Download - Libro de matematicas 9no grado

Transcript
Page 1: Libro de matematicas 9no grado

SERIE EDUCATIVA:

“EDUCACIÓN GRATUITA Y DE CALIDAD, DERECHO HUMANO

FUNDAMENTAL DE LAS Y LOS NICARAGÜENSES”

Este texto es propiedad del Ministerio de Educación (MINED), de la República de Nicaragua.Se prohíbe su venta y reproducción parcial o total.

MatemáticaEducación SecundariaMatemática 9

GRADO9Educación Secundaria GRADO

h

g

r

Programa de Apoyo al Sector de Educación en NicaraguaP R O S E N

REPÚBLICA DENICARAGUA

Page 2: Libro de matematicas 9no grado

Coordinación General, Revisión y Asesoría TécnicaProfesora María Elsa GuillénProfesora Rosalía Ríos Rivas

AutorProfesor Enrique Pérez Ávalos

Revisión Técnica GeneralProfesora Rosalía Ríos Rivas

Revisión y Asesoría Técnica CientíficaProfesor Humberto Antonio Jarquín López Profesor Francisco Emilio Díaz VegaProfesor Primitivo Herrera HerreraSociedad Matemática de Nicaragua

Diseño y DiagramaciónRamón Nonnato MoralesRóger Alberto RomeroMiguel Ángel Mendieta Rostráncon la colaboración de Andrea Ráudez Irías

IlustraciónRóger Alberto Romero

Fuente de FinanciamientoPASEN I - Recursos del Tesoro - PROSEN

Agradecemos los valiosos aportes de la Sociedad Matemática de Nicaragua y de los docentes durante el proceso de validación.

Primera Edición___________

© Todos los derechos son reservados al Ministerio de Educación (MINED), de la República de Nicaragua.

Este texto es propiedad del Ministerio de Educación (MINED) , de la República de Nicaragua. Se prohíbe su venta y reproducción total o parcial.

«La presente publicación ha sido reproducida con el apoyo de la Unión Europea a través del Programa de Apoyo al Sector Educación en Nicaragua (PROSEN). El contenido de la misma es responsabilidad exclusiva del MINED y en ningún caso debe considerarse que refleja los puntos de vista de la Unión Europea».

Page 3: Libro de matematicas 9no grado

PRESENTACIÓN

El Gobierno de Reconciliación y Unidad Nacional, a través del Ministerio de Educación (MINED), entrega a docentes y a estudiantes de Educación Secundaria, el libro de texto de Matemática en el cual se desarrollan los cinco pensamientos: aleatorio, numérico, variacional, métrico y espacial. La Matemática es una herramienta esencial en campos como las ciencias de la Tierra y la naturaleza, la medicina, las ciencias sociales, la computación, la arquitectura, la ingeniería y en la vida cotidiana.

El propósito fundamental del texto, es propiciar en los estudiantes un papel más activo en el proceso de aprendizaje para que puedan interactuar con los conocimientos planteados en el libro, permitiéndoles que complementen lo desarrollado en la clase, consolidar, comparar, profundizar en aquellos aspectos que explicó su docente y prepararse para la evaluación.

El libro de texto a través de sus contenidos y actividades, contribuye a la formación en valores individuales, comunitarios y sociales, los que se reflejarán en el comportamiento de la o el estudiante dentro y fuera del Centro Educativo.

El libro de texto es un tesoro valioso en las manos de cada estudiante, y cuidarlo con esmero, permitirá que otros compañeros que están en los grados que les anteceden también puedan hacer uso de él, en su proceso de aprendizaje.

Esto significa que el libro de texto es una propiedad social por tanto se debe cuidar porque no solo a usted le será de ayuda, sino que dependiendo del cuido que le dé, también le será de provecho a otros, razón por la que le sugerimos lo forre, no lo manche, no lo ensucie, no lo rompa, ni lo deshoje. Esa será su contribución desinteresada y solidaria, con los próximos estudiantes que utilizarán este libro.

Ministerio de Educación

Page 4: Libro de matematicas 9no grado

INTRODUCCIÓN

El presente texto corresponde a los contenidos del área de Matemática del Noveno Grado de Educación Media.

El texto contiene 7 unidades con los siguientes contenidos:

En la Unidad I, se desarrollan los conceptos fundamentales de la Estadística Descriptiva para datos agrupados, se calculan las medida de posición y de variabilidad, además, se presenta un repaso de los temas de estadística descriptiva para datos no agrupados, los cuales han sido abordados con detalle en el Libro de Texto de Matemática de Séptimo Grado.

En la Unidad II, se estudia el conjunto de los números reales y sus propiedades. Se hace énfasis en la interpretación geométrica de las propiedades de los números reales. Se hace un repaso de las propiedades fundamentales de los números naturales, enteros y racionales.

En la Unidad III, se estudian los conceptos fundamentales de álgebra. Se abordan las expresiones algebraicas tales como monomio, binomio y trinomio, y las operaciones en las que intervienen. Se utiliza la geometría para la interpretación de las propiedades básicas de las expresiones algebraicas y la construcción de modelos algebraicos basados en situaciones de la realidad.

En la Unidad IV, se estudian las operaciones con polinomios: suma, resta, multiplicación y división y se introduce la división sintética (o regla de Ruffini). La geometría se utiliza para la interpretación de las propiedades de los polinomios. Se desarrollan los productos notables y su interpretación geométrica, además se estudia la radicación.

En la Unidad V, se estudian sistemas de ecuaciones lineales de 2x2 y sus métodos de soluciones, además se resuelven problemas de la vida cotidiana y se hace una interpretación gráfica de las soluciones.

En la Unidad VI, se desarrollan la congruencia y la semejanza de triángulos al igual que el teorema de Thales, el teorema de la altura y el teorema del cateto. Las demostraciones están presentes, sin embargo, no representan un peso específico significativo en el desarrollo de la teoría.

En la Unidad VII, se inicia con un repaso del concepto de relación, que ya ha sido abordado con detalle en Séptimo Grado. Una característica fundamental de esta unidad, es que las funciones que se estudian tienen como dominio el conjunto de los números enteros o subconjuntos de números enteros. Estas funciones son llamadas funciones discretas. Se abordan las funciones lineales con sus propiedades tratándolas como funciones lineales

Page 5: Libro de matematicas 9no grado

discretas y las funciones cuadráticas. Se presentan diferentes interpretaciones del concepto de función a través de modelos basados en situaciones de la realidad cotidiana. También se estudian en esta unidad las ecuaciones lineales y las ecuaciones cuadráticas. Como tema novedoso se estudia las desigualdades lineales y los números complejos con sus operaciones.

El texto está estructurado a doble columna, siendo la columna izquierda dedicada a temas sobre historia de la Matemática, curiosidades matemáticas (también se incluyen curiosidades y pasatiempos en el desarrollo de los temas en la columna derecha), juegos matemáticos. También aparecen en la columna izquierda algunos conceptos sobre los cuales es necesario hacer especial énfasis y algunos temas que no aparecen en el programa oficial de la asignatura pero que son importantes para una debida comprensión de los conceptos.

Se presentan actividades que tienen como objetivo reforzar los conocimientos, aplicarlos a la realidad y fundamentarlos desde el punto de vista matemático y didáctico-metodológico.

Los íconos utilizados en el texto tienen los siguientes significados:

Indican aquellas ideas y conceptos que deben ser recordados y sobre los cuáles se debe reflexionar. Estas ideas y conceptos son básicos para la comprensión de los temas tratados en la unidad correspondiente.

Indica aquellas actividades orientadas para el trabajo en equipo. Gran parte de estas actividades se orientan a la realización de construcciones, justificación de demostraciones (en muy pocos casos) y a la resolución de ejercicios y problemas de aplicación a la vida real.

Indica aquellas partes del texto dedicadas al planteamiento de ejercicios que deben ser resueltos por el estudiante. Todos los ejercicios propuestos se resuelven con la teoría expuesta en cada una de las unidades.

Page 6: Libro de matematicas 9no grado

Estadística.................................................................2

Introducción..........................................................2

Tablas de Frecuencias ............................................2

Frecuencia Relativa y Porcentual..............................4

Frecuencia Relativa Acumulada..................................6

Histograma.................................................................7

La Ojiva.......................................................................9

Medidas de posición..............................................13

Los cuartiles..............................................................13

Los Deciles y los Percentiles...................................17

Lugar que ocupa la mediana.....................................17

Localizando deciles...................................................18

Los percentiles..........................................................20

Medidas de dispersión...........................................23

La amplitud................................................................24

La desviación media..................................................25

La varianza................................................................27

La desviación típica o estándar.................................27

El coeficiente de variación........................................28

Ejercicios de Cierre de Unidad..............................31

Segunda Unidad: Números Reales

Números Reales......................................................38

Introducción.........................................................38

Potencias de base real y exponente entero.............38

Potencia de base real y exponente entero positivo..39

Producto de potencias de igual base.........................40

Potencia de una potencia..........................................42

Producto de potencias de igual exponente...............43

Potencia de un cociente............................................44

Cociente de dos potencias de igual base.................47

Potencia de base real y exponente nulo...................51

Potencia de exponente 0..........................................51

Potencias de base real y exponente racional............52

Propiedades del inverso...........................................56

Leyes de los exponentes........................................57

Potencias de base real y exponente racional............63

Raíz de un número real positivo.............................64

Raíz de un número negativo...................................64

Producto de dos radicales del mismo índice.............68

Radical de un radical.............................................69

Cociente de radicales del mismo índice...................70

Leyes de los radicales...............................................71

Definición de potencia de exponente racional..........71

Radicales equivalentes............................................73

Introducción y extracción de factores

en un radical.........................................................75

Radicales semejantes............................................76

Ejercicios de Cierre de Unidad..............................79

Tercera Unidad: Factorización

Factorización..........................................................82

Introducción.........................................................82

Extracción de Factor Común...................................82

Factor Común Monomio.........................................86

Factor Común Polinomio........................................88

ÍndicePrimera Unidad: Estadística

Page 7: Libro de matematicas 9no grado

Ámbito de Factorización.........................................90

Polinomio Irreducible............................................91

Factorización de una Diferencia de Cuadrados........93

Factorización de una Suma o Diferencia

de Cubos.............................................................96

Factorización de un Trinomio Cuadrado Perfecto....101

Factorización de Trinomios de la

Forma x2 + bx + c.....................................................106

Factorización de Trinomios de

la Forma px2 + qx + r.................................................................113

Factorización de polinomios del tipo

a3 + 3a2b + 3ab2 + b3 y a3 - 3a2b + 3ab2 - b3........................119

Resolución de Ecuaciones por Factorización.................121

Ejercicios de Cierre de Unidad............................................125

Cuarta Unidad: Operaciones con Radicales y Fracciones Algebraicas

Operaciones con Radicales y

Fracciones Algebraicas.....................................128

Introducción......................................................128

Operaciones con Radicales..................................128

Simplificación de Radicales................................129

Suma de Radicales..............................................132

Multiplicación de Radicales..................................133

Racionalización..................................................135

Operaciones con Fracciones Algebraicas...............141

Simplificación de Fracciones Algebraicas .......142

Suma de Fracciones Algebraicas.......................143

Multiplicación de Fracciones Algebraicas...............147

División de Fracciones Algebraicas.......................148

Ejercicios de Cierre de Unidad...............................151

Quinta Unidad: Sistemas de Ecuaciones Lineales.

Sistemas de Ecuaciones Lineales.......................154

Introducción.......................................................154

Ecuaciones lineales en dos variables.....................154

Sistemas de Ecuaciones Lineales

en dos incógnitas................................................164

Operaciones elementales sobre

un sistema..............................................................166

Método de Sustitución.........................................178

Método de Reducción..........................................180

Matrices y Determinantes de 2 x 2.........................181

Matriz de un Sistema de

dos Ecuaciones Lineales.......................................182

Método de Cramer...............................................183

Tipos de Sistemas...............................................186

Ejercicios de Cierre de Unidad..............................189

Sexta Unidad: Congruencia y Semejanza.

Congruencia.........................................................192

Introducción.......................................................192

Relaciones de congruencia....................................193

Criterios de congruencia de triángulos .................196

Congruencia de triángulos isósceles .....................199

Semejanzas .......................................................202

Semejanza de triángulo ......................................211

Criterios de semejanza de triángulo .....................213

Teorema de Pitágoras .........................................214

Teorema de la altura y teorema del cateto ................215

Teorema del cateto .............................................216

Ejercicios de cierre de unidad ..............................217

Page 8: Libro de matematicas 9no grado

Séptima Unidad: Funciones y Ecuaciones

Introducción..............................................................220

Función Lineal y Afín................................................220

Función Constante...................................................222

Gráfica de una función.............................................222

Función Inyectiva.....................................................223

Función lineal..........................................................224

Función Afín............................................................226

Gráfica de la función afín..........................................227

Movimientos de gráficas en el Plano..........................229

Función Cúbica........................................................231

Ecuaciones Cuadráticas..........................................236

Discriminante..........................................................238

Ecuaciones Cuadráticas y Números Complejos...........241

Números Complejos.................................................242

Desigualdades..........................................................249

Compatibilidad de < con la adición.............................251

Compatibilidad de < con la multiplicación.................251

Ecuaciones lineales racionales

en una variable..........................................................259

Ecuación Racional....................................................260

Función Cuadrática..................................................263

Ejercicios de cierre de la unidad................................268

Page 9: Libro de matematicas 9no grado

Unidad 1

El Gobierno de Reconciliación y Unidad Nacional puso en funcionamiento el parque eólico “Comandante Camilo Ortega” quien es considerado el Apóstol de la Unidad Sandinista. “La unidad de todos los nicaragüenses, unidos por el Bien Común de este país en reconciliación y haciendo patria siempre para este pueblo”.

Este parque eólico cuenta con una capacidad para generar 40 megawatts (MW), y se encuentra ubicado en el sureño departamento de Rivas. Con este se busca la transformación de la matriz energética y la generación de energía renovable, lo cual conlleva a un impacto de menos costos de producción y un mayor beneficio para las familias.

Fuente: 19 digital12 de Marzo 2014

Estadística

1 - 1,90

5

10

15

20

25

2 - 2,9 3 - 3,9 4 - 4,9

Sismos reportados por INETER entre el 24 y 28 de Abril 2014

Page 10: Libro de matematicas 9no grado

2

EstadísticaIntroducción

En esta unidad abordaremos algunas de las más importantes labores de la Estadística, como son el diseño, la recolección, análisis e interpretación de datos obtenidos sobre algún fenómeno o comportamiento estudiado en un determinado grupo, ya sea para ayudar a la toma de decisiones o para explicar las condiciones de tal comportamiento.

Tablas de Frecuencias

Una de las ocupaciones primordiales de la estadística consiste en la organización, descripción y resumen de colecciones de datos, con el objetivo de presentar la información de forma que pueda ser analizada e interpretada de manera significativa. Las tablas de frecuencias constituyen uno de los medios para lograr este propósito.

En el censo de población y vivienda realizado en Nicaragua en el año 2005, por primera vez se investigó las formas de eliminar la basura en los hogares nicaragüenses. Los resultados para el área urbana del departamento de Masaya se exponen en la siguiente tabla.

TABLA 1 Formas de eliminar la basura en el departamento de Masaya

Categoría Frecuencia absoluta (fi) (hogares)

1: Se la lleva el camión de la basura 18 461

2: Basurero autorizado / contenedor 703

3: La queman 7 302

4: La entierran 1 678

5: Tiran a predio baldío / cauce / calle / guindo 1 568

6: Tiran al río / laguna / quebrada / arroyo 592

7: Pagan para que la boten 2 813

8: Abono orgánico 158

9: Otro 119

Total 33 394

¿Qué es un censo?

Un censo es un recuento de todos los elementos que componen una población.

En el censo de población y vivienda se cuentan todas las personas y las viviendas de un grupo humano, usualmente un país o una nación.

Ejemplo 1

Page 11: Libro de matematicas 9no grado

3

Recuerde, reflexione y concluya

La tabla 1 es una tabla de frecuencias absolutas. En la primera columna se despliegan las categorías en que se han clasificado las distintas maneras de eliminar la basura y en la segunda columna se disponen las frecuencias absolutas correspondientes. Recuerde que la frecuencia absoluta de un dato es la cantidad de veces que éste se repite. Por ejemplo, la categoría “entierran la basura” tiene una frecuencia absoluta igual a 1 678; esto significa que hay 1 678 hogares en la zona urbana del departamento de Masaya que utilizan esta forma de eliminar la basura.

1. Con el auxilio de la tabla 1, responda a las siguientes interrogantes relativas al manejo de la basura en el sector urbano del departamento de Masaya.

¿Cuántos hogares queman o entierran la basura?

¿Cuántos hogares usan la basura como abono orgánico?

¿Cuál es la forma más usada para eliminar la basura?

¿Cuál es la menos usual?

¿Cuántos hogares entierran la basura o la usan como abono orgánico?

¿Cuántos hogares tiran la basura a una fuente natural de agua o a un terreno baldío o bien cauce, calle o guindo.

2. Realice una encuesta entre sus compañeros sobre la forma en que eliminan la basura en sus hogares. Con los datos recabados construya una tabla de frecuencias absolutas.

3. Reflexione sobre el tratamiento de la basura y su influencia en el medio ambiente, la salud y la economía.

De acuerdo con la tabla 1, en el sector urbano del departamento de Masaya hay 7 302 hogares que queman la basura. Al observar la tabla 2 notamos que eso sucede en apenas 3 074 hogares de la parte urbana del departamento de Boaco. En base a estos datos, ¿sería correcto afirmar que es más popular quemar la basura en el departamento de Masaya que en Boaco? Realmente los datos suministrados no permiten sustentar tal afirmación. Para poder establecer una comparación se requiere de las frecuencias relativas.

Recordemos:

La frecuencia absoluta es la cantidad de veces que se repite un dato.

Otawa (Canadá) se ubica entre las ciudades más ecológicas del mundo.

Recuerde

En una serie de observaciones, la moda es el dato que tiene mayor frecuencia absoluta.

Formas de eliminar la basura en el departamento de Boaco.

Sector Urbano.

TABLA 2Categoría Frecuencia

1 5 4072 773 3 0744 1465 9366 837 1618 139 39

Total 9 936

La numeración de las categorías es la misma de la tabla 1.

Page 12: Libro de matematicas 9no grado

4

Frecuencia Relativa y Porcentual

Para obtener la frecuencia relativa se divide la frecuencia absoluta entre el número total de observaciones.

En el caso de Masaya el total de hogares censados alcanza la cifra de 33 394 y la categoría “queman la basura” tiene una frecuencia absoluta de 7 302. Por tanto, la frecuencia relativa de esta categoría es igual a:

730233 394

0 2187,=

Para expresarla en términos porcentuales la multiplicamos por 100.

Este número se denomina frecuencia porcentual y en nuestro caso, significa que el 21,87% casi 22 de cada 100 hogares de los hogares del área urbana del departamento de Masaya elimina la basura quemándola.

733 394

100 21 87 302⋅ = , %

En el caso del departamento de Boaco, el total de hogares censados en el área urbana es igual a 9 936 y de ellos 3 074 queman la basura, para este departamento la frecuencia relativa de la categoría “queman la basura” es igual a:

3 0749 936

0 309,=

Por tanto, la frecuencia porcentual correspondiente es 30,9%, que resulta de multiplicar la frecuencia relativa, 0,309, por 100.

Así, el 30,9% (casi 31 de cada 100 hogares) de los hogares de la zona urbana del departamento de Boaco quema la basura, en tanto que el porcentaje correspondiente al departamento de Masaya es 21,87.

En consecuencia, en lo que respecta a la parte urbana, la quema de la basura es más frecuente en Boaco que en Masaya.

Es importante destacar cómo determinar el porcentaje de un número. Por ejemplo:

El 12% de 48 es 12

10048 0 12 48 5 76( ) = ( ) =, , %

¿Cuál es la moda en la serie de números de la siguiente tabla?

Dato 1 3 1 3 3

fi 3 1 2 2 0

La frecuencia relativa es el cociente entre la frecuencia absoluta y el número total de datos:

ff

nr

i=

La frecuencia porcentual se obtiene al multiplicar la frecuencia relativa por 100:

% fi = fr · 100

Page 13: Libro de matematicas 9no grado

5

Complete la tabla 3 con las frecuencias relativas y relativas porcentuales restantes.

TABLA 3: Formas de eliminar la basura en los departamentos de Masaya y Boaco. Sector Urbano.

Categoría fi fr %fr

Masaya Boaco Masaya Boaco Masaya Boaco

1 18 461 5 407

2 703 77

3 7 302 3 074 0,22 0,31 21,87 30,94

4 1 678 146

5 1 568 936

6 592 83

7 2 813 161

8 158 13

9 119 39

Total 33 394 9 936

Una vez que haya llenado la tabla 3, responda a las siguientes preguntas:

1. ¿Qué porcentaje de los hogares de la parte urbana del departamento de Masaya la basura se la lleva el camión, o bien la queman o la entierran? y ¿en Boaco?

2. ¿Qué porcentaje de los hogares se quema la basura o se usa como abono orgánico?

3. ¿Qué porcentaje de hogares usan la basura como abono orgánico?

4. ¿Cuál es la suma de las frecuencias relativas de las cuatro primeras categorías? ¿Qué significado tiene este valor?

Compare las frecuencias relativa porcentual para determinar en qué departamento, Masaya o Boaco, una categoría tiene mayor predominio.

Los tiempos de degradación de la basura dependen de las sustancias y materiales de que está hecha, así como de las condiciones de aire, luz solar y humedad.

NOTACIÓN:

fi: Frecuencia absoluta

fr: Frecuencia relativa

%fr: Frecuencia relativa porcentual

“Las botellas de plásticos son las más resistentes a la degradación; la naturaleza tarda entre 100 y 1 000 años en degradarlas”

Page 14: Libro de matematicas 9no grado

6

Frecuencia Relativa Acumulada

En una prueba de Convivencia y Civismo practicada a 50 estudiantes de undécimo grado, la distribución de las calificaciones fue la siguiente:

TABLA 4: Distribución de las calificaciones

Número de Clase Clase Frecuencia: fi Frecuencia acumulada: Fi

1 50 - 59 12 122 60 - 69 15 12 + 15 = 273 70 - 79 13 27 + 13 =404 80 - 89 6 40 + 6 = 465 90 - 99 4 46 + 4 = 50

Total 50

La frecuencia relativa de la clase 1 es igual a 0,24, valor que resulta al dividir su frecuencia absoluta, 12, entre 50, que es el número total de observaciones. La frecuencia relativa acumulada (Fr) de una clase se halla sumando su frecuencia relativa con las frecuencias relativas de las clases que le anteceden.

La frecuencia relativa acumulada de la segunda clase se calcula dividiendo la frecuencia absoluta acumulada de la clase, 27, entre el número total de datos:

27

500 54= ,

Junto con sus compañeros calcule las frecuencias relativas (fr) y las frecuencias relativas acumuladas (Fr) de las clases restantes.

Agregando los nuevos datos a la tabla 4, obtenemos la tabla siguiente.

TABLA 5: Calificaciones

Clase fi Fi fr Fr

50-59 12 12 0,24 0,24

60-69 15 27 0,30 0,54

70-79 13 40 0,26 0,80

80-89 6 46 0,12 0,92

90-99 4 50 0,08 1,00

Total 50 1

¡Explique!

¿Puede haber una frecuencia relativa igual a 1,6?

o

¿Qué sea igual a -1?

La frecuencia relativa acumulada (Fr) es el cociente entre la frecuencia acumulada (Fi) y el número total de datos. Es decir,

FF

nr

i=

Ejemplo 2

Page 15: Libro de matematicas 9no grado

7

Compare sus resultados con los valores contenidos en la tabla 4.

¿Qué información nos brindan las frecuencias relativas acumuladas?

La frecuencia relativa acumulada de la clase 2 es la suma de las frecuencias relativas de la clase 1 y 2. Por tanto, las dos clases en conjunto tendrán una frecuencia relativa acumulada de 0,54. Esto quiere decir que el 54% de los estudiantes que realizaron el examen obtuvieron una nota entre 50 y 69, o bien 69 o menos, similarmente el 80 % de los estudiantes obtuvieron una calificación de 79 o menos. Las frecuencias acumuladas y las frecuencias relativas acumuladas, siempre hacen referencia a los limites superiores de cada clase.

Histograma

La altura de cada barra corresponde a la frecuencia relativa de la clase respectiva (también se puede utilizar la frecuencia absoluta).

Otra forma de representar gráficamente esta distribución es mediante un polígono de frecuencias, la cual se obtiene a partir de la gráfica de barras al unir, con segmentos rectilíneos, los puntos medios superiores de los rectángulos.

¡Reflexione!

¿Puede ser una frecuencia relativa acumulada de signo negativo o de valor mayor que 1?

¡Explique!

Page 16: Libro de matematicas 9no grado

8

Otra forma de representar la gráfica de un polígono de frecuencias, es utilizando la frecuencia relativa.

Procedimiento:

1. En el eje vertical se colocan las frecuencias relativas.

2. En el eje horizontal en cada intervalo se indica la clase.

Polígono de Frecuencias Relativas.

Histograma de Frecuencias Relativas Acumuladas.

La distribución de frecuencias relativas acumuladas también podemos representarla mediante una gráfica de barras, como se observa en la siguiente ilustración.

0

0,2

0,4

0,6

0,8

1

50-59 60-69 70-79 80-89 90-99

Frecuencias Rela�vas Acumuladas

0,24

0,54

0,800,92

1,00

Con su Ars Conjectandi (el Arte de la Conjetura) la teoría de probabilidades adquiere autonomía científica.

Jacob Bernoulli

(1 654 - 1 705)

Page 17: Libro de matematicas 9no grado

9

La Ojiva

También podemos representar la distribución de frecuencias relativas acumuladas mediante un gráfico de línea llamado Ojiva. Esta se construye de la siguiente manera:

1. En el eje horizontal en lugar de las clases se colocan los límites superiores.

2. En el eje vertical se escriben las frecuencias.

La ojiva comienza con el límite superior de la primera clase.

La ojiva elaborada anteriormente se contruye generalmente de la siguiente manera:

La ojiva es el polígono de frecuencias acumuladas, es decir, en ellas se permite ver cuántas observaciones se encuentran por debajo de ciertos valores en lugar de mostrar los números asignados a cada intervalo.

Creador de la Inferencia Estadística.

Ronald Fisher

(1 890 - 1 962)

Page 18: Libro de matematicas 9no grado

10

Compruebe lo aprendido

1. Con la información contenida en la tabla 5, responder a las siguientes preguntas:

Si la nota mínima para aprobar es 60, ¿Qué porcentaje de estudiantes reprobó la clase? ¿Cuál es el porcentaje de estudiantes que aprobaron el examen?

¿Qué porcentaje de estudiantes obtuvo una calificación entre 50 y 79? y ¿entre 60 y 89?

¿Qué porcentaje obtuvo calificaciones mayores que 69?

¿Qué porcentaje obtuvo calificaciones menores o iguales que 79?

2. De acuerdo con el censo del año 2005, la población de Nicaragua en ese entonces era de 5 142 098. La tabla muestra la distribución de la población adolescente de Nicaragua según ese mismo censo.

TABLA 6: Distribución de la edad de adolescentes

Edad Número de habitantes

15 125 986

16 121 047

17 113 325

18 113 324

19 109 903

Total 583 585

Calcule las frecuencias relativas y las frecuencias relativas acumuladas.

Diseñe una tabla de frecuencias en la que incluya las frecuencias absolutas, frecuencias acumuladas, frecuencias relativas y frecuencias relativas acumuladas.

Trace una gráfica de barras para la distribución de frecuencias relativas y una ojiva para la distribución de frecuencias acumuladas.

Matemático belga que aplicó los métodos estadísticos a las Ciencias Sociales, padre de la Estadística Moderna.

Lamber Adolphe Jacques Quételet

(1 796 - 1 874)

Page 19: Libro de matematicas 9no grado

11

¿Cuál era la población entre las edades de 15 y 19 años?

¿Qué porcentaje de esa población estaba conformada por jóvenes entre las edades de 17 y 18 años inclusive?

¿Qué tanto por ciento de esa misma población eran mayores de 18 años? ¿Y de menor o igual edad?

¿Según el censo del 2005, qué tanto por ciento de la población de Nicaragua eran jóvenes de entre 15 y 19 años? ¿Y de entre 17 y 19 años?

3. En los grupos de noveno grado de un colegio de secundaria, se realizó una encuesta sobre los colores preferidos para el uniforme de la banda musical. Con los datos de los 200 estudiantes encuestados se hizo el siguiente diagrama de sector circular.

¿Qué porcentaje de estudiantes no eligió el color rojo?

¿Cuántos estudiantes no eligieron el celeste?

¿Cuántos eligieron el celeste o el amarillo?

¿Cuántos no eligieron ni el amarillo ni el rojo?

Haga una tabla de frecuencias.

¿Cuántos eligen el rojo?

¿Cuántos eligen amarillo?

¿Cuántos eligen el verde y el amarillo?

Reforzamiento.

El número de empleados de una empresa se distribuye porcentualmente de acuerdo a su tiempo de trabajo.

1. Menos de 5 años, 20%.

2. Entre 5 y menos de 10 años, 50%.

3. Entre 10 y menos de 15 años, 15%.

4. Entre 15 y menos de 20 años, 10%.

5. Más de 20 años, 5%.

Construye un diagrama de sector circular para la situación.

Page 20: Libro de matematicas 9no grado

12

Actividad en grupo

1. El poema “A Roosevelt” de Rubén Darío contiene 1 660 letras. La letra “a” se repite 184 veces, de modo que su frecuencia relativa es

Organícense en grupos de 2 ó 3 estudiantes y determinen cuáles son las frecuencias relativas de las otras letras vocales del alfabeto. Investiguen cuál es la vocal más utilizada en el idioma español.

Construyan una tabla de frecuencias para el número de letras de las palabras usadas en el poema. ¿Cuál es la letra de mayor frecuencia?

Representen la distribución de frecuencias relativas mediante una gráfica de barras y tracen una ojiva para la distribución de frecuencias acumuladas.

2. La moneda de un córdoba, en una de sus dos caras tiene el escudo de Nicaragua y, en la otra, el número uno; compruébenlo ustedes mismos observando una moneda. Lancen una moneda de un córdoba 20 veces, registren los resultados y con los datos recabados llenen la siguiente tabla de frecuencias:

Resultado fi fr

Número

Escudo

Repitan la experiencia en grupos de 5 o 6 estudiantes y construyan una nueva tabla donde relacione los datos anteriores y los nuevos.

Construyan una tabla con los datos de toda la clase.

Observe y analice. ¿Qué pasa a medida que se consideran más datos?

Repitan la experiencia usando un dado en lugar de una moneda.

“Hay que

unirse, no para estar

juntos, sino para hacer algo juntos”

Juan Donoso Cortés

Page 21: Libro de matematicas 9no grado

13

Medidas de posición

Las medidas de posición dividen a un conjunto de datos ordenados en partes con la misma cantidad de individuos. Entre los más populares están los cuartiles, los deciles y los percentiles. La mediana es parte de ellos y se ubica al centro de los datos.

La Mediana

Una prueba de Matemática practicada a siete estudiantes dió como resultado las siguientes calificaciones :

68 72 73 81 85 87 91.

En esta lista ordenada el dato central es 81, ya que hay la misma cantidad de datos menores que 81 y mayores que 81. El dato central de una lista ordenada, cuando existe, se denomina mediana. Así, la mediana de las siete calificaciones es 81.

Escriba la lista de las calificaciones menores que 81 y la lista de las mayores que 81. Para cada una de ellas determine la mediana.

Compruebe lo aprendido

1. Considere el siguiente conjunto de datos:

7 12 18 21 25 32 41 43 50 51 60.

Encuentre la mediana

Escriba la parte inferior a la mediana y la parte superior. Indique la mediana de cada una de estas partes.

2. Suponga un conjunto de datos como el siguiente:

12 23 108 32 10 51 18 20 67 59 21 83 76 44 70.

Ordene los datos de menor a mayor.

Anote la lista de datos menores que la mediana y la de los mayores que la mediana. Para cada una de ellas determine la mediana.

3. Considere ahora el siguiente conjunto ordenado de datos:

7 8 10 18 23 40.

¿Hay un dato central en esta lista?

Los cuartiles son valores que dividen a los datos ordenados en cuatro partes con la misma cantidad de datos.

11711510197969593

MitadSuperior

MitadInferior

Mediana

Page 22: Libro de matematicas 9no grado

14

Incorpore un nuevo número a la lista de modo que el número agregado sea la mediana del nuevo conjunto de datos. ¿Cuántos datos de la lista original están bajo dicho número? ¿Cuántos están sobre él? ¿De cuántas maneras podemos elegir el número a incorporar a la lista original para satisfacer las condiciones indicadas? ¿Tendría usted preferencia por alguno de ellos?

Analicemos la siguiente situación:

Las cantidades de carreras anotadas por los líderes históricos en la liga de beisbol profesional de Nicaragua son las siguientes: 117, 115, 101, 97, 96, 95 y 93. Al ordenar los datos en orden creciente advertimos que la mediana, el dato central, deja el mismo número de datos por debajo y por arriba de ella.

93 95 96 97 101 115 117

mediana

Así, la mediana determina dos subconjuntos: el de datos menores que la mediana y el de datos mayores que la mediana.

La mediana de la mitad inferior, 95, se denomina primer cuartil y se denota por Q1.

93 95 96 97 101 115 117

Primer cuartil mediana

La mediana de la mitad superior es el llamado tercer cuartil Q3. El segundo cuartil Q2, es la mediana de todos los datos.

93 95 96 97 101 115 117

Primer cuartil Segundo cuartil Tercer cuartil

Si cambiamos los extremos por otros valores, ¿variarán los cuartiles? y ¿si agregamos valores mayores que 117 o menores que 93?

¿De qué manera podríamos agregar más datos sin hacer variar los cuartiles?

El elemento mínimo de un conjunto numérico es el menor de todos los elementos que pertenecen al conjunto. ¿Cuál es el máximo?

Page 23: Libro de matematicas 9no grado

15

Los cuartiles junto con los valores extremos, el máximo M y el mínimo m, pueden usarse para exponer en forma resumida la información que nos brindan los datos. En nuestro ejemplo, el resumen de los 5 números es:

m Q1 Q2 Q3 M

93 95 97 115 117

Podemos mostrar esta síntesis en una gráfica de caja - brazos, la cual se dibuja mediante el siguiente procedimiento.

Paso 1. Tracemos una recta numérica que contenga a los valores máximo y mínimo y a los cuartiles.

Paso 2. Marquemos el valor más bajo, el más alto, y los cuartiles.

Paso 3. Dibujemos una caja que vaya del primer al tercer cuartil.

Paso 4. Marquemos la mediana con un segmento vertical que divida la caja en dos.

113 115 117

Page 24: Libro de matematicas 9no grado

16

Paso 5. Tracemos dos segmentos horizontales, uno que se extienda desde la caja hasta el dato mínimo y otro que vaya de la caja al valor máximo.

Finalmente obtenemos la gráfica caja-brazos o caja-bigotes.

Con un poco de reflexión se puede responder a los siguientes planteamientos:

Dada una gráfica caja-brazos, ¿cuáles de las siguientes medidas se pueden determinar: la mediana, la moda, la media aritmética, la amplitud?

¿Por qué en la gráfica caja-brazos que construimos la mediana no se encuentra en el centro de la caja?

¿Cambiará la caja si sustituimos el número 93 por otro de menor valor?

Haga una descripción de los pasos necesarios para determinar los cuartiles.

Si la cantidad de datos que superan a la mediana es un número par, ¿cómo se calcula el tercer cuartil?

La amplitud de una serie de datos es la diferencia entre el dato máximo y el mínimo.

Recuerde:

Si la cantidad de datos es par, la mediana es la media aritmética del par de datos centrales.

Page 25: Libro de matematicas 9no grado

17

Los Deciles y los Percentiles.

Los deciles son valores que dividen a una conjunto ordenado de datos en diez partes con igual cantidad de términos.

Hay distintos métodos para calcular los deciles y, en general, las medidas de posición.

Los valores que resultan al aplicar dos métodos distintos pueden diferir, aunque la diferencia se torna despreciable a medida que aumenta la cantidad de datos.

Lugar que ocupa la mediana

Un primer paso para determinar una medida de posición, es encontrar el lugar que ocupa en relación al conjunto de datos.

Examinemos el caso de la mediana. Si el número de datos es igual a 3, como en la serie 5, 7, 8, la mediana ocupa la posición número.

23 1

2=

+

Si la cantidad de datos es 5, como en 4, 6, 8, 10, 15, la mediana ocupa la posición número.

35 1

2=

+

Cuando hay 7 datos, como en la serie 2, 5, 8, 9, 12, 17, 20, la mediana se localiza en posición número.

47 1

2=

+

¿Cuál es la posición de la mediana si la serie consta de 9 datos?

¿Cuál sería la posición de la mediana de una secuencia de observaciones, si ésta consta de n datos?

Si observamos los casos particulares considerados, la posición de la mediana se calcula dividiendo entre dos el número de datos aumentado en uno. Es decir, cuando una serie tiene n datos, la posición de la mediana es:

n +1

2

Page 26: Libro de matematicas 9no grado

18

Localizando deciles

En forma similar se determinan las posiciones de los deciles, solamente que en este caso hay que dividir entre 10. Si hay n datos, la posición del primer decil es:

Pos D n1

110

( ) =+

Para hallar la posición del segundo decil, multiplicamos la del primer decil por dos:

Pos(D2) = 2 Pos(D1)

De manera similar, la posición del tercer decil es la del primero multiplicada por 3:

Pos(D3) = 3Pos(D1)

¿Cuál es la posición del cuarto decil? y ¿la del noveno?

¿Con qué cuartil coincide el quinto decil?

Indique las posiciones de todos los deciles.

En general, en un conjunto de n datos ordenados, la posición del k - ésimo decil es:

Pos(Dk) = kPos(D1) (k = 1,2,...9)

Las facturas de 30 abonados del servicio de energía eléctrica de un barrio capitalino registraron cifras contenidas en la segunda columna de la tabla 7. Hallar los deciles primero, quinto y octavo.

Lo primero que se debe hacer es ordenar los datos en orden creciente, pero este paso lo podemos saltar ya que los datos están dispuestos de esa manera. La cantidad de datos es n = 30, así que la posición del primer decil es:

n +=

+=

110

30 110

3 1,

Este resultado se interpreta de esta manera: debe tomarse el dato que ocupa la posición número 3, más una décima, 0,1, de la distancia que hay al siguiente dato. En la serie dada, el dato de la posición número 3 es 281; la distancia entre éste y el siguiente dato es:

289 - 281 = 8

Ejemplo 3

El k-ésimo decil se denota con el símbolo.

Dk

Page 27: Libro de matematicas 9no grado

19

Luego, el primer decil es:

D1 = 281 + 0,1(8) = 281 + 0,8 = 281,8

La posición del quinto decil es la del primer decil multiplicada por 5, es decir,

Pos(D5) = 5Pos(D1) = 5 (3,1) = 15,5

Por tanto, el quinto decil es el dato que está en la posición número 15, es decir 336, más cinco décimas, 0,5, de la diferencia 338-336.

Así,

D5 = 336 + (0,5) 2 = 336 + 1 = 337

Observemos que este valor coincide con la mediana. Esta coincidencia no es casual, para una serie ordenada cualquiera de n datos, la posición del quinto decil es:

5 110

12

+

=

+

que, como sabemos, es la posición de la mediana.

La posición del octavo decil es la posición del primer decil multiplicada por ocho, es decir,

D8 = 8 Pos (D1) = 8 (3,1) = 24,8

El octavo decil es el dato de la posición 24 más 8 décimas de la distancia de éste al dato de la posición 25, es decir:

D8 = 365 + 0,8 (369 - 365) = 365 + 3,2 = 368,2

Calcule los restantes deciles y responda a las siguientes preguntas.

¿Qué tanto por ciento de los datos son menores que el decil número dos?

¿Qué tanto por ciento son mayores?

¿Qué porcentaje de los datos excede al sexto decil? ¿Qué tanto por ciento está constituido por datos menores que el sexto decil?

Si se premiara a los abonados que presenten facturas cuyo monto no exceda el séptimo decil, ¿Qué porcentaje de ellos alcanzarían el premio?

Tabla 7: Factura de 30 abonados

PosiciónCantidad

C$

1 238

2 245

3 281

4 289

5 290

6 295

7 295

8 310

9 314

10 319

11 321

12 322

13 331

14 332

15 336

16 338

17 350

18 356

19 356

20 356

21 359

22 361

23 364

24 365

25 369

26 402

27 407

28 409

29 41230 415

Page 28: Libro de matematicas 9no grado

20

Los percentiles

Los percentiles son valores que dividen a una colección ordenada de datos, en cien partes con igual cantidad de términos. Las posiciones de los percentiles se calculan en forma análoga a las de los deciles, pero en lugar de dividir entre diez se divide por 100. Así, para una serie de n observaciones el primer percentil ocupa la posición

Pos P n1

1100

( ) =+

Luego, la posición del k-ésimo percentil será:

Pos (Pk ) = k Pos P1

A una prueba clasificatoria para optar a una especialidad en medicina, se presentaron 200 candidatos. El criterio para clasificar establece que se admitirán aquellos postulantes cuyos puntajes superen los 74 puntos y que además se ubiquen por encima del percentil ochenta. Las primeras 152 calificaciones fueron menores de 75 puntos y las restantes 48 calificaciones fueron las siguientes:

75, 75, 76, 77, 78, 79, 79, 79, 80, 80, 81, 81, 81, 81, 83, 83, 83, 83, 84, 85, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 90, 91, 92, 93, 94, 94, 94, 95, 95, 95, 95, 96, 96, 96.

Determine cuáles son las calificaciones de los postulantes que clasificaron.

Puesto que la serie completa de las calificaciones consta de 200 términos, la posición del primer percentil es:

Pos P n1

1100

200 1100

2 01( ) =+

=+

= ,

Luego, la posición del percentil ochenta será:

Pos (P80) = 80 Pos (P1 ) = 80 (2,01) = 160,8

Por tanto, el percentil ochenta es el dato que ocupa la posición número 160 más ocho décimas de la distancia que hay al siguiente dato. Como hay 152 calificaciones que no superaron los 74 puntos, la primera calificación de la lista dada es la número 153, luego la calificación número 160 se encuentra a siete posiciones más adelante, es decir la calificación de 79 puntos que precede a la nota de 80 puntos. Por tanto, el percentil ochenta es:

P80 = 79 + 0,8 (80 - 79) = 79,8

El k-ésimo percentil se denota con el símbolo.

Pk

Por ejemplo,

P25 representa al percentil veinticinco.

Ejemplo 4

Page 29: Libro de matematicas 9no grado

21

Puesto que los que clasifican para ser admitidos en la especialidad ofertada deben superar este valor, los postulantes que tienen puntajes mayores o iguales a 80 son los que serán admitidos. Por tanto, clasifican los que sacaron las 40 calificaciones más altas.

Actividad en grupo

De acuerdo al ejemplo 4, resuelva los siguientes ejercicios.

Calcule los percentiles 25 y 75.

Determine cuáles calificaciones se encuentran por encima del percentil 75.

¿Qué tanto por ciento de las calificaciones están por debajo del percentil 25? y ¿Por encima?

¿Qué tanto por ciento de las calificaciones están entre el percentil 25 y el percentil 75?

¿Cuál percentil coincide con la mediana?

Compruebe lo aprendido

1. Los datos que aparecen en la siguiente tabla corresponden a las extensiones territoriales de los 31 municipios de los departamentos de Chinandega, León y Managua. Las cifras están dadas en Km2.

66,61 222,64 60,58 70,67 104,54 1 274,91 149,01

617,34 120,31 71,50 39,99 724,71 779,88 820,19

416,24 431,48 692,97 691,57 598,39 85,70 227,60

393,67 207,17 51,11 225,72 297,40 668,30 357,30

60,79 975,30 562,01

Realice los siguientes ejercicios:

a. Ordene los datos de menor a mayor.

b. Calcule los tres cuartiles y las extensiones territoriales máxima y mínima.

Una manera sencilla de entender el concepto de percentil es cuando un pediatra observa la tabla de crecimiento y peso de un niño registrado en el MINSA.

Si el peso de un niño está en el percentil 25, significa que el 25% de lactantes varones de dicha edad pesa menos que él y un 75% pesa más que él.

Page 30: Libro de matematicas 9no grado

22

c. ¿Qué tanto por ciento de los datos están entre el primero y tercer cuartil?

d. ¿Dónde se ubican los extremos de la caja en una gráfica caja-brazos?

e. La gráfica caja-brazos para estos datos, ¿será larga?

f. Si una gráfica caja-brazos tiene una caja larga, ¿qué indica esto acerca de los datos? y ¿Si la caja es corta?

g. ¿De dónde a dónde se extienden los brazos de la gráfica caja-brazos?

h. Trace la gráfica caja-brazos para los datos de la tabla ubicada en la página 21.

i. ¿En qué parte de la gráfica caja-brazos se encuentra la mediana?

j. ¿Qué significado tiene la posición de la mediana en el recuadro de la gráfica?

k. Los brazos de la gráfica, ¿tienen igual longitud, o tienen distinto largo?

l. ¿Qué nos indica sobre los datos las longitudes de los brazos de la gráfica?

m. Calcule los deciles segundo, sexto y séptimo.

n. Determine los percentiles 25 y 75. ¿Qué tanto por ciento de las extensiones territoriales de los municipios de los departamentos de Chinandega, León y Managua, están por encima del percentil 75? ¿Qué tanto por ciento está por debajo?

o. ¿Qué tanto por ciento de las extensiones territoriales están entre el percentil 25 y el 75?

2. Midan las tallas y los pesos de sus compañeros de clase. Registren también las edades. Con los datos recabados encuentren los cuartiles, y los percentiles 25, 50 y 75.

3. Investiguen cuál es el peso ideal según la edad y la talla de una persona. Haga un gráfico que refleje esta información. Comparen con los registros realizados por sus compañeros de clase.

Publicó el error probable de una media y todos sus artículos bajo el pseudónimo de Student, por ello su logro más famoso se llama distribución t de Student.

William Sealy Gosset

(1 876 - 1 937)

Recuerde

Si la suma de dos números es cero, cada uno de ellos es el opuesto o inverso aditivo del otro.

Page 31: Libro de matematicas 9no grado

23

Medidas de dispersión

Las medidas de ubicación o posición, como la media o la mediana, en muchas situaciones no solamente resultan insuficientes, sino que pueden incluso conducir a errores de interpretación. Al respecto, nos dice George Bernard Shaw:

“La estadística es una ciencia que demuestra que si mi vecino tiene dos carros y yo ninguno, los dos tenemos uno”

Las medidas de ubicación como la media y la mediana sirven para describir el centro de los datos, pero no permiten describir la extensión de éstos ni su variabilidad. Por eso se requieren otras medidas denominadas medidas de dispersión.

Las medidas de dispersión nos resumen la información de la “muestra” o serie de datos, dándonos así información acerca de la magnitud del alejamiento de la distribución de datos en relación a un valor central o de concentración de los datos.

La estadística nos permite tener una visión del comportamiento de una serie de sucesos o eventos a los que denominamos "variables", así tenemos varias herramientas estadísticas como lo son la media aritmética, la mediana y la moda.

Pero estas medidas no son suficientes para describir un conjunto de datos, necesitamos conocer la variabilidad de los datos, es decir, como se dispersan los datos reales en comparación a las medidas de tendencia central, para esto contamos con esta nueva herramienta.

Las medidas de dispersión, son indicadores de variabilidad y cuya importancia reside en la necesidad de tomar decisiones, basadas en estadísticas básicas.

Los principales estadísticos de medidas de dispersión son:

1. Amplitud o rango

2. Desviación media

3. Varianza

4. Desviación estándar o desviación típica

5. Coeficiente de variación

Ejemplo de Rango

Si tenemos una producción de camisas y sabemos que diariamente se producen un promedio de 500 camisas, y si un día se produce un mínimo de 415 camisas y otro día se produce un máximo de 573 camisas, entonces el rango de producción es de 158 camisas, es decir, podemos tener una producción de 158 camisas a partir del valor mínimo.

Rango es la diferencia entre el valor máximo y mínimo valor de una serie de datos y nos da una idea de la posible dispersión que se puede tener de los datos.

R = Dato mayor - Dato menor.

El inverso aditivo de 5 es -5, ya que,

5 + (-5) = 0.

Por la misma razón, el opuesto de -5 es 5.

El valor absoluto de un número real a se denota por

| a |

Si a ≥ 0, entonces,

| a | = a

Pero si a < 0,

| a | = -a

Page 32: Libro de matematicas 9no grado

24

La amplitud

La amplitud en una colección de datos es la distancia entre los extremos, es decir, la diferencia entre el dato máximo y el mínimo.

En el conjunto 3, 5, 6, 7, 21, 43, 54, 24, 28, los valores máximo y mínimo son 54 y 3, respectivamente. Por tanto, la amplitud en la serie es la distancia entre estos valores, es decir,

| 3 - 54 | = 54 - 3 = 51

¿Cuál es la amplitud en la serie 34, 51, 23, 56, 32, 109, 46, 52?

Supongamos que unos excursionistas deben decidir si atraviesan o no un río a pie. Se les informa que, según una muestra tomada recientemente, la profundidad media del río es igual a 0,35 m. ¿Es suficiente este dato para tomar una decisión acertada? ¿Cuál sería su decisión en cada uno de los siguientes casos?

1. La amplitud en la muestra es igual a 0,52 m.

2. La amplitud en la muestra es igual a 1,65 m.

El conocimiento de la profundidad media del río no es suficiente para dar garantías de seguridad al cruzar el río a pie; podría suceder que en el tramo en que se pretende atravesar el río, el valor de la profundidad varíe considerablemente respecto a la media.

Caso 1. Supongamos que la amplitud de las profundidades del río es igual a 0,52 m. Esto significa que la distancia entre las profundidades extremas, la máxima M y la mínima m, es igual a 0,52, medida en metros.

Esto es M - m = | M - m | = 0,52, es decir M = 0,52 + m.

Puesto que la profundidad mínima m es menor que la profundidad media de 0,35, la suma

0,52 + profundidad mínima = 0,52 + m = M

es menor que

0,52 + profundidad media = 0,52 + 0,35.

