Borja Coto isup2008

Post on 05-Apr-2018

225 views 0 download

Transcript of Borja Coto isup2008

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 1/23

1

ABSORTION OF BIOLUBRICANT OXIDATIONABSORTION OF BIOLUBRICANT OXIDATION

PRODUCTS IN NANOPOROUS MATERIALPRODUCTS IN NANOPOROUS MATERIAL

B. Cot o, A. Marcaide, A. Aranzabe, C. Zubizarreta

Fundación Tekniker, Avda. Otaola 20, Eibar, Spain

bcoto@tekniker.es

www.tekniker.es

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 2/23

Outline 

Frame of t he work 

Met hodology 

Absor t ion simulat ions of oxidat ion products 

Molecular Dynamics simulat ions 

Fut ure Work 

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 3/23

Frame of t he work 

To develop an eco-indicatorbased on biodegradability andtoxicity measurements to fill

the gap for a reliableenvironmental impact

evaluation of lubricants

To promote the use crudeglycerine obtained from usedvegetable oil FAME process

(biodiesel production)transforming it from a no-valueby-product to an added-value

renewable raw material.

To obtain polyglycerol esterderivates from purified crude

glycerine for compressorapplications

To replace harmful antioxidantcompressor oil additives by

means the design of a newcompressor device based on amolecular sieve for a selectivetrapping of oxidation products

The aim of t he project is 

the optim isation of t he new 

sustainable lif e cycle of an environm entally f riendly and safe compressor oil 

6th Framework Programe. I. P.

Soilcy ( 515848)

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 4/23

Biolubricants 

Biolubricants

Additives

Improvedperformance

Enviromentally

Unfrendly

Additives

??????

Biolubricants

Additives

Improvedperformance

Additives

Enviromentally

Unfrendly

??????

Biolubricants

Additives

Improvedperformance

Additives

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 5/23

Molecular Sieve 

Biolubricants

Improvedperformance

Enviromentally

Unfrendly

???

Molecular

Selective

Trap

Additives

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 6/23

Compressor oil application 

Model l ing can help t o select proper mat er ials 

Sorpt ive behaviour of t he oxidat ion product s f rom a a t r imet hylolpropane (TMP) est er base oil 

inside a nanoporous mat er ial  Compressor working condi t ions of pressure and 

temperature 

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 7/23

Computational methods 

Molecular Dynamics

Simulations

Monte Carlo Absortion

Simulations

Minimun Energy

Configuration Structures

At omist ic model l ing aproach 

Forcefield based calcultions 

Each at om has a pot ent ial energy associat ed t o surrounding 

at oms  Forcef ields contains paramet ers 

for t he energy expresions 

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 8/23

Mat er ials St udio and Compass Forcefield 

Mat er ials St udio 4.2 

COMPASS Forcef ield 

Widely Val idat ed 

13 Terms 

Bond and non bonding 

interactions 

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 9/23

Molecules and Sorbent 

Cromatographic Analysis 2-Decanone2-

UndecenalDecanoic

Acid

Nonanoic

AcidDecanal NonanalNanoporous Material

Oxidation Products Molecules

9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05  

  s  e   ñ  a   l

  c  r  o  m  a   t  o  g  r  a   f   i  c  a   (   U .   A .   )

GCM.chrom. TMP oleate 120h

GCM.chrom. TMP oleate 72h

GCM.chrom. TMP oleate 48h

GCM.chrom. TMP oleate 27h

GCM.chrom. TMP oleate 0h

Tiempo de retención (min)

Pico 1

Pico 2

Pico 3

Pico 4

Pico 5

Pico 6

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 10/23

Energy minimizat ion 

242,810209,81011,510Decanoic Acid

241,840205,12012,3202-Undecenal

227,430194,09011,546Decanal

226,800193,50011,5052-Decanone

215,570183,47010,197Nonanoic Acid

208,330175,66010,122Nonanal

Surface Area ( Ǻ2)Occupied Volume ( Ǻ

3)Length ( Ǻ)Molecule

Connolly Surfaces:Occupied Volume and

Surface Area2-Undecenal

Geometry

optimization

·Steepest Descents

·Conjugated Gradient

Energy

Minimization

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 11/23

Comput at ional Uni t Cel l 

Free Pore Volume:

3.4 nm3

• (100) Surface

• Vacuum Slab: 2D Boundary

Condition• Computational Cell:

a = 2 nm; b = 1.33 nm; c = 8 nm

• Geometry optimization• Connolly Surfaces

• Occupied Volume = 7.23 nm3

• Surface area = 2.89 nm3

• Free Volume = 14.05 nm3

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 12/23

Mont e Car lo Met hods 

Grand Canonical ensamble 

Syst em can exchange energy and part icles wi t h a surrounding reservoir 

Resorvoir is described by t emperature and fugacit ies so i t is not necessary to simulat e i t in a explici t way 

