Download - 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

Transcript
Page 1: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

1. INTRODUCCIÓNSalto de sección (Continua)

La propagación de plantas consiste e efectuar su multiplicación por medios tanto

sexuales como asexuales. La reproducción asexual, consiste en la propagación

empleando partes vegetativas de la planta original, es posible porque cada célula de

la planta contiene la información genética necesaria para generar una nueva planta,

esta característica se conoce como totipotencia celular (HARTMANN y KESTER,

1995).

Dentro de los métodos asexuales, se tiene la propagación de cultivos in vitro tales

como cultivo de óvulos, embriones, semillas, polen, esporas, cultivos de ápice, micro

injertos, células y tejidos.

La micropropagación, consiste en producir plantas a partir de porciones muy

pequeñas de ellas, de tejidos o células cultivadas asépticamente en un tubo de

ensayo o en otro recipiente, donde se puedan controlar estrictamente las

condiciones del ambiente y la nutrición (HARTMANN y KESTER, 1995). Estos

sistemas de propagación requieren de instalaciones como laboratorios y personal

adiestrado para la realización de las labores.

Esta técnica se ha convertido en una alternativa importante dentro de los métodos

convencionales de propagación en una amplia gama de especies (HARTMANN y

KESTER, 1995), y se compone de cuatro etapas secuenciales: establecimiento,

proliferación o multiplicación, enraizamiento y aclimatación (BOUTHERIN y BRON,

1994).

Una planta que se ha originado in vitro, difiere en muchos aspectos de las que se

forman in vivo (PIERIK, 1990), ya que sus condiciones tanto ambientales como del

Page 2: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

sustrato, la luz, nutrición, son muy diferentes. Además es importante señalar que el

crecimiento in vitro es heterótrofo e in vivo autótrofo.

El ambiente in vitro, con una alta humedad relativa, bajo o nulo intercambio

gaseoso, escasez de CO2 durante casi todo el período, producción de etileno y baja

densidad fotosintética, induce perturbaciones en las plantas desarrolladas bajo esa

condición. Después de transferir las plantas al ambiente ex vitro, las plantas tienen

que corregir todas esas anormalidades para aclimatizarse al nuevo ambiente, ya

sea en invernadero o campo (KADLECEK et al., 2001). Por otra parte, la anatomía

de la hoja es influenciada por la luz y la humedad, diferenciándose anatómicamente

de las originadas in vivo (BRAINERD et al., 1981).

Debido a esto, la aclimatación es un factor importante en la posterior supervivencia

de la planta, ya que es una etapa crítica dentro del proceso, en la que se produce la

mayor pérdida. En ella se debe comenzar reduciendo gradualmente la humedad

relativa, para permitir con esto además del cierre estomático, una mejor formación

de cutícula y disminuir la pérdida de agua. Por otra parte, para tener mejores

resultados en el establecimiento in vivo es necesario el desarrollo radicular in vitro

(PIERIK, 1990).

La disminución de la humedad relativa al interior del tubo de cultivo y con ello el

incremento de la ventilación, parece tener un mayor efecto en vid, reforzando el

funcionamiento estomático y con esto permitir un mejor control de la pérdida de

agua por parte de las hojas (GRIBAUDO, NOVELLO y RESTAGNO, 2001).

Existen varios informes que detallan las etapas in vitro de las vides, pero se ha dado

una escasa atención a la etapa de la aclimatación. Comparado con otras especies

leñosas, la sobrevivencia de las vides micropropagadas es relativamente baja

(THOMAS, 1998).

En cuanto al cerezo, diversos son los estudios realizados a nivel mundial en

búsqueda de nuevas variedades y portainjertos. La propagación in vitro, ha surgido

Page 3: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

como una alternativa importante dentro de la multiplicación de patrones. Es por ello

interesante el estudiar el comportamiento de esta especie, durante la etapa más

complicada de la micropropagación, la aclimatación, para generar antecedentes y

facilitar el proceso a futuro.

Es por ello, que en este estudio se propone, mediante la preaclimatación en cámara

de crecimiento, con el uso de sellos en los frascos de cultivo, permitir una mayor

ventilación y la disminución gradual de la humedad relativa, para así disminuir el

estrés hídrico sufrido por las plantas al momento del trasplante, mediante un mejor

funcionamiento estomático y aumentar con esto la sobrevivencia in vivo, permitir

una aclimatación más fácil y hacer más comercial el proceso.

Además, se realizará un estudio histológico de hoja en vid, para analizar la

evolución de los estomas en los estados secuenciales de la propagación in vitro,

para entender desde un punto de vista descriptivo su funcionamiento, y cómo

influyen en la tasa de sobrevivencia durante la aclimatización.

Objetivos:

1.- Evaluar distintos sistemas de sellado en la preaclimatación de plantas de vid y

cerezo Gisela 5 propagadas in vitro, que conduzcan a una adecuada etapa de

aclimatización.

2.- Evaluar la sobrevivencia de las plantas de vid y cerezo Gisela 5 propagadas in

vitro preaclimatadas, en la etapa de aclimatización.

3.- Analizar mediante el uso de fotografías de cortes histológicos, la condición en la

que se presentan los estomas en cada uno de los estados secuenciales de la

propagación in vitro de vid.

Page 4: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

2. REVISIÓN BIBLIOGRÁFICA. 2.1. Cultivo in vitro: El término cultivo in vitro se aplica a todo cultivo bajo cristal en medio aséptico, pero

incluye diversas técnicas cuyos métodos y fines son muy diferentes. La técnica

general consiste en tomar un fragmento de tejido vegetal, colocarlo en un medio

nutritivo y provocar (gracias a un equilibrio adecuado de los elementos del medio)

directamente o tras manipulación el desarrollo de una plántula. El conjunto de estas

operaciones se desarrolla en condiciones estériles y se seguirá por una

aclimatación en medio tradicional (BOUTHERIN y BRON, 1994).

El cultivo in vitro es gracias a una propiedad de las células vegetales llamada

totipotencia celular, que significa que: toda célula vegetal viva con núcleo, capaz,

cual fuere su “especialización” del momento, de reproducir fielmente la planta entera

de la cual proviene. Cada célula posee entonces la totalidad del patrimonio genético

de la planta (BOUTHERIN y BRON, 1994).

HARTMANN y KESTER (1995) señalan una clasificación general de los sistemas

de cultivo in vitro, utilizando sistemas asépticos y este es el siguiente: cultivo de

meristemas, microinjertos, ápices de tallos, cultivo de tejidos o células (callos,

protoplastos, etc), cultivo de anteras, polen, óvulos, embriones, semillas y esporas.

2.2. Micropropagación: El fin de la micropropagación es el de reproducir en gran cantidad plantas idénticas

al pie madre, y no teniendo la micropropagación influencia sobre la calidad sanitaria

Page 5: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

de la planta propagada, es indispensable poseer como punto de partida un material

sano (BOUTHERIN y BRON, 1994).

Dentro de las ventajas señaladas por MARGARA (1988), permite propagar un gran

número de especies difíciles de multiplicar, a menudo por los métodos clásicos

puede realizarse con un nivel de proliferación elevado en un estado precoz de

desarrollo, con frecuencia esta propagación in vitro se une a la lucha fitosanitaria, ya

que las plantas obtenidas, son usualmente libres de virus, bacterias, hongos

parásitos, y constituyen un material de calidad.

Por su parte, BOUTHERIN y BRON (1994), señalan otras ventajas como mejorar la

selección, ya que a partir de un individuo notable, se puede comercializar

rápidamente un clon interesante, garantía de homogeneidad, además limita o

suprime los pies madre y por consiguiente libera superficies de invernadero y

permite la programación de cultivos a lo largo de todo el año, o la producción en

períodos muy precisos, sin que el número de pies madre o su estado por reposo

vegetativo tengan influencia y por último, la formación de un “banco de genes” que

podrán conservar especies o cultivares que ofrezcan un interés agronómico,

hortícola, industrial, ecológico, etc.

THOMAS y SCHIEFELBEIN (2001) destacan la posibilidad de guardar stocks

durante años, sin la pérdida de potencial de multiplicación con una serie de

subcultivos y el retorno de plantas normales al campo con características de adulto.

En cuanto a las desventajas MARGARA (1988) indica que se puede obtener

“variantes” distintas a la planta madre por su morfología o fisiología, la necesidad de

usar determinados tejidos para una especie dada, ya que se debe acudir a los

tejidos aptos para sintetizarlos en forma natural. Por su parte BOUTHERIN y BRON

(1994), mencionan el costo como desventaja ya que en una planta in vitro es más

elevado que el de aquella multiplicada por métodos tradicionales. Sin embargo, este

inconveniente se compensa con frecuencia con una ganancia de productividad, el

riesgo de mutación porque la tasa de variabilidad es más elevada, por último, las

Page 6: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

dificultades de éxito, cierto número de vegetales se multiplican fácilmente in vitro,

otros permanecen rebeldes a esta técnica, en especial en las especies leñosas.

2.3. Propagación in vitro: 2.3.1. Establecimiento

La vid es propagada convencionalmente usando estacas de madera dormante (36 a

46 cm de largo) recolectadas durante el invierno. Estas son plantadas durante la

primavera en contenedores, para posteriormente ser trasplantadas a la viña. Este es

un proceso lento y limitado por estacionalidad para la propagación de nuevos

cultivares, y la introducción de nuevas especies exóticas. Por esto, la

micropropagación en vid, ha ofrecido un gran potencial para su multiplicación en

cuanto a rapidez y la posibilidad de guardar stock de cultivos durante años, sin la

pérdida del potencial de multiplicación (THOMAS y SCHIEFELBEIN, 2001).

LEWANDOSKI (1991) señala que las técnicas para la propagación de varias

especies y cultivares de Vitis incluyen organogénesis y la proliferación de brotes

axilares. Por su parte SAFFIE (2002), MESA (2001) y RAVINDRA y THOMAS

(1995), señalan el uso de segmentos nodales para micropropagación.

Este método de segmentos nodales ha producido un éxito apreciable en muchas

plantas diferentes, entre ellas Vitis rupestris (PIERIK, 1990).

Con respecto al cerezo, MUNA et al. (1999), DAL ZOTTO y DOCAMPO (1997),

MILLER et al. (1982) y SNIR (1982), y utilizaron ápices de yemas obteniendo muy

buenos resultados en el establecimiento y las fases sucesivas de la propagación in

vitro de cerezos. Por otro lado DRADI, VITO y STANDARDI (1996) usaron

segmentos nodales que se comportaron satisfactoriamente.

PIERIK (1990) señala que el cultivo de segmentos nodales, consiste en el

aislamiento de una yema, junto con una porción de tallo, para obtener un brote a

Page 7: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

partir de una yema. Este es el método más natural de propagación in vitro, ya que

también puede aplicarse in vivo. Cada una de las yemas que se encuentran en las

axilas de las hojas idénticas a las del ápice del tallo, pueden ser aisladas sobre un

medio nutritivo, intentándose así su desarrollo in vitro.

Para el caso de vid, el establecimiento in vitro de los segmentos nodales, se realiza

en un medio de sales de MURASHIGE y SKOOG (1962) con macronutrientes y

micronutrientes reducidos a tres cuartos, ajustado a pH 5,3 (MESA, 2001).

2.3.2. Proliferación

En cuanto a la proliferación en vid, esta se realiza en base a un medio de sales de

MURASHIGE y SKOOG (1962) con la sal NH4NO3, reducida a la mitad y el resto de

las sales reducidas a tres cuartos, adicionando Tiamina (0,4 mg/l), BAP (1,1 mg/l),

NaH2PO4 (170 mg/l), Myoinositol (100 mg/l), Sulfato de adenina (80 mg/l), Sacarosa

al 3%, y ajustado a pH 5,7 (MESA, 2001).