Por lo tanto,

M es menor que 0,87.

Mínima

Media

Máxima

0,35

Profundidad del río

Ejemplo 5

Ejemplo 6

Page 33: Libro de matematicas 9no grado

25

En conclusión, el río tiene una profundidad máxima de menos de 0,87 metros y, si los excursionistas son personas adultas de talla normal, pueden cruzar el río sin preocuparse por la profundidad de éste.

Caso 2. Consideremos ahora el problema en que la amplitud de las profundidades del río es de 1,65 metros. Como en el caso anterior, la profundidad máxima es igual a la suma de la amplitud y la profundidad mínima,

M = amplitud + m = 1,65 + m

la cual tiene un valor menor que la suma de la amplitud y la profundidad media,

amplitud + media = 1,65 + 0,35 = 2,00

Por tanto, la profundidad máxima M tiene un valor menor que 2,00. Por otra parte, M es mayor que la media de 0,35 metros.

Vemos que en este caso la profundidad máxima se encuentra entre 0,35 y 2 metros de profundidad. Este intervalo es muy grande para las circunstancias del problema planteado, de modo que habría mucha incertidumbre en la toma de una decisión.

Como hemos comprobado la amplitud puede brindar información valiosa a la hora de decidir un asunto. Sin embargo, en muchos casos su utilidad resulta muy limitada.

Otras medidas de dispersión son la desviación media, la varianza, la desviación típica o estándar y el coeficiente de variación.

La desviación media

Anteriormente definimos la amplitud como la distancia entre el dato más alto y el más bajo. Similarmente, la desviación media puede tratarse como una distancia, pero con la ventaja de que, a diferencia de la amplitud, que sólo toma en cuenta dos datos, ésta medida considera toda la información.

La desviación de un dato x respecto a la media x, es la diferencia x - x entre él y la media. Esta puede ser negativa si el dato es menor que la media, o positiva, cuando el dato es mayor que la media o igual a cero cuando el dato es igual a la media.

Matemático británico, primero en explicar el fenómeno de regresión a la media e introducir el concepto de correlación.

Sir Francis Galton,

(1 822 - 1 911)

Page 34: Libro de matematicas 9no grado

26

Parecería natural definir la desviación media de un conjunto de datos como el promedio de las desviaciones, sin embargo, esto no proporcionaría ninguna información útil ya que, cómo se muestra en el siguiente ejemplo, la suma de las desviaciones es igual a cero.

Compruebe la validez de este resultado para otras series. ¿Puede usted presentar un razonamiento convincente que nos indique que este resultado es válido para cualquier serie de datos?.

Una forma de solventar el problema de la nulidad de la suma de las desviaciones es considerar, no las propias desviaciones, sino sus valores absolutos, es decir las distancias entre la media y cada uno de los datos. Esto da lugar a la siguiente definición.

La desviación media de un conjunto de datos es el promedio de los valores absolutos de las desviaciones de los datos respecto a la media.En símbolos, desviación media: DM =

ni

k

−=∑

1 , donde n es la cantidad de los datos.

Entre menor es la desviación media, más agrupados están los datos alrededor de la media y ésta los representa con mayor fidelidad. Por el contrario, entre mayor es la desviación media, más alejados están los datos de la media y por tanto hay mayor dispersión.

En una pequeña empresa los salarios devengados por siete empleados, expresados en miles de córdobas son los siguientes: 2,8; 2,9; 2,9; 2,9; 3,5. Calcular la desviación media.

De acuerdo con la definición, para calcular la desviación media se requiere determinar primero la media aritmética. Para los datos dados ésta es:

x =+ + + +

=2 8 2 9 2 9 2 9 3 5

53, , , , ,

Salarios

x x - |x - |2,8 3 -0,2 0,22,9 3 -0,1 0,12,9 3 -0,1 0,13,5 3 -0,1 0,115 3 0,5 0,5

∑|x - x| = 1,0

La desviación típica o estándar, es una medida de dispersión usada en estadística que nos indica cuanto tienden a alejarse los valores concretos del promedio de una distribución.

Ejemplo 7

Recuerde que la media aritmética se calcula usando la siguiente fórmula:

xf X

n

ii

k

i

= =∑

1

O bien

x X X Xn

k=+ + +1 2 ...

x x x

Page 35: Libro de matematicas 9no grado

27

Las distancias entre los datos y la media aparecen registradas en la cuarta columna de la tabla de la página anterior. Su promedio, es decir su suma dividida entre la cantidad de datos, nos proporciona la desviación media:

desviación media = n

i

k

−=∑

1 = 1,05 = 0,2

Observe que la suma de las desviaciones es igual a cero como se dijo anteriormente.

Encuentre la desviación media para la serie 3, 2, 1, 0, 4, 7.

La varianza (S2)

Si en la fórmula del cálculo de la desviación media cambiamos las desviaciones por sus cuadrados, obtenemos el indicador estadístico denominado varianza. Es decir,

Sx x

n

ii

k

2

2

1

1=

−( )−

=∑

Observe indicación en la columna izquierda.

x x x - x (x - x)2

2,8 3 -0,2 0,042,9 3 -0,1 0,012,9 3 -0,1 0,012,9 3 -0,1 0,013,5 3 0,5 0,25

Total 0,32

La desviación típica o estándar (S)

Si extraemos la raíz cuadrada a la varianza obtenemos la desviación típica o estándar, que es la medida de dispersión más utilizada.

La desviación tipica o estandar de un conjunto de datos es la raíz cuadrada positiva del promedio de los cuadrados de las desviaciones, es decir:

Desviación típica: Sx x

n

ii

k

=−( )

−=∑

2

1

1

Para el cálculo de la varianza se utiliza la siguiente ecuación:

Sx x

n

ii

k

2

2

1

1=

−( )−

=∑

n: significa número de datos.

De acuerdo a la tabla de la derecha, el resultado de la varianza es:

Sx x

n

ii

k

2

2

1

1=

−( )−

=∑

S5 - 1

2 = 0,32

S2 = 0,08

Page 36: Libro de matematicas 9no grado

28

Para los salarios de la empresa del ejemplo 7, la desviación estándar es igual a:

Desviación estándar: S=−

= ≈0 325 1

0 08 0 283, , ,

En el lenguaje corriente decimos que dos objetos están cercanos si se encuentran a poca distancia. Lo mismo decimos de una serie de datos y su media, si la desviación estándar es pequeña significa que los datos están agrupados alrededor de la media. Por el contrario, si la desviación estándar es muy grande entonces los datos están muy dispersos.

El coeficiente de variación

El coeficiente de variación, CV, es el cociente entre la desviación estándar y la media:

CV Sx=

El coeficiente de variación, es una medida de la dispersión relativa de una serie de datos. Cuando CV, está cerca de cero, la media representa adecuadamente a la distribución de los datos, pero cuando su valor excede a 0,75, la media pierde representatividad.

Para el ejemplo abordado anteriormente, el coeficiente de variación es igual a:

CV = =0 283

30 094

,, ,

lo cual significa que la media representa significativamente a los salarios de los cinco trabajadores.

Compruebe lo aprendido

1. De acuerdo con datos preliminares del Instituto Nacional de Información de Desarrollo, los rendimientos agrícolas en el cultivo del café en seis de los departamentos de la zona de Pacífico de Nicaragua en el año 2 013, en: (quintales/manzana): 4,77 ; 3,45; 5,20; 6,27; 4,30; 5,05. Hallar el rendimiento medio, la amplitud, la desviación media, la desviación estándar y el coeficiente de variación.

Ejemplo 8

Medidas de tendencia central: Son estadísticos alrededor de los cuales se concentran gran parte de los valores de la distribución

MEDIANA (Me) o

x

Es una medida de centralizacion que se caracteriza por lo siguiente:

deja tras de sí el 50%

de la distribución.

El símbolo de la mediana x

MODA (Mo)

de la variable que tiene mayor frecuencia absoluta

LA MEDIA ARITMÉTICA (x)

Es un estadístico que nos da una idea de entorno a qué valor se encuentran

concentrados los valores de una variable estadística,

aunque en ocasiones no resulte un valor demasiado representativo.

El símbolo de la media es x

y se lee como "equis barra".

x

: media aritmética

para una muestra .

: media aritmética para una población.

Recuerde.

Page 37: Libro de matematicas 9no grado

29

2. La siguiente tabla contiene los parámetros de la anidación de las tortugas carey, registrados por un equipo de investigación en el año 2008, Cayos Perlas, Nicaragua, de acuerdo con un censo realizado por dos equipos de campo de la Wildlife Conservation Society (Sociedad para la Conservación de la Vida Silvestre, WCS por sus siglas en inglés).

£ Determine el coeficiente de variación e indique cuál de los promedios representa mejor a los datos.

Anidación de tortugas carey en el 2008, Cayos Perlas, Nicaragua.

Tamaño de la nidada Promedio Desviación Estándar

Profundidad del nido-nidadas in situ (cm) 167,2 28,4

Profundidad del nido-nidadas reubicadas 41,6 4,5

Longitud del rastro 36,7 6,1

Distancia LMA al nido 8,8 6,3

Línea de Marea Alta 5,1 3,5

Trabajo en equipo

Organícense en equipos y midan con un cronómetro el tiempo que tarda cada uno de los miembros del equipo en realizar la lectura del poema de Rubén Darío: “Yo persigo una forma”. Luego reúnan los datos de toda la clase y calculen:

a. La media aritmética.

b. La amplitud.

c. La desviación media.

d. La desviación estándar.

e. El coeficiente de variación.

f. Indiquen si la media representa adecuadamente a los datos.

Matemático británico fundador de la Bioestadística.

Karl Pearson

(1 857 - 1 936)

Page 38: Libro de matematicas 9no grado

30

Yo Persigo una Forma

Yo persigo una forma que no encuentra mi estilo,botón de pensamiento que busca ser la rosa;

se anuncia con un beso que en mis labios se posaal abrazo imposible de la Venus de Milo.

Adornan verdes palmas el blanco peristilo;los astros me han predicho la visión de la Diosa;

y en mi alma reposa la luz como reposael ave de la luna sobre un lago tranquilo.

Y no hallo sino la palabra que huye,la iniciación melódica que de la flauta fluyey la barca del sueño que en el espacio boga;

y bajo la ventana de mi Bella-Durmiente,el sollozo continuo del chorro de la fuente

y el cuello del gran cisne blanco que me interroga.

Rubén Darío

Obra pictórica de Alejandro Aróstegui

Page 39: Libro de matematicas 9no grado

31

Ejercicios de Cierre de Unidad

1. El Gobierno de Reconciliación y Unidad Nacional otorgó prestamos a 30 campesinos para la siembra y producción de frijoles. El número de manzanas de tierra financiada a través de ALBA-CARUNA fueron:

80, 80, 80, 80, 75, 70, 70, 70, 70, 70, 70, 70, 67, 65, 65, 65, 60, 60, 60, 60, 60, 60, 56, 56, 55, 55, 55, 55, 55, 66.

a. Elabore una tabla de frecuencias.

b. Determine los cuartiles y los deciles.

c. Trace una gráfica caja-brazos.

2. En una prueba de velocidad de escritura practicada a 32 estudiantes del Instituto Miguel de Cervantes, se obtienen los resultados, medidos en segundos:

13, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 19, 19, 20, 20, 20, 20, 20, 20, 21, 21, 21, 22, 22, 23, 25, 27, 30.

Calcule:

a. La velocidad de escritura promedio.

b. La desviación estándar.

c. El coeficiente de variación.

d. Realice un comentario sobre los resultados.

3. La estación meteorológica de San Carlos, Río San Juan, registró en el año 2008, en el período mayo-octubre, las siguientes precipitaciones pluviales: 310,8; 353,4; 264,8; 271,6; 265,3; 267,6 en cm3.

Calcule:

a. La precipitación promedio.

b. La amplitud.

c. La desviación estándar.

Page 40: Libro de matematicas 9no grado

32

4. Estos son los registros de las velocidades de los vientos en los meses del año 2013, obtenidos en las estaciones meteorológicas de Chinandega y Managua (A.C. Sandino). Calcule:

Velocidad de los vientos en km/h

Mes Chinandega Managua

Enero 2,5 3,0

Febrero 2,2 3,0

Marzo 2,5 3,0

Abril 2,2 3,0

Mayo 2,1 2,3

Junio 1,6 1,7

Julio 1,7 2,3

Agosto 1,7 2,1

Septiembre 1,8 2,5

Octubre 2,0 2,2

Noviembre 1,6 2,1

Diciembre 1,9 1,5

a. Las velocidades medias.

b. Las desviaciones estándar.

c. Los coeficientes de variación.

5. Se le preguntó a 20 estudiantes en un congreso de la FES sobre la cantidad de horas que habían dormido la noche anterior. Las respuestas fueron las siguientes: 5, 4, 6, 6, 7, 7, 8, 8, 5, 9, 6, 8, 8, 6, 9, 8, 8, 7, 7, 6. Obtenga:

a. La media aritmética y la moda.

b. La amplitud.

c. La desviación media.

d. La desviación estándar.

e. Una representación caja-brazos.

Page 41: Libro de matematicas 9no grado

33

6. A continuación se presentan la cantidad de familias beneficiadas con el plan techo que impulsa el Gobierno de Reconciliación y Unidad Nacional en 30 comarcas del departamento de Rivas:

84 70 75 75 68

56 60 60 68 75

61 66 67 74 56

75 56 75 54 62

61 54 51 67 53

70 71 69 54 59

Obtenga:

a. Los cuartiles.

b. Una representación caja-brazos.

c. La desviación media.

d. La desviación estándar.

7. Las horas extra mensuales que trabajaron 7 empleados de ENATREL son: 4,20,24,48,42,48 y 48.

Encuentre:

a. El número medio de horas extra trabajadas.

b. La mediana.

c. La moda.

d. La desviación media.

e. La desviación estándar.

f. El coeficiente de variación.

Page 42: Libro de matematicas 9no grado

34

8. Se atienden a 70 personas con problemas de visión en la “Misión Milagros” que impulsa el Gobierno de Reconciliación y Unidad Nacional, con sede en Ciudad Sandino cuyas edades en años cumplidos son:

41 60 60 38 60 63 21 66 56 57 51 57 44 43

35 30 35 47 53 49 50 49 38 43 28 41 47 41

53 32 54 38 40 63 48 33 35 61 47 41 55 53

27 20 21 42 21 39 39 34 43 39 28 54 33 35

43 48 48 27 53 30 29 53 38 52 54 27 27 43

a. Construye una tabla de frecuencias de 5 intervalos.

b. Calcule la media arimética.

c. Determine la desviación estándar.

9. Los pesos en libras de los jugadores del equipo de fútbol Walter Ferreti son los siguientes:

167 172 165 165 178 165 143 180 156 149 156

a. Determine el peso medio del equipo.

b. Halle la mediana.

c. Elabore una gráfica caja-brazos.

d. Halle la desviación media.

e. Calcule la desviación estándar.

10. Se entrega un bono de patio que impulsa el Gobierno de Reconciliación y Unidad Nacional el cual consiste en entregar un número determinado de gallinas por familia. Los datos se indican a continuación:

19, 20, 21, 22, 18, 21, 19, 19, 20, 21, 21, 19, 18, 21, 22, 18, 19, 20, 21, 20, 19, 20, 21, 19, 19, 22, 17, 18, 21, 19, 21, 18, 20, 20, 21, 19, 20, 19, 20, 21, 18, 19, 20, 19, 21, 20, 19, 19, 23, 23.

a. Construye una tabla de frecuencias con datos no agrupados.

b. Determine el percentil 25 y el percentil 70 con los datos originales. ¿Qué significado tienen estos valores?

Page 43: Libro de matematicas 9no grado

35

11. Según el INTUR los datos de la estadía promedio (EP) en días y el gasto diario promedio (GP) en dólares por turista en Nicaragua en los meses del primer semestre del año 2012 y del año 2013.

2012 2013

Mes EP GP EP GP

Enero 6,6 49 7,6 41,2

Febrero 6,7 50,1 7,2 53,2

Marzo 7,7 47,3 7,2 49,8

Abril 6,4 52,8 7,1 50,9

Mayo 6,6 51,8 6,7 59,1

Junio 8 40,8 7,7 47,5

Para cada uno de los años 2012 y 2013 obtenga:

a. La media semestral de las estadías por días, la media de los gastos promedios en dólares, la desviación estándar de las estadías, la desviación estándar de los gastos promedios.

b. Compare los resultados del año 2012 con los del año 2013. Describa una conclusión relevante.

12. Un dentista observa el número de caries en cada uno de los 100 niños de un colegio. La información obtenida está en la siguiente tabla:

Número de Caries fi fr

0 25 0,251 20 0,22 x z3 15 0,154 4 0,05

Obtener los valores de x, z y el número medio de caries.

Page 44: Libro de matematicas 9no grado

36

13. Lea, analice y resuelva los siguientes ejercicios

a. La tabla adjunta

Edad (en años) 15 16 17 18 19

Estudiantes 50 40 60 50 20

muestra las edades de 220 estudiantes de un colegio. ¿Cuál de las siguientes afirmaciones son verdaderas?

I. La moda es 17 años.

II. La mediana es mayor que la media (promedio).

III. La mitad de los estudiante del colegio tiene 17 ó 18 años.

Alternativas

• Sólo I

• Sólo II

• Sólo I y III

• Sólo II y III

• I, II y III

b. El gráfico de sectores circulares de esta figura muestra las preferencias de 30 estudiantes en actividades deportivas. ¿Cuál(es) de las siguientes afirmaciones son correctas?

I. La frecuencia relativa, expresada en %, del grupo de fútbol es de 40%.

II. La frecuencia relativa, expresada en %, del grupo de básquetbol es de 30%.

III. La mitad del grupo no prefirió fútbol ni tenis.

Alternativas

• Sólo I

• Sólo II

• Sólo I y II

• Sólo II y III

• I, II y III

Fútbol12

Básquetbol9

Tenis3

Atletismo6

Page 45: Libro de matematicas 9no grado

Unidad 2

Conjunto de Números Reales

El Gobierno de Reconciliación y Unidad Nacional ha impulsado un importante proyecto como es la construcción del puente Santa Fe y paralelo a la construcción del puente también se construyó la carretera ubicada en la costa Sur del Río San Juan de Nicaragua hasta concluir en la frontera con Costa Rica, lo que facilitará que las exportaciones de la zona central del país puedan salir en esa dirección hacia Puerto Limón en Costa Rica, además de la entrada y salida de nicaragüenses hacia el país vecino del Sur.

Fuente: 19 digital.Abril 2014.

Page 46: Libro de matematicas 9no grado

38

Números RealesIntroducción

Esta unidad continúa con el estudio de las propiedades de los números reales y sus operaciones, concentrando su atención en las potencias de base real y exponente racional. El uso de las potencias nos permite expresar en forma abreviada y operar con facilidad cantidades muy grandes o muy pequeñas que aparecen en campos como la Física, la Química y la Astronomía.

Potencias de base real y exponente entero

En grados anteriores se abordó el estudio de las potencias con exponente entero y base racional. En esta oportunidad estudiaremos las potencias con exponente entero y en las que la base es un número real cualquiera, como por ejemplo el número π, más adelante abordaremos el caso cuando el exponente es racional de la forma 1

n.

Recuerde, reflexione y concluya

Calcule el valor de las siguientes potencias de base entera

a. 33

b. (-3)3

c. 64

d. 93

e. (-2)4

f. (-2)5

g. (-4)3

h. (-5)3

i. (-5)6

j. -54

■¿Qué tipo de número dan los resultados?

■ Cuando la base es negativa y el exponente es impar, ¿cómo es el resultado? y ¿Si el exponente es par?

Escriba cada potencia como un producto de factores iguales

a. 25

b. 64

c. (-4)8

d. (-5)7

e. 1710

El átomo de hidrógeno tiene una masa aproximadamente igual a la fracción de un kilogramo representada por 17 precedido de 26 ceros y una coma decimal. Su escritura, con este tamaño de letra, no cabe en este espacio. En notación exponencial es

1,7 · 10-27kg

Recuerde

El símbolo ℕ denota el conjunto de los números naturales.

Si A es un conjunto y x es cierto objeto, se usa la expresión x ∈ A, para indicar que x es elemento de A.

Notación exponencial

En muchos lenguajes de

programación se usa el

símbolo ∧ para denotar

las potencias. Por

ejemplo, en lugar de 23

se escribe 2∧3

Page 47: Libro de matematicas 9no grado

39

Escriba cada uno de los siguientes productos como una potencia y calcule su valor

a) 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2

b) (-5)∙(-5)∙(-5)∙(-5)∙(-5)∙(-5)

c) 112∙112∙112∙112∙112

d) 21 ∙ 21 ∙ 21 ∙ 21 ∙ 21 ∙ 21 ∙ 21 ∙ 21 ∙ 21 ∙ 21 ∙ 21 ∙ 21

Escriba en forma de potencia cada uno de los siguientes números de manera que la base sea la menor posible.

a) 125

b) 10 000

c) 64

d) 15 625

Al calcular (-3)4 y -34, ¿se obtiene el mismo resultado?

Potencia de base real y exponente entero positivo

La definición de potencia de base entera y exponente entero positivo se traslada al caso de base real. Es decir, que una potencia de base real y exponente entero positivo no es más que la abreviatura de un producto de factores iguales.

Si a es un número real y n es un entero positivo, la expresión: an

es el producto de n factores, todos iguales al número a. Es decir,

an = a · a ∙ ... ∙ an - veces

Los puntos suspensivos en la parte derecha de esta igualdad señalan que se debe continuar multiplicando por a hasta completar exactamente n factores. En particular,

a1 = a, a2 = a ∙ a, a3 = a ∙ a ∙ a.

En la expresión an, a se llama base y n es el exponente. Este último indica cuantas veces se toma la base como factor.

¿Sabías qué?

Los italianos utilizaban las letras “p” y “m”, iniciales de las palabras piu (más) y minus (menos) para indicar respectivamente la suma y la resta.

Con el tiempo se impulsó la notación "+" y "-" para denotar la suma y la resta.

El texto más antiguo que se conoce en el que aparecen estos signos denotando la suma y la resta es un libro de aritmética comercial del alemán Johann Widman publicado en 1 489

Page 48: Libro de matematicas 9no grado

40

Escriba la potencia (0,7)5 como un producto de factores iguales.

El exponente 5 indica cuántas veces se repite la base. Siendo la base igual a 0,7 tenemos que:

(0,7)5 = (0,7) ∙ (0,7) ∙ (0,7) ∙ (0,7) ∙ (0,7).

Escriba el siguiente producto como una potencia y calcule su valor.

(-0,5) ∙ (-0,5) ∙ (-0,5) ∙ (-0,5)

El factor que se repite en este producto es -0,5. Luego este número yacerá como base y, el número de veces que se repite, cuatro, será el exponente. Por tanto,

(-0,5) ∙ (-0,5) ∙ (-0,5) ∙ (-0,5) = (-0,5)4.

Por otra parte al agrupar tenemos que

(-0,5)4 = [(-0,5) ∙ (-0,5)] ∙ [(-0,5) ∙ (-0,5)], es decir,

(-0,25)2 = (-0,25) ∙ (-0,25) = 0,0625

Efectuar el producto de las potencias tercera y quinta de π.

La tercera y quinta potencia del número π son π3 y π5 respectivamente.

Por tanto,

π3 ∙ π5 = (π ∙ π ∙ π) (π ∙ π ∙ π ∙ π ∙ π) = π ∙ π ∙ π ∙ π ∙ π ∙ π ∙ π ∙ π

8 veces

Luego,

π π π π3 5 3 5 8= =+

En general, para multiplicar potencias de igual base, se escribe la misma base y se suman los exponentes. Así tiene lugar la siguiente regla:

Producto de potencias de igual base

Para todo número real a, y para cualesquiera números naturales m,n se cumple:

am ∙ an = am + n

Primera ley de los exponentes

Para efectuar el producto de potencias de igual base, se conserva la base y se suman los exponentes.

Ejemplo 1

Ejemplo 2

Ejemplo 3

Page 49: Libro de matematicas 9no grado

41

Escribir el producto de 3π11 por 5π7 como un múltiplo de una potencia de π.

Agrupamos primero los coeficientes y luego las potencias de π involucradas para obtener:

(3π11)(5π7) = (3)(5)(π11 ∙ π7) = 15π11+7 = 15π18

¿Qué propiedad de la multiplicación permite realizar este agrupamiento?

Escribir cada producto indicado como un término con una potencia de π,e o a.

1.

2. 3

2

5

6

4 11a a

3. −( )( )4 2512 3e e

Escribir a15 como una potencia con base a5.

El exponente 15 señala que a se debe tomar 15 veces como factor. Si agrupamos los factores de cinco en cinco, tendremos tres grupos cada uno de ellos con cinco factores iguales al número a.

Tenemos así:

a15 = (a ∙ a ∙ a ∙ a ∙ a) ∙ (a ∙ a ∙ a ∙ a ∙ a) ∙ (a ∙ a ∙ a ∙ a ∙ a).

Es decir,

a15 = a5 ∙ a5 ∙ a5 = (a5)3. 3 - veces

Por tanto,

a15 = (a5)3.

Ejemplo 4

Ejemplo 5

Page 50: Libro de matematicas 9no grado

42

Por la simetría de la igualdad y descomponiendo 15 en sus factores primos, obtenemos que

a15 = (a5)3 = a5(3).

Esta propiedad también tiene validez general, es decir, podemos cambiar 5 y 3 por números naturales arbitrarios m y n, manteniéndose inalterable la validez de la regla. Así tiene lugar la siguiente propiedad:

Potencia de una potencia

Si a es un numero real y m y n son números naturales, entonces

(am)n = am ∙ n

Escribir cada expresión dada como una potencia con la base indicada.

1. a3 ∙ a3 ∙ a3 ∙ a3; con base a2.

2. b24; con base b4.

Suponga que a, x ∉ {0,1}. Encuentre todos los posibles números enteros m y n que hacen posible la igualdad.

1. (am)n = a12

2. (em)n = e125

3. [(0,12)m]n = (0,12)18

Escriba el siguiente producto como el múltiplo de una potencia.

3∙ π ∙ π ∙ π ∙ π ∙ π ∙ π ∙ π

Tenemos un primer factor 3 y a continuación el producto de siete factores idénticos a π, luego,

3∙ π ∙ π ∙ π ∙ π ∙ π ∙ π ∙ π = 3(π ∙ π ∙ π ∙ π ∙ π ∙ π ∙ π) = 3π7

Expresar (3π)7 como un múltiplo de una potencia de π.

Por definición de potencia:

(3π)7 = 3π ∙ 3π ∙ 3π ∙ 3π ∙ 3π ∙ 3π ∙ 3π, Ahora reagrupemos los factores (3π)7 = (3 ∙ 3 ∙ 3 ∙ 3 ∙ 3 ∙ 3 ∙ 3)∙(π ∙ π ∙ π ∙ π ∙ π ∙ π ∙ π).

¡Importante!

Sean a ∈ ℝ+ y p,q ∈ ℝ+.

Si a ≠ 0 y a ≠ 1, entonces,

a ap q=p = q

Por ejemplo, si 2x = 212

entonces base igual exponente igual:

x = 12

Ejemplo 6

Ejemplo 7

Segunda ley de los exponentes

Para efectuar la potencia de una potencia, se conserva la base y se multiplican los exponentes.

Page 51: Libro de matematicas 9no grado

43

Luego, al aplicar la definición de potencia en la parte derecha, se obtiene

(3π)7 = 37 ∙ π7 = 2 187 ∙ π7.

Expresar el siguiente producto como una potencia.e ∙ e ∙ e ∙ e ∙ π ∙ π ∙ π ∙ π

Al agrupar e con π obtenemos:

e ∙ e ∙ e ∙ e ∙ π ∙ π ∙ π ∙ π = (e ∙ π)(e ∙ π)(e ∙ π)(e ∙ π)

¿Qué propiedades de la multiplicación permiten realizar este agrupamiento?

La parte derecha de esta igualdad es la cuarta potencia de (e ∙ π) luego,

(e ∙ π)(e ∙ π)(e ∙ π)(e ∙ π) = (e ∙ π)4

La parte izquierda de la expresión dada, la podemos escribir como el producto de las potencias e4 y π4, de modo que:

e4 ∙ π4 = (e ∙ π)4

Esta igualdad es caso particular de la siguiente regla:

Producto de potencias de igual exponente

Si a y b son números reales y n es un entero positivo, entonces

an ∙ bn = (ab)n

En efecto, sean a y b números reales cualesquiera. Por definición de potencia tenemos que:

an ∙ bn = (a ∙ a ∙...∙ a)∙(b ∙ b ∙... ∙ b). n - veces n - veces

En cada uno de los grupos de la parte derecha de la igualdad hay n factores. Agrupemos cada factor a del primer grupo con exactamente un factor del segundo grupo. Obtenemos:

an ∙ bn= (ab) ∙ (ab) ∙...∙ (ab) n - veces

Tercera ley de los exponentes

Para multiplicar dos potencias con el mismo exponente, se multiplican las bases y el producto resultante se eleva al mismo de las potencias originales.

"Dios hizo los números enteros, el resto es obra del hombre."

Leopold Kronecker

Ejemplo 8

Page 52: Libro de matematicas 9no grado

44

La parte derecha por definición de potencia es igual a (ab)n. Por tanto,

an ∙ bn = (ab)n

que es lo que se quería demostrar.

Escribir en forma abreviada el producto (0,1)4 ∙ (0,2)4 ∙ 34.

Por la propiedad asociativa de la multiplicación

(0,1)4 ∙ (0,2)4 ∙ 34 = (0,1)4 [(0,2)4(34)]

Luego, al utilizar en la parte derecha la tercera ley de los exponenetes se obtiene:

(0,1)4 ∙ (0,2)4 ∙ 34 = (0,1)4 [(0,2)4(34)] = (0,1)4[(0,2)(3)]4

de donde, por la misma ley,

(0,1)4 ∙ (0,2)4 ∙ 34 = [(0,1) ∙ (0,6)]4 = 0,064

Compruebe lo aprendido.

Escriba el producto de (0,345)7 por (0,345)4 en forma de una potencia. ¿Cuántos factores iguales a 0,345 contiene?

Escribir el cociente ab

4

4 como una potencia.

Por la definición de potencia y de acuerdo con la multiplicación de fracciones, obtenemos:

ab

a a a ab b b b

abababab

ab

4

4

4

=⋅ ⋅ ⋅⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ =

En general, vale la siguiente ley:

Potencia de un cociente

Si a y b son numeros reales, con b ≠ 0 , si n es un entero positivo, entonces a

bab

n n

n

=

Encuentre el valor del cociente de 23 y 0,53.

Por la ley arriba enunciada

2

0 5

2

0 5

3

3

3

, ,=

La tercera ley de los exponentes también puede formularse así: La potencia de un producto es igual al producto de las potencias de las bases, afectadas con el mismo exponente de la potencia original.

(ab)n = an ∙ bn

Cuarta ley de los exponentes

La potencia de un cociente, es igual al cociente del numerador y del denominador, afectados con el mismo exponente de la potencia original.

Recuerde:

Si a, b, c, d ∈ ℝ con b ≠ 0 y d ≠ 0, entonces:

abcd

a cb d

⋅ =⋅⋅

Ejemplo 9

Ejemplo 10

Page 53: Libro de matematicas 9no grado

45

Puesto que 0,5 = 1

2, al sustituir en 0,5 por

1

2 la parte derecha de la

igualdad, se obtiene:

2

0 5

2

1

2

3

3

3

,=

,

pero,2

1

2

2

11

2

2

1

2

14= = ⋅ = ,

por tanto,2

0 54 64

3

3

3

,= =

a) Exprese el número 23 000 000 a través de una potencia de 10.

b) Sin usar calculadora encuentre el valor del cociente.

( , )( , )0 50 1

4

4

a. Puesto que 23 000 000 = 23 · 1000 000 y 1 000 000 = 106,

23 000 000 = 23 · 106

b. Por la propiedad de la potencia de un cociente tenemos que:

0 1

0 5

0 1

0 5

4

4

4,

,

,

,

( )( )

=

pero 0,1 = 1

10 y 0,5 =

5

10. Por tanto, al sustituir en la parte derecha de

la igualdad obtenemos:

0 1

0 5

1

10

5

10

4

4

4

,

( , )

( )=

Ahora bien, el cociente dentro del paréntesis en la parte derecha

es igual a 1

10

10

5

2

10⋅ = . Luego,

0 1

0 5

2

10

4

4

4,

,

( )( )

=

,

Recuerde:

Si n es un número natural, la potencia 10n, en notación decimal, es igual a 1 seguido de n ceros. Por ejemplo 106 = 1 000 000

¿Cómo pasar de un decimal exacto a fracción?

En el numerador se pone el número decimal sin coma, y en el denominador un uno seguido de tantos ceros como decimales haya. Por ejemplo

1,32 = 132

100

Ejemplo 11

Page 54: Libro de matematicas 9no grado

46

pero,2

10

2

10

16

10 0000 0016

4 4

4

= = = ,

por tanto,0 1

0 50 0016

4

4

,

,,

( )( )

=

Exprese los siguientes cocientes como una sola potencia.

1. ee

e e2 030

2 010

2 030 2 010 20= =− 2. 13 13 13 1323 1

2

23 1

223

23

2( ) = ( )

= =

La solución de cada ejercicio es:

1. ee

e e2 030

2 010

2 030 2 010 20= =− 2. 13 13 13 1323 1

2

23 1

223

23

2( ) = ( )

= =

Simplifique el cociente ππ

3

5

Por la ley del producto de potencias de igual base se tiene que

π5 = π3 · π2

en consecuencia,ππ

ππ π

3

5

3

3 21

=⋅⋅

Al desarrollar la parte derecha de esta igualdad como un producto de dos fracciones se llega a que:

ππ

ππ π π

3

5

3

3 2 21 1 1

= ⋅ = ⋅

por tanto,ππ π

3

5 21

=

Observe que el resultado anterior se puede expresar de la siguiente manera:

ππ π

3

5 5 31

= −

Simplificar una expresión donde hay potencias de números reales significa cambiarla por otra en la que cada número real base, aparece una vez y todos los exponentes son positivos.

Ejemplo 12

Ejemplo 13

Page 55: Libro de matematicas 9no grado

47

Este ejemplo se puede generalizar como veremos a continuación.

Sea a un número real no nulo y sean m y n números enteros positivos.

Caso 1. Supongamos que m > n , y sea p = m - n. Entonces p es un entero positivo y como m = p + n se tiene que:

am = ap + n

Por la regla para multiplicar potencias de igual base tenemos que:

ap + n = ap ∙ an

luego,aa

a aa

a aa

am

n

p n

n

p n

np=

⋅= ⋅ =

1

Pero, como p = m - n. Al sustituir p por m - n, obtenemos que

aa

am

nm n= −

Caso 2. Asumamos que m < n entonces n - m > 0, an = an - m ∙ am y, en consecuencia,

aa

aa a a

aa a

m

n

m

n m m n m

m

m n m= = ⋅ =− − −

1 1

Así, en este caso,aa a

m

n n m= −

1

De esta manera verificamos la validez de la quinta ley de los exponentes.

Cociente de dos potencias de igual base

Sean a un número real diferente de cero y m y n números enteros positivos.

a) Si m > n, entonces : aa

am

nm n= −

b) Si m < n, aa a

m

n n m= −

1

Reforzamiento:

Resuelva aplicando las propiedades de los exponentes:

• c dc d

2 8

6 5

• a d ma d m

3 7 6

8 4 1−

• (2x4y2)-3

Page 56: Libro de matematicas 9no grado

48

Simplifique cada una de las siguientes fracciones. Suponga que x, y, p, q son números reales distintos de cero.

a. x yx y

5 6

3 5

b. x yx y

2 6

4 2

c. 5 4 2

3 2

7

9

p

q

qp

( )( )

i

a. Desarrollando la fracción como un producto de fracciones y aplicando la regla para evaluar un cociente de potencias de igual base, obtenemos:

x yx y

xx

yy

x y x y5 6

3 5

5

3

6

5

5 3 6 5 2= ⋅ = ⋅ =− −

b. En forma análoga, tenemos que:

x yx y

yx

yx

2 6

4 2

6 2

4 2

4

2= =

c. Por potencia de un producto y por la ley para elevar una potencia a un exponente se tiene que:

5 254

2

32

7

9

8

6

7

9

p

q

qp

pq

qp

( )( )

⋅ = ⋅

Al multiplicar las fracciones de la derecha y reordenar los factores en el numerador y denominador se llega a que:

25 258 7

9 6

7 6

9 8

p qp q

qp

=−

por tanto,25 25

8 7

9 6

p qp q

qp

⋅⋅

=

Ejemplo 14

Page 57: Libro de matematicas 9no grado

49

Compruebe lo aprendido.

I. Utilice la propiedad de la potenciación apropiada para resolver correctamente cada ejercicio.

1. (1,21)3

2. (0,013)4

3. (0,02)5

4. −

3

4

3

5. 0 2

0 3

3

3

,

,

( )( )

6. 0 5

10

4

4

,( )

7. 25

0 53

,( )

8. (-0,1)7

9. 0 004

0 0002

3

3

,

,

10. 1 33

2 661 332 66

2 2

4

,,

,,

( )⋅

11. [(0,11)3]4 + (0,2)2

12. 69

69

2 31

4

( )⋅

−−

Recuerde

La división ab

cd

÷ de

dos fracciones, se

realiza multiplicando

la primera fracción

por la segunda

fracción invertida,

esto es:

ab

cd

abdc

÷ = ⋅

Page 58: Libro de matematicas 9no grado

50

II. Exprese como una potencia:

a. x3y3

b. u5 ∙ v5

c. p3 7( )

d. zw

5

5

e. ee

7

5

f. a7. a2008

g. x yx y

3 5

3 5

h. ab b

3 4

2 10

( )⋅

i. a xb

a xb

2 3

3

3 2

2⋅

j. m uvm m uv

2 3

4 3 5

1( )⋅( )

k. 6 36 2

4 3

4 5

6 8x y

z wx y

z w÷

III. Simplifique

a. 510

2 3 4

3 5

ab c bb a

( )

b. pp

6

4

c. mm

5

8

d. u vu v

6 8

2 6

e. u vu v

6 8

2 6

f. x yxy

3 4

7

g. a b ca b c

4 3 6

2 7 4

h. x y zy z x

5 3 4

5 7 2

i. ab

abc

b

c

4 3

2

2013

3 4

( )( )

ii

IV. Exprese como múltiplo de una potencia de 10

a) 17 000 b) 510 000 c) 312 000 000 000 000 000

Page 59: Libro de matematicas 9no grado

51

V. Suponga que a es un número real y que n denota un número natural arbitrario.

■ ¿Qué valores toman las potencias 0n y 1n?

■ Si a es positivo, ¿es an un número positivo?

■ Si a es un número negativo, ¿en qué casos es an un número negativo? ¿Cuándo es positivo?

VI. Sea a un número real tal que a ≠ 0 , a ≠ 1. En cada caso determine todos los valores de m y n tales que:

a. [(2,3)m]n = (2,3)114

b. [(-12)m]n = (-12)2013

c. (0,001m)n = (0,001)322

d. [(1,32)m]n = (1,32)25

Potencia de base real y exponente nulo

Consideremos de nuevo la ley de los exponentes: Para todo número real a no nulo, se cumple:

a =aa

=10m

m

Potencia de exponente 0

Al elevar cualquier número real no nulo al exponente cero el resultado es 1

Si m > n. Si admitimos que m coincida con n, tendríamos m - n = 0, y am = an, lo cual sugiere definir, para todo real a ≠ 0,

a =aa

=10m

m

Esto nos conduce a la siguiente definición:

Para todo número real a ≠ 0, a0 = 1

Por ejemplo

2013° = 1

(56 000 000)o = 1

Explique

¿Por qué toda potencia de 5, con exponente entero positivo, termina en 25?

Page 60: Libro de matematicas 9no grado

52

Evalúe la expresión:

22 0,2 013 + 46,768 222,56

223 000 123 0

( ) ⋅ ( )

Como la cantidad dentro del paréntesis es no nulo, podemos elevarla a cero; el resultado es 1, de acuerdo con la definición de potencia real y exponente nulo.

Sea p un número diferente de cero. Simplifique la expresión:

[(2p)56]0 ∙ (2p)56°

Por definición de potencia de exponente nulo:

[(2p)56]0 = 1

y

560 = 1

Luego,

[(2p)56]0 ∙ (2p)56° = 1 ∙ (2p)1 = 1 ∙ 2p = 2p

Potencias de base real y exponente racional

Recuerde, reflexione y concluya

Para decidir si un número es inverso de otro, basta multiplicar los números. Si el resultado es 1, la respuesta es afirmativa. Si el producto no es 1, entonces ninguno de los números es el inverso del otro. Por ejemplo,

1

2 es el inverso de 2

Ya que 1

2 ∙ 2 = 1. Por la misma razón,

2 es en inverso de 1

2.

En general, decir que,

1a

es el inverso de a,

Recuerde

El inverso multiplicativo de un número real no nulo, o el inverso, de un número, es aquel número que multiplicado por este da 1.

1a

es el inverso de a, por tanto: 1 1

aa⋅ =

Ejemplo 15

Ejemplo 16

Page 61: Libro de matematicas 9no grado

53

equivale a afirmar que “a es el inverso de 1a

”,ya que en ambos casos estamos aseverando que el producto de a y 1

a es igual a 1.

Una de las propiedades de los números reales establece que todo número real a, no nulo, tiene inverso multiplicativo. El inverso de a se denota por a-1.

Esto nos define las potencias de números reales para cuando el exponente es -1.

Por ejemplo,

18

=8-1

Ya que el inverso de 1

8 es 8, puesto que 8

1

8 = 1.

Compruebe lo aprendido.

Escriba a la par del concepto, la simbología correspondiente.

1. El inverso multiplicativo de 0,23

2. El inverso multiplicativo de π

3. El inverso del inverso de π

4. El inverso de a-1

Cocientes de números reales.

El concepto de inverso permite definir cocientes de números reales. En el caso del cociente a

b de dos enteros a y b, se cumple:

abab

= ⋅1

Definición: Si a y b son números reales, donde b ≠ 0, el cociente de a y b se define como:

aba b= ⋅ −1

Por ejemplo 0,1

2 debe interpretarse como el producto de 0,1 por el

inverso de 2 .

Es decir,0 1

20 1 2

1, ,= ⋅( )−

Page 62: Libro de matematicas 9no grado

54

Compatibilidad de la multiplicación con la igualdad.

Si a = b, ∀ k ∈ ℝ,

entonces a · k = b · k

Compatibilidad de la división con la igualdad.

Si a = b, ∀ k ∈ ℝ,

entonces ak

bk

=

El inverso de 2 no es racional, pues de serlo, también lo sería 2 .

Si a,b,c y d son números reales con b ≠ 0 y d ≠ 0, y si además se tiene que a = c y b = d, entonces:

a = c

y

b-1 = d-1

de donde, por la compatibilidad de la multiplicación con la igualdad, se obtiene que:

a · b-1 = c · d-1,

es decir,ab

cd

=

Por tanto la toma de cociente también es compatible con la relación de igualdad.

Consideremos un número real arbitrario a ≠ 0. Como a-1 representa el inverso de a, esto equivale a decir que:

a es el inverso de a-1,

obtenemos que:

a = (a-1)-1

Si a y b son números reales distintos de cero, entonces, por definición

a ∙ a-1 = 1 y b ∙ b-1 = 1

A partir de estas igualdades, utilizando la compatibilidad de la multiplicación con la igualdad, y agrupando adecuadamente, demuestre que a-1b-1 es el inverso de a

b.

Page 63: Libro de matematicas 9no grado

55

Compruebe lo aprendido.

Indique en qué parejas de números, cada uno el inverso del otro

1. 5 y 1

5

2. 3

4 y 8

3. 1

8 y 8

4. 25

52

y

¿Cuál es el inverso de 1

3? y ¿De

7

4?

Si a y b son enteros distintos de 0, ¿cuál es el inverso de b? y ¿El de a

b?

Halle el valor entero de x tal que

(7x)2013° = 14 ∙ (324 000 000)0

En los siguientes ejercicios complete y justifique su respuesta

9-11) 1

7

-1

2) −

9

5

1

3)

4

7

1

4) 28

3

1

+

5)

Escriba cada cociente como el producto de un número entero y el inverso de otro número entero:

1. 2

5

2. 19

7

3. 1 989

2 014

4. 2318

5. 4271

31

5

1

6)

Page 64: Libro de matematicas 9no grado

56

Verifique que:abab⋅ =

1

1 1

por tanto, ab

1

1 es el inverso de ab

.

Al terminar este ejercicio habremos demostrado que para cualesquiera números reales a ≠ 0 y b ≠ 0, se cumplen las siguientes propiedades:

Propiedades del inverso

1. (a-1)-1= a

2. (ab)-1 = a-1b-1

3. ab

ab

ba

= =− −

1 1

1

De la definición de cociente se llega al caso particular de que, para todo número real a ≠ 0:

1 1 1

aa= ⋅ −

es decir que:

En forma análoga definimos las potencias de exponente −n, para n natural arbitrario.

Definición. Para todo número real a ≠ 0 y para todo entero positivo n:

aa

nn

− =1

Expongamos algunos casos particulares de esta definición:

1. 0 181

0 18

3

3,

,( ) =

( )−

2. ππ

− =12121

3. 1

44

2013

2013= −

Matemático británico que en 1 993 logró demostrar el célebre Teorema de Fermat (formulado en 1 637) que establece que la ecuación an + bn = cn con a,b,c enteros, a,b > 0 y n ≥ 3 no tiene solución. Tuvieron que pasar más de 300 años para que este teorema pudiera ser demostrado.

Andrew Wiles

EL VALOR DE LA PERSEVERANCIA

Ejemplo 17

Page 65: Libro de matematicas 9no grado

57

Evalúe sin hacer uso de la calculadora:

(0,25)-3.

Por definición,

0 251

0 25

3

3,

( , )( ) =

pero,

0 2525

100

25

25 4

1

4

1

4

1

64

3

3 3 3

3,( ) =

=

=

= =

Al sustituir en la primera igualdad obtenemos

0 251

1

64

643

,( ) = =−

Evalúe la expresión:

0 03

0 2

3

,

,

sin utilizar calculadora

Hasta aquí hemos definido las potencias de base real y exponente entero. Puede probarse, sin mucha dificultad, que para estas potencias también valen las leyes de los exponentes siempre que los cocientes y las potencias involucradas existan.

Leyes de los exponentes

1. am ∙ an = am + n

2. (am)n = amn

3. an ∙ bn = (a ∙ b)n

4. ab= ab

n

n

n

5. aa= a

m

nm-n ; a

a= 1a

m

n n-m

Observaciones

• Si un exponente es negativo, la base debe ser diferente de cero.

• En cada cociente el denominador debe ser distinto de cero.

Ejemplo 18

Page 66: Libro de matematicas 9no grado

58

Exprese el número como una fracción ab

, donde a y b son números enteros, b ≠ 0

1. −

3

2

4

Solución:

= −

− −3

2

3

2

4 14

Potencia de una potencia

=

-

2

3

4

Inverso de un cociente

= −( ) ⋅

1

2

3

4

Propiedad del Opuesto

= −( ) ⋅

1

2

3

4

4

Potencia de un producto

= 2

3

4

4 Potencia de un cociente

= 16

81 Desarrollando potencia

2. 5

3

3

5

3

2

6

4⋅

Al multiplicar y reordenar términos obtenemos:

5

3

3

5

5 3

3 5

5

5

3

3

3

2

6

4

3 6

2 4

3

4

6

2⋅ =

⋅⋅

= ⋅

Luego, por la ley 5,

5

5

3

3

1

53

3

4

6

2 4 3

6 2⋅ = ⋅−−

= ⋅ 1

53

1

4

= 81

5

Simplifique 4x a2a x

4 -

6

3

4−

Ejemplo 19

Ejemplo 20

Page 67: Libro de matematicas 9no grado

59

Reordenando términos y expresando el cociente como un producto de fracciones tenemos que:

4

2

4

2

4 3

4 6

4 4

3 6

x aa x

a xa x

− =

= 4

2

4

3

4

6⋅ ⋅aa

xx

= 2ax

4 3

4 6

1−−⋅

= 2ax2

¿Qué propiedades de las operaciones con números reales son necesarias aplicar para llegar al resultado?

Por la ley 5, si n es un entero positivo y a ≠ 0, entonces

10

0

aaa

a an nn n

− −− −( )= = =

Además, por definición de potencia de exponente negativo

aa

nn

− =1

Por tanto, para simplificar fracciones cuyo numerador y denominador son producto de potencias podemos trasladar primero los factores que tienen exponente negativo, del denominador al numerador, o viceversa, según sea el caso. Por ejemplo,

x zy

yx z

− −

− =3 2

5

5

3 2

Simplifique la expresiónx y zx y z

5 5 2

2 3 7

− −

Por la ley 5 de los exponentes, dejamos cada variable en el lugar donde tiene mayor exponente. El nuevo exponente será igual al exponente mayor menos el menor:

x y zx y z

xy z

xy z

5 5 2

2 3 7

5 2

3 5 7 2

3

2 9

− −

− − −( ) − −( )= =

Ejemplo 21

Page 68: Libro de matematicas 9no grado

60

También se puede trasladar primero los términos que tienen signo negativo cambiando el signo del exponente, y luego aplicar las reglas 1 y 5. Así,

x y zx y z

x yx y z z

5 5 2

2 3 7

5 3

2 5 7 2

− −

− =

=−

− +

xy z

5 2

5 3 7 2

=xy z

3

2 9

Compruebe lo aprendido.

I. Exprese como potencia de a, o de x, o bien de y.

1. 16a−

2.

x

3. 1 17 2x x⋅

4. yy

5

16

II. Simplifique expresando el resultado con exponentes positivos.

1. a a6 12⋅ −

2. 28

12

2 7

3 4

x yx y

3. xy x

− −

12

5 4

4. 2 86

34

2

xy y( ) ( )−

5. xy x

− −

12

5 4

6. 56

164 5

u vv u

s s− −

7. x yy x

3 7

3 3

− −

8. 1

2

12

a a+( )−

9. 1

39

5 2

3

7x y x−

( )

Reforzamiento.

