Virtual Port Channel

75
Universidad Centroamericana Facultad de Ciencia, Tecnología y Ambiente Ingeniería en Sistemas y Tecnologías de la Información Concentración de Redes y Comunicaciones Asignatura: Ingeniería de Red, Validación y Mantenimiento Trabajo Final de Asignatura: Caso de estudio. Presentado por: Marco Antonio Mendoza López Diana Massiel Lorío Cabezas Francisco José Garay Muñoz María Mercidia Calderón Aráuz Eduardo José Espinoza Flores Docente: Ing. José Torres Managua, Nicaragua 24 de Agosto de 2015

description

Hoy por hoy, es sumamente importante que la infraestructura tecnológica de cualquier empresa sea la más optima posible, no solo para mantener la correcta funcionalidad y eficiencia en los procesos propios de la compañía, sino para asegurar la continuidad del negocio.

Transcript of Virtual Port Channel

Page 1: Virtual Port Channel

Universidad Centroamericana Facultad de Ciencia, Tecnología y Ambiente

Ingeniería en Sistemas y Tecnologías de la Información Concentración de Redes y Comunicaciones

Asignatura: Ingeniería de Red, Validación y Mantenimiento

Trabajo Final de Asignatura:

Caso de estudio.

Presentado por:

Marco Antonio Mendoza López

Diana Massiel Lorío Cabezas

Francisco José Garay Muñoz

María Mercidia Calderón Aráuz

Eduardo José Espinoza Flores

Docente:

Ing. José Torres

Managua, Nicaragua

24 de Agosto de 2015

Page 2: Virtual Port Channel

2

Network Consultores

Empresa que requiere el servicio: Could Enterprise

Descripción de Consultoría: Actualización de Tecnología Switching

(Equipos Switch Core).

Consultores:

Ing. Calderón Aráuz , María Mercidia

Ing. Espinoza Flores, Eduardo José

Ing. Garay Muñoz , Francisco José

Ing. Mendoza López, Marco Antonio

Ing. Lorío Cabezas, Diana Massiel

Entrega del documento: 24 de Agosto de 2015

Page 3: Virtual Port Channel

i

Tabla de contenido

Índice de Tablas ................................................................................................................................... ii

Índice de Figuras ................................................................................................................................. ii

I. Justificación ................................................................................................................................. 1

II. Objetivos ..................................................................................................................................... 2

2.1. Objetivo General ................................................................................................................. 2

2.2. Objetivos Específicos ........................................................................................................... 2

III. Desarrollo ................................................................................................................................ 3

3.1. Descripción de la tecnología a implementar ....................................................................... 3

3.2. Especificaciones técnicas de los equipos a adquirir ............................................................ 4

3.3. Justificación del uso o no de protocolos HSRP y GLBP ........................................................ 6

3.3.1. Host Stanby Router Protocol (HSRP) ........................................................................... 6

3.3.2. HSRP y VPC .................................................................................................................. 7

3.3.3. Diferencia entre Protocolos HSRP y GLBP ................................................................... 9

3.3.4. HSRP o GLBP ................................................................................................................ 9

3.4. Justificación para el uso o no de Spanning Tree con este tipo de implementación ......... 10

3.5. Equipos que se recomiendan para la implementación. .................................................... 12

3.5.1. Cisco Nexus 5000 Series Switches proporcionan ...................................................... 12

3.5.2. Principales beneficios ................................................................................................ 13

3.5.3. Switch Cisco Nexus 5548P ......................................................................................... 14

3.6. Ventajas del uso de la tecnología ...................................................................................... 20

3.7. Proceso de Validación de la Tecnología. ........................................................................... 22

3.7.1. Verificación de las configuraciones ........................................................................... 23

3.7.2. Monitoreo de la Red (estado de los enlaces) ............................................................ 24

IV. Trabajos citados .................................................................................................................... 26

V. Anexos ....................................................................................................................................... 28

5.1. Componentes y descripción de Cisco Nexus 5548 switches ............................................. 28

5.2. Datasheep de la serie 5000 cisco nexus ............................................................................ 29

Page 4: Virtual Port Channel

ii

Índice de Tablas

Tabla 1: Especificaciones de los equipos necesarios para la implementación ................................... 5

Tabla 2: Diferencia entre Protocolos HSRP y GLBP ............................................................................. 9

Tabla 3: Especificaciones Técnicas Switch Cisco Nexus 5548P ......................................................... 19

Tabla 4: Cronograma de las validaciones a ejecutar ........................................................................ 22

Índice de Figuras

Figura1: Virtual Port Channel .............................................................................................................. 4

Figura 2: Funcionamiento HSRP .......................................................................................................... 6

Figura 3: Implementación de HSRP / VPC ........................................................................................... 8

Figura 4: Papel de STP dentro VPC-dominio ..................................................................................... 11

Figura 5: Switch Cisco Nexus 5548P .................................................................................................. 14

Figura 6: Precio Switch Cisco Nexus 5548P ....................................................................................... 19

Figura 7: Verificación de la Configuración Por Cannel VPC ............................................................... 24

Page 5: Virtual Port Channel

1

I. Justificación

Hoy por hoy, es sumamente importante que la infraestructura tecnológica de

cualquier empresa sea la más optima posible, no solo para mantener la correcta

funcionalidad y eficiencia en los procesos propios de la compañía, sino para

asegurar la continuidad del negocio.

Actualmente la empresa Cloud Enterprise cuenta con una infraestructura de red

que brinda servicio a 700 usuarios locales, mas 500 usuarios que se conectan a

través de internet para servicios concurrentes y electrónicos, sin embargo la

tecnología de switching implementada tanto en centro de datos como de la red es

obsoleta, lo cual podría reducir la eficiencia en los procesos y servicios que brinda,

incluso disminuir su capacidad de respuesta a los usuario, afectando la

operatividad de la empresarial.

Es por ello que Could Enterprise está en proceso de modernización de toda su

infraestructura de red, por lo cual es necesario sustituir equipos de comunicación

obsoletos por los más adecuados según las necesidades y servicios de la

empresa, esto principalmente en el nivel de equipos Switching Core de la

infraestructura.

Page 6: Virtual Port Channel

2

II. Objetivos

2.1. Objetivo General

Desarrollar una propuesta técnica para la modernización de las tecnologías

switching a nivel core de la empresa Cloud Enterprise, haciendo uso de Virtual

Port Channel, a fin de garantizar la disponibilidad de los servicios por medio de la

redundancia y el incremento del ancho de banda.

2.2. Objetivos Específicos

Presentar descripción detallada de tecnología Virtual Port Channel a

implementar.

Analizar el funcionamiento de VPC para determinar la integración de los

protocolos HSRP, GLBP y Spaning Tree.

Detallar las especificaciones técnicas de los equipos core propuestos en

contraste con lo solicitado por la empresa Could Enterprise.

Describir las ventajas proporcionadas por la tecnología VPC a implementar.

Identificar las pruebas a realizar para validar la implementación de VPC.

Page 7: Virtual Port Channel

3

III. Desarrollo

3.1. Descripción de la tecnología a implementar

La tecnología que se pretende implementar como solución para mejorar la

infraestructura de red de la empresa Cloud Enterprise, es la Switching Virtual Port

Channel (VPC). VPC, permite que los vínculos que se encuentran físicamente

conectados a dos “switches” distintos sean vistos por un tercer dispositivo como

provenientes de un único dispositivo y formando parte de un único port channel,

permitiendo la simplificación del diseño y sobre todo mejorar el uso y eficiencia del

enlace, principalmente cuando no se cuenta con la cantidad requerida de

interfaces en las conexiones.

Es una tecnología similar a VSS, pero su principal diferencia es que el plano de

control se encuentra repartido entre los distintos dispositivos que forman el grupo.

La mayor ventaja de utilizar VPC en los data centers es que el tráfico entre los

clientes y los servidores o entre los servidores puede utilizar todos los vínculos

disponibles simultáneamente. A continuación, en la Figura 1, se muestra a manera

de ejemplo como VPC aumenta la capacidad del enlace, sumando las velocidades

nominales de cada interfaz de la topología física, creando una topología lógica

más rápida. (Shamsee & Klebanov, 2015)

Page 8: Virtual Port Channel

4

Figura1: Virtual Port Channel

3.2. Especificaciones técnicas de los equipos a adquirir

Actualmente la tecnología de switching implementada tanto en centro de datos

como de la red es obsoleta, por lo cual está en proceso de modernización.

A nivel de equipos Switch core se debe adquirir dos Switches.

Especificaciones técnicas de los equipos necesarios

Equipo Switch

Cantidad 2

Gama Equipos Core Multicapa

A B

10GB 10GB 20GB

Page 9: Virtual Port Channel

5

Características Necesarias

Alta Disponiblidad

Alimentación redundante

Múltiples conexiones con lo switches

de capa de acceso, para

incrementarel ancho de banda.

Equipos que permitan tecnología

Virtual Port Channel.

Tabla 1: Especificaciones de los equipos necesarios para la implementación

Page 10: Virtual Port Channel

6

3.3. Justificación del uso o no de protocolos HSRP y GLBP

3.3.1. Host Stanby Router Protocol (HSRP)

Es un protocolo propietario de Cisco que permite que varios router o switches

multicapa aparezcan como una sola puerta de enlace. (Ariganello & Barrientos

Sevilla, 2010, pág. 411)

El objetivo de HSRP es proporcionar un default-gateway persistente a los hosts de

una red LAN. Esto se logra mediante la configuración de dos o más routers para

compartir la misma dirección IP y la dirección MAC. Los anfitriones de la LAN se

configuran con un solo default-gateway (ya sea estática o mediante DHCP).

(Filliben, 2010). En la Figura # se detalla el funcionamiento lógico y las conexiones

físicas para HSRP.

Figura 2: Funcionamiento HSRP

Page 11: Virtual Port Channel

7

El router virtual no existe físicamente, pero representa el router por defecto común

para las interfaces que se configuran para proporcionar respaldo a la otra. No es

necesario para configurar los hosts de la LAN con la dirección IP del router

activo. En su lugar, les configura con la dirección IP del router virtual (dirección IP

virtual) como su router por defecto. Si el router activo no puede enviar un mensaje

Hello en el plazo de tiempo configurable, el router “Standby” se hace cargo,

responde a las direcciones virtuales, y se convierte en el router activo, asumiendo

las funciones de router activos. Desde la perspectiva de la LAN, el enrutador

virtual sigue siendo el mismo. (Cisco, 2012)

3.3.2. HSRP y VPC

Con una VPC FHRP como Protocolo Hot Standby Router (HSRP), protocolo de

redundancia de enrutador virtual (VRRP), o Gateway Load Balancing Protocol

(GLBP) se debe utilizar (CISCO, Inc, 2014).

HSRP interactúa con canales de puertos virtuales (VPC). VPC permite enlaces

que están conectados físicamente a dos dispositivos de la serie Cisco Nexus

diferentes aparezcan como un solo canal del puerto por un tercer dispositivo

(Cisco, 2012).

El uso de HSRP en el contexto de VPC no requiere ninguna configuración

especial. La interfaz activa HSRP contesta las peticiones ARP como despliegues

normales HSRP hacer, pero con VPC ambas interfaces HSRP (activo y de

reserva) puede reenviar tráfico. (Cisco, 2013) .

Page 12: Virtual Port Channel

8

Una configuración que es opcional pero que se recomienda es la del vPC Peer

Gateway. Esta característica permite a un switch implicado en un vPC actuar

como gateway para los paquetes que tienen destino en el otro switch implicado del

vPC. Esta característica optimiza el uso del Peer-link y evita la pérdida potencial

de datos. Para configurarlo, es simple. Además, es necesario habilitarlo para

HSRP. (Aguilar, 2015)

Figura 3: Implementación de HSRP / VPC

Page 13: Virtual Port Channel

9

3.3.3. Diferencia entre Protocolos HSRP y GLBP

Protocolo de Características

HSRP GLBP

Alcance Cisco Propietario Cisco propiedad

Patrón RFC2281 ninguno

OSI Capa Layer-3 Capa-2

Balanceo de carga Sin Sí

Dirección de grupo

de multidifusión IP

224.0.0.2 en la versión

1224.0.0.102 en la versión 2

224.0.0.102

Puerto UDP 1985 UDP 3222

Timers Hola - 3 seg Hola - 3seg

Hold - 10 seg Hold - 10 seg

Elección Router activo:

1.Highest Priority

2. Dirección IP más alta

(Desempate)

Activo pasarela virtual:

1-Alta Prioridad

2-Mayor IP (Desempate)

Router Rol -Una Router activo, uno espera

Routers Router-uno o

morelistening

- Uno de AVG (Active Virtual Gateway) - hasta

4 AVF Routers en el grupo (Forwarder virtual

activo) que pasa traffic.- hasta 1024 routers

virtuales (grupos GLBP) por interfaz física.