Con respecto a cerezo Gisela 5, la proliferación se realiza en base a un medio de

sales de MURASHIGE y SKOOG (1962), suplementado con 0,5 mg/l de AIB y 1,5

mg/l de BAP (CÁCERES, 2004; VARGAS, 2003).

2.3.3. Enraizamiento

El enraizamiento in vitro de vid se realiza en base a un medio de sales de

MURASHIGE y SKOOG (1962) con la sal NH4NO3, reducida a la mitad y el resto de

las sales reducidas a tres cuartos, adicionado con Tiamina (0,4%), AIA (0,2 mg/l),

NaH2PO4 (150 mg/l), Myoinositol (25 mg/l), sacarosa al 1%, y todo esto ajustado a

pH 5,7 (MESA, 2001).

Page 8: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

El enraizamiento en cerezo Gisela 5, también se realiza en base a sales de

MURASHIGE y SKOOG (1962) con una concentración mineral reducida a la mitad

suplementado con 1 mg/l de AIB (CÁCERES, 2004).

PIERIK (1990) indica que un desarrollo pobre del sistema radical hace que el

crecimiento in vivo se haga muy difícil, especialmente cuando hay una elevada

transpiración. Es de vital importancia que las plantas in vitro pierdan la menor

cantidad de agua posible, cuando pasan a condiciones in vivo.

El suministro de agua también podría estar limitado desde que estudios histológicos

han demostrado una anatomía anormal de la raíz en plantas crecidas in vitro (FILA

et al., 1998).

2.4. Aclimatización: Aclimatación y aclimatización son términos que describen el proceso de adaptación

de un organismo a un cambio ambiental. Aclimatación es el proceso regulado por la

naturaleza y aclimatización el regulado por el hombre (BRAINERD y FUCHIGAMI,

1981).

La aclimatización de plantas in vitro a las condiciones naturales, es un paso crítico

para muchas especies y requiere tiempo e instalaciones caras que restringen la

aplicación comercial de los procesos de micropropagación. Estas plantas muestran

un rápido marchitamiento cuando se transfieren a condiciones de invernadero, por lo

tanto debe mantenerse una humedad relativa alta en el nuevo ambiente, para no

dañar los mecanismos que mantienen el volumen de agua en la planta (FILA et

al.,1998).

Por su parte RAVINDRA y THOMAS (1995) señalan que la aclimatación o

endurecimiento de plantas de cultivos in vitro, es el paso más crítico en la

Page 9: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

micropropagación y que la supervivencia de vides micropropagadas es

relativamente baja comparada con otras especies leñosas.

Los frascos, tubos de ensayo y matraces necesitan ser cerrados para impedir su

deshidratación e infección, pero por otro lado, tiene que ser posible el intercambio

gaseoso con el exterior, para evitar una falta de oxígeno o el exceso de gases

producidos como el CO2 y el etileno (PIERIK, 1990). ZOBAYED, ARMSTRONG y

ARMSTRONG (2001) explican que la principal característica del ambiente gaseoso

in vitro, en un sistema convencional de cultivo de tejido es la alta humedad relativa,

gran fluctuación diurna de la concentración de CO2 y la acumulación de etileno y de

otras sustancias tóxicas, esto debido al restringido intercambio aéreo entre el tubo

de cultivo y el ambiente.

Tradicionalmente el cultivo de tejidos ha involucrado recipientes cerrados con

plantas creciendo heterotróficamente, en un medio con agar que contiene una

fuente de carbono. Para mejorar la aclimatación de las plantas in vitro debe

proporcionárseles un ambiente que se parezca al in vivo, especialmente durante la

etapa III. Para estimular fotoautotrofía, se reduce la concentración de hidratos de

carbono en el medio, se incrementa la intensidad de luz y se eleva la concentración

de CO2. Además, es importante normalizar el ambiente gaseoso en los vasos de

cultivo cerrados, ya que éstos difieren muy notablemente del ambiente, y puede

provocar cambios significativos en el crecimiento y en la fisiología de la planta. Los

valores de CO2 son del orden de 0 – 12%, es decir menores a 10 ppm y los de la

acumulación de etileno de 3 µl/l, además de una humedad relativa cercana al 100%

(MURPHY et al.,1998), en cambio los valores existentes en la atmósfera de CO2,

bordean los 350 ppm (PUC, 2003).

Las concentraciones de etileno en los tubos de cultivo pueden afectar el crecimiento

in vitro de las plantas (SANTAMARÍA et al., 2000).

Page 10: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

Las plantas cultivadas in vitro, tienen generalmente la cutícula escasamente

desarrollada, debido a la alta humedad relativa (90% - 100%). Como consecuencia,

cuando se transfiere la planta al suelo, se produce una transpiración cuticular extra,

ya que la humedad del aire en condiciones in vivo es más baja (PIERIK, 1990).

Por otra parte, PIERIK (1990) señala que las hojas de una planta producida in vitro,

son frecuentemente finas, blandas y fotosintéticamente poco activas, además tienen

las células en empalizada que son las que deben utilizar la luz, más pequeñas y en

menor cantidad. Indica además que los estomas pueden no ser suficientemente

operativos, y permanecer abiertos al trasplantarse al suelo, originando un importante

estrés hídrico en las primeras horas de aclimatación.

Una complicación extensa a la producción comercial en vid, ha sido la pobre

aclimatación y el establecimiento de plantitas en el invernadero (SWART y

LINDSTROM, 1986).

THOMAS (1998) demuestra que la aclimatación de las plantas in vitro es a menudo

difícil porque ellas poseen tallos y hojas suculentas, debido a la alta humedad dentro

del vaso de cultivo, y el agua libre en el medio.

FILA et al. (1998) señalan que la aclimatación puede ser mejorada modificando el

microambiente durante el desarrollo in vitro, por ejemplo reduciendo la humedad

relativa que causa un endurecimiento de la planta, mejorando los resultados durante

el trasplante. También con el aumento de la tasa de CO2 en los tubos de cultivo o

aumentando las intensidades de luz, para producir el establecimiento autotrófico in

vitro.

GRIBAUDO, NOVELLO y RESTAGNO (2001) indican que el costo de la fase de

aclimatación es generalmente considerable. Es por ello que los procedimientos que

lleven a un endurecimiento de la planta en la última etapa de la micropropagación,

Page 11: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

con menores costos de labor y equipamiento facilitan este manejo y para esto se

recomienda el uso de tubos con baja humedad relativa.

2.4.1. Anatomía de las plantas cultivadas in vitro y su influencia sobre la

aclimatización

El ambiente in vitro es conocido por inducir modificaciones morfológicas, anatómicas

y fisiológicas en las plantas micropropagadas. Esas plantas son generalmente

susceptibles a la deshidratación rápida cuando se exponen a baja humedad relativa

(GRIBAUDO, NOVELLO y RESTAGNO, 2001).

Por su parte RITCHIE, SHORT y DAVEY (1991) indican que las plantas

micropropagadas son cultivadas bajo altos niveles de humedad relativa, causando

anormalidades morfológicas, particularmente en el estoma y la cutícula, produciendo

un alto porcentaje de mortalidad en la transferencia al invernadero.

BRAINERD y FUCHIGAMI (1981) señalan que las hojas de plantas

micropropagadas pueden tener menos cera epicuticular, células en empalizada más

pequeñas, y más espacios aéreos en el mesófilo.

2.4.1.1. Factores morfológicos que influyen en la aclimatización

BRAINERD et al. (1981) demuestran que la anatomía de la hoja es influenciada por

la luz y la humedad. Las hojas desarrolladas a altas intensidades de luz tienen

células en empalizada en mayor cantidad y más grandes que aquellas en

condiciones de sombra, situación que se asemeja al de las plantas in vitro. Las

hojas desarrolladas en baja humedad relativa tienen espacios intercelulares

pequeños. Las plantas crecidas en alta humedad relativa tienen un pobre desarrollo

de cera epicuticular, y altas tasas de transpiración en aire seco.

Page 12: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

Plantas creciendo bajo condiciones heterotróficas in vitro, tienen bajas tasas de

fotosíntesis. Esto es debido a las bajas intensidades de luz, bajas concentraciones

de CO2 (INFANTE, MAGNANINI y RIGHETTI, 1989) y la inhibición de la fotosíntesis

por la alta concentración de azúcar en el medio. No obstante, después de

transferirlas a las condiciones ex vitro, la mayoría de las plantas micropropagadas

desarrollan un aparato fotosintético funcional, aunque el aumento en la intensidad

de la luz no es linealmente traducido en un incremento de la fotosíntesis (KOZAI,

1991).

En las plántulas in vitro, la respuesta a la fotosíntesis en condiciones de luz, es

similar a la de las plantas de sombra, caracterizadas por tasas fotosintéticas y de

compensación de luz bajas y puntos de saturación también bajos. La anatomía de

las hojas es de acuerdo con las características fisiológicas mencionadas, ya que el

efecto de la luz en el desarrollo del mesófilo, principalmente en el parénquima en

empalizada, es ciertamente el factor determinante anatómicamente. Sin embargo,

las deficiencias en las estructuras de los cloroplastos (desarrollo de grana), el nivel

bioquímico y la baja en la actividad de la Rubisco, también contribuyen a limitar la

actividad fotosintética (AMANCIO, REBORDAO y CHAVES, 1999).

AMANCIO, REBORDAO y CHAVES (1999) además confirman que cuando las

plantas son transferidas a condiciones in vivo, a radiaciones más altas, puede

ocurrir estrés de luz, incluyendo la fotoinhibición, la fotooxidación de la clorofila, lo

último siendo revelado por clorosis y manchas secas que aparecen en la hoja. No

obstante, algunas especies toleran mayores radiaciones que aquellas in vitro, sin

mayor estrés. El control y la optimización de la luz, es entonces esencial para la

aclimatización satisfactoria, aumentar la tasa de sobrevivencia y el desarrollo de

nuevas estructuras. Por otra parte, existe la evidencia que un alto nivel de azúcar en

las células puede inhibir la síntesis de clorofila.

Los factores limitantes para la fotosíntesis de plantas cultivadas in vitro, son la baja

concentración de CO2 en la atmósfera del tubo de cultivo y la baja intensidad de luz.

Page 13: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

El aumento simultáneo de estos factores generalmente hace posible mejorar la

actividad de la fotosíntesis in vitro. Sin embargo, las investigaciones de este tipo

para vides, no son muy abundantes. La tasa de fotosíntesis aumenta con la

intensidad de la luz, pero hay variantes entre cultivares, es así como bajo varias

intensidades de luz la fotosíntesis es baja en Riesling italiana, comparada con

Dimiat. (SLAVTCHEVA y DIMITROVA, 2000).

La captación de CO2 neto por parte de las plantas in vitro, es pequeña debido a la

baja tasa de éste dentro del tubo de crecimiento. Es más, los azúcares que se

suplementan al medio de crecimiento pueden causar una inhibición extensa de la

fotosíntesis. Al aumentar la tasa de CO2 y/o las intensidades de iluminación en el

tubo de cultivo, se produce un establecimiento autotrófico en las plantas in vitro. Sin

embargo estas técnicas son de poco uso comercial debido a su alto costo (FILA et

al., 1998).

VAN HUYLENBROECK y DEBERGH (1996), indican que lo importante en las

plantas in vitro, son las reservas de hidratos de carbono para superar el estrés del

trasplante. Con un balance positivo del carbono es posible producir nuevas hojas

funcionales, ya que el trasplante causa un cambio en la asignación de materia seca

entre el tallo y las hojas en vid, se forman más hojas y menos tallo, esto también es

corroborado en manzano por DIAZ-PEREZ, SHACKEL y SUTTER (1995).

