BAB 5. TURUNAN - ilhamsaifudin12.files.wordpress.com · Turunan Konsep Turunan Untuk...

Post on 08-Oct-2020

20 views 0 download

Transcript of BAB 5. TURUNAN - ilhamsaifudin12.files.wordpress.com · Turunan Konsep Turunan Untuk...

BAB 5. TURUNAN

Program Studi Teknik Informatika

Fakultas TeknikUniversitas Muhammadiyah Jember

29th April 2018

Ilham Saifudin (TI) KALKULUS 29th April 2018 1 / 17

Outline

1 Turunan

Konsep Turunan

Definisi turunan

Aturan turunan

Aplikasi turunan

Ilham Saifudin (TI) KALKULUS 29th April 2018 2 / 17

Turunan Konsep Turunan

KALKULUS

1 Turunan

Konsep Turunan

Definisi turunan

Aturan turunan

Aplikasi turunan

Ilham Saifudin (TI) KALKULUS 29th April 2018 3 / 17

Turunan Konsep Turunan

Untuk mendefinisikan pengertian garis singgung secara formal, perhatikanlah gambar

di samping kiri. Garis talibusur m1 menghubungkan titik P dan Q1 pada kurva.

Selanjutnya titik Q1 kita gerakkan mendekati titik P. Saat sampai di posisi Q2,

talibusurnya berubah menjadi garis m2. Proses ini diteruskan sampai titik Q1 berimpit

dengan titik P, dan garis talibusurnya menjadi garis singgung m.

Ilham Saifudin (TI) KALKULUS 29th April 2018 4 / 17

Turunan Konsep Turunan

Gradien garis singgung tersebut dapat dinyatakan :

m = limh→0

f (c + h) − f (c)

h= f ′(c) = y ′

Ilham Saifudin (TI) KALKULUS 29th April 2018 5 / 17

Turunan Definisi turunan

KALKULUS

1 Turunan

Konsep Turunan

Definisi turunan

Aturan turunan

Aplikasi turunan

Ilham Saifudin (TI) KALKULUS 29th April 2018 6 / 17

Turunan Definisi turunan

Definisi turunan

Definisi

1 Misalkan f sebuah fungsi real dan x ∈ Df

2 Turunan dari f di titik x , ditulis

f ′(x) = limh→0

f (x + h) − f (x)

h

contoh

Carilah kemiringan garis singgung terhadap y = x2− 2x di titik (2, 0)

Ilham Saifudin (TI) KALKULUS 29th April 2018 7 / 17

Turunan Definisi turunan

Definisi turunan

Definisi

1 Misalkan f sebuah fungsi real dan x ∈ Df

2 Turunan dari f di titik x , ditulis

f ′(x) = limh→0

f (x + h) − f (x)

h

contoh

Carilah kemiringan garis singgung terhadap y = x2− 2x di titik (2, 0)

Ilham Saifudin (TI) KALKULUS 29th April 2018 7 / 17

Turunan Definisi turunan

Definisi turunan

Definisi

1 Misalkan f sebuah fungsi real dan x ∈ Df

2 Turunan dari f di titik x , ditulis

f ′(x) = limh→0

f (x + h) − f (x)

h

contoh

Carilah kemiringan garis singgung terhadap y = x2− 2x di titik (2, 0)

Ilham Saifudin (TI) KALKULUS 29th April 2018 7 / 17

Turunan Definisi turunan

Definisi turunan

Definisi

1 Misalkan f sebuah fungsi real dan x ∈ Df

2 Turunan dari f di titik x , ditulis

f ′(x) = limh→0

f (x + h) − f (x)

h

contoh

Carilah kemiringan garis singgung terhadap y = x2− 2x di titik (2, 0)

Ilham Saifudin (TI) KALKULUS 29th April 2018 7 / 17

Turunan Definisi turunan

Definisi turunan

Definisi

1 Misalkan f sebuah fungsi real dan x ∈ Df

2 Turunan dari f di titik x , ditulis

f ′(x) = limh→0

f (x + h) − f (x)

h

contoh

Carilah kemiringan garis singgung terhadap y = x2− 2x di titik (2, 0)

