch(que tienen la periodicidad de la red), de la forma:

Calcular las energías significa obtener el Hamiltoniano y resolver la Ecuación de Shrödinger.

setiembre 2008 amarre fuerte 14

Introducción al Estado Sólido. R. Baquero.1( ) ( )j

j

in n je

Nφ ψ= −∑ k R

R

r r R

Los elementos de la matriz Hamiltoniana toman la forma

.( ) *

,

1 ( ) ( )j i

j i

in i m je d H

Nψ ψ− − −∑ ∫k R R

R Rr r R r R

Vector de desplazamiento desde el átomo donde se encuentra el orbital n al átomo donde se encuentra el orbital m

( )l

lH H= −∑R

r R

El hamiltoniano es esférico:

En general, de tres centros

Número de celda unitarias

setiembre 2008 amarre fuerte 15

Introducción al Estado Sólido. R. Baquero.( ) *

,( ) ( )j i

j i

in i m je d Hψ ψ− − −∑ ∫k R R

R Rr r R r R

Hipótesis:

Entre más lejos se encuentren los dos átomos en cuestión, más pequeño va a ser el integral. ¿Por qué?

Hay traslape porque están más cerca

No hay traslape porque están más lejos

Entre mayor sea el traslape, mayor será el integral.

Podemos limitar el número de vecinos !!!

setiembre 2008 amarre fuerte 16

Introducción al Estado Sólido. R. BaqueroPrimeros, segundos y terceros vecinos: ¿cuántos hay de cada uno?

a

i

jk

VECINOS EN LA RED CÚBICA SIMPLE

PRIMEROS VECINOS

SEGUNDOS VECINOS

TERCEROS VECINOS

6

12

8

setiembre 2008 amarre fuerte 17

Introducción al Estado Sólido. R. Baquero

PRIMEROS VECINOS

SEGUNDOS VECINOS

TERCEROS VECINOS

setiembre 2008 amarre fuerte 18

Introducción al Estado Sólido. R. Baquero

.( ) * ( ) ( )j i

j

in i m je d Hψ ψ− − −∑ ∫k R R

Rr r R r R

Para calcular el elemento Hnm de la matriz Hamiltoniana debemos elegir:

1- la distancia máxima que tomaremos en cuenta para el cálculo concreto. Decimos, entonces, que el cálculo está hecho a primeros vecinos, a segundos vecinos, a terceros vecinos, etc.

Podemos eliminar la suma por Ri que repite los términos de la suma por Rj y así eliminamos el prefactor 1/N. Obtenemos:

2- Los estados u orbitales atómicos (n y m) que tomaremos en cuenta en cada uno de los átomos. A esto le llamaremos “La base”.

setiembre 2008 amarre fuerte 19

Introducción al Estado Sólido. R. Baquero

El concepto de “Base”

ión

Órbitas externas

setiembre 2008 amarre fuerte 20

Introducción al Estado Sólido. R. Baquero

El concepto de “Base”

Electrones atómicos externos (de valencia)

Electrones libres metálicos

En un sólido, los electrones atómicos externos (de valencia) constituyen los enlaces entre iones (en semi-conductores o aislantes) o se convierten en electrones libres (en metales) tal y como lo ilustra la figura.

EN UN SÓLIDO:

setiembre 2008 amarre fuerte 21

Introducción al Estado Sólido. R. Baquero

.( ) * ( ) ( )j i

j

in i m je d Hψ ψ− − −∑ ∫k R R

Rr r R r R

Por la razón anterior, para calcular la matriz hamiltoniana, Hnm, seleccionamos como “base” (como los estados electrónicos n y m) los orbitales atómicos externos del átomo que constituye el sólido. Es decir,

Orbitales atómicos externos

setiembre 2008 amarre fuerte 22

Introducción al Estado Sólido. R. Baquero

.( ) * ( ) ( )j i

j

in i m je d Hψ ψ− − −∑ ∫k R R

R

r r R r R

Un cálculo de amarre fuerte de la matriz Hmn del Hamiltoniano:

Comienza por especificar

El número de vecinos que se toma en cuenta.