Investigaciones recientes han mostrado que el estrés del trasplante es debido

primeramente al estrés hídrico, el cual puede ser combatido exitosamente por

algunas especies de plantas con alta humedad después del trasplante. La pobre

formación de cera epicuticular y cuticular, y el reducido control estomático

comparado con las plantas control aclimatizadas en invernadero, contribuye a la

desecación de las plantas transferidas (DONNELLY y VIDAVER, 1984).

Page 14: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

La pérdida de agua en plantas micropropagadas durante la aclimatación, se ha

atribuído principalmente al mal funcionamiento de los estomas y a una reducida

deposición de cera epicuticular (GRIBAUDO, NOVELLO y RESTAGNO, 2001).

2.4.1.2. Cutícula

BRAINERD y FUCHIGAMI (1981) señalan que el estrés hídrico de las plantas

cuando son transferidas a baja humedad relativa, ha sido atribuido al pobre

desarrollo de la cera cuticular y epicuticular.

SUTTER y LANGHANS (1979), determinaron que la estructura de la cera

epicuticular, aumenta en hojas de plantas micropropagadas de clavel durante 2,5

semanas en el invernadero. GROUT y ASTON (1977) observaron que una

considerable y evidente capa de cera epicuticular, en ambas superficies de hojas

de Brassica oleracea, 10 días después de transferirlas desde un cultivo aséptico a

baja HR. Estos desarrollos de cera son parte del proceso de aclimatización. El

desarrollo de cera ocurre a los 10 días o más después de transferirlos, pero no

explica la diferencia en el contenido relativo de agua o el porcentaje de agua perdida

entre un cultivo de manzano cultivado asépticamente y aquellos después de cuatro

o cinco días de exponerlos a 30 a 40% de humedad relativa.

La deposición de la cera epicuticular, es un factor importante en el retardo de la

deshidratación de la hoja, ésta es reforzada al disminuir la humedad relativa

(RITCHIE, SHORT y DAVEY, 1991).

GRIBAUDO, NOVELLO y RESTAGNO (2001) observaron que la cantidad de cera

de la hoja en plantas in vitro era baja, anormalmente estructurada y químicamente

diferente de la cera de las plantas crecidas en invernadero. Además, evaluaron la

presencia de cera epicuticular de la superficie adaxial de la hoja, para determinar si

la pérdida de agua era influenciada por la cantidad de cera o por un problema

Page 15: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

estomático, concluyendo que la mayoría del agua se perdió a través de la superficie

adaxial debido a un cierre estomático imperfecto.

La deshidratación de las hojas a través de la cutícula de la superficie adaxial es

relativamente baja. Bajo sus condiciones experimentales una reducción de la HR

parece tener mayor efecto en vid, reforzando el funcionamiento estomático y esto

permite un mejor control de la pérdida de agua de las hojas (SUTTER, 1984).

2.4.1.3. Estomas

BRAINERD y FUCHIGAMI (1981) determinaron que la proporción de pérdida de

agua de plantas micropropagadas de manzano, se relacionó inversamente al

porcentaje de cierre estomático.

BRAINERD et al. (1981) observaron que el agua perdida de hojas de plantas

provenientes de cultivos asépticos de ciruelo cv. Pixy ocurrió desde la superficie

abaxial, donde se encuentran localizados los estomas.

GRIBAUDO, NOVELLO y RESTAGNO (2001) indican que las vides crecidas en el

campo, tienen hojas hipoestomáticas, es decir tienen los estomas confinados

principalmente en la superficie abaxial.

BRAINERD y FUCHIGAMI (1981) observaron que un corto tiempo de aclimatización

con humedad, involucra un cambio en el funcionamiento estomático, y ocurre en

menos de cinco días después de exponerlo a esta baja humedad relativa. Otro

tiempo más largo de aclimatización involucra desarrollo de cera, y reorientación de

los cloroplastos, y esto ocurre después de 10 a 14 días.

Page 16: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

BRAINERD y FUCHIGAMI (1981) y SUTTER y LANGHANS (1979) y han sugerido,

sin embargo, que la lenta respuesta estomática puede contribuir también al estrés

hídrico en plantas micropropagadas removidas desde el ambiente de cultivo.

ROMANO, NORONHA y MARTINS-LOUCAO (1992) demuestran que los estomas

de las plántulas in vitro están levantados, alrededor de las células de guarda

comparados con los normales que son elípticos, y con las células de guarda

hundidas.

RITCHIE, SHORT y DAVEY (1991) señalan que el mal funcionamiento de los

estomas, es debido a la anormal disposición de las células de guarda.

La incapacidad de los estomas de cerrarse completamente, la mínima reducción de

las aperturas de las células de guarda en las hojas de crisantemo, y remolacha

cultivadas bajo humedad relativa reducida es consistente con los resultados

publicados por SHORT y ROBERTS (1987) y WARDLE, DOBBS y SHORT (1983).

2.4.1.4. Raíces

El equilibrio del agua en tejidos de plantas micropropagadas no solo depende de

regular la transpiración, sino de un suministro adecuado de agua a las raíces. Es por

esto que las plantas cultivadas en agar tienen pobres conexiones raíz-tallo, la

estructura de la raíz alterada, la absorción y transporte del agua es negativo. La

captación de agua por parte de las raíces, junto con la pérdida de agua por los

ápices, es de importancia primaria para el mantenimiento del equilibrio del agua

durante la aclimatación de las plantas crecidas in vitro. Además indican que el

suministro de agua podría estar limitado, desde que estudios histológicos han

mostrado una anatomía de raíz anormal en las plantas in vitro (FILA et al., 1998).

Page 17: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

VÉGVARI (2001) mostró que las raíces de plantas propagadas in vitro,

generalmente pierden sus pelos radicales durante la aclimatización, pero estas

raíces son todavía importantes porque las nuevas raíces desarrolladas son

totalmente funcionales a partir de ellas.

2.5. Técnicas de preaclimatación:

Las plantas micropropagadas de vid, son generalmente susceptibles a la rápida

deshidratación cuando se exponen a una humedad relativa reducida y requieren un

costoso procedimiento de aclimatación.

Con la ventilación se reduce la humedad relativa dentro del vaso, pero también la

acumulación de gases como CO2 y etileno.

MURPHY et al. (1998) demostraron que con la inclusión de aperturas en los tubos

de cultivo, redujeron la frecuencia estomática y la apertura del estoma en

Delphinium. Se estableció un beneficio positivo de la ventilación en el crecimiento

de esta especie, pero es claramente importante determinar si el factor crítico es el

aumento en el movimiento del agua a través de la planta, o si es la reducción en la

concentración de algún componente gaseoso por debajo de una concentración de

estrés.

El usar aberturas en los tubos durante la fase III, en el enraizamiento, reduce la

densidad y apertura de los estomas, por consiguiente, una probable explicación a la

mejor sobrevivencia en la aclimatización por el mejoramiento en la estructura y

función estomática (SANTAMARÍA et al., 2000).

WARDLE, DOBBS y SHORT (1983) señalan que la reducción en el nivel de

humedad de la atmósfera dentro del tubo de cultivo, puede obviar la necesidad de

un período de aclimatación. Algunas especies de plantas crecidas por métodos in

Page 18: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

vitro, pueden ser aclimatadas con niveles reducidos de humedad relativa dentro de

cinco días, esto sería beneficioso en la producción a gran escala de plantas, para

eliminar el tiempo de consumo y la labor intensiva de la fase de aclimatación.

ZIV y HAVELY (1993) y DEBERGH y MAENE (1981) señalan que reducir la

humedad relativa de los frascos de cultivo es un factor clave en la prevención de la

vitrificación, pero también disminuye el crecimiento de las plantas.

THOMAS (1998) utilizó sachet plásticos en la aclimatación, como barrera para el

aire reduciendo así el efecto de la deshidratación, así como la pérdida de agua en la

planta y en el medio. Concluyó que tres semanas con el sachet cerrado y una con el

sachet abierto, era suficiente para completar la aclimatación de plantas de vid in

vitro con una humedad de 68-75%.

FIGUEROA (2003) con cubiertas de polipropileno, consiguió disminuir la humedad

relativa al interior de los tubos de cultivo, teniendo en consideración que, según la

literatura, el papel aluminio mantiene una humedad relativa al interior del tubo de

cultivo cercana al 100%. Al preaclimatar, utilizando cubiertas de polipropileno, se

logró una mejor aclimatación de las plantas in vitro de violeta africana que al utilizar

cubiertas de papel aluminio, ya que se disminuyó la mortalidad obteniendo plantas

terminadas de gran desarrollo.

2.6. Morfología estomática:

La transpiración es la pérdida de agua en la planta en forma de vapor. Aunque una

pequeña cantidad del vapor de agua se puede perder a través de aberturas

pequeñas denominadas lenticelas, en la corteza del tallo y ramas jóvenes, la mayor

proporción (más del 90%) se escapa por las hojas (SÁNCHEZ-DIAZ y

AGUIRREOLEA, 2000).

Page 19: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

La atmósfera se encuentra tan alejada de la saturación de agua, que la planta corre

peligro de deshidratación, es por esto que la cutícula sirve como barrera efectiva a

la pérdida de agua (SÁNCHEZ-DIAZ y AGUIRREOLEA, 2000).

Los mismos autores señalan que la cutícula es un depósito céreo dispuesto en

varias capas, que recubren la superficie externa de una hoja típica. Debido a que

estas ceras cuticulares son muy hidrófobas, ofrecen una resistencia muy elevada a

la difusión, tanto de agua líquida como de vapor de agua procedente de las células

subyacentes.

La integridad de la epidermis y de la cutícula que la recubre, es interrumpida por los

estomas.

SÁNCHEZ-DIAZ y AGUIRREOLEA (2000) señalan que los estomas proporcionan a

las plantas un mecanismo fundamental para adaptarse a un ambiente

continuamente cambiante, permitiendo el intercambio físico activo entre las partes

aéreas de la planta y la atmósfera. El papel fundamental de los estomas es la

regulación de la pérdida de agua (transpiración) y la absorción de CO2 (asimilación

fotosintética del carbono). Además explican que los factores más importantes que

afectan la transpiración son: radiación, déficit de presión de vapor del aire,

temperatura, velocidad del viento y suministro de agua, y entre los factores propios

de la planta figuran: área foliar, estructura y exposición foliar, resistencia estomática

y capacidad de absorción del sistema radical.

En cuanto a morfología estomática, WARDLE, DOBBS y SHORT (1983) realizaron

un estudio en crisantemo (Chrysanthemun X moriflorum Ramat.) y coliflor (Brassica

oleracea L.) con remoción de epidermis de la superficie abaxial de las hojas

manifestando que las plantas in vitro tienen los estomas abiertos, debido a la alta

humedad relativa que presenta la condición in vitro.

Page 20: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

SANTAMARÍA et al. (2000), indican que normalmente los estomas cierran como

respuesta a altas concentraciones de CO2, pero esto no ocurre in vitro, donde en

tubos sellados, la densidad estomática y la apertura de los estomas son mayores

que en las plantas que crecen bajo condiciones in vivo.

ZOBAYED, ARMSTRONG y ARMSTRONG (2001) observaron que la densidad

estomática en coliflor, era significativamente alta en plantas cultivadas en tubos

herméticos, disminuyendo al aumentar la ventilación en los tubos.

Otros autores como WETZEN y SOMMER (1982) concuerdan con esto, y se

demostró en Liquidambar que la densidad estomática en hojas micropropagadas,

era significativamente alta con respecto a las de hojas de plantas cultivadas en

campo.

SCIUTTI y MORINI (1993), indicaron que la densidad estomática aumentó

notablemente en hojas de plantas de ciruelo crecidas bajo la condición in vitro, por

el aumento de la humedad relativa en la atmósfera de cultivo.