Aplique las propiedades de los exponentes y simplifique las siguientes expresiones:

10

10

5

34

25

200120x

xx

( )( )

⋅ ( )

u v

wzw vu z

− − −

( )32

4

3 2

5 3.

b bb

b+( )

+( )−

−1 3

2 3

2

1.

−( ) ( )− − −4 3

2 47

3 12

h q h q

Page 69: Libro de matematicas 9no grado

61

Actividad en grupo

Utilizando las propiedades de las operaciones con números reales y las leyes de los exponentes constate la certeza de las siguientes expansiones:

1. (a + b)0 = 1

2. (a + b)1 = 1a + 1b

3. (a + b)2 = 1a2 + 2ab + 1b2

4. (a + b)3 = 1a3 + 3a2b + 3ab2 + 1b3

5. (a + b)4 = 1a4 + 4a3b + 6a2b2 + 4ab3 + 1b4

Las diagonales de la tabla siguiente están compuestas por los coeficientes de estas expansiones.

1 1 1 1 1

1 2 3 4

1 3 6

1 4

1

El triángulo que conforman estos números se denomina triángulo de Pascal. Noten que en la tabla de arriba los valores de la primera fila y la primera columna son todos iguales a uno. Observen cómo se relaciona cada uno de los restantes números con los números adyacentes de la diagonal anterior.

Puede que se tenga una mejor visión del triángulo de Pascal, si a la tabla de arriba se le aplica un giro de 45 grados a favor de las manecillas del reloj. En tal caso las diagonales del triángulo inicial se convierten en filas del triángulo resultante.

Matemático, físico, filósofo y teólogo francés. Considerado el padre de las computadoras.

Blaise Pascal

(1 623 - 1 662)

Page 70: Libro de matematicas 9no grado

62

Si observamos con detención nos daremos cuenta que los coeficientes del desarrollo de (a + b)n presentan las siguientes características:

1. Los términos primero y último tienen coeficiente a la unidad.

2. Los coeficientes organizados de varios desarrollos del binomio (a + b)n, con n tomando valores consecutivos a partir de cero, dan origen a la formación de un triángulo con las siguientes propiedades:

a. Cada coeficiente distinto de uno, es la suma de los coeficientes adyacentes de la fila anterior.

b. Trazando una línea central en el triángulo, los números equidistantes de cada fila, son iguales. Es decir, hay simetría con respecto a la línea central.

c. El número de coeficientes de cada caso es igual al exponente aumentado en uno.

Escriba los valores de la siguiente fila del triángulo de Pascal. Los valores correctos son los coeficientes de la expansión de (a + b)5.

En la expansión de (a + b)n, el exponente de a despunta con el valor de n y luego, en cada nuevo término va disminuyendo de uno en uno hasta llegar a cero, entre tanto, el exponente de b, arranca con el valor de cero y va aumentando de uno en uno hasta alcanzar del valor de n en el último término.

“Un Matemático es un quijote moderno que lucha en un mundo real con armas imaginarias.”

P. Corcho

"El valor de la felicidad eterna es infinito."

Blaise Pascal

¡Importante!

La raíz n-ésima de un número negativo a, existe si n es impar. En tal caso

− =−a an n

Page 71: Libro de matematicas 9no grado

63

Determinar los valores de las filas 7 y 8 del triángulo de Pascal y encuentren las expansiones de (a + b)7 y (a + b)8.

En el siguiente segmento vamos a considerar las potencias con base real y exponente fraccionario del tipo 1

n, donde n es un entero no nulo.

Potencias de base real y exponente racional

Recuerde, reflexione y concluya

I. ¿Qué número elevado a 6, da como resultado 15 625?

Para responder a esta pregunta descompongamos el número 15 625 en sus factores primos. La descomposición que muestra en la parte izquierda indica que:

15 625 = 56.

Por tanto el número buscado es 5.

II. ¿Qué número elevado al cubo es igual a 343?

III. Complete encontrando la base que corresponda de manera que se obtenga una proposición verdadera.

1. ( )3 = 64

2. ( )5 = 32

3. ( )2 = 1 316

4. ( )3 = 1 331

5. ( )7 = 0

6. ( )13 = 1

IV. Indique cuáles de los siguientes números son iguales a una potencia de algún número entero.

a) 5 607 b) 1 316 c) 147 d) 1 728 e) 2 401

Matemático francés, gran divulgador del método científico, realizó estudios en las 4 grandes divisiones de la Matemática: Aritmética, Álgebra, Geometría y Análisis.

Jules-Henri Poincaré

(1 854- 1 912)

15 625 53 125 5

625 5125 525 55 51

Page 72: Libro de matematicas 9no grado

64

Raíz de un número real positivo

El número 0,0016 es la cuarta potencia de 0,2, e n forma equivalente se dice que 0,2 es la raíz cuarta de 0,0016 y se escribe:

0 2 0 00164, ,=

Análogamente 1,3 es la raíz cuadrada de 1,69:

1 3 1 69, ,=

pues,

(1,3)2 = 1,69.

Del mismo modo, 0,3 es la raíz cúbica de 0,027; simbólicamente:

0 3 0 0273, ,=

ya que,

0,027.

Puede demostrarse que para todo número real a > 0 existe un número real b > 0, tal que:

a = bn

En tal caso diremos que b es la raíz n-ésima de a y escribiremos:

b an=

Raíz de un número negativo

Sea a un número real negativo y n un número natural impar mayor que cero.

Como a < 0, el valor absoluto de a es –a, es decir –a = |a| > 0

Luego, puesto que todo número positivo tiene raíz n-ésima, existe un número real positivo c tal que –a = cn.

Al multiplicar ambos lados de la igualdad por -1 se obtiene:

a = (-1)cn.

Matemático suizo, el más prolífero de la historia. Euler escribía sus trabajos con la facilidad que un escritor fluído escribe a un amigo íntimo. Se necesitarían alrededor de 80 volúmenes en cuarto para la publicación de todas sus obras.

Leonard Euler(1 707- 1 783)

Page 73: Libro de matematicas 9no grado

65

Dado que n es impar se tiene -1 = (-1)n, por lo que al hacer la sustitución en la parte derecha, obtenemos

a = (-1)ncn.

Ahora aplicamos la tercera ley de los exponentes y llegamos a que

a = (-1(c))n,

es decir,

a = -cn.

Declaremos b = -c. Entonces b < 0 y a = bn.

De esta manera hemos probado que existe un número real negativo b tal que a = bn. Tal número se llama raíz n - ésima de a y escribimos:

a bn =

Puesto que 0n = 0 para todo entero positivo n, definimos:

0 0n =

Resumiendo, tenemos:

Sean a y b números reales y n un número natural mayor que 1. Se dice que b es la raíz n - ésima de a y se escribe:

a bn =

• Si a ≥ 0 y b es un número no negativo tal que a = bn.

• Si a < 0, n es impar, y b es un número negativo tal que a = bn.

De la definición tenemos que cuando a y b son números no negativos, o bien cuando a y b son negativos y n es impar, entonces

a b b an n= ⇔ =

El símbolo ⟺ se lee “sí y sólo si” o “cuando y solamente cuando”

Puesto que 25 = 32, la raíz quinta de 32 es igual a 2. Simbólicamente,

32 25 =

Para cada una de las siguientes expresiones escriba una equivalente usando radicales:

43 = b x5 = 23 y = x6

Ejemplo 1

Page 74: Libro de matematicas 9no grado

66

La raíz n-ésima también se escribe en forma exponencial como:

an1

es decir,

a an n1

=

En el radical an el número a es radicando o cantidad sub-radical y n se denomina índice. De modo que, el denominador del exponente y la base de la notación del exponencial son, respectivamente, el índice y el radicando en la notación radical.

Escriba un radical con índice 6 y sub-radicando igual a 3,14. Transcriba el resultado a notación exponencial.

Escribir una expresión equivalente a 7

1

3 = x , usando exponente entero.

Puesto que 7 7

1

3 3= , la igualdad planteada indica que x es la raíz tercera de 7, o lo que es lo mismo, 7 es la tercera potencia de x, es decir, 7 = x3. Por tanto, la expresión equivalente es

7 = x3,

o por simetría de la igualdad, x3 = 7.

Compruebe lo aprendido.

1. Para cada una de las siguientes igualdades, encuentre la expresión equivalente usando exponentes enteros

1. 2 3

1

64= b 2. x1

4 5= 3. 12

1

7 = a 4. x y=1

8

2. Hallar una expresión equivalente, pero con exponente fraccionario.

1. x5 = 6 2. u = a21 3. 57 = 78 125 4. π = b9

3. Suponga que a es un número real y que n es un número entero mayor que 1. Llene los espacios en blanco de modo que el discurso resulte correcto.

a. Suponga que an existe y que

a bn =

Importante

La raíz cuadrada de -1 no existe en el conjunto de los números reales ya que no existe, un número real b que cumpla que

b2 = -1.

En efecto, todo número real elevado al cuadrado da un número positivo o cero.

Cuando n = 2, el índice del radical se omite y escribimos:

a

en lugar de

a2

Ejemplo 2

Page 75: Libro de matematicas 9no grado

67

Esto significa que,

a = ( )n.

De acuerdo con la igualdad planteada inicialmente uno puede sustituir b por a bn = en la segunda igualdad para obtener:

a an= ( )( )

b. Asuma que a ≥ 0. Si b = an, entonces b ≥ 0 y a n=

La primera igualdad indica que podemos sustituir b por an en la segunda igualdad, con lo cual se obtiene:

a nn= ( )

c. Suponga que a < 0 y que n es impar. Si b = an, entonces b < 0 y a n=

De acuerdo con la primera igualdad, al hacer la sustitución correspondiente en la segunda, obtenemos:

a nn= ( )

d. Considere que a < 0 y que n es par. Entonces an > 0

y an = |a|n por lo cual a ann = .

4. Use los resultados obtenidos en el punto anterior para evaluar cada expresión:

a. 2 68

8

8

,( )

b. −( )0 2355

,

c. 6966

d. −( )0 17

7 ,

e. 0 12 2 36 ,( )( )

f. −( )0 914

14 ,

¿Por qué?

Las raíces con índice par de números negativos, no existen en el ámbito de los números reales.

“Las Matemáticas no son un recorrido prudente por una autopista despejada, sino un viaje a un terreno salvaje y extraño, en el cual los exploradores se pierden a menudo.”

W.S. Anglin

Page 76: Libro de matematicas 9no grado

68

Leyes de los radicalesProducto de dos radicales del mismo índice

Sean dos números reales a y b. Supongamos que existen las raíces

a4 y b4 , y que u a= 4 y v b= 4 .

Traduzcamos estas expresiones a una forma equivalente usando exponente entero:

u4 = a y v4 = b

Al multiplicar a por b, ó lo que es lo mismo, u4 por v4, aplicando la tercera regla de las leyes de los exponentes, obtenemos que:

ab = u4 ∙ v4 = (u ∙ v)4

pero la igualdad,

ab = (u ∙ v)4

equivale a decir que u ∙ v es la raíz n-ésima de ab, es decir,

u ∙ v = ab4

Sustituyendo u y v por a4 y b4 , respectivamente, llegamos a la conclusión de que:

a b a b4 4 4⋅ = ⋅

Repita este esquema de razonamiento partiendo de las igualdades u a= 5 y v b= 5 .¿Qué resultado obtiene? ¿Es similar si el índice es 2? y ¿Si es 3?

¿Qué resultado general prefiguran los casos particulares considerados?

Simplifique 3 74 4⋅

De acuerdo con la regla anterior,

3 7 3 7 214 4 4 4⋅ = ⋅ =

Simplifique los siguientes productos:

1. 5 253 3⋅

2. 3 274 4⋅

Ejemplo 3

Page 77: Libro de matematicas 9no grado

69

Radical de un radical

Si m y n son enteros positivos y a es un número real para el cual existen las raíces am y amn , y si,

a bmn = ,

entonces, por definición de raíz n-ésima,

a bm n= ,

de donde, ahora por definición de raíz n-ésima,

a = (bn)m.

Luego, por las leyes de los exponentes,

a = bnm,

lo que en notación radical se escribe como:

a bnm = .

Pero, b fue elegido de tal manera que,

b amn=

así que, por transitividad de la igualdad, obtenemos:

a anm mn=

Simplifique la expresión:

πmn

De acuerdo con la regla que acabamos de verificar π πmn n m= ⋅

Simplifique:

a. e24

b. x43

c. a538

El símbolo de radical lo introdujo por primera vez el matemático alemán Christoph Rudolff en 1 525

Ejemplo 4

Page 78: Libro de matematicas 9no grado

70

Cociente de radicales del mismo índiceCuando las raíces y los cocientes involucrados existen, vale la siguiente ley:

ab

ab

n

nn=

Para demostrar este resultado, primero denotamos las raíces an y bn por u y v respectivamente:

u an= , v bn=

Luego trasladamos estas expresiones a la notación exponencial:

a = un, b = vn

Enseguida indicamos el cociente de a entre b, es decir, un entre vn y aplicamos las leyes de los exponentes.

ab

uv

uv

n

n

n

= =

De aquí obtenemos la igualdad:

ab

uv

n

=

Así, por definición de raíz n-ésima, se concluye que:

ab

uv

n =

Ahora solo resta sustituir u por an y v por bn en la última igualdad. Obtenemos:

ab

ab

n

nn=

Simplifique el radical64

2

5

5

Tenemos

64

2

64

232 2 2

5

5

5 5 55= = = =

Matemático alemán, defendía que la aritmética debía estar fundada en los números enteros prescindiendo de los irracionales e imaginarios.

Leopold Kronecker (1 823 - 1 891)

Ejemplo 5

Page 79: Libro de matematicas 9no grado

71

Resumiendo, tenemos que, si a, b son números reales y m, n son enteros positivos, y las raíces y los cocientes implicados existen, entonces tienen lugar las

Leyes de los radicales

a b a bn n n⋅ = ⋅

ab

ab

n

nn=

a amn nm=

Otras propiedades de los radicales son:

a ann( ) = , si an existe

ann = a, si a ≥ 0.

ann = a, si a < 0 y n es impar

ann = |a|, si a < 0 y n es par

Por ejemplo,

a. 2 299 = b. −( ) = −3 3

55

c. −( ) = − =3 3 34

4 | |

Ahora podemos definir las potencias de exponente racional

Definición de potencia de exponente racional

Si mn

es un número real y n es un entero mayor que 1, y si es un

número real tal que existe, entonces,

1. a an n1

= 2. a amn n

m= ( )

En esta definición, a ≠ 0 cuando m sea negativo.

Para el caso en que a = 9, m = 3 y n = 2, tenemos :

9 9 3 27

3

2 23

3= ( ) = =

Evaluar cada radical

a) −( )0 000322

5, b) −( )0 000323

5,

Antes de la creación del símbolo se utilizó la letra R para indicar la extracción de raíz.

Así, en lugar de 5 se escribía R5.

La acción del operador R llegaba hasta donde comenzaba un espacio en blanco.

Por ejemplo, en lugar de x + −5 6 se escribía

R(x + 5) - 6

En el tiempo que se usaba la letra p para la suma y la m para la resta, esto se vería así:

R(xp5)m6

Ejemplo 6

Page 80: Libro de matematicas 9no grado

72

Puesto que (-0,2)5 = -0,00032, se tiene:

−0 000325 , = -0,2.

Luego,

−( ) = −( ) = −( ) =0 00032 0 00032 0 2 0 42

5 52 2

, , , ,

y

−( ) = −( ) = −( ) = −0 00032 0 00032 0 2 0 083

5 53 3

, , , ,

Cuando la raíz an existe, tiene lugar la igualdad a amn mn= para todo

entero m y todo entero n > 1.

En efecto, de la definición de potencia de exponente entero positivo, y de la primera ley de los radicales, se deduce, que si a es un número real y m es un entero positivo, y si existe an , entonces,

a a a a a a a anm

n n n n mn( ) = ( )( ) ⋅ ⋅ ( ) = ⋅ ⋅ ⋅ =... ...

m veces m veces

Si m es par, entonces am ≥ 0 y la raíz amn existe. Si a es negativo, entonces para que exista an , n debe ser negativo y, en tal caso también existe la raíz amn . Esto prueba que:

a amn mn=

£ Se deja como ejercicio verificar que cuando a ≠ 0 y m ≤ 0, y la raíz amn existe, entonces también vale la igualdad:

a amn mn=

Exprese como un solo radical.

x x−

⋅3

5

7

5

Expresando cada factor como un radical y por primera ley de los radicales, tenemos

x x x x x x x−

− −⋅ = ⋅ = =3

5

7

5 35 75 3 75 45

"Lo que oyes lo olvidas, lo que ves lo recuerdas, lo que haces lo aprendes."

Proverbio chino

Ejemplo 7

Page 81: Libro de matematicas 9no grado

73

Las leyes de los exponentes valen también para exponentes racionales cuando las potencias y los cocientes involucrados existen.

Escriba en forma de radical cada una de las siguientes expresiones

1. 6 6

5

3

2

3⋅ 2. x

y

3

4

2

3

Por las leyes estudiadas anteriormente, tenemos que:

6 6 6 6 653

23

53

23

73 73⋅ = = =

+ y x

y

xy

xy

xy

34

34

34

3

4

3

34=

=

=

Escribir la siguiente expresión como un solo radical.

xx

x

x

53

76

5

3

7

6

=

Enseguida aplicamos la ley de los exponentes y la definición de raíz:

xx

x

xx x

53

76

5

3

7

6

5

3

7

6

1

2= = =−

y finalmente; por la definición de raíz:

xx

x x53

76

1

2= =

Radicales equivalentes

Si mn

y pq

son fracciones equivalentes, entonces obviamente las

potencias amn y a

pq , si existen, deben ser iguales, así se tiene que:

mn

pq

a amn

pq= ⇒ =

La validez del caso recíproco está garantizada cuando a es un número positivo diferente de 0 y 1.

Recuerde

Dos fracciones ab

y cd

son quivalentes, es decir, ab

cd

= , sí y solo si

a · d = b · c

Por ejemplo, 2

5

10

25=

porque

(2)(25) = (10)(5)

Ejemplo 8

Ejemplo 9

Page 82: Libro de matematicas 9no grado

74

Esta igualdad en radicales se expresa como:

a amn pq=

Dado un radical, podemos obtener uno equivalente multiplicando el índice y el exponente del radicando por un mismo número natural.

En efecto, mediante tal acción, las potencias asociadas tendrán exponentes fraccionarios equivalentes. Mediante este método, llamado amplificación del radical, se pueden obtener infinidad de radicales equivalentes

Amplificar el radical h54

Multipliquemos el exponente del radicando y el índice del radical por dos. Obtenemos el radical equivalente:

h h54 108=

Compruebe lo aprendido.

Encuentre otros radicales equivalentes al radical dado en este ejemplo.

Simplificación del radical.

Otra forma de obtener un radical equivalente es dividir el exponente del radicando y el índice del radical por un divisor común.

Simplificar

x2454 .

Dividamos el índice del radical y el exponente del radicando por 3:

x x2454 818=

Luego x x818 49=

Simplifique el radical dado en el ejemplo 11, de manera que el exponente del radicando y el índice del radical sean primos relativos.

Diremos que un radical es irreducible cuando la fracción del exponente de la potencia asociada es irreducible.

Dos números naturales son coprimos o primos relativos si su máximo común divisor es igual a 1.

Una fracción es irreducible, si el máximo común divisor del numerador y el denominador es igual a 1

Importante

mn

mknk

a a

a a

mn

mknk

mn mknk

=

=

=

Ejemplo 10

Ejemplo 11

Page 83: Libro de matematicas 9no grado

75

En otras palabras, un radical es irreducible si el índice del radical y el exponente del radicando son primos relativos.

Obtener un radical irreducible equivalente a x1620

Escribimos el radical dado en forma exponencial, simplificamos la fracción del exponente hasta obtener una fracción irreducible y luego pasamos el resultado a la forma exponencial.

x x x x16201620

45 45= = =

Otra manera de llegar al resultado consiste en dividir el índice del radical y el exponente del radicando entre su máximo común divisor. En efecto, con tal acción la pareja de números resultantes serán primos relativos, por lo cual el exponente de la potencia asociada al radical resultante será una fracción irreducible.

Hallar un radical irreducible equivalente a x2030

El máximo común divisor de 30 y 20 es 10, por lo que dividiendo el exponente del radicando y el índice del radical por 10, obtenemos que:

x x2030 23=

donde el radical de la parte derecha es irreducible.

Introducción y extracción de factores en un radical

Para introducir un factor dentro de un radical se eleva el factor a la potencia que indica el índice y se escribe dentro, así:

b a b an nn=

Si algún factor del radicando tiene como exponente un múltiplo del índice, como ocurre con x6 en el radical

x y6 23

entonces podemos extraer dicho factor, pero cambiando el exponente por el cociente de la división entre el exponente original y el índice del radical.

El máximo común divisor de dos o más números enteros es el mayor de los divisores comunes de dichos números.

Ejemplo 12

Ejemplo 13

Page 84: Libro de matematicas 9no grado

76

Supongamos que un factor del radicando tiene por exponente un número mayor que el índice, como ocurre con el factor x7 en el radical

x y7 23

En tal caso podemos expresar el exponente como la suma de un múltiplo del índice del radical y un número menor que dicho índice.

x y x y x x y7 23 3 2 1 23 2 3 1 23= ⋅ =⋅ + ⋅ ,

en seguida aplicamos la ley de los exponentes para expresar el factor como un producto de dos factores, uno de los cuales tiene como exponente a un múltiplo del radical. A este factor le aplicamos la extracción anteriormente descrita en los párrafos anteriores. El otro factor queda dentro del radical.

x y x x y x xy7 23 6 1 23 2 23= ==

Observación. Dados dos números naturales m y n, para expresar m como la suma de un múltiplo de n y un número menor que n, efectuamos la división entera de m entre n; si c es el cociente de dicha división y r es el residuo, entonces la representación buscada es:

m = nc + r.

Compruebe lo aprendido.

Extraiga los factores necesarios para que el radicando resultante sólo contenga factores con exponentes menores que el índice del radical.

x y82 4634

Radicales semejantes

Dos o más radicales son semejantes si tienen el mismo índice y el mismo radicando. Pueden diferir solamente en el coeficiente que los multiplica.

Atendiendo a la propiedad distributiva, los radicales semejantes pueden sumarse o restarse:

r b s b r s bn n n+ = +( )

r b s b r s bn n n− = −( )

Algoritmo de Euclides

Si m, n ∈ ℤ, n ≠ 0, entonces, existen enteros únicos c y r, tales que:

m

m: dividendon: divisor, n ≠ 0c: cocienter: residuo

n n · c + r =

Radicales semejantes

r bn , s bn

5 94

, 3 94

Page 85: Libro de matematicas 9no grado

77

Es decir que, para sumar o restar dos radicales, se suman o restan los coeficientes.

Efectuar las operaciones indicadas

1. 3 5 8 54 4+

2. 7 93 3π π−

Por la propiedad distributiva tenemos:

1. 3 5 8 5 3 8 5 11 54 4 44+ = +( ) =

2. 7 9 7 9 23 3 3 3π π π π− = −( ) = −

Realizar las operaciones indicadas

3 5 7 135 5 5 5e e e e− − +

Agrupamos los coeficientes para obtener:

3 5 7 13 3 5 7 13 45 5 5 5 5 5e e e e e e− − + = − − +( ) =

Compruebe lo aprendido.

I. Complete usando la definición de raíz:

1. a b a b3 = ⇔ =

2. 8 85 = ⇔ =m m

3. 73 = ⇔ =t t

4. p q pk = ⇔ =

II. Determine el valor de las siguientes expresiones

π33;

−( )e 44

; −( )

6 133

3

,

III. Escriba cada cociente como un solo radical

1. 3

8

3

3

2. 6

3

5

5

3. 1004

4

4

ππ

Ejemplo 14

Ejemplo 15

Page 86: Libro de matematicas 9no grado

78

IV. Piense y analice, ¿por qué en los números reales no está definida la raíz cuadrada de -3?

V. ¿Cuáles de las siguientes raíces existen en el conjunto de los números reales: −53 , −64 , 0 20106 , , −7 , π?

VI. Simplifique:

1. e e53

34⋅

2. π− −⋅

58

65e

3. 3

1

5

3

8

( )

4. π− −⋅

75

74e

5. 237

37

π

π

( )

6. 0 732

0 733

3

4

5

2

,

,

( )( )

7. x y z15 12 53

8. a5040

9. x yx y

13 125

2 55 −

VII. Efectúe las operaciones indicadas.

a) 67 19 523 23 23a a a− +

b) 2 334 34 34m m m+ −

c) 6 5 2 3 3 4 2 3 4 2 33 3 3, , , , ,+ −

VIII. Escriba como un solo radical.

a) x x38

b) a753

IX. Escriba como una potencia de exponente racional.

a) x

1

b) 1

43 u

c) xx

25

55

d) a b34 3

e) x y38

f) y212

Page 87: Libro de matematicas 9no grado

79

Ejercicios de Cierre de Unidad

1. Escriba los siguientes radicales como potencias de exponentes fraccionarios:

a. 716

b. 45

c. x512

d. b34

e. 17 +( )x

2. Escriba las siguientes potencias como radicales:

a. 75

12

b. π1328

c. x35

d. 178+( )a

e. a b−( )32

3. Escriba un radical equivalente amplificando el radical dado.

a. 57 b. x47 c. y23 d. π 68 e. ( )a b+ 35

4. Escriba un radical equivalente simplificando el dado.

a. x3220b. a3645

c. u4812d. ( )a b− 2835

e. u v+( )3252

5. Escriba un radical equivalente irreducible al dado.

a. x5412 b. ( )x y− 46 c. u1272 d. 23

28

15

e. ( )1 1524 − x

6. Introduzca los factores dentro del radical.

a. 3 26

b. 5 33

c. 7 72

d. 12 32

e.

f. ( )a b c+ 23

7. Extraiga los factores del radical.

a. x306

b. 3 6 23 x yc. x y10 255

d. x194

e. x y15 125

f.

Page 88: Libro de matematicas 9no grado

80

8. Indique qué radicales son semejantes.

a. 3 104 ; 5 104 ; −4 104

b. 335 ; 4 85

c. 103 ; 105

9. Efectúe las operaciones indicadas.

a. 3 2 3 8 3 4 35 5 5 5+ − +

b. 7 3 5 176 6 6 6x x x x+ − +

c. 3 2 5 3 84 4 4mn mn mn− +, ,

d. 10 3 2 75 3 343x x x− +

e. 12 27 2 33 3b b b b− +

f. 3 24 54 2 150− +

g. 50 32 8+ −

10. Exprese como un solo radical.

a. 7 47

b.

c. x y

x

7 24

34

11. En cada uno de los ejercicios siguientes escriba como un radical equivalente con índice igual al mínimo común múltiplo de los índices de los radicales dados.

a. x23 ; y35

b. a34 ; b3 ; b26

c. 3 25 a ; 5 312 b

Page 89: Libro de matematicas 9no grado

Unidad 3

Factorización

El Gobierno Sandinista a través de sus instituciones realizó durante el periodo de la Alerta Roja (Abril 2014) una serie de actividades encaminadas a fortalecer los mecanismos de enfrentamiento de las emergencias sísmicas.

Las instituciones que conformaron el Gabinete de Seguridad Humana y Ciudadana, durante la Alerta Roja dieron cumplimiento a un modelo de trabajo que estaba encaminado a salvaguardar la vida de las familias y a brindar acompañamiento a los más afectados por los terremotos en los municipios de Managua, Nagarote, Mateare y La Paz Centro.

Fuente: 19 digital20 de Abril 2014

Page 90: Libro de matematicas 9no grado

82

FactorizaciónIntroducción

En distintas áreas de la matemática, la factorización juega un rol de enorme importancia en el tratamiento de los objetos de estudio.

En matemática, específicamente en Álgebra, factorizar un objeto significa descomponerlo como un producto de otros objetos de la misma naturaleza. En particular, factorizar un polinomio consiste en expresarlo como un producto de otros polinomios; cada polinomio en el producto es un factor del polinomio original.

Esta unidad está dedicada a la factorización de polinomios. Los conocimientos, habilidades y experiencias adquiridas en los cursos precedentes serán de gran utilidad, en particular, el estudio de los polinomios, y en especial, los denominados productos notables o productos especiales.

Extracción de Factor Común

Recuerde, reflexione y concluya

1. Antes de empezar es necesario ponerse al día con algunos conceptos y resultados de los cursos anteriores.

a. Explique qué es un monomio. y ¿un binomio? Ejemplifique

b. ¿Cuántos términos tiene un trinomio? Formule un ejemplo.

c. Multiplique (3x2)(5x3yz)

d. Simplifique la expresión (3m2)3.

e. Determine el grado de cada uno de los siguientes polinomios

a. 7x3 - 6x - 3

b. 6x2 + 8

c. 5x - 9

2. Halle el grado total de los siguientes polinomios

a. 5x2y7z

b. 8xy3 -3x2y2 + 5x2y + 7

En su estudio sobre los fundamentos del Álgebra introdujo un sistema de notación que hacía uso de letras en las fórmulas algebraicas.

Propiedad Distributiva

a (b + c) = ab + ac

a (b - c) = ab - ac

Recuerde

La igualdad es una relación simétrica, es decir:

Sí,

a = b,entonces,

b = a.

François ViêteMatemático francés

1 540-1 603

Page 91: Libro de matematicas 9no grado

83

c. Indique el término cúbico, el cuadrático, el lineal (es decir, el de grado 1), y el término constante del polinomio

3 + 8x - 6x3 + 35x2.

d. Si elevamos al cuadrado cada término del polinomio dado, ¿qué polinomio resulta?

• 2x - 5y • 3u - 7v • 6m5 - 11n3

e. ¿Y si cada término se eleva al cubo?

f. Extraiga raíz cuadrada a cada término del polinomio dado. ¿Qué polinomio se obtiene?

• 25x2 - 81w2 • 144m2 - 9n2 • 16p4 - 49q6

g. ¿Qué polinomio se obtiene si se extrae raíz cúbica a cada término de la expresión dada?

• 125x3 + 27y3 • 8m3 - 125n3 • 64k6 - 343r15

3. De acuerdo con la propiedad distributiva

3r (a + s) = 3ra + 3rs,

y de aquí, por simetría, se obtiene la igualdad equivalente

3ra + 3rs = 3r (a + s).

En forma similar, use la propiedad distributiva para desarrollar cada uno de los siguientes productos indicados.

a. 2x (y + z)

b. 5mn (p - r)

c. 7s (a + b - c)

d. 3pr (d - a - c)

Igual que en el ejemplo arriba expuesto, en cada caso usted obtendrá una igualdad, cuya parte izquierda es la expresión dada y la parte derecha es el desarrollo encontrado. Aplique la propiedad de simetría para obtener una igualdad equivalente.

4. En cada igualdad encontrada, ¿qué tienen en común los términos de la parte izquierda con el producto de la parte derecha?

5. Analice y reflexione. Sobre la base de los resultados observados, ¿qué estrategia de factorización puede plantearse?

“El álgebra es muy generosa. Siempre nos dice más de lo que le preguntamos.”

D'Alembert

Observe que 3r es factor común de los términos de la parte izquierda y del producto de la parte derecha.

Por simetría de la igualdad, la propiedad distributiva puede escribirse:

ab + ac = a (b + c)

ab -ac = a (b - c)

Page 92: Libro de matematicas 9no grado

84

6. Identifique los factores comunes de los términos de cada polinomio.

a. 3xyz + 3xzm b. π π2 2mns mnk+ c. ta + 2tb - t

7. Factorice cada polinomio usando la táctica obtenida en el punto anterior. ¿Qué factores intervienen en la factorización?

Seguramente usted habrá llegado a la conclusión de que, si una expresión es factor común de todos los términos de un polinomio, entonces dicha expresión aparecerá como un primer factor en la factorización del polinomio. El segundo factor es el cociente entre el polinomio y la expresión.

Factorice el polinomio 6mxy + 6mz.

En virtud de la propiedad distributiva, por estar 6m en ambos términos se puede escribir

6mxy + 6mz = 6m(xy + z)

El primer factor de la parte derecha es 6m, el factor común de los términos del polinomio.

Factor común

6mxy + 6mz = (xy + z) 6mxy + 6mz

xy + z

El otro factor se halla dividiendo el polinomio original entre 6m, o bien tachando 6m en cada término.

£ Identifique los factores comunes. Usando la propiedad distributiva encuentre, para cada una de las siguientes expresiones, un producto indicado equivalente.

1. 4tx + 4ty

2. bam + xam - cam

3. (x + y)m + (x + y)n

4. a(x + y) + b(x + y)

5. 7x2 + 11x2 - 2x5 + 9x4

6. 3(x + 1) - 5(x + 1) + x2(x + 1)

7. 34

34

xr xn+

8. 43

89

1615

23

3 7 5m m m m− + −

Matemático noruego que vivió toda su vida en extrema pobreza. Fué uno de los más grandes algebristas del siglo XIX. Demostró el Teorema General del Binomio

Niels Henrik Abel

(1 802 - 1 829)

Ejemplo 1

Page 93: Libro de matematicas 9no grado

85

El procedimiento utilizado en el ejemplo 1, en el vocabulario matemática se conoce como extracción de factor común. En realidad se trata de una aplicación de la propiedad distributiva, habida cuenta de la simetría de la igualdad.

En efecto, por la propiedad distributiva, las expresiones

ax + ay , ax - ay

son los desarrollos de los productos indicados

a(x + y) y a(x - y),

respectivamente, de modo que, por simetría de la igualdad,

ax + ay = a(x + y) y ax - ay = a(x - y).

Estas igualdades indican que para factorizar un polinomio cuyos términos tienen un factor común a, debe sacarse éste como un primer factor de la factorización buscada. Un segundo factor se halla sacando literalmente del polinomio el factor común a, es decir, borrándolo o tachándolo.

Se acostumbra poner a la izquierda el factor común pero, en virtud de la propiedad conmutativa de la multiplicación, bien puede ponerse a la derecha. Es decir,

xa + ya = (x + y) a = a (x + y)

xa - ya = (x - y) a = a (x - y).

El factor común a extraer en una factorización podría no ser un monomio como en el siguiente ejemplo.

Factorizar la expresión (x - 1) x + (x - 1)3

En este caso el factor común es x - 1,

(x - 1) x + (x - 1)3

lo extraemos(x - 1) ( )

reservando espacio después de él para escribir la suma de los otros factores, x, 3 , de los productos (x - 1)x y (2x + 1)3.

Finalmente,

(x - 1) x + (x - 1) 3 = (x - 1) (x + 3)

Observe que el segundo factor de la derecha se halla dividiendo la expresión de la parte izquierda entre (x - 1).

Conoce tu país!

El departamento con más municipios de Nicaragua es:

CHONTALES

Chontales “donde los ríos son de leche y las piedras de cuajada” cuenta con 14 municipios.

Ejemplo 2

(x - 1) x + (x - 1)3

x + 3

Page 94: Libro de matematicas 9no grado

86

Factorizar la expresión 4u (u - 5) - 7(u - 5).

En este ejercicio el factor común es u - 5. Los otros factores que lo acompañan en los dos términos de la expresión son 4u y 7. Escribimos entre paréntesis el factor común, y en otro paréntesis los otros factores

(u - 5) (4u - 7)

La factorización es:

4u (u - 5) - 7 (u - 5) = (u - 5) (4u - 7).

Observe que el segundo factor de la parte derecha de la igualdad se obtiene eliminando el factor común (u - 5) de la parte izquierda.

Como usted habrá notado en los ejemplos, el factor común a extraer puede ser un monomio o un polinomio de dos o más términos. En todos los casos tratados, este factor se distinguía fácilmente de un solo vistazo, de manera que la aplicación de la propiedad distributiva era inmediata. Sin embargo, esta no es la generalidad, de manera que en muchas situaciones se debe transformar el polinomio que se requiere factorizar y realizar algunos cálculos y manipulaciones algebraicas para poder visualizar el factor común.

Factor Común Monomio

Considere el polinomio 12x2y4z3w + 16x3y3z5r - 20x4y5z.

a. Halle el máximo común divisor de los coeficientes.

b. Identifique las letras que son comunes a todos los términos del polinomio y tómelas con su menor exponente.

c. Multiplique los resultados de los incisos a) y b).

Con este procedimiento usted puede visualizar el factor común a extraer para obtener la factorización del polinomio; es precisamente el monomio obtenido en este inciso c).

d. Factorice el polinomio dado, tomando el monomio encontrado en el inciso c) como un primer factor. ¿Cómo se halla el segundo factor?

£ Repita el ejercicio con el polinomio 5a2b3 - 45a4b.

Un monomio es divisor de otro monomio si el coeficiente del primero es divisor del coeficiente del segundo y cada literal del primero aparece en el segundo monomio con menor o igual exponente.

Recuerde

Un monomio es una expresión algebraica de un solo término igual al producto de un número por una o varias letras elevadas a potencias de exponente natural. El número por el cual se multiplican las variables se denomina coeficiente.

3x2y3zes un monomio con coeficiente igual a 3. La parte literal es

x2y3z

4u (u - 5) - 7 (u - 5)

4u (u - 5) - 7 (u - 5)

4u - 7

Ejemplo 3

Page 95: Libro de matematicas 9no grado

87

Actividad en grupo

1. Encuentre todos los divisores del monomio 12x3y2.

2. Halle todos los divisores comunes de 12x3y2 y 16x2 y5z.

El máximo común divisor (m.c.d.) de dos o más monomios es el monomio de mayor exponente y mayor grado que divide a todos los monomios dados.

3. Calcule el máximo común divisor de 12x3y2 y 16x2 y5z.

4. Halle los cocientes entre cada monomio 12x3y2, 16x2 y5z y el m.c.d. de ambos.

5. Descomponga cada monomio 12x3y2, 16x2 y5z como el producto del m.c.d. de ellos por el cociente correspondiente.

6. Factorice el polinomio 12x3y2 + 16x2 y5z.

7. Encuentre todos los divisores del monomio 12x3y2.

8. Factorice el polinomio 12x3y2 + 16x2 y5z.

Factorizar el polinomio 36x4 - 12x3 + 18x2.

El máximo común divisor de los coeficientes es 6. La letra x aparece en todos los términos del polinomio, la tomamos con su menor exponente. El máximo común divisor de los términos del polinomio es entonces 6x2. Dividimos cada término entre 6x2 y lo expresamos como el producto indicado del cociente por 6x2.

36x4 - 12x3 + 18x2 = 6x2 ∙ 6x2 - 6x2 ∙ 2x + 6x2 ∙ 3.

Saquemos ahora factor común,

6x2 ∙ 6x2 - 6x2 ∙ 2x + 6x2 ∙ 3 = 6x2(6x2 - 2x + 3).

La factorización es:

36x4 - 12x3 + 18x2 = 6x2 (6x2 - 2x + 3).

Observe que los términos del segundo factor de la parte derecha, son los que resultan de dividir los términos del polinomio original entre su máximo común divisor.

Compruebe lo aprendido.

Factorice los trinomios.

1. 43

83

103

52

72

92x x x+ +

2. 48m-7 - 12m-8 + 8m-5

3x2y

es divisor de

6x2y3

Ejemplo 4

El m. c. d. de

12x3y2

y

16x5yz

es

4x3y

366

64

22x

xx=

−= −

126

23

2x

xx

186

32

2xx

=

Page 96: Libro de matematicas 9no grado

88

Factor Común Polinomio

Cuando el factor común es un polinomio el procedimiento para factorizar es similar al caso en que dicho factor es un monomio:

Factorizar 12(x + 2)2(y - 3) + 14(x + 2)(y - 3)2

1. El máximo común divisor de los coeficientes 12 y 14 es 2.

2. Los polinomios que aparecen como factores comunes tomados con su menor exponente son (x + 2) y (y - 3);

3. El producto indicado de los resultados obtenidos en 1. y 2. es 2(x + 2)(y - 3). Este es el factor común a extraer.

4. Eliminamos el factor común 2(x + 2)(y - 3) del polinomio original. El polinomio que resulte será el segundo factor de la factorización del polinomio dado.

Por tanto, el polinomio 12(x + 2)2(y - 3) + 14(x + 2)(y - 3)2 ya factorizado es igual a

2(x + 2) (y - 3)(6x + 7y - 9)

El factor 6x + 7y - 9 es el cociente de la división del polinomio dado entre el factor 2(x + 2) (y - 3).

Algunas veces es necesario agrupar los términos del polinomio para obtener un factor común.

Factorizar el polinomio ax + bx + ay + by

Agrupamos los términos que contienen la variable x y en otro grupo los que contienen la variable y:

(ax + bx) + (ay + by).

Factorizamos cada grupo extrayendo factor común

x(a + b) + y(a + b).

Ahora el factor común polinomio es (a + b). Luego, la factorización es

ax + bx + ay + by = (a + b) (x + y).

Factorizar el polinomio 3x2 - 6xy - 4x + 8y

Agrupamos

(3x2 - 6xy) - (4x - 8y)

Ejemplo 5

Ejemplo 6

Ejemplo 7

12 2 32 2 3

6 22x y

x yx

+( ) −

+( ) −( )= +( )( )

14 2 32 2 3

7 32x y

x yy

+( ) −( )+( ) −( )

= −( )

Suma de los cocientes

6x + 7y - 9

x(a + b) + y(a + b)

Factor Común:

(a + b)

Otro factor

x(a + b) + y(a + b)

x + y

Page 97: Libro de matematicas 9no grado

89

A continuación factorizamos cada binomio:

3x(x - 2y) - 4(x - 2y).

Luego, extrayendo factor común obtenemos:

3x(x - 2y) - 4(x - 2y) = (x - 2y)(3x - 4).

Por tanto,

3x2 - 6xy - 4x + 8y = (x - 2y) (3x - 4).

Hallar la descomposición en factores del polinomio

a10 + a9 - 4a2 - 4a.

Agrupamos a10 con - 4a2 y a9 con - 4a:

a10 + a9 - 4a2 - 4a = (a10 - 4a2 ) + (a9 - 4a).

Luego extraemos factor común en cada grupo:

a10 + a9 - 4a2 - 4a = a2(a8 - 4) + a(a8 - 4)

Ahora el factor común de todo el polinomio es a8 - 4. Luego,

a10 + a9 - 4a2 - 4a = (a2 + a) (a8 - 4)

Pero, a2 + a todavía se puede factorizar como a(a + 1), de modo que:

a10 + a9 - 4a2 - 4a = a (a + 1) (a8 - 4).

Compruebe lo aprendido.

Factorice los siguientes polinomios:

1. a + b + 3ac + 3bc

2. m2 - 4n2 + m +2n

3. x3 - 3x2 + x - 3

4. ax - 2ay - 6by +36x

5. x4 - 2 - x + 2x2

Ejemplo 8

Conoce tu país!

El departamento con menos municipios de Nicaragua es:

GRANADA

Granada “la Gran Sultana” cuenta solamente con 4 municipios:

• Granada

• Diriomo

• Diriá

• Nandaime

Page 98: Libro de matematicas 9no grado

90

Ámbito de Factorización

La factorización de una expresión se realiza con respecto a un determinado dominio numérico D. Si se pide factorizar un polinomio en D, los coeficientes y los términos constantes de los factores deben ser elementos del dominio D, en este libro se factoriza en ℝ.

Las factorizaciones

1. x2 - 7x + 12 = (x - 3) (x + 4),

se realizaron en el dominio de los números enteros. En cambio,

2. x x x x2 73

2 23

3+ − = −

+( )

3. x x x2 3 3 3− = +( ) −( ) ,son factorizaciones en ℚ y �, respectivamente.

En efecto, en la primera factorización los factores

x - 3 y x + 4

son polinomios con coeficientes y término independiente en ℤ.

En la segunda factorización, aunque el segundo factor es un polinomio en ℤ , el primero tiene un término constante, , el cual no es entero, pero si racional.

En la tercera factorización, los términos independientes de los factores son números irracionales y por tanto números reales.

Compruebe lo aprendido.

1. Verifique que las tres factorizaciones son correctas efectuando los productos indicados de la parte derecha de la igualdad. ¿Qué productos especiales están implicados?

2. Compruebe que:

x x x2 5 5 5− = +( ) −( )

3. ¿En qué ámbito numérico ocurre esta factorización?

Ejemplo 9

“Mejor que de nuestro juicio, debemos fiarnos del cálculo algebraico.”

L. Euler

Page 99: Libro de matematicas 9no grado

91

Polinomio Irreducible

Un polinomio es irreducible en un dominio numérico D si no se puede expresar como el producto de dos polinomios de grados positivos y con coeficientes en D.

El polinomio x2 + 1 es irreducible en � y, por ende, en ℤ y en ℚ.

En efecto, si este polinomio no fuese irreducible en � , entonces se podría expresar como el producto de dos polinomios con coeficientes reales y de grado uno, es decir, para ciertas constantes reales a, b, c, d, se tendría la igualdad

x2 + 1 = (ax + b)(cx + d)

con

a ≠ 0 y c ≠ 0.

Luego la ecuación

x2 + 1 = 0,

sería equivalente a

(ax + b)(cx + d) = 0,

la cual tiene las soluciones reales

x ba

= − , x dc

= −

(Compruébelo sustituyendo en la última ecuación.) Por tanto, estos valores de x también serían soluciones en � de la ecuación inicial.

x2 + 1 = 0

Pero esto significaría que hay un valor real de x tal que x2 = -1, lo cual es imposible ya que el cuadrado de cualquier número real es un número no negativo.

£ ¿Por qué todo polinomio de grado 1 es irreducible en � ?

La factorización ocurre en determinado dominio numérico. Un polinomio puede ser irreducible en un dominio sin serlo en otro.

El polinomio x2 - 2 es irreducible en ℤ, pero no en �.

Conoce tu país!

El río más largo de Nicaragua es:

RÍO COCO

El río Coco ubicado en la región norte del país tiene una longitud de 680 Km.

Ejemplo 10

Observación

Page 100: Libro de matematicas 9no grado

92

Realmente como se comprobará posteriormente, el polinomio

x2 - 2

no se puede expresar como el producto de dos polinomios de grados positivos con coeficientes en ℤ , sin embargo, tiene lugar la igualdad

x x x2 2 2 2− = +( ) −( )

£ Compruebe la veracidad de esta igualdad efectuando el producto indicado de la parte derecha ¿Qué producto notable está implicado?

Los polinomios x + 2 y x − 2 son polinomios de grado 1 en �. Por tanto, el polinomio

x2 - 2

se puede expresar como el producto de dos polinomios de grado positivo en �. Esto significa que este polinomio no es irreducible en �.

De aquí en adelante, a menos que se diga lo contrario, cuando hablemos de factorización, se debe entender que el dominio numérico en consideración es el conjunto de los números enteros.

En consecuencia, factorizar un polinomio significará expresarlo como un producto de polinomios irreducibles en ℤ , es decir, con coeficientes en ℤ .

Compruebe lo aprendido.

I. Factorice cada uno de los siguientes polinomios:

1. 13m3n - 13m2n2 + 13mn3

2. 2y(x - 3) + 3m(x - 3)

3. 5a4b + 5a3b2 + 5a2b3

4. (m + n) p - (m + n)r

5. 34m³n³ - 51m²n6. 5z - zw + 15 - 3z7. 18x3z - 30x2z2 + 42xz8. 12x² - 9x + 4x - 3

9. 7pq4 - 7p2q3 + 7p3q2

10. x² + 4x - 15x - 60

11. 3x3yz7 - 9xy2z3 + 9x5y7z

12. (x2 + 1) x + (x2 + 1) ∙ 1

13. (x + 17) x + (x + 17)12

14. (x2 + 1) x - (x2 + 1) ∙ 1

15. (x4 - 3)(x2 + x + 1)+(x4 - 3)

16. x2y2 + ay2 + ab + bx2

17. 48a⁹b²c⁶ + 40a⁵b³c⁴ - 24a⁴b⁴c⁴

18. 6x3 - 9x2 + 4x - 6

19. 4m5 + 4n5 + 3m + 3n

20. 2av2 + 3u3 + 2auv - 3uv2 - 2au2 - 3u2v

21. 3a - 4b + 4ab

Reforzamiento.

¿Cuál de los siguientes binomios es irreducible?

a. x2 - 10

b. m2 + 100

c. a2 - 54

d. z2 + 8

Ejemplo 11

Page 101: Libro de matematicas 9no grado

93

II. Indique el ámbito de factorización de cada una de las siguientes descomposiciones factoriales:

• x2 - 8x + 15 = (x - 5) (x - 3)

• x x x x² + − = −−

+

+

3 1 13 3

213 3

2

III. ¿Por qué un polinomio de grado uno en ℤ es irreducible?

Factorización de Diferencia de Cuadrados

Una diferencia de cuadrados, como su nombre lo indica, es una expresión de la forma:

a2 - b2

Por ejemplo, la expresión:

4x2 - 81y2

es una diferencia de cuadrados pues,

• 4x2 es el cuadrado de 2x porque (2x)2 = 4x2

• 81y2 es el cuadrado de 9y porque (9y)2 = 81y2

• La expresión dada es la resta de 4x2 y 81y2

I. Indique cuáles de las siguientes expresiones son diferencias de cuadrados perfectos

1. 25m2 - 81n2

2. 144p2 - 100h4

3. 144x6 - 200y2

4. 25a2 + 9b2

5. 64m3 - 128n6

6. x10 - y10

Reto

Factoriza los polinomios

x4 + 3x2 + 2

e2 + 14e + 40 + ek + 10k

Discútelos y comparte la solución con tus compañeros

“Defiende tu derecho a pensar, porque incluso pensar de manera errónea es mejor que no pensar.”

Hipatia

Page 102: Libro de matematicas 9no grado

94

Recuerde, reflexione y concluya

I. ¿Qué característica tienen en común las siguientes expresiones? Dé una descripción que las englobe a todas.

1. (u + v)(u - v).

2. (5m + 3n)(5m - 3n).

3. (2x + y)(2x - y).

4. (7xy + 2z)(7xy - 2z).

II. Efectúe los productos arriba indicados. ¿Qué forma general tienen los resultados?

III. Extraiga raíz cuadrada al minuendo y al sustraendo de la diferencia dada: 16m2 - 9n2.

IV. ¿Qué obtenemos si multiplicamos la suma y la resta de los resultados de la acción anterior.

V. ¿Cuál es la factorización de 16m2 - 9n2?

VI. ¿Qué ocurre si multiplicamos la suma y la resta de las raíces cuadradas del minuendo y el sustraendo de la expresión 81u2 - 4p2?