Mont e Car lo Biased Method 

Fixed pressure simulat ions 

Trial configurations are generated with a probability 

Acceptance probabil i t y depends on t he energy of t he 

system congigurat ion generated  Torsional degrees of f reedom are taken into account 

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 13/23

Absort ion Isotherms 

• Sorpt ion was studied for T andP from room condit ions up tothe working condit ions of a

compressor for each molecule

• Sorpt ion Isotherms werecalculated

1,173-525,93717,21518,000Nonanal

1,073-545,81815,74417,000Decanal

1,066-1005,99215,64117,000Nonanoic Acid

0,998-988,18914,65515,000Decanoic Acid

0,990-591,86814,52716,0002-Decanona

0,889-973,82513,04814,0002-Undecenal

Maximun Density

(molecules/nm3)

 Average Energy

(kcal/mol)

 Average LoadMaximun

Load

Molecule

298 K

1 Atm

2-decanone sorption Isotherms

10

11

12

13

14

15

16

17

18

19

20

0 1 2 3 4 5 6 7 8 9 10 11

P (Atm)

   N  u  m   b  e  r  o   f  a   b  s  o  r   b  e   d  m  o   l  e  c  u   l  e  s

2-Decanona 298 K

2-Decanona 358 K

2DEcanona 378 K

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 14/23

Sorpt ion isobares, Isost er ic heat s and prefer red absor t ion si t es 

Sorption Isobares 10 atm

12

13

14

15

16

17

18

19

20

21

278 298 318 338 358 378

T (K)

   N   u   m

   b   e   r   o   f   a   b   s   o

   r   b   e   d

   m

   o   l   e   c   u   l   e   s

Nonanal

Decanal

Nonanoic Acid

Decanoic Acid

2-Decanone

2- Undecenal

Isosteric heats

25

30

35

40

45

50

0 2 4 6 8 10 12

P (Atm)

   I  s  o  s   t  e  r   i  c

   h  e  a   t   (   k  c  a   l   /  m  o   l   )

Decanoic Acid 298 K

Decanoic acid 358 K

Decanoic Acid 378 K

Density of absorption profiles of 

nonanal at 358 K 10 atm

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 15/23

Fixed Pressure Calculat ions 

• Fixed Pressure calculations

allow to obtain the

minimun energy

configurations for givenconditions

• Detailed view of the

system is available to

study specific interationsand conformational

analysis

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 16/23

Molecular Dynamics Simulat ions 

Molecular Dynamics

Simulations

Minimun Energy

Configuration Structures

Monte Carlo Absortion

Simulations

Minimun Energy

Configuration Structures

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 17/23

Molecular Dynamics 

Newt on’ s equat ion is solved for a given pot ent ial (COMPASS)

Verlet integration 

1.5 ns simulat ions  St ep 2 f s.

NPT Ensemble 

Berendsen Thermost at  Berendsen Barost at 

• Atomic Trajectories

• Dinamical Behaviour

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 18/23

Molecular Dynamics 

Nonanal 298 K 1 atm Nonanal 358 K 10 atm

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 19/23

Traj ect or ies Analysis 

Nonanal Mean Square Displacement

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200 1400 1600

Time (ps)

   M   e   a   n

   S   q   u   a   r   e   D   i   s   p   l   a   c   e   m

   e   n   t   (    Å   2   )

T = 298 K; P = 1 Atm

T = 358 K; P = 5 Atm

T = 358 K; P = 10 Atm

Diffusion Coefficient

6,79·10-45,84·10-44,12·10-4Diffusivity(nm2 s-1)

T=358K; P=10atmT=358 K; P=5atmT=298 K; P=1atmNonanal

Conformational analysis

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 20/23

Work in Progress & Fut ure Work 

Molecular Dynamics Simulat ions  Fut ure Work 

Absort ion simulat ions wit h mixtures of molecules 

Dif ferent mat erials 

Compare wit h experiment s 

Funct ional izat ion and/ or doping of t he nanopororus mat erials 

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 21/23

Summary 

Molecular Model l ing simulat ions have been carr ied out t o 

st udy t he absort ion of oxidat ion producs of an TMP est er oil in a porous nanomat er ial f or compressor applicat ions  Geomet ry opt imizat ion was done t o obtain lengt hs and 

volumes f or t he modelled syst em  MC simulat ions were per formed t o st udy t he sorpt ion 

behaviour of t he oxidat ion product s  MD calculat ions were per formed in order t o st udy t he 

dynamic behaviour of t he syst em 

Next st eps wi l l involve ot her sorbent nanomat er ials and comparison with experimental results 

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 22/23

Acknowledgement s 

U.E. - 6t h FP –IP Soi lcy (Cont ract 515848 ) Basque Count ry Government . Saiot ek 

Program 

7/31/2019 Borja Coto isup2008

http://slidepdf.com/reader/full/borja-coto-isup2008 23/23

THANK YOU FOR YOUR ATTENTION