SANTAMARÍA et al. (2000), explican que la mayor sobrevivencia de las plantas de

Delphinium, en tubos ventilados, es debido a que reduce la densidad y la apertura

de los estomas, mejorando la función estomática.

Page 21: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

3. MATERIALES Y MÉTODOS

Los ensayos se realizaron entre agosto del 2003 y agosto del 2004, en el

Laboratorio de Propagación “Profesor Gregorio Rosenberg” de la Facultad de

Agronomía de la Pontificia Universidad Católica de Valparaíso, ubicada en la calle

San Francisco s/n, La Palma, Provincia de Quillota, V región.

3.1. Obtención y cuidado del material:

El material utilizado correspondió a brotes de vid (Vitis vinifera L.), de los que se

extrajo segmentos nodales de la región apical y media obtenidas en febrero del

2004, desarrolladas al aire libre en la Estación Experimental ubicada en La Palma,

Quillota.

Los diámetros de estas secciones nodales fueron de 5 mm para la región apical y 8

mm para la región media (MESA, 2001).

La desinfección de este material, se realizó con Benlate más Captan en una

concentración de 1,8 g/l de cada uno, los cuales se sumergieron en esta solución

durante cinco minutos.

Posteriormente, las plantas se desinfectaron con hipoclorito de sodio al 1,5% más

una solución de ácido ascórbico 500 mg/l y ácido cítrico 500 mg/l, más Tween 20

por 10 minutos en un matraz Erlenmeyer, y se trasladaron a cámara de flujo laminar

donde se les sometió a tres enjuagues con agua bidestilada con antioxidante.

En cuanto al cerezo Gisela 5, las plantas se obtuvieron de un ensayo anterior

(CÁCERES, 2004), las cuales se encontraban desde diciembre del 2003 en un

medio de proliferación.

Page 22: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

Los medios de cultivo se prepararon en base a soluciones madre stock, con agua

bidestilada para las diluciones. La formulación mineral está en base a medio de

sales de MURASHIGE y SKOOG (1962) con macronutrientes y micronutrientes

reducidos a tres cuartos.

El pH se ajustó a 5,3 con alícuotas de ácido clorhídrico 0,1 N o hidróxido de Potasio

0,1 N, para bajar o elevar respectivamente el pH.

En cuanto a vid, el medio de proliferación se preparó en base al medio de sales de

MURASHIGE y SKOOG (1962) con la sal NH4NO3, reducida a la mitad y el resto de

las sales reducidas a tres cuartos, ajustado a pH 5,7.

Respecto a cerezo Gisela 5, el medio se preparó en base a un medio de sales de

MURASHIGE y SKOOG (1962), suplementado con 0,5 mg/l de AIB y 1,5 mg/l de

BAP (CÁCERES, 2004).

El medio de enraizamiento en vid se preparó en base al medio de sales de

MURASHIGE y SKOOG (1962) con la sal NH4NO3, reducida a la mitad y el resto de

las sales reducidas a tres cuartos, ajustado a pH 5,7.

Respecto al cerezo Gisela 5, el medio se preparó en base a sales de MURASHIGE

y SKOOG (1962) con una concentración mineral reducida a la mitad suplementado

con 1 mg/l de AIB (CÁCERES, 2004).

3.2. Establecimiento de explantes:

Para la etapa de establecimiento y proliferación de explantes se utilizó tubos de

vidrio de 37 ml, con 10 ml de medio por unidad. El sellado correspondió a un

cuadrado de papel aluminio de 25 cm2, y sobre éste vitafilm. Posteriormente los

tubos fueron esterilizados en un autoclave a 121 ºC por 15 minutos.

Page 23: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

Después en cámara de flujo laminar, se procedió a sembrar en cada tubo un

segmento nodal. Los diámetros de estas secciones nodales fueron de 5 mm para la

región apical y 8 mm para la región media, y en cámara de flujo se redujeron a

microestacas de 10 a 15 mm de longitud con un nudo cada una (MESA, 2001).

Después se llevó a cámara de crecimiento con temperatura y luminosidad

controlada.

3.3. Enraizamiento de explantes:

Para el enraizamiento, las microestacas de vid fueron repicadas a frascos de 150

ml, con 40 ml de medio por unidad. Con respecto a cerezo Gisela 5, el repique fue a

frascos de similar volumen (FIGURA 1).

Posterior al enraizamiento, las plantas se preaclimataron. Se esperó un

enraizamiento de 25 días para vid, y de 30 días para cerezo. En cuanto a la

preaclimatación, para el caso de vid, las plantas se mantuvieron sólo cinco días bajo

esa condición debido al severo estrés hídrico que éstas sufrieron. En cuanto a

cerezo, las plantas se mantuvieron 10 días, debido a que comenzaron a presentar

en algunos casos, deshidratación en algunas hojas apicales.

Page 24: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

FIGURA 1. Planta micropropagada de cerezo Gisela 5, en la etapa de enraizamiento.

Page 25: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

3.4. Ensayo 1: Reducción de la humedad relativa con el uso de sellos de polipropileno y papel filtro en la etapa de preaclimatación.

En este ensayo se evaluaron el uso de tres sellos para el cierre de los frascos de

cultivo, para reducir la humedad relativa al interior de éstos.

En el caso de vid, se realizaron tres tratamientos, con distintos sistemas de sellado,

con 20 repeticiones cada uno, estos sellos presentaban diferentes texturas y

porosidades para aumentar el grado de ventilación en el interior de los frascos, y

con ello la disminución de la humedad relativa. Los tratamientos fueron los

siguientes:

T0: Control con papel de aluminio

T1: Sello de polipropileno en tres capas

T2: Sello de papel filtro Whatman 1 o MFS Nº2

Estas cubiertas de polipropileno, se obtuvieron de las mascarillas empleadas en los

pabellones quirúrgicos, y se componen de tres telas de polipropileno de distintos

colores y porosidades, las cuales se dimensionaron en cuadrados de 7 cm2 y se

pesaron en una balanza electrónica marca Precisa, para poder determinar así,

mediante el peso una equivalencia en porosidad (FIGURA 2). La tela superior que

es de color verde pesó 90 mg, la tela intermedia, de color blanco 100 mg, y por

último, la inferior, también de color blanco 130 mg.

En cuanto al papel filtro, este correspondió al denominado Whatman 1 con su

correspondiente equivalencia en MFS Nº2, con un gramaje de 125 g/m2, y una

velocidad de filtración de 80 seg.

La ventaja que presentaron estos sellos, es la posibilidad de ser esterilizados. La

esterilización se realizó en una estufa de calor seco a 105 ºC, por un período de 48

hr.

Page 26: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

FIGURA 2. Planta micropropagada de vid, en la etapa de enraizamiento con sello de

polipropileno.

Page 27: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

En cuanto al cerezo Gisela 5, también se realizaron tres tratamientos con 30

repeticiones cada una, con los mismos sellos anteriormente descritos.

Las plantas de ambos ensayos, tras pasar 25 y 30 días respectivamente en un

medio de enraizamiento, se procedió en cámara de flujo laminar al cambio de sello,

para el caso de las plantas en tratamiento control, se les renovó el sello con papel

aluminio, para con esto provocar un mínimo intercambio gaseoso durante esta labor.

En cuanto al tratamiento 1 y 2, se retiró el sello de aluminio y se procedió a

cambiarlo por el sello correspondiente. Luego, los frascos fueron sellados por el

borde con vitafilm, con el fin de afirmar los sellos y teniendo la precaución de no de

cubrir la superficie (FIGURA 3).

Posteriormente los frascos se almacenaron en cámara de crecimiento, con

temperatura y luminosidad controlada por un período inicial de 20 días, para

posteriormente ser aclimatadas en sustrato.

Durante los días de enraizamiento, preaclimatación y finalmente en la aclimatación,

se midieron los siguientes parámetros:

Altura de la planta, diámetro de la planta, número de hojas con una lámina superior

a 8 mm, número total de hojas (n), color de hojas, altura del medio de cultivo (mm)

para determinar su agotamiento, vitrificación, y porcentaje de enraizamiento, se

consideró raíz aquella que presentara como mínimo 3 mm de largo.

Para la evaluación del color del explante en vid, se utilizó la tabla Munsell

(MUNSELL, 1998), asignando un número a cada color de explante:

1: 7,5 GY 4/4 (color verde oscuro)

2: 7,5 GY 5/8 (color verde característico de la especie)

3: 5 GY 7/10 (color verde-amarillo)

4: 5 Y 8/6 (color amarillo-café)

Page 28: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

FIGURA 3. Plantas micropropagadas de cerezo Gisela 5, con sus distintos sellos, en

la cámara de crecimiento.

Page 29: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

Para la evaluación del color del explante en cerezo, también se utilizó la tabla

Munsell (MUNSELL, 1998), asignando un número a cada color de explante:

1: 5 GY 4/8 verde oscuro

2: 5 GY 5/6 verde de la especie

3: 5 GY 6/8 verde claro

4: 5 GY 7/8 verde amarillo

Para evaluar el grado de vitrificación, fue utilizada una escala, asignando una

calificación a cada estado del explante:

1: Explante sin vitrificación

2: Explante con 50% de vitrificación

3: Vitrificación total del explante

El diseño fue conducido con un Diseño completamente al azar (DCA).

En las variables cuantitativas, altura de la planta, diámetro de la planta, número de

hojas con una lámina superior a 8 mm, número total de hojas, altura del medio de

cultivo, y porcentaje de enraizamiento, se realizó un análisis de varianza, para

determinar el efecto de los tratamientos, en caso de existir efecto de éstos, se aplicó

un test de separación de medias de Tukey, con un 95% de confianza.

En cuanto a la variable cualitativa vitrificación, esta se contrastó con un Test de

Tukey, debido a que la escala asignada a cada estado del explante correspondió a

una graduación, en donde cada estado es mejor que el anterior.

En cuanto a la variable cualitativa color, como no cumplió con las características

anteriormente citadas, se contrastó con el Test no paramétrico de Kruskal-Wallis.

Page 30: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

3.5. Aclimatización: Al transcurrir los días de preaclimatación, las plantas fueron retiradas de la

condición in vitro, para ser trasladadas al sustrato, en invernadero.

Las plantas se retiraron de la condición in vitro, y sus raíces se lavaron

cuidadosamente, para retirar restos adheridos de agar, y evitar con esto la

proliferación de patógenos en el sustrato. Posteriormente se sumergieron en una

mezcla de Benlate más Captan, con una concentración de 1,2 g/l respectivamente

por tres minutos.

Para el trasplante se utilizó como contenedores, vasos de plumavit de 230 ml, los

cuales fueron lavados y asperjados con una solución de hipoclorito de sodio a 1%.

En la base de estos contenedores se realizó cuatro perforaciones, para con ello

favorecer el drenaje. Posteriormente, se procedió a llenar los contenedores a dos

tercios de su capacidad con una mezcla de sustrato, previamente esterilizado en

autoclave durante 1 hora con 1,1 bar de presión y 121 ºC. El sustrato correspondió a

40% de tierra de hoja, 14% de tierra y 46% de arena.

Posteriormente, se regó los contenedores y se trasplantó con mucho cuidado la

planta proveniente de la condición in vitro, cuidando de no destruir raíces en caso de

que éstas estuvieran presentes.

A continuación, se cubrieron los contenedores con bolsas de polietileno

transparente de 10 * 15 cm, para mantener una alta humedad relativa, en las cuales

cada cinco días, se realizó un corte en uno de los extremos de la bolsa, para así a

los 20 días retirar completamente la bolsa. Transcurrido este tiempo se realizó la

última medición de las plantas.

Page 31: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

En esta medición, se evaluó el porcentaje de sobrevivencia, la altura de las plantas

(mm), el diámetro de las plantas (mm), el número de hojas con una lámina superior

a 8 mm, el número total de hojas y el color (FIGURA 4).