Adelantarse a Si Router Activa (Prioridad más

alta) Preempt debe configurarse

para convertirse en un router

activo de nuevo

Si Router Activa (Prioridad más alta) Preempt

debe configurarse para convertirse en un

router activo de nuevo.

Grupo Virtual Mac

Dirección

0000.0c07.acxx 0007.b4xx.xxxx

Soporte IPv6 Sí Sí Tabla 2: Diferencia entre Protocolos HSRP y GLBP

3.3.4. HSRP o GLBP

Bajo las caracterizas de ambos protocolos y las buenas practicas recomendada

por la patente CISCO y sus expertos se implementará HSRP como protocolo de

redundancia interna a nivel de L3. Este protocolo es el recomendado y mayor

implementado bajo VPC, se cuenta con documentación de su configuración

asimismo ejercicios de diseño.

Page 14: Virtual Port Channel

10

3.4. Justificación para el uso o no de Spanning Tree con este tipo de

implementación

El protocolo STP (Spanning Tree Protocol, protocolo del árbol de expansión) es un

protocolo de Capa 2 que se ejecuta en bridges y switches. Su principal objetivo es

garantizar que se impida la creación de bucles en trayectos redundantes en la red.

Los bucles son fatales para una red. (Javvin Technologies Inc, 2005)

Cuando se implementa la tecnología VPC, no es necesario utilizar STP ya que los

switches creen que están conectados a único dispositivo a través de una interfaz

de EthernetChannel, eliminando el bloqueo por caminos paralelos. Sin embargo a

pesar que no dependen de Spanning-Tree para reconvergencia, este es

recomendado utilizarlo como un mecanismo de seguridad para proteger cualquier

bucle de red causado por un error humano, como en caso de que un interruptor

externo esté conectado en la topología o cuando una mala configuración se

produce, Spanning Tree Protocol protegerá la red de bucles (Cisco, 2015).

En el contexto de la tecnología VPC, Spanning Tree Protocol proporciona las

siguientes funcionalidades:

Resguarda la red de capa 2 mediante la detección eimpide cualquier bucle.

Evita bucles L2 en los eventos de configuración de red particulares

relacionados con VPC.

STP se ejecuta para controlar bucles internos de la configuración del

dominio vPC.

Page 15: Virtual Port Channel

11

En la figura 2, spanningtree protocol está ejecutándose para gestionar los bucles

dentro del dominio vPC, o antes de la configuración inicial del vPC, también está

ejecutándose en circunstancias de un dispositivo con enlace único hacia el

dominio vPC.

Figura 4: Papel de STP dentro VPC-dominio

Page 16: Virtual Port Channel

12

3.5. Equipos que se recomiendan para la implementación.

El equipo seleccionado para la mejora de infraestructura de red de la empresa

Cloud Enterprise es un Cisco de la gama Nexus de la serie 5000 puesto que este

equipo cumple con todas las características necesarias de requerimiento que la

empresa necesita.

La serie Cisco Nexus 5000 ofrece una arquitectura innovadora que simplifica la

transformación de los centro de datos. Estos switches ofrecen un alto rendimiento,

Ethernet basado en estándares y FCoE que permite la consolidación de LAN, SAN

y entornos de red de clúster en un único Unified Fabric. Con el respaldo de un

amplio grupo de proveedores de tecnología complementarias líderes en la

industria, la serie Cisco Nexus 5000 está diseñado para afrontar los retos de los

centros de datos de próxima generación, donde la expansión de infraestructura y

las cargas de trabajo cada vez más exigentes son comunes.

3.5.1. Cisco Nexus 5000 Series Switches proporcionan

Flexibilidad arquitectónica para apoyar diversas necesidades empresariales y

de aplicaciones.

Simplicidad Infraestructura para disminuir el costo total de propiedad (TCO)

Mayor agilidad y flexibilidad para las implementaciones tradicionales con fácil

migración a virtualizado, unificadas o de computación (HPC.

Switches Cisco Nexus 5000 proporcionan una estructura unificada,

convergente sobre 10 Gigabit Ethernet para LAN, SAN, y el tráfico de clúster.

Esta unificación permite la red consolidación y una mayor utilización de la

infraestructura y el cableado previamente separado, reduce hasta en un 50 por

ciento el número de adaptadores y cables necesarios y la eliminación de

Page 17: Virtual Port Channel

13

conmutadores redundantes. Este desplazamiento de infraestructura también

baja la potencia y los costos de refrigeración de manera significativa,

especialmente para los servidores de rack.

Switches Cisco Nexus 5000 Series simplifican la gestión de cable, lo que permite a

los anfitriones conectarse a cualquier red a través de una interfaz Ethernet

unificada y permitiendo el despliegue más rápido de nuevas aplicaciones y

servicios.

3.5.2. Principales beneficios

Protección de la inversión y operación mejores prácticas: Con Cisco Nexus

5000 Series Switches, los clientes pueden tomar ventaja de los beneficios de

costo y funcionales de una red convergente unificado al tiempo que protege sus

inversiones en la red existente, de almacenamiento y de servidores activos.

Switches Cisco Nexus 5000 Series pueden ser fácilmente insertado en una red de

centros de datos existentes para proporcionar beneficios inmediatos sin causando

la interrupción o la revisión del diseño existente y funcionamiento mejores

prácticas.

FCoE de extremo a extremo: FCoE es un protocolo basado en estándares

abiertos que encapsula canales de Fibre sobre Ethernet, eliminando la necesidad

de interruptores separados, cableado, adaptadores y transceptores para cada

clase de tráfico. Esto hace que disminuya el consumo de energía y se reduzca

tanto los gastos de capital (CAPEX) y los gastos operativos (OPEX) para las

empresas.

Page 18: Virtual Port Channel

14

Multi-hop FCoE: Cisco Unified Fabric une los centros de datos y redes de

almacenamiento para ofrecer un único de alto rendimiento, alta disponibilidad y la

red escalable. Cisco ahora ofrece la convergencia de centro de datos de extremo

a extremo del servidor al almacenamiento mediante la entrega nueva clase

director.

Servicios de máquina optimizado virtuales: Switches Cisco Nexus Serie 5000

son diseñado para soportar la virtualización y la movilidad de la máquina virtual

mediante la asignación virtuales de máquinas a perfiles de red, permitiendo a los

servicios de red que se asignarán en una persona base de la máquina virtual de

forma centralizada desde la estructura unificada.

Switches Cisco Nexus de la serie 5000 se basan en el software CiscoNX-OS, que

proporciona una base de redes que ofrece eficiencia, capacidad de recuperación,

servicios virtualizados, y extensibilidad.

3.5.3. Switch Cisco Nexus 5548P

El switch Cisco Nexus 5548P es el primero de los Switches Cisco Nexus de la

serie 5500. Se trata de una sola unidad de rack (1 RU) a 10 Gigabit Ethernet Y

FCoE. El Cisco Nexus 5548P tiene 32 puertos fijos a 1/10-Gbps fijo SFP +

Ethernet y puertos FCoE.

Figura 5: Switch Cisco Nexus 5548P

Page 19: Virtual Port Channel

15

3.5.3.1. Especificaciones técnicas

Performance

Cisco Nexus 5548P y 5548UP: Capa 2 de reenvío de hardware

a 960 Gbps o 714.24 MPPS; Capa 3 desempeño de hasta 160

Gbps o 240 MPPS

Baja latencia diseño de corte medio que proporciona, la

latencia tráfico constante predecible independientemente del

tamaño del paquete, patrón de tráfico, o características

habilitadas en interfaces Ethernet 10 Gigabit

Rendimiento de tráfico a velocidad de línea en todos los

puertos

Interfaces Cisco Nexus 5548P: 32 puertos fija 1 a 10 Gigabit Ethernet y

FCoE puertos; además de interfaces adicionales a través de

un módulo de expansión

Características

Capa 2

Estos Switches poseen puertos de apa 2 puertos de switch

y de enlaces troncales para VLAN. IEEE 802.1Q VLAN

encapsulación

● Admite hasta 4096 VLANs

● Rápido Per-VLAN Spanning Tree Plus (PVRST +) (IEEE

802.1w compatibles)

● Múltiples Spanning Tree Protocol (MSTP) (802.1s IEEE): 64

instancias

● Spanning Tree PortFast

● Abarcando guardia de la raíz del árbol

● Spanning Tree Puente de Garantía

● Tecnología Cisco EtherChannel (hasta 16 puertos por

EtherChannel)

● Tecnología Cisco VPC

● Enhanced VPC permite VPC entre Cisco Nexus 5000 y

serie 2000, así como entre Cisco Nexus 3000 Series y anfitrión

final

● Sincronización de la configuración VPC

● Link Aggregation Control Protocol (LACP) IEEE 802.3ad

● Avanzada PortChannel hash basa en la capa 2, 3, y 4 de la

información

● Las tramas gigantes en todos los puertos (hasta 9216 bytes)

● Tramas de pausa (IEEE 802.3x)

● El control de tormentas (unicast, multicast y broadcast)

● VLAN privadas

● VLAN privada sobre troncos (aislado y promiscua)

Page 20: Virtual Port Channel

16

● VLAN privadas más de VPC y EtherChannels

● VLAN Reasignación

Características

Capa 3

Capa 3 interfaces: puertos enrutados en Cisco Nexus 5500

interfaces de plataforma, interruptor de interfaz virtual (SVI),

PortChannels, subinterfaces y subinterfaces PortChannel

para un total de 4096 entradas

● Admite hasta 8000 prefijos y hasta 16.000 IPv4 y 8000

entradas de host IPv6

● Admite hasta 8000 rutas de multidifusión

● Admite hasta 8000 grupos IGMP

● Soporte para 1000 entradas VRF

● Admite hasta 4096 VLANs

● 16 vías de rutas múltiples de igual coste (ECMP)

● 1664 y 2048 el ingreso de la lista de control de acceso de

salida entradas (ACL)

● Los protocolos de enrutamiento: estático, información de

enrutamiento Protocolo Version2 (RIPv2), protocolo de

enrutamiento de gateway interior mejorado (EIGRP), Open

Shortest Path First Versión 2 (OSPFv2) y Border Gateway

Protocol (BGP)

● IPv6 protocolos de enrutamiento: estático, Open Shortest

Path First Version 3 (OPFv3), Border Gateway Protocol

(BGPv6), Protocolo de enrutamiento de gateway interior

mejorado (EIGRPv6)

● IPv6 VRF Lite

● Protocolo Hot-Standby Router (HSRP) y el protocolo de

redundancia de enrutador virtual (VRRP)

● ACL: ACL con enrutado Layer 3 y 4 opciones para que

coincida con el ingreso y egreso de ACL

● Multicast: Protocolo Independent Multicast Versión 2 (PIMv2)

de modo disperso, Origen Específicas Multicast (SSM),

Multicast Fuente Descubrimiento Protocol (MSDP), Protocolo

de administración de grupos de Internet versiones 2 y 3 (v2

IGMP y v3), y Multicast VLAN Registro ( MVR)

● Virtual Desvío de ruta (VRF): VRF-lite (IP VPN);Unicast

VRF-consciente;y multicast BGP, OSPF-, RIP, y VRF-aware

● Unicast Reverse Path Forwarding (uRFP) con ACL;modos

estrictas y sueltas

● Tramas gigantes (hasta 9216 bytes)

QoS ● Capa 2 IEEE 802.1p (CoS)

Page 21: Virtual Port Channel

17

● 8 colas de hardware por puerto

● Por puerto de configuración QoS

● Confianza CoS

● Asignación basada Port-CoS

● Modular QoS CLI (MQC) el cumplimiento - IPv4 e IPv6

● QoS clasificación basada en ACL (capas 2, 3 y 4)

● CoS MQC marcado

● Por puerto cola de salida virtual

● CoS basada en la puesta en cola de salida

● Egreso cola estricta prioridad

● Basada en el puerto de salida de programación: Weighted

Round-Robin (WRR)

● Plan de Control de Vigilancia (COPP) - IPv4 e IPv6

Seguridad

ACL Ingress (estándar y extendidas) sobre Ethernet y puertos

Ethernet virtuales

● Estándar y extendido de capa 2 ACL: direcciones MAC, tipo

de protocolo, etc.