Ilham Saifudin (TI) KALKULUS 29th April 2018 7 / 17

Turunan Aturan turunan

KALKULUS

1 Turunan

Konsep Turunan

Definisi turunan

Aturan turunan

Aplikasi turunan

Ilham Saifudin (TI) KALKULUS 29th April 2018 8 / 17

Turunan Aturan turunan

Aturan turunan

Aturan turunan

1 Misalkan k sebuah konstanta, maka Dx [k] = 0

2 Dx [x] = 1

3 Dx [xn] = nxn−1

4 Dx [kf (x)] = kDx [f (x)]

5 Dx [(f ± g)(x)] = Dx [f (x)] ± Dx [g(x)]

6 Dx [(f .g)(x)] = Dx [f (x)].g(x) + f (x).Dx [g(x)]

7 Dx [(fg )(x)] = Dx [f (x)].g(x)−f (x).Dx[g(x)]

(g(x)2)

Aturan turunan fungsi trigonometri

1 Dx [sinx] = cosx , Dx [cosx] = −sinx

2 Dx [tanx] = sec2x , Dx [cotx] = −cosec2x

3 Dx [secx] = secxtanx , Dx [cosecx] = −cosecxcotx

Ilham Saifudin (TI) KALKULUS 29th April 2018 9 / 17

Turunan Aturan turunan

Aturan turunan

Aturan turunan

1 Misalkan k sebuah konstanta, maka Dx [k] = 0

2 Dx [x] = 1

3 Dx [xn] = nxn−1

4 Dx [kf (x)] = kDx [f (x)]

5 Dx [(f ± g)(x)] = Dx [f (x)] ± Dx [g(x)]

6 Dx [(f .g)(x)] = Dx [f (x)].g(x) + f (x).Dx [g(x)]

7 Dx [(fg )(x)] = Dx [f (x)].g(x)−f (x).Dx[g(x)]

(g(x)2)

Aturan turunan fungsi trigonometri

1 Dx [sinx] = cosx , Dx [cosx] = −sinx

2 Dx [tanx] = sec2x , Dx [cotx] = −cosec2x

3 Dx [secx] = secxtanx , Dx [cosecx] = −cosecxcotx

Ilham Saifudin (TI) KALKULUS 29th April 2018 9 / 17

Turunan Aturan turunan

Aturan turunan

Aturan turunan

1 Misalkan k sebuah konstanta, maka Dx [k] = 0

2 Dx [x] = 1

3 Dx [xn] = nxn−1

4 Dx [kf (x)] = kDx [f (x)]

5 Dx [(f ± g)(x)] = Dx [f (x)] ± Dx [g(x)]

6 Dx [(f .g)(x)] = Dx [f (x)].g(x) + f (x).Dx [g(x)]

7 Dx [(fg )(x)] = Dx [f (x)].g(x)−f (x).Dx[g(x)]

(g(x)2)

Aturan turunan fungsi trigonometri

1 Dx [sinx] = cosx , Dx [cosx] = −sinx

2 Dx [tanx] = sec2x , Dx [cotx] = −cosec2x

3 Dx [secx] = secxtanx , Dx [cosecx] = −cosecxcotx

Ilham Saifudin (TI) KALKULUS 29th April 2018 9 / 17

Turunan Aturan turunan

Aturan turunan

Aturan turunan

1 Misalkan k sebuah konstanta, maka Dx [k] = 0

2 Dx [x] = 1

3 Dx [xn] = nxn−1

4 Dx [kf (x)] = kDx [f (x)]

5 Dx [(f ± g)(x)] = Dx [f (x)] ± Dx [g(x)]

6 Dx [(f .g)(x)] = Dx [f (x)].g(x) + f (x).Dx [g(x)]

7 Dx [(fg )(x)] = Dx [f (x)].g(x)−f (x).Dx[g(x)]

(g(x)2)

Aturan turunan fungsi trigonometri

1 Dx [sinx] = cosx , Dx [cosx] = −sinx

2 Dx [tanx] = sec2x , Dx [cotx] = −cosec2x

3 Dx [secx] = secxtanx , Dx [cosecx] = −cosecxcotx

Ilham Saifudin (TI) KALKULUS 29th April 2018 9 / 17

Turunan Aturan turunan

Aturan turunan

Aturan turunan

1 Misalkan k sebuah konstanta, maka Dx [k] = 0

2 Dx [x] = 1

3 Dx [xn] = nxn−1

4 Dx [kf (x)] = kDx [f (x)]

5 Dx [(f ± g)(x)] = Dx [f (x)] ± Dx [g(x)]

6 Dx [(f .g)(x)] = Dx [f (x)].g(x) + f (x).Dx [g(x)]

7 Dx [(fg )(x)] = Dx [f (x)].g(x)−f (x).Dx[g(x)]

(g(x)2)