3.6. Seguimiento de estomas en las etapas secuenciales in vitro: De cada etapa secuencial in vitro, establecimiento, proliferación, enraizamiento,

preaclimatación (con sello de polipropileno y papel filtro) e in vivo, se realizó un

estudio histológico para analizar la evolución estomática.

Se tomó diversas hojas, y se procedió a fijarlas en FAA que consistió en solución de

5 ml de formalina, 5 ml de ácido acético glacial, y 90 ml de alcohol etílico al 70%.

En cuanto a las hojas tomadas en la etapa de preaclimatación, en estas se esperó

tres días, para proceder a fijarlas. Se esperó este tiempo, ya que en condiciones

experimentales, las plantas a los cinco días de preaclimatación, presentaron una

severa deshidratación, y este tipo de muestras deshidratadas completamente no

servían.

Estas muestras fueron analizadas en el laboratorio de Histología, perteneciente a la

Pontificia Universidad Católica de Valparaíso, donde se siguió el siguiente

procedimiento:

1. Fijación en FAA durante 48 hr.

2. Deshidratación en una serie de alcohol etílico en solución acuosa a distintas

concentraciones crecientes, porque la idea es que estos disolventes

intermediaros se mezclen con el fijador pero que no reaccionen con él.

3. Inclusión en parafina sólida en estufa a 56 ºC.

Page 32: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

FIGURA 4: Plantas de cerezo Gisela 5, en la etapa de aclimatización.

Page 33: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

4. Preparación del bloque de parafina.

5. Corte del bloque en micrótomo de 10 µ.

6. Montaje en un portaobjeto.

7. Tinción con Safranina y verde luz.

8. Observación al microscopio.

Page 34: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

4. PRESENTACIÓN Y DISCUSIÓN DE RESULTADOS 4.1. Ensayo 1: Reducción de la humedad relativa, con el uso de sellos de polipropileno y papel filtro en vid y cerezo en la etapa de preaclimatación.

En el análisis de varianza efectuado a los cinco días de enraizamiento in vitro en

vid, con un error del 5%, se determinó que no existió efecto de las cubiertas sobre

las variables medidas, esto puede haberse debido al corto tiempo transcurrido entre

el cambio de sello y la medición. En esta especie, no pudo realizarse mediciones

posteriores, debido a la severa deshidratación que sufrieron las plantas con la

ventilación provocada por los cambios de sellos, y debió cubrirse nuevamente los

frascos para evitar la muerte de las plantas.

El análisis de varianza (P=0,05), permitió determinar que no existió efecto de los

cambios de sellos sobre la altura de las plántulas de vid (CUADRO 1).

Esto concuerda con CASSELS y ROCHE (1994) y JACKSON et al. (1991), ya que

bajo condiciones de ventilación en los tubos de cultivo, no obtuvieron un aumento en

el crecimiento en S. tuberosum, Rosa, Dianthus sp, Gerbera y Ficus. Por su parte

WARDLE, DOBBS y SHORT (1983) señalan que las plantas de Brassica oleracea,

cultivadas en tubos ventilados, mostraron un reducido crecimiento. Además, SHORT

y ROBERTS (1987) indican que al reducir la humedad relativa en tubos ventilados

en plantas micropropagadas de crisantemo, se redujo notoriamente el crecimiento

de las plantas.

Esto no concuerda con lo señalado por COURNAC et al. (1991) y BLAZCOVÁ et al.

(1989), y que demostraron el aumento del crecimiento de las plantas, como

resultado de la mejora de la ventilación dentro de los vasos de cultivo en

Chenopodium rubrum y Solanum tuberosum.

Page 35: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

CUADRO 1. Efecto de las cubiertas, sobre la altura de las plantas (mm) in vitro de vid, a los cinco días de enraizamiento in vitro.

Tratamiento Altura (mm) a los 5 días

T0 Control 15,13 a*

T1 Cubierta con sello de polipropileno 15,61 a

T2 Cubierta con papel filtro 15,11 a

* Promedios con letras iguales, indican que no existe diferencia significativa entre los tratamientos, según Test de Tukey (P=0,05).

En cuanto a cerezo, el análisis de varianza, realizado en este caso en dos fechas, a

los cinco y a los 10 días de enraizamiento in vitro, se determinó (P=0,05) que no

existió efecto de los tratamientos en la altura de las plantas a los cinco días, con

respecto a los resultados obtenidos a los 10 días, estos siguieron la misma

tendencia estadística, aunque se observó un pequeño aumento en los valores

promedio (CUADRO 2). Esto también puede haberse debido al corto período

transcurrido entre una medición y otra, impidiendo respuesta diferencial por parte de

las plantas.

CUADRO 2. Efecto de las cubiertas, sobre la altura de las plantas (mm) in vitro de

cerezo Gisela 5, a los cinco y 10 días de enraizamiento in vitro.

Tratamiento Altura (mm) a los 5 días

Altura (mm) a los 10 días

T0 Control 11,62 a* 11,88 a*

T1 Cubierta con sello de polipropileno 11,75 a 12,03 a

T2 Cubierta con papel filtro 11,23 a 11,52 a

* Promedios con letras iguales, indican que no existe diferencia significativa entre los tratamientos, según Test de Tukey (P=0,05).

En cuanto a la variable diámetro para vid, al realizar el análisis de varianza, a los

cinco días de enraizamiento (P=0,05), se determinó que no existió diferencia

significativa con ninguno de los tratamientos aplicados (CUADRO 3).

Page 36: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

CUADRO 3. Efecto de las cubiertas, sobre el diámetro (mm) de las plantas in vitro de vid a los cinco días de enraizamiento in vitro.

Tratamiento Diámetro (mm) a los 5 días

T0 Control 1,26 a*

T1 Cubierta con sello de polipropileno 1,19 a

T2 Cubierta con papel filtro 1,22 a

* Promedios con letras iguales, indican que no existe diferencia significativa entre los tratamientos, según Test de Tukey (P=0,05).

En cerezo, al realizar el análisis de varianza a los cinco y 10 días de enraizamiento

(P=0,05), tampoco existió diferencia significativa con ninguno de los tratamientos

aplicados (CUADRO 4). En ambos casos, esto también pudo haberse debido al

corto tiempo transcurrido entre el establecimiento de los sellos y la primera

medición, y en el caso de cerezo además entre una medición y otra.

CUADRO 4. Efecto de las cubiertas, sobre el diámetro (mm) de las plantas in vitro de cerezo Gisela 5, a los cinco y 10 días de enraizamiento in vitro.

Tratamiento Diámetro (mm) a

los 5 días Diámetro (mm) a

los 10 días

T0 Control 2,12 a* 2,14 a*

T1 Cubierta con sello de polipropileno 2,18 a 2,23 a

T2 Cubierta con papel filtro 2,02 a 2,19 a

* Promedios con letras iguales, indican que no existe diferencia significativa entre los tratamientos, según Test de Tukey (P=0,5).

El análisis de varianza en vid, realizado a los cinco días de enraizamiento para las

variables número de hojas con una lámina superior a 8 mm y número total de hojas,

determinó que no existe diferencia significativa entre los tratamientos (CUADRO 5).

En cuanto a cerezo, para ambas variables, medidas el día cinco y el día 10 de

enraizamiento, al realizar el análisis de varianza, tampoco se determinó diferencia

significativa entre los tratamientos (CUADRO 6), pero a los 10 días de

Page 37: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

enraizamiento en el tratamiento con cubierta de papel filtro, se apreció una

disminución en el número de hojas con una lámina superior a 8 mm, debido a la

desfoliación de algunas hojas que sufrieron algunas de las plantas, sin afectar esto

en la diferencia estadística significativa.

Por su parte SANTAMARÍA et al. (2000), señalan que en Delphinium se obtuvo una

menor área foliar en tubos con mayor ventilación. Por el contrario RITCHIE, SHORT

y DAVEY (1991), demostraron que en tubos de cultivo ventilados, se promovió un

incremento en el número de hojas y en la superficie foliar de plantas crecidas in

vitro. Esto coincide con SMITH (1991), quién indicó que al disminuir la humedad

relativa al interior del tubo de cultivo, observó una disminución en la longitud del

tallo, y un aumento en el área de la hoja en crisantemo, rosa y vid.

CUADRO 5. Efecto de las cubiertas, sobre el número de hojas con una lámina superior a 8 mm, y número total de hojas, en las plantas in vitro de vid, a los cinco días de enraizamiento in vitro.

Día 5

Tratamiento

N° hojas con lámina superior a 8 mm

N° total de hojas

T0 Control 2,7 a* 4,4 a*

T1 Cubierta con sello de polipropileno 3,05 a 4,15 a

T2 Cubierta con papel filtro 2,2 a 3,35 a

* Promedios con letras iguales, indican que no existe diferencia significativa entre los tratamientos, según Test de Tukey (P=0,05).

Page 38: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

CUADRO 6. Efecto de las cubiertas, sobre el número de hojas con una lámina superior a 8 mm, y número total de hojas, en las plantas in vitro de cerezo Gisela 5, a los cinco y 10 días de enraizamiento in vitro.

Día 5 Día 10

Tratamiento

N° hojas con lámina

superior a 8 mm

N° total de hojas

N° hojas con lámina

superior a 8 mm

N° total de hojas

T0 Control 9,17 a* 9,97 a* 9,33 a* 9,97 a*

T1 Cubierta con sello de

polipropileno 9,53 a 10,63 a 9,63 a 10,93 a

T2 Cubierta con papel filtro 8,0 a 9,67 a 7,97 a 9,53 a

* Promedios con letras iguales, indican que no existe diferencia significativa entre los tratamientos, según Test de Tukey (P=0,05).

El test de Tukey (P=0,05), realizado para la variable altura del medio de cultivo, en

vid a los cinco días de enraizamiento, demostró que existen diferencias significativas

entre los tratamientos. En el CUADRO 7, se puede observar que el mayor

agotamiento ocurrió en los tubos con mayor ventilación, en los tratamientos con

cubierta con sello de polipropileno y con cubierta de papel filtro.

CUADRO 7. Efecto de las cubiertas, sobre la altura del medio de cultivo (mm), en las plantas in vitro de vid, a los cinco días de enraizamiento in vitro.

Tratamiento Altura del medio de cultivo

(mm) a los 5 días

T0 Control 19,86 a*

T1 Cubierta con sello de polipropileno 17,82 b

T2 Cubierta con papel filtro 17,26 b

* Promedios con letras iguales, indican que no existe diferencia significativa entre los tratamientos, según Test de Tukey (P=0,05).

Por su parte en el CUADRO 8, en que se evaluó el efecto de las cubiertas sobre la

altura del medio en cerezo, en los días cinco y 10 de enraizamiento, el Test de

Page 39: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

Tukey (P=0,05), también demostró que existen diferencias significativas entre los

tratamientos.

CUADRO 8. Efecto de las cubiertas, sobre la altura del medio de cultivo (mm), en las plantas in vitro de cerezo Gisela 5, en el día cinco y 10 de enraizamiento in vitro.

Tratamiento Altura del medio de cultivo (mm) a

los 5 días

Altura del medio de cultivo (mm) a

los 10 días

T0 Control 16,49 a* 16,17 a*

T1 Cubierta con sello de polipropileno 15,55 b 13,43 b

T2 Cubierta con papel filtro 15,33 b 13,34 b

* Promedios con letras iguales, indican que no existe diferencia significativa entre los tratamientos, según Test de Tukey (P=0,05).

MURPHY et al. (1998) observaron que la pérdida de peso del medio, se debía a la

ganancia en peso de la planta, y a la evapotranspiración, pero en tubos más

ventilados, la ganancia en peso por parte de la planta era reducida y la pérdida en

peso del medio era casi cinco veces mayor, que en tubos sellados con papel

aluminio.