VII. ¿Cuál es la factorización de 81u2 - 4p2?

Del estudio de los productos notables sabemos que la suma por la diferencia de dos términos es igual a la diferencia de los cuadrados de los términos correspondientes. Por ejemplo, el producto indicado

(2x + 5) (2x - 5)

es igual a la diferencia del cuadrado de 2x y el cuadrado de 5:

(2x + 5)(2x - 5) = (2x)2 - (5)2,

es decir,

(2x + 5)(2x - 5) = 4x2 - 25.

De aquí, por simetría, obtenemos la igualdad equivalente:

4x2 - 25 = (2x + 5) (2x - 5),

Conoce tu país!

El río más corto de Nicaragua es:

RÍO OCHOMOGO

El río Ochomogo, ubicado en la región del Pacífico, cuenta con una longitud de 25 Km.

Page 103: Libro de matematicas 9no grado

95

resultando que la descomposición factorial de 4x2 - 25 consta de dos factores, el primero de los cuales es la suma de las raíces cuadradas de 4x2 y 25 y el segundo factor es la diferencia entre esas mismas raíces.

b2

a b a b a b2 2− = +( ) −( )

a2

En general, de los productos notables se sabe que:

(a + b)(a - b) = a2 - b2.

Luego, aplicando la simetría de la igualdad se obtiene que la descomposición factorial de una diferencia de cuadrados, a2 - b2, es igual al producto de la suma de las raíces cuadradas del minuendo y el sustraendo por la diferencia de esas mismas raíces, es decir,

a2 - b2 = (a + b)(a - b).

Observe que el minuendo del segundo factor de la descomposición factorial es la raíz cuadrada del minuendo de la diferencia de la parte izquierda de la igualdad.

25

4 25 2 5 2 52x x x− = +( ) −( )

4 2x

Encontrar la descomposición factorial del polinomio

49u4 - 4r2.

Extraemos raíz cuadrada al minuendo y al sustraendo de la expresión dada:

• La raíz cuadrada de 49u4 es _________

• La raíz cuadrada de 4r2 es __________

Conoce tu país!

El departamento con menor extensión de Nicaragua es:

MASAYA

Masaya “la ciudad de las flores” tiene una extensión de 590 Km2.

Ejemplo 12

Page 104: Libro de matematicas 9no grado

96

Hacemos el producto indicado de la suma por la diferencia de los dos resultados anteriores:

(7u2 + 2r) (7u2 - 2r)

Esta es la factorización del polinomio dado:

49u4 - 4r2 = (7u2 + 2r)(7u2 - 2r)

Compruebe lo aprendido.

Descomponga factorialmente los siguientes polinomios:

1. 25u2 - 16y4z6

2. (x + y)2 - y2

3. x2y2 - u4v2

4. (x - y)2 - (x + y)2

5. (x + y)4 - y2

6. x4y4 - x4w4

7. 196m2n6 - 169p4z2

8. 289w4m8 - 961a2

9. (x - y)8 - (x + y)4

10. (x + y + z)2 - (x - y - z)2

11. (a - b2)2 - (b2 - a)2

12. (m - n)4 - (m + n)4

Factorización de una Suma o Diferencia de Cubos

Recuerde, reflexione y concluya

I. Considere los siguientes productos indicados

1. (5x + 2y) (25x2 - 10xy + 4y2)

2. (3x + 7y) (9x2 - 21xy + 49y2)

3. (4m + 9n) (16m2 - 36mn + 81n2)

4. (6m + n) (36m2 - 6mn + n2)

a. Analice y comente con sus compañeros.

b. ¿Qué tienen en común los productos indicados propuestos?

c. ¿Qué relación hay entre los términos del segundo factor y los del primero?

“Todo saber tiene de ciencia lo que tiene de matemática.”

Poincaré

49u4 - 4r2

49 74 2u u=

4 22r r=

(7u2 + 2r) (7u2 - 2r)

Page 105: Libro de matematicas 9no grado

97

d. Efectúe los productos arriba indicados. En cada caso explique cómo se pueden obtener los términos del resultado a partir de los términos del primer factor del producto indicado correspondiente.

II. Repita la actividad anterior con las siguientes expresiones

1. (5x - 2y) (25x2 + 10xy + 4y2)

2. (3x - 7y) (9x2 + 21xy + 49y2 )

3. (4m - 9n) (16m2 + 36mn + 81n2)

4. (6m - n) (36m2 + 6mn + n2)

III. Considere los siguientes polinomios

1. 125x3 + 8y3 5. 125x3 - 8y3

2. 27x3 + 34y3 6. 27x3 - 34y3

3. 64m3 + 729n3 7. 64m3 - 729n3

4. 216m3 + n3 8. 216m3 - n3

¿Qué tienen en común estas expresiones? ¿A qué forma general responden?

Sobre la base de los resultados obtenidos en la actividad 1., indique cuál es la descomposición factorial de cada uno de los polinomios dados.

Junto con sus compañeros de grupo formule expresiones similares a los polinomios dados. Encuentre con ellos la factorización de cada una de las expresiones encontradas.

Page 106: Libro de matematicas 9no grado

98

Luego de haber realizado las actividades anteriores, seguramente usted habrá llegado a una conclusión sobre cómo obtener la descomposición factorial de sumas y diferencias de cubos perfectos, es decir, de polinomios de los tipos:

a3 + b3

y

a3 - b3.

Del estudio de los productos notables se sabe que:

(a + b) (a2 - ab + b2) = a3 + b3,

y que,

(a - b)(a2 + ab + b2) = a3 - b3.

Al aplicar la simetría de la igualdad a estas expresiones, obtenemos la factorización de a3 + b3 y de a3 - b3. En realidad, de las dos igualdades anteriores, por simetría se obtiene que:

a3 + b3 = (a + b) (a2 - ab + b2)

a3 - b3 = (a - b)(a2 + ab + b2)

De acuerdo con este resultado, para hallar la descomposición factorial de una suma de cubos, a3 + b3:

• Extraemos primero raíz cúbica a los dos términos de la suma dada: a a33 = , b b33 = .

• La suma de estas raíces, a + b, será el primer factor de la descomposición.

El segundo factor constará de tres términos: el cuadrado de la primera raíz, el producto de las dos raíces, tomado con signo menos, y el cuadrado de la segunda raíz.

Describa el proceso para hallar la descomposición factorial de una diferencia de cubos.

Matemático griego cuya obra Aritmética (tratado de ecuaciones) le atribuye el título de "el padre del álgebra".

Diofanto de Alejandría

(d. C. 214 - d. C. 298)

Page 107: Libro de matematicas 9no grado

99

Hallar la descomposición factorial del polinomio 27x3 + 64y3

Extraigamos raíz cúbica a los términos de la expresión dada

Raíz cúbica de 27x3 es 27 333 x x=

Raíz cúbica de 64y3: es 64 433 y y=

Como las raíces cúbicas son exactas, la expresión dada es una suma de cubos perfectos. La descomposición factorial tendrá como primer factor a la suma,

3x + 4y

de las raíces encontradas. El segundo factor tiene tres términos: el cuadrado de la primera raíz,

(3x)2 = 9x2

el producto de ambas raíces, tomado con signo menos,

-(3x)(4y) = -12xy

y el cuadrado de la segunda raíz,

(4y)2 = 16y2

Luego, la factorización buscada es:

27x3 + 64y3 = (3x + 4y) (9x2 - 12xy + 16y2).

Encontrar la descomposición factorial del polinomio

216m3 - 125n3

En este caso se trata de una diferencia de cubos. En efecto,

216m3 = (6m)3, (5n)3 = 125n3,

de modo que,

216m3 - 125n3 = (6m)3 - (5n)3.

Ejemplo 13

“Todo lo has creado con medida, número y peso.”

Sabiduría 11,21

Ejemplo 14

Page 108: Libro de matematicas 9no grado

100

Para hallar la descomposición factorial primero extraemos raíz cúbica al minuendo y al sustraendo de la diferencia dada

• La raíz cúbica de 216m3 es 6 633 m m( ) =

• La raíz cúbica de 125n3 es 5 533 n n( ) =

El primer factor de la descomposición es la diferencia entre las raíces arriba encontradas, es decir,

6m - 5n.

El segundo factor está compuesto por tres términos: el cuadrado de la primera raíz, el producto de las dos raíces y el cuadrado de la segunda raíz. Es decir, es igual a:

(6m)2 + (6m)(5n) + (5n)2

o equivalentemente,

36m2 + 30mn + 25n2

Por tanto, la factorización es

216m3 - 125n3 = (6m - 5n) (36m2 + 30mn + 25n2)

Factorizar el polinomio x6 - y6.

Podemos expresar este polinomio como una diferencia de cubos. En efecto, por la ley de los exponentes x6 = (x2)3, y6 = (y2)3, de donde,

x6 - y6 = (x2)3 - (y2)3

luego, factorizando la diferencia de cubos, obtenemos:

x6 - y6 = (x2 - y2) [ (x2)2 + x2y2 + (y2)2 ],

es decir,

x6 - y6 = (x2 - y2)(x4 + x2y2 + y4).

Pero el primer factor de la parte derecha es una diferencia de cuadrados, que factorizado es igual a (x + y) (x - y), de modo que, al hacer la sustitución correspondiente obtenemos finalmente que

x6 - y6 = (x + y)(x - y)(x4 + x2y2 + y4)

Ejemplo 15

Factorización de

216m3 - 125n3

(6m)3 - (5n)3

6m - 5n

Primer Factor

6m - 5n

(6m)2 + 30mn + (5n)2

Segundo factor

Page 109: Libro de matematicas 9no grado

101

Compruebe lo aprendido.

I. Factorizar los siguientes polinomios:

1. 27p3 - 1000h3

2. 343m3 + 1000n6

3. 64u3 - 27g6

4. 64t3z6 - 8w6p15

5. 125m12 - 512k15

6. 27p12 - 729w3

7. 81n3k - 27m3r

8. a3n - b3m

9. 343p6r - 512q3

10. x27 - y27

11. u3 - v6z3

12. (a - b)3 + a3

13. 125m12 + 512h21

14. (x - y)3 + y3

15. m3 - (m + n)3

16. m9w + (m - n)9w

Factorización de un Trinomio Cuadrado Perfecto

Un trinomio cuadrado perfecto es una expresión algebraica de la forma

a2 + 2ab + b2

Observe que el primero y el tercer término son cuadrados perfectos. El doble producto de las raíces cuadradas de estos dos términos da el segundo término.

a2 + 2(a)(b) + b2

a a2 = b b2 =

La expresión 9x2 + 6xy + y2 es un trinomio cuadrado perfecto.

En efecto:La raíz cuadrada de 9x2 es 3x. La raíz cuadrada de y2 es y.El doble producto de 3x e y es 6xy.Por tanto, 9x2 + 6xy + y2 = (3x + y)2

“La matemática es el trabajo del espíritu humano que está destinado tanto a estudiar como a conocer, tanto a buscar la verdad como a encontrarla.”

Évariste Galois

Recuerde que:

a2 + 2ab + b2

es el binomio:

(a + b)2

Por ejemplo:

(3x + 5y)2

es igual a:

9x2 + 30 xy + 25y2

9 3 32 2 2x x x= =

y y2 =

2(3x)(y) = 6xy

Page 110: Libro de matematicas 9no grado

102

Recuerde, reflexione y concluya

I. Factorice agrupando y luego extrayendo factor común a:

1. a2 + ab + ab + b2

2. a2 - ab - ab + b2

3. 4k2 + 6kp + 6kp + 9p2

4. 4k2 - 6kp - 6kp + 9p2

5. 16x2 - 15y - 15xy + 25y2

6. 25x2 + 35xy + 35xy + 49y2

7. 9m2 + 21mn + 21mn + 49n2

8. 25x2 - 35xy - 35xy + 49y2

II. Utilice los resultados anteriores para factorizar cada uno de los siguientes polinomios:

1. 25x2 + 70xy + 49y2

2. 16x2 - 40xy + 25y2

3. a2 + 2ab + b2

4. a2 - 2ab + b2

Actividad en grupo

I. Determinen cuáles de las siguientes expresiones son trinomios cuadrados perfectos

1. 49m2 + 14mn + n2

2. 25u2 + 40uv + 16v2

3. 81x2 + 90xy + 4y2

4. 36x2 + 60xw + 25w2

II. Desarrollen los siguientes binomios

1. (7m + n)2 2. (5u + 4v)2 3. (6x + 5w)2

Comparen los resultados de este ejercicio con los polinomios del ejercicio anterior.

III. Comparta los resultados obtenidos con sus compañeros de grupo. A partir de sus observaciones formule una estrategia para factorizar trinomios cuadrados perfectos.

IV. Utilicen la estrategia encontrada para factorizar los siguientes polinomios

1. 4x2 + 48xy + 36y2 2. 64m2 + 32mn + 4n2

Reforzamiento

Realice las factorizaciones indicadas:

• a2 - 2ab2 + b4

• 4x8 + 20x4y + 25y2

• (a - b)2 + 8(a - b) + 16

• x2n + 2xnyn + y2n

• 0,01x10 - 121

• (a - 2b)2 - c2

• 729 - (x + y)3

Page 111: Libro de matematicas 9no grado

103

La expresión a2 - 2ab + b2 es también un cuadrado perfecto, surge de sustituir a por (-a) ó b por (-b) en el trinomio cuadrado perfecto a2 + 2ab + b2.

Compruebe que la expresión 16x2 - 40xw + 25w2 es un trinomio cuadrado perfecto.

El trinomio cuadrado perfecto:

a2 + 2ab + b2,

surge como desarrollo del binomio,

(a + b)2

es decir,

(a + b)2 = a2 + 2ab + b2.

Por simetría de la igualdad,

a2 + 2ab + b2 = (a + b)2

y llegamos a la conclusión de que ésta es la factorización del trinomio cuadrado perfecto.

Observe que los sumandos a y b en el interior del paréntesis de la parte derecha, son las raíces cuadradas respectivas del primer y tercer término del trinomio, es decir, de los términos cuadráticos.

Si en la expresión de arriba sustituimos -b en lugar de b:

a2 + 2a(-b) + (-b)2 = (a + (-b) )2,

obtenemos

a2 - 2ab + b2 = (a - b)2

igualdad que también se puede obtener desarrollando el binomio (a-b)2 y aplicando luego la simetría de la igualdad.

Así, para factorizar un trinomio cuadrado perfecto, extraemos raíz cuadrada a los términos cuadráticos; se suman los resultados de esta acción si el término no cuadrático tiene signo positivo, de lo contrario se restan. La suma o resta resultante se eleva al cuadrado.

Por la ley de los signos

(-a)2 + 2(-a)b + b2

es igual a:

a2 - 2ab + b2

a2 + 2ab + b2

(a + b)2

a2 b2

a2 - 2ab + b2

(a - b)2

a2 b2

(3x - 7w)2

9x2 + 42xw + 49w2

49 2w9 2x

Page 112: Libro de matematicas 9no grado

104

Factorice el polinomio 9x2 + 42xw + 49w2

Primero verifiquemos si el polinomio dado es un cuadrado perfecto.

• La raíz cuadrada de 9x2 es 3x.

• La raíz cuadrada de 49w2 es 7w.

• El doble producto 2(3x)(7w) es 42xw.

Luego, la expresión dada es un trinomio cuadrado perfecto y su factorización es 9x2 + 42xw + 49w2 = (3x + 7w)2.

Factorice el polinomio 25m2 - 70mp + 49p2

Primero comprobamos si el polinomio es un trinomio cuadrado perfecto.

• La raíz cuadrada de 25m2 es 5m.

• La raíz cuadrada de 49p2 es 7p.

• El doble producto 5m y 7p es 70mp.

Todo indica que la expresión dada es un trinomio cuadrado perfecto.

Ahora procedemos a factorizar. Puesto que el signo del término no cuadrático es negativo, restamos las raíces cuadradas, 5m y 7p, de los términos cuadráticos. Luego elevamos la resta al cuadrado. Tenemos así, la factorización buscada:

25m2 - 70mp + 49p2 = (5m - 7p)2

£ Factorice los siguientes polinomios

• 144r2 + 120rh + 25h2

• 81ω2 - 180ωA + 100A2

Factorizar el polinomio 121x2 + 16y2 - 88xy.

Aunque sus términos no están ordenados como en los ejemplos anteriores, la expresión dada es un trinomio cuadrado perfecto. Realmente, en primer lugar es un trinomio pues consta de tres términos y dos de éstos, 121x2 y 16y2, son cuadrados perfectos.

• La raíz cuadrada de 121x2 es 11x.

• La raíz cuadrada de 16y2 es 4y.

Ejemplo 1

Ejemplo 2

Ejemplo 3

Page 113: Libro de matematicas 9no grado

105

Por otra parte, el tercer término es el doble producto de las raíces cuadradas de los otros dos términos, con signo negativo.

• -88xy = -2(11x) (4y).

Todo esto confirma que la expresión es un trinomio cuadrado perfecto. Procedamos a factorizarlo.

Puesto que el término no cuadrático, -88xy, tiene signo negativo la factorización se halla elevando al cuadrado la resta de las raíces cuadradas de los términos cuadráticos: la factorización es

121x2 + 16y2 - 88xy = (11x - 4y)2

Compruebe lo aprendido.

I. Factorice cada uno de los siguientes polinomios:

1. x2 + 6x + 9

2. 81z2 + 108zw + 36w2

3. 16x2 + 8x + 1

4. 64x4 + 176x2w3 + 121w6

5. y2 + 10y + 25

6. x2 + 2x (a + b) + (a + b)2

7. 4y2 - 24y + 36

8. 9 - 6 (a + b) + (a + b)2

9. 81y2 - 180y + 100

10. 25x2 + 30xz + 9z2

11. 4(x + y)2 + 4(x + y) (x - y) + (x - y)2

12. 9(m - n)2 + 12(m - n) (m + n) + 4(m + n)2

13. 4(1 + a)2 - 4 (1 + a)(b - 1) + (b - 1)2

Ordenamos:

121x2 - 88xy + 16y2

121x2 - 16y2 + 88xy

1212

x 162

y

11x 4y

-2(11x)(4y) = -88y

Page 114: Libro de matematicas 9no grado

106

Factorización de Trinomios de la Forma x2 + bx + cRecuerde, reflexione y concluya

Efectúe por escrito los siguientes productos indicados.

1. (x + 5) (x + 1)

2. (x + 1) (x + 4)

3. (x + 3) (x + 7)

4. (x - 5) (x + 2)

En cada uno de los resultados obtenidos,

¿Cuál es el grado del polinomio?

¿Cuál es el coeficiente de x2?

¿Cómo se relaciona el coeficiente del término lineal con los términos constantes del producto indicado dado?

¿Cómo se puede obtener el término constante a partir de los términos constantes de los factores del producto indicado dado?

Comparta con sus compañeros de grupo los resultados obtenidos.

Resolver y compartir la respuesta con sus compañeros.

1. (x + 1)(x + 2)

2. (x + 7)(x - 2)

3. (x + 5)(x + 3)

4. (x - 3)(x - 2)

5. (x - 2)(x + 1)

6. (x - 6)(x - 4)

Considere los siguientes polinomios

1. x2 + 6x + 5

2. x2 - 3x + 2

3. x2 + 7x + 10

4. x2 - 10x + 24

¿Qué binomios deben multiplicarse para obtener el polinomio dado?

¿Qué caracteriza a los polinomios tratados en esta sección?

Si olvidó qué producto notable debe usar para multiplicar, por ejemplo

(x + 6) (x + 8),

utilice la propiedad distributiva:

(x + 6) (x + 8)

= (x + 6)x + (x + 6)8

= x2 + 6x + 8x + 6 ∙ 8

= x2 + 14x + 48

Cuando se estudiaron los productos notables se estableció que:

(x + a)(x + b) =

x2 + (a + b)x + ab.

Aplicando la propiedad distributiva tenemos que:

(x + a)(x + b) =

(x + a)x + (x + a)b.

Luego, aplicando de nuevo la propiedad distributiva en la parte derecha de esta igualdad obtenemos:

(x + a)(x + b) =

xx + ax + xb + ab.

Ahora, usando la definición de potencia y la propiedad conmutativa llegamos a que:

(x + a)(x + b) =

x2 + ax + bx + abFinalmente, sacando factor común, obtenemos:

(x + a)(x + b) =

x2 + (a + b)x + ab.

Page 115: Libro de matematicas 9no grado

107

Coopere con sus compañeros de grupo para responder a estas interrogantes. En colaboración con ellos formule una táctica para efectuar la factorización de polinomios del tipo aquí tratado.

Estamos interesados en el proceso inverso, factorizar polinomios del tipo:

x2 + px + q

donde p y q son números enteros. Si un polinomio de este tipo se factoriza tiene que ser como un producto de dos binomios de grado.

Exactamente, deberán existir dos binomios enteros de grado 1, (x + a) y (x + b), tales que:

x2 + px + q = (x + a)(x + b),

pero, puesto que,

(x + a)(x + b) = x2 + (a + b)x + ab,

deberá cumplirse que:

x2 + px + q = x2 + (a + b)x + ab.

Pero, la única manera de que esto ocurra es que:

a + b = p

y

ab = q.

Llegamos a la siguiente conclusión:

Para factorizar un trinomio del tipo:

x2 + px + q,

deberemos buscar dos números enteros a y b cuya suma sea igual a p:

(a + b) = p

y su producto coincida con q:

ab = q

Si tales números existen la factorización es:

x2 + px + q = (x + a)(x + b)

En caso contrario el polinomio no es factorizable.

Page 116: Libro de matematicas 9no grado

108

Observe que en la factorización, el primer término de los binomios de la derecha es la raíz cuadrada del término cuadrático del trinomio dado. La suma de los términos constantes, a y b, debe ser al coeficiente del término lineal px en tanto que el producto debe coincidir con el término constante o término independiente.

Factorizar el polinomio x2 + 8x + 15

En este caso p es 8 y q es igual a 15, así que debemos buscar dos números cuya suma sea 8 y su producto sea 15. En otras palabras, se buscan dos factores de 15 tales que su suma sea igual a 8. Los posibles factores junto con su suma, se muestran en el siguiente arreglo.

a 1 15 3 5b 15 1 5 3

a + b 16 16 8 8

Los números buscados son los de la cuarta columna. Luego,

x2 + 8x + 15 = (x + 3)(x + 5).

Podrían escogerse los valores de la columna número cinco, pero lo que resulta es la misma factorización sólo que los factores aparecen escritos en otro orden

x2 + 8x + 15 = (x + 5)(x + 3).

Por ello, cuando el coeficiente de x y el término independiente sean positivos, omitiremos aquellos pares (a; b) que difieran sólo en el orden.

Factorizar el polinomio

u2 + 39u + 140.

Este es un polinomio del mismo tipo del ejemplo anterior: un polinomio de grado 2 con coeficiente principal igual a 1, la diferencia es que éste tiene otra variable, u en lugar de x. Luego, el procedimiento que se sigue para factorizarlo es el mismo que utilizamos en ejemplos anteriores.

Buscamos dos números que sean factores de 140 y cuya suma coincida con 39. Para ello descomponemos 140 en sus factores primos y luego agrupamos éstos para determinar las parejas de factores de 140. Los factores 1 y 140 de la descomposición 140 = 1 ⋅ 140 se descartan obviamente.

Ejemplo 5

Ejemplo 4

Descomposición

de 140:

140 270 2

35 57 71

Descomposición de 15:

15 3

5 51

Factores positivos de 15:

1, 3, 5,

3 ∙ 5 = 15.

Page 117: Libro de matematicas 9no grado

109

La descomposición de 140 en factores primos es:

140 = 2 ⋅ 2 ⋅ 5 ⋅ 7

De manera que:

140 = 2⋅(2⋅5⋅7) = (2⋅2)⋅(5⋅7)

140 = (2⋅2⋅5)⋅7 = (2⋅5)⋅(2⋅7)

Las parejas de factores posibles de 140 y sus correspondientes sumas se disponen en el siguiente cuadro.

a 2 4 20 10

b 70 35 7 14

a + b 72 39 27 24

Como puede apreciarse, los factores necesarios son 4 y 35 pues su suma es la deseada. Por tanto,

u2 + 39u + 140 = (u + 4) (u + 35).

Factorizar y determinar el conjunto anulador del polinomio

x2 + 5x - 14

Buscamos dos números enteros a y b tales que

x2 + 5x - 14 = (x + a)(x + b)

o, equivalentemente,

ab = -14 y a + b = 5.

Como el producto de a y b es negativo, estos factores deben tener signos contrarios y, dado que la suma es positiva, el factor de mayor valor absoluto debe ser positivo. Asignaremos a b el factor de mayor valor absoluto. En la tabla de abajo a la derecha hemos enlistado los posibles valores de a y b, asignándole a b el factor de -14 de mayor valor absoluto.

a -1 -2b 14 7

a + b 13 5

Ejemplo 6

Page 118: Libro de matematicas 9no grado

110

Igualmente podríamos asignárselo al factor a, pero esto incidiría en la factorización solamente en el orden de los factores. Vemos que la solución del problema es a = -2, b = 7.

Así, x2 + 5x - 14 = (x + 7) (x - 2).

Hallar la descomposición en factores de cada uno de los siguientes polinomios:

1. x2 - 7x - 18

2. x2 - 15x + 56

1. En este caso debemos encontrar dos factores de -18 cuya suma coincida con -7. Uno de los factores debe ser negativo y el otro positivo y, puesto que la suma es negativa, el de mayor valor absoluto debe ser negativo. Los factores naturales de 18 son: 1,18,2,9,3,6, así que las posibles parejas de factores de -18 son

a 1 2 3b -18 -9 -9

a+b -17 -7 -6

Los valores buscados son a = 2, b = -9. Luego,

x2 - 7x - 18 = (x + 2)(x - 9)

2. Consideremos ahora el polinomio

x2 - 15x + 56

Aquí buscaremos dos factores a y b de 56, tales que:

a + b = -15

Puesto que el producto es positivo, los factores deben tener el mismo signo, pero además, ya que la suma es negativa, estos números deben ser negativos.

Puesto que 56 = 23 ⋅ 7, en virtud de la propiedad asociativa:

56 = 2 ⋅ 2 ⋅ 2 ⋅ 7 = (2 ⋅ 2 ⋅ 2) ⋅ 7 = (2 ⋅ 2) ⋅ (2 ⋅ 7)

y

56 = 2 ⋅ (2 ⋅ 2 ⋅ 7)

Además,

56 = 1 ⋅ 56

Descomposición de 56 en factores primos

56 228 214 27 71

56 = 23 · 7

Descomposición de 18 en factores primos

18 29 33 31

18 = 2 · 32

Ejemplo 7

Page 119: Libro de matematicas 9no grado

111

Por tanto, los valores posibles de a y b son los contenidos en la tabla siguiente:

a -1 -8 -4 -2b -56 -7 -14 -28

a + b -57 -15 -18 -30

Es claro que los números buscados son -8 y -7, de modo que:

x2 - 15x + 56 = (x - 8) (x - 7).

Factorizar el polinomio x2 - 12x + 35.

Buscamos dos factores de 35 cuya diferencia o suma sea igual a 12. Esos factores son 7 y 5. Sustituimos 12 por la suma 7 + 5:

x2 - 12x + 35 = x2 - (7 + 5) x + 35,

Distribuyendo obtenemos:

x2 - 12x + 35 = x2 - 7x - 5 x + 35.

Luego, agrupamos y enseguida sacamos factor común en cada grupo:

x2 - 12x + 35 = (x2 - 7x) - (5x - 35),

x2 - 12x + 35 = x (x - 7) - 5(x - 7).

Finalmente, por la propiedad distributiva, aplicada a la parte derecha de la última igualdad, obtenemos:

x2 - 12x + 35 = (x - 5) (x - 7).

Compruebe lo aprendido.

Encuentre la descomposición en factores de cada polinomio

• x2 - 12x + 35

• m2 - 13m + 40

“La matemática es la ciencia del orden y la medida, de bellas cadenas de razonamientos, todos sencillos y fáciles.”

René Descartes

Ejemplo 8

Page 120: Libro de matematicas 9no grado

112

Encontrar la descomposición en factores de la expresión algebraica

m2 + 5m - 14.

Los números 7 y 2 son factores de 14 y 7 - 2 = 5. Luego,

m2 + 5m - 14 = m2 + (7 - 2)m - 14,

es decir,

m2 + 5m - 14 = m2 + 7m - 2m - 14,

de donde, agrupando y sacando factor común,

m2 + 5m - 14 = (m2 + 7m) - (2m + 14)

m2 + 5m - 14 = m (m + 7) - 2(m + 7).

Por último, sacando factor común (m + 7), llegamos a que:

m2 + 5m - 14 = (m - 2) (m + 7).

£ Encuentre la descomposición factorial de p2 + 4p - 21.

Hallar la descomposición factorial del polinomio

w2 - 2w - 48

Buscamos dos factores de 12 cuya suma o resta sea igual a 2. Éstos son 8 y 6,

8 ⋅ 6 = 48, 8 - 6 = 2

En la expresión dada sustituimos 2 por la diferencia 8-6:

w2 - 2w - 48 = w2 - (8 - 6)w - 48.

Distribuimos y agrupamos en la parte derecha de la igualdad:

w2 - 2w - 48 = w2 - 8w + 6w - 48.

w2 - 2w - 48 = (w2 - 8w) + (6w - 48).

Extraemos factor común en cada grupo:

w2 - 2w - 48 = w(w - 8) + 6(w - 8),

y finalmente sacamos el factor común (w - 8) para obtener la igualdad siguiente:

w2 - 2w - 48 = (w - 8) (w + 6)

"El corazón de las matemáticas son sus propios problemas."

Paul Halmos

Reforzamiento.

Aplique los casos de factorización estudiados y factorice:

• 6x4 - 11x3 - 10x2

• (x + y)2 + 5(x + y) - 6

Ejemplo 10

Ejemplo 9

Page 121: Libro de matematicas 9no grado

113

Compruebe lo aprendido.

Factorice los siguientes polinomios:

1. x2 + 8x + 15

2. n2 + n -20

3. w2 + 20w + 75

4. y2 + 16y - 80

5. x2 - 25x + 1 004

6. w2 - 69w + 1 080

7. z2 - 6z - 72

8. x2y2 + 34xy + 120

9. n2 + 10n - 600

10. 403 - 44x + x2

11. m2 + 12m - 693

12. x2 - 6x - 91

Factorización de Trinomios de la Forma px2 + qx + r

Recuerde, reflexione y concluya

1. Multiplique (2x + 5) por (4x + 7). En el resultado obtenido

a. ¿Cuál es el coeficiente del término cuadrático?

b. ¿Cómo se relaciona el coeficiente de éste con los coeficientes de los términos cuadráticos de los binomios que se multiplicaron?

c. ¿Cuál es el término constante?

d. ¿Qué relación hay entre él y los términos constantes, 5 y 7, de los binomios factores?

e. ¿Cuál es el coeficiente del término lineal?

f. ¿Cómo se puede obtener a partir de los coeficientes de los binomios que se multiplicaron?

2. Repita el ejercicio anterior con los binomios

(3x + 2) y (5x + 6)

Comparta y comente con sus compañeros los resultados obtenidos.

3. En las siguientes igualdades, ¿cuáles son los valores de p, q y r?

a. 45x2 + 36x + 67 = px2 + qx + r

b. (ac) x2 + mx + bd = px2 + qx + r

Un matemático, como un pintor o un poeta, es un fabricante de modelos. Si sus modelos son más duraderos que los de estos últimos, es debido a que están hechos de ideas. Los modelos del matemático, como los del pintor o los del poeta deben ser hermosos. La belleza es la primera prueba; no hay lugar permanente en el mundo para unas matemáticas feas.”

G.H.Hardy

Page 122: Libro de matematicas 9no grado

114

4. Suponga que el polinomio 15x2 + 34x + 16 se puede obtener como el producto de dos polinomios lineales, es decir:

15x2 + 34x + 16 = (ax + b)(cx + d).

Efectúe el producto indicado en la parte derecha de la igualdad.

Compare el resultado con el polinomio de la parte izquierda de la misma igualdad.

Complete las siguientes igualdades.

• ac =

• bd =

• ad + bc =

Busque los valores de a, b, c y d que hacen verdaderas las igualdades del ejercicio anterior.

¿Cuál es la descomposición factorial del polinomio 15x2 + 34x + 16?

Repite el ejercicio 4, con el polinomio 6x2 + 17x + 12

Analice junto con sus compañeros de grupo los resultados obtenido en esta actividad. A partir de éstos intente formular una táctica para factorizar polinomios del tipo aquí tratado.

Si un polinomio del tipo:

px2 + qx + r,

se puede factorizar tiene que ser como un producto de dos binomios de grado 1, es decir, deberán existir números enteros a, b, c y d, tales que

px2 + qx + r = (ax + b) (cx + d).

De los productos notables sabemos que:

(ax + b)(cx + d) = acx2 + (ad + bc) x + bd,

Conoce tu país!La ciudad más antigua de Nicaragua es:

GRANADA

Granada, también conocida como “la gran sultana” fue fundada alrededor del 8 de diciembre de 1 524 por Francisco Hernández de Córdoba.

“No hay rama de la matemática, por abstracta que sea, que no pueda aplicarse algún día a los fenómenos del mundo real.”

Nikolay Lobachevsky

Page 123: Libro de matematicas 9no grado

115

luego, deberá cumplirse que:

px2 + qx + r = acx2 + (ac + bc) + bd,

lo cual se satisface sí y sólo si:

ac = p

ac + bd = q

bd = r.

Por tanto, deberemos buscar dos parejas de números enteros: una pareja

(a ; c)

de factores de p y una pareja,

(b ; d)

de factores de r, de manera que:

ad + bc = q.

Si los enteros a, b, c y d con las características indicadas existen, el polinomio dado es factorizable en la forma en que se señaló anteriormente. En caso contrario, el polinomio es irreducible.

px2 + qx + r

px2 + qx + r = (ax + b)(cx + d).

a

cac = p

b

dbd = q

bc

adad + bc = r

Expresar factorialmente el polinomio

20x2 - x - 12

En este caso p = 20, q = -1 y r = -12. Por tanto, buscaremos una pareja (a; c) de factores de 20 y una pareja (b; d) de factores de -12 tales que

ad + bc = -1.

"Sólo es útil el conocimiento que nos hace mejores.”

Sócrates

Ejemplo 11

Page 124: Libro de matematicas 9no grado

116

Las posibilidades las presentamos en los siguientes arreglos:

a 1 20 2 10 4 5

c 20 1 10 2 5 4

b -1 1 12 -12 -2 2 6 -6 -3 3 4 -4

d 12 -12 -1 1 6 -6 -2 2 4 -4 -3 3

La selección correcta es:

(a; c) = (5 ; 4)

y

(b; d) = (-4 ; 3)

En efecto, para estos valores,

ad + bc = (5) (3) + (-4) (4) = -1.

Sustituyendo a = 5, c = 4, b = -4 y d = 3 en 20x2 - x - 12, tenemos:

20x2 - x - 12 = (ax + b) (cx + d)

obtenemos:

20x2 - x - 12 = (5x - 4)(4x + 3).px2 + qx + r

20 + qx + r = (ax + b)(cx + d)

5

420

-4

3-12

bc

ad(5)(3) + (4)(-4) = -1

Otra manera de abordar la factorización de este tipo de polinomios consiste en reducir el problema a una factorización de trinomios de la forma anterior, es decir, del tipo:

x2 + px + q

En efecto, supongamos que se pide factorizar un polinomio de la forma

px2 + qx + r

Matemático italiano, descubridor de un método para resolver ecuaciones de tercer grado. Las fórmulas de tartaglia son conocidas como fórmulas de Cardano.

Niccolo Fontana Tartaglia

(1 500 - 1 557)

Page 125: Libro de matematicas 9no grado

117

Multiplicando por p y dividiendo por q, obtenemos que:

px2 + qx + r = p(px2 + qx + r)

p

= (px)2 + q(px) + pr

pHaciendo la sustitución:

u = px,

obtenemos que:

px qx r u qu prp

22

+ + =+ +

Puede probarse que el polinomio,

px2 + qx + r,

se puede factorizar sí y sólo si es factorizable el polinomio:

u2 + qu + pr,

en la indeterminada u = px.

Expresar en factores el polinomio 21x2 - 5x - 4

Multipliquemos y dividamos por 21:

21 5 421 21 5 4

212

2

x xx x

− − =− −( )

Esto es,

21 5 421 5 21 84

212

2

x xx x

− − =− ( ) −( )

Observe que el producto de 21 por -5x se deja indicado permutando 21 con -5 y asociando 21 con x. El producto de 21 por -4 sí se ejecuta.

Ahora hacemos la sustitución

u = 21x

y sustituimos en la parte derecha de la igualdad anterior,

21 5 4 5 8421

22

x x u u− − =

− −

Ejemplo 12

Page 126: Libro de matematicas 9no grado

118

Factoricemos el polinomio u2 - 5u - 84. Para ello buscamos dos números que multiplicados den -84 y sumados den como resultado -5. Dichos números son -12 y 7. Por tanto,

u2 -5u -84 = (u - 12) (u + 7)

Luego,21 5 4

12 721

2x xu u

− − =−( ) +( )

.

Y, sustituyendo u por 21x, llegamos a que:

21 5 421 12 21 7

212x x

x x− − =

−( ) +( )

Luego, sacando factor común,

21 5 43 7 4 7 3 1

212x x

x x− − =

−( ) ⋅ +( )

Al simplificar concluimos que:

21x2 - 5x - 4 = (7x - 4) (3x + 1)

Actividad en grupo

1. Encontrar las raíces y el conjunto anulador del polinomio 21x2 - 5x - 4.

2. Siguiendo el procedimiento utilizado en el ejemplo 12, factorice el polinomio 12x2 + 8x - 15.

Veamos ahora un forma un poco más abreviada de ejecutar la factorización. Supongamos que se pide factorizar el polinomio

10x2 - 13x - 30

£ Hacemos lo siguiente: abrimos dos parejas de paréntesis, de apertura y de cierre y dividimos entre el coeficiente de x2, en nuestro caso 10.

10 13 3010

2x x− − =( )( )

Dentro de los paréntesis vamos a escribir los factores previos de la descomposición factorial. Cada uno de estos factores tendrá como término a 10x (el coeficiente de x2, multiplicado por la incógnita x); por ello escribimos 10x en cada paréntesis:

10 10x 10

13 302x x− − =10x

Las matemáticas son el alfabeto con el cual Dios ha escrito el Universo."

Galileo Galilei

Page 127: Libro de matematicas 9no grado

119

Para completar los factores, buscamos dos números cuyo producto sea 10(-30) = -300 y que su suma sea igual a -13. Esos números son -25 y 12. Estos son los términos que faltan en los factores. Por tanto,

10 10x − 2510

13 302x x− − =10x + 12

Luego, al simplificar, obtenemos:

10x2 - 13x - 30 = (2x - 5) (5x + 6)

Compruebe lo aprendido.

Factorice cada uno de los siguientes polinomios:

a. 2x2 + 7x + 3

b. 2y2 + 9y + 4

c. 3z2 - 14z - 5

d. 4m2 - 29m + 7

e. -9 + 12n + 5n2

f. 12 + 22p + 6p2

g. 7x2 - 46x - 21

h. 8y2 + 24y - 32

i. -66w + 40 + 9w2

j. -32v - 90 + 10v2

k. - 80 + 20u2 + 84u

l. 24b2 + 58b - 35

m. 10x2 + 110x + 300

n. 6h2 + 50h - 600

o. 15m3 + 186m - 692

p. 2m2w2 +5mw + 2

Factorización de polinomios del tipo a3 + 3a2b + 3ab2 + b3 y a3 - 3a2b + 3ab2 - b3

Recuerde, reflexione y concluya

Complete

1. (u + v)3 = u3 + + + v3

2. (m + 2n)3 = m3 + 6m2n + + 8n3

3. (3p + r)3 = + + 9pr2 + r3

4. (5x + y)3 = + 75x2y + 15 xy2 +

5. (2x - 3y)3 = - 36x2y + 54xy2 -

6. (p - q)3 = p3 - + -

“La inteligencia consiste no sólo en el conocimiento, sino también en la destreza de aplicar los conocimientos en la práctica.”

Aristóteles

Matemática

egipcia, la primera

de la cual se tiene

conocimiento seguro y

detallado aunque no se

conservan ninguna de

sus obras. Se distinguió

por los comentarios a

Aritmética de Diofanto

y a Secciones Cónicas

de Apolonio. Murió

asesinada.

Hipatia

(355 - 416)

Page 128: Libro de matematicas 9no grado

120

Desarrolle:

1. (3k + p)3 2. (5x + 1)3 3. (2x - 5)3 4. (4m - 7n)3

Como habrá recordado por medio de las dos actividades anteriores, la expresión:

a3 + 3a2b + 3ab2 + b3

es el desarrollo del cubo de la suma de a y b. Es decir,

a3 + 3a2b + 3ab2 + b3 = (a + b)3

Por tanto la factorización de a3 + 3a2b + 3ab2 + b3 se halla extrayendo primero raíz cúbica a los términos cúbicos a3 y b3; luego se eleva al cubo la suma de estas raíces.

En forma similar tenemos que:

a3 - 3a2b + 3ab2 - b3 = (a - b)3.

Factorizar el polinomio 125h3 + 300h2p + 240hp2 + 64p3

La raíz cúbica de 125h3 es 5h.

125 5 533 3 33

h h h= =

La raíz cúbica de 64p3 es 4p:

64 4 433 3 33p p p= =

Por otra parte,

3(5h)2 ∙ 4p = 3 ⋅ 25h2 ⋅ 4p = 300h2p

3(5h) ∙ (4p)2 = 15h ⋅ 16p2 = 240hp2

Por tanto, el polinomio dado es de la forma

a2 + 3a2b + 3ab2 + b3

con a = 5h y b = 4p. En consecuencia, la factorización es el cubo de la suma de 5h y 4p. Es decir,

125h3 + 300h2p + 240hp2 + 64p3 = (5h + 4p)3.

"Las matemáticas convierten lo invisible en visible."

Keith Devlin

Ejemplo 13

Page 129: Libro de matematicas 9no grado

121

Factorizar el polinomio 8m3 - 12m2n + 6mn2 - n3

Observemos que:

• La raíz cúbica de 8m3 es igual a 2m.

• La raíz cúbica de n3 es n.

• 3(2m)2n = 12m2n

• 3(2m)n2 = 6mn2

Todo esto señala que el polinomio dado es de la forma

a3 - 3a2b + 3ab2 - b3

con a = 2m y b = n. Por tanto, la descomposición factorial buscada es el cubo de la diferencia de 2m y n; esto es

8m3 - 12m2n + 6mn2 - n3 = (2m - n)3

Compruebe lo aprendido.

Factorice

1. 343x3 + 294x2y + 84xy2 + 8y3

2. 125m6 - 75m4n3 + 15m2n6 - n9

3. 1 000r12 + 1 200r8p2 + 480r4p4 + 64p6

Resolución de Ecuaciones por Factorización

Recuerde, reflexione y concluya

Resuelva las siguientes ecuaciones:

1. x - 3 = 0

2. x + 8 = 0

3. 2x - 3 = 0

4. 3x - 4 = 0

5. 7x + 5 = 0

6. 3x + 5 = 0

7. 7x - 1 = 0

8. 5x - 8 = 0

Responda en equipo las siguientes preguntas.

1. Si 3b = 0, ¿Cuál es el valor de b?

2. Si dos números son positivos, ¿cómo es su producto? ¿Y si son negativos?

3. Si un número es positivo y otro negativo, ¿cómo es el producto de ellos?

¿Sabías qué?

Los babilonios, fueron

los primeros que

resolvieron ecuaciones

cuadráticas. En unas

tablillas descifradas por

Neugebaveren

1 930, cuya antigüedad

es de unos 4 000

años, se encontraron

soluciones a varias

de estas ecuaciones,

empleando el método

conocido actualmente

como “completar el

cuadrado”.

Ejemplo 14

Page 130: Libro de matematicas 9no grado

122

4. Si un producto de dos números es positivo, ¿qué signos pueden tener dichos números?

5. Si un producto de dos números es negativo, ¿qué signos deben tener dichos números?

6. Si en un producto uno de los factores es cero, ¿cuánto vale el producto?

7. Si un producto de números reales es cero, ¿pueden ser todos sus factores distintos de cero?

Discuta las preguntas anteriores con sus compañeros y encuentre características comunes a todas las repuestas que obtuvieron.

En la discusión de las respuestas de las últimas preguntas, habrá reconocido la propiedad aniquiladora del cero que establece que si se multiplica por cero el resultado es cero. Para la multiplicación de números reales, la propiedad recíproca también vale: si un producto es igual a cero, entonces uno o más de los factores debe ser cero. Luego tiene lugar la siguiente regla:

Ley del Producto Nulo

Un producto es igual a cero si y sólo si uno o más de los factores es cero:

Si 2n (n - 1) = 0, entonces por la propiedad del producto nulo debe cumplirse que:

2n = 0 ó n - 1 = 0

Pero siempre,

2n > 0

de modo que la única opción que nos queda es n - 1 = 0 de donde obtenemos n = 1.

Resolver la ecuación

(x - 3) (2x - 1) = 0

De acuerdo con la propiedad del producto nulo, al menos uno de los factores x - 3 ó 2x - 1 debe ser cero, es decir, la ecuación equivale al siguiente enunciado

x - 3 = 0 ó 2x - 1 = 0.

Ejemplo 1

Page 131: Libro de matematicas 9no grado

123

Resuelva cada ecuación componente de esta disyunción.

x - 3 = 0 ó 2x - 1 = 0

x - 3 + 3 = 0 + 3 ó 2x - 1 + 1 = 0 + 1

x + 0 = 3 ó 2x + 0 = 1

x = 3 ó 2x = 1

Por tanto,

x = 3 , x = 12

,

son las soluciones de la ecuación. El conjunto solución de la ecuación

dada es entonces 3 12

;

.

Lina multiplicó su edad, estimada en años, con la de su hermano Juan y luego restó el quíntuple de su propia edad, obteniendo como resultado 21 años. Lina es un año menor que Juan. ¿Qué edad tiene Lina?

Sea x la edad de Lina. Puesto que Juan es un año mayor que Lina su edad es x + 1. Luego, el producto de las edades de Lina y Juan es:

x(x + 1),

menos el quíntuple de la edad de Lina, 5x, resulta:

x(x + 1) - 5x,

cantidad que, según el problema, es igual a 21, es decir,

x(x + 1) - 5x = 21.

Esta ecuación modela matemáticamente el problema planteado. Desarrollando se obtiene la ecuación equivalente:

x2 + x - 5x = 21

o

x2 - 4x - 21 = 0.

Para resolver esta ecuación

• Factorice primero el miembro izquierdo

x2 - 4x - 21 = (x + 3)(x - 7)

Ejemplo 2

Page 132: Libro de matematicas 9no grado

124

• Luego sustitúyalo por la expresión equivalente factorizada,

(x + 3) (x - 7) = 0.

• Aplique ahora la propiedad del producto nulo y resuelva.

Las soluciones de la ecuación son:

x = -3, x = 7.

Ahora verificamos si las soluciones de la ecuación tienen sentido.

Puesto que las edades se miden con números positivos la solución x = -3 no tiene sentido como solución del problema. Por tanto, se descarta.

La otra solución x = 7 si está adecuada al problema.

Concluimos que la edad de Lina es de 7 años.

Resuelva la ecuación x2 - 7x + 12 = 0

• Factorice primero la parte izquierda de la ecuación

x2 - 7x + 12 = (x - 3) (x - 4)

• Sustitúyala por la expresión equivalente factorizada

(x - 3) (x + 4) = 0

• Aplique a esta ecuación la propiedad del producto nulo y resuelva

x - 3 = 0 ó x + 4 = 0

x = 3 ó x = -4

El conjunto solución es:

S = {-3; -4}

"La ciencia de la matemática es como un simple castillo de cristal, donde adentro se ve todo, pero de afuera no se ve nada."

Norma Banicevich

Page 133: Libro de matematicas 9no grado

125

Ejercicios de Cierre de Unidad

I. Halle la descomposición en factores de los siguientes polinomios1. 24x2 + 18pq

2. 56ay - 104ay2

3. ac + ad + bc + bd

4. ac - ad + bc - bd

5. ac + ad - bc -bd

6. ac - ad - bc + bd

7. 8x2 - 8y2

8. x4 - 1

9. m2 - 4n2

10. 100h2 - 36

11. 16x4 - y4

12. p3 + q3

13. 5x3 + 5w3

14. 16m12 - 49n9

15. x2 - 2x + 1

16. h2 + 26h + 169

17. m4 - 36m2 + 180

18. 15n2 + 11np - 12p2

19. p3 + 21p2h + 147ph2 + 343h3

20. 8x3 - 12x2z + 6xz2 - z3

21. 63m2 - 700n2

22. (x + y)2 - z2

23. 34u2 - 79uv - 15v2

24. x2 - 5x + 6

25. z2 - 20z + 84

26. t2 + 20t + 75

27. 64m2 + 80mn +25n2

28. 15n2 + 11np -12p2

29. x9 - y9

30. u3v3 - 15u2v2w2 + 75uvw4 - 125w6

31. m3n6 - 1

32. 198mn - 44mp + 132mr - 66mh

33. 48u2v2 - 52u7v + 37u3v3 + 48u4v6

II. Resuelva las siguientes ecuaciones

1. -32v + 90 + 10v2 = 0

2. 24b2 + 58b - 35 = 0

3. 80 + 20u2 - 84u = 0

4. x2 - 6x + 9 = 0

5. 81z2 - 108zw + 36w2 = 0

6. (n + 5)(2n - 8) = 0

7. 16a2 - 8a + 1 = 0

8. 4m2 - 24m + 36 = 0

9. (x + 2a)(2x - 3b) = 0

10. (x - 1)(x - 3) = 0

Page 134: Libro de matematicas 9no grado

126

11. x2 + 12x + 36 = 0

12. k2 + 14k + 49 = 0

13. 4m2 - 12m + 9 = 0

14. 25y2 + 10y + 1 = 0

15. (2 + m)(3m - 2) = 0

16. (2m + 7)(3m - 8) = 0

17. (y - 7)(y + 11) = 0

18. (w + 5)(w + 4) = 0

19. (3x - 7)(x - 1) = 0

20. (m - 13)(11 - 25m) = 0

21. (33x - 7)(33 + 7x) = 0

22. 9 x2 - 4z2

1. 25x2 + 36 + 60x

2. 49 - n4

3. 144k2 - 25

4. (m + 18)(m + 18) = 0

5. m2n6 - x8y10

6. x2 + 4x + 12

7. k2 - 11k + 28

8. m2 + 4m + 3

9. y2 + y - 30

10. m2 - m - 6

11. r2 + 11r + 28

12. n2 + 17n + 70

13. x2 + 12x - 160

14. y2 + 91y - 90

15. x6 - 2x3 - 99

16. k8 + 18k4 + 80

17. m2n2 + 19mn + 78

18. (m-n)3+3(m-n)2(m+n)+3(m-n)(m+n)2+(m+n)3

III. Factorizar:

Page 135: Libro de matematicas 9no grado

Unidad 4

Operacionescon Radicales

El Gobierno de Reconciliación y Unidad Nacional, a través de la Empresa Nicaragüense de Alimentos Básicos (ENABAS) ha distribuido un total de 70 mil libras de frijoles en los siete distritos de la capital, a través de los puestos de venta móviles que ha dispuesto el Gobierno Sandinista mediante el Plan Especial de Frijoles Solidarios, con el objetivo de brindar a la población un producto de calidad y a bajos precios, lo que representa un ahorro económico considerable para los consumidores.