Aturan turunan fungsi trigonometri

1 Dx [sinx] = cosx , Dx [cosx] = −sinx

2 Dx [tanx] = sec2x , Dx [cotx] = −cosec2x

3 Dx [secx] = secxtanx , Dx [cosecx] = −cosecxcotx

Ilham Saifudin (TI) KALKULUS 29th April 2018 9 / 17

Turunan Aturan turunan

Aturan turunan

Aturan turunan

1 Misalkan k sebuah konstanta, maka Dx [k] = 0

2 Dx [x] = 1

3 Dx [xn] = nxn−1

4 Dx [kf (x)] = kDx [f (x)]

5 Dx [(f ± g)(x)] = Dx [f (x)] ± Dx [g(x)]

6 Dx [(f .g)(x)] = Dx [f (x)].g(x) + f (x).Dx [g(x)]

7 Dx [(fg )(x)] = Dx [f (x)].g(x)−f (x).Dx[g(x)]

(g(x)2)

Aturan turunan fungsi trigonometri

1 Dx [sinx] = cosx , Dx [cosx] = −sinx

2 Dx [tanx] = sec2x , Dx [cotx] = −cosec2x

3 Dx [secx] = secxtanx , Dx [cosecx] = −cosecxcotx

Ilham Saifudin (TI) KALKULUS 29th April 2018 9 / 17

Turunan Aturan turunan

Aturan turunan

Aturan turunan

1 Misalkan k sebuah konstanta, maka Dx [k] = 0

2 Dx [x] = 1

3 Dx [xn] = nxn−1

4 Dx [kf (x)] = kDx [f (x)]

5 Dx [(f ± g)(x)] = Dx [f (x)] ± Dx [g(x)]

6 Dx [(f .g)(x)] = Dx [f (x)].g(x) + f (x).Dx [g(x)]

7 Dx [(fg )(x)] = Dx [f (x)].g(x)−f (x).Dx[g(x)]

(g(x)2)

Aturan turunan fungsi trigonometri

1 Dx [sinx] = cosx , Dx [cosx] = −sinx

2 Dx [tanx] = sec2x , Dx [cotx] = −cosec2x

3 Dx [secx] = secxtanx , Dx [cosecx] = −cosecxcotx

Ilham Saifudin (TI) KALKULUS 29th April 2018 9 / 17

Turunan Aturan turunan

Aturan turunan

Aturan turunan

1 Misalkan k sebuah konstanta, maka Dx [k] = 0

2 Dx [x] = 1

3 Dx [xn] = nxn−1

4 Dx [kf (x)] = kDx [f (x)]

5 Dx [(f ± g)(x)] = Dx [f (x)] ± Dx [g(x)]

6 Dx [(f .g)(x)] = Dx [f (x)].g(x) + f (x).Dx [g(x)]

7 Dx [(fg )(x)] = Dx [f (x)].g(x)−f (x).Dx[g(x)]

(g(x)2)

Aturan turunan fungsi trigonometri

1 Dx [sinx] = cosx , Dx [cosx] = −sinx

2 Dx [tanx] = sec2x , Dx [cotx] = −cosec2x

3 Dx [secx] = secxtanx , Dx [cosecx] = −cosecxcotx

Ilham Saifudin (TI) KALKULUS 29th April 2018 9 / 17

Turunan Aturan turunan

Aturan turunan

Aturan turunan

1 Misalkan k sebuah konstanta, maka Dx [k] = 0

2 Dx [x] = 1

3 Dx [xn] = nxn−1

4 Dx [kf (x)] = kDx [f (x)]

5 Dx [(f ± g)(x)] = Dx [f (x)] ± Dx [g(x)]

6 Dx [(f .g)(x)] = Dx [f (x)].g(x) + f (x).Dx [g(x)]

7 Dx [(fg )(x)] = Dx [f (x)].g(x)−f (x).Dx[g(x)]

(g(x)2)