● Estándar y capa extendida de 3 a 4 ACL: IPv4 e IPv6,

protocolo de Internet de mensajes de control (ICMP y ICMPv6),

TCP, User Datagram Protocol (UDP), etc.

● ACL basada en VLAN (VACLs)

● ACL basada Port-(PACL)

● ACL nombradas

● Distribución ACL optimizado

● ACL en terminales virtuales (VTY)

● ACL sesión en la interfaz de administración

● Dynamic Host Configuration Protocol (DHCP) espionaje con

la opción 82

● Protocolo de resolución de direcciones dinámicas (ARP)

Inspección

● IP Source Guard

● Relé DHCP

● Cisco CTS (Autenticación y Política de descarga de ACS)

● Puerto Ethernet Seguridad

● IPv6 RACL

● IPv6 PACL

● IPv6 VACL

Características de

alta disponibilidad

● Servicio de actualización de software (ISSU) de capa 2

● Fuentes de alimentación reemplazables en caliente

Page 22: Virtual Port Channel

18

reemplazables en campo, módulos de ventilador, y módulos de

expansión

● Redundancia 1 potencia: 1

● N: 1 ventilador del módulo de redundancia

Administración

Gestión Switch mediante 10/100 / gestión o consola puertos

1,000 Mbps

● Consola basada en CLI para proporcionar detallada gestión

fuera de banda

● Administración en banda interruptor

● Localizador y baliza LED de la serie Cisco Nexus 2000

● Localizadores y balizas LED basada Port-

● La sincronización de configuración

● Preprovisioning Módulo

● Rollback de configuración

● Secure Shell versión 2 (SSHv2)

● Telnet

● AAA

● AAA con RBAC

● RADIUS

● TACACS +

● Syslog (8 servidores)

● Analizador de paquetes Embedded

● SNMPv1, v2 y v3 (IPv4 e IPv6)

● Soporte SNMP MIB mejorada

● XML apoyo (NETCONF)

● Monitoreo remoto (RMON)

● Advanced Encryption Standard (AES) para el tráfico de

administración

● Nombre de usuario y contraseñas a través de CLI y SNMP

unificada

● Protocolo de autenticación por desafío mutuo de Microsoft

(MS-CHAP)

● Los certificados digitales para la gestión entre el interruptor y

el servidor RADIUS

● Versiones Cisco Discovery Protocol 1 y 2

● RBAC

● Switched Puerto Analyzer (SPAN) en física, PortChannel,

VLAN, y las interfaces de canal de fibra

● SPAN remoto encapsulada (ERSPAN)

● Ingreso y egreso de paquetes contadores por interfaz

Page 23: Virtual Port Channel

19

● Network Time Protocol (NTP)

● Cisco ORO

● Pruebas diagnósticas bootup Integral

● Llamar a casa

● Smart Call Home

● Cisco Fabric Manager

● Cisco DCNM

● CiscoWorks LAN Management Solution (LMS) Tabla 3: Especificaciones Técnicas Switch Cisco Nexus 5548P

3.5.3.2. Garantía

La plataforma Cisco Nexus 5500 tiene una garantía limitada de hardware de 1

año.La garantía incluye el reemplazo de hardware con un giro de 10 días desde la

recepción de una autorización de devolución de materiales.

3.5.3.3. Precio

Figura 6: Precio Switch Cisco Nexus 5548P

Page 24: Virtual Port Channel

20

3.6. Ventajas del uso de la tecnología

La principal tecnología implementada en este trabajo es la de Virtual Port Channel

(vPC), una técnica que proporciona múltiples beneficios, entre los principales, la

posibilidad de sustituir el Protocolo Spanning Tree, con la mejora de poder usar

todo el ancho de banda, permitiendo sumar la velocidad nominal de cada puerto

físico entre los equipos conectados, creando un nuevo enlace virtual más potente,

robusto y estable.

Existen otros métodos como port-channel con algoritmos de balanceo, que hacen

algo similar a lo que vPC ofrece, sin embargo su principal limitante es que no se

permite la “combinación” de los enlaces de dos o más equipos, pues se requiere

que las conexiones físicas provengan del mismo origen.

Beneficios del VPC (CISCO, Inc, 2014)

VPC ofrece las siguientes ventajas técnicas:

● Posibilidad de Eliminar el Protocolo Spanning Tree (STP) puertos

bloqueados

● Utiliza todo el ancho de banda de enlace ascendente disponible

● Permite servidores de base dual para operar en modo activo-activo

● Proporciona convergencia rápida al vínculo o dispositivo de fallo

● Dispone de puertas de enlace dual activo / activo por defecto para

servidores

Page 25: Virtual Port Channel

21

Mediante el uso de VPC, los usuarios obtienen las ventajas operativas y

arquitectónicas inmediatas:

● Un diseño de red más simplificado

● Proporciona un a la capa de red más resistencia y robustez

● Permite la movilidad de la máquina virtual sin fisuras y alta disponibilidad

en los grupos de servidores.

Page 26: Virtual Port Channel

22

3.7. Proceso de Validación de la Tecnología.

Tras cotejar, a través de las tablas de especificaciones técnicas, que los equipos

Cisco Nexus 5548P, seleccionados como solución, cumplen con los

requerimientos técnicos solicitados, Consultores SA se compromete con Cloud

Enterprise a ejecutar una serie de pruebas a fin de corroborar el funcionamiento

de la tecnología VPC de acuerdo al siguiente calendario:

Las pruebas que se realizarán como parte de la validación se presentan a

continuación en una secuencia lógica:

Partiendo de un ambiente de prueba, que se ajuste en lo posible al escenario de

servicio de Cloud Enterprise, en el que se realizarán las configuraciones

pertinentes en cada uno de los equipos, empezando por habilitar dicha tecnología

en ambos switches.

Meses Septiembre Octubre

Semanas 1 2 3 4 5 6 7 8

Configuración de Equipos en Ambiente de Prueba

Período Verificación de Configuraciones

Corrección de Configuraciones (re calibración)

Monitoreo de Red (Enlaces) con PRTG

Interpretación y Análisis de los Resultados.

Presentación de Resultados Tabla 4: Cronograma de las validaciones a ejecutar

Page 27: Virtual Port Channel

23

3.7.1. Verificación de las configuraciones

Tras la configuración de VPC sellevará a cabo un proceso de verificación de la

misma, tomando como referencia la lista que CISCO expone como los principales

fallos al momento de la configuración de esta tecnología (Cisco System, Inc.,

2015):

Posibles errores en los identificadores de domino de los switches VPC y, por

tanto se verificará que estos coincidan en su id.

Corroborar la configuración del enlace entre pares de los switches core.

En lo que respecta al enlace de alta disponibilidad, se debe asegurar la

accesibilidad desde ambos switches (core), constatando que las interfaces de

administración de ambos equipos estén arriba y tengan las direcciones IP de la

interfaz y destino configuradas correctamente, así mismo se debe verificar la

configuración de la VLAN que comparten en este enlace ambos equipos.

Verificación la coincidencia de los parámetros de QoS en los Nexus

5448equipos.

Además es importante constatar el tráfico estático de VPC y sobre todo los

roles de dispositivos locales (correcta asignación de prioridades)

Se corroborara el correcto funcionamiento del sistema VPC de direcciones

MAC, a fin de asegurar

Finalmente aunque no forma parte de la tecnología como tal, es importante

constatar el funcionamiento de los listas de accesos y vlan configuradas en el

ambiente real y recreadas en el ambiente de prueba, esencialmente el acceso a

los servicios desde los equipos usuarios.

Page 28: Virtual Port Channel

24

Para la identificación de posibles fallos se emplearán la lista de comandos

proporcionada por el fabricante como parte de la documentación oficial de

Cisco (Cisco Systems, Inc., 2015) referente a esta tecnología, los que se

detallan en la siguiente tabla:

Figura 7: Verificación de la Configuración Por Cannel VPC

3.7.2. Monitoreo de la Red (estado de los enlaces)

Se realizará monitoreo del estado de los enlaces VPC y el ancho de banda

soportado por ellos, utilizando como herramienta el software de monitoreo PRTG

Network Monitors, esto con el fin de verificar el aumento en ancho de banda que

se espera obtener, en los enlaces con los switches de acceso, con la

implementación de esta propuesta, en contraste con el ancho de banda del que se

dispone en el centro de datos de Cloud Enterprise.

De igual forma por medio de esta herramienta se verificarán los tiempos de

respuesta en la red, que proporciona la implementación de esta tecnología,

recreando escenarios en los que se deshabilite la conexión desde uno de los

equipos Core hasta el o los switch de capa 2, a fin de corroborar que esta

proporcione la redundancia y disponibilidad solicitada.

Page 29: Virtual Port Channel

25

El monitoreo se realizará por un periodo de un dos semanas, 24 horas al día (en

vista del giro del negocio), tiempo que se considera prudencial para recopilar datos

estadísticos de acerca del comportamiento registrado, los resultados serán

evaluados tomando como punto de partida las métricas actuales del servicio y las

expectativas del cliente. Estos resultados serán entregados a Cloud Enterprise en

un documento formal en donde se expongan claramente los resultados obtenidos.

Ahora bien tras la implementación de la solución se la empresa se compromete a

monitorizar durante dos semanas más los resultados en el escenario real.

Page 30: Virtual Port Channel

26

IV. Trabajos citados

Aguilar, E. (22 de 04 de 2015). El Blog de encora. Obtenido de Configurar vPC y HSRP en Nexus

5500 series: http://blog.ncora.com/2015/04/configurar-vpc-y-hsrp-en-nexus-5500.html

Ariganello, E., & Barrientos Sevilla, E. (2010). Redes Cisco, CCNP a Fondo. Madrid: Alfaomega.

Recuperado el 06 de 2015

Cisco. (06 de 2012). Guía de configuración de Cisco Nexus 7000 Series NX-OS Unicast Routing.

Recuperado el 22 de 08 de 2015, de Configuración HSRP:

http://www.cisco.com/c/en/us/td/docs/switches/datacenter/sw/5_x/nx-

os/unicast/configuration/guide/l3_cli_nxos/l3_hsrp.pdf

Cisco. (11 de 12 de 2013). Cisco NX-OS Virtual PortChannel: Fundamental Design Concepts with

NXOS 5.0. Recuperado el 23 de 08 de 2015, de HSRP Gateway Considerations:

http://www.cisco.com/c/en/us/products/collateral/switches/nexus-5000-series-

switches/design_guide_c07-625857.html

Cisco. (06 de 2015). Cisco Public Information. Recuperado el 23 de 08 de 2015, de Design and

Configuration Guide: Best Practices for Virtual Port Channels (vPC) on Cisco Nexus 7000

Series Switches:

http://www.cisco.com/c/dam/en/us/td/docs/switches/datacenter/sw/design/vpc_design

/vpc_best_practices_design_guide.pdf

Cisco System, Inc. (22 de Agosto de 2015). CISO. Obtenido de CISCO:

http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus5000/sw/troubleshoot

ing/guide/N5K_Troubleshooting_Guide/n5K_ts_vpc.html

Cisco Systems, Inc. (21 de Agosto de 2015). CISCO. Obtenido de CISCO:

http://www.cisco.com/c/en/us/products/collateral/switches/nexus-5000-series-

switches/configuration_guide_c07-543563.html

CISCO, Inc. (10 de Septiembre de 2014). Cisco Nexus 5000 Series Switches. Recuperado el 19 de

Agosto de 2015, de Virtual PortChannel Quick Configuration Guide:

http://www.cisco.com/c/en/us/products/collateral/switches/nexus-5000-series-

switches/configuration_guide_c07-543563.html

Filliben, J. (25 de 08 de 2010). jeremyfilliben. Recuperado el 20 de 08 de 2015, de HSRP, VPC y el

Comando VPC peer-gateway: http://www.jeremyfilliben.com/2010/08/hsrp-vpc-and-vpc-

peer-gateway-command.html

Javvin Technologies Inc. (2005). Network Protocols Handbook. En J. T. Inc, Network Protocols

Handbook (pág. 219). Saratoga.