Fuente: 19 digital.08 de Mayo 2014.

Page 136: Libro de matematicas 9no grado

128

Operaciones con Radicales y Fracciones AlgebraicasIntroducción

En esta unidad usted aprenderá a simplificar radicales, a realizar operaciones de adición y multiplicación entre ellos y a racionalizar. Para ello requerirá de la experiencia y los conocimientos adquiridos sobre potencias y radicales, así como el manejo de las propiedades de las operaciones con números reales. Un buen dominio de estos temas será de mucha ayuda en el camino que ahora emprenderemos.

Otro tema que abordaremos será las operaciones con fracciones algebraicas. Las reglas para simplificar y operar con fracciones numéricas se trasladan sin cambio alguno al caso de las fracciones algebraicas; todo es igual, salvo el hecho de que aquí el numerador y el denominador de las fracciones son polinomios.

Operaciones con Radicales

Para operar con radicales debe tener presente las propiedades fundamentales de los radicales, así como las propiedades de las operaciones con números reales.

Recuerde, reflexione y concluya

1. ¿Cuál es el índice del radical 7 25 x ? ¿y el radicando o cantidad subradical?

2. ¿Cuál es la forma radical equivalente a la expresión x35 ?

3. Descomponga 625 como un producto de primos.

4. Exprese x10 como el producto de una potencia de x, con exponente múltiplo de 4, por otra potencia de x.

5. ¿Cuando dos radicales son semejantes?

6. Simplifique las siguientes expresiones:

a) (5x2)4

b) (7x3y4)3

c) 3 6 12 313x y z( )

d) 4 2 6 912a b c( )

“Dios no sólo juega a los dados: a veces los tira donde no se pueden ver.”

Stephen William Hawking

Page 137: Libro de matematicas 9no grado

129

7. Escriba cada una de las siguientes expresiones usando un solo radical:

a. x y b. a75 c. 62

34

24

xxy

Simplificación de Radicales

Una expresión radical está simplificada cuando los factores bajo el radical tienen exponente menor que el índice del radical, no hay fracciones bajo el radical y el índice es el menor posible.

Compruebo lo aprendido

Indique cuáles radicales están simplificados.

1. 2 23 x y

2. 16 74 x

3. 8 4 3 25 yx z

4. 12 2 34 m n

5. 4 2 35 m n

6. 8 23 x n

Si el exponente de un factor del radicando en una expresión radical es múltiplo de la raíz, entonces tal expresión no está simplificada, en tal caso, para simplificarla se extrae dicho factor con exponente igual al cociente del exponente entre el índice del radical.

Simplifique el radical

x y w10 155

Puesto que en el radicando el factor x10 tiene como exponente un múltiplo de de la raíz 5, extraemos este factor con exponente igual a:

10

52=

igual hacemos con el factor y15;

10 155 2 3 5=x x y wy w

Si el exponente de un factor del radicando es mayor que la raíz del radical, podemos extraer una parte de dicho factor. Para ello lo descomponemos como el producto de una potencia de igual base y con exponente menor que el índice por una potencia de la misma base y con exponente igual a un múltiplo del índice del radical.

Ejemplo 1

"Las matemáticas son el alfabeto con el cual Dios ha escrito el Universo."

Galileo Galilei

Page 138: Libro de matematicas 9no grado

130

Simplifique el radical

54 113 a

Puesto que 54 = 2 ⋅ 27 = 2 ⋅ 33 y a11 = a9 ⋅ a2, tenemos entonces que:

54 2 3113 3 9 23= ⋅ ⋅ ⋅a a a

54 23113 3a =

Simplifique la expresión625 10

4xy

Puesto que no deben aparecer fracciones bajo el radical, expresamos la cantidad sub-radical como una fracción con denominador y4, para ello basta con multiplicar el numerador y el denominador por y3 como sigue:

625 625 62510 10 3

3

10 3

4= =y y y y

x x y x y

Como 625 = 54 y x10 = x8 · x2, tenemos que:

625 5 5 510 4 8 2 3

4

2 4 2 3

4

2 4

42 3x

yx x yy

x x yy

xy

x y= =( )

=( )

de manera que,

625 5 5104

2 4

42 34

2 42 34

xy

xy

x y xy

x y=( )

⋅ =

=

⋅ =

5 52 4

4 2 342

2 34xy

x y xy

x y

En conclusión,

625 5104

22 34x

yxy

x y=

Descomposiciónen factores de 625:

625 5

125 5

25 5

5 5

1

625 = 5⁴

Ejemplo 2

Ejemplo 3

Page 139: Libro de matematicas 9no grado

131

Compruebo lo aprendido

Simplifique

1. 729 5 73 a b y

2. a by

4 7

5

3. a cb

3 3

6+

4. a b a ab bc

−( ) + +( )2 2

73

Simplifique la expresión1

6419

+

Algunas personas suponen, equivocadamente que:

164

19

164

19

18

13

1124

+ = + = + =

En este caso, debemos simplificar primero la parte subradical. Para ello, efectuamos la suma de las fracciones bajo el signo radical:

164

19

9 6464 9

7364 9

738 3

738 32 2 2+ =

+⋅

=⋅=

⋅=

⋅( )

Así, 164

19

7324

73

24

73242 2

+ =( )

=( )

=

Por analogía con algunas propiedades de los radicales ocurre, a menudo, que algunos suponen válida la igualdad siguiente:

a b a b+ = + ,

pero lamentablemente errónea. Si no, vea para a = b = 1:

a b+ = + =1 1 2

mientras que

a b+ = + = + =1 1 1 1 2

¿Para qué valores de a y b es válida la igualdad a b a b+ = + ?

En general,

a b a bn n n+ ≠ +

“Sólo vemos lo que conocemos.”

Johann Wolfgang Von Goethe.

Ejemplo 4

Page 140: Libro de matematicas 9no grado

132

Suma de RadicalesRecuerde, reflexione y concluya

I- Complete:

• 3x + 5x = __________________________

• −5y + 7 y = _________________________

• 15z + 2z = __________________________

II- En los resultados anteriores, sustituya por x, 175 por y

y n a por z. ¿Qué igualdades obtiene?

III- Extraiga factor común y complete:

1. a n np b p

2. a n np b p

3. a u b u5 5+ =

Para definir la suma de dos o más radicales se debe atender al hecho de que si los radicales son semejantes o no. Definamos, pues, cuando dos radicales son semejantes:

Dos radicales son semejantes si tienen el mismo índice y la misma cantidad subradical.

Indique cuáles de los siguientes radicales son semejantes:

a. 35 a

b. 7 3 mn

c. 45 a

d. 153 mn

e. −2 3 mn

f. −68 amn

Para sumar dos o más radicales semejantes, se suman los coeficientes y se escribe la misma raíz. En esta suma nos valemos de la propiedad distributiva, más exactamente, de la extracción de factor común. La suma de radicales no semejantes se deja indicada.

a c b c a b cn n n+ = +( )

Page 141: Libro de matematicas 9no grado

133

a c b c a c b c a b c a b cn n n n n n− = + −( ) = + −( ) = −( )

Efectúe las siguiente sumas de:

a. 3 5 7 54 4+

b. 2 56 6 6x x x+ −

c. 4 11 2 73 5 5a b b c+( ) + +( )

Solución

a. Tenemos 3 5 7 5 3 7 5 10 54 4 4 4+ = +( ) =

b. Sería 2 5 2 5 1 66 6 6 6 6x x x x x+ − = + −( ) =

c. Primero hagamos la reducción de los términos semejantes, 115 a

y 25 b, los otros términos no cambian. Luego,

4 11 2 7 4 13 73 5 5 3 5a b b c a b c+( ) + +( ) = + +

Multiplicación de Radicales

Definamos ahora radicales homogéneos:

Dos expresiones radicales son homogéneas si tienen el mismo índice.

Los radicales:

33 x y 43 y ,

son radicales homogéneos pues tienen el mismo índice 3.

Los radicales:

−5 23 x y y 5 22 x y

no son homogéneos, pues aunque tienen el mismo radicando, sus índices son distintos: 3 ≠ 2.

Ejemplo 5

Ejemplo 6

Page 142: Libro de matematicas 9no grado

134

Para multiplicar radicales homogéneos utilizaremos las propiedades de los radicales, que establece que:

a b a bn n n⋅ = ⋅

Se podría pensar que el producto de dos radicales no homogéneos se deja indicado, a como ocurre en el caso cuando sumamos dos radicales no semejantes. Pero no es así, podemos transformar el producto de dos radicales no homogéneos en un producto de radicales homogéneos utilizando las leyes de los exponentes.

Sean am y bn dos radicales no homogéneos (m ≠ n), por las propiedades de

los exponentes

a a am mn

mn= =1

y b b bnm

mnn= =1

es decir,

a am nmn= y b bn mmn=

Por tanto,

a b a b a bm n nmn mmn n mmn⋅ = ⋅ =

Multiplicar 3 x y 4 y

Tenemos que

x y x y x y3 4 4 33 4 4 312⋅ = ⋅ =⋅

Multiplicar 3 23x y+ y x y− 3

El producto de 3 23x y+ por x y− 3 es

3 3 2 23 3 3 3x x x y y x y y− + −

que es igual a3 22 3 23x x y y− −

Efectuando el producto indicado, obtenemos:

3 2 3 22 3 26 23 3 26 23x x y y x x y y− − = − −

Ejemplo 7

Ejemplo 8

Page 143: Libro de matematicas 9no grado

135

Racionalización

Una fracción con radicales, como hemos visto, es aquella que presenta expresiones radicales en el numerador, en el denominador o en ambos. En algunos casos, se ha de necesitar para facilitar el trabajo con dichas fracciones, de la eliminación de tales expresiones ya sea del numerador o del denominador. A este proceso de eliminar las expresiones radicales de la fracción se le denomina racionalización.

Formalmente, decimos que racionalizar el numerador de una fracción con radicales significa expresarla como una fracción equivalente con el numerador sin radicales. Análogamente, racionalizar el denominador significa expresar la fracción como una equivalente sin términos radicales en el denominador.

Racionalice el denominador de la expresión2 3

3

xx+

£ Si multiplicamos 3 x por x23 , obtenemos: x x33 = . Por tanto, multipliquemos la fracción dada por una fracción cuyo numerador y denominador sea x23 , y de ésta manera obtenemos:

2 3 2 3 2 3 2 33 3

23

23

23

33

23xx

xx

xx

x x

x x+

=+

⋅ =+( )

=+( )x x

En general, para racionalizar una fracción con radicales del tipo xpn multiplicamos por xqn donde q = n - p. Este factor se denomina factor racionalizante.

Estudiemos ahora algunos casos particulares de tipos de racionalización.

Del estudio de los productos notables sabemos que:

x y x y x y2 2− = −( ) +( )

Por tanto, al racionalizar la expresión a b− se multiplica por a b+y por los productos notables se sabe que:

a b a b a b a b+( ) −( ) = ( ) − ( ) = −2 2

“Siempre que enseñes, enseña a la vez a dudar lo que enseñas.”

José Ortega y Gasset

Ejemplo 9

Se dice que:

a b− ,

es el conjugado de:

a b+

y recíprocamente.

Page 144: Libro de matematicas 9no grado

136

Racionalizar el denominador de:3

2 5x y−

El conjugado de 2 5x y− es 2 5x y+ . Luego,

32 5

3 2 5

2 5 2 5x y

x y

x y x y−=

+( )−( ) +( )

es decir,3

2 5

3 2 5

2 5

3 2 52 52 2x y

x y

x y−=

+( )( ) − ( )

=+( )

−x y

x y

Racionalice el denominador de la expresiónx

xy xz2 3 +

El factor racionalizante es 2 3xy xz− . Multiplicamos el numerador y el denominador por éste, obteniendo

xxy xz

x xy xz

xy xz xy xz2 3

2 3

2 3 2 3+=

−( )+( ) −( )

es decir,

xxy xz

x xy xz

xy xz

x xy xz

xy2 3

2 3

2 3

2 34 32 2+

=−( )

( ) − ( )=

−( )⋅ − xz

Luego,

xxy xz

x xy xz

x y z

xy xz

y z2 3

2 3

12

2 3

12+=

−( )−( )

=−( )−

Para racionalizar una suma o diferencia de más de dos raíces cuadradas, primero asociamos y luego se utiliza repetidamente la técnica de racionalización antes expuesta.

Para racionalizar la expresión a b c+ + asociamos los dos primeros términos así:

a b c+( ) +

Ejemplo 10

Ejemplo 11

Page 145: Libro de matematicas 9no grado

137

Ahora, multipliquemos por su conjugado

a b c+( ) − lo que nos da

a b c a a b b c+( ) − ( ) = + + −2 2

2

= + −( ) +a b c ab2 .

Seguidamente, multiplicamos por a b c ab+ −( ) − 2 su conjugado,

obteniendo como resultado,

(a + b - c)2 - 4ab,

con lo cual concluye la racionalización de la expresión dada.

Si se quiere racionalizar una diferencia de raíces cúbicas.

a b3 3−

deberá multiplicarse por un factor que haga que los términos de esta diferencia se eleven al cubo, eliminándose con ello los radicales de la expresión. Sean,

x a= 3 y y b= 3 .

De los productos notables sabemos que:

x y x xy y x y−( ) + +( ) = −2 2 3 3 ,

es decir,

a b3 3 33

33

−( ) ( ) ( )

= ( ) − ( )+ +3

23 3 3

2a a b b a b ,

o lo que es lo mismo,

a b a ab b a b3 3 23 3 23−( ) + +( ) = −

Por tanto, el factor racionalizante de a b3 3− , es la expresión:

a ab b23 3 23+ +

Racionalizar el denominador dex yx y

−−

223 3

El factor racionalizador de x y3 3 2− es x x y y23 3 232 2+ ⋅ + ( )

¡Importante!

Usaremos los términos factor racionalizante y factor racionalizador, indistintamente.

Ejemplo 12

Page 146: Libro de matematicas 9no grado

138

Luego,

x yx y

x y x x y y

x y x

−−

=−( ) + ⋅ + ( )

−( )2

2

2 2 2

23 3

23 3 23

3 3 233 3 232 2+ ⋅ + ( )

x y y

,

es decir,x yx y

x y x xy y

x y

−−

=−( ) + +( )

( ) − ( )2

2

2 2 4

23 3

23 3 23

33

33

.

De donde,

x yx y

x y x xy y

x y−−

=−( ) + +( )

−2

2

2 2 4

23 3

23 3 23

y por tanto,x yx y

−−

= + +2

22 4

3 3

23 3 23xyx y

Consideremos ahora racionalizar una suma de raíces cúbicas. Sean x a= 3 y y b= 3 . Recordando el producto notable:

(x + y)(x2 - xy + y2) = x2 + y2

Tendremos que:

a b a a b b a b3 3 32

3 3 32

33

33

+( ) ( ) − + ( )

= ( ) + ( ) ,

es decir,

a b a ab b a b3 3 23 3 23+( ) − +( ) = + .

Por tanto, el factor racionalizador de a b3 3− es la expresión:

a ab b23 3 23− +

Hallar el factor racionalizador de 23 3m n+

Sean, x m= 23 e y n= 3

Entonces:x m m3 3

32 2= ( ) =

y n n3 33

= ( ) =

Ejemplo 13

Matemático alemán, maestro de escuela y más tarde Profesor de la Universidad de Berlín. Puede considerársele como el padre del Análisis moderno. En sus primeras investigaciones abordó el problema de los números irracionales. Luego se dedicó el resto de su vida al estudio de las funciones de variables complejas y de variables reales.

Karl Wilhelm Theodor Weierstrass

(1 815 - 1 897)

Page 147: Libro de matematicas 9no grado

139

y por tanto,

2m + n = x3 + y3 = (x + y) (x2 - xy + y2),

al sustituir x por 23 m e y por n obtenemos:

2 2 2 23 3 32

3 3 32

m n m n m m n n+ = +( ) ( ) − + ( )

,

es decir,2 2 4 23 3 23 3 23m n m n m mn n+ = +( )( ) .

Por tanto, el factor racionalizador de 23 3m n+ es:

4 223 3 23m mn n− +

Sean x an= , y bn=

Puesto que:

xn = a, yn = b

y

xn - yn = (x - y) (xn-1 - xn-2y + ... + xyn-2 + yn-1)

tendremos que

a - b = a b- a a b bn n nn nn nn( ) + +…+( )− − −1 2 1

Por tanto, el factor racionalizador de a bn n− es:

a b- a a b bn n nn nn nn( ) + +…+( )− − −1 2 1

Racionalizar el denominador de aa b

+−

36 6

El factor racionalizante de a b− es igual a

a a b a b ab b56 45 3 25 45 56+ + + +

Por tanto, al sustituir y simplificar tendremos:

aa b

a a a b a b ab b

a b+−

=+( ) + + + +( )

−3 3

6 6

56 45 3 25 45 56

Racionalizar el denominador de las siguientes fracciones radicales:

4 34 34 4

xx

−−

, 527 7u v−

Ejemplo 14

"Cierto es que un matemático que no tiene también algo de poeta, jamás será un perfecto matemático."

Weierstrass

Page 148: Libro de matematicas 9no grado

140

Compruebo lo aprendido

I. Simplifique las siguientes expresiones según las operaciones indicadas, aplicando las propiedades de los radicales:

1. ab

ab

( )( )

36

26

2. 5 4 3x x x+ −

3. 3 665 56ab ab−

4. 3 4 2 4 22a a a a+ + =

5. m m mm

6. a −( )62

a +( )62

7. ba −( )2ba +( )2

II. Racionalice el denominador de las siguientes expresiones radicales:

1) ab a

2) a

a46

3) x

x y

4) a ab a c−

5) a b b aa b b a

−+

6) aba b3 25

7) a b

a b−

8) 3

47 a b

9) 1

3 3 4 4−

10) 4

1 2 3+ +

11) a

b a b33 3−

12) xx−−1

III. Racionalice el denominador:

a. 1a b c+ +

b. 1a b c− −

Page 149: Libro de matematicas 9no grado

141

Operaciones con Fracciones Algebraicas

Para operar con fracciones algebraicas debe tener presente las propiedades fundamentales de las operaciones con polinomios, así como los productos notables y la factorización de polinomios. Puesto que una fracción algebraica no es más que una fracción cuyo numerador y denominador son polinomios, las operaciones se definen similarmente a las operaciones con fracciones numéricas.

Recuerde, reflexione y concluya

1. ¿Qué es un polinomio? Dé ejemplos.

2. ¿Cómo se suman dos polinomios? ¿qué podemos decir de la resta?

3. Sume los siguientes polinomios:

a. 3x3 - 5x + 3 con 12x2 - 23x + 10

b. 4x2y - 13xy + 10y con x2 - 4xy - 2

c. 6x2 + 7x - 3 con 2x2 - 11x + 6

4. Reste los polinomios anteriores, el primero del segundo.

5. ¿Cómo se multiplican dos polinomios?

6. Multiplique cada uno de los resultados del ejercicio 4, sucesivamente por: 2x2, 3x - 5 y - xy + 3x - 1.

7. ¿Diga cuáles de todos los polinomios de los ejercicios anteriores son irreducibles, y en qué dominio?.

8. Factorice los polinomios no irreducibles del ejercicio anterior.

9. ¿Cuáles de las siguientes expresiones son fracciones algebraicas?

a. 2 15 2

xx+−

b. 7 2 57 10

2

2

x xx x

− ++ +

c. x yx y−

+

d. 2x

x

Page 150: Libro de matematicas 9no grado

142

Simplificación de Fracciones Algebraicas

Al igual que en la simplificación de fracciones numéricas, si el numerador y el denominador de una fracción algebraica tienen un factor común, éste factor se puede cancelar:

acbc

ab

=

Simplifique las siguientes fracciones algebraicas

1. x xx x

−( )+( )

13

2. x xx x−( ) +( )−( ) +( )

4 83 8

Algunas veces es necesario factorizar el numerador o el denominador, o ambos, para poder determinar el factor o los factores comunes y así poder simplificar como ocurre en e siguiente ejemplo.

Simplifique la fracciónx xx x

2

2

2 159 20

+ −+ +

Factoricemos el numerador y el denominador

x2 + 2x - 15 = (x - 3) (x + 5),

x2 + 9x + 20 = (x + 4) (x + 5).

Luego,x xx x

x xx x

xx

2

2

2 159 20

3 54 5

34

+ −+ +

=−( ) +( )+( ) +( )

=−+

Simplifique las siguientes fracciones algebraicas

1. 13 1345 45a ba b−−

2. mn n npm mn mp

− −− −

2

2

3. x y y

x y x y+( )

+( ) −( )

4. ay ybz z

++

5. ax bx ay byax bx ay by+ + ++ − −

6. 2 44 42

pp p

−− +

Ejemplo 1

Page 151: Libro de matematicas 9no grado

143

Suma de Fracciones Algebraicas

Como lo mencionamos antes, sumaremos fracciones algebraicas de igual manera que cuando sumábamos fracciones numéricas. En particular, si dos fracciones algebraicas tienen el mismo denominador, entonces para sumarlas se suman los numeradores y se escribe el mismo denominador

ab

cb

a cb

+ =+

Resuelva la siguiente suma indicada

7 33 1

3 2 53 1

3 2

2

3

2

x x xx x

x xx x

− −− +

++ −− +

Como ambas fracciones tienen el mismo denominador, para sumarlas, sumaremos los numeradores y pondremos el mismo denominador, así tenemos que

7 33 1

3 2 53 1

7 3 3 2 53 1

3 2

2

3

2

3 2 3

2

x x xx x

x xx x

x x x x xx x

− −− +

++ −− +

=− − + + −

− +

− − −− +

10 53 1

3 2

2x x

=x

x x

Calcule las sumas indicadas

1. 5 3 7 8xy

xy

−+

+

2. xy

x xy

2 212 3

3 3 12 3

+−

+− +−

3. a b a b++

−5 5

4. aa b

ba b2 2−

−−

Para sumar fracciones algebraicas con distinto denominador se necesita calcular el mínimo común múltiplo de los denominadores como lo hacíamos para las numéricas.

Puesto que el denominador de una fracción algebraica es un polinomio, es necesario introducir el concepto de mínimo común múltiplo de dos o más polinomios.

Ejemplo 2

Page 152: Libro de matematicas 9no grado

144

El mínimo común múltiplo de dos o más polinomios es el polinomio de menor grado y de menor coeficiente principal, que es múltiplo de los polinomios dados.

Hallar el mínimo común múltiplo de los polinomios

2x2 - 9x - 5 y 4x3 + 4x2 - 7x +2

Factoricemos primero los polinomios,

2 9 52 9 2 10

22 10 2 1

22

2

x xx x x x

− − =( ) − ( ) −

=−( ) +( )

=−( ) +( )

= −( ) +( )2 5 2 12

5 2 1x x

x x

4x3 + 4x2 - 7x + 2 = 4x3 + 4x2 - 8x + x + 2

= (x + x - 2) + (x + 2)

= (x - 1)(x + 2) + (x + 2)

= (x + 2)[4x (x - 1)+1]

= (x + 2)[4x2 - 4x +1]

= (x + 2) (2x + 1)2

Así,

2x2 - 9x - 5 = (x - 5)(2x + 1)

4x3 + 4x2 - 7x + 2 = (x + 2) (2x + 1)2

El producto de los factores comunes y los no comunes elevados a su mayor exponente es

(2x + 1)2 (x + 2) (x - 5)

Este polinomio es el mínimo común múltiplo de los polinomios dados.

La suma algebraica de fracciones con distintos denominadores se efectúa de la siguiente manera:

Paso 1. Primero se encuentra el mínimo común múltiplo (m.c.m.) de los denominadores. Este será el denominador de la fracción suma.

Paso 2. Se divide el mínimo común denominador entre el denominador de cada fracción y se multiplica el cociente resultante por el numerador de la misma fracción; el resultado se toma con signo positivo si la fracción se está sumando y con signo negativo si se está restando.

Ejemplo 3

“Los números gobiernan el mundo.”

Pitágoras

Page 153: Libro de matematicas 9no grado

145

Paso 3. Se suman los resultados obtenidos en el segundo paso. La suma será el numerador de la fracción suma.

Efectuar la operación indicada

32 9 5 4 4 7 22 3 2x x

xx x x− −

++ − +

La factorización de los denominadores es

2x2 - 9x - 5 = (x - 5)(2x + 1)

4x3 + 4x2 - 7x + 2 = (x + 2)(2x + 1)2

Luego,

32 9 5 4 4 7 2

35 2 1 2 2 12 3 2 2x x

xx x x x x

xx x− −

++ − +

=−( ) +( )

++( ) +( )

El mínimo común múltiplo de los denominadores es (x + 2)(x - 5)(2x + 1)2. Este será el denominador de la suma de las fracciones.

35 2 1 2 2 1 2 5 2 12 2x x

xx x x x x−( ) +( )

++( ) +( )

=+( ) −( ) +( )

Divida el mcm entre el denominador de la primera fracción

x x xx x

x x+( ) −( ) +

−( ) +( )= +( ) +( )2 5 2 1

5 2 12 2 1

2( )

Multipliquemos el resultado por el numerador de la primera fracción

3(x + 2)(2x + 1)

Este es un primer sumando en el numerador de la fracción resultado.

35 2 1 2 2 1

3 2 2 1

2 5 2 12 2x xx

x x x x x−( ) +( )+

+( ) +( )=

+( ) +( ) ++( ) −( ) +( )

x x

Ahora divida el m.c.m. entre el denominador de la segunda fracción y multiplique el cociente que resulte por el numerador de la misma fracción. Deberá obtener como resultado el polinomio

x(x - 5)

Este es un segundo sumando en el numerador de la fracción suma.

35 2 1 2 2 1

3 2 2 1 5

2 5 22x xx

x x

x x x x

x x x−( ) +( )+

+( ) +( )=

+( ) +( ) + −( )+( ) −( ) ++( )1 2

Ejemplo 4

¡Recuerde!

Al mínimo común múltiplo de los denominadores le llamamos mínimo común denominador.

Page 154: Libro de matematicas 9no grado

146

Luego, simplificando en el numerador obtenemos

35 2 1 2 2 1

7 10 62 5 2 12

2

2x xx

x xx x

x x x−( ) +( )+

+( ) +( )=

+ +

+( ) −( ) +( )

Es decir,3

2 9 5 4 4 7 27 10 62 5 2 12 3 2

2

2x xx

x x xx x

x x x− −+

+ − +=

+ +

+( ) −( ) +( )La diferencia entre dos fracciones se realiza de forma similar a la suma.

Efectuar la resta 43

26 92

xx x x−

−− +

Descomponga los polinomios como producto de factores irreducibles

x - 3 = (x - 3)

x2 - 6x + 9 = (x - 3)2

Se tendrá entonces

43

26 9

43

232 2

xx x x

xx x( ) ( ) ( )−

−− +

=−

−−

Halle el mínimo común múltiplo de los denominadores

m.c.m.d. = {(x - 3),(x - 3)2} = (x - 3)2

Este es el denominador de la fracción buscada. Se tiene entonces4

323 32 2

xx x x−

−−

=−( ) ( ) ( )

Busquemos el numerador. Si dividimos (x - 3)2 entre x - 3 obtenemos x - 3; esto lo multiplicamos por 4x y el resultado lo ponemos en el numerador

43

23

4 3

32 2x

x x

x x

x−( )−

−( )=

−( ) −−( )

Seguidamente dividimos (x - 3)2 entre el denominador de la otra fracción, es decir entre sí mismo, y luego multiplicamos por el numerador el resultado (1) y se coloca en el numerador con el signo menos ya que estamos restando la fracción. Obtenemos:

43

23

4 3 2

34 12 2

32 2

2

2x

x x

x x

xx x

x−( )−

−( )=

−( ) −−( )

=− −

−( )

¡Recuerde!

Igual que para las fracciones numéricas, aquí también se cumple que

ab

cd

Puede ser expresado como

ab

cd

+ −

Ejemplo 5

Page 155: Libro de matematicas 9no grado

147

Por tanto,4

326 9

4 12 232

2

2x

x x xx x

x−−

− +=

− −

−( )Compruebo lo aprendido

Calcule las restas indicadas

1) x x

xx x

x

2 25 35

6 75

− +−

−− −

2) a a b ba b c

a b b aa b c

3 2 2

3 3 3

2 2 3

3 3 3

3 3 3+ −−

− −

Multiplicación de Fracciones Algebraicas

La multiplicación de fracciones algebraicas se efectúa igual que la multiplicación de fracciones numéricas, se multiplica numerador por numerador y denominador por denominador

abcd

a cb d

⋅ =⋅⋅

Multiplicar: 5 34 2

xx+−

. 2 17 2

xx−+

Tenemos que

5 34 2

2 17 2

5 3 2 14 2 7 2

10 11 328

2

2

xx

xx

x xx x

x xx

+−

⋅−+

=+( ) −( )−( ) +( )

=+ −− 66 4x −

Multiplique las siguientes fracciones

2 13

2 14

xx

xx

−+

++

El producto de estas es igual a:

2 13

2 14

2 1 2 13 4

xx

xx

x xx x

−+

⋅++

=−( ) +( )+( ) +( )

Es decir,2 1

32 1

44 1

7 12

2

2

xx

xx

xx x

−+

⋅++

=−

+ +

Ejemplo 6

Ejemplo 7

¡Recuerde!

Puede escribir (a + b)(x - y) en lugar de (x - y) (a + b), por la propiedad conmutativa de la multiplicación.

Page 156: Libro de matematicas 9no grado

148

pues,

(2x - 1)(2x+ 1) = 4x2 - 1

y

(x + 3)(x + 4) = x2 + 7x + 12

Compruebo lo aprendido

Multiplique las siguientes fracciones

a. x yx y

x xy yx xy y

+−

⋅− ++ +

2 2

2 2

b. 3 43 4

9 12 169 12 16

2 2

2 2x yx y

x xy yx xy y

−+

⋅− ++ +

c. x yx y

x xx y

+−

⋅++

2 3

División de Fracciones Algebraicas

De manera similar a cuando definimos la división entre fracciones numéricas, haremos algunas observaciones.

Primeramente, notemos que todo polinomio puede ser considerado como una fracción algebraica cuyo numerador es el polinomio mismo y su denominador el polinomio constante 1.

Además, así como para las fracciones numéricas, se excluye al 0 dentro de los posibles denominadores, igualmente excluiremos al polinomio nulo del conjunto de todos los posibles denominadores de alguna fracción algebraica, es decir, sí,

ab

es una fracción algebraica, entonces a puede ser cualquier polinomio, pero b debe ser distinto del polinomio nulo. Definamos ahora, lo que es una fracción recíproca:

La fracción recíproca de una fracción no nula ab es la fracción

ba

Page 157: Libro de matematicas 9no grado

149

Ahora sí podemos definir la división entre fracciones algebraicas. Para dividir una fracción entre otra se multiplica la primera por la fracción recíproca de la segunda:

ab

cd

ab

cd

adbc

÷ = =i

Divida la fracción xx−+

34

entre xx−−

36

Tenemos

xxxx

xx

xx

xx

•xx

−+−−

=−+

÷−−

=−+

−−

3436

34

36

34

63

=−( ) −( )+( ) −( )

x xx x

3 64 3

=−+

xx

64

Divida la fracción 5 32 5x yx+−

entre 2 52

xx++

Tenemos

5 32 52 5

2

5 32 5

2 52

5 32 5

22 5

x yxx

x

x yx

xx

x yx

xx

+−++

=+−

÷++

=+−

⋅++

=+( ) +( )−( ) +( )

=+ + +

−5 3 22 5 2 5

5 10 64 25

2

2

x y xx x

x x xy yx

Dividir

a. 3 24 72

x yx−−

÷ xx y−+

13 2

b. a bab

2 2+ ÷ aa b2 2−

Ejemplo 8

Ejemplo 9

Page 158: Libro de matematicas 9no grado

150

Compruebo lo aprendido

Simplifique las siguientes fracciones algebraicas:

1. p qp q

2 2

7 7−−

2. x yy x

2 2

2 2−−

3. a ba b

++3 3

4. a ba b

−−3 3

5. xx

+−

112

6. 15 5

−−

xx

7. a ab b ca b ab c

2 2 2

2 2 22

2− + −− − −

8. a bb

+( ) −( )−

5 55

9. a bb a

−−

10. a aa

2

27 10

25+ +

Realice las sumas y restas indicadas:

1. a b a b++

−2 2

2. x y w x y z x y z− +−

+ −+

− −3 3 3

3. 9 161

2 6 71

7 5 1412

2

2

2aa

a aa

a aa

−−

−− −

−+

− +−

4. xx

xx

+−

+−−

11

15 52

5. x yx y

x yx y

−−

−−−

33

6 42

Realice los productos y divisiones indicadas:

¡Recuerde! Para sumar o restar es importante notar si las fracciones tienen igual o distinto denominador.

Matemático noruego que vivió toda su vida en extrema pobreza. Fue uno de los más grandes algebristas del siglo XIX. Demostró el Teorema General del Binomio.

GENIO Y POBREZA

Niels Henrik Abel (1 802-1 829)

xy

zy

bx z

3

35

53

2ab

ba

+

ab

cd

a cb

+

÷

+

ab

bc

ca

acb

+ +

1 1 1a b a b+

+

xa

xb

ax

by

+

÷ −

ab

bc

ca

acb

+ +

÷

xy

yx

mn

xy

yx

mn

+ −

÷ − +

xa

yb

xa

yb

+

1.

2.

3.

4.

5.

6.

7.

8.

9.

Page 159: Libro de matematicas 9no grado

151

Ejercicios de Cierre de Unidad

I- Simplifique las siguientes expresiones según las operaciones indicadas, aplicando las propiedades de los radicales:

1. 15 40 75 14 1204 2+ − +a ab b

2. 9 15 12 60 24 452w v vw w v+ −

3. 11 7 5 13 33 3x y x y−( ) +( )

4. 825

1 3 94

7 6

32a b c

a bcbc a

− +

5. 125

2 2

15 123

2 2

x y z

x y y x−( ) +( )4

II- Racionalice el denominador de las siguientes expresiones:

1. 123a b

2. mm m− −3

3. x yx y− −

+ −

11

3 2

3 3

4. y xx y

2 2

3 3

5. p

p23

III- Simplifique las siguientes fracciones algebraicas:

1. a abb ab

2

2

−−

2. x yx y−( )−

2

3 3

3. a aa a

2

23 2

2+ +− −

4. aa

3 11

−−

5. x xx

2 15 505

− +−

6. a ba b

4 4

2−

−( )

7. mm m

2

216

3 28−

− −

8. 9 256 10

2 2a ba b

−+

9. x x xx x x x

Page 160: Libro de matematicas 9no grado

152

IV- Efectue los siguientes ejercicios:

1. a b c a b c+ −+

− −2 4

2. 15 12 14 2x yx y

yx y

−−

−++

3. 5 2 6 2 4 3y

22 2 2 2 2 2x xy yx y

x xyx y

x xyx

x yx y

+ ++

−+−

+++

−+−

4. x y x y+( )+

−( )2 2

2 6

5. 33

39

2 2

2

x yy

x yy

−( )−

+( )

6. 36 4936 49 84

2 2

2 2h p

h p ph−

+ −1

(6h - 7p) 3−

V- Realice los siguientes ejercicios:

1) 6)

2) 7)

3) 8)

4) 9)

5) 10)

x y

x y

x y x yy

+( )−( )

−( )

−2

2

2 2

3 2 3

+( )

33

yx y

42

2ab

aba b

bxy

yx

−( )

−−

x yy x

2 2

2 2

m nm

m nmn

a ba ab b

−+ +

1010

6 36

5 422 2 2

4 52 2

b aa b

m nm n

m nm

m nn

m m2 2 2 2

53 9−

÷

+( )

÷

+ 22

15n

a bb

a ba

a bb

a ba

+

÷

+

÷

2 2

2 2

2

2 2

2

-1

Page 161: Libro de matematicas 9no grado

Unidad 5

Sistemas deEcuaciones Lineales

La Coordinadora del Consejo de Comunicación y Ciudadanía, Compañera Rosario Murillo, informó a través de los Medios del Poder de las Familias y Comunidades: “En el modelo de alianzas gobierno nacional-gobierno local, Presidencia de la República-Gobiernos Locales, estaremos haciendo por año, en los próximos tres años, 3 mil 21 cuadras en todos los municipios del país. Estas cuadras son trabajadas en concreto hidráulico, adoquín y asfalto”.

Fuente: 19 digital.21 de Mayo 2014.

Page 162: Libro de matematicas 9no grado

154

Sistemas de Ecuaciones LinealesIntroducción

Muchos problemas prácticos precisan de la resolución simultánea de varias ecuaciones lineales para encontrar las soluciones comunes a todas ellas. En geometría, las rectas y planos se interpretan como soluciones de ecuaciones lineales, de modo que la determinación de las posiciones relativas de rectas y planos equivale a la resolución de sistemas de ecuaciones lineales.

Ecuaciones lineales en dos variables

Recuerde, reflexione y concluya

1. Dé un ejemplo de una ecuación lineal en la incógnita x.

2. Escriba una ecuación lineal en la variable y.

3. ¿Cuántas soluciones tiene una ecuación lineal en una variable?

4. ¿Cuál de los siguientes números es solución de la ecuación 3x - 6 = 0

a) 2 b) 1 c) 12 d) 3

5. Halle las soluciones de las siguientes ecuaciones

• 2x - 3 = 0

• 5y - 4 = 7y + 45

• 32

16

5 38

z z+ = −

6. La suma de tres números enteros consecutivos es 18. Hallar dichos números.

7. El perímetro de un rectángulo es igual a 42 cm. El largo es el triplo del ancho aumentado en 5. Hallar las dimensiones del rectángulo.

8. La edad de Camila es el doble de la de su hermana. Dentro de 5 años la suma de las edades será de 22 años. ¿Cuántos años tiene Camila?

Recordemos:Una ecuación lineal, es una ecuación del tipo

ax = b; a,b ∈ �Si a ≠ 0 , la ecuación tiene la solución única

x = ba

Page 163: Libro de matematicas 9no grado

155

Analicemos el siguiente problema:

Juan labora lavando carros en una tienda de servicios automotrices. Devenga un salario básico semanal de 300 córdobas más una comisión de 5 córdobas por cada vehículo que lava.

a. ¿Qué relación hay entre el salario semanal de Juan y la cantidad de vehículos que él lava por semana?

b. Si en una semana lavó 100 automóviles, ¿cuál será su salario durante esa semana? y ¿si lava 120 carros?

c. ¿Cuántos vehículos tendría que lavar para recibir un salario semanal de 1 500 córdobas?

Supongamos que x es la cantidad de carros que Juan lava semanalmente. Puesto que por cada vehículo que lava le pagan cinco córdobas, semanalmente recibirá una cantidad en córdobas equivalente a

5 ∙ (cantidad de vehículos lavados en la semana) = 5x,

en pago por el lavado de los vehículos. Esta cantidad, más el salario básico de 300 córdobas conforman el pago total que Juan recibe semanalmente.

La siguiente ecuación representa esta forma de pago.

y = 5x + 300.

Como observamos, esta es una ecuación en dos variables:

x e y.

¿Qué representa x?

¿Qué representa y?

¿Qué representa el 5 en esta ecuación?

¿Qué representa el número 300?

Un par ordenado de números es solución de una ecuación en dos variables x, y si al sustituir el primer número por x y el segundo por y, se obtiene una igualdad; en este caso decimos que el par ordenado satisface o cumple la ecuación.

Cálculo del salario semanal de Juan.

Salario Básico: 5x

Carros lavados: 300

Pago total

y = 5x + 300

Page 164: Libro de matematicas 9no grado

156

Despeje de la variable y:

8 + 3y = 11

8 + 3y - 8 = 11 - 8

3y = 3

33

33

y=

y = 1

Indique si (2 ; 310) y (5 ; 350) son soluciones de la ecuación y = 5x + 300.

Consideremos primero el par (2 ; 310).

Sustituyamos 2 por x y 310 por y en la ecuación dada

y = 5x + 300

310 = 5 (2) + 300

310 = 10 + 300

310 = 310.

Puesto que las cantidades obtenidas a izquierda y derecha son iguales, esto verifica que el par (2; 310) es solución de la ecuación dada.

Ahora sometamos a prueba al par (5; 350). Sustituimos en este caso 5 por x y 350 por y. Luego efectuamos las operaciones indicadas.

y = 5x + 300

y = 5 (5) + 300

y = 25 + 300

y = 325.

Puesto que las cantidades obtenidas para y son distintas, el par (5; 350) no es solución de la ecuación dada.

Para hallar distintas soluciones de una ecuación en dos variables x, y, asigne distintos valores a x , sustitúyalos en la ecuación y despeje y.

Hallar dos soluciones distintas para la ecuación 2x + 3y = 11.

Pongamos x = 4 y sustituyamos este valor en la ecuación dada

2x + 3y = 11.

Obtenemos

2 (4) + 3y = 11,

es decir,

8 + 3y = 11.

Ahora despejando y de esta ecuación obtenemos

y = 1.

Esto nos da la solución x = 4, y = 1. Es decir el par (4 ; 1).

Ejemplo 1

Ejemplo 2

Page 165: Libro de matematicas 9no grado

157

Busquemos otra solución de la ecuación. Eso sí, vamos a proceder de una manera un poco diferente, primero expresemos y en función de x.

Despejando y de la ecuación dada:

2x + 3y = 11

2x + 3y - 2x = 11 - 2x

3y = -2x + 11

33

2 113

y x=− +

y x= − +23

113

Elijamos un valor para x distinto del asignado anteriormente, por ejemplo x = 6. Sustituyamos este valor en la ecuación dada por el despeje para encontrar el valor de y.

El resultado será:

y = − 13

Por tanto, si x = 6, entonces y = − 13

. Así el par (6;−1

3) es otra solución

de la ecuación 2x + 3y = 11.

Compruebo lo aprendido

Encuentre otros dos pares ordenados que sean solución de la ecuación 2x + 3y = 11. Grafique estos pares ordenados y las dos soluciones anteriores en un plano cartesiano.

¿Qué patrón siguen los puntos de la gráfica?

Halle varias soluciones de la ecuación y = 2x + 1. Represente en forma gráfica los pares ordenados encontrados.

Haremos una tabla de tres columnas. En la primera vamos a disponer distintos valores de x, en la segunda los valores correspondientes de y en la tercera y última los pares ordenados (x ; y), es decir, las soluciones de la ecuación.

Ejemplo 3

Calculo de y para:

x = 6

y x= − +23

113

y = − ( ) +23

6 113

y = − +123

113

y = − 13

Page 166: Libro de matematicas 9no grado

158

Gráfique el conjunto solución de las siguientes ecuaciones:

a. y = -2x + 1

b. y = 3x - 2

x y = 2x + 1 (x ; y)

-1 y = 2 (-1) + 1 = -1 (-1 ; -1)

0 y = 2 (0) + 1 = 1 (0 ; 1)

1 y = 2 (1) + 1 = 3 (1 ; 3)

2 y = 2 (2) + 1 = 5 (2 ; 5)

3 y = 2 (3) + 1 = 7 (3 ; 7)

Los pares ordenados de la última columna son soluciones de la ecuación dada.

Compruebo lo aprendido

Construya una tabla como la del ejemplo anterior para las siguientes ecuaciones. En cada caso asigne 6 valores a la variable x; grafique las soluciones, estudie el patrón que siguen e intente llegar a una conclusión en cuanto a cómo se posicionan estos pares ordenados en el plano cartesiano.

a. y = 5x - 3

b. y = -2x - 1

Una ecuación como las de los ejemplos anteriores se denomina ecuación lineal en dos variables. Recibe este nombre porque sus soluciones son puntos que se encuentran en una recta.

¿Cuántas soluciones tiene una ecuación lineal en dos variables? ¿Por qué?

Dé ejemplos de otras ecuaciones lineales como las expuestas anteriormente.

Para representar gráficamente todas las soluciones de una ecuación lineal en dos variables, encuentre dos o más soluciones y luego trace una recta que pase por ellas. Los puntos que integran dicha recta son exactamente todas las soluciones de la ecuación.

¿Cuántos puntos, como mínimo, determinan una recta?

¿Cuál es el mínimo de soluciones necesarias para poder trazar la gráfica de una ecuación lineal en dos variables?

Page 167: Libro de matematicas 9no grado

159

Graficar el conjunto solución de la ecuación x + 3y = 6.

Expresemos y en términos de x.

y x= − +13

2

Encontramos dos soluciones de la ecuación.

x y x= − +13

2 (x ; y)

0 y = − ( ) + =13

0 2 2 (0 ; 2)

3 y = − ( ) + =13

3 2 1 (3 ; 1)

Puesto que por dos puntos distintos del plano pasa una y sólo una recta, es suficiente con los dos puntos encontrados. La recta que pasa por ellos es el conjunto solución buscado. La gráfica es la que se ve abajo.

32

2

1

01

(3;1)

(0;2)

0

Trabajo en Equipo

1) Los precios de los boletos para la presentación de una artista internacional en el Teatro Nacional Rubén Darío, en cierta ocasión fueron los siguientes:

Primer Balcón $50

Segundo Balcón $35

Tercer Balcón $25.

Ejemplo 4

Despeje la variable “y” para cada uno de los siguientes ejercicios:

x + 3y = 6

x + 3y - x = 6 - x

3y = -x + 6

33

63

y x=− +

y x= − +13

2

Page 168: Libro de matematicas 9no grado

160

Los ingresos que percibiría el teatro por la venta de cada tipo de boleto están representados por las siguientes ecuaciones:

y = 50x, y = 35x, y = 25x.

Estas ecuaciones son del tipo y = mx.

a. Determine el valor de m en cada caso.

b. Identifique entre las gráficas que aparecen en la parte izquierda la que corresponde a cada una de las ecuaciones.

c. ¿En qué se parecen estas gráficas? ¿En qué difieren?

2) Grafique las ecuaciones

y = -x, y = -2x, y = -3x.

¿Qué similitud guardan las gráficas? ¿En qué se diferencian?

3) Identifique el valor de m en las siguientes ecuaciones. Trace sus gráficas.

y = x , y = 2x, y = 3x.

4) Dé ejemplos de otras ecuaciones de este tipo y trace sus gráficas.

5) ¿Qué ocurre con la gráfica de la ecuación y = mx a medida que m cambia?

6) ¿Cómo es la gráfica de y = mx, si m > 0? ¿Y si m < 0?

7) ¿Cómo debe ser m para que el gráfico de y = mx atraviese los cuadrantes I y III? y ¿Para que cruce los cuadrantes II y IV?

8) Las ecuaciones lineales y = 3x + 2, y = 2x + 3, y = x - 3 son ecuaciones del tipo:

y = mx + b

a) Para cada una de ellas identifique los valores de m y b.

b) Trace la gráfica de la ecuación y = 3x + 2 y la de y = 3x en un mismo plano cartesiano. ¿Qué puede decir de estas rectas?

c) Repita el ejercicio anterior con el grupo de ecuaciones {y = 2x + 3, y = 2x} y también con el conjunto de ecuaciones {y = x-3, y = x}.

9) ¿Qué conclusión general se puede extraer acerca de los gráficos de las ecuaciones y = mx + b, y = mx?

4

200

100

020-2-4

-100

-200

y

x

Page 169: Libro de matematicas 9no grado

161

Róger y Francisco, dos amigos entrañables, decidieron comprar cada uno una alcancía para ahorrar para los gastos de diciembre del año en curso. El propio día de la compra, el 6 de enero, Róger ingresa a su alcancía la cantidad de cuatro córdobas, no así Francisco pues gastó todo su dinero en la adquisición de la alcancía. Acuerdan ahorrar dos córdobas cada uno a partir del 10 de enero.

Encuentre las ecuaciones que describen los métodos de ahorro de los dos amigos. Trace las gráficas.

Las ecuaciones son las siguientes:

y= 4 + 2x, y = 2x.

Las gráficas de la izquierda corresponden a estas ecuaciones. Observe que las rectas son paralelas y la gráfica de y = 4 + 2x, está cuatro unidades por encima de la gráfica de la ecuación y = 2x.

¿Qué distancia vertical hay entre el gráfico de y = 5x y y = 5x + 4?

Las ecuaciones del ejemplo anterior son de la forma

y = mx + b

y

y = mx.

Este tipo de ecuaciones siempre son paralelas y por tanto tienen la misma inclinación, la cual está determinada por el coeficiente m.

Observe que si (x0; y0), (x1; y1) son soluciones de la ecuación y = mx + b, entonces,

y1 - y0 = mx1 - mxo

de donde,m y y

x x=

−−

1 0

1 0

En general, si (x0; y0) es un punto de una recta no vertical, entonces para cualquier otro punto (x ; y) de la recta, el cociente

m y yx x

=−−

0

0

,

es un valor constante denominado pendiente de la recta. Este valor determina qué tan inclinada está la recta, a mayor valor de m mayor inclinación de la recta.