Aturan turunan fungsi trigonometri

1 Dx [sinx] = cosx , Dx [cosx] = −sinx

2 Dx [tanx] = sec2x , Dx [cotx] = −cosec2x

3 Dx [secx] = secxtanx , Dx [cosecx] = −cosecxcotx

Ilham Saifudin (TI) KALKULUS 29th April 2018 9 / 17

Turunan Aturan turunan

Aturan turunan

Aturan turunan

1 Misalkan k sebuah konstanta, maka Dx [k] = 0

2 Dx [x] = 1

3 Dx [xn] = nxn−1

4 Dx [kf (x)] = kDx [f (x)]

5 Dx [(f ± g)(x)] = Dx [f (x)] ± Dx [g(x)]

6 Dx [(f .g)(x)] = Dx [f (x)].g(x) + f (x).Dx [g(x)]

7 Dx [(fg )(x)] = Dx [f (x)].g(x)−f (x).Dx[g(x)]

(g(x)2)

Aturan turunan fungsi trigonometri

1 Dx [sinx] = cosx , Dx [cosx] = −sinx

2 Dx [tanx] = sec2x , Dx [cotx] = −cosec2x

3 Dx [secx] = secxtanx , Dx [cosecx] = −cosecxcotx

Ilham Saifudin (TI) KALKULUS 29th April 2018 9 / 17

Turunan Aturan turunan

Aturan turunan

Aturan turunan

1 Misalkan k sebuah konstanta, maka Dx [k] = 0

2 Dx [x] = 1

3 Dx [xn] = nxn−1

4 Dx [kf (x)] = kDx [f (x)]

5 Dx [(f ± g)(x)] = Dx [f (x)] ± Dx [g(x)]

6 Dx [(f .g)(x)] = Dx [f (x)].g(x) + f (x).Dx [g(x)]

7 Dx [(fg )(x)] = Dx [f (x)].g(x)−f (x).Dx[g(x)]

(g(x)2)

Aturan turunan fungsi trigonometri

1 Dx [sinx] = cosx , Dx [cosx] = −sinx

2 Dx [tanx] = sec2x , Dx [cotx] = −cosec2x

3 Dx [secx] = secxtanx , Dx [cosecx] = −cosecxcotx

Ilham Saifudin (TI) KALKULUS 29th April 2018 9 / 17

Turunan Aturan turunan

Aturan turunan

Aturan turunan

1 Misalkan k sebuah konstanta, maka Dx [k] = 0

2 Dx [x] = 1

3 Dx [xn] = nxn−1

4 Dx [kf (x)] = kDx [f (x)]

5 Dx [(f ± g)(x)] = Dx [f (x)] ± Dx [g(x)]

6 Dx [(f .g)(x)] = Dx [f (x)].g(x) + f (x).Dx [g(x)]

7 Dx [(fg )(x)] = Dx [f (x)].g(x)−f (x).Dx[g(x)]

(g(x)2)

Aturan turunan fungsi trigonometri

1 Dx [sinx] = cosx , Dx [cosx] = −sinx

2 Dx [tanx] = sec2x , Dx [cotx] = −cosec2x

3 Dx [secx] = secxtanx , Dx [cosecx] = −cosecxcotx

Ilham Saifudin (TI) KALKULUS 29th April 2018 9 / 17

Turunan Aturan turunan

Aturan turunan

Aturan turunan

1 Misalkan k sebuah konstanta, maka Dx [k] = 0

2 Dx [x] = 1

3 Dx [xn] = nxn−1

4 Dx [kf (x)] = kDx [f (x)]

5 Dx [(f ± g)(x)] = Dx [f (x)] ± Dx [g(x)]

6 Dx [(f .g)(x)] = Dx [f (x)].g(x) + f (x).Dx [g(x)]

7 Dx [(fg )(x)] = Dx [f (x)].g(x)−f (x).Dx[g(x)]

(g(x)2)

Aturan turunan fungsi trigonometri

1 Dx [sinx] = cosx , Dx [cosx] = −sinx

2 Dx [tanx] = sec2x , Dx [cotx] = −cosec2x

3 Dx [secx] = secxtanx , Dx [cosecx] = −cosecxcotx

Ilham Saifudin (TI) KALKULUS 29th April 2018 9 / 17

Turunan Aturan turunan

Aturan turunan

Contoh

1 Jika f (x) = 5x2 + sinx , maka f ′(x) =?

2 Jika f (x) = x2.sinx , maka f ′(

Q2 ) =?