Page 31: Virtual Port Channel

27

Shamsee, N., & Klebanov, D. (2015). CCNA Data Center DCICT 640-916 Official Cert Guide. En N.

Shamsee, & D. Klebanov, CCNA Data Center DCICT 640-916 Official Cert Guide (pág. 50).

Indianapolis: Pearson Education .

Page 32: Virtual Port Channel

28

V. Anexos

5.1. Componentes y descripción de Cisco Nexus 5548 switches

Page 33: Virtual Port Channel

1-17Cisco Nexus 5000 Series Hardware Installation Guide

Chapter 1 Overview Cisco Nexus 5500 Platform Switches

SFP+ Copper Cables

Copper cables are available for use with the 10-Gigabit Ethernet SFP+ module. The cables come in the following lengths:

• 1 m, 30 AWG

• 3 m, 28–30 AWG

• 5 m, 26–28 AWG

SFP Fibre Channel Transceivers

The Cisco Nexus 5596T switch also supports the following SFP Fibre Channel transceiver:

CWDM Optics

The Cisco Nexus 5596T switch also supports the following CWDM optics:

Cisco Nexus 5548UP and 5548P SwitchesThis section describes the Cisco Nexus 5548UP and 5548P switches and their components. The Cisco Nexus 5548UP switch provides universal ports that support Ethernet and fibre channel over Ethernet (FCoE) connections. The Cisco Nexus 5548P switch provides ports that support Ethernet connections. Collectively, these switches are referred to as Cisco Nexus 5548 switches.

This section includes the following topics:

• Features, page 1-18

• Chassis, page 1-18

• Expansion Modules, page 1-20

• Data Ports, page 1-23

• Power Supplies, page 1-23

• Fan Modules, page 1-25

Model Description

SFP-H10GB-CU1M 10GBASE-CU SFP+ Cable (1 meter)

SFP-H10GB-CU3M 10GBASE-CU SFP+ Cable (3 meters)

SFP-H10GB-CU5M 10GBASE-CU SFP+ Cable (5 meters)

Model Description

DS-SFP-FC4G-SW 4-, 2-, or 1-Gbps Fibre Channel—Short wavelength SFP module

Model Description

DS-CWDM4G1470= 1470 nm CWDM 1/2/4-Gbps Fibre Channel SFP

DS-CWDM4G1610= 1610 nm CWDM 1/2/4-Gbps Fibre Channel SFP

Page 34: Virtual Port Channel

1-18Cisco Nexus 5000 Series Hardware Installation Guide

Chapter 1 Overview Cisco Nexus 5500 Platform Switches

• Transceivers and Cables, page 1-26

Features

The Cisco Nexus 5548UP switch is a 10-Gigabit Ethernet and FCoE switch that offers up to 960-Gbps throughput and up to 48 ports. The switch has 32 fixed 1- or 10-Gbps SFP+ Ethernet and FCoE ports and one expansion slot. The expansion slot supports GEMs that offer 16 10-Gigabit Ethernet ports, eight 10-Gigabit Ethernet ports and eight 10-Gigabit FCoE ports, or 16 10-Gigabit Ethernet/FCoE ports. This switch has an orange label with “Cisco Nexus 5548UP” above the Cisco logo on the front of the chassis.

The Cisco Nexus 5548P switch is a 10-Gigabit Ethernet switch that offers up to 960-Gbps throughput and up to 48 ports. The switch has 32 fixed 1- or 10-Gbps SFP+ Ethernet and FCoE ports and one expansion slot. The expansion slot supports GEMs that offer 16 10-Gigabit Ethernet ports or eight 10-Gigabit Ethernet ports and eight 10-Gigabit FCoE ports. This switch has a gray label with “Cisco Nexus 5548P” above the Cisco logo on the front of the chassis.

As a top-of-rack switch, all the servers in the rack connect to the Cisco Nexus 5548UP or Cisco Nexus 5548P switch, and it connects to the LAN or SAN.

The Cisco Nexus 5548UP and 5548P switches have the following features:

• One slot on the back of the switch for a Generic Expansion Module (GEM). Two slots on the front of the switch for hot swap-capable power supplies.

• Two slots on the front of the switch for hot swap-capable fan modules. You can insert four fans per module, which gives you a total of eight fans.

• One slot at the front of the switch for a USB port.

• Front-to-back (port-side exhaust) cooling that supports efficient data center hot and cold-aisle designs. The Cisco Nexus 5548UP alternatively supports back-to-front (port-side intake) cooling (all fan and power supply modules in the same chassis must support the same direction of airflow).

Chassis

The Cisco Nexus 5548 switch chassis is 1 RU, 1.72 inches (4.4 cm) tall, 17.3 inches (43.9 cm) wide, and 29.5 inches (74.9 cm) deep. It is designed to be mounted in a standard 19-inch (48.26 cm) rack. The switch has two power supplies and two fans modules on the front of the switch. The switch also has one USB port (usb1:) at the front of the switch. This external USB flash memory is installed in a supervisor module used for storing image files, configuration files, and other miscellaneous files. You can create directories on external flash memory and navigate through these directories. You can also create and access files.

The usb1: port usage on the Cisco Nexus 5548 switch is the same as that on other Cisco NX-OS devices. (For details, see the chapter, “Using the Device File Systems, Directories, and Files” in the NX-OS Fundamentals Configuration Guide for your software release.)

Thirty-two fixed 10-Gigabit Ethernet ports and expansion modules are at the rear of the switch. The front of the switch has an indicator LED, management ports, 2 fan modules and 2 power supplies as shown in Figure 1-16.

Page 35: Virtual Port Channel

1-19Cisco Nexus 5000 Series Hardware Installation Guide

Chapter 1 Overview Cisco Nexus 5500 Platform Switches

Figure 1-16 Cisco Nexus 5548 Switch Front View

The rear of the Cisco Nexus 5548 switch chassis has 32 fixed 10-Gigabit ports and 1 slot for an optional expansion module. On the Cisco Nexus 5548UP switch, the 32 fixed ports are 10-Gigabit Ethernet and FCoE ports (port numbering is shown with an orange label). On the Cisco 5548P switch, the 32 fixed ports are 10-Gigabit Ethernet ports (port numbering is shown with a gray label). Figure 1-17 shows the rear of the Cisco Nexus 5548 switch.

1 ID LED 4 Two fan modules

2 Status LED 5 Two power supplies

3 Management (10/100/1000) ports, console port, and USB port

2391

97

4

3

5

1

2

Page 36: Virtual Port Channel

1-20Cisco Nexus 5000 Series Hardware Installation Guide

Chapter 1 Overview Cisco Nexus 5500 Platform Switches

Figure 1-17 Cisco Nexus 5548 Switch Rear View

Note The L1/L2/Mgmt1 ports are not usable. They are disabled at this time

Expansion Modules

Expansion modules allow Cisco Nexus switches to be configured as cost-effective 10-Gigabit Ethernet switches and as I/O consolidation platforms with native Fibre Channel connectivity.

The Cisco Nexus 5500 Platform is equipped with expansion modules that you can use to increase the number of 10-Gigabit Ethernet and FCoE ports or connect to Fibre Channel SANs with 8-, 4-, 2-, or 1-Gbps Fibre Channel switch ports. The chassis supports hot swapping of the expansion modules.

The Cisco Nexus 5548 supports one of the following expansion modules:

• N55 M16P Generic Expansion Module, page 1-20

• N55 M8P8FP Generic Expansion Module, page 1-21

• N55 M16UP Generic Expansion Module, page 1-22

N55 M16P Generic Expansion Module

The N55 M16P Generic Expansion Module (GEM) provides 16 1- or 10-Gigabit Ethernet ports using the SFP+ transceiver.

Figure 1-18 shows the components that you use to install this expansion module.

1 ID LED 3 32 fixed 10-Gigabit Ethernet/FCoE ports (Cisco Nexus 5548UP) or 32 fixed 10-Gigabit Ethernet ports (Cisco Nexus 5548P)

2 Status LED 4 Expansion module

2391

98

32

4

1

Page 37: Virtual Port Channel

1-21Cisco Nexus 5000 Series Hardware Installation Guide

Chapter 1 Overview Cisco Nexus 5500 Platform Switches

Figure 1-18 Components Used to Install the N55 M16P GEM

Figure 1-19 shows the front of the module and how its ports are numbered.

Figure 1-19 Port Numbering for the N55 M16P GEM

N55 M8P8FP Generic Expansion Module

The N55 M8P8FP Generic Expansion Module (GEM) provides 8 1- or 10-Gigabit Ethernet and FCoE ports using the SFP+ interface and 8 ports of 8-, 4-, 2-, or 1-Gbps native Fibre Channel connectivity using the SFP interface.

Figure 1-20 shows the N55 M8P8FP expansion module.

1 Status LED 3 16 10-Gigabit Ethernet ports

2 Ejector lever 4 Captive screw that locks the ejector lever

2393

24

2

43

1

1 Port numbering from top to bottom and left to right

2393

25

1

Page 38: Virtual Port Channel

1-22Cisco Nexus 5000 Series Hardware Installation Guide

Chapter 1 Overview Cisco Nexus 5500 Platform Switches

Figure 1-20 Components Used to Install the N55 M8P8FP GEM

Figure 1-21 shows a front view of the N55 M8P8FP expansion module.

Figure 1-21 Port Numbering on the N55 M8P8FP GEM

N55 M16UP Generic Expansion Module

The N55 M16UP Generic Expansion Module (GEM) provides 16 1- or 10-Gigabit Ethernet and FCoE ports using SFP+ transceivers.

Figure 1-22 shows the components that you use to install this expansion module.

2393

26

2

5

3

1

4

1 Status LED 4 Eight 10-Gigabit FCoE ports

2 Ejector lever 5 Captive screw that locks the ejector lever

3 Eight 10-Gigabit Ethernet ports

1 Port numbering for Ethernet ports (from top to bottom and left to right)

2 Port numbering for FCoE ports (from top to bottom and left to right)

2393

27

1 2

Page 39: Virtual Port Channel

1-23Cisco Nexus 5000 Series Hardware Installation Guide

Chapter 1 Overview Cisco Nexus 5500 Platform Switches

Figure 1-22 Components Used to Install the N55 M16UP GEM

The ports are numbered the same as with the N55-M16P GEM (see Figure 1-19 on page 1-21)

Data Ports

Each data port on the Cisco Nexus 5548 switch is numbered, and groups of ports are numbered based on their function. The ports are numbered from top to bottom and left to right.

Figure 1-23 Port Numbering of the Cisco Nexus 5548 Switch with an Expansion Module

Power Supplies

The Cisco Nexus 5548 switches uses a front-end power supply. The chassis has slots for two power supplies. Two power supplies can be used for redundancy, but the Cisco Nexus 5548 switch is fully functional with one power supply. See Table 1-2 for the list of power supplies that you can order with the Cisco Nexus 5548UP and 5548P switches. Note that the Cisco Nexus 5548P switch supports only front-to-back (port-side exhaust) airflow and the Cisco Nexus 5548UP switch supports either front-to-back (port-side exhaust) or back-to-front (port-side intake) airflows.

2

4

3

1

2393

28

1 Status LED 3 16 10-Gigabit Ethernet and FCoE ports

2 Ejector lever 4 Captive screw that locks the ejector lever

1 32 fixed ports 2 16-port expansion module (N55 M16P, N55 M8P8FP, or N55 M16UP)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

26 28 30 3218 20 22 2410 12 14 162 4 6 8

1 3 5 7 9 11 13 15

10 12 14 162 4 6 8

1 2

2367

20

Page 40: Virtual Port Channel

1-24Cisco Nexus 5000 Series Hardware Installation Guide

Chapter 1 Overview Cisco Nexus 5500 Platform Switches

Caution All of the power supply and fan modules in the same chassis must use the same airflow direction or an error will occur with possible over heating and shut down of the switch. If you power up the switch with more than one airflow direction, you must power down the switch and replace the modules with the wrong airflow direction (modules not taking in coolant air from the cold aisle) before powering up the switch.