Dos rectas son paralelas si y sólo si tienen la misma pendiente.

Ejemplo 5

4

4

2

020-2-4

-2

-4

y

x

4

3

2

1

0

-1

1

(0;3)

(1;1)

0

Grá�co de y = 3 - 2x

4

3

2

1

0

-1

1

(0,5 ; 2)

(0;1)

0

Grá�ca de y = 2x + 1

Page 170: Libro de matematicas 9no grado

162

Trabajo en Equipo

1. Indique cuáles ecuaciones corresponden a rectas paralelas:

a. y = 5x + 3 b. y = 2x - 5 c. y = -2x + 5 d. y = 5x - 2.

2. Halle la pendiente de la recta que pasa por los puntos (2; 7) y (3; 5).

3. Halle la pendiente de la gráfica de la ecuación 2x + 3y = 9.

4. Si dos rectas tienen pendientes diferentes, ¿en cuántos puntos se interceptan?

5. Dos ecuaciones lineales, ¿pueden tener solo 2 soluciones?

En general, una ecuación lineal en dos incógnitas es una ecuación de la forma

ax + by = cdonde a, b, c son constantes reales.

Una solución de la ecuación es un par de valores x = x0; y = y0, tal que se cumple la igualdad: ax0 + by0 = cPor ejemplo, el par (2 ; -5) es solución de la ecuación

4x - 7y = 43,

Porque

4(2) - (7)(-5) = 43.

El punto (5; 0) no es solución de la misma ecuación puesto que

4(5) - 7(0) = 20 ≠ 43.

Si a = 0 = b, entonces la ecuación toma la forma

0x + 0y = c.

Cualquiera que sea la asignación de valores que demos a las variables x, y, la parte izquierda de esta ecuación siempre dará cero. Luego, si c = 0, la ecuación será satisfecha por cualquier punto, mientras que si c ≠ 0, no habrá ningún punto que pueda hacer válida la relación

0 = 0x + 0y = c ≠ 0,

y por tanto, el conjunto solución será el conjunto vacío.

En cualquier caso, el conjunto solución de la ecuación

0x + 0y = cno es una recta, de modo que, propiamente hablando, este tipo de ecuaciones no entrarían en la familia de las ecuaciones lineales. Sin embargo, pueden aparecer cuando se resuelven ciertos sistemas de ecuaciones, así que debemos tenerlas en cuenta.

La pendiente de la recta que pasa por:

A(3;1) y B(2;-4)

Se calcula haciendo:

A (3;1) → (x1; y1)

B(2;-4) → (x2; y2)

Sustituyendo en:

m y yx x

=−−

2 1

2 1

Tendremos:

m =− −−

4 12 3

m =−−

51

m = 5

Page 171: Libro de matematicas 9no grado

163

Consideremos ahora el caso, cuando a ≠ 0 ó b ≠ 0 en

ax + by = c.

Si b ≠ 0, entonces podemos despejar y de la ecuación para obtener

y abx cb

= − +

Este tipo de ecuación ya fue tratada en los párrafos anteriores. Su gráfica es una recta de pendiente:

m ab

= −

La ecuación 12x - 15y = 30 es de la forma ax + by = c. Identifique a, b y c. Encuentre la pendiente de la gráfica.

El coeficiente de la variable x es a = 12, el de la variable y es b = -15 y c = 30.

La pendiente de la gráfica es:

m ab

= − = −−

=1215

45

Compruebo lo aprendido

La ecuación 5x + 7y = 2 es del tipo ax + by = c. Identifique a,b y c. Halle la pendiente y trace la gráfica de la ecuación.

Describa el conjunto solución de la ecuación

3x + 5y = -3.

Si el coeficiente b de la variable y es igual a cero, entonces la ecuación toma la forma

ax = c.

Aquí despejando x obtenemos que:

x ca

= ,

en tanto que y puede tomar cualquier valor real. Las soluciones son los puntos ( c

a; y) donde y es un número real cualquiera.

Page 172: Libro de matematicas 9no grado

164

Por tanto, si b = 0, el conjunto solución de la ecuación:

ax + by = c

(a ≠ 0), es el conjunto de puntos

{( ca

; y): y ∈ �}

Este conjunto es la recta vertical que intercepta al eje horizontal x en

x ca

=

Trace el gráfico de la ecuación 3x + 0y = 5.

Sistemas de Ecuaciones Lineales en dos incógnitas

Un sistema de dos ecuaciones lineales en dos incógnitas es un conjunto de dos ecuaciones lineales en las mismas dos incógnitas.

Un sistema de dos ecuaciones lineales en las incógnitas x, y es un sistema del tipo

a x b y ca x b y c

1 1 1

2 2 2

+ =+ =

donde a1, a2, b1, b2, c1, c2, son constantes reales.

Una solución del sistema es cualquier punto de �2 que sea solución de ambas ecuaciones del sistema. Todas las soluciones del sistema forman el conjunto solución.

Compruebe que el par de valores x = − 2928

, y = − 2314

constituye una

solución de ambas ecuaciones del sistema:

2 3 76 5 2x yx y+ = −− =

¿Cuáles son las pendientes de las gráficas de las ecuaciones del sistema?

¿En cuántos puntos se interceptan estas gráficas?

Un punto que sea solución del sistema debe pertenecer a las gráficas de las ecuaciones puesto que satisface ambas ecuaciones.

Una libra de café cuesta 25 córdobas y 1 libra de frijoles 10 córdobas.

Si

x: es el costo de la libra de café

y: es el costo de la libra de frijol entonces:

x + y = 25 + 10 = 35

De manera general si no conocemos el valor de la libra de cada producto tenemos la ecuación en dos variables

x + y = 35

4

3

2

1

0

-1

1

(2 ; 3)

(2,1)

0

Grá�ca de 3x + 0y = 6ó bien x = 2

2

Page 173: Libro de matematicas 9no grado

165

Llamaremos a las rectas:

ℓ1 como ℓ1

y ℓ2 como ℓ2

¿Cuántas soluciones tiene el sistema?

Grafique ambas ecuaciones en un mismo plano cartesiano para corroborar su respuesta.

Sean ℓ1 y ℓ2 las rectas determinadas por las ecuaciones ax + by = p y cx + dy = q, respectivamente.

Entonces:

1. El conjunto solución del sistema es infinito si y sólo si cada ecuación del sistema dado se puede convertir en la forma algebraica de la otra, es decir, ℓ1 = ℓ2

2. El conjunto solución del sistema es vacío (no tiene solución) sí y solo si ℓ1 || ℓ2 (las rectas son paralelas).

ℓ1

ℓ2

3. El conjunto solución del sistema es unitario (tiene una solución nada más) sí y solo si las rectas ℓ1 y ℓ2 se cortan en un punto.

ℓ1 ℓ2

ℓ1 = ℓ2

Page 174: Libro de matematicas 9no grado

166

Operaciones elementales sobre un sistema

Una operación elemental sobre un sistema de dos ecuaciones lineales consiste en la realización de cualquiera de las siguientes acciones:

1. Intercambiar de lugar las ecuaciones del sistema.

2. Multiplicar una ecuación por un número real diferente de cero. El resultado de multiplicar una ecuación por un número real se denomina múltiplo escalar de la ecuación.

3. Sumar a una ecuación del sistema un múltiplo escalar de la otra ecuación del sistema.

En particular, sumar o restar a una ecuación del sistema la otra ecuación del mismo sistema es una operación elemental del tipo 3.

Consideremos el sistema

3 5 76 10 14x yx y+ =+ =

Multipliquemos la primera ecuación por -2 (operación del tipo 2).

Obtenemos el sistema equivalente.

− − = −+ =

6 10 146 10 14

x yx y

Ahora sumémosle la primera ecuación a la segunda. Tendremos de nuevo un sistema equivalente.

− − = −+ =

6 10 140 0 0x y

x y

Importante

Dos sistemas son equivalentes si tienen el mismo conjunto solución

La equivalencia entre sistemas de ecuaciones es una relación de equivalencia.

Ejemplo 1

Page 175: Libro de matematicas 9no grado

167

Si ahora multiplicamos la primera ecuación por −1

2 , obtenemos el

sistema3 5 70 0 0x yx y+ =+ =

Cuando un sistema tiene una ecuación del tipo 0x + 0y = 0, el conjunto solución del sistema coincide con el conjunto solución de la otra ecuación del sistema.

Por tanto, el conjunto solución del último sistema es igual al conjunto solución de la ecuación

3x + 5y = 7.

Este conjunto es la recta que pasa por los puntos 07

5

7

30; ;

y

Verifíquelo usted mismo.

Por transitividad de la relación de equivalencia de sistemas, el sistema original es equivalente al último sistema. Luego la solución del sistema

3 5 76 10 14x yx y+ =+ =

,

es la misma del sistema planteado anteriormente, es decir, la recta definida por la ecuación 3x + 5y = 7.

Geométricamente, esto significa que la recta determinada por la ecuación 6x + 10y = 14 coincide con la recta definida por la ecuación 3x + 5y = 7.

Observe que la segunda ecuación del sistema dado es múltiplo escalar de la primera ecuación del sistema. Este hecho, junto con las operaciones elementales aplicadas en el proceso, fue lo que condujo a determinar que la solución del sistema coincide con la solución de la primera ecuación del mismo.

En general tiene lugar el siguiente resultado:

Siempre que una de las ecuaciones de un sistema sea múltiplo escalar de la otra ecuación, entonces el conjunto solución de esa otra ecuación es el conjunto solución del sistema.

Page 176: Libro de matematicas 9no grado

168

Determine el conjunto solución del sistema

2 7 372

32

x y

x y

− =

− =

Observe que la primera ecuación se puede obtener de la segunda multiplicando ésta por 2. Es decir, la primera ecuación es múltiplo escalar de la segunda. Luego, por lo antes expuesto, el conjunto solución del sistema coincide con el conjunto solución de la segunda ecuación

x y− =72

32

el cual es una recta.

Halle dos puntos distintos de la recta definida por la ecuación

x y− =72

32

y realice el trazado de ella.

Plantee un sistema de dos ecuaciones lineales, distinto de los aquí presentados, de manera que una de las ecuaciones sea un múltiplo escalar de la otra. Luego describa y grafique el conjunto solución.

El resultado del ejemplo 1 se puede obtener más rápidamente si aplicamos una operación elemental de tipo 3. En efecto, si en el sistema.

3 5 76 10 14x yx y+ =+ =

a la segunda ecuación le sumamos el producto de la primera por -2, es decir, le sumamos la ecuación -6x - 10y = -14:

-6x - 10y = -14 6x - 10y = 14

0x - 0y = 0

Ejemplo 2

Page 177: Libro de matematicas 9no grado

169

obtenemos, la ecuación:

0x + 0y = 0,

que sustituirá a la segunda ecuación del sistema original, para obtener el sistema equivalente:

3 5 70 0 0x yx y+ =+ =

El proceso desarrollado podemos describirlo de la siguiente manera

+ -2 3 5 76 10 14

x yx y

+ =+ =

3 5 70 0 0x yx y+ =+ =

Consideremos el sistema:2 5 56 15 60x yx y+ =

− − =

Multipliquemos la primera ecuación por -3 y sumemos el resultado a la segunda ecuación.

+ 3 2 5 56 15 60x yx y+ =

− − =

2 5 50 0 45x yx y+ =+ =

Cada término de la primera ecuación se multiplica por -3 y el resultado se suma al término semejante de la segunda ecuación.

Por ejemplo, -3 (2x) = 6x, se suma al término 6x de la segunda ecuación dando como resultado 0x. Si repetimos esta operación con los otros términos obtenemos la ecuación:

0x + 0y = 45,

la cual va a sustituir a la segunda ecuación del sistema original para obtener el sistema equivalente del esquema anterior a la derecha de la flecha, es decir, el sistema:

2 5 50 0 45x yx y+ =+ =

La segunda ecuación de este sistema no tiene solución y, por tanto, el sistema tampoco posee solución. Por tanto, el conjunto solución del sistema original

2 5 56 15 60x yx y+ =+ =

+ 3 26

0

xyx−

Ejemplo 3

Page 178: Libro de matematicas 9no grado

170

es el conjunto vacío. Geométricamente, esto significa que las rectas determinadas por las ecuaciones del sistema no tienen puntos comunes, es decir son rectas paralelas no coincidentes.

Hallar el conjunto solución del sistema de ecuaciones.

2 5 52 5 20x yx y+ =

− − =

Observemos que si despejamos y en ambas ecuaciones del sistema anterior, obtenemos:

y x

y x

= − +

= − +

25

1

25

4

de modo que el coeficiente de x de la primera ecuación coincide con el coeficiente de y en la segunda.

Observe que las partes derechas de las ecuaciones difieren en 3 unidades. Es decir, el valor de y que se obtiene en la segunda ecuación al asignarle un valor a x, excede en 3 unidades al valor de y que se obtiene en la primera ecuación al hacer la misma asignación al valor de x.

Al realizar el gráfico del sistema de ecuaciones, se observará que la gráfica de la segunda ecuación está desplazada, con respecto a la gráfica de la primera ecuación, verticalmente 3 unidades hacia arriba. Luego, las dos gráficas son rectas paralelas como ya habíamos determinado.

Consideremos de nuevo el sistema del ejemplo 1,

3 5 76 10 14x yx y+ =+ =

Hallar el conjunto solución.

Ejemplo 4

Ejemplo 5

Page 179: Libro de matematicas 9no grado

171

Despejemos y en ambas ecuaciones. Obtenemos:

y x

y x

= − +

= − +

35

75

610

1410

Es decir,y x

y x

= − +

= − +

35

75

35

75

Este sistema consta de dos ecuaciones repetidas. Por tanto, se reduce a una sola ecuación.

y x= − +35

75

la que es equivalente a la ecuación

3x + 5y = 7

Luego, el conjunto solución de esta ecuación es el conjunto solución de todo el sistema dado.

Las ecuaciones del sistema del ejemplo 1 son ecuaciones con la misma pendiente. Resultó que las rectas que ellas determinan son paralelas no coincidentes (es decir, el conjunto solución del sistema es vacío no tiene solución)

Si al despejar y en dos ecuaciones lineales resultan ecuaciones con la misma pendiente, entonces las gráficas que determinan estas ecuaciones son rectas paralelas. Y, si además, los términos independientes resultantes coinciden, entonces las rectas también coinciden.

Por otra parte, si las pendientes son distintas entonces las rectas no son paralelas, y por tanto, se cortan en un solo punto.

Analicemos el sistema:3 5 06 7 5x yx y− =+ =

Page 180: Libro de matematicas 9no grado

172

Multiplicando la primera ecuación por -2 y sumando el resultado a la segunda obtenemos el sistema equivalente

3 5 00 17 5x yx y− =+ =

es decir,3 5 0

17 5x y

y− =

=

Ahora, en la segunda ecuación despejamos y, obteniendo

y = 57

Luego sustituimos este valor de y en la primera ecuación, con lo cual ésta se transforma en una ecuación lineal en una incógnita

3x - 5(0) = 0

es decir, la ecuación

3x = 0

cuya solución es x = 0. Por tanto, una solución del sistema es el punto de coordenadas

x = 0, y = 517

Encontremos las pendientes de las ecuaciones del sistema. Despejando y en la primera ecuación obtenemos

y x=35

Y, en la segunda,

y x= − +67

5

la pendiente de la primera ecuación es 3

5 y la de la segunda es

6

7.

Puesto que las ecuaciones tienen diferentes pendientes, las gráficas que ellas determinan se cortan en un solo punto. Este punto pertenece a ambas rectas y por tanto es solución de las dos ecuaciones del sistema.

Por tanto, el sistema dado sólo tiene una solución, precisamente el punto encontrado anteriormente.

Page 181: Libro de matematicas 9no grado

173

Método de igualación.

En la sastrería “¡Viste cómo se viste!”, confeccionan dos tipos de pantalones: búfalo y señor. La confección de un pantalón se realiza en dos etapas, primero se efectúa el corte y posteriormente se ejecuta la costura. Para un búfalo se requieren 1 hora de corte y 3 horas de costura, mientras que un señor necesita 2,5 horas para el corte y 4 de costura.

Tipo de pantalón Búfalo Señor

Tiempo de corte 2 h 2,5 h

Tiempo de costura 3 h 4 h

Cantidad producida en un mes x y

Si x representa la cantidad de pantalones búfalo confeccionados en un mes, ¿cuál es la cantidad de horas por mes gastadas en el corte de este tipo de pantalones?

El tiempo que se tardan en efectuar varios cortes del mismo tipo es

(Tiempo en realizar un corte)(total de cortes efectuados).

Por tanto, si se fabrican x pantalones búfalo y en cada uno se requiere 2 horas en el corte, entonces el tiempo necesario para cortar todos los pantalones de este tipo será igual a 2x.

• Si se trabajaron 180 horas al mes en el corte de los pantalones búfalo, ¿cuántos cortes de este tipo fueron realizados?

• ¿Se podría haber trabajado 175 horas en el corte completo de una cierta cantidad de pantalones búfalo?

Si y representa la cantidad de pantalones señor fabricados en un mes ¿Cuánto tiempo de trabajo mensual se requiere para el corte de estos pantalones?

Ejemplo 6

Page 182: Libro de matematicas 9no grado

174

Como el corte de un pantalón señor requiere de 2,5 horas de trabajo, en la fabricación de y unidades se necesitan 2,5 y horas de corte.

¿Cuál es el tiempo de trabajo mensual en el corte de todos los pantalones, es decir, incluyendo búfalos y señor?

Puesto que el tiempo en horas que consume el corte de los pantalones es de 2x para los búfalo y 2,5y para los señor, el tiempo total de corte en horas es igual a

2x + 2,5y.

¿Cuál sería el total de horas dedicadas al corte si se fabricaran 40 pantalones búfalo y 55 del tipo señor?¿Cuál es el número de pantalones señor confeccionados si el tiempo total de corte es de 274 horas y se fabricaron 58 pantalones búfalo?

TABLA 1

Tipo de pantalón Búfalo Señor Total

Tiempo de corte 2 h 2,5 h

Tiempo de costura 3 h 4 h

Cantidad producida en un mes x y

Horas de corte por mes 2x 2,5y 2x + 2,5y

Horas de costura por mes 3x 4y 3x + 4y

La expresión algebraica que representa el total de horas de costura que se requieren para fabricar una cantidad x de pantalones búfalo y una cantidad y de pantalones señor es igual:

3x + 4y.

Suponga que en la sastrería ¡Viste cómo se viste! el tiempo de trabajo mensual estipulado es de 104 horas para el corte y de 161 horas para la costura. De acuerdo con estas condiciones, ¿cuántos pantalones búfalo y cuántos señor se pueden fabricar mensualmente?

De acuerdo con lo que ya hemos establecido, tenemos que, bajo las restricciones planteadas,

2x + 2,5y = Horas de corte = 104

3x + 4y = Horas de costura = 161.

Page 183: Libro de matematicas 9no grado

175

El problema planteado queda expresado por el sistema de ecuaciones

2 2 5 1043 4 161

x yx y+ =+ =

Este es un sistema de dos ecuaciones lineales en las incógnitas x, y. Si no queremos trabajar con decimales multiplicamos ambos lados de la primera ecuación por 10 para obtener el sistema equivalente.

20 25 1 0403 4 161x yx y+ =+ =

Para resolver este sistema realizamos el procedimiento siguiente:

1. Despejemos la misma incógnita, por ejemplo y, en ambas ecuaciones.

20x + 25y = 1 040 y x=

−1 040 2025

3x + 4y = 161 y x=

−161 34

2. Igualamos las expresiones resultantes:

1 040 2025

161 34

−=

−x x

Con lo cual se obtiene una ecuación en una sola incógnita x.

3. Resolvemos la ecuación

4 (1 040 - 20x) = 25( 161 - 3x)

4 160 - 80x = 4 025 - 75x

4 160 - 4 025 = -75x + 80x

135 = 5x

1355

= x

x = 27.

4. Sustituimos el valor encontrado de x en una de las expresiones en que tenemos despejada a y:

y xx

=−

=−

= ==

161 34

161 3 274

804

2027

( )

Page 184: Libro de matematicas 9no grado

176

5. Los dos valores obtenidos, forman la solución del sistema

x = 27, y = 20.

De acuerdo con la representación que le asignamos a x y a y en el problema, podemos concluir que si la cantidad de horas mensuales dedicadas al corte y a la costura se fijan en 104 y 161 horas respectivamente, entonces se podrán fabricar un total de 27 pantalones búfalo y 20 pantalones señor.

El método desarrollado para resolver el sistema de ecuaciones se denomina método de igualación.

Método de sustitución.

Calcule las pendientes de las ecuaciones del sistema para constatar que son diferentes y que, por tanto, la solución encontrada es la única solución del sistema.

La empresa “La reina del paladar” está dedicada a la fabricación de jugos y mermeladas. Sus costos de producción son de 0,54 dólares en la elaboración de un frasco de mermelada y de 0,045 dólares en la preparación de una botella de jugo.

¿Cuántos frascos de mermelada y cuántos de jugo se deben producir para que los costos totales de producción asciendan a 855 dólares y la cantidad total de unidades producidas sea de 8 000 unidades?

Las cantidades de frascos de mermelada y de jugo necesarias para cumplir la obligación de fabricar 8 000 unidades a un costo de 855 dólares, son valores desconocidos que debemos determinar. Por ello les llamamos incógnitas. Pero para poder hablar de ellas debemos asignarles un nombre. Designemos pues

x = cantidad producida de frascos de mermelada

y = cantidad producida de frascos de jugo

Nuestro cometido es despejar las incógnitas, es decir, determinar cuáles son sus valores. Para lograrlo debemos plantearnos un enunciado matemático que los involucre y que refleje fielmente la situación planteada en el problema.

Ejemplo 7

Page 185: Libro de matematicas 9no grado

177

Se nos dice que el total de unidades producidas debe ser de 8 000 unidades. Por tanto, en correspondencia con esta exigencia y la notación acordada, debemos plantear que

x + y = 8 000

El costo de producción del total de frascos de mermelada producidos es el producto del costo unitario, 0,54 dólares, por el total x, de unidades producidas. Esto es

Costo de producción de x frascos de mermelada = 0,54x

En forma similar se halla el costo total de producción de los frascos de jugo:

Costo de producción de y frascos de jugo = 0,045y

El costo total de la producción de x frascos de mermelada e y frascos de jugo es entonces igual a

0,54x + 0,045y

Pero de acuerdo con el problema este costo debe ser igual a 855 dólares. En consecuencia,

0,54x + 0,045y = 855

Resumiendo, tenemos que

x yx y+ =+ =

8 0000 54 0 045 855, ,

Si no queremos trabajar con decimales podemos multiplicar la segunda ecuación por 1 000 para obtener el sistema equivalente

x yx y

+ =+ =

8 000540 45 855 000

Este es un sistema de dos ecuaciones lineales en dos incógnitas. Para resolverlo seguimos el procedimiento siguiente:

Page 186: Libro de matematicas 9no grado

178

Despejemos una de las incógnitas en una de las ecuaciones, por ejeplo y en la segunda primera ecuación:

x + y = 8 000 y = 8 000 - x

Se sustituye la expresión de esta incógnita en la otra ecuación,

540x + 45(8 000 - x) = 855 000

con lo cual se obtiene una ecuación en una sola incógnita x.

Resolvemos la ecuación

540x + 45 (8 000 - x) = 855 000 540x + 360 000 - 45x = 855 000540x - 45x = 855 000- 360 000495x = 495 000

x = =495 000

4951 000

Sustituimos el valor de x en la ecuación que tenemos despejada y:

y = 8 000 - x = 8 000 - 1000y = 7 000

Los dos valores obtenidos forman la solución del sistema:

x = 1 000, y = 7000

Con la solución obtenida llegamos a la conclusión de que, para cumplir con los requerimientos del problema, se deben fabricar mil frascos de mermelada y siete mil de jugo. El método que utilizamos en esta ocasión para resolver el sistema se denomina método de sustitución.

Metodo de reducción.

Felipe compró un televisor y un equipo de sonido en C$ 17 700 y los vendió en C$ 19 366. Si en la venta del televisor ganó el 8% y en la venta del equipo de sonido ganó el 10%, ¿cuánto le costó cada artículo?

Ejemplo 8

Page 187: Libro de matematicas 9no grado

179

Denotemos

x = costo del televisor

y = costo del equipo de sonido

Puesto que Felipe gana el 8% en la venta del televisor y el 10% en la venta del equipo de sonido, en cada una de las transacciones él gana

Ganancia en la venta del televisor = 0,08 x

Ganancia en la venta del equipo de sonido = 0,10 y

El precio en que Felipe vende cada artículo, es igual al costo más su ganancia. Por tanto, el televisor lo vende en

x + 0,08x = (1 + 0,08)x = 1,08x

mientras que la venta del equipo de sonido la realiza en la cantidad de

y + 0,10y = (1 + 0,10)y = 1,10y

Los dos artículos los vendió Felipe en:

1,08x + 1,10y = 19 366

habiéndolos adquirido en la cantidad de

x + y = 17 700

El siguiente sistema de ecuaciones lineales refleja algebraicamente el problema planteado.

1 08 1 10 19 36617 700

, ,x yx y+ =

+ =

Page 188: Libro de matematicas 9no grado

180

Para resolver este sistema vamos a utilizar el método de reducción. Éste método consiste en la realización de los siguientes pasos.

1. Se multiplican las ecuaciones por números adecuados, de tal manera que los coeficientes de una de las incógnitas sean iguales en ambas ecuaciones.

2. Las restamos eliminando una de las incógnitas

3. Se resuelve la ecuación resultante.

4. El valor obtenido se sustituye en una de las ecuaciones iniciales y se resuelve.

5. La pareja de valores obtenidos es la solución del sistema.

Apliquemos pues este método al sistema.

1 08 1 10 19 36617 700

, ,x yx y+ =+ =

1. Multipliquemos la primera ecuación por 100 y la segunda por 108

108 110 1 936 600108 108 1 911 600

x yx y+ =+ =

2. Restemos las ecuaciones. Obtenemos la ecuación en y,

2y = 25 000.

3. Resolvemos esta ecuación

y = =25 000

212 500

4. El valor obtenido para y se introduce en la segunda ecuación del sistema inicial x + y = 17 700, y resolvemos:

x + 12 500 = 17 700, x = 17 700 - 12 500

x = 5 200.

La pareja, x = 5 200, y = 12 500, es la solución del sistema. Por tanto, Felipe compró el televisor y el equipo de sonido en C$5 200 y C$ 12 500 respectivamente.

Page 189: Libro de matematicas 9no grado

181

Matrices y Determinantes de 2 x 2

Un arreglo de dos filas y dos columnas de números reales se denomina matriz real 2 × 2.

Si la matriz se denota por A, entonces:

A =

a aa a

11 12

21 22

Donde el elemento aij representa al término que figura en la i-ésima fila y en la j-ésima columna llamado, componente (i,j) de la matriz A. Las componentes (i,i) (i = 1,2) forman la diagonal principal de la matriz, llamada diagonal principal de la matriz A.

La matriz

A =−

1 0

3 7 4,

es una matriz real cuya componente (2,1), es decir, el elemento que está en la fila 2 columna 1, es igual a 3,7. La diagonal principal de esta matriz está formada por los números -1 y 4.

Determinantes 2 x 2

El determinante de una matriz real es denotado por detA, y es igual al producto de las componentes de la diagonal principal menos el producto de las componentes de la otra diagonal, es decir,

detA = = −a aa a

a a a a11 12

21 2211 22 12 21

El determinante de la matriz

A =−

1 0

3 7 4,

es igual a detA = (-1)(4) - (3,7)(0) = - 4 - 0 = -4.

Encuentre el valor de los determinantes:

B D=− −

=

5 21 3

0 41 2

Ejemplo 9

Page 190: Libro de matematicas 9no grado

182

El determinante de la matriz

A =

a aa a

11 12

21 22

también se denota por a aa a

11 12

21 22

£ Hallar el determinante de la matriz

A =−

2 6

4 7

Matriz de un Sistema de dos Ecuaciones Lineales

Consideremos un sistema de dos ecuaciones lineales en las incógnitas x, y:

ax by pcx dy q+ =+ =

La matriz

a bc d

Se denomina matriz coeficiente o matriz de coeficientes del sistema.

Observe que los elementos de la primera columna son los coeficientes de x y los componentes de la segunda columna son los coeficientes de la incógnita y.

Si a la matriz coeficiente agregamos una columna formada por los términos independientes de las ecuaciones, obtenemos la denominada matriz ampliada del sistema:

a bc d

pq

Esta es una matriz de dos filas por tres columnas, una matriz 2 × 3. Observe que se introduce un segmento de línea vertical punteado para indicar que el sistema de ecuaciones correspondiente ahí aparecen los signos de igualdad.

Page 191: Libro de matematicas 9no grado

183

Trabajo en Equipo

Consideremos el sistema:

2 5 17 3 2x yx y+ =+ = −

La matriz de coeficientes de este sistema es la matriz,

2 5

7 3

Siendo su matriz ampliada:

2 5

7 3

1

2

a. Encuentre la matriz coeficiente y la matriz ampliada del sistema

3 55 4 6x yx y− =

− + =

b. Calcule el determinante de la matriz de coeficientes del sistema.

c. Cambie en la matriz coeficiente la primera columna por la tercera columna de la matriz ampliada y calcule el determinante de la matriz resultante.

d. En la matriz de coeficientes cambie la segunda columna por la tercera columna. Escriba aquí la ecuación de la matriz ampliada y calcule el determinante de la matriz que resulta.

Metodo de Cramer

Consideremos de nuevo el sistema

ax by pcx dy q+ =+ =

Multipliquemos la primera fila por d y la segunda por –b y luego sumemos los resultados.

d ax + by = p adx + bdy = pd

-b cx + dy = q -bxc + bdy = qb

adx - bxc = pd - qb

Extrayendo factor común obtenemos

(ad - bc) x = pd - qb

Page 192: Libro de matematicas 9no grado

184

En forma similar, como resultado de multiplicar la primera ecuación del sistema por –c y las segunda por a, y sumar los resultados, se obtiene:

(ad - bc)y = aq - pc

Si ad - bc ≠ 0, de las ecuaciones obtenidas, se deduce la solución del sistema dado.

Observemos que si A =

a bc d es la matriz de coeficientes del sistema,

entonces

ad bca bc d

− = = ( )det A

Por otra parte, si Aj representa la matriz que resulta de reemplazar

la j-ésima columna de A por la columna de términos independientes pq

, entonces

Ap bq d

Aa pc q1 2=

=

y

pd qbp bq d

− = = det(A )1

aq pca pc q

− = = det(A )2

Luego, de estas relaciones y de las igualdades, obtenemos que si det (A) ≠ 0,

xAA

yAA

=( )( )

=( )( )

detdet

detdet

1 2

es una solución del sistema.

Este método de solución de sistemas de ecuaciones lineales se denomina Método de Cramer.

Page 193: Libro de matematicas 9no grado

185

Resolver el sistema de ecuaciones:

2 3 114 11 97x yx y− = −+ =

La matriz coeficiente y la matriz ampliada del sistema son respectivamente

A =−

2 3

4 11 y B =

− −

2 3 11

4 11 97

La matriz A1 que se obtiene de sustituir la primer columna de A por

la columna de términos independientes −

11

97 es decir, por la tercera

columna de la matriz ampliada, es

A1

11 3

97 11=

− −

y la matriz A2 que resulta de reemplazar la segunda columna de A

por la columna −

11

97 es la matriz

A2

2 11

4 97=

Los determinantes de A, A1 y A2 son respectivamente

det (A) = 34, det (A1) = 170, det (A2) = 238

Luego,

x AA

y AA

= = = = = =detdet

detdet

( )( )

( )( )

1 217034

5 23834

7

Por tanto, el par x = 5, y = 7 es una solución del sistema dado.

Compruebo lo aprendido

Resolver el sistema de ecuaciones por el Método de Cramer.

x yx y− =+ = −

4 103 2 12

Ejemplo 1

Page 194: Libro de matematicas 9no grado

186

Tipos de Sistema de Ecuaciones.Los sistemas de ecuaciones se pueden clasificar de acuerdo con el número de soluciones que puedan poseer. Según este criterio pueden presentarse los siguientes casos.

• Sistema incompatible si no posee soluciones.

• Sistema compatible si tiene al menos una solución. Estos sistemas a su vez se clasifica en:

a. Sistema compatible determinado cuando tiene un número finito de soluciones.

b. Sistema compatible indeterminado si tiene un conjunto infinito de soluciones.

Para el caso de los sistemas de dos ecuaciones lineales en dos incógnitas, de acuerdo con lo estudiado anteriormente, un sistema es compatible determinado si tiene exactamente una solución.

• Cuando el determinante del sistema es diferente de cero, el sistema es compatible, es decir que si A es la matriz coeficiente del sistema, entonces:

det (A) ≠ 0, el sistema es compatible.

• El sistema es incompatible si el determinante es igual a cero, es decir,

det (A) = 0, el sistema es incompatible.

Supongamos que el sistema

ax by pcx dy q+ =+ =

posee dos soluciones distintas (x1 ; y1) y (x2 ; y2). Entonces,

ax by pax by p

cx dy qcx dy q

1 1

2 2

1 1

2 2

+ =+ =

+ =+ =

Además x1 - x2 ≠ 0 ó bien y1 - y2 ≠ 0, pues (x1; y1) ≠ (x2; y2).

Page 195: Libro de matematicas 9no grado

187

Si x1 - x2 ≠ 0, multiplicamos la primera ecuación por d y la segunda por –b:

ad (x1 - x2) + bd (y1 - y2) = 0,

-bc (x1 - x2) - bd (y1 - y2) = 0,

al sumar obtenemos:

(ad - bc) (x1 - x2) = 0.

Finalmente, dividiendo por x1 - x2 y simplificando, concluimos que

ad - bc = 0.

Si x1 - x2 = 0, entonces y1 - y2 ≠ 0. Desarrolle este caso y llegue a la conclusión de que ad - bc = 0.

Restando a cada una de las dos primeras igualdades, la igualdad que tiene por debajo, obtenemos

a(x1 - x2) + b(y1 - y2) = 0,

c(x1 - x2) + d(y1 - y2) = 0.

De esta manera queda demostrado que si un sistema de dos ecuaciones lineales en dos incógnitas tiene al menos dos soluciones diferentes, entonces el determinante de la matriz de coeficientes del sistema es igual a cero.

Sea A la matriz de coeficientes de un sistema de dos ecuaciones lineales en dos incógnitas.

Clasifique el siguiente sistema de ecuaciones:

2 3 114 11 97x yx y− = −+ =

Solución: La matriz del sistema es

A =

2

4

- 3

11

Ejemplo 2

Page 196: Libro de matematicas 9no grado

188

Calculemos su determinante:

det (A) = (2)(11)-(4)(-3) = 10.

Puesto que el determinante de la matriz es no nulo, el sistema es compatible determinado. En consecuencia, el conjunto solución del sistema está constituido por un solo punto y las gráficas de las ecuaciones del sistema son dos rectas no paralelas.

Trabajo en Equipo

Haga un cuadro sinóptico para representar la clasificación de los sistemas de dos ecuaciones lineales en dos incógnitas de acuerdo con el número de soluciones que posea.

Caracterice cada uno de los siguientes sistemas

a. 5 6 32 5 1x yx y+ =

− + =

b. 4 1

32 7

9 34

8

x y

x y

− =

− + =

,

c. 5 3

20

2 3 0

x y

x y

+ =

+ =

d. 3 2 1232

1

x y

x y

+ =

+ =

e. 4 3 72 5 3x yx y+ =− = −

f. 0 5 0 8 1001 2 1 5 50

, ,, ,x yx y+ =+ =

Page 197: Libro de matematicas 9no grado

189

Ejercicios de Cierre de Unidad

I. Halle dos soluciones distintas de las ecuaciones dadas.

1. y x= −12

3 65,

2. 11 37

100x y+ =

3. 0,45 m = n - 1

4. 3x + 5y = 0

5. 12

23 4 796− =y ,

6. 3x + 7y = 0

7. 216

275

52

3

m n+ =

8. p + q = 0

9. 729 70 25

328981

33

3

12

x + =

−,

10. 537

256 32 874y y− = ,

II. Trace el gráfico de las siguientes ecuaciones:

1. y = 7x - 2

2. 3y - 5x = 2

3. 152

16 0 25x y− = ,

4. x - y = 0

5. 2 10 65

y x= −

Page 198: Libro de matematicas 9no grado

190

III. Encuentre la pendiente de las rectas del ejercicio anterior y determine cuáles de éstas son paralelas.

IV. Resuelva los sistemas de ecuaciones lineales:

1. x yx y− =+ =

32 7

2. − + = −− − =

2 5 163 3

m nm n

3. 5 13

1x y

x y+ =+ =

4.

1

23

1

8

1

20

1

10

1

16

x y

x y

− =

+ =

5. − + = −− =

4 24 1

8 16 10

p q

p q

6. x y

x y

+ =− =

2

3 5

7. r s

s

− =− =

3 5

4 3

8. 4m +5n = 10

3m - 8n = -6

9. x yx− ==

33 10

V. Explique porqué dados dos sistemas de ecuaciones donde las ecuaciones del segundo son combinaciones lineales de las ecuaciones del primer sistema, los sistemas son equivalentes.

VI. Resuelva los siguientes sistemas de ecuaciones lineales y compruebe su respuesta.

1. 8x - 2y = 14

2x - 3y = -9

2. 0,03x - 0,02y = 1,06

0,50x - 0,75y = -0,01

3. x y

x y

− =

+ =

203

6

85

3 5

4.

73

4

143

2 2

x y

x y

− =

− =

5.

xyxy

+=

−+

= −

5 1

2 23 4

34

6. 5 6 6

6 11 5

x y

x y

− =

− =

7. 6 2 384 4

x yx y− = −+ = −

8.

3 53 12

6 16 51

84 2

2 108 10

xy

xy

xy

xy

++

=++

−+

=−+

9. x yx y+ =− =

1213

10.

23

15

103

+ =

=

xy

yx

Page 199: Libro de matematicas 9no grado

Unidad 6

Congruencia ySemejanza

Pascual Rigoberto López Pérez, más conocido por Rigoberto López Pérez (1929 – 1956), poeta nicaragüense e importante símbolo de la revolución, marcó el inicio del fin de la tiranía, pasó a la inmortalidad el 21 de Septiembre de 1956. En septiembre de 1981, Rigoberto López Pérez entró a la lista de Héroes Nacionales por la “gesta heroica llevada a cabo al ajusticiar al tirano”. El Decreto fue aprobado el día en que se cumplieron 25 años del asesinato de López Pérez.

Fuente: 19 digital.20 de Septiembre 2013.

Page 200: Libro de matematicas 9no grado

192

CongruenciaIntroducción

En el lenguaje corriente, diríamos que dos figuras geométricas son congruentes si tienen la misma forma y el mismo tamaño. Por ejemplo los tres triángulos presentados a continuación son congruentes.

Unidad

6B

A C

H

G I

E

D F

La palabra congruente se deriva de las palabras latinas “con que significa con” y “gruere, que significa concordar”.

Las figuras congruentes pueden hacerse coincidir, parte por parte. Las partes coincidentes se llaman partes correspondientes. El símbolo para indicar la correspondencia es ↔

El símbolo para denotar congruencia es ≅. Este símbolo es una combinación de los dos símbolos: =, que significa tener el mismo tamaño y ∼ que significa tener la misma forma.

Si existe alguna correspondencia ABC↔DEF entre los vértices del ΔABC con los del ΔDEF, tal que cada pareja de lados correspondientes son congruentes y cada pareja de ángulos correspondientes son congruentes, la correspondencia ABC↔DEF se llama congruencia entre los triángulos y escribimos ΔABC ≅ ΔDEF.

Así, si ΔABC ≅ ΔDEF, se pueden establecer seis relaciones entre los lados y los ángulos de los dos triángulos.

AB DE o bien AB DE≅ =, ,

AC DF o bien AC DF≅ =, ,

BC EF o bien BC EF≅ =, ,

∠ ≅∠ ∠ = ∠A D o bien m A m D, ,

∠ ≅∠ ∠ = ∠B E o bien m B m E, ,

∠ ≅∠ ∠ = ∠C F o bien m C m F, .

B

A C

E

D F

Page 201: Libro de matematicas 9no grado

193

Relaciones de congruencia

Los teoremas siguientes son una consecuencia directa de las propiedades del conjunto de los números reales. Pueden usarse para simplificar muchas demostraciones de los demás teoremas.

1. Teorema de congruencia para los segmentos.

• Teorema reflexivo: Todo segmento es congruente así mismo, AB AB≅

• Teoremasimétrico: Si AB CD≅ , entonces CD AB≅ .

• Teorematransitivo: Si AB CD≅ , y CD EF≅ , entonces AB EF≅ .

• Teoremadelaadición: Si B está entre A y C, E entre D y F, y si AB DE≅ y BC EF≅ , entonces AC DF≅ . Ver figura abajo.

A B C D E F

• Teoremadelasustracción: Si B está entre A y C, E está D y F, AC DF≅ y BC EF≅ , entonces AB DE≅ .

2. Teorema de congruencia para los ángulos

• Teorema reflexivo: Todo ángulo es congruente así mismo, ∠ ≅∠A A .

• Teoremasimétrico: Si ∠ ≅∠A B, entonces ∠ ≅∠A A .

• Teorematransitivo: Si ∠ ≅∠A B y ∠ ≅∠B C, entonces ∠ ≅∠A C.

• Teoremadelaadicióndeángulos: Si D está en el interior de ∠ABC,

P está en el interior de ∠ ∠ ≅∠ ∠ ≅∠RST ABD RSP DBC PST, ,y

entonces ∠ ≅∠ABC RST.

• Teorema de la sustracción de ángulos: Si D está en el

interior de ∠ABC, P está en el interior de ∠ ∠ ≅∠RST ABC RST, , y ABD RSP∠ ≅∠ , entonces ∠ ≅∠DBC PST. Ver figura siguiente.

Page 202: Libro de matematicas 9no grado

194

AB

CD

RS

TP

Definiciones

• Un lado de un triángulo se dice estar comprendido por los ángulos cuyos vértices son los extremos del segmento.

• Un ángulo de un triángulo se dice estar comprendido por los lados del triángulo que están en los lados del ángulo.

Trabajo en Equipo

Resuelva las siguientes actividades

1. Considere que ∆ ≅ ∆MQP NQP. Haga una lista de los seis pares de partes correspondientes de estos dos triángulos.

Q NM

P

2. Dado que ∆ ≅ ∆ABE DCF . Haga una lista de los seis pares de partes correspondientes de estos dos triángulos.

F

DC

E

BA

Page 203: Libro de matematicas 9no grado

195

3. Contestelassiguientespreguntas:

1. ¿Es una figura congruente consigo misma?

2. Si dos figuras son cada una de ellas congruentes con una tercera, ¿serán congruentes entre sí?

3. ¿Son congruentes los lados de un cuadrado?

4. ¿Son congruentes los lados de un rectángulo?

5. ¿Son congruentes dos caras opuestas de un cubo?

6. ¿Son congruentes dos caras adyacentes de un cubo?

7. ¿Son congruentes dos caras opuestas de un bloque rectangular, tal como un ladrillo?

8. ¿Son congruentes dos caras adyacentes de un ladrillo?

9. Dibuje dos polígonos que no tengan la misma forma pero que tengan la misma área. ¿Cuál de las siguientes opciones demuestra este ejercicio?

a. Si dos polígonos tienen la misma área, entonces no son congruentes.

b. Si dos polígonos son congruentes entonces tienen distinta área.

c. La igualdad de las áreas de dos polígonos no implica la congruencia entre ellos.

10. Mediante un gráfico represente los siguientes teoremas de congruencia para segmentos:

a. Teorema reflexivo.

b. Teorema simétrico.

c. Teorema transitivo.

d. Teorema de la Adición.

e. Teorema de la sustracción.

Page 204: Libro de matematicas 9no grado

196

Criterios de Congruencia de Triángulo

De acuerdo con la definición de congruencia, para decidir si dos triángulos son congruentes debemos comprobar tres congruencias entre segmentos y tres congruencias de ángulos. Sin embargo, en la práctica podría resultar difícil y tedioso verificar todas estas condiciones. Por ello son importantes los criterios de congruencia. Un criterio de este tipo es un grupo de condiciones mínimas bajo las cuales podemos decidir si dos triángulos son congruentes. Esta sección está dedicada al estudio de estos criterios, los cuales enunciamos a continuación.

Criterios de Congruencias de Triángulos

Dos triángulos son congruentes si las siguientes partes de uno de ellos son congruentes con las partes correspondientes del otro:

1. Tres lados (LLL)

2. Dos lados y el ángulo comprendido entre ellos (LAL)

3. Dos ángulos y el lado comprendido entre ellos(ALA)

¿Cuáles de los criterios se puede aplicar para demostrar la congruencia de la pareja de triángulos dada?

B A E

DC

B

A D

CG

J

H

F

E

FG

E

M

B C

A

B' C'

A'

Criterio Lado-Lado-Lado

LLL

Criterio Lado-Ángulo-Lado

LAL

Criterio Ángulo-Lado-Ángulo

ALA

G

F

H

G'

F'

H'

J'

K'I'

J

KI

R

Q

MP

T

S

Page 205: Libro de matematicas 9no grado

197

• ¿Qué congruencia adicional tendría que usarse para demostrar la congruencia de los triángulos usando ALA?

W

A

B

Z

• ¿Qué congruencia adicional debería indicarse para poder usar LAL a fin demostrar la congruencia de los triángulos?

D

A

C

B

Si dos segmentos se bisecan los segmentos que unen los extremos son congruentes.

Supongamos que los segmentos AB y CD se bisecan, en un punto E. Por definición esto significa que AE = BE y que CE = DE, es decir

AE BE y CE DE≅ ≅ .

Ejemplo 1

Los ángulos opuestos por el vértice son congruentes. El símbolo ∡ indica medida del ángulo.

∠ ≅∠∠ ≅∠

1 3

2 4

Es decir tienen la misma forma y la misma medida.

∡1 = ∡3∡2 = ∡4

Por otra parte, por ser ángulos opuestos por el vértice ∡AEC ≅ ∡BED. Tenemos entonces que en ∆AEC dos lados CE y AE y el ángulo comprendido, son congruentes con los parte correspondientes, DE y BE , y el ángulo comprendido. Por el criterio LAL,

∆AEC ≅ ∆BED

Los segmentos AC y BD son lados homólogos. Luego, por definición de congruencia de triángulos:

AC ≅ BD

B

DA

C

E

B

DA

C

E

1

4

3

2

Page 206: Libro de matematicas 9no grado

198

£ Mario desea determinar la distancia que hay de un punto B donde se encuentra en la orilla del Río San Juan, hasta otro punto A situado en la otra rivera. Para ello camina 23m en dirección perpedicular al segmento AB marca con una estaca un punto C y continúa caminando otros 23m en la misma dirección hasta un punto D. En ese punto dobla hacia la derecha en dirección perpendicular a la dirección anterior hasta alcanzar un punto E desde donde divisa en línea recta al punto A a la estaca que sembró en C.

Mario midió la distancia entre el punto D y el E, de 13 m, y asegura que ésta es la misma distancia del punto A al punto B.

Responda:

• ¿Tiene Mario la razón? ¿Por qué?

• ¿Por qué el ángulo ∠ACB es congruente con ∠ECD?

• ¿Por qué ∠ABC ≅ ∠EDC?

• ¿Qué criterio se debe aplicar para demostrar que ∆ABC ≅ ∆EDC?

A

C

DE

B

En la figura, ∠ ≅∠ ∠ ≅∠1 2 3 4y . Encontrar la longitud de RP y la de RM

El segmento MP es lado común de los triángulos ∆MNP y ∆MRP y es congruente consigo mismo. Bajo la correspondencia MNP↔MRP,

Ejemplo 2

M

P

R

1,35

1,931 2

N 3 4

Page 207: Libro de matematicas 9no grado

199

Se cumple:

ΔMNP ≅ ∆MRP

Luego, por definición de congruencia de triángulos, las medidas son iguales.

RP NP y RM NM= = = =1 35 1 93, ,

Congruencia de Triángulos Isósceles

En un triángulo isósceles los ángulos opuestos a los lados congruentes también son congruentes.

Sea un triángulo isósceles ∆ABC de lados congruentes AB y CB . Consideremos la correspondencia.

ABC↔CBA

B

A C

B

A C

Puesto que AB ≅ CB y BC ≅ BA y ∠ABC ≅∠CBA, es decir, dos lados AB y BC y el ángulo comprendido entre ellos,∠ABC, del triángulo ∆ABC, son congruentes con las partes correspondientes, CB , BA y ∠CBA del triángulo ∆CBA. Por tanto, ∆ABC ≅ ∆CBA, por LAL. Luego, por congruencia de triángulos, ∠A ≅∠C.

Diremos que una correspondencia uno a uno entre los vértices de dos triángulos es una congruencia si los lados y los ángulos correspondientes son congruentes.

Si dos lados de un triángulo son congruentes, entonces los ángulos opuestos son congruentes. En el caso del triángulo isósceles se cumple la congruencia LAL.

Page 208: Libro de matematicas 9no grado

200

£ Demuestren que todo triángulo es congruente consigo mismo.

Sugerencia: Denoten los vértices del triángulo por A ,B y C, y utilicen la correpondencia idéntica ABC↔ABC para demostrar que ∆ABC ≅ ∆ABC.

Recuerden que cada segmento y cada ángulo del triágulo ∆ABC es congruente consigo mismo.

Nota1:

La correspondencia ABC↔BCA entre los vértices del triángulo ∆ABC también se puede escribir como:

A B CB C A

donde bajo cada vértice de la primera fila se escribe el vértice correspondiente. Las correspondencias biunívocas como ésta, se denominan permutaciones de los vértices.

En el ejercicio anterior, usted observará que para cualquier triángulo ∆ABC la permutación (correspondencia) idéntica.

A B CA B C

es una congruencia, es decir, ∆ABC ≅ ∆ABC

Nota2:

¿Qué ocurre si en lugar tener una permutación idéntica se tiene cualquier permutación? Supongan por ejemplo que la permutación.

A B C

A C B

es una congruencia, es decir, ∆ABC ≅ ∆ACB. Entonces, por definición de congruencia AB ≅ AC y en consecuencia el triángulo ABC es

isósceles.