La variable vitrificación al ser analizada con el análisis de varianza para el caso de

cerezo (CUADRO 9), no presentó diferencia significativa entre los tratamientos. En

cuanto a vid, estos datos no se analizaron estadísticamente, porque las plantas no

presentaron vitrificación.

SHORT y ROBERTS (1987) indican que el reducir la humedad relativa al interior de

los frascos de cultivo, es un factor clave en la prevención de la vitrificación, pero

también disminuye el crecimiento de las plantas.

Page 40: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

CUADRO 9. Efecto de las cubiertas, sobre la vitrificación, en las plantas in vitro de cerezo Gisela 5, en el día cinco y 10 de enraizamiento in vitro.

Tratamiento Vitrificación a los

5 días Vitrificación a los

10 días

T0 Control 1,03 a* 1,03 a*

T1 Cubierta con sello de polipropileno 1,07 a 1,07 a

T2 Cubierta con papel filtro 1,07 a 1,07 a

* Letras iguales, indican que no existe diferencia significativa entre los tratamientos, según Test de Tukey (P=0,05).

La variable color, a los cinco días de enraizamiento en vid, al ser analizada con el

test no paramétrico de Kruskal-Wallis (P=0,05) demostró diferencias estadísticas

significativas. El número asignado a cada color de explante correspondió a 1: 7,5

GY 4/4 (color verde oscuro), 2: 7,5 GY 5/8 (color verde característico de la especie),

3: 5 GY 7/10 (color verde amarillo), y 4: 5 GY 8/6 (color amarillo café). En el

tratamiento control, las plantas presentaron el color verde característico de la

especie (7,5 GY 5/8), según la tabla MUNSELL (1998), representado por el valor

2,45. Los otros tratamientos presentaron un color verde amarillo (5 GY 7/10), muy

cercano al amarillo café (5 Y 8/6), representados por el valor 3,7 en el tratamiento

con cubierta de sello de polipropileno y 3.95 en las plantas con cubierta de papel

filtro, debido a que estas plantas se vieron fuertemente estresadas por el cambio en

la ventilación de los frascos (CUADRO 10).

En cuanto a cerezo, el número asignado a cada color de explante correspondió a 1:

5 GY 4/8 (color verde oscuro), 2: 5 GY 5/6 (color verde de la especie), 3: 5 GY 6/8

(color verde claro) y 4: 5 GY 7/8 (color verde amarillo). En este ensayo no hubo

diferencia estadística significativa entre los tratamientos a los cinco y 10 días de

enraizamiento, a los cinco días se mantuvo el color de las plantas en los tres

tratamientos, representado por el número 2,4 que corresponde al color verde

característico de la especie 5 GY 5/6 MUNSELL (1998), a los 10 días de

enraizamiento el color se mantuvo, representado por los valores 2,4 en el

Page 41: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

tratamiento control y en el con cubierta de papel filtro, y 2,53 en el tratamiento con

sello de polipropileno (CUADRO 11).

CUADRO 10. Efecto de las cubiertas sobre el color, en las plantas in vitro de vid, en el día cinco de enraizamiento in vitro.

Tratamiento Color a los 5 días

T0 Control 2,45 b*

T1 Cubierta con sello de polipropileno 3,7 a

T2 Cubierta con papel filtro 3,95 a

* Letras iguales, indican que no existe diferencia significativa entre los tratamientos, según Test de Kruskal-Wallis (P=0,05).

CUADRO 11. Efecto de las cubiertas sobre el color, en las plantas in vitro de cerezo Gisela 5, en el día cinco y 10 de enraizamiento in vitro.

Tratamiento Color a los 5 días Color a los 10 días

T0 Control 2,4 a* 2,4 a*

T1 Cubierta con sello de polipropileno 2,4 a 2,53 a

T2 Cubierta con papel filtro 2,4 a 2,4 a

* Letras iguales, indican que no existe diferencia significativa entre los tratamientos, según Test de Kruskal-Wallis (P=0,05).

Para evaluar el enraizamiento se aplicó un test de comparación de proporciones

(P=0,05), en cuanto a vid, existe diferencia significativa entre tratamientos,

obteniéndose un menor porcentaje de enraizamiento en los tratamientos con frascos

ventilados. En cuanto a la sobrevivencia, no se determinó diferencia estadística

significativa (CUADRO 12).

La presencia de raíces in vitro, es una condición muy importante, ya que estas

influyen en la sobrevivencia posterior de las plantas, aunque hay controversias al

respecto, por un lado DEBERGH y MAENE (1981), señalan que las raíces

producidas in vitro, morían después del trasplante a condiciones de invernadero, y

eran completamente reemplazadas por nuevas raíces ex vitro, a diferencia de lo

Page 42: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

dicho por APTER, DAVIES y MC WILLIAMS (1993), quienes señalan que en

microestacas de Trachelospermun asiaticum enraizadas in vitro, sus raíces no eran

reemplazadas, sino que sobrevivían al trasplante y a la aclimatización, y al comparar

morfológicamente las conexiones xilemáticas entre la raíz y tallo, de raíces in vitro y

ex vitro, descubrieron que estaban igualmente desarrolladas. Esto también es

corroborado por MIRANDA (1996), al comparar morfológicamente raíces in vitro e in

vivo, en dos portainjertos de cítricos, ya que observó una conexión xilemática

continua entre la raíz neoformada in vitro y el tallo.

CUADRO 12. Efecto de las cubiertas sobre el porcentaje de enraizamiento a los cinco días, en las plantas de vid in vitro, y la sobrevivencia, a los 21 días después de la aclimatización en sustrato.

Tratamiento Enraizamiento (%)

a los 5 días

Sobrevivencia (%) (21 días después de

aclimatización en sustrato)

T0 Control 45 a* 25 a*

T1 Cubierta con sello de polipropileno 15 b 10 a

T2 Cubierta con papel filtro 15 b 30 a

* Letras iguales indican que no existe diferencia significativa entre los tratamientos, según Test de Comparación de Proporciones (P=0,05).

En cerezo no se determinó diferencia estadística significativa en el porcentaje de

enraizamiento entre los tratamientos, y tampoco en la sobrevivencia (CUADRO 13).

Se puede inferir de manera preliminar, que una planta enraizada in vitro, tendría un

mayor éxito ex vitro, ya que el mayor porcentaje de enraizamiento en cerezo influyó

positivamente en la mayor sobrevivencia de las plantas después de ser

trasplantadas a sustrato, a diferencia de vid, en que un bajo porcentaje de

enraizamiento, significó una baja sobrevivencia de las plantas.

Page 43: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

CUADRO 13. Efecto de las cubiertas sobre el porcentaje de enraizamiento a los cinco y 10 días, en las plantas de cerezo Gisela 5 in vitro, y la sobrevivencia, a los 21 días después de la aclimatización en sustrato.

Tratamiento Enraizamiento

a los 5 días (%)

Enraizamiento a los 10 días

(%)

Sobrevivencia (%) (21 días después de aclimatización

en sustrato)

T0 Control 63,3 a* 66,6 a* 60 a*

T1 Cubierta con sello de

polipropileno

70,0 a 73,3 a 60 a

T2 Cubierta con papel filtro 66,6 a 73,3 a 56,7 a

* Letras iguales indican que no existe diferencia significativa entre los tratamientos, según Test de Comparación de Proporciones (P=0,05). En cerezo y en vid, no hubo relación entre la ventilación de los tubos y la

sobrevivencia, a diferencia de lo reportado por MURPHY et al. (1998), en

Delphinium, donde la sobrevivencia de plantas micropropagadas mejoró en los

tratamientos con tubos ventilados, pero si concuerdan con este mismo autor en la

especie Hosta, en que no hubo efecto de la ventilación en la sobrevivencia.

Por su parte, FAULKS y MUDGE (1996) y THOMAS (1998) señalan que la

sobrevivencia de las vides micropropagadas, comparada con otras especies

leñosas, es relativamente baja.

Al analizar el efecto de los tratamientos sobre la altura de la planta en cerezo

(CUADRO 14), no se encuentra diferencia estadística significativa, esto se mantiene

con respecto a las mediciones anteriores en esta variable.

En cuanto al efecto de los tratamientos en el diámetro (mm), estos tampoco

presentan diferencia estadística significativa, esto también se mantiene con respecto

a la medición anterior en esta variable (CUADRO 15).

Page 44: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

CUADRO 14. Efecto de los tratamientos en la altura (mm) de plantas micropropagadas de cerezo Gisela 5, a los 21 días de aclimatización en sustrato.

Tratamiento Altura de las plantas (mm) a los 21

días de aclimatización

T0 Control 12,1 a*

T1 Cubierta con sello de polipropileno 12,05 a

T2 Cubierta con papel filtro 11,53 a

* Promedios con letras iguales, indican que no existe diferencia significativa entre los tratamientos, según Test de Tukey (P=0.05).

CUADRO 15. Efecto de los tratamientos en el diámetro (mm) de las plantas micropropagadas de cerezo Gisela 5, a los 21 días de aclimatización en sustrato.

Tratamiento Diámetro de las plantas (mm) a los 21 días de aclimatización

T0 Control 2,4 a*

T1 Cubierta con sello de polipropileno 2,52 a

T2 Cubierta con papel filtro 2,37 a

* Promedios con letras iguales, indican que no existe diferencia significativa entre los tratamientos, según Test de Tukey (P=0,05).

Con respecto al número de hojas con una lámina mayor a 8 mm, y el número total

de hojas en plantas micropropagadas de cerezo, no se determinó diferencia

estadística significativa entre los tratamientos (CUADRO 16).

En cuanto a la variable color, esta tampoco presentó diferencia estadística

significativa entre tratamientos, representada por el valor promedio 3,3 en el

tratamiento control, 3,4 en el tratamiento con sello de polipropileno y 3,23 en el

tratamiento con papel filtro, que corresponde al número tres asignado al color 5 GY

6/8, MUNSELL (1998) que es el color cercano al verde claro (CUADRO 17).

Page 45: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

CUADRO 16. Efecto de los tratamientos en el número de hojas con una lámina superior a 8 mm, y el número total de hojas, en plantas micropropagadas de cerezo Gisela 5, a los 21 días de aclimatización en sustrato.

Tratamiento

N° hojas con lámina mayor a 8 mm a los 21 días de aclimatización

N° total de hojas a los 21 días de

aclimatización

T0 Control 6,59 a* 6,64 a*

T1 Cubierta con sello de polipropileno 8,09 a 8,27 a

T2 Cubierta con papel filtro 6,23 a 6,73 a

* Promedios con letras iguales, indican que no existe diferencia significativa entre los tratamientos, según Test de Tukey (P=0,05).

CUADRO 17. Efecto de los tratamientos en el color de cerezo Gisela 5, a los 21 días

de aclimatización en sustrato.

Tratamiento Color a los 21 días de

aclimatización en sustrato

T0 Control 3,3 a*

T1 Cubierta con sello de polipropileno 3,4 a

T2 Cubierta con papel filtro 3,23 a

* Letras iguales, indican que no existe diferencia significativa entre los tratamientos, según Test de Kruskal-Wallis (P=0,05). 4.2. Análisis de cortes histológicos, en las distintas etapas secuenciales in vitro, e in vivo de vid, mediante el uso de fotografías: 4.2.1. Etapa de establecimiento

En los cortes histológicos obtenidos del material vegetal colectado y fijado en esta

condición, se pudo observar estomas abiertos, completamente desarrollados, pero

también se apreció una gran cantidad de estomas más pequeños y cerrados

Page 46: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

(FIGURA 5). Esto pareciera contraponerse a lo propuesto por diversos autores, que

menciona que en la condición in vitro, los estomas de las hojas permanecen

abiertos, pero es claro que el estoma pasa por un período de formación o

maduración que finaliza con un estoma completamente desarrollado. Son WARDLE,

DOBBS y SHORT (1983) quienes proponen una categorización de estas etapas en:

a) aparición de la célula madre de las de guarda, b) célula madre dividida pero sin

poro evidente, c) formación evidente del poro y d) estoma completamente

desarrollado.