Figure 1-24 shows the 750W DC power supply. For specifications for this power supply, see Table B-10 on page B-4. For more information on the LEDs, see Table D-1 on page D-2

Figure 1-24 750 W DC Power Supply for the Cisco Nexus 5500 Series Switch

Table 1-2 Power Supplies for the Cisco Nexus 5500 Platform switches

Part Number Power Supply

N55-PAC-750W Cisco Nexus 5548P/5548UP PSU Front-to-Back (port-side exhaust) Airflow module, A/C, 100-240V, 750W

N55-PAC-750W(=) Cisco Nexus 5548P/5548UP PSU Front-to-Back (port-side exhaust) Airflow module spare, A/C, 100-240V, 750W

N55-PAC-750W-B Cisco Nexus 5548UP PSU Back-to-Front (port-side intake) Airflow module, A/C, 100-240V, 750W

N55-PAC-750W-B(=) Cisco Nexus 5548UP PSU Back-to-Front (port-side intake) Airflow module spare, A/C, 100-240V, 750W

N55-PDC-750W Cisco Nexus 5548P/5548UP PSU Front-to-Back (port-side exhaust) Airflow module, D/C, -40 to -72VDC, 750W

N55-PDC-750W(=) Cisco Nexus 5548P/5548UP PSU Front-to-Back (port-side exhaust) Airflow module spare, D/C, -40 to -72VDC, 750W

Page 41: Virtual Port Channel

1-25Cisco Nexus 5000 Series Hardware Installation Guide

Chapter 1 Overview Cisco Nexus 5500 Platform Switches

Note Never leave a power supply slot empty. If you remove a power supply, replace it with another one. If you do not have a replacement power supply, leave the non functioning one in place until you can replace it.

The Cisco Nexus 5548UP has front-to-back (port-side exhaust) or back-to-front (port-side intake) airflow. The Cisco Nexus 5548P has front-to-back (port-side exhaust) airflow only. Figure 1-25 shows the AC power supply, with two LEDs: one for power status and one for failure condition.

Figure 1-25 AC Power Supply for the Cisco Nexus 5548 Switch

For information on each of the LEDs, see Table D-1 on page D-2. To see how combinations of these LED states indicate specific conditions, see the “Power Supply Conditions” section on page E-2.

Note Never leave a power supply slot empty. If you remove a power supply, replace it with another one. If you do not have a replacement power supply, leave the non functioning one in place until you can replace it.

For the specifications of this power supply, see Table B-11 on page B-4.

Caution The airflow direction should be the same for power supplies and fan modules.

Fan Modules

The Cisco Nexus 5548 switches require two fan modules. Each fan module has four fans. If more than one fan fails in one of these modules, you must replace the module. Figure 1-26 identifies the components that you use to install or troubleshoot these modules.

1 Handle 4 Ejector latch

2 FAIL (left) and OK (right) LEDs

3 DC power receptacle

1 FAIL (top) and OK (bottom) LEDs 3 Release latch

2 Handle

2391

141 2 3

Page 42: Virtual Port Channel

1-26Cisco Nexus 5000 Series Hardware Installation Guide

Chapter 1 Overview Cisco Nexus 5500 Platform Switches

Figure 1-26 Cisco Nexus 5548 Fan Module

The bicolor fan module LED indicates the fan tray health. Green indicates normal operation, while amber indicates a fan failure. For more information on this LED, see Table D-1 on page D-2. The Cisco Nexus 5548UP has front-to-back (port-side exhaust) or back-to-front (port-side intake) airflow. The Cisco Nexus 5548P has front-to-back (port-side exhaust) airflow only.

Caution All of the power supply and fan modules in the same chassis must use the same airflow direction or an error will occur with possible over heating and shut down of the switch. If you power up the switch with more than one airflow direction, you must power down the switch and replace the modules with the wrong airflow direction (modules not taking in coolant air from the cold aisle) before powering up the switch.

Transceivers and Cables

The Cisco Nexus 5548UP switch supports 10-Gigabit Ethernet and FCoE SFP+ and FET transceivers, and the Cisco Nexus 5548P switch supports 10-Gigabit Ethernet SFP+ and FET transceivers. The expansion modules support 1- and 10-Gigabit Ethernet SFP+ transceivers (N55 M16P expansion module), 10-Gigabit FET transceivers, and Fiber Channel SFP transceivers.

This section includes the following topics:

• Transceivers, page 1-26

• Cables, page 1-28

Transceivers

Table 1-3 lists the supported transceiver options.

2391

13

1

23

1 Handle 3 Captive screw

2 Bicolor LED (green or amber)

Page 43: Virtual Port Channel

1-27Cisco Nexus 5000 Series Hardware Installation Guide

Chapter 1 Overview Cisco Nexus 5500 Platform Switches

This section includes the following topics:

• SFP+ Transceivers, page 1-27

• SFP+ Copper Cables, page 1-28

• SFP Fibre Channel Transceivers, page 1-28

• Cables, page 1-28

SFP+ Transceivers

The enhanced small-form-factor pluggable (SFP+) 10-Gigabit Ethernet transceiver module (see Table 1-4) is a bidirectional device with a transmitter and receiver in the same physical package. It has a 20-pin connector on the electrical interface and duplex LC connector on the optical interface.The Cisco Nexus 5548 switch supports the following SFP+ optical transceivers:

• SR

• LR (for uplink only)

Table 1-3 Supported Transceivers

Cisco SFP Description

FET-10G 10G SFP+ module for Cisco Nexus 2000 Series to Cisco Nexus 5000 Series connectivity

Cisco SFP-10G-SR 10GBASE-SR SFP+ module (multimode fiber [MMF])

Cisco SFP-10G-LR 10GBASE-LR SFP+ module (single-mode fiber [SMF])

Cisco SFP-H10GB-CU1M 10GBASE-CU SFP+ cable 1 m (Twinax cable)

Cisco SFP-H10GB-CU3M 10GBASE-CU SFP+ cable 3 m (Twinax cable)

Cisco SFP-H10GB-CU5M 10GBASE-CU SFP+ cable 5 m (Twinax cable)

Cisco GLC-T 1000BASE-T SFP

Cisco GLC-SX-MM GE SFP, LC connector SX transceiver (MMF)

Cisco GLC-LH-SM GE SFP, LC connector LX/LH transceiver (SMF)

Cisco SFP-GE-T 1000BASE-T SFP, extended temperature range

Cisco SFP-GE-S GE SFP, LC connector SX transceiver (MMF), extended temperature range and digital optical monitoring (DOM)

Cisco-SFP-GE-L GE SFP, LC connector LX/LH transceiver (SMF), extended temperature range and DOM

Cisco DS-SFP-FC4G-SW 4-Gbps Fibre Channel SW SFP, LC (for Fibre Channel expansion module ports)

Cisco DS-SFP-FC4G-LW 4-Gbps Fibre Channel LW SFP, LC (for Fibre Channel expansion module ports)

Cisco DS-SFP-FC8G-SW 8-Gbps Fibre Channel SW SFP+, LC (for Fibre Channel expansion module ports)

Cisco DS-SFP-FC8G-LW 8-Gbps Fibre Channel LW SFP+, LC (for Fibre Channel expansion module ports)

Page 44: Virtual Port Channel

1-28Cisco Nexus 5000 Series Hardware Installation Guide

Chapter 1 Overview Cisco Nexus 5500 Platform Switches

SFP+ Copper Cables

Copper cables are available for use with the 10-Gigabit Ethernet SFP+ module (see Table 1-5). The cables come in the following lengths:

• 1 m, 30 AWG

• 3 m, 28–30 AWG

• 5 m, 26–28 AWG

SFP Fibre Channel Transceivers

The Cisco Nexus 5548 switch supports the multimode 850-nm, 4-Gbps SFPs with 150-m reach (see Table 1-6).

Cables

On the Cisco Nexus 5500 Platforms, you can use an innovative Twinax copper cable that connects to standard SFP+ connectors for in-rack use and on the optical cable for longer cable runs.

For in-rack or adjacent-rack cabling, the Cisco Nexus 5500 Platform supports SFP+ direct-attach 10-Gigabit Ethernet copper, which integrates transceivers with Twinax cables into an energy efficient, low-cost, and low-latency solution. SFP+ direct-attach 10-Gigabit Twinax copper cables use only 0.1 W of power per transceiver and introduce only approximately 0.25 microsecond of latency per link.

For longer cable runs, the Cisco Nexus 5500 Platform supports multimode, short-reach optical SFP+

Table 1-4 SFP+ Transceivers

Model Description

SFP-10G-SR 10-Gigabit Ethernet—Short range SFP+ module

SFP-10G-LR 10-Gigabit Ethernet—Long range SFP+ module

Table 1-5 SFP+ Copper Cables

Model Description

SFP-H10GB-CU1M 10GBASE-CU SFP+ cable (1 meter)

SFP-H10GB-CU3M 10GBASE-CU SFP+ cable (3 meters)

SFP-H10GB-CU5M 10GBASE-CU SFP+ cable (5 meters)

Table 1-6 SFP Fibre Channel Transceivers

Model Description

DS-SFP-FC4G-SW 4-Gbps Fibre Channel-SW SFP, LC

DS-SFP-FC4G-LW 4-Gbps Fibre Channel-LW SFP, LC, (10-km reach)

Cisco DS-SFP-FC8G-SW 8-Gbps Fibre Channel SW SFP+, LC

Cisco DS-SFP-FC8G-LW 8-Gbps Fibre Channel LW SFP+, LC

Page 45: Virtual Port Channel

1-29Cisco Nexus 5000 Series Hardware Installation Guide

Chapter 1 Overview Cisco Nexus 5000 Platform Switches

transceivers. These optical transceivers use approximately 1 W per transceiver and have a latency of less than 0.1 microsecond.

Table 1-7 shows details of the cables supported.

Cisco Nexus 5000 Platform SwitchesThe Cisco Nexus 5000 Platform switches include the Cisco Nexus 5020 switch and the Cisco Nexus 5010 switch.

This section includes the following topics:

• Cisco Nexus 5020 Switch, page 1-29

• Cisco Nexus 5010 Switch, page 1-40

Cisco Nexus 5020 SwitchThis section describes the Cisco MDS 9200 Series. This section includes the following sections:

• Features, page 1-29

• Chassis, page 1-30

• Expansion Modules, page 1-32

• Ports, page 1-35

• Power Supply, page 1-37

• Fan Modules, page 1-38

• Transceivers, page 1-39

Features

The Cisco Nexus 5020 switch is a 2 RU, top-of-rack switch that provides Ethernet and Fibre Channel consolidation in a single physical cable. The Fibre Channel over Ethernet (FCoE) protocol is used to consolidate Ethernet and Fibre Channel traffic onto the same physical connection between the server and the switch. As a top-of-rack switch, all the servers in the rack connect to the Cisco MDS 9200 Series, and it connects to the LAN or SAN.

Table 1-7 Supported Cables

Connector (Media) Cable Distance

Power (each side)

Transceiver Latency (Link) Standard

SFP+ CU copper Twinax 5 m Approx. 0.1 W

~ 0.1 microseconds

SFF 8431

SFP+ ACU copper Active Twinax 7 m/

10 m

Approx. 0.5 W

~ 6.8 nanoseconds

SFF 8461

SFP+ SR MMF and SR MM OM2

MM OM3

82 m/

300 m

1 W ~ 0 microseconds

IEEE 802.3ae

Page 46: Virtual Port Channel

29

5.2. Datasheep de la serie 5000 cisco nexus

Page 47: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 1 of 29

Data Sheet

Cisco Nexus 5548P, 5548UP, 5596UP, and 5596T Switches

Latest Additions to the Cisco Nexus 5000 Series Switches

Cisco Nexus 5000 Series Switches Product Overview

Today’s data centers are increasingly filled with dense rack-mount and blade servers that host powerful multicore

processors. The rapid increase in in-rack computing density and the increasing use of virtualization software

combine to accelerate the demand for 10 Gigabit Ethernet and consolidated I/O: applications for which the Cisco

Nexus® 5000 Series Switches are an excellent match. With low latency and choice of front-to-back or back-to-front

cooling, copper or fiber access ports, and rear-facing data ports, the Cisco Nexus 5000 Series is designed for a

broad range of physical, virtual, storage access, and high-performance computing environments, thus giving

customers the flexibility to meet and scale their data center requirements in a gradual manner and at a pace that

aligns with their business objectives.