B

A B C

A C B

es una congruencia

por tanto

El triángulo ABC es

isósceles

A

B

AB ≅ AC

C

C

A

Page 209: Libro de matematicas 9no grado

201

Compruebo lo aprendido

Utilice el criterio adecuado para demostrar la congruencia de cada pareja de triángulos

Recuerde:

Dos trángulos son congruentes si tienen sus tres lados correspondientes y sus tres ángulos correspondientes congruentes.

Así que cuando se quiera determinar la conguencia de dos trángulos, no es necesario verificar la correspondencia entre los seis elementos. Bastan solo tres de ellos:

LLLLALALA

b)

L

J

M

∆JKL≅∆JKM

a)

D

A

C

B

∆ABC≅DBC

K

c)Q

P RT S

∆PQT≅∆RQS

d)

A V W

M

U Z

B

∆UVM≅∆ZWM

e)

F

∆AFC ≅ ∆BFD

BA

E

D C

∆ABC ≅ ∆BAD

A C

DB

f)

Recuerde: Si los dos catetos de un triángulo rectángulo son respectivamente congruentes a los dos catetos de otro triángulo rectángulo, los triángulos son congruentes.

Recuerde:La bisectriz de un triángulo isósceles lo divide en dos triángulos congruentes.

Page 210: Libro de matematicas 9no grado

202

1. ¿A qué criterios recurrió para determinar la semejanza entre las figuras anteriores?

2. ¿Qué hace que dos triángulos sean semejantes? Explique.

3. ¿Dos triángulos congruentes son semejantes? Justifique su respuesta.

4. ¿Cuáles de las siguientes características determinan la semejanza entre triángulos?

a) La cantidad de lados.

b) La cantidad de ángulos interiores.

c) La suma de la medida de los ángulos interiores.

d) Las longitudes de los lados.

e) Las medidas de los ángulos interiores.

f) Las relaciones entre los lados.

En Matemática el concepto de semejanza va ligado al concepto de proporcionalidad, por ello se dice que dos objetos son semejantes, si existe una proporción entre ellos.

Ejemplo:

Un mapa es una representación semejante a una porción del globo terráqueo, de ahí que deba tener una misma proporción para que las medidas que se tomen sobre él sean lo más cercano a su valor real.

Semejanza

En el lenguaje cotidiano la palabra semejanza se utiliza para hacer referencia al parecido o similitud entre dos o más objetos o personas. Esta semejanza está determinada por una o varias características comunes, tales como tamaño, forma, color, textura, entre otros. Cabe pues indagar ¿en qué deben parecerse dos triángulos para que puedan ser catalogados como semejantes? ¿Qué características deben ser tomadas en cuenta para definir la semejanza de triángulos?

Dos circunferencias cualesquiera son semejantes; dos cuadrados cualquiera son semejantes, dos triángulos equilateros cualesquiera son semejantes. Es decir, dos figuras son semejantes si una de ella es un modelo a escala de la otra.

Figuras semejantes

Recuerde, reflexione y concluya

Page 211: Libro de matematicas 9no grado

203

Para que el concepto de semejanza tenga utilidad en el estudio de los triángulos, no debe resultar que todos los triángulos sean semejantes entre sí. En virtud de ello, ¿Cuáles de las características mencionadas en los ejercicios anteriores se deben descartar a la hora de definir el concepto de semejanza? ¿Por qué?

Los triángulos de la figura de la derecha son semejantes. Trace las rectas AA´ ,BB´ y CC´ .Observe que concurren en el punto exterior D.

Los puntos A', B' y C' son los correspondientes u homólogos de los puntos A, B y C respectivamente. Esta correspondencia entre los puntos determina una correspondencia entre los segmentos; precisamente,

A'B' es homólogo de AB

A'C' es homólogo de AC

B'C' es homólogo de BC

Traslade de posición al ∆A’B’C’, sin rotarlo, preservando sus medidas. Obtendrá un nuevo triángulo semejante a ΔABC. Encuentre el punto de concurrencia de las rectas que pasan por los puntos homólogos; posiblemente este punto también cambió de posición.

Esta es la gráfica construida a partir de los datos del ejemplo No.1

B

A

C

D

Las rectas AA´ ,BB´, CC´ concurren en un mismo punto exterior D.

513

B

c

b

a

A C2

A´ C´

B

A

C

D

A'

B'

C'

Ejemplo 1

A

B

C

A'

B'

C'

5

13

D

Page 212: Libro de matematicas 9no grado

204

Compruebo lo aprendido

Considere ∆ABC y un punto exterior D.

1. Trace las rectas DA , DB y DC .

2. En la recta DA elija un punto A' distinto de D.

3. En la recta CD elija un punto C' distinto de D.

4. Por el punto A' trace una recta paralela al segmento AB. Denote como B' el punto de intersección de esta recta con la recta DB .

5. Por el punto C' trace una recta paralela al segmento AC y denote con C' el punto de intersección de esta recta con la recta DC . Trace el segmento A'B' .

De lo anterior obtenemos que: ∆A'B'C' ∼∆ABC.

B

A

D

ac

b C

B

A

C

DA'

B'

C'

1. Utilizando el método anterior, trace un triángulo semejante a ΔABC tal que el homólogo de AC tenga el doble de la longitud de éste lado.

Compare las medidas del triángulo obtenido con las de ΔABC.

El símbolo ∼ indica semejanza.

Page 213: Libro de matematicas 9no grado

205

2. ¿Cuál es el resultado de la división de la longitud de un lado de ΔA'B'C' con el lado correspondiente en ΔABC?

3. Repita el ejercicio anterior de manera que la longitud del homólogo del lado AB sea el triple de la de éste. Compare las longitudes de los otros pares de lados correspondientes. ¿Cuál es el resultado de la división de la longitud de un lado de ΔA'B'C' con el lado correspondiente alS ΔABC?

4. Realice tres construcciones adicionales similares a las dos anteriores en las que las longitudes de los homólogos del segmento AB , sean respectivamente, el cuádruple, el quíntuple y el séxtuple, de la longitud de AB . En cada caso determine el cociente entre las longitudes de los homólogos. Compare los resultados.

5. Sobre la base de los resultados obtenidos formule una conclusión acerca de los cocientes

A BAB

A CAC

B CBC

' ' ' ' ' '

entre las longitudes de los lados homólogos de dos triángulos semejantes ΔABC y ΔA'B'C'.

Continuemos analizando la construcción anteriormente descrita y utilizada para, a partir de un triángulo dado, obtener uno semejante.

En primer lugar, el procedimiento genera un triángulo cuyos lados son paralelos a los lados correspondientes del triángulo original (Véase la figura de la columna izquierda). Este hecho, cómo veremos, determina la relación que hay entre los ángulos interiores de ΔABC y los de ΔA'B'C'.

Las correspondencias A↔A', B↔B', C↔C' entre los vértices de los triángulos, establecen las correspondencias entre los ángulos interiores, a saber:

∠BAC ↔ ∠B'A'C', ∠ABC ↔ ∠A'B'C', ∠ACB ↔ ∠A'C'B'

Veamos cómo se relacionan dos ángulos homólogos según esta correspondencia. En la figura podemos observar que la recta DC

� ��� es

transversal a las rectas paralelas C B' '� �����

y CB� ���

. Por ello las medidas angulares α y β son iguales. Similarmente, las rectas paralelas CA

� ���

y C A' '� �����

son cortadas por la recta transversal DC� ���

en los puntos C y C’, de modo que también son iguales las medidas angulares γ y δ. Pero β = α y γ = δ implica que:

β + γ = α + δ

Page 214: Libro de matematicas 9no grado

206

1

2

2,24

4,47

4

2

C B

A

P

M

K

La parte izquierda de esta igualdad es la medida del ángulo ∠ACB y la parte derecha es la medida de ∠A'C'B' (vea la figura abajo). Luego, ∠ ≅ ∠A'C'B' ACB

£ Pruebe que en la figura anterior ∠ ≅ ∠ABC A'B'C' y ∠ ≅ ∠BAC B'A'C' .

Hemos llegado así, a la siguiente conclusión:

Los ángulos homólogos correspondiente a los triángulos semejantes ∆ABC ∼ ∆A'B'C' son congruentes:

∠A ≅∠A’; ∠B ≅∠B’; ∠C ≅∠C’.

Por otra parte, a partir de los resultados obtenidos en las actividades anteriores podrá conjeturarse la validez de la siguiente afirmación.

Los lados homólogos (correspondiente) de los triángulos semejantes ∆ABC y ∆A'B'C' son proporcionales, es decir,

′ ′ ′ ′ ′ ′= =

A B

AB

A C

AC

B C

BC

Ciertamente, tiene lugar la siguiente definición:

αδ

ϒβ

A

BC

D

A’

B’C’

Dada una correspondencia entre dos triángulos. Si los ángulos correspondientes son congruentes y los lados correspondiente son proporcionales, entonces la correspondencia se llama una semejanza y decimos que los triángulos son semejantes.

Trabajo en Equipo

Considere los triángulos de la figura en la columna izquierda. Bajo la correspondencia ABC↔MPK los lados correspondientes son proporcionales.

a. Mida los ángulos de los triángulos ∆ABC y ∆MPK.

b. Compruebe que los ángulos homólogos (correspondiente) son congruentes.

c. Concluya que los triángulos son semejantes.

Page 215: Libro de matematicas 9no grado

207

Este ejercicio muestra una propiedad de la semejanza de triángulos: basta que los lados correspondientes sean proporcionales para que los triángulos sean semejantes.

2. Dibuje un triángulo con un lado de 3 cm y otro lado lado de 5 cm. Luego trace otros dos triángulos, uno duplicando las medidas del triángulo inicial y otro triplicándolas. Mida los ángulos de los tres triángulos, ¿qué observa?

• Los triángulos ∆ABC y ∆FGH tienen dos pares de ángulos congruentes; de ello se deduce que los ángulos del tercer par ∠B y ∠G, también son congruentes. ¿Por qué?

• Mida los lados de los triángulos ∆ABC y ∆FGH.• Compruebe que

ABFG

ACFH

BCGH

= =

HF

G

45o 63,43o

CA

B

45o 63,43o

3. Bajo la correspondencia:

ABC↔KMN

dos lados ∆ABC son proporcionales a los lados correspondientes ∆KMN y los ángulos comprendidos entre ellos son congruentes (ver figura al lado izquierda).

• Verifique que los lados correspondientes son proporcionales

• Compruebe que los ángulos homólogos (correspondiente) son congruentes.

• ¿Qué se puede decir de los triángulos ∆ABC y ∆KMN?

M

CA

B

60,61o

2

3

N

K60,61o

4

6

• ¿Por qué el triángulo ∆ABC es semejante a ∆FGH?

Page 216: Libro de matematicas 9no grado

208

Compruebo lo aprendido

Dibuje un triángulo con dos lados de 3 cm y 5 cm y un ángulo entre ellos de 60 grados. Trace otro triángulo duplicando las medidas de los dos lados anteriores pero preservando la medida del ángulo entre ellos. ¿Cómo son los triángulos resultantes?

Nota: Los ejercicios anteriores muestran que para determinar si dos triángulos son semejantes no es necesario probar la congruencias de todas las parejas de ángulos homólogos y la proporcionalidad de todos los lados correspondientes. Cada ejercicio corresponde a un determinado criterio de semejanza.

Como en el caso de congruencia de triángulos, los criterios de semejanza son un grupo de condiciones mínimas que garantizan la semejanza de triángulos.

Antes de enunciar y verificar la validez de los criterios de semejanza, vamos a estudiar el siguiente Teorema

Teorema de Thales

Si una recta paralela a un lado de un triángulo interseca a los otros lados en puntos diferentes, entonces determina sobre ellos segmentos proporcionales a dichos lados.

CA

B

D E

90ºh

CA

B

D E

AB ∩ DE = {D} CB ∩ DE = {E}

DE || AC

ABAD

CBCE=

Conclusión

Sea ∆ABC, de la columna izquierda, para ∆EBD tome el lado EB como base y en ∆CDE tome como base al lado CE . Trace las alturas correspondientes.

Page 217: Libro de matematicas 9no grado

209

Note que las alturas coinciden. Las áreas de ∆EBD y ∆CDE son entonces

y

respectivamete. Al dividir estas áreas se obtiene:

1. Consideremos el mismo ∆ABC, sólo que ahora en ∆BDE, tome el

lado BD como base y en ∆ADE, tome como base al lado AD .

Razone como en el caso anterior para llegar a la conclusión

de que

2. Los triángulos ∆ ADE y ∆ CDE tienen el lado común DE . Tome este

lado como base para ambos triángulos. Resultará entonces que

las alturas coinciden. ¿Por qué? En consecuencia los triángulos

tienen la misma área, es decir, área(ADE) = área(CDE). Por tanto,

Es decir,ECEB

ADBD

= ,

sumando 1 a ambos lados se obtiene

ECEB

EBEB

ADBD

BDBD

+

= +

de donde

B

D E

A C

CA

B

D E

90ºh

EC EBEB

AD BDBD

+=

+ por tanto se concluye BCEB

ABBD

=

Page 218: Libro de matematicas 9no grado

210

El recíproco del teorema de Thales también es válido:

Si una recta interseca a dos lados de un triángulo y determina sobre dichos lados segmentos proporcionales, entonces es paralela al tercer lado.

Una consecuencia del teorema de Thales es el siguiente resultado:

C

AB

D E

Si tres o más rectas paralelas son cortadas por dos transversales, los segmentos de la transversales determinadas por las paralelas son proporcionales.

ABBC

DEEF

=

AD BE CF� ����� ����� ���

F

Hallar el valor de x en el siguientes ejercicio:

Solución: Aplicando el Teorema de Thales podemos establecer la proporcionalidad entre los lados, tal como se indica en la proporción.

C

BA

D E

9

6

15

x

CD

DA

CE

EB

x

x

x

=

=

=( )( )

=

15 9

6

15 6

9

10

Ejemplo 1

Nota:

La proporcionalidad de este ejemplo, puede ser establecida de otras formas, por

ejemplo: CD

CE

AD

BE=

Nota:

Consulta con tu docente otras formas de establecer la proporcionalidad.

Page 219: Libro de matematicas 9no grado

211

Semejanza de TriángulosLa definición de semejanza exige dos cosas:

1. Los ángulos correspondientes deben de ser congruentes.2. Los lados correspondientes deben de ser proporcionales.

Para el caso de los triángulos, resultará que si se cumple una de las dos condiciones, también se cumple la otra. Es decir, si los ángulos corresponientes son congruentes, entonces los lados correspondientes son proporcionales, y recíprocamente estas relaciones se presentan en el teorema de semejanza AAA y el teorema de semejanza LLL, que se estudiarán a continuación.

C

BA

a

c

b

C’

B’A’

b’a’

c’

∆ABC∼∆A'B'C' (triángulo ABC es semejante al triángulo A'B'C' ) si y sólo

si: 1) ∠A ≅∠A'; ∠B ≅∠B'; ∠C ≅∠C'. 2) a

a

b

b

c

c′=

′=

Verifique que los triángulos siguientes son semejantes:

B

5

6

10

C A8

A'4

B'

3

C'

En efecto:

∠A≅ ∠A'; ∠B ≅∠B'; C ≅∠C'

6

3

8

4

10

52= = =

Postulado: Considerese ∆ABC y ∆A’B’C’:

Si ∆ABC ∼ ∆A’B’C, entonces ABA B

BCB C

ACA C′ ′

=′ ′

=′ ′

Ejemplo 2

Page 220: Libro de matematicas 9no grado

212

Criterios de Semejanza de Triángulo

• CRITERIO:Ángulo-Ángulo-Ángulo(AAA)

Si dos triángulos tienen los tres ángulos de uno respectivamente congruentes a los tres ángulos del otro, los triángulos son semejantes.

Es decir , en ∆ABC y ∆DEF: ∠A≅∠D, ∠B≅∠E y ∠F≅∠C,

entonces ∆ABC∼∆DEF

Según la figura, si AB ǁ DE ,

¿es ∆ABC∼∆DEC?

Si AB ǁ DE , entonces ∠D≅∠B

(alternos internos entre paralelas) y ∠E≅∠A (alternos internos entre paralelas), por lo tanto : ∆ABC∼∆DEC.

• CRITERIO:Lado-Ángulo-Lado(LAL)

Si dos lados de un triángulo son proporcionales a dos lados correspondientes de otro triángulo, y ademas los ángulos comprendidos entre ellos son congruentes, entonces los triángulos involucrados son semejantes.

Es decir, en ∆ABC y ∆DEF,

Si ∠A≅∠D y AC

DF

AB

DE= ,

entonces ∆ABC∼∆DCE.

A B

F

D E

C

A B

D E

C

A

B C

D

E F

La simbología:

∡ ó m∠ indican medida de un ángulo:

∡A = 35°

ó

m∠A = 35°

Algunos libros suprimen el símbolo (°: grado) e indican ∡A = 35

Colorario de semejanza AA

Si dos ángulos de un triángulo son congruentes a dos ángulos correspondientes de otro triángulo, entonces los triángulos involucrados son semejantes.

Ejemplo 1

Page 221: Libro de matematicas 9no grado

213

Compruebe si son semejantes ∆CRJ∼∆LBQ. Utilice la información dada en las fíguras:

R J

C

35°12

15 B

Q

L

10

35°8

Como y además m∠R=m∠B=35 entonces ∆CRJ∼∆LBQ, por el

criterio LAL.

• CRITERIO:Lado-Lado-Lado(LLL)

Dos triángulos son semejantes si sus tres pares de lados respectivamente son proporcionales. Es decir, a

b

b

e

c

f= =

entonces, ∆ABC∼∆DEF

A partir de la información dada, Compruebe si son semejantes ∆TMQ∼∆CXJ

T

Q

M

15

18

12C

J 12X

108

como 18

12

12

8

15

10= = entonces ∆TMQ∼∆CXJ

Compruebo lo aprendido

1. Los lados de un triángulo miden 24 m, 18 m y 36 m, respectivamente. Si los lados de otro triángulo miden 12 m, 16 m y 24 m, respectivamente. Determina si son o no semejantes, justifica tu respuesta.

2. Los lados de un triángulo miden 36 m, 42 m y 54 m, respectivamente. Si en un triángulo semejante a éste, el lado homólogo del primero mide 24 m, hallar los otros dos lados de este triángulo.

D

dE

e

F

f

c

a

b

A

B C

Ejemplo 2

Ejemplo 3

Page 222: Libro de matematicas 9no grado

214

Teorema de Pitágoras

Uno de los teoremas más conocidos y útiles en Geometría es el Teorema de Pitágoras, llamado así por el matemático griego Pitágoras. Este teorema se enuncia así:

“En todo triángulo rectángulo, el cuadrado de la longitud de la hipotenusa es igual a la suma de los cuadrados de las longitudes de los catetos.”

Hipotenusa

Cateto

Cateto: a

: c

: b

Con estas fórmulas podemos calcular cualquiera de las longitudes de los lados de un triángulo rectángulo.

Hallar la medida del lado que falta en cada uno de los siguientes casos.

a) El valor de la hipotenusa

Usando la formula para la hipotenusa, tenemos:

x

5cm

8 cm

El valor aproximado para x es 9,43cm

b) El valor de un cateto:

b cm

20 cm

12 cm

El valor para b es 16 cm

x

x

x

= +

= +

=

8 5

64 25

89

2 2

c a b hipotenusa

a c b cateto

b c a cateto

= + →

= − →

= − →

2 2

2 2

2 2

c2 = a2 + b2, así:

b

b

bb

= −

= −

==

20 12

400 144

25616

2 2

Ejemplo 1

Page 223: Libro de matematicas 9no grado

215

Aplicaciones del teorema de Pitágoras

1. Calcule la medida de la diagonal de un rectángulo cuyos lados miden 8 cm y 5 cm, respectivamente.

2. Los lados de un triángulo isósceles miden 13 cm, 13 cm y 10 cm. Calcule su área.

3. Determinar la medida de la hipotenusa de un triángulo rectángulo sabiendo que los catetos miden 6 cm y 3 cm, respectivamente.

4. Si en un triángulo rectángulo la medida de la hipotenusa es 32 cm y la de uno de sus catetos es 12 cm. Hallar la longitud del otro cateto.

Teorema de la Altura y Teorema del Cateto

Ya hemos estudiado el Teorema de Pitágoras y su aplicación a los triángulos rectángulos. Ahora veamos que en un triángulo rectángulo, al trazar la altura sobre la hipotenusa, se cumplen algunos teoremas importantes conocidos como derivados del Teorema de Pitágoras. A continuación estudiaremos cada uno de estos teoremas y sus aplicaciones.

TEOREMA DE LA ALTURA: La altura sobre la hipotenusa de un triángulo rectángulo forma dos triángulos rectángulos que son semejantes al triángulo dado y también mutuamente semejantes.

Colorario:La altura sobre la hipotenusa de un triángulo rectángulo es media proporcional de las proyecciones de los catetos sobre la hipotenusa.

C

A D Bnm

h m

h

h

n

h mn

h mn

=

=

=

2

En el triángulo rectángulo de la derecha, trazamos la altura sobre la hipotenusa. Calcular las medidas respectivas de a y b.

Observemos que la medida de la hipotenusa es 9 cm + 16 cm = 25 cm. Entonces, para hallar la medida de a, empleamos el Teorema de Pitágoras.

bb

b

b

2

212 9144 9144

916

= ⋅= ⋅

=

=

h 9 b= ⋅

12 cm

9 cm

b 15 cm

a

25 15625 225625 225400

40020

2 2 2

2

2

2

= +

= +

− =

=

==

aa

aa

aa

Ejemplo 1

Page 224: Libro de matematicas 9no grado

216

TEOREMADELCATETO: Cualquiera de los catetos de un triángulo rectángulo es media proporcional entre la medida de la hipotenusa y la medida de su proyección sobre la hipotenusa .

BA

h

m nD

C

b a

ParaelcatetoCBtenemos:AB

a

a

n

a n AB

=

= ( )( )ParaelcatetoACtenemos:

AB

b

b

m

b m AB

=

= ( )( )

Determine la medida de los catetos y la hipotenusa, para el siguiente ejercicio.

BA

h

m=15 n=10D

C

b a

Altura Medida del cateto CB

m

h

h

n

h

h

h

h

=

= ( )( )=

=≈

215 10

150

5 6

12 25,

AB

a

a

n

a

a

=

= ( )( ) =≈

10 25 250

15 81,

AB

b

b

m

b

b

=

= ( )( ) =≈

15 25 375

19 36,

Ejemplo 2

Medida del cateto AC

Page 225: Libro de matematicas 9no grado

217

Ejercicios de cierre de Unidad

1. La razón de semejanza del triángulo ABC con el triángulo A’B’C’ es 3:4. Si los lados del primero son 18, 21 y 30, determina los lados del segundo.

2. Los lados de un triángulo rectángulo miden 6 m, 8 m y 10 m respectivamente. ¿Cuánto medirán los catetos de un triángulo semejante al primero si su hipotenusa mide 15 m?

3. Las rectas r y r’ secantes se cortan en O. Demuestra que ∆OAA’ ∼ ∆OBB’.

A

rr´

B B´b

a

O

4. Las rectas r y r’ secantes se cortan en O y OA = 8 cm, OB = 12 cm, AA’ = 10 cm. A’B’ = 15 cm. Determina OB’ y BB’.

A

rr´

B B´b

a

O

5. En el ∆ABC, AD ⊥ BC y CE ⊥ AB. Demostrar que CE ⋅ AB = AD ⋅ BC

A B

C

D

E

6. Si en el ∆ABC, CD es la bisectriz del ∠ACB y ∠ABE ≅ ∠ACD, demostrar que ∆ACD ∼ ∆DBE y que ∆ADC ∼ ∆CEB.

A B

C

D

E

Page 226: Libro de matematicas 9no grado

218

7. Los lados de un triángulo miden 2 cm, 1,5 cm y 3 cm. Construye, sobre un segmento de 2,5 cm homólogo del primer lado de este triángulo, un triángulo semejante a aquel.

8. Si los segmentos AB y CD se cortan en un punto E tal que CE ⋅ EB = ED ⋅ AE , demostrar que los segmentos AC y BD que unen sus extremos, son paralelos.

AB

C

D

E

9. Si AE = 12, EB = 28, CE = 15, AC = 18, determinar ED y BD.

AB

C

D

E

10. Encuentra el valor de AD, si AC = 25. Utilice la información brindada la figura.

15

3

A

B E C

D

11. Se sabe que PQ ≌ PR y que PX biseca ∠QPR. Demostrar que ∆QPX ~ ∆QPR

P

Q X

R

12. Dado que ∠X ∠NGV. Demostrar que ∆NGV ~ ∆NTX

N

G

V

X

T

Page 227: Libro de matematicas 9no grado

Unidad 7

Funciones yEcuaciones

Para Nicaragua, con la VIII Cumbre de Petrocaribe con sede en Managua, se ratificaron los acuerdos sobre cooperación energética, programas sociales y productivos; en especial, la construcción de la Refinería en Nicaragua; la inyección financiera para impulsar la agricultura, mejorar la producción de arroz y café; y el desarrollo de mataderos industriales y plantas procesadoras de leche y maíz.

Fuente: 19 digital.02 de Julio 2013.

Page 228: Libro de matematicas 9no grado

220

IntroducciónLa explicación de muchas situaciones y fenómenos que ocurren en la vida requieren a menudo de la modelización matemática. En este quehacer las funciones juegan un papel de vital importancia.

En esta unidad estudiaremos dos de las funciones que tienen mayor aplicación. La función lineal que relaciona proporcionalmente dos magnitudes x, y mediante una fórmula del tipo

y = ax, a ≠ 0

y la función afín que establece una correspondencia entre dos cantidades x, y por medio de una relación de la forma

y = ax + b

También abordaremos las funciones cuadráticas, las funciones cúbicas y la función constante.

Función Lineal y Afín

Recuerde, reflexione y concluya

Si b es la imagen de un elemento a bajo la acción de una función f , es decir, si ,b = f(a) entonces se dice que a es una preimagen de b bajo f.

De acuerdo con la definición de función, cada elemento de su dominio tiene exactamente una imagen en el codominio. Sin embargo, algunos elementos del codominio pueden tener distintas preimágenes o bien no tener ninguna.

1. Si f: ℤ → ℤ es una función de ℤ en ℤ definida por y = x.

a. ¿Cuál es la imagen de x = 0?

b. ¿Es -4 imagen de algún elemento?

c. ¿Cuál es la imagen de 1? ¿Y de -1?

d. ¿Cuántas preimágenes tiene 1?

e. ¿Cuántas preimágenes tiene un entero positivo?

f. ¿Cuántas tiene un entero negativo?

2. La función s: � → �, dada por la ley de asignación:

s(x) = x + 1, x ∈ �,

se denomina función sucesor.

Recordemos

Una función f: D → V de un conjunto D en un conjunto V asigna a cada elemento x de D, un único elemento en el conjunto V, denotado por f(x), y denominado imagen de x bajo (la acción de) f.

El conjunto D es el dominio y V es el codominio de f.

Si f: D → V es una función, en la expresión.

f(x),

x se denomina argumento de la función f.

Si,

f(x) = y

y es un valor de la función f.

Page 229: Libro de matematicas 9no grado

221

a. Encontrar los valores de la función s en x = 1, x = 2, x = 3, x = 999.

b. ¿Qué valor natural no toma la función s?

c. ¿Cuándo un elemento x es preimagen, bajo s, de un elemento y ∈ �?

d. ¿Qué elemento de � no tiene preimagen?

e. ¿Qué se puede decir de los naturales m, n si s(m) = s(n)?

f. ¿Cuántas preimágenes tiene cada elemento distinto de 1 en �?

Para resolver la última interrogante, aplique la función y simplifique la igualdad resultante.

Imagen o rango de una función

El conjunto de valores que toma una función

f: D → V

se denomina imagen o rango de f, y se denota por Imf. Es decir,

Imf = {f(x): x ∈ D}

Consideremos el conjunto D de estudiantes del noveno grado de un colegio cualquiera de secundaria, por ejemplo, nuestro colegio, y sea V el conjunto numérico

V = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Definamos una función f: D → V de D en V por la siguiente ley de asignación:

f(x) = número de disciplinas que recibe x.

Puesto que todos los estudiantes de noveno grado deben recibir las mismas asignaturas, la cantidad f(x) es la misma para todos los elementos x ∈ D. Luego, la imagen de f,

Imf = {f(x): x ∈ D}

Es un conjunto unitario, es decir, tiene un único elemento.

£ ¿Cuál es ese elemento?

Ejemplo 1

Una función f: D → V es una función real de variable real si su dominio y codominio son subconjuntos de ℝ.

Page 230: Libro de matematicas 9no grado

222

Función Constante

Una función f: D → V cuya imagen es un conjunto unitario se denomina función constante. En otras palabras,

f: D → V es constante si existe un valor c ∈ V tal que f(x) = c, para cualquier x ∈ D. En forma equivalente, f es constante si para cualesquiera elementos x1, x2 en el dominio D de f,

f(x1) = f(x2) = c

Gráfica de una función

La gráfica de una función f: D → V es el conjunto de pares (x; y) tales que

f(x) = y

Si f(x) = y entonces x ∈ D e y ∈ V. Por tanto, la gráfica de f es el subconjunto, G(f), de D × V, definido por:

G(f) = {(x; y) ∈ D x V : f(x) = y}

Describa la gráfica del ejemplo 1, tomando como D el conjunto formado por usted y cuatro de sus compañeros de clase.

£ Consideremos la función f: ℝ → ℝ definida por

f(x) = 3x

para todo x ∈ ℝ.

• ¿Cuál es la imagen de 4 bajo f?

• Indique una preimagen de 5, es decir, un valor de x tal que f(x) = 5.

Sea b es un número real arbitrario, entonces,

es decir, es una preimagen de b. Por otra parte, si a es preimagen

arbitraria de b, es decir, si

b = f(a)

entonces,

b = 3a

y

(0; c)(C>0)

x

Fig.1

y

(0; c)(C<0)

Fig.2

Ejemplo 2

Sean:

D = {2,3,4,5}y

V = {0,6,7,8,9},Definamos:

f: D → Vsegún el siguiente diagrama.

2345

06789

Observemos que el 9 no tiene preimagen, cada uno de los restantes elementos de V tiene una única preimagen. Es decir, cada elemento de V tiene, cuando más, una preimagen.

Page 231: Libro de matematicas 9no grado

223

de donde

Por tanto, b tiene una sola preimagen, precisamente .

Puesto que b es un elemento arbitrario de ℝ, esto prueba que todo elemento de ℝ tiene exactamente una preimagen.

Función Inyectiva

Una función f : D, → V es inyectiva, si cada elemento del codominio V tiene a lo más una preimagen.

En otras palabras una función es inyectiva si cada elemento de la imagen o rango, tiene exactamente una preimagen en el dominio de la función.

La función f = ℝ → ℝ definida por

f(x) = x2, x ∈ ℝ

no es inyectiva, pues el 9, por ejemplo, tiene dos preimágenes, -3 y 3, ya que

f(-3) = (-3)2 = 9 = (3)2 = f(3)

Gráficamente, la inyectividad significa que cualquier recta horizontal corta al gráfico de la función en a lo sumo un punto.

Cualquier recta horizontal l corta a una recta inclinida en un único punto P. (figura 3)

Por tanto, si una función tiene como gráfica a una recta inclinada, entonces dicha función es inyectiva.

Función Lineal.

Sea a un número real fijo. La aplicación lineal de razón a, es la función f = La: ℝ → ℝ definida por

f(x) = La(x) = ax, (x ∈ ℝ)

Ejemplo 3

3

Page 232: Libro de matematicas 9no grado

224

Si a = 0, entonces f = L0 coincide con la función constante nula, que a cada número real le asigna el valor de cero, es decir,

L0(x) = 0x = 0

para todo x ∈ ℝ. Por otra parte, si a ≠ 0, entonces la gráfica de, f = La

G(f) = {(x;y): f(x) = y} = {(x;y): ax = y}

es el conjunto de puntos de ℝ2 que verifican la ecuación

y = ax

Esta es una ecuación lineal en dos incógnitas, de pendiente a ≠ 0, cuyo conjunto solución es, por tanto, la recta inclinada que pasa por los puntos (0;0) y por el punto (1;a).

En consecuencia, si a ≠ 0, la función lineal L0 es inyectiva. Para hacer un esbozo de su gráfica se ubican los puntos (0;0) y (1;a) y se traza la recta que pasa por estos puntos.

De acuerdo con los postulados de la geometría euclidiana, por dos puntos distintos pasa una y solamente una recta. Por tanto, los puntos (0;0) y (1; a) determinan de forma única la gráfica de La. Si se desea construir el gráfico de forma más detallada pueden ubicarse otros puntos.

Consideremos la función f = L3: ℝ → ℝ, definida por:

f(x) = 3x

Esta es una función lineal de razón o pendiente 3, de manera que es inyectiva y su gráfico es una recta. Hallemos dos puntos de ella, evaluando la función en x = 0 y en x = 1.

Tenemos f(0) = 3(0) = 0 y f(1) = 3(1) = 3.

Por tanto, (0; 0) y (1;3) son puntos de la gráfica No. 5. Ésta puede apreciarse en la figura 5. En la parte izquierda puede verse la tabulación de cinco puntos de la gráfica.

Gráficamente:

La imagen de una función real f de variable real, es la intersección del eje Y con el haz de rectas horizontales que pasan por los puntos del gráfico de f.

Imf

Ejemplo 4

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

x y-2 3(-2) = -6-1 -30 01 32 6

Tabla de valores del ejemplo No. 4

Fig.4

Fig.5

Page 233: Libro de matematicas 9no grado

225

I. Trazar la gráfica de las funciones lineales siguientes:

1. f(x) = x

2. f(x) = 2x

3. f(x) = 5x

4. f(x) = 4x

5. f(x) = -x

6. f(x) = -2x

7. f(x) = -5x

8. f(x) = -4x

Un vendedor de cierta tienda de artículos electrodomésticos recibe 5% de comisión por el monto de ventas efectuada a la semana.

De modo que si él vende una cantidad equivalente a 12 000 córdobas, entonces el recibirá de comisión un total de:

y = L0,05(12 000) = (0,05)12 000 = 600

En general, si x representa el monto semanal en ventas, entonces la comisión será de:

y = L0,05(x) = 0,05x

Retomemos la situación del vendedor del ejemplo anterior, pero ahora supongamos que él ha logrado que además de la comisión, se le asigne un salario básico de C$ 400.

En este caso, si x representa el monto semanal de ventas efectuadas en una semana, nuestro vendedor recibirá, una comisión equivalente a 0,05x más el salario básico de 400, para un total de:

y = 0,05x + 400,

es decir, la relación funcional entre las ventas realizadas y el sueldo semanal es:

y = L0,05(x) = 0,05x + 400.

Ejemplo 5

En las aplicaciones el dominio de las funciones puede restringirse. En el ejemplo 5 no tiene sentido que x tome valores negativos.

Ejemplo 6

Recuerda:

El dominio de una función lineal es todo ℝ .

Page 234: Libro de matematicas 9no grado

226

Este tipo de relaciones funcionales recibe el nombre de función afín.

Función Afín

Una función afín es una función f = ℝ → ℝ definida por la una ley de asignación del tipo

f(x) = ax + b (x ∈ ℝ)

donde a, b son constantes reales.

La función f = ℝ → ℝ definida por

f(x) = 3x + 4

es una función afín. En este caso, ¿cuánto vale a? ¿Y b? Observemos que, para todo x ∈ ℝ,

f(x) = L3(x) + 4

El punto (x; f(x)) = (x; 3x + 4) está por encima del punto (x; L3(x) = (x; 3x) a cuatro unidades de distancia sobre la misma recta vertical.

Esto significa que el gráfico de f se puede obtener a partir del gráfico de L3, desplazándolo 4 unidades verticalmente hacia arriba.

Puesto que el gráfico de L3 es una línea recta inclinada, el gráfico de de f también será una recta inclinada paralela a la gráfica de L3.

Como corolario deducimos que f es una función inyectiva. ¿Por qué?

£ Trace en un mismo plano cartesiano las gráficas de L3 y f, para el ejemplo anterior.

En general, la gráfica de la función afín f = ℝ → ℝ con la ley de asignación

f(x) = ax + b

es una recta paralela a la gráfica de la función lineal La, separada de ella por una distancia vertical de |b| unidades.

Diremos que La es la función lineal asociada a la función afín f.

Si a ≠ 0 la gráfica de La será una recta inclinada y por ende la de f también. Por tanto, si a ≠ 0, cualquier función afín f asociada a la función lineal La será una función inyectiva.

Trazar la gráfica de la función afín f: ℝ → ℝ con la regla de asignación

f(x) = 2x - 3

En este caso

f(x) = L2(x) - 3

Ejemplo 2

Ejemplo 1

Si b < 0, el gráfico estará desplazado |b| unidades hacia abajo con respecto al gráfico de La

(x; La(x))

(x; f(x))

Page 235: Libro de matematicas 9no grado

227

La gráfica de f estará desplazada con respecto a la de la función lineal L2, 3 unidades verticalmente hacia abajo pues b = -3 < 0.

Así, una manera de esbozar el gráfico de f es trazar el de L2 y luego desplazar éste 3 unidades hacia abajo. Para ello basta con desplazar el eje x, 3 unidades hacia arriba.

Otra manera de construir el gráfico de f, es la siguiente: Se traza el gráfico L2 y desde dos puntos distintos de él se bajan segmentos verticales de longitud 3; luego se traza la recta que pasa por los puntos finales de estos segmentos, ésta será la gráfica buscada.

Una manera práctica es tabular dos puntos. Cuando la función afín no es lineal, se asigna a x el valor de cero y se calcula el valor de y; eso nos da un punto del gráfico sobre el eje y. En nuestro caso obtenemos

y = f (0) = 2(0) - 3 = -3

Luego asignamos a la variable y el valor de cero y despejamos el valor de x de la ecuación 0 = f(0), que en nuestro caso toma la forma

0 = 2x + 3, x = ;

Esto nos dá un punto sobre el eje x.

Los puntos son (0;3) y ( ;0) son puntos del gráfico. Estos son los tabulados en la tabla de la izquierda. La recta que pasa por estos puntos es la gráfica de la función f.

£ Trace la gráfica de la función f de este ejemplo.

Los procedimientos indicados en el ejemplo anterior son aplicables a cualquier función afín.

Gráfica de la función afín

Cuando a ≠ 0 y b ≠ 0, la función afín f : ℝ → ℝ con ley de asignación

f(x) = ax + b

tiene como gráfica a la recta que corta al eje y en el punto (0;b) y al eje x en el punto . Estos puntos son distintos pues b ≠ 0.

Para calcular estos puntos se evalúa primero la función en x = 0, obteniéndose y = f(0) = a ∙ 0 + b = b. Luego, se hace y = 0, y se resuelve la ecuación 0 = ax + b, de donde, despejando x se obtiene

Las figuras de la izquierda muestran los gráficos para los casos a > 0 y a < 0.

x

0 3

0

Page 236: Libro de matematicas 9no grado

228

Compruebe lo aprendido

Grafique las funciones lineales

Trace el gráfico de f : ℝ → ℝ para las siguientes leyes de asignación.

1. f(x) = 4x + 1

2. f(x) = -5x + 3

3. f(x) = -2x -

Actividad en grupo

Formulen ejemplos de funciones lineales y afines, diferentes de las que hasta ahora hemos considerado. Tracen sus gráficos.

Construyan gráficos que correspondan a funciones, no necesariamente lineales.

Expliquen por qué es válida la siguiente aserción:

Decir que cada elemento del codominio de una función f = D → V posee exactamente una preimagen, equivale a afirmar que si u y v son elementos arbitrarios del dominio de f, entonces

f(u) = f(v)

implica

u = v

Por tanto,

f = D → V es inyectiva

f(u) = f(v) implica u = v

En forma equivalente,

f es inyectiva ↔ u ≠ v → f(u) ≠ f(v)

Un gráfico corresponde a una función real de variable real si cualquier recta vertical lo corta en a lo más un punto.

Este gráfico no corresponde a una función pues el eje Y lo corta en dos puntos

y

x

Page 237: Libro de matematicas 9no grado

229

Movimientos de gráficas en el Plano

Recuerde, reflexione y concluya

La función Tb: ℝ → ℝ definida por

Tb(x) = x + b,

es una función a fín asociada a la función lineal L1. Ella se denomina función de traslación en b unidades.

La función Tb cada argumento x lo aumenta o lo disminuye en |b| unidades, según sea b positivo o negativo.

En realidad, toda función a fín es la compuesta de una lineal y una traslación. En efecto, si

f : ℝ → ℝ

es la función afín con regla de asignación

f(x) = ax + b,

entonces,

f(x) = La(x) + b = Tb (La (x)) = (Tb ∘ La) (x)

para todo x ∈ ℝ , lo cual significa que:

f = (Tb ∘ La).

Como se observó anteriormente, el gráfico de esta función se obtiene trasladándolo verticalmente |b| unidades, hacia arriba si b > 0 o hacia abajo cuando b < 0.

En general, si f es una función real de variable real, podemos considerar la compuesta

Tb ∘ f

cuyo gráfico se obtiene del gráfico de f trasladándolo en dirección vertical |b| unidades hacia arriba si b > 0 o hacia abajo si b < 0.

Si cualquier recta horizontal corta al gráfico de f en a lo más un punto, entonces igual ocurrirá con el gráfico de la función compuesta Tb ∘ f . Esto señala que si la función f es inyectiva entonces también lo es la función compuesta Tb ∘ f .

Recordemos:

Dadas las funciones:

y

la función compuesta

C

actúa con la ley de asignación

Tb ∘ f

f b

y

Page 238: Libro de matematicas 9no grado

230

Este resultado puede demostrarse de la siguiente manera:

Supongamos que f es inyectiva, es decir,

f(x1) = f(x2) ⇒ x1 = x2,

luego,

(Tb ∘ La)(x1) = (Tb ∘ La)(x2)

implica, por definición de compuesta,

Tp( f(x1)) = Tp( f(x2))

y, por definición de traslación en p unidades,

f(x1) + p = f(x2) + p,

en esta igualdad podemos eliminar p en ambos lados, obteniéndose

f(x1) = f(x2)

de donde, por la inyectividad de f, concluimos que

x1 = x2.

Por tanto,

(Tp ∘ f)(x1) = (Tp ∘ f)(x2) ⇒ x1 = x2

lo cual prueba que Tp ∘ f es inyectiva.

De esta manera,

Si la función f es inyectiva, la función compuesta,

Tp ∘ f,

también es inyectiva.

Nota: El estudio de la función cuádratica se realizará posterior al tema de ecuaciones cuadráticas y sus métodos de solución porque existe un tratamiento metodológico para el trazo de la gráfica que puede incluir el cálculo del intersepto en el eje “x” y en el eje “y”, lo que necesita el conocimiento previo del cálculo de raices cuadráticas.

En general, si

y

son funciones inyectivas, entonces la compuesta

también es inyectiva:

En efecto, asumiendo la inyectividad de f y g, tendremos:

g( f(x1)) = g( f(x2)),

implica, por inyectividad de g, que:

f(x1) = f(x2),

de donde, por inyectividad de f, concluimos que

x₁ = x₂

Page 239: Libro de matematicas 9no grado

231

Función CúbicaConsideremos la función f : ℝ → ℝ definida por:

f(x) = x3.

Si,

f(u) = f(v)

entonces,

u3 = v3,

es decir,

u3 - v3 = 0

La parte izquierda de esta igualdad es una diferencia de cubos, que factorizamos como

(u - v)(u2 + uv + v2)

Por tanto,

(u - v)(u2 + uv + v2) = 0

de donde

u - v = 0 ó u2 + uv + v2 = 0,

la primera igualdad implica que:

u = v

y la segunda es válida para valores reales u, v, sólo que u = 0 = v.

Por tanto,

f (u) = f (v) ⇒ u = v,

lo cual significa que f es una función inyectiva.

Por otra parte, la función f es impar, es decir,

f (-x) = -f (x), ∀x ∈ ℝEn efecto,

f (-x) = (-x)3 = -x3 = -f (x)

Por tanto, el gráfico de f es simétrico con respecto al origen de coordenadas. Por otra parte, puesto que

f (1) = 13 = 1,

es decir, (1; 1) pertenece al gráfico de f, entonces el punto (-1;-1) también está en él. Además

f (0) = 03 = 0

así que el punto (0; 0) también es parte del gráfico de la función f.

Recordemos:

Una diferencia de cubos:

se factoriza como:

Si una función es impar, entonces su gráfico es simétrico con respecto al origen, lo cual significa que si el punto

pertenece al gráfico entonces también el punto

es parte del gráfico de

Page 240: Libro de matematicas 9no grado

232

El gráfico de f es de la forma:

pasando por los puntos (-1;-1), (0; 0) y (1; 1).

Evalúe la ley de asignación f(x) = x3 en x = -2, x = 2, x = -0,5 y en x = 0,5.

Grafique la función f.

Puesto que la función f de este ejemplo es inyectiva, la compuesta

g = Tb ∘ f

es también inyectiva. La ley de asignación de esta función es:

g(x) = Tb (f(x)) = g(x) + b = x3 + b,

es decir,

g(x) = x3 + b

para todo x ∈ ℝ.

Recalcamos, el gráfico de g se obtiene del de f mediante una traslación vertical de |b| unidades, hacia arriba o hacia abajo en dependencia de si b es positivo o negativo.

Trabajo en Equipo

Graficar la función f : ℝ → ℝ, para cada una de las siguientes reglas de asignación:

1. f(x) = x3 + 2

2. f(x) = x3 - 2

3. f(x) = x3 + 3

4. f(x) = x3 - 3

Page 241: Libro de matematicas 9no grado

233

Consideremos ahora la compuesta g = f ∘ Tb. En este caso el dominio de g se debe restringir a los valores de x tales que Tb(x) pertenezca al dominio de f; entonces, para cada x en ese dominio. Se tiene:

g(x) = f (x + b)

Por tanto, el valor que tomará g en cada argumento x es igual al valor que toma f en x + b. En consecuencia, si (u;v) es un punto de gráfico g, es decir, g(u) = v, entonces u + b ∈ Domf y f(u + b) = v, por lo que (u + b;v) es un punto del gráfico de f.

Recíprocamente, si (u + b;v) es un punto del gráfico de f, entonces u + b ∈ Domf y f(u + b) = v, entonces u ∈ Domg y g(u) = v, lo cual significa que (u;v) es un punto del gráfico de g. Por tanto, (u;v) es un punto del gráfico de g cuando y solamente cuando (u + b;v) pertenece al gráfico de f. De esta manera cada punto (u;v) del gráfico de g está asociado con un único punto (u + b;v) del grafico de f.

Los puntos asociados tienen la misma segunda componente, lo cual implica que se localizan a la misma altura, es decir, tienen la misma dirección vertical. Por otra parte, si (u;v) es un punto arbitrario del gráfico de g y (a;v) es el punto asociado en el gráfico de f, entonces

u + b = a

de donde:

u = a - b

Si f es la función cúbica definida por:

f(x) = x3

para todo número real x, entonces:

g(x) = (f ∘ Tb) (x) = (x + 1)3

El dominio y rango de g es �.

Page 242: Libro de matematicas 9no grado

234

Por tanto, todo punto A' del gráfico de g se obtiene del punto asociado A en el gráfico de f, restándole la constante b a la primera componente y dejando intacta la segunda componente. Esto da como resultado una traslación horizontal de |b| unidades hacia la izquierda si b es positivo, o hacia la derecha si b es negativo.

En conclusión, la gráfica de g = f ∘ Tb se obtiene a partir del gráfico de f trasladando éste horizontalmente |b| unidades, hacia la izquierda si b > 0 o hacia la derecha si b < 0.

Cada punto del gráfico de g= h o T3 se halla trasladando cada punto del gráfico de h, tres unidades hacia la izquierda.

g

K´A´

KA

H

J´ J

h

Trace las gráficas de las siguientes funciones:

1. g(x) = (x + 1)3

2. g(x) = (x - 1)3

3. g(x) = (x + 4)3

4. g(x) = (x + 0,5)3

También podemos hacer la composición g = h ∘ f de una función arbitraria f con una función lineal h(x) = ax, de razón a ≠ 0.

De este modo para todo x del dominio de f. Se tiene:

g(x) = h(f (x)) = af (x)

De acuerdo con la definición de g, si (u;v) es un punto del gráfico de f, entonces el punto (u;av) pertenece al gráfico de g.

f(x) = x3

g(x) = (x - 2)3

b = -2

Observe que el punto donde la gráfica de f interseca al eje horizontal, igual que el resto de puntos, se han trasladado dos unidades hacia la derecha y de este modo obtener el gráfico de g.

Page 243: Libro de matematicas 9no grado

235

Todos los puntos del gráfico de g se obtienen de esta manera; se toman los puntos de f y se multiplican sus segundas componentes por la constante a. Por eso, si a > 0 el gráfico de g tendrá una forma parecida al de f pero dilatado o comprimido verticalmente en un factor a.

Si a < 0, la gráfica es como la de f dilatada o comprimida verticalmente en un factor |a|.

Por ejemplo, el gráfico de la función g(x) = 2x3 es parecido al gráfico de f(x) = x3. Para hacer un esbozo de él, tabule los puntos con x igual a 0,1 y -1:

x g = 2x3

0 0-1 -21 2

Se trazan los puntos (0;0), (-1;-2), (1;2) y se traza una gráfica parecida a la de la función f(x) = x3 pasando por estos puntos.

La función g dada por la fórmula g(x) = 5(x - 2)3, es la composición de una lineal de razón 5, una cúbica y una función de traslación. Su gráfica es parecida a la de la función f(x) = x3, trasladada ésta 2 unidades hacia la derecha y luego dilatada verticalmente en un factor 5. Para trazar el gráfico de g tabule al menos tres puntos: uno donde la gráfica interseca al eje horizontal, es decir, donde g(x) = 0, que en nuestro caso ocurre cuando x = 2; otro a la izquierda de éste punto (escoja un valor de x menor que 2), y otro a su derecha, con un valor de x mayor que 2.

Ubique estos puntos y trace una curva que pase por ellos, similar a y = x3.

Compruebo lo aprendido

Trace el gráfico de las funciones con las siguientes leyes de asignación.