3 Jika f (x) = 5x+13x−2 .sinx , maka f ′(1) =?

Ilham Saifudin (TI) KALKULUS 29th April 2018 10 / 17

Turunan Aturan turunan

Aturan turunan

Contoh

1 Jika f (x) = 5x2 + sinx , maka f ′(x) =?

2 Jika f (x) = x2.sinx , maka f ′(

Q2 ) =?

3 Jika f (x) = 5x+13x−2 .sinx , maka f ′(1) =?

Ilham Saifudin (TI) KALKULUS 29th April 2018 10 / 17

Turunan Aturan turunan

Aturan turunan

Contoh

1 Jika f (x) = 5x2 + sinx , maka f ′(x) =?

2 Jika f (x) = x2.sinx , maka f ′(

Q2 ) =?

3 Jika f (x) = 5x+13x−2 .sinx , maka f ′(1) =?

Ilham Saifudin (TI) KALKULUS 29th April 2018 10 / 17

Turunan Aturan turunan

Aturan turunan

Contoh

1 Jika f (x) = 5x2 + sinx , maka f ′(x) =?

2 Jika f (x) = x2.sinx , maka f ′(

Q2 ) =?

3 Jika f (x) = 5x+13x−2 .sinx , maka f ′(1) =?

Ilham Saifudin (TI) KALKULUS 29th April 2018 10 / 17

Turunan Aturan turunan

Aturan turunan

Aturan RantaiMisalkan y = f (u) dan u = g(x). Jika g terdefinisikan di x dan f terdefinisikan di

u = g(x), maka fungsi komposit f ◦ g, yang didefinisikan oleh (f ◦ g)(x) = f (g(x)),

adalah terdiferensiasikan di x dan (f ◦ g)′(x) = f ′(g(x))g′(x) yakniDx(f (g(x))) = f ′(g(x))g′(x)

Ilham Saifudin (TI) KALKULUS 29th April 2018 11 / 17

Turunan Aturan turunan

Aturan turunan

Contoh

1 Jika f (x) = (x2− 3x + 5)3, maka f ′(x) =?

2 Jika f (x) = sin2(x2− 3x), maka f ′(x) =?

Ilham Saifudin (TI) KALKULUS 29th April 2018 12 / 17

Turunan Aturan turunan

Aturan turunan

Contoh

1 Jika f (x) = (x2− 3x + 5)3, maka f ′(x) =?

2 Jika f (x) = sin2(x2− 3x), maka f ′(x) =?

Ilham Saifudin (TI) KALKULUS 29th April 2018 12 / 17

Turunan Aturan turunan

Aturan turunan

Contoh

1 Jika f (x) = (x2− 3x + 5)3, maka f ′(x) =?

2 Jika f (x) = sin2(x2− 3x), maka f ′(x) =?

Ilham Saifudin (TI) KALKULUS 29th April 2018 12 / 17

Turunan Aturan turunan

Aturan turunan

Turunan tingkat tinggi

Misalkan f (x) sebuah fungsi dan f ′(x) turunan pertamanya. Turuna kedua dari f

adalah f”(x) = D2x (f ). Dengan cara yang sama turunan ketiga , keempat dst. Salah

satu penggunaan turunan tingkat tinggi adalah pada masalah gerak partikel. Bila S(t)

menyatakan posisi sebuah partikel, maka kecepatannya adalah v(t) = S′(t) dan

percepatannya a(t) = v ′(t) = S”(t)

Ilham Saifudin (TI) KALKULUS 29th April 2018 13 / 17

Turunan Aplikasi turunan

KALKULUS

1 Turunan

Konsep Turunan

Definisi turunan

Aturan turunan

Aplikasi turunan

Ilham Saifudin (TI) KALKULUS 29th April 2018 14 / 17

Turunan Aplikasi turunan

Aplikasi turunan

y=f’(x)