The switch series, using cut-through architecture, supports line-rate 10 Gigabit Ethernet on all ports while

maintaining consistently low latency independent of packet size and services enabled. It supports a set of network

technologies known collectively as Data Center Bridging (DCB) that increases the reliability, efficiency, and

scalability of Ethernet networks. These features allow the switches to support multiple traffic classes over a

lossless Ethernet fabric, thus enabling consolidation of LAN, SAN, and cluster environments. Its ability to connect

Fibre Channel over Ethernet (FCoE) to native Fibre Channel protects existing storage system investments while

dramatically simplifying in-rack cabling.

In addition to supporting standard 10 Gigabit Ethernet network interface cards (NICs) on servers, the Cisco Nexus

5000 Series integrates with multifunction adapters called converged network adapters (CNAs) that combine the

functions of Ethernet NICs and Fibre Channel host bus adapters (HBAs), making the transition to a single, unified

network fabric transparent and consistent with existing practices, management software, and OS drivers. The

switch series is compatible with integrated transceivers and Twinax cabling solutions that deliver cost-effective

connectivity for 10 Gigabit Ethernet to servers at the rack level, eliminating the need for expensive optical

transceivers. The Cisco Nexus 5000 Series portfolio also provides the flexibility to connect directly to servers using

10GBASE-T connections or fiber with Enhanced Small Form-Factor Pluggable (SFP+) transceivers.

The Cisco Nexus 5000 Series is designed for data center environments with cut-through technology that enables

consistent low-latency Ethernet solutions, with front-to-back or back-to-front cooling, and with data ports in the rear,

bringing switching into close proximity with servers and making cable runs short and simple. The switch series is

highly serviceable, with redundant, hot-pluggable power supplies and fan modules. It uses data center-class

Cisco® NX-OS Software for high reliability and ease of management.

Cisco Nexus 5500 Platform Overview

In a constantly changing business environment, companies are calling upon their IT departments to help them

reduce costs, improve productivity, and introduce new ways to interact with their customer base.

Page 48: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 2 of 29

The Cisco Nexus 5500 platform extends the industry-leading versatility of the Cisco Nexus 5000 Series purpose-

built 10 Gigabit Ethernet data center-class switches and provides innovative advances toward higher density, lower

latency, and multilayer services. The Cisco Nexus 5500 platform is well suited for enterprise-class data center

server access-layer deployments across a diverse set of physical, virtual, storage-access, and high-performance

computing (HPC) data center environments.

Cisco Nexus 5548P Switch

The Cisco Nexus 5548P Switch (Figure 1) is the first of the Cisco Nexus 5500 platform switches. It is a one-rack-

unit (1RU) 10 Gigabit Ethernet and FCoE switch offering up to 960-Gbps throughput and up to 48 ports. The switch

has 32 1/10-Gbps fixed SFP+ Ethernet and FCoE ports and one expansion slot.

Figure 1. Cisco Nexus 5548P Switch

Cisco Nexus 5548UP Switch

The Cisco Nexus 5548UP (Figure 2) is a 1RU 10 Gigabit Ethernet, Fibre Channel, and FCoE switch offering up to

960 Gbps of throughput and up to 48 ports. The switch has 32 unified ports and one expansion slot.

Figure 2. Cisco Nexus 5548UP Switch

Cisco Nexus 5596UP Switch

The Cisco Nexus 5596UP Switch (Figure 3) is a 2RU 10 Gigabit Ethernet, Fibre Channel, and FCoE switch offering

up to 1920 Gbps of throughput and up to 96 ports. The switch has 48 unified ports and three expansion slots.

Figure 3. Cisco Nexus 5596UP Switch Configured with Three 16-Port Expansion Modules

Page 49: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 3 of 29

Cisco Nexus 5596T Switch

The Cisco Nexus 5596T Switch (Figure 4) is a 2RU form factor, with 32 fixed ports of 10G BASE-T and 16 fixed

ports of SFP+. The switch also supports up to three expansion slots. The switch supports 10 Gigabit Ethernet (fiber

and copper), Fibre Channel, and FCoE, offering up to 1920 Gbps of throughput and up to 96 ports. The switch

supports unified ports on all SFP+ ports. The 10G BASE-T ports support FCoE up to 30m distance with Category

6a and Category 7 cables.

Figure 4. Cisco Nexus 5596T Switch Configured with three 12-Port 10G BASE-T Expansion Modules

Expansion Module Options for the Cisco Nexus 5548P, 5548UP, 5596UP, and 5596T

Switches

The Cisco Nexus 5500 platform is equipped with expansion modules that can be used to increase the number of

10 Gigabit Ethernet, 40 Gigabit Ethernet and FCoE ports or to connect to Fibre Channel SANs with 8/4/2/1-Gbps

Fibre Channel switch ports, or both.

The Cisco Nexus 5548P and 5548UP supports two expansion module, and the Cisco Nexus 5596UP and 5596T

support four expansion modules from the following offerings (Figure 5):

● Ethernet module that provides sixteen 1/10 Gigabit Ethernet and FCoE ports using the SFP+ interface.

● Fibre Channel plus Ethernet module that provides eight 1/10 Gigabit Ethernet and FCoE ports using the

SFP+ interface, and eight ports of 8/4/2/1-Gbps native Fibre Channel connectivity using the SFP+/SFP

interface.

● Unified port module that provides up to sixteen 1/10 Gigabit Ethernet and FCoE ports using the SFP+

interface or up to sixteen ports of 8/4/2/1-Gbps native Fibre Channel connectivity using the SFP+ and SFP

interfaces; the use of 1/10 Gigabit Ethernet or 8/4/2/1-Gbps Fibre Channel on a port is mutually exclusive

but can be selected for any of the 16 physical ports per module.

● Four port QSFP Ethernet module that provides 4 40 Gigabit Ethernet ports using QSFP interface. Each

QSFP 40GE port can only work in 4x10G mode and supports DCB and FCoE.

Figure 5. From Left to Right: 16-Port 1 and 10 Gigabit Ethernet and FCoE Module, 8-Port Fibre Channel Plus 8-Port 1 and 10 Gigabit Ethernet and FCoE Module, 16-Port Unified Port Module and 4 port QSFP module.

The Cisco Nexus 5596T also supports another expansion module:

● Ethernet module (Figure 6) that provides twelve 10G BASE-T ports; The 10G BASE-T ports support FCoE

up to 30m distance with Category 6a and Category 7 cables.

Page 50: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 4 of 29

Figure 6. 12-Port 10G BASE-T Expansion Module (Front View and Side View)

Layer 3 Daughter Card and Expansion Module Options for Cisco Nexus 5548P, 5548UP,

5596UP, and 5596T Switches

● In addition to these expansion modules, the Cisco Nexus 5548P and 5548UP support a Layer 3 daughter

card that can be ordered with the system or as a spare (field upgradable). This daughter card provides up to

160 Gbps of Layer 3 forwarding capability (240 million packets per second [mpps]) that can be shared by all

48 ports in the chassis. As shown in Figure 7, the Layer 3 daughter card does not take up one of the

expansion slots on the rear of the chassis, but instead is installed by replacing the Layer 2 I/O module

(N55-DL2) that is located on the front of the chassis.

Figure 7. Layer 3 Daughter Card on the Cisco Nexus 5548UP Switch

● In addition to these expansion modules, the Cisco Nexus 5596UP and 5596T support a Layer 3 module that

provides up to 160 Gbps of Layer 3 forwarding capability (240 mpps) that can be shared by all the I/O ports

in the chassis (Figure 8).

Figure 8. Layer 3 Module (Front View and Side View)

● Version 2 of Layer 3 daughter cards and expansion modules have enhanced capabilities that increase the

host table size from 8000 to 16,000 entries, or multicast routes from 4000 to 8000 starting from software

release Cisco NX-OS Software Release 5.2(1)N1(1b) and later.

● Requires free of charge a base LAN license (N55-BAS1k9=) to be installed. This is included in the hardware

purchase; however the license would need to be manually installed.

Cisco Nexus 2000 Series Fabric Extenders

The Cisco Nexus 2000 Series Fabric Extenders comprise a category of data center products that provide a

universal server-access platform that scales across a multitude of 1 Gigabit Ethernet, 10 Gigabit Ethernet, unified

fabric, rack, and blade server environments. The Cisco Nexus 2000 Series Fabric Extenders are designed to

simplify data center architecture and operations by meeting the business and application needs of a data center.

Page 51: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 5 of 29

Working in conjunction with Cisco Nexus switches, the Cisco Nexus 2000 Series Fabric Extenders offer a

cost effective and efficient way to support today’s Gigabit Ethernet environments while allowing easy migration to

10 Gigabit Ethernet, virtual machine-aware Cisco unified fabric technologies.

The Cisco Nexus 2000 Series design is aligned with the design of servers. It offers front-to-back or back-to-front

cooling, compatibility with data center hot-aisle and cold-aisle designs, placement of all switch ports at the rear of

the unit in close proximity to server ports, and accessibility of all user-serviceable components from the front panel.

The Cisco Nexus 2000 Series is built for nonstop operation, with redundant hot-swappable power supplies and a

hot-swappable fan tray with redundant fans. Its compact 1RU form factor takes up relatively little space, making it

easy to incorporate into rack designs (Figure 9).

Figure 9. Cisco Nexus 2000 Series Fabric Extenders from Bottom Right to Top Left: Cisco Nexus 2224TP GE, 2248TP GE, 2248TP-E GE, 2232TM 10GE, 2232TM-E 10GE, 2232PP 10GE and 2248 PQ 10GE

The Cisco Nexus 2000 Series provides two types of ports: ports for end-host attachment (host interfaces) and

uplink ports (fabric interfaces). Fabric Interfaces are differentiated with a yellow color for connectivity to the

upstream parent Cisco Nexus switch.

Table 1 lists the Cisco Nexus 2000 Series Fabric Extenders. Fabric extenders can be mixed and matched to a

parent switch to provide connectivity options.

Table 1. Cisco Nexus 2000 Series Specifications

Description Specification Minimum Software Cisco NX-OS Release

Cisco Nexus 2224TP 24 100/1000BASE-T host interfaces and 2 10 Gigabit Ethernet fabric interfaces (SFP+) 4.2(1)N2(1)

Cisco Nexus 2248TP 48 100/1000BASE-T host interfaces and 4 10 Gigabit Ethernet fabric interfaces (SFP+) 4.2(1)N2(1)

Cisco Nexus 2248TP-E 48 100/1000BASE-T host interfaces and 4 10 Gigabit Ethernet fabric interfaces (SFP+) [32MB Shared Buffer]

5.1(3)N1(1)

Cisco Nexus 2232PP 32 1/10 Gigabit Ethernet and FCoE host interfaces (SFP+) and 8 10 Gigabit Ethernet and FCoE fabric interfaces (SFP+)

4.2(1)N2(1)

Cisco Nexus 2248PQ 48 1/10 Gigabit Ethernet and FCoE host interfaces (SFP+) and four QSFP+ Gigabit Ethernet and FCoE fabric interfaces (QSFP+)

6.0(2)N1(1)

Cisco Nexus 2232TM 32 1/10 G BASE-T host interfaces and 8 10 Gigabit Ethernet (SFP+) Uplink Module 5.0(3)N2(1)

Cisco Nexus 2232TM-E 32 1/10 G BASE-T host interfaces and 8 10 Gigabit Ethernet (SFP+) Uplink Module (Lower power consumption and improved BER)

5.2(1)N1(1)

Cisco Nexus B22HP 16x 1/10 G BASE-KR internal host interfaces and 8 10 Gigabit Ethernet fabric interfaces (SFP+) Network Interfaces

5.0(3)N2(1)

Cisco Nexus B22F 16x 10 G BASE-KR internal host interfaces and 8 10 Gigabit Ethernet fabric interfaces (SFP+) Network Interfaces

5.2(1)N1(1)

Cisco Nexus B22DELL 16x 10 G BASE-KR internal host interfaces and 8 10 Gigabit Ethernet fabric interfaces (SFP+) Network Interfaces

6.0(2)N1(1)

The Cisco Nexus 2224TP, 2248TP, and 2248TP-E provide port density options for highly scalable 100-Mbps

and Gigabit Ethernet connectivity. The Cisco Nexus 2232PP provides ease of migration from Gigabit Ethernet to

10 Gigabit Ethernet while supporting highly scalable 10 Gigabit environments.

Page 52: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 6 of 29

The Cisco Nexus 2248TP-E Fabric Extender is a general-purpose 1 Gigabit Ethernet fabric extender with

enhancements that target workloads such as large-volume databases, distributed storage, and video editing. Just

like the Cisco Nexus 2248TP, the Cisco Nexus 2248TP-E also supports 48 100/1000BASE-T host facing ports and

four 10 Gigabit Ethernet fabric interfaces.