1. g(x) = 5x3

2. g(x) = 0,5x3

3. g(x) = 2,5x3

4. g(x) = 2(x + 1)3

5. g(x) = 4(x - 1)3

6. g(x) = 3(x + 2)3

7. g(x) = 3(x - 4)3

x

1 -5

2 03 5

Page 244: Libro de matematicas 9no grado

236

Ecuaciones CuadráticasRecuerde, reflexione y concluya

Resuelva las ecuaciones siguientes factorizando el miembro izquierdo y aplicando la propiedad del producto nulo.

x2 + 16x + 60 = 0

2x2 + x - 10 = 0

La ecuación

3x2 + 5x - 4 = 0

es equivalente a:

3(3x2 + 5x - 4) = 0

la cual se puede escribir como:

(3x)2 + 5(3x) - 12 = 0

El miembro izquierdo no se puede factorizar en ℤ ¿Por qué?

En la unidad 3 abordamos la resolución de ecuaciones cuadráticas de la forma

x2 + bx + c = 0

mediante un método que consiste en dos pasos:

Paso 1.Factorizar el polinomio de la parte izquierda.

Paso 2.Aplicar la propiedad del producto nulo a la ecuación que resulta después de efectuar el paso 1.

En el caso de la ecuación

3x2 + 5x - 4 = 0

o su equivalente, el polinomio de la parte izquierda no se puede factorizar y por tanto no podemos aplicar directamente el método referido.

Si multiplicamos la ecuación 3x2 + 5x - 4 = 0 por , se obtiene la ecuación equivalente:

Ejemplo 1

Page 245: Libro de matematicas 9no grado

237

con un polinomio mónico en la parte izquierda. Dividamos por 2 el

coeficiente del segundo miembro, esto es:

Ahora sumemos y restemos :

,

al agrupar los primeros tres miembros y factorizar se obtiene

es decir,

o lo que es lo mismo

La parte izquierda es una diferencia de cuadrados; luego la ecuación se puede escribir como

Ahora, al aplicar la propiedad del producto nulo se obtiene

ó

Por tanto, la ecuación tiene dos soluciones.

y x =

Reforzamiento:

Encuentre la solución a las siguientes ecuaciones cuadraticas:

1. x2 + 16x + 60 = 0

2. 2x2 + 0 - 10 = 0

3. x2 - 10 = 0

4. x2 + 1 = 0

Page 246: Libro de matematicas 9no grado

238

En forma compacta se escribe:

El conjunto solución de la ecuación es entonces

Discriminante.

Considere de nuevo la ecuación:

3x2 + 5x - 4 = 0

Sean a = 3, b = 5, c = -4 los coeficientes del polinomio de la parte izquierda.

Para los valores dados de a,b y c calcule

D = b2 - 4ac,

esta expresión se denomina discriminante.

Al resolver la ecuación 3x2 + 5x - 4 = 0 obtuvimos las soluciones

y

Escríbalas en términos de la literales a,b,c y d y en términos de solamente a, b y c. Observe que, el denominador 6 = (2)(3) = (2)a, se puede sustituir por 2a.

¿Qué fórmulas se obtienen? Escríbalas en una sola fórmula usando el símbolo ±.

£ Aplique la fórmula obtenida para resolver la ecuación

5x2 - 9x + 2 = 0

En este caso a = 5, b = -9 y c = 2.

• Para la ecuación:

3x2 + 2x + 5 = 0

1. Determine los valores de a,b y c.

2. Encuentre las soluciones.

Reto Matemático:

1. En la ecuación :

x2 + bx - 9= 0

si x = 1, ¿cuanto vale b?

2. En la ecuación:

ax2 + 3x - 5 = 0

si x = -2, ¿cuanto vale a?

Page 247: Libro de matematicas 9no grado

239

Considere la ecuación:

x2 + 7x + 3 = 0

El coeficiente implícito del término cuadrático del polinomio de la parte izquierda es a = 1; los otros coeficientes son b = 7 y c = 3. Las soluciones de esta ecuación son

• Calcule el discriminante D = b2 - 4ac de la ecuación.

• Exprese la soluciones en términos de las literales a,b,c y D. El denominador es 2 = 2(1) = 2a.

Una ecuación cuadrática es una ecuación cuyas partes izquierda y derecha son polinomios cuya diferencia es un polinomio cuadrático.

La ecuación:

7x2 + 6x - 4 = -5x2 + 2x + 1

es una ecuación cuadrática. Si en ambos miembros sumamos el polinomio 5x2 - 2x - 1, la ecuación se transforma en la equivalente

12x2 + 4x - 5 = 0,

en este caso a = 12, b = 4, c = -5 y el discriminante es

D = b2 - 4ac = (4)2 - 4(12)(-5),

es decir,

D = 256

Las soluciones de la ecuación son:

, simplificando tenemos:

y

2(12)

El conjunto solución es

Ejemplo 2

Ejemplo 3

Reto Matemático:Hallar el discriminante de:

1. 3x2 + 5x + 9 = 0

2. 9x2 - 5x +10 = 0

3. x2 - 5x - 6 = 0

4. x2 + 8x - 9 = 0

Page 248: Libro de matematicas 9no grado

240

Compruebo lo aprendido

Escriba la ecuación

3x2 + 2x - 7 = -5 - 8

en la forma

ax2 + bx + c = 0

Indique los valores de a, b y c.

Escriba la fórmula de solución de la ecuación.

Resuelva la ecuación.

Toda ecuación cuadrática se puede escribir en forma estándar

ax2 + bx + c = 0

restando el polinomio de la parte derecha al polinomio de la parte izquierda.

Las letras a,b y c denotan números fijos con a ≠ 0.

La fórmula general

proporciona la solución o las soluciones reales de la ecuación cuando el discriminante D es mayor o igual a cero.

Una solución real de una ecuación es un número real que es solución de la ecuación.

Actividad en grupo

I. Discuta con sus compañeros, ¿Por qué no hay solución real, es decir en ℝ, cuando el discrimínante D = b2 - 4ac es negativo?

II. Calcule el discriminante de cada ecuación y determine cuáles ecuaciones tienen soluciones reales.

1. 3x2 - 7x + 4 = 0

2. 8x2 + 2x + 1 = 0

3. 2x2 - 4x + 5 = 0

4. 6x2 + 5x - 3 = 0

5. x2 - 1 = 0

6. 3x2 - 6x = 0

Para el discriminante:

D = b2 - 4a,

se tienen los casos siguientes:

D = 0, una raíz doble.

D < 0, una solución compleja.

D > 0, dos raíces reales distintas.

Page 249: Libro de matematicas 9no grado

241

III. Consideren las siguientes ecuaciones. Calculen los discriminantes y resuelvan las que tienen solución real.

1. 5x2 - 2x - 3 = 0

2. 7x2 + 9x + 2 = 0

3. -8x2 - 12x + 36 = 0

4.

5.

6.

IV. ¿Qué relación existe entre el signo del discriminante y la cantidad de soluciones reales que tiene la ecuación?

V. Formulen 3 ecuaciones cuadráticas; una con discriminante negativo, otra de discriminante nulo y una tercera con discriminante positivo. Luego resuelvan las ecuaciones que tienen solución real.

Ecuaciones Cuadráticas y Números Complejos

Recuerde, reflexione y concluya

I. ¿Cuáles de las siguientes igualdades son válidas para cualesquiera números reales a, b, c.?

1. (a + b)+ c = a + (b + c)

2. a + b = b + a

3. a + 0 = a

4. a2 ≥ 0

5. (b + c) + (a + b)2 = a2 + b2

II. ¿Cuáles de las siguientes ecuaciones no tienen solución real?

1. x2 - 5x + 6 = 0

2. 2x2 + 5x + 4 = 0

3. 4x2 + 7x + 5 = 0

4. 2x2 - 1 = 0

5. x2 + 2 = 0

Page 250: Libro de matematicas 9no grado

242

Números ComplejosLlamaremos números complejos a los pares ordenados (a;b) de números reales a y b, con las operaciones que adición y multiplicación que abajo se detallan.

Dado un número complejo

z =(a;b)

se llama parte real de z a la primera componente a y a la segunda componente se denomina parte imaginaria de z.

Indique la parte real y la imaginaria de cada número complejo

• (-3; 7)

• ( ; -0,754)

• (π4

; e)

Adición. Para cualesquiera números complejos (a;b) y (c;d) definamos la suma

(a; b) + (c; d) = (a + c; b + d)

Es decir que, la parte real de la suma de dos números complejos es la suma de las partes reales de los sumandos; análogamente, la parte imaginaria de la suma es la suma de las partes imaginarias de los sumandos.

Por ejemplo,

(-3; 5) + (4; 9) = (-3 + 4; 5 + 9) = (0; 14)

Efectúe las sumas abajo indicadas.

1. (9;13) + (2;4)

2. (2;4) + (9;13)

3. (-3; 6) + (-5; -7)

4. (-5; 7) + (-3;6)

5. (13; 4) + (0;0)

6. (5;3) + (-5;-3)

7. (-6;2) + (6;-2)

8. [(5;-4) + (8;3)]+(1;-2)

9. (5;4) + [(8;3) + (1;-2)]

Notación:

Dado z = (a;b) denotaremos:

a = Re(z);

b = Im(z).

Donde Re se refiere a la parte real y Im a la parte imaginaria

Números Complejos

Historia:

Aparecen por primera vez en la solución de ecuaciones de segundo y tercer grado; siglo XVI - XX. Los principales estudios los hicierón Argan, Gauss, Hamilton.

Se aplica en el campo de la electricidad

Cálculo de impendencia equivalentes en redes eléctricas a corrientes alternativas

También se puede simbolizar un número complejo de la forma

Page 251: Libro de matematicas 9no grado

243

Propiedad conmutativa: el orden de los sumandos no altera la suma

(a;b) + (c;d) = (c;d) + (a;b)

El par (0;0) sirve de neutro aditivo, es decir, un par cualquiera no cambia si le sumamos el par (0;0):

(a;b) + (0;0) = (a;b).

El opuesto de un par se obtiene tomando los valores opuestos de sus componentes, es decir, -(a;b) = (-a;-b), lo cual significa que

(a;b) + (-a;-b) = (0;0)

Propiedad asociativa:

[(x;y) + (w;z) ] + (u;v) = (x;y) + [(w;z) + (u;v))]

Multiplicación.

Para cualesquiera números complejos (a; b) y (c; d), definimos:

(a; b) (c; d) = (ac - bd; ad + bc).

Por ejemplo, (2;5) (7;3) = (-1; 41):

(2)(3) + (5)(7)

(2)(7) + (5)(3)

(2;5) (7;3) = (14 - 15;6 + 35) = (-1;41)

Las cantidades imaginarias son las raíces de índices par de cantidades negativas

Unidad Imaginaria: La cantidad , se le denomina "Unidad Imaginaria".

Según la notación de Gauss, la Unidad Imaginaria se simboliza por la letra

Los números complejos son aquellos que tienen la forma

z

Parte Real

Parte Imaginaria

Page 252: Libro de matematicas 9no grado

244

Realizar las siguientes operaciones

1. (3; 5)(6; 9)

2. (6; 9)(3; 5)

3. (2;5)(1;0)

4. (-4;7)(1;0)

5. [(2;3)(4;6) ](-5;2)

6. (2;3)[(4;6)(-5; 2)]

7. (3;4)[(1;5)+(3;7)]

8. (3;4)(1;5)+(3;4)(3;7).

Los resultados de este ejercicio sugieren la validez de las propiedades enunciadas en el siguiente ejercicio.

Dé razones que justifiquen las siguientes propiedades

Propiedad conmutativa:

El orden de los factores no altera el producto

(a;b)(c;d) = (c;d)(a;b)

El par (1;0) juega el papel de neutro multiplicativo. Un par arbitrario no cambia si lo multiplicamos por (1;0):

(a;b)(1;0) = (a;b)

Propiedad asociativa:

[(a;b)(c;d)](e;f) = (a;b)[(c;d)(e;f)]

Propiedad distributiva:

(a;b)[(c;d)+(e;f)] = (a;b)(c;d) + (a;b)(e;f)

Actividad en grupo

I. Efectúe

1. (2;0)(3;0)

2. (-4;0)(7;0)

3. (√5;0)(-6;0)

4. (0; 4)(0;5)

5. (0; -5)(0;-3)

II. Pruebe que (u;0)(v;0) = (uv;0).

Page 253: Libro de matematicas 9no grado

245

III. Realice oralmente los siguientes ejercicios

1. (-3;0)(5; 0)

2. (2;0)(4;0)

3. (m;0)(n;0)

Para sumar o multiplicar números complejos con partes imaginarias nulas, basta con sumar o multiplicar, según sea el caso, las partes reales; la parte imaginaria del resultado siempre es cero:

(u;0) + (v;0) = (u + v;0)

(u;0)(v;0) = (uv;0).

Por eso, y en aras de una escritura más sencilla, identificamos cada número del tipo (u;0) con el número real u,

Para todo número real u,

u = (u;0)

Por otra parte, si λ es un número real arbitrario, entonces;

(λ;0)(a;b) = (λa - 0b; 0a + λb)

es decir,

λ (a;b) = (λa;λb)

Similarmente,

(a;b) λ = (a;b)(λ;0) = (λa;λb)

Por tanto, para multiplicar un número complejo ℤ por un número real λ, se multiplica por λ la parte real y la parte imaginaria de ℤ.

Si z = (a;b) es un número complejo con parte real a y parte imaginaria b, entonces

z = (a;0) + (0;b)

1=(1;0)

0=(0;0)

-1=(-1;0)

6(a;b) = (6a;6b)

3(-4;7) = (-12;21)

Page 254: Libro de matematicas 9no grado

246

es decir,

z = (a;0) + b(0;1)

Denotemos el número complejo (0;1) con el símbolo i. Entonces podemos escribir

z = a + bi,

esta es la representación polinómica del número complejo z.

Sean u, v números reales arbitrarios. Verifique que

(0;u)(0;v) = (-uv;0)

(0)(v) + (u)(0)

(0)(0) - (u)(v)

(0 ; u) (0 ; v) = ( ; )

Como caso particular, al hacer u = 1 = v, se obtiene que

i ∙ i = (0;1)(0;1) = (-1;0)

es decir,

i2 = -1

Esta igualdad determina que el número complejo i = (0;1) es solución de la ecuación cuadrática

Con la notación polinómica ahora resulta mucho más sencillo realizar la multiplicación de números complejos.

Page 255: Libro de matematicas 9no grado

247

Multiplicar z = (2;5) por w = (4;3).

Escribamos primero z y w en forma polinómica:

z = 2 + 5i

w = 4 + 3i

Ahora multiplicamos de manera habitual, aplicando las propiedades de las operaciones de adición y multiplicación de números complejos:

zw = (2 + 5i)(4 + 3i) = 8 + 6i + 20i + 15i2

Tomando en cuenta que i2 = -1, obtenemos que

zw = 8 + 26i - 15 = -7 + 26i

£ Efectúe las operaciones indicadas

1. (2 + 5i) + (-2 + 7i)

2. (2-4i)(6 - 17i)

3.

Si r es un número positivo entonces existe un número real a, también positivo y tal que a2 = r, es decir

Luego

Por tanto,

es decir

Consideremos ahora la ecuación cuadrática

ax2 + bx + c = 0

Las soluciones están dadas por la fórmula general

Ejemplo 1

Page 256: Libro de matematicas 9no grado

248

En el caso en que el discriminante D = b2 - 4ac es un número real negativo, las soluciones son los números complejos

Encontrar el conjunto solución de la ecuación

5x2 - 2x + 3 = 0

En este caso a = 5, b = -2 y c = 3.

El discriminante es negativo:

D = b2 - 4ac = (-2)2 - 4(5)(3) = 4 - 60 = -56

Por tanto, las soluciones son los números complejos, a saber:

Al simplificar obtenemos que

£ ¿Cómo son las partes reales de las soluciones de una ecuación cuadrática con discriminante negativo? y ¿Las partes imaginarias?

Trabajo en Equipo

Halle las soluciones de las siguientes ecuaciones. En cada caso sume y reste las soluciones.

1.

2. x2 + 7x + 13 = 0

3. 4x2 + x + 1 = 0

4. 6x2 - 2x + 1 = 0

¿Cuál es el resultado de sumar las soluciones de una ecuación cuadrática? ¿Y si las restamos?

Ejemplo 2

Page 257: Libro de matematicas 9no grado

249

DesigualdadesRecuerde, reflexione y concluya

Juan de cinco años es menor que su hermano de siete años; la relación entre las edades la expresamos con ayuda del símbolo < escribiendo

5 < 7

expresión que se lee “5 es menor que 7”. Podemos describir la misma situación usando la relación inversa

7 > 5

la cual se lee “siete es mayor que cinco”. Las relaciones como estas se denominan desigualdades.

Describa otras situaciones de la vida que impliquen desigualdades.

La diferencia de edades entre los hermanos arriba mencionados, la del mayor menos la del menor, es 2, un número positivo. En general, una cantidad es mayor que otra cuando la diferencia entre ella y la menor es un número positivo. Es decir,

a > b sí y solo si a - b, es un número positivo.

El opuesto de un número positivo es un número negativo. El opuesto de a-b es b-a, de modo que si a-b es positivo, entonces b-a es negativo. En consecuencia, la definición anterior la podemos escribir en forma equivalente como

b < a, sí y solo si b - a, es negativo.

Compruebe lo aprendido

Complete los siguientes enunciados:

1. a>4 si y sólo si _______________

2. a<6 si y sólo si _______________

3. m<n si y sólo si _______________

Page 258: Libro de matematicas 9no grado

250

De la definición de la relación < se sigue que un número a es positivo si y sólo si a>0. Similarmente, b es negativo si y sólo si b<0. Luego, la definición la relación > se puede escribir como

a > b si y sólo si a - b > 0

o equivalentemente,

b < a si y sólo si b - a < 0

Trabajo en Equipo

Complete los siguientes enunciados.

1. 5 < x, sí y solo si ____________

2. m > 4, sí y solo si ___________

3. h < p, sí y solo si ____________

4. n - r > 0, por tanto n __________ r.

Compatibilidad de > con la adición

La suma y el producto de números positivos son también positivos. Es decir,

1. Si a > 0 y b > 0, entonces a + b > 0.

2. Si a > 0 y b > 0, entonces ab > 0.

Por otra parte, si a > b entonces

a - b > 0

Ahora bien, si c es un número cualquiera

(a + c) - (b + c) = a - b

en consecuencia, al sustituir en la desigualdad anterior

(a + c) - (b + c) > 0

y por tanto

a + c > b + c

Esto prueba que

a > b ⇒ a + c > b + c

Page 259: Libro de matematicas 9no grado

251

Esta propiedad se denomina compatibilidad de la relación de orden > con la adición.

Si a >7, ¿qué relación hay entre a + 5 y 12?

Si a > b, ¿cómo se relacionan y ?

Si a > b, ¿qué relación habrá entre a - c y b - c?

Compatibilidad < con el producto.

Suponiendo que a > b y que c es un número positivo, concluimos que, por ser a - b y c números positivos, el producto

(a - b)c

es también positivo, es decir,

(a - b)c > 0

y, por tanto,

ac - bc > 0

De aquí se obtiene, por definición,

ac > bc

Estos razonamientos prueban la compatibilidad de la relación de orden > con la multiplicación por números positivos que se enuncía así:

si a > b y c > 0, entonces ac > bc.

¿Qué propiedad se debe utilizar para obtener la desigualdad ac - bc > 0 a partir de la desigualdad (a - b)c > 0?

Compruebe lo aprendido

Complete

1. Si a > b entonces a ______ b

2. Si a > b entonces 2 011a __________ 2 011b.

3. si __________.

4. nc > mc si n > m y __________.

5. pr > qr si r > 0 y __________.

Page 260: Libro de matematicas 9no grado

252

El cociente entre dos números positivos es un número positivo. En particular, si c es un número positivo, entonces es un número positivo. En consecuencia, si a > b y c > 0, entonces de acuerdo con la propiedad anterior . Es decir,

si a > b y c > 0, entonces

Compruebe lo aprendido

Complete las siguientes afirmaciones de manera que resulten verdaderas.

1. Si a > b, entonces

2. , si a b.

3. , si m > n y r o.

4. , si h > 0 y k p.

5. u > v. Por tanto

Escriba todas las propiedades anteriores usando la relación <, inversa de >.

Suponga que c < 0.

Sume –c a ambos lados de la desigualdad. Utilizando la compatibilidad de la relación de orden con la adición. Obtendrá que:

0 < -c

Esto prueba que c < 0 y 0 < -c, o, lo que es lo mismo, c < 0 y - c > 0.

£ Suponga que a > b y que c < 0.

¿Por qué a - b > 0 y –c > 0?

¿Por qué (a - b)(-c) > 0?

Esto conduce a la desigualdad bc - ac > 0. Justifique.

En conclusión bc > ac, o en forma equivalente, ac < bc.

Page 261: Libro de matematicas 9no grado

253

Se ha probado la propiedad siguiente:

si a > b y c < 0, entonces ac < bc.

Es decir, si las dos partes de una desigualdad se multiplican por un número negativo, el símbolo de la desigualdad cambia de sentido.

De igual manera, si los dos miembros de una desigualdad se dividen entre un número negativo, la desigualdad cambia de sentido. Si c es un número negativo, su inverso multiplicativo es también negativo.

Por tanto, si a > b y c < 0 entonces

Luego, si a > b y c < 0, entonces .

Trabajo en Equipo

Complete adecuadamente las siguientes expresiones con > ó <

1. Si a > b entonces -6a -6b.

2. Si m > n entonces

3. Si p>q entonces

4. si p q.

5. 5a > -5b si a b.

6. si h p.

7. hr < pr si h > r y r 0.

8. hr < pr si r < 0 y h p.

9. mk < nk si m n y k 0.

10. si a b y h 0.

Page 262: Libro de matematicas 9no grado

254

Considere la desigualdad h - 4 < 5

Sume 4 a ambos lados de la desigualdad y utilice la compatibilidad del orden con la adición. Obtendrá la desigualdad:

h < 9,

de esta manera se ha “despejado” h.

• Despeje r de la desigualdad

3r < 6.

Para ello divida ambos lados de la desigualdad entre 3 y simplifique.

• Considere la desigualdad

3x + 4 < 10.

Reste 4 a ambos lados de la desigualdad. ¿Qué resulta?

Divida entre 3 ambos laos de la desigualdad resultante del paso anterior. Al simplificar, en la parte izquierda debe aparecer solamente x. Entonces se ha despejado x. ¿Cuál es la desigualdad que resulta?

Por disposición del gobierno los hogares cuyo consumo de energía eléctrica no exceda los 150 Kwh reciben un tratamiento preferencial en el pago de la energía. Si x denota la cantidad de Kwh consumidos entonces para optar al tratamiento x debe ser menor o igual a 150; esto se expresa simbólicamente escribiendo

x < 150 ó x = 150.

O en forma más compacta x ≤ 150.

Las expresiones como estas se denominan también, inecuaciones. El símbolo ≤ se lee “es menor o igual que”. Puesto que la cantidad de kwh no puede ser un número negativo se debe cumplir también que 0 ≤ x. Esta desigualdad con la anterior se fusionan escribiéndose abreviadamente como

0 ≤ x ≤ 150

Esta expresión significa que los valores de x deben estar entre 0 y 150, y que además x puede tomar los valores de 0 y 150. Esta desigualdad la podemos representar de distintas maneras:

1. De forma conjuntista

2. Como un intervalo cerrado [a; b].

Ejemplo 2

Ejemplo 1

Page 263: Libro de matematicas 9no grado

255

3. En forma gráfica

0 150

£ Describa los valores que satisfacen la inecuación 1 ≤ x ≤ 3.

En general, si a y b son números reales tales que a ≤ b, el intervalo cerrado [a;b] es el conjunto de números reales que satisfacen

a ≤ x ≤ b

es decir,

[a;b] = {x ∈ ℝ: a ≤ x ≤ b}

La escritura a ≤ x ≤ b es abreviatura de a ≤ x y x ≤ b.

a bIntervalo [a ; b]

Describa el conjunto solución S de la inecuación x<5.

La descripción conjuntista es

La desigualdad indica que los valores de S están acotados superiormente por 5, es decir no pueden exceder a 5, ni ser igual a 5. Por otra parte, no hay acotaciones inferiores, es decir, x puede tomar cualquier valor menor que 5, sin importar qué tan menor lo sea; esto lo describimos escribiendo

-∞ < x < 5

o en forma de intervalo S = (-∞;5).

El símbolo -∞ no representa ningún número, sirve para indicar que el intervalo no tiene acotaciones inferiores. El paréntesis a la derecha de 5 señala que este valor no es parte del intervalo.

La descripción gráfica es

5

Ejemplo 3

Page 264: Libro de matematicas 9no grado

256

La flecha señala que el intervalo (-∞; 5) se extiende indefinidamente hacia la izquierda del 5; el círculo en 5 indica que 5 no es parte del intervalo.

En general, el intervalo (-∞; b) denota el conjunto de números reales que verifica la inecuación x < b. Así:

(-∞; b] = {x ∈ ℝ: x < b}

Si a este intervalo le agregamos el extremo derecho, b, obtenemos el intervalo (-∞; b]:

(-∞; b) = (-∞; b) ⋃ {b},

es decir,

(-∞; b] = {x ∈ ℝ: x < b} ⋃ {b}

= {x ∈ ℝ: x < b ó x = b}

la expresión x<b ó x=b se escribe abreviadamente como x≤b, de modo que

(-∞; b) = {x ∈ ℝ: x ≤ b}

La descripción gráfica es

b

Otros intervalos son:

• (a;b) = {x ∈ ℝ: a < x < b}

• (a;∞) = {x ∈ ℝ: x > a}

• (a;b] = {x ∈ ℝ: a < x ≤ b}

• [a;b) = {x ∈ ℝ: a ≤ x < b}

El intervalo (-3; 0) es el conjunto de todos los números reales x que cumplen que -3 < x < 5, es decir todos los números entre –3 y 5:

(-3;5) = {x ∈ ℝ: -3 < x < 5}

En forma gráfica:

a b

Ejemplo 4

Page 265: Libro de matematicas 9no grado

257

Los círculos en a y b señalan que estos valores no pertenecen al intervalo.

Trabajo en Equipo

Describir en forma conjuntista, en forma de intervalo y de manera gráfica el conjunto solución de cada una de las siguientes inecuaciones

1. x < -0,25

2. 4 ≤ x

3. -1 ≤ x <

4.

Resolver la desigualdad 5x - 3 < 6x + 7

En esta inecuación la variable x aparece en ambos lados de la desigualdad. Para ubicarla sólo en el lado derecho restemos 5x, aplicando la compatibilidad de la relación de orden con la adición:

5x - 3 - 5x < 6x + 7 - 5x,

luego, simplificando obtenemos

-3 < x + 7,

ahora restemos 7:

-3 - 7 < x + 7 - 7,

entonces tendremos

-10 < x,

Resulta x > -10

Resulta -2 < x.

Luego, el conjunto solución es el intervalo (-10; ∞).

Para mantener la demanda cierta repostería debe producir al menos 5 tortas al día. El costo de producción por unidad es de cincuenta córdobas y cada torta se vende a 65 córdobas. Si se desea que los costos de producción por día no excedan los C$ 500, ¿cuántas tortas se pueden producir por día?

Ejemplo 6

Ejemplo 5

Page 266: Libro de matematicas 9no grado

258

Sea x la cantidad de tortas producidas al día. Ya que la demanda es de al menos cinco tortas al día, se debe tener:

5 ≤ x

Producir una torta cuesta C$ 50, asi que producir x cantidad de ellas debe costar C$ 50x. Esta cantidad no debe exceder a C$ 500. Por tanto,

50 x ≤ 500

Dividiendo entre 50

es decir

x ≤ 10

Las restricciones sobre x son: 5 ≤ x y x ≤ 10.

En forma abreviada,5 ≤ x ≤ 10.

Por supuesto, la solución no es todo el intervalo [5;10] pues la cantidad de tortas fabricadas debe ser un número natural (no se venden tortas en fracciones). La cantidad x puede tomar los valores 5, 6, 7, 8, 9, 10.

Compruebe lo aprendido

Resolver las inecuaciones siguientes

1. 2x - 6 > 7x + 4

2.

3.

4.

Page 267: Libro de matematicas 9no grado

259

Ecuaciones lineales racionales en una variableRecuerde, reflexione y concluya

I. Factorice

1. x2 + 2x - 15

2. x2 + 3x - 28

3. x2 + 8x + 12

4. 12x2 + 5x - 3

5. x2 - x - 6

II. Halle el mínimo común múltiplo de los polinomios dados

1. x2 - 4, x - 2, x + 3, x - 2

2. x2 + 2x - 15, x2 - x - 6

3. (x+4)2,x2 - 16,x - 4

4. x3 - 1, x2 - 1,x + 1

III. Simplifique

1.

2.

3.

4.

Page 268: Libro de matematicas 9no grado

260

Ecuación Racional

Una ecuación racional es una ecuación en la que aparecen fracciones racionales polinómicas, es decir, fracciones en las que el numerador y denominador son polinomios. Por ejemplo,

es una ecuación racional.

Resolver la siguiente ecuación

Multipliquemos ambos lados de la ecuación por el mínimo común múltiplo de los denominadores

Obtenemos la ecuación lineal

(3x + 5) · 3- (5x) · 4 = (7 - x) ·6 + 12

desarrollando tenemos:

9x + 15 - 20x = 42 - 6x + 12,

ahora simplifiquemos en ambos lados de la ecuación,

-11x + 15 = -6x +54,

sumemos 6x en ambos lados; con ello se elimina el -6x en la parte derecha,

-11x + 15 + 6x = 54,

simplificando resulta,

-5x + 15 = 54

Ejemplo 1

Page 269: Libro de matematicas 9no grado

261

ahora restemos 15 en ambos lados. de este modo:

-5x = 39,

por último, al dividir esta última ecuación entre -5 se llega a que:

Por tanto, el conjunto solución de la ecuación dada es

Compruébelo sustituyendo por x en la ecuación original.

Compruebe lo aprendido

Resuelva las siguientes ecuaciones

1.

2.

3.

Cuando se trabajen ecuaciones en las que la variable aparece en algunos de los denominadores, se debe tomar en cuenta que el denominador de una fracción no puede tomar el valor 0.

Resolver la ecuación

Multipliquemos por x + 1 en ambos lados de la ecuación:

Ejemplo 2

Page 270: Libro de matematicas 9no grado

262

Al simplificar se llega a que x2 - 1 = 0. Es decir (x + 1)(x - 1) = 0, de donde, por la propiedad del producto nulo, x + 1 = 0 ó x - 1 = 0. Por tanto, x = -1 ó x = 1.

Pero con x = -1 se anula el denominador de la fracción de la parte izquierda en la ecuación original. Por tanto, este valor queda descartado.

Solo nos queda como solución el valor x = 1. El conjunto solución es por tanto

S = {1}

£ ¿Qué valores no puede tomar x en cada una de las siguientes ecuaciones?

Resolver la ecuación

Los denominadores de las fracciones involucradas en esta ecuación no deben ser iguales a cero. Por tanto, x + 1 ≠ 0 y 5x ≠ 0. Por tanto, x ≠ -1 y x ≠ 0.

El mínimo común múltiplo de los denominadores es

mcm(x + 1,5x) = 5x(x + 1)

Multipliquemos ambos lados de la ecuación por este polinomio:

,

ahora simplificamos,

3(5x) = 3(x + 1),

desarrollando resulta:

15x = 3x + 3,

Ejemplo 3

Page 271: Libro de matematicas 9no grado

263

luego,

12x = 3,

finalmente, se divide entre 12 para obtener que

Esta solución es válida pues no coincide ni con -1 ni con 0, que son los valores prohibidos. Por tanto, el conjunto solución de la ecuación es

Función Cuadrática

Una función cuadrática es una función con una ley de asignación

f(x) = ax2 + bx + c

donde a, b y c son constantes reales con a ≠ 0.

Las siguientes fórmulas de asignación definen funciones cuadráticas.

1. f(x) = 3x2 - 7x2 + 4

2. f(x) = 5x2 + 8x - 4

3. f(x) = x2 - 5x + 6

4. f(x) = 7x2 + 2x - 3

El gráfico de una función cuadrática es una parábola cóncava, hacia arriba si el coeficiente "a" de x2 es positivo y cóncava hacia abajo si "a" es negativo.

El punto más bajo de la parábola, cuando a > 0, se denomina vértice. Cuando a < 0, el vértice es el punto más alto del gráfico.

Consideremos la función f(x) = x2.

Ubique tres puntos del gráfico, el vértice, un punto en la rama izquierda y un punto en la rama derecha. Para ello haga una tabla.

En este caso el vértice se encuentra en el origen, el punto (0;0). Los puntos que se encuentran sobre la rama izquierda del gráfico tienen primera coordenada menor que cero, la primera coordenada del vértice; por ello asigne a x un valor menor que cero y calcule el valor correspondiente de f(x), esto le dará un punto en la rama izquierda.

a < 0

x

y

Parábola Cóncava hacia abajo

Ejemplo 1

a > 0

x

y

Parábola Cóncava hacia arriba

Page 272: Libro de matematicas 9no grado

264

Para hallar un punto en la rama derecha asígnele a x un valor mayor quela primera coordenada del vértice (en este caso igual a 0) y luego calcule el valor respectivo de y = f(x)

x y = f(x) = x2 y (x;y)

0 f(0) = 02 0 (0;0)

-1 1 (-1;1)

1 f(1) = 12 1 (1;1)

Vértice

En rama izquierda

En rama derecha

Ubique el vértice (0;0) y los puntos (-1;1) y (1;1). Trace el gráfico.

La parábola de la izquierda es la gráfica de la función. Observe que el vértice (0;0) es el punto más bajo de la gráfica.

El dominio de la función es el conjunto de valores que toma la variable x. Como puede notarse en la ley de asignación, para estos valores no hay restricciones, así que el dominio es el conjunto de todos los números reales.

El rango de la función es el intervalo que va desde la segunda coordenada del vértice hasta +∞ , es decir [0, +∞).

Trace el gráfico de la función g(x) = x2 + 1

La ley de asignación de esta función se parece a la del ejemplo anterior; aquí se le suma uno adicional.

En realidad la función g coincide con la compuesta de la función f y la función de traslación T1.

Por tanto, el gráfico de g es el de trasladado verticalmente 1 unidad hacia arriba. Es decir, que los puntos del gráfico de g(x) = x² + 1 se hallan sumándole 1 a las segundas coordenadas de los puntos del gráfico de . En particular, el vértice del gráfico de g es el punto(0;1).

La gráfica de g es una parábola con vértice en (0;1). Para hallar otros puntos del gráfico que nos permitan trazarlo proceda como en el ejemplo anterior. Asígnele a x un valor menor que la primera coordenada del vértice y otro valor mayor que la primera coordenada del vértice y calcule los valores correspondientes de .

Ejemplo 2

El dominio de la función cuadratica por ser una función polinomial de grado 2; siempre será el conjunto de los números reales Domf = ℝ

Rango

1. Vertice (h;k)

hb

a= −

2, k = f(h)

2. Si es cóncava hacia arriba el rango es:

[k; ∞)

3. Si es cóncavo hacia abajo el rango es:

(-∞;k]

Page 273: Libro de matematicas 9no grado

265

x y = g(x) = x2 + 10 1-1 21 2

£ Trace las gráficas de las siguientes funciones

• f(x) = x2 - 1

• f(x) = x2 + 3

En términos generales podemos decir que el gráfico de f(x) = x2 + c coincide con el de y = x2 trasladado verticalmente c unidades, hacia arriba si c > 0 o hacia abajo cuando c < 0.

£ Considere la función con ley de asignación

f(x) = (x + 2)2

para todo número real x.

¿Qué funciones deben componerse para obtener f?

¿Qué relación hay entre el gráfico de f(x) y el de h(x) = x2?.

Grafique la función f(x).

Trazar el gráfico de la función f(x) = 3(x - 5)2

La gráfica de f se obtiene del gráfico de y = x2 trasladándolo b = 5 unidades hacia la derecha, con lo cual el vértice (0;0) de y = x2 se transforma en el vértice (5;0) de y = (x - 5)2, y luego se dilata el gráfico resultante en un factor 3: las segundas coordenadas de los puntos del gráfico de y = (x - 5)2 se multiplican por 3. El vértice será el mismo de y = (x - 5)2, es decir: (5;0).

Demos a x un valor menor que 5, por ejemplo x = 4; el valor correspondiente para y = f(x) es

y = 3(4 - 5)2 = 3

Ejemplo 3

(-1;2) (1;2)

(0;1)

-2 -1 1 2 3

2

4

Ramaizquierda

Ramaderecha

Page 274: Libro de matematicas 9no grado

266

Esto nos da el punto (4;3) sobre la rama izquierda de la gráfica de (una parábola). Para hallar un punto sobre la rama derecha damos a x un valor mayor que la primera componente del vértice, por ejemplo x = 6; el valor de y = f(x) es entonces:

y = 3(6 - 5)2 = 3

De esta manera tenemos el vértice (5; 0), el punto (4;3) sobre la rama izquierda y el punto (6;3) sobre la rama derecha del gráfico de f Trace una parábola que pase por estos puntos con vértice en (5;0), este será la gráfica de f.

Trazar el gráfico de la función f definida por:

f(x) = 3(x - 5)2 + 2

La gráfica de esta función es como la del ejemplo anterior, trasladada verticalmente 2 unidades hacia arriba. Por tanto, su gráfico será una parábola cuyas ramas se abren hacia arriba. Los puntos arriba calculados (4;3), (6;3) y el vértice (5;0) del gráfico y = 3(x - 5)2, nos sirven para trazar el nuevo gráfico, sólo hay que trasladarlos 2 unidades hacia arriba, para lo cual se debe sumar 2 unidades a las segundas componentes. Obtenemos el punto (4;5) sobre la rama izquierda, el punto (6;5) en la rama derecha y el vértice (5;2). Con estos datos, trace el gráfico de f

Trace la gráfica de f(x) = 3(x - 5)2 + 4

Hacer el trazo de la función cuadrática

f(x) = 3(x - 5)2 - 2

En este caso el gráfico de f se halla trasladando el gráfico de y = 3(x-5)2 verticalmente 2 unidades hacia abajo. En otras palabras se debe restar 2 a todas las segundas componentes de los puntos del gráfico de y = 3(x - 5)2. Con ello, los puntos (4;3) (6;3) en las ramas izquierda y derecha y el vértice (5;0) se transforman en los puntos (4;1), (6;1) y (5;-2) respectivamente. Trace una parábola con vértice (5;-2) que pase por los puntos (4;1) y (6;1); esta será la gráfica de f.

Como podrá notar al trazar el gráfico de y = 3(x - 5)2 - 2, éste interseca al eje horizontal en dos puntos distintos. Éstos, por estar sobre el eje horizontal, deben tener segunda coordenada igual a cero y, por tanto, deben satisfacer la ecuación cuadrática:

3(x - 5)2 - 2 = 0

Ejemplo 5

Ejemplo 4

(4,3) (6,3)

(5,0)

654321

(4,1) (6,1)

654321

A

Page 275: Libro de matematicas 9no grado

267

Resuelva esta ecuación e indique los puntos de intercepción de la gráfica de y = 3(x - 5)2 - 2 con el eje horizontal x (interseptos con el eje x).

Trace el gráfico de la función cuadrática definida por la fórmula

f(x) = -x2

El gráfico de esta función se obtiene del gráfico de y = x2 multiplicando las segundas coordenadas de los puntos de dicho gráfico por -1. Por tanto, el gráfico de f(x) = -x2 es también una parábola con vértice en el origen y con ramas abriéndose hacia abajo.

Puesto que f(-1) = -1 = f(1), la gráfica pasa por los puntos (-1;-1) y (1;-1). Ubique estos puntos y trace una parábola que pase por ellos y que tenga como vértice al punto (0;0).

Dibuje el gráfico de f(x) = -x2 + 1. Halle el dominio y el rango o recorrido de f.

Este gráfico lo podemos obtener trasladando el de y = -x2 una unidad verticalmente hacia arriba. El nuevo vértice será el punto (0;1) y los puntos (-1;-1) y (1;-1) del gráfico de y = -x2 se transforman en los puntos (-1;0) y (1;0) del gráfico de f. Por tanto, la gráfica de f es la parábola (figura a la izquierda) de vértice (0;1) que corta al eje horizontal en los puntos (-1;0) y (1;0).

El rango de f está constituido por todos los valore que ella toma, es decir, por todas las segundas coordenadas de los puntos del gráfico de f, que, como puede verse en el gráfico, son todos los puntos entre -∞ y 1 (segunda coordenada del vértice), es decir el intervalo (-∞;1].

Trabajo en Equipo

Para cada una de las siguientes funciones, 1) halle los intersectos con el eje horizontal, si los hay 2) trace el gráfico, 3) halle el dominio y el rango.

1. f(x) = -x2 + 3

2. f(x) = -x2 + 5

3. f(x) = -x2 + 2

4. f(x) = x2 - 1

5. f(x) = x2 - 2

6. f(x) = x2 - 4

(0,1)

(-1,0) (1,0)

Vértice

(0,0)

(-1,-1) (1,-1)

Ejemplo 6

Ejemplo 7

Page 276: Libro de matematicas 9no grado

268

Ejercicios de cierre de la unidad

I. Gráfique las siguientes funciones y determine dominio y rango:

1. g(x) = 2 - 3x

2. h(x) = -2x + 7

3. f(x) = x3 - 1

4. m(x) = x - 3

5. m(x) = x - 3

6. y = x3 - 27

7. f(x) = -2x2 - x

8. h(x) = 1 - 2x + x2

9. h(x) = -3x2 + 3x -6

10. z(x) = x2 - 5

II. Resuelva las siguientes ecuaciones cuadráticas auxiliándose de la fórmula general:

1. 2x2 - x - 3 = 0

2. y2 + 6y + 10 = 0

3. y2 + 2 = 6y

4. x2 + x - 1 = 0

5. 9x2 - 12y + 10 = 0

6. 4x2 - 20y + 16 = 0

III. Resuelva las siguientes desigualdades y represéntelas de forma gráfica y en intervalos.

1. x + 2 < 5 + 3x

2. 2 - 6x > 8x - 3

3. 3x - 5 ≤ 6x + 3

4. 8 - 5x ≥ 3x + 4

IV. Resuelva las ecuaciones racionales.

1.

2.

3.

Page 277: Libro de matematicas 9no grado

269

A

Ángulo. La unión de dos rayos con un origen común.

Ángulos adyacentes. Dos ángulos con un lado y un vértice común.

Ángulos congruentes. Los ángulos que tienen la misma medida.

Ángulos par lineal. Dos ángulos adyacentes y suplementarios.

Ángulos par vertical. Se les denomina así a los ángulos opuestos por el vértice, que son ángulos que tienen un vértice común y los lados de uno son semirrectas opuestas a los lados del otro.

Ángulo perigonal. Es un ángulo que mide 360o, también se le llama ángulo de un giro

B

Bisectriz. Es una recta que divide a un ángulo en dos ángulos congruentes.

C

Clase de fracciones equivalentes. Un conjunto de fracciones equivalentes cuyo representante es la fracción irreducible.

Concepto primitivo. Un concepto que no puede definirse con otros conceptos más básicos.

Conectivo lógico. Una expresión verbal que sirve para unir o enlazar dos proposiciones simples.

Conjunto finito. Es un conjunto en correspondencia con un subconjunto finito de números naturales.

Conjunto. Es un concepto no definido o fundamental y como tal no admite definición en

términos de conceptos más fundamentales.

Conjuntos disjuntos o disyuntos. Son conjuntos que no tienen elementos comunes.

D

Determinación de conjuntos. Un conjunto se puede determinar de dos maneras: por extensión o por comprensión.

Diagramas de Venn. Son ilustraciones usadas en Matemática para representar conjuntos y sus operaciones, usando figuras geométricas.

Dominio de una relación. Es el conjunto cuyos elementos son las primeras componentes de los pares ordenados de la relación.

E

Estudio estadístico. Es una investigación que se hace sobre algún fenómeno de una población, en base a datos estadísticos.

F

Fracciones complejas. Son fracciones en las cuales el numerador, el denominador o ambos son fracciones.

Frecuencia absoluta. Es el número de veces que aparece en la muestra dicho valor de la variable.

Frecuencia relativa. Es el cociente entre la frecuencia absoluta y el tamaño de la muestra.

G

Gráfica de un número. Es un punto en la recta numérica o en el plano cartesiano.sectores tal que, cada sector es proporcional a la cantidad representada.

Glosario

Page 278: Libro de matematicas 9no grado

270

H

Histograma. Es una representación gráfica de una variable en forma de barras.

I

Interés. Es una cantidad calculada sobre un capital inicial y un tiempo determinado.

Intersección de conjuntos. La intersección de dos conjuntos A y B, es el conjunto de elementos comunes a los conjuntos A y a B.

L

La bicondicional. También se llama equivalencia o implicación doble, es una proposición de la forma “P si y solo si Q”, en la cual tanto P como Q tienen que ser ambas verdaderas o ambas falsas.

La condicional. Es una proposición compuesta de la forma “p implica q” donde p es el antecedente y q el consecuente.

La conjunción. Es una proposición compuesta por dos proposiciones enlazadas con el conectivo “y”.

La disyunción. Es una proposición compuesta por dos proposiciones enlazadas con el conectivo “o”.

Lógica. Es una ciencia formal y una rama de la Filosofía que estudia los principios de la demostración y la inferencia.

M

Magnitudes proporcionales. Son dos magnitudes que varían proporcionalmente de acuerdo a un valor constante.

Mediatriz. Una recta que divide a un segmento en dos segmentos congruentes.

Medida de un ángulo. Es un número que está en correspondencia con la abertura del ángulo.

Medidas de tendencia central. Son valores alrededor de los cuales se concentran los datos de una distribución de frecuencias.

N

Notación científica. También llamada notación índice estándar, es una manera concisa de representar un número utilizando potencias de base diez.

O

Ojiva. Es una gráfica asociada a una distribución de frecuencias, en la cual se observan los valores que están encima o debajo de ella.

P

Pertenencia. Es la relación de “estar” entre un elemento y un conjunto.

Población. Es el conjunto de individuos de referencia sobre el que se realiza un estudio estadísticos.

Postulado del área. Por cada región poligonal y una unidad de medida, existe un número positivo llamado la medida del área de la región.

Promedio. Es la media aritmética de un conjunto de valores.

Proporción. Es la igualdad de dos razones.

Proposición. Es un enunciado con un valor de verdad: verdadero o falso.

Proposición compuesta. Es la que está formada por dos o más proposiciones simples enlazadas por conectivos lógicos.

Proposición simple. Es un enunciado con un valor de verdad, que no tiene conectivos lógicos.

R

Razón. Es el cociente de dos cantidades.

Page 279: Libro de matematicas 9no grado

271

Rectas paralelas. Son dos o más rectas coplanares que no se interceptan.

Región poligonal. Es el conjunto de puntos del polígono y su interior.

Relación. Es un subconjunto de un producto cartesiano A x B formado por pares ordenados de acuerdo a un criterio de la relación.

Relación de equivalencia. Es la relación que cumple las propiedades reflexiva, simétrica y transitiva.

Relación de orden. Es la relación entre los elementos de un conjunto de acuerdo al criterio “x es menor que y”.

S

Segmento. Es un conjunto de puntos entre dos puntos diferentes inclusive.

Segmentos congruentes. Dos segmentos que tienen la misma medida.

Subconjunto. Es la relación entre dos conjuntos de acuerdo al criterio “estar en”.

T

Tablas de verdad. Es un instrumento que refleja el valor de verdad de una proposición.

V

Valor absoluto. El valor absoluto de un número a, es la distancia del número al cero. Se simboliza ∣a∣.

Variable cualitativa. Son variables que expresan distintas cualidades, características o modalidad.

Variable cuantitativa. Son variables que se expresan mediante cantidades numéricas.

Variable estadística. Es una característica medible en diferentes individuos.

Page 280: Libro de matematicas 9no grado

272

Bibliografía

─ Baldor Aurelio. Aritmética. México. Ed. Publicaciones Cultural S.A. de C.V., 1983.

─ Baldor, Dr. Aurelio. Algebra. Madrid, Ed. y distribuciones Codice S. A., 1963.

─ Bautista Ballén, Mauricio. Matemáticas 7. Bogotá. Ed. Santillana, 2007.

─ Beltrán Luis, Rodríguez Benjamín y Dimaté Mónica. Matemáticas 7: con tecnología aplicad, Colombia, Ed. Prentice Hall, 1999.

─ Beristain Eloísa y Campos Yolanda. Matemáticas 1 y 2. Bogotá, Colombia. Ed. Mc Graw-Hill Latinoamericana, S.A., 1974.

─ Gobierno de Nicaragua. Ley 225. Norma sobre el sistema internacional de unidades. Recomendaciones para el uso correcto del S.I. Nicaragua.

─ Jurgensen Ray, Donnelly, Alfred y Dolciani, Mary. Geometría Moderna, 1ra. ed. en español, México D. F., 1968.

─ Lipschutz Seymoour. Teoría de conjuntos y temas afines, teoría y problemas. México. Ed. Libros Mc Graw-Hill, 1969.

─ Londoño Nelson y Bedoya Hernández. Serie Matemática progresiva 6-7-8, 7ma. ed. Bogotá, Colombia, 1988.

─ Moise, E. y Downs, F. Geometría Moderna. Estados Unidos, Addison Wesley publishing company, 1966.

─ Neira Marina y otros. Matemática en construcción 7. 2da. ed. Colombia, Oxford University Press, 1996.

─ Rey Pastor y Babini José. Historia de la matemática, vol. 1 y 2. Barcelona. Ed. Gedisa S.A., 2000.

─ Rich Barnett. Geometría 2da. ed. México. Ed. Mc Graw Hill, 1991.

─ Saenz Luis, Gutierrez Luis y Sequeira Francisco. Matemática 3, educación secundaria SGS. Nicaragua. FARBEN grupo editorial NORMA, 1997.

─ Ministerio de Educación, compendio de los Documentos Curriculares con enfoque de competencias, Managua, Nicaragua, 2005.

─ Programa de Estudio Educación Secundaria, Matemática 7°, 8° y 9° Grado, MINED - Nicaragua.