Siendo ésta la primera etapa de la propagación in vitro, era muy probable encontrar

estomas inmaduros en los cortes histológicos, siendo éstos los que se observaron

de menor tamaño y cerrados. Estos posteriormente se desarrollan y se mantienen

durante las etapas siguientes de la propagación.

4.2.2. Etapa de proliferación

En esta etapa más avanzada de la micropropagación, los estomas pertenecientes a

las hojas formadas en la condición in vitro ya se encuentran completamente

maduros, encontrándose todos en la etapa de estoma completamente desarrollado,

con poro claramente visible, de acuerdo a la clasificación definida por WARDLE,

DOBBS y SHORT (1983). Debido a la condición de alta humedad relativa (cercana

al 100%) los estomas desarrollados en la condición in vitro son ineficientes en su

capacidad de cerrar el poro, concordando con lo observado por GRIBAUDO,

NOVELLO y RESTAGNO (2001). Es por esta condición, que todos los estomas

observados mostraban sus estomas completamente abiertos. (FIGURA 5).

Page 47: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

4.2.3. Etapa de enraizamiento

Los estomas observados en los cortes histológicos, en las plantas de vid, en esta

etapa, muestran la misma condición que presentaba en proliferación, dado que se

encuentran en las mismas condiciones anteriormente descritas, es decir, estomas

completamente maduros y abiertos (FIGURA 5).

4.2.4. Etapa de preaclimatación

Transcurridos los tres días de preaclimatación y al observar los cortes histológicos

obtenidos a partir del material vegetal fijado proveniente de esta condición se pudo

apreciar que un porcentaje bajo de estomas se mostraba alargado, no totalmente

turgente. GRIBAUDO, NOVELLO y RESTAGNO (2001) mencionan que los estomas

desarrollados en una condición de baja humedad relativa o en una condición ex vitro

son más alargados, pero debido a que este no es el caso, ya que son estomas

formados en una condición in vitro y expuestos a una menor humedad relativa

ambiental, el aparente alargamiento sería por una pérdida del agua contenida en las

células de guarda provocada por la alta demanda ambiental, debido a su bajo

potencial hídrico atmosférico (FIGURA 5).

4.2.5. Etapa in vivo

En estos cortes histológicos, se observó estomas en los distintos estados de

madurez, lo que es normal para una planta mantenida en la condición ex vitro,

además de estomas cerrados y abiertos (FIGURA 5).

Existen varias condiciones que dificultan el aprovechamiento de la tecnología de

análisis de imágenes en el seguimiento de la condición estomática durante las

distintas etapas de la propagación in vitro. La primera deriva de la flexibilidad natural

Page 48: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

que tienen las hojas de la vid, que dificultan, en gran medida, la obtención de cortes

longitudinales con el micrótomo por lo que la mayoría de los cortes analizados

fueron hechos de manera transversal. La segunda condición está relacionada con la

anterior y corresponde a la característica mencionada por GRIBAUDO, NOVELLO y

RESTAGNO (2001) acerca de las hojas de la vid que presentan una condición

hipoestomática (estomas sólo en el enves). En conjunto estas dos situaciones

impiden realizar una adecuada determinación de la densidad estomática en un área

conocida debido a que los estomas se encuentran concentrados en una parte de la

imagen (enves), siendo el resto un espacio vacío y no repartidos en una zona

amplia, que corresponda en un 100% a la superficie de la hoja, como la que se

observaría en un corte longitudinal. Esto es alterado también por los objetivos

instalados en el microscopio óptico, ya que el objetivo de 10X entrega una imagen

muy general en la que es difícil distinguir claramente la morfología de la hoja y el de

40X entrega un campo de visión reducido. Un objetivo intermedio permitiría un mejor

análisis de las imágenes.

Por último, si bien es cierto que los programas de análisis de imágenes permiten,

luego de un ajuste de la escala realizar mediciones muy precisas, pudiendo

fácilmente entregar mediciones en micrones (µm), la gran variación entre los

tamaños y formas de los estomas, hacen que la precisión no sea útil para efectos de

análisis de una muestra fijada, sino que sería necesario hacer un seguimiento de

cómo van madurando y desarrollándose individualmente los estomas en el tiempo.

Esto es corroborado por FILA et al. (1998) en observaciones microscópicas de

impresiones epidermales de hojas in vitro, que demostraron una alta heterogeneidad

en las dimensiones de los estomas, y esto podría asociarse con la funcionalidad

también heterogénea.

Page 49: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

FIGURA 5. Plantas micropropagadas de vid en las etapas de A) establecimiento, se

observan estomas de menor tamaño cerrados y estomas de mayor tamaño abiertos; B) proliferación, se observan totalmente abiertos; C) enraizamiento, se observan completamente maduros y abiertos; D) preaclimatación con sellos de mascarilla, se observan completamente desarrollados y abiertos; E) preaclimatación con sellos de papel filtro, acá también se observaron estomas abiertos y algunos de forma alargada y F) Estomas de plantas in vivo, se observan distintos estados de madurez.

BA

DC

E F

Page 50: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

5. CONCLUSIONES Las pruebas estadísticas no mostraron diferencias significativas entre los distintos

sistemas de sellado en la etapa de preaclimatación aplicados a plantas de vid y

cerezo Gisela 5.

Debido a lo anterior, no habría necesidad de aplicar métodos de preaclimatación a

ninguna de estas especies.

Al preaclimatar, no se logró aumentar la sobrevivencia de las plantas de vid y cerezo

micropropagadas.

Al analizar, mediante el uso de fotografías de cortes histológicos, la condición en la

que se presentaban los estomas en cada una de las etapas secuenciales, se

determinó que en todas las etapas in vitro, los estomas se encontraron abiertos, y

en la etapa in vivo, se apreció una alta heterogeneidad entre estomas cerrados y

abiertos.

Page 51: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

6. RESUMEN En el Laboratorio de Propagación “Profesor Gregorio Rosenberg”, de la Facultad de Agronomía de la Pontificia Universidad Católica de Valparaíso, ubicada en la calle San Francisco s/n, la Palma, Provincia de Quillota, V Región, se evaluó distintos sistemas de sellado en la etapa de preaclimatación de plantas de vid (Vitis vinifera L.) y cerezo (Prunus cerasus x Prunus canescens) Gisela 5 propagadas in vitro, y posteriormente se evaluó la sobrevivencia de estas plantas en la etapa de aclimatización. Como explante, en la etapa de establecimiento, se utilizó segmentos nodales, los que posteriormente fueron repicados en las etapas de la micropropagación. Los ensayos de preaclimatación se realizaron durante la etapa de enraizamiento in vitro. Como medio de enraizamiento para vid se trabajó con un MS (MURASHIGE y SKOOG, 1962), con la sal NH4NO3, reducida a la mitad y el resto de las sales reducidas a tres cuartos, adicionado con tiamina (0,4%), AIA (0,2 mg/l), NaH2PO4 (150 mg/l), Myoinositol (25 mg/l), sacarosa al 1%, y todo esto ajustado a pH 5,7 (MESA, 2001). En cuanto a cerezo, el medio de enraizamiento también se realizó en base a sales de MURASHIGE y SKOOG (1962) con una concentración mineral reducida a la mitad suplementado con 1 mg/l de AIB (CÁCERES, 2004). En el ensayo para ambas especies por igual, se realizó tres tratamientos, el primero correspondiente al control con papel de aluminio, el segundo con sellos de polipropileno en tres capas y el tercero con un sello de papel filtro Whatman 1 o MFS N°2, posteriormente los frascos se sellaron por la parte lateral con vitafilm, para afirmar las cubiertas. Para ambos casos, no hubo diferencia estadística significativa en la sobrevivencia de las plantas al aplicar los tratamientos. Al analizar, mediante fotografías los cortes histológicos en vid, en las distintas etapas secuenciales, se observó en todas las etapas in vitro, los estomas abiertos, y en la etapa in vivo, una alta heterogeneidad entre estomas abiertos y cerrados.

Page 52: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

7. ABSTRACT In the Professor Gregorio Rosenberg Propagation Laboratory, at the Agronomy Faculty of the Pontificia Universidad Católica de Valparaíso, La Palma, province of Quillota, V region, different seal systems for the pre-acclimation stage of grapevine (Vitis vinifera L.) and Gisela 5 cherry (Prunus cerasus x Prunus canescens) in vitro propagated plants were evaluated and later, the survival of these plants, in the acclimatization stage, was analyzed. As an explant, in the establishment stage, nodal segments were used, which were later divided in the micropropagation stages. The preacclimation tests were carried out during the in vitro rooting stage. As a rooting medium for the grapevine, an MS (MURASHIGE and SKOOG, 1962) was used, with the salt NH4NO3 reduced to one half strength and the rest of the salts reduced to three quarters of their original strength, additional thyamine (0,4%), IAA (0,2 mg/l), NaH2PO4 (150 mg/l), Myoinositol (25 mg/l), and sacarose (1%), all adjusted to a pH of 5,7 (MESA, 2001). For cherry, the rooting medium was also made based on the MURASHIGE and SKOOG (1962) salts, with a mineral concentration reduced by half and adding 1 mg/l of IBA (CÁCERES, 2004). For experiments on both species, there were 3 treatments: the first was a control, with aluminium foil, the second used polypropylene seals, and the third one used Whatman 1 or MFS Nº2 filter paper seals. Later on the jars were sealed, on the side, with vitafilm, in order to secure the covers. In both cases, there was no significant statistical difference on the plant survival after application of the treatments. When analyzing, by photograph, the histological cuts of the grapevines, in the different sequential stages, it was seen that, during all of the in vitro stages, stomata were open and that during the in vivo stages, there was a high heterogeneity between open and closed stomata.

Page 53: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

8. LITERATURA CITADA AMANCIO, S., REBORDAO, J. P. and CHAVES, M. M. 1999. Improvement of

acclimatization of micropropagated grapevine: Photosynthetic competence and carbon allocation. Plant Cell Tisue and Organ Culture 58: 31-37.

APTER, R., MC WILLIAMS, E. and DAVIES, F. 1993. In vitro and ex vitro

adventitious root formation in asian jasmine (Trachelospermum asiaticum) I. Comparative morfology. J. Amer. Soc. Hort. Sci. 118 (6): 902-905.

BLAZCOVÁ, A., ULLMANN, J., JOSEFUSOVÁ, Z. and MACHÁCKOVÁ, I. 1989.

The influence of gaseous phase on growth of plants in vitro – the effects of different types of stoppers. Acta Horticulturae, 251: 209-214.

BOUTHERIN, D. y BRON, G. 1994. Multiplicación de plantas hortícolas. Zaragoza,

Acribia. 225 p. BRAINERD, K. and FUCHIGAMI, L. 1981. Acclimatization of aseptically cultured

apple plants to low relative humidity. J. Amer. Soc. Hort. Sci. 106 (4): 515-518.

BRAINERD, K., FUCHIGAMI, L., KWIATKOWSKI, S. and CLARK, C. 1981. Leaf

anatomy and water stress of aseptically cultured “Pixy” plum growth under different environment. Hortscience 16 (2): 173-175.

CÁCERES, K. 2004. Propagación in vitro de los portainjertos de cerezo (Prunus

avium L.) Gisela 5 y Prunus cerasus . Taller de Licenciatura. Ing. Agr. Quillota, Pontificia Universidad Católica de Valparaíso. Facultad de Agronomía. 83 p.