The Cisco Nexus 2232TM-E Fabric Extender supports scalable 1/10GBASE-T environments, ease of migration

from 1GBASE-T to 10GBASE-T, and effective reuse of existing structured cabling. It comes with an uplink module

that supports eight 10 Gigabit Ethernet fabric interfaces. It is a superset of the Cisco Nexus 2232TM with the latest

generation of 10GBASE-T PHY, enabling lower power and improved bit error rate (BER). The Cisco Nexus

2232TM-E supports DCB and LAN and SAN consolidation.

The Cisco Nexus 2232PP 1/10GE Fabric Extender is the ideal platform for migration from Gigabit Ethernet to

10 Gigabit Ethernet and unified fabric environments. It supports FCoE and a set of network technologies known

collectively as Data Center Bridging (DCB) that increase the reliability, efficiency, and scalability of Ethernet

networks. These features allow the switches to support multiple traffic classes over a lossless Ethernet fabric, thus

enabling consolidation of LAN, SAN, and cluster environments.

The Cisco Nexus 2248PQ 10 Gigabit Ethernet Fabric Extender is the newest member of the Cisco Nexus Fabric

Extender Family. It supports high- density 10 Gigabit Ethernet environments and has 48 forty-eight 1/10 Gigabit

Ethernet SFP+ host ports and 4 QSFP+ fabric ports (16 x 10 GE fabric ports). QSFP+ connectivity simplifies

cabling while lowering power and solution cost. The Cisco Nexus 2248PQ 10GE Fabric Extender supports FCoE

and a set of network technologies known collectively as Data Center Bridging (DCB) that increase the reliability,

efficiency, and scalability of Ethernet networks. These features allow support for multiple traffic classes over a

lossless Ethernet fabric, thus enabling consolidation of LAN, storage area network (SAN), and cluster

environments.

The Cisco Nexus B22HP Fabric Extender (Figure 10) for HP Blade System is the first 10 Gigabit Ethernet and

FCoE fabric extender in a third-party blade chassis format. It is targeted at customers who already own HP blade

servers and makes it easier for them to integrate with the Cisco Nexus data center fabric.

Figure 10. From Left to Right: Cisco Nexus B22HP Fabric Extender, Cisco Nexus B22F Fabric Extender, Cisco Nexus B22DELL Fabric Extender

The Cisco Nexus B22F (Figure 10) Fabric Extender for Fujitsu BladeSystem is the 10 Gigabit Ethernet and FCoE

fabric extender in a third-party blade chassis format. It is targeted at customers who already own Fujitsu blade

servers and makes it easier for them to integrate with the Cisco Nexus data center fabric.

The Cisco Nexus B22DELL (Figure 10) Fabric Extender for Dell Blade System is the 10 Gigabit Ethernet and FCoE

fabric extender in a third-party blade chassis format. It is targeted at customers who already own Dell blade servers

and makes it easier for them to integrate with the Cisco Nexus data center fabric.

Cisco Nexus 2000 Series Fabric Extenders connect to a parent Cisco Nexus switch through their fabric links using

CX1 copper cable, short-reach or long-reach optics, and the cost-effective Cisco Fabric Extender Transceivers.

Cisco Fabric Extender Transceivers are optical transceivers that provide a highly cost-effective solution for

connecting the fabric extender to its parent switch.

Page 53: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 7 of 29

Cisco Nexus 2000 Series and Cisco Nexus 5000 Series Deployment Scenarios

The fabric extenders can be used in the following deployment scenarios:

● Rack servers with 100 Megabit Ethernet, Gigabit Ethernet, or 10 Gigabit Ethernet network interface cards

(NICs); the fabric extender can be physically located at the top of the rack and the Cisco Nexus 5000 Series

switch can reside in the middle or at the end of the row, or the fabric extender and the Cisco Nexus 5000

Series switch can both reside at the end or middle of the row.

● Mixed Gigabit Ethernet and 10 Gigabit Ethernet environments in which rack servers are running at either

speeds in the same rack or in adjacent racks.

● 10 Gigabit Ethernet and FCoE deployments, using servers with converged network adapters (CNAs) for

unified fabric environments with the Cisco Nexus 2232PP.

● 1/10 Gigabit Ethernet BASE-T server connectivity with ease of migration from 1 to 10GBASE-T and

effective reuse of structured cabling.

● Server racks with integrated lights-out (iLO) management, with 100 Megabit Ethernet or Gigabit Ethernet

management and iLO interfaces.

● Gigabit Ethernet and 10 Gigabit Ethernet blade servers with pass-through blades.

● Low-latency, high-performance computing environments.

● Virtualized access.

● Cisco Nexus 2000 Series Fabric Extenders can single or dual-connect (using Enhanced vPC) to two

upstream Cisco Nexus 5500 platform switches (Figure 11).

● Servers or end host can connect to single or dual Cisco Nexus 2000 Series Fabric Extenders using NIC

teaming (Figure 11) when the parent Cisco Nexus 5500 platform has Enhanced vPC enabled.

● Cisco Nexus 5500 platform switches do not support enhanced vPC. Hence, vPC is supported only between

Cisco Nexus 2000 Series Fabric Extenders and Cisco Nexus 5500 platform switches or between servers

using NIC teaming and Cisco Nexus 2000 Series Fabric Extenders. (Note: In the latter case, vPC is not

allowed between Cisco Nexus 2000 Series Fabric Extenders and Cisco Nexus 5500 platform switches).

Figure 11. Deployment Scenario

Page 54: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 8 of 29

Efficient Transceiver and Cabling Options

The Cisco Nexus 5500 platform supports a wide variety of 1 and 10 Gigabit Ethernet connectivity options using

Cisco 10GBASE SFP+ modules.

In addition, the Cisco Nexus 5500 platform supports 1 Gigabit Ethernet connectivity options using 1GBASE SFP

modules, 8/4/2 -Gbps Fibre Channel SFP+ and 4/2/1-Gbps Fibre Channel SFP interfaces are supported with

expansion module options.

Table 2 lists the supported transceiver options.

Table 2. Cisco Nexus 5500 Platform Transceiver Support Matrix

Cisco SFP Description

FET-10G 10-Gbps SFP+ module for Cisco Nexus 2000 Series to Cisco Nexus 5000 Series connectivity

Cisco SFP-10G-SR 10GBASE-SR SFP+ module (multimode fiber [MMF])

Cisco SFP-10G-LR 10GBASE-LR SFP+ module (single-mode fiber [SMF])

Cisco SFP-10G-ER 10GBASE-ER-SFP+ module (single-mode fiber[SMF])

Cisco SFP-H10GB-CU1M 10GBASE-CU SFP+ cable 1m (Twinax cable)

Cisco SFP-H10GB-CU3M 10GBASE-CU SFP+ cable 3m (Twinax cable)

Cisco SFP-H10GB-CU5M 10GBASE-CU SFP+ cable 5m (Twinax cable)

Cisco SFP-H10GB-ACU7M 10GBASE-CU SFP+ cable 7m (active Twinax cable)

Cisco SFP-H10GB-ACU10M 10GBASE-CU SFP+ cable 10m (active Twinax cable)

Cisco GLC-T 1000BASE-T SFP

GLC-ZX-SM 1000BASE-ZX SFP transceiver module for SMF, 1550-nm wavelength, dual LC/PC connector

Cisco GLC-SX-MM Gigabit Ethernet SFP, LC connector SX transceiver (MMF)

Cisco GLC-SX-MMD Gigabit Ethernet SFP, LC connector SX transceiver (MMF), extended temperature range and digital optical monitoring (DOM)

Cisco GLC-LH-SM Gigabit Ethernet SFP, LC connector LX/LH transceiver (SMF)

Cisco GLC-LH-SMD Gigabit Ethernet SFP, LC connector LX/LH transceiver (SMF), extended temperature range and digital optical monitoring (DOM)

Cisco SFP-GE-T 1000BASE-T SFP, extended temperature range

Cisco SFP-GE-S Gigabit Ethernet SFP, LC connector SX transceiver (MMF), extended temperature range and digital optical monitoring (DOM)

Cisco SFP-GE-L Gigabit Ethernet SFP, LC connector LX/LH transceiver (SMF), extended temperature range and DOM

Cisco DS-SFP-FC4G-SW 4-Gbps Fibre Channel SW SFP, LC (for Fibre Channel expansion module ports)

Cisco DS-SFP-FC4G-LW 4-Gbps Fibre Channel LW SFP, LC (for Fibre Channel expansion module ports)

Cisco DS-SFP-FC8G-SW 8-Gbps Fibre Channel SW SFP+, LC (for Fibre Channel expansion module ports)

Cisco DS-SFP-FC8G-LW 8-Gbps Fibre Channel LW SFP+, LC (for Fibre Channel expansion module ports)

Page 55: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 9 of 29

The high bandwidth of 10 Gigabit Ethernet poses challenges to transmissions that are met by the transceiver and

cabling options supported by the Cisco Nexus 5500 platform.

The platform supports an innovative Twinax copper cabling solution that connects to standard SFP+ connectors for

in-rack use, and optical cabling for longer cable runs (Table 3).

● For in-rack or adjacent-rack cabling, the Cisco Nexus 5500 platform supports SFP+ direct-attach

10 Gigabit Ethernet copper, an innovative solution that integrates transceivers with Twinax cables into an

energy-efficient, low-cost, and low-latency solution. SFP+ direct-attach 10 Gigabit Twinax copper cables

use only 0.1 watt (W) of power per transceiver and introduce only approximately 0.25 microsecond of

latency per link.

● For longer cable runs, the Cisco Nexus 5500 platform supports multimode, short-reach optical SFP+

transceivers. These optical transceivers use approximately 1W per transceiver and have a latency of less

than 0.1 microsecond.

Table 3. The Cisco Nexus 5500 Platform Supports SFP+ Direct-Attach 10 Gigabit Copper for In-Rack Cabling, and Optical Solutions for Longer Connections (Ethernet Only)

Connector (Media) Cable Distance Power (Each Side) Transceiver Latency (Link) Standard

SFP+ CU copper Twinax 5m Approximately 0.1W Approximately 0 microsecond SFF 8431

SFP+ ACU copper Active Twinax 7m

10m

Approximately 0.5W Approximately 0.1 microsecond SFF 8461

SFP+ SR MMF and SR MMF (OM2)

MMF (OM3)

82m

300m

1W Approximately 0.1 microsecond IEEE 802.3ae

SFP+ LR SMF 10Km 1W Approximately 0.1 microsecond IEEE 802.3ae

SFP+ ER SMF 40Km 1.5W Approximately 0.1 microsecond IEEE 802.3ae

Features and Benefits

The comprehensive feature sets of the Cisco Nexus 5500 platform make it well suited for top-of-rack, middle-of-

row, or end-of-row data center access-layer applications. The platform switches protect investments in data center

racks with standards-based 10 Gigabit Ethernet and FCoE features and virtual machine awareness features that

allow IT departments to consolidate networks based on their own requirements and timing. The combination of

higher port density, lossless Ethernet, wire-speed performance, and very low latency makes the switch platform

well suited for meeting the growing demand for 10 Gigabit Ethernet that can support a common Ethernet-based

fabric in enterprise and service provider data centers, protecting enterprises’ investments. The switch platform

provides sufficient port density to support single and multiple racks fully populated with blade and rack-mount

servers.

● Built for today’s data centers, the switches are designed just like the servers they support. Ports and power

connections are at the rear, close to server ports, helping keep cable lengths as short and efficient as

possible, delivering benefits traditionally offered on blade servers to rack servers as well. Hot-swappable

power and fan modules can be accessed from the front panel, where status lights offer an at-a-glance view

of switch operation. Front-to-back or back-to-front cooling is consistent with server designs, supporting

efficient data center hot- and cold-aisle designs. Serviceability is enhanced with all customer-replaceable

units accessible from the front panel. The use of SFP+ ports offers increased flexibility, enabling use of a

range of interconnect solutions, including copper Twinax cable for short runs and fiber for long runs.