1 Gradien g singgung : m = y ′

2 fungsi naik : y ′> 0

3 fungsi turun : y ′< 0

4 fungsi stasioner : y ′ = 0

5 kecepatan : v ′ = dsdt = S′

6 percepatan : a′ = dvdt = v ′ = S”

Ilham Saifudin (TI) KALKULUS 29th April 2018 15 / 17

Turunan Aplikasi turunan

Aplikasi turunan

y=f’(x)

1 Gradien g singgung : m = y ′

2 fungsi naik : y ′> 0

3 fungsi turun : y ′< 0

4 fungsi stasioner : y ′ = 0

5 kecepatan : v ′ = dsdt = S′

6 percepatan : a′ = dvdt = v ′ = S”

Ilham Saifudin (TI) KALKULUS 29th April 2018 15 / 17

Turunan Aplikasi turunan

Aplikasi turunan

y=f’(x)

1 Gradien g singgung : m = y ′

2 fungsi naik : y ′> 0

3 fungsi turun : y ′< 0

4 fungsi stasioner : y ′ = 0

5 kecepatan : v ′ = dsdt = S′

6 percepatan : a′ = dvdt = v ′ = S”

Ilham Saifudin (TI) KALKULUS 29th April 2018 15 / 17

Turunan Aplikasi turunan

Aplikasi turunan

y=f’(x)

1 Gradien g singgung : m = y ′

2 fungsi naik : y ′> 0

3 fungsi turun : y ′< 0

4 fungsi stasioner : y ′ = 0

5 kecepatan : v ′ = dsdt = S′

6 percepatan : a′ = dvdt = v ′ = S”

Ilham Saifudin (TI) KALKULUS 29th April 2018 15 / 17

Turunan Aplikasi turunan

Aplikasi turunan

y=f’(x)

1 Gradien g singgung : m = y ′

2 fungsi naik : y ′> 0

3 fungsi turun : y ′< 0

4 fungsi stasioner : y ′ = 0

5 kecepatan : v ′ = dsdt = S′

6 percepatan : a′ = dvdt = v ′ = S”

Ilham Saifudin (TI) KALKULUS 29th April 2018 15 / 17

Turunan Aplikasi turunan

Aplikasi turunan

y=f’(x)

1 Gradien g singgung : m = y ′

2 fungsi naik : y ′> 0

3 fungsi turun : y ′< 0

4 fungsi stasioner : y ′ = 0

5 kecepatan : v ′ = dsdt = S′

6 percepatan : a′ = dvdt = v ′ = S”

Ilham Saifudin (TI) KALKULUS 29th April 2018 15 / 17

Turunan Aplikasi turunan

Aplikasi turunan

y=f’(x)

1 Gradien g singgung : m = y ′

2 fungsi naik : y ′> 0

3 fungsi turun : y ′< 0

4 fungsi stasioner : y ′ = 0

5 kecepatan : v ′ = dsdt = S′

6 percepatan : a′ = dvdt = v ′ = S”

Ilham Saifudin (TI) KALKULUS 29th April 2018 15 / 17

Turunan Aplikasi turunan

Aplikasi turunan

y=f”(x)Uji jenis

1 maximum : y” > 0

2 minimum : y” < 0

3 titik belok : y” = 0

Ilham Saifudin (TI) KALKULUS 29th April 2018 16 / 17

Turunan Aplikasi turunan

Aplikasi turunan

y=f”(x)Uji jenis

1 maximum : y” > 0

2 minimum : y” < 0

3 titik belok : y” = 0

Ilham Saifudin (TI) KALKULUS 29th April 2018 16 / 17

Turunan Aplikasi turunan

Aplikasi turunan

y=f”(x)Uji jenis

1 maximum : y” > 0

2 minimum : y” < 0

3 titik belok : y” = 0

Ilham Saifudin (TI) KALKULUS 29th April 2018 16 / 17

Turunan Aplikasi turunan

Aplikasi turunan

y=f”(x)Uji jenis

1 maximum : y” > 0

2 minimum : y” < 0

3 titik belok : y” = 0

Ilham Saifudin (TI) KALKULUS 29th April 2018 16 / 17

Turunan Aplikasi turunan

Thank You

Ilham Saifudin (TI) KALKULUS 29th April 2018 17 / 17