CASSELS, A. C. and ROCHE, T.D. 1994. The influence of the gas permeability of

the lid and growth room light intensity on the characteristics of Dianthus microplants in vitro and ex vitrum. In: LUMSDEN, P.J., NICHOLAS, J.R. and DAVIES, W.J. eds. Physiology, growth and development of plants in culture. Dordrecht, Kluwer Academic Publishers. pp 204-214.

Page 54: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

COURNAC, L., DIMON, B., CARRIER, P., IOHOU, A. and CHAGVARDIFF, P. 1991. Growth and phothosynthetic characteristics of Solanum tuberosum plantlets cultivated in vitro in different conditions of aeration, sucrose suply and CO2 enrichment. Plant Physiology, 97: 112-117.

DAL ZOTTO, A. and DOCAMPO, D. 1997. Micropropagación de los portainjertos

de ciruelo Mariana 2624 (Prunus cerasifera x Prunus musionana) y Pixy (Prunus insistia L.) de sanidad controlada. Phyton. (60):127-135.

DEBERGH, P. and MAENE, L. 1981. A scheme for propagation of ornamental

plants by tissue culture. Scientia Horticulturae 14 (4): 335-345. DIAZ-PEREZ, J. C., SHACKEL, K. A. and SUTTER, E. G. 1995. Effects of in vitro-

formed roots and acclimatisation on water status and gas exchange of tissue-cultured apple shoots. J. Am. Soc. Hortic. Sci. 120: 435-440.

DONNELY, D and VIDAVER, W. 1984. Leaf anatomy of red raspberry transferred

from culture to soil. J. Amer. Soc. Hort. Sci. 109 (2): 172-176. DRADI, G., VITO, G. and STANDRADI, A. 1996. In vitro Mass propagation of

eleven Prunus mahaleb Ecotypes. Acta Horticultutare. (410): 477-483. FAULKS, L. and MUDGE, K. W. 1988. Optimisation of environmental conditions of

stage IV micropropagated grapes. HortScience 23: 757. FIGUEROA, N. 2003. Preaclimatación in vitro de plantas de violeta africana

(Saintpaulia ionantha Wendl.) y su efecto sobre la aclimatación. Taller de Licenciatura. Ing. Agr. Quillota, Pontificia Universidad Católica de Valparaíso. Facultad de Agronomía. 64 p.

FILA, G., GHASHGHAIE,J., HOARAU, J. and CORNIC, G. 1998. Photosynthesis,

leaf conductance and water relations of in vitro cultured grapevine rootstock in relation to acclimatisation. Physiologia Plantarum 102 (3): 411-418.

GRIBAUDO, I., NOVELLO, V. and RESTAGNO, M. 2001. Improved control of

water loss from micropropagated grapevines (Vitis vinifera cv. Nebbiolo). Vitis 40 (3): 137-140.

Page 55: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

GROUT, B. and ASTON, M. 1977. Transplanting of cauliflower plants regenerated from meristem culture. I. Water loss and water transfer related to changes in leaf wax and to xylem regeneration. Hort. Res. 17: 1-7.

HARTMANN, H. y KESTER, E. 1995. Propagación de plantas. Principios y

Prácticas. 4a. ed. México. D.F. Continental. 760 p. INFANTE, R., MAGNANINI, E. and RIGHETTI, B. 1989. The role o light and CO2 in

optimising the conditions for shoot proliferation of Actinidia deliciosa in vitro. Physiol. Plantarum. 77: 191-195.

JACKSON, M. B., ARBOT, A. J., BELCHER, A. R., HALL, K.C., BUTLER, R. and

CAMERON, J. 1991. Measuring shortcomings in tissue culture aeration and their consequences for explant development. In: LUMSDEN, P.J., NICHOLAS, J.R. and DAVIES, W.J. eds. Physiology, growth and development of plants in culture. Dordrecht, Kluwer Academic Publishers. pp 191-203.

KADLECEK, P., TICHA, I., HAISEL, D., CAPKOVÁ, V. and SCHAFER, C. 2001.

Importance of in vitro pretreatment for ex vitro acclimatization and growth. Plant Science 161: 695-701.

KOZAI, T. 1991. Micropropagation under photoautotrophic conditions. In:

DEBERGH, P., ZIMMERMAN, R. eds. Micropropagation technology and application. Dordrecht, Kluwer Academic Publishers. pp 447-469.

LEWANDOWSKI, V. T. 1991. Rooting and acclimatization of micropropagated

grapes. HortScience 26: 586-589. MARGARA, J. 1988. Multiplicación Vegetativa y Cultivo in vitro. Madrid, Mundi-

Prensa. 236 p. MESA, M. 2001. Desarrollo de técnicas de propagación in vitro de vid (Vitis vinifera

L.). Taller de Licenciatura. Ing. Agr. Quillota, Pontificia Universidad Católica de Valparaíso. Facultad de Agronomía. 60 p.

Page 56: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

MILLER, G.; COSTON, C.; DENNY, E. and ROMEO, M. 1982. In vitro Propagation of “Nemaguard” Peach Rootstock. HortScience 17(2): 194.

MIRANDA, V. 1996. Determinación del desarrollo morfológico de raíces “in vitro” e

“in vivo” en dos portainjertos de cítricos (Citrus macrophylla West. Y citrange troyer). Taller de licenciatura. Ing. Agr. Quillota, Pontificia Universidad Católica de Valparaíso. Facultad de Agronomía. 69 p.

MUNA, A., AHMAD, A., ABDUL-RAHMAN, K. and MAHMOUD, K. 1999. In vitro

Propagation of a Semi-Dwarfing Cherry Rootstock. Plant Cell, Tissue and Organ Culture. 59(3): 203-208.

MUNSELL. 1998. Color charts for plant tissues. New York, Munsell Color. s.p. MURASHIGE, T and SKOOG. 1962. A revised medium for rapid growth and

bioassays with tobacco tissue cultures. Phys. Plant. 15: 473-497. MURPHY, K., SANTAMARÍA, J., DAVIES, W. and LUMSDEN, P. 1998. Ventilation

of cultured vessels: I. Increased growth in vitro and survival ex vitro Delphinium. Journal of Horticultural Science and Biotechnology 73 (6): 725-729.

NOVELLO, V., GRIBAUDO, I. and ROBERTS, A. V. 1992. Effects of paclobutrazol

and reduced humidity on stomatal conductance of micropropagated grapevines. Acta Horticulturae, 319: 65-70.

PIERIK, R. 1990. Cultivo in vitro de las plantas superiores. Madrid. Mundi-Prensa.

326p. PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE. 2003. Composición gaseosa y

aire puro, (on line). www.puc.cl/sw_educ/contam/atm/atm06.htm. RAVINDRA, M. and THOMAS, P. 1995. Sachet technique an efficient method for

the acclimatization of micropropagated grapes (Vitis vinifera L.). Current Science 68 (5): 546-548.

Page 57: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

RITCHIE, G., SHORT, K. and DAVEY, M. 1991. In vitro acclimatization of chrysanthemum and sugar beet plantlets by treatment with paclobutrazol and exposure to reduced humidity. Journal of experimental botany 42 (245): 1557-1563.

ROMANO, A., NORONHA, C., and MARTINS-LOUCAO, M. A. 1992. Influence of

growth regulators on shoot proliferation in Quercus suber. Annals of botany. 70(6): 531-536.

SAFFIE, D. 2002. Aclimatación de plantas de vid (Vitis vinifera L.) Taller de

Licenciatura. Ing. Agr. Quillota, Pontificia Universidad Católica de Valparaíso. Facultad de Agronomía. 47 p.

SÁNCHEZ-DIAZ y AGUIRREOLEA. 2000. Movimientos estomáticos y

transpiración. En: Fundamentos de fisiología vegetal. Madrid, Mc Graw-Hill Interamericana. 522 p.

SANTAMARÍA, J., MURPHY, K., LEIFERT, C. and LUMSDEN, P. 2000. Ventilation

of cultured vessels: I. Increased water movement rather than reduced concentrations of ethylene and CO2 is responsible for improved growth and development of Delphinium in vitro. Journal of Horticultural Science and Biotechnology 75 (3): 320-327.

SCIUTTI, R. and MORINI, S. 1993. Modified stomatal characteristics in actively

proliferating in vitro plum cultures at varying levels of relative humidity. Adv. Hortic. Sci. 7: 153-156.

SHORT, K. and ROBERTS, A. 1987. In vitro hardening of cultured cauliflower and

chrysanthemum plantlets to humidity. Acta horticulturae 212: 329-334. SLAVTCHEVA, T. and DIMITROVA, V. 2000. Gas exchange with in vitro cultivated

grapevine plants during acclimatization period. Acta Horticulturae 526: 357-363.

SMITH, E. 1991. The preparation of micropropagated plantlets for transplantation.

Dissertation abstracts international 52 (3): 1163B.

Page 58: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

SNIR, I. 1982. In vitro Propagation of Sweet Cherry Cultivars. HortScience vol (12):545-547.

SUTTER, E. 1984. Stomatal and cuticular water loss from apple, cherry, and

sweetgum plants after removal from in vitro culture. J. Amer. Soc. Hort. Sci. 113 (2): 234-238.

SUTTER, E. and LANGHANS, R. 1979. Formation of epicuticular wax and its effect

on water loss in cabbage plants regenerated from shoot-tip culture. Can. J. Bot. 60:2896-2092.

SWARTZ, H. J. and LINDSTROM, J.T. 1986. Small fruit and grape tissue culture

from 1980 to 1985: Commercialization of technique. In: tissue culture as a plant production system for horticultural crops. Dordrecht, Martinus Nijhoff Publishers: 201-220.

THOMAS, P. 1998. Humid incubation period and plantlet age influence

acclimatization and establishment of micropropagated grapes. In vitro cell. 34:52-56

THOMAS, P. and SCHIEFELBEIN, J. 2001. Combined in vitro and in vivo

propagation for rapid multiplication of grapevine cv. Arka Neelamani. HortScience 36 (6): 1107-1110.

VAN HUYLENBROECK, J.M. and DEBERGH, P.C. 1996. Impact of sugar

concentration in vitro on photosynthesis and carbon metabolism during ex vitro acclimatization of Spathtphyllum plantlets. Physiol. Plant. 96: 298-304.

VARGAS, G. 2003. Propagación in vitro de Portainjertos de Cerezo. Taller de

Licenciatura. Ing. Agr. Quillota, Pontificia Universidad Católica de Valparaíso. Facultad de Agronomía. 57 p.

VÉGVARI, G. 2001. Morphological changes of in vitro apple plants during

acclimatization. Acta Horticulturae 616: 515-519.

Page 59: 1. INTRODUCCIÓNucv.altavoz.net/prontus_unidacad/site/artic/20080123/asocfile/... · ... enraizamiento y aclimatación ... que las plantas obtenidas, son usualmente libres de ...

WARDLE, K., DOBBS, E. and SHORT, K. 1983. In vitro acclimatization of aseptically cultured plantlets to humidity. J. Amer. Soc. Hort. Sci. 108 (3): 386 – 389.

WETZSTEIN, H. E. and SOMMER, H. E. 1982. Leaf anatomy of tissue cultured

Liquidambar styraciflua (Hamamelidaceae) during acclimatization. Am. J. Bot. 69: 1579-1586.

ZIV, M and HAVELY, A.H. 1983. Control of oxidate browning and in vitro

propagation of Strelitzia reginae. HortScience 18(4):434-436. ZOBAYED, S., ARMSTRONG, J. and ARMSTRONG, W. 2001. Leaf anatomy of in

vitro tobacco and cauliflower plantlets as affected by different types of ventilation. Plant Science 161 (3): 537-548.