Los orbitales átómicos que se toma en cuenta (número y tipo).

setiembre 2008 amarre fuerte 23

Introducción al Estado Sólido. R. BaqueroOrbitales atómicos:

Los números cuánticos para un átomo son:

El número cuántico principal “n”

El número cuántico del momento angular “l” (0, 1, 2, …n-1)

El número cuántico de la proyección del momento angular “m” (- l, - l + 1, - l + 2, …, 0 , 1, 2, …+ l)

Nótese que para cada n hay n2 estados atómicos diferentes sin tomar en cuenta el espín. Si lo tomamos en cuenta, habrá 2n2.

setiembre 2008 amarre fuerte 24

Introducción al Estado Sólido. R. Baquero

DEMOSTRACIÓN:

1 1

0 0

1 (2 1) 1 3 5 7 ... (2 1)n l n

l m l l

l n− −

= =− =

= + = + + + + + −∑∑ ∑

2

1 3 5 ... (2 1)(2 1) (2 3) (2 5) ... 12 2 2 ... 2 2 * 2

nn n n

n n n n n n n

+ + + + −− + − + − + +

+ + + + = =

1 12

0 0

1 (2 1) 1 3 5 7 ... (2 1)n l n

l m l l

l n n− −

= =− =

= + = + + + + + − =∑∑ ∑

setiembre 2008 amarre fuerte 25

Introducción al Estado Sólido. R. Baquero

En el caso de los sólidos definimos

s

p

d

l = 0 Un solo orbital m = 0

l = 1

l = 2

Tres orbitales

Cinco orbitales

px

py

pz

dxy

dzx

dyz

dx2-y2

d3z2+r

2

setiembre 2008 amarre fuerte 26

Introducción al Estado Sólido. R. Baquero

.( ) * ( ) ( )j i

j

in i m je d Hψ ψ− − −∑ ∫k R R

Rr r R r R

La aproximación de dos centros

Para calcular la expresión:

1- Consideraremos sólo los términos H(r-Ri) y H(r-Rj) : A esta consideración se le conoce como “la aproximación de dos centros”.

2- Tomaremos el origen en Ri.

.( ) * ( ) ( )j

j

in m je d Hψ ψ −∑ ∫k R

Rr r r R

setiembre 2008 amarre fuerte 27

Introducción al Estado Sólido. R. Baquero

Con R = pa i + qa j + ra k

*

*,

( ) ( )

( ) ( ) ( , , )

n m j

n m n m

d H

d H pa qa ra E p q r

ψ ψ

ψ ψ

− =

− − − ≡

∫∫

r r r R

r r r i j k

.( ) * ( ) ( )j

j

in m je d Hψ ψ −∑ ∫k R

Rr r r R

setiembre 2008 amarre fuerte 28

Introducción al Estado Sólido. R. BaqueroEJEMPLO: RED CÚBICA SIMPLE

Primeros vecinos, orbital s

a

R2

R4

R6

R1 R3

R5i

jk

R = pa i + qa j + ra k

R = +a iR = -a i

Etc.

setiembre 2008 amarre fuerte 29

Introducción al Estado Sólido. R. Baquero

.( ) * ( ) ( )j

j

in m je d Hψ ψ −∑ ∫k R

Rr r r R

(1) (1)( | | ) ( | )s H s s s≡ =. * . *

00 00 00 00( ) ( ) ( ) ( )ia ian n n ne d H a e d H aψ ψ ψ ψ−+ − + + +∫ ∫q i q ir r r i r r r i

. * . *00 00 00 00( ) ( ) ( ) ( )i ia

n n n ne d H a e d H aψ ψ ψ ψ−+ − + + +∫ ∫q j q jr r r i r r r i

. * . *00 00 00 00( ) ( ) ( ) ( )ia ia

n n n ne d H a e d H aψ ψ ψ ψ−+ − + −∫ ∫q k q kr r r i r r r i

*00 00( ) ( )n nd Hψ ψ +∫ r r r

setiembre 2008 amarre fuerte 30

Introducción al Estado Sólido. R. Baquero

. * . *

. . . .

( ) ( ) ( ) ( ) .

( 100) (100) (100)[ ]

ia ias s s s

ia ia ia iass ss ss

e d H a e d H a etc

e E e E E e e

ψ ψ ψ ψ−

− −

= − + + + =

= − + = +∫ ∫q i q i

q i q i q i q i

r r r i r r r i

x y zak ak akξ η ζ= = =

. .(100)[ ] 2 (100)cosia iass ssE e e E ξ−+ =q i q i

setiembre 2008 amarre fuerte 31

Introducción al Estado Sólido. R. Baquero

(1) (1)( | | ) ( | )s H s s s≡ =

Con lo cual obtenemos,

(000) 2 (100)[cos cos cos ]ss ssE E ξ η ζ= + + +

TAREA: Obtener la Tabla II del artículo Phys. Rev. 94, 1498 (1954)

setiembre 2008 amarre fuerte 32

Introducción al Estado Sólido. R. Baquero