Page 56: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 10 of 29

● DCB enables Ethernet fabrics to support lossless transmission to increase network scalability, support I/O

consolidation, ease management of multiple traffic flows, and optimize performance. Although SAN

consolidation requires only the lossless fabric provided by the Ethernet Pause mechanism, the Cisco Nexus

5500 platform provides additional features that create an even more easily managed, high-performance,

unified network fabric. DCB features are summarized in Table 4 and supported by the Cisco Nexus 5500

platform.

Table 4. DCB Features and Benefits

Feature Business Benefit

Priority Flow Control (PFC) ● Simplifies management of multiple traffic flows over a single network link

● Creates lossless behavior for Ethernet by allowing class-of-service (CoS)-based flow control

Enhanced Transmission Selection (ETS)

Enables consistent management of quality of service (QoS) at the network level by providing consistent scheduling of different traffic types (IP, storage, etc.)

Data Center Bridging Exchange (DCBX) Protocol

Simplifies network deployment and reduces configuration errors by providing auto negotiation of DCB features between the NIC and the switch and between switches

● FCoE is a standards-based upper-layer protocol that maps the Fibre Channel Protocol (FCP) and services

onto Layer 2 Ethernet. It is a straightforward encapsulation of Fibre Channel within Ethernet that preserves

existing Fibre Channel network management models and tools, helping protect investments in software and

staff training.

● Cisco unified fabric consolidates all data center I/O onto Layer 2 Ethernet. Unified fabric reduces capital and

operating costs by reducing the number of server adapters, cables, and upstream switches needed. All I/O

(LAN, SAN, and cluster) typically is consolidated onto two Ethernet links. DCB and FCoE enable the

incorporation of Fibre Channel frames into a unified fabric, facilitating wire-once strategies in which all

servers become capable of SAN connection. A standard and uniform approach to I/O enhances server and

storage consolidation strategies. The Cisco Nexus 5500 platform also connects to existing native Fibre

Channel networks, protecting current investments in storage networks. Additionally, the Cisco Nexus 5500

platform attaches to directly connected FCoE and Fibre Channel storage devices and supports multi-tiered

unified network fabric connect directly over FCoE.

● Unified ports allow any capable port to take on the character of 1 and 10 Gigabit Ethernet, SAN and LAN

shared on 10 Gigabit Ethernet, or 8/4/2/1-Gbps Fibre Channel. Unified ports give the user flexibility in

choosing SAN and LAN port options consistent with the virtualized data center and offer a migration path to

FCoE for those users not yet ready to make the move from native Fibre Channel.

● Energy efficiency achieved through the use of the Cisco Nexus 5500 platform helps data centers operate

within their space, power, and cooling parameters while reducing their carbon footprints. Every network link

at the rack level requires adapters, switches, and transceivers, all of which consume power. I/O

consolidation reduces energy consumption by eliminating the need for separate Fibre Channel adapters,

cables, and switches. In many cases, server cluster networks also can be consolidated onto 10 Gigabit

Ethernet networks, especially given the low latency of the Cisco Nexus 5500 platform. The switch hardware

is also designed for energy efficiency. Variable-speed fans consume only the amount of power necessary to

cool the chassis at that specific point in time. The switch power supplies are sized to support worst-case

scenarios, in which inefficient SFP+ transceivers increase power draw; however, when low-power cabling

solutions are deployed, the switch platform’s power supplies maintain 90 percent efficiency at only 25

percent utilization, making efficient use of power in best-case scenarios.

Page 57: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 11 of 29

● Consistent management for Cisco products is provided through the consistency of both the Cisco NX-OS

Software and Cisco MDS 9000 Software management models and tools. The switch platform’s network

features can be managed using the Cisco command-line interface (CLI), and the Fibre Channel and FCoE

features can be managed through the Cisco Fabric Manager suite. Cisco Data Center Network Manager

(DCNM) also supports the Cisco Nexus 5500 platform. The capability to manage Ethernet and FCoE

features independently with existing Cisco tools preserves existing management models, best practices,

and investments in staff training.

In addition, Simple Network Management Protocol (SNMP) MIBs, XML, and the Cisco CLI are made

available to customers for switch management through third-party and custom-developed tools. The switch

platform uses Cisco NX-OS for superior operating efficiency, pervasive security, and continuous operation

even through software upgrades.

● Software manageability and serviceability features include Smart Call Home and automated parameter

exchange (through DCBX). Security is enhanced through role-based access control (RBAC); support for

authentication, authorization, and accounting (AAA), remote TACACS+, and RADIUS servers; and Secure

Shell (SSH) access.

Applications

The Cisco Nexus 5500 platform supports a number of application scenarios, making the switches a versatile data

center option:

● As access-layer switches, they can be used purely as 1 and 10 Gigabit Ethernet switches, consolidating

10 Gigabit Ethernet connections into a smaller number of server connections trunked to the aggregation

layer.

● In conjunction with the Cisco Nexus 2248TP GE Ethernet Fabric Extender, the Cisco Nexus 5500 platform

can be used as a high-density 1 Gigabit Ethernet switching system, consolidating more than 900 Gigabit

Ethernet connections in a single management plane.

● In conjunction with the Cisco Nexus 2232PP 10GE Fabric Extender, the Cisco Nexus 5500 platform can be

used as a high-density 10 Gigabit Ethernet switching system, consolidating more than 600 10 Gigabit

Ethernet connections in a single management plane.

● As a rack-level I/O consolidation platform, the switches carry Ethernet traffic from servers to the aggregation

layer, and carry Fibre Channel traffic to existing Fibre Channel SANs.

● As a crucial element in data center I/O consolidation, the switches enable I/O consolidation at the access

layer and provide interoperability between the Cisco Nexus 5500 platform and other standards-based

products.

The capability of the Cisco Nexus 5500 platform to function in all these capacities helps protect investment in the

data center with a deployment model in which additional features can be enabled as they are needed.

Gigabit Ethernet and 10 Gigabit Ethernet Access-Layer Switch

The Cisco Nexus 5500 platform is designed with the density, performance, front-to-back or back-to-front cooling,

and rear data-port configuration that make it well suited for aggregating a large number of 10 Gigabit Ethernet links

either from servers or from other access-layer switches. The switch port density allows each switch to support a

single rack or neighboring racks using the SFP+ direct-attach 10 Gigabit copper cabling option. The Cisco Nexus

5500 platform can also be purchased with only the Ethernet capabilities enabled, allowing IT departments to deploy

them in parallel with existing Fibre Channel SANs.

Page 58: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 12 of 29

Figure 12 shows an active-active pair of Cisco Nexus 5500 platform switches cross-connected to redundant

Ethernet NICs in servers. Instead of using multiple 1 Gigabit Ethernet connections to servers for LAN, virtual

machine mobility applications, and Small Computer System Interface over IP (iSCSI) SAN support, customers can

combine their traffic over a consolidated, lossless, low-latency 10 Gigabit Ethernet fabric.

The Cisco Nexus 5500 platform can be deployed as a top-of-tack, access-layer switch in parallel with existing Fibre

Channel SANs.

Figure 12. Active-Active Pair of Cisco Nexus 5000 Series Switches Connected to Redundant Servers

Unified Access Architecture

One deployment scenario involves equipping each data center rack with two Cisco Nexus 2248 GE Fabric

Extenders or with two Cisco Nexus 2232 10GE Fabric Extenders, connected to two upstream Cisco Nexus 5500

platform switches (Figure 13). Up to 48 servers can connect to each 1 Gigabit Ethernet fabric extender, and up to

32 servers can connect to each 10 Gigabit Ethernet fabric extender. Assuming that these servers are dual-homed,

a pair of Cisco Nexus 5500 platform switches can connect up to 1152 1 Gigabit Ethernet servers (24 Cisco Nexus

2248 fabric extenders) or up to 768 10 Gigabit Ethernet servers (24 Cisco Nexus 2232 fabric extenders).

Page 59: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 13 of 29

Figure 13. Sample Unified Access Deployment Scenario Supporting Up to 1152 1 Gigabit Ethernet Servers or Up to 768 10 Gigabit Ethernet Servers with a Single Pair of Access-Layer Switches and a Single Point of Management

Unified Fabric with FCoE: I/O Consolidation

The Cisco Nexus 5500 platform consolidates multiple networks - LAN, SAN, and server cluster - on a single unified

fabric, saving the capital and operating expenses associated with deployment of multiple parallel networks,

switching infrastructure, and cabling. The Cisco Nexus 5500 platform is compatible with third-party I/O CNAs that

present separate Ethernet NICs and Fibre Channel HBAs to the server operating system. This approach allows

existing drivers and Fibre Channel management software to work transparently with FCoE. Upstream, expansion

modules support direct connections from the Cisco Nexus 5500 platform to existing native Fibre Channel SANs

using dedicated native Fibre Channel ports (Figure 14). Cisco Nexus 5500 platform can also be connected to

upstream FCoE-capable switches through industry-standard VE-port Inter-Switch Links (ISLs).

Figure 14. A Pair of Cisco Nexus 5000 Series Switches in an Active-Active Configuration with Native Fibre Channel Connections to Two Storage Networks

Page 60: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 14 of 29

Investment Protection with FCoE Unified Fabric

The Cisco Nexus 5500 platform supports consolidated I/O using FCoE on downlinks to servers. FCoE is Fibre

Channel and, as such, has familiar methods of configuration, operation, and management. On the uplinks to the

network, customers can choose among FCoE direct attachment to storage systems, native Fibre Channel direct

attachment to storage systems, FCoE connection to FCoE-capable switches, and native Fibre Channel connection

to existing SANs. Fibre Channel and FCoE can exist simultaneously in the Fibre Channel network, allowing

customers to continue to use their existing administration and management tools. Cisco Fabric Manager SAN

management software manages Fibre Channel and FCoE flows over both FCoE- and Fibre Channel-capable ports.

Product Architecture

The Cisco Nexus 5500 platform is built around two custom components: a unified crossbar fabric and a unified port

controller application-specific integrated circuit (ASIC). Each Cisco Nexus 5500 platform switch contains a single

unified crossbar fabric ASIC and multiple unified port controllers to support fixed ports and expansion modules

within the switch.

The unified port controller provides an interface between the unified crossbar fabric ASIC and the network media

adapter and makes forwarding decisions for Ethernet, Fibre Channel, and FCoE frames. The ASIC supports the

overall cut-through design of the switch by transmitting packets to the unified crossbar fabric before the entire

payload has been received. The unified crossbar fabric ASIC is a single-stage, nonblocking crossbar fabric capable

of meshing all ports at wire speed. The unified crossbar fabric offers superior performance by implementing

QoS-aware scheduling for unicast and multicast traffic. Moreover, the tight integration of the unified crossbar fabric

with the unified port controllers helps ensure low-latency, lossless fabric for ingress interfaces requesting access to

egress interfaces.

Cisco NX-OS Software Overview

Cisco NX-OS is a data centerclass operating system built with modularity, resiliency, and serviceability at its

foundation. Based on the industry-proven Cisco MDS 9000 SAN-OS Software, Cisco NX-OS helps ensure

continuous availability and sets the standard for mission-critical data center environments. The self-healing and

highly modular design of Cisco NX-OS makes zero-impact operations a reality and enables exceptional operational

flexibility.

Focused on the requirements of the data center, Cisco NX-OS provides a robust and comprehensive feature set

that fulfills the Ethernet and storage networking requirements of present and future data centers. With an XML

interface and a CLI like that of Cisco IOS® Software, Cisco NX-OS provides state-of-the-art implementations of

relevant networking standards as well as a variety of true data centerclass Cisco innovations.

Cisco NX-OS Software Features and Benefits

● Software compatibility: Cisco NX-OS Software Release 5.0 interoperates with Cisco products running any

variant of the Cisco IOS Software operating system. Cisco NX-OS 5.0 also interoperates with any

networking OS that conforms to the networking standards listed as supported in this data sheet.

● Common software throughout the data center: Cisco NX-OS simplifies the data center operating

environment and provides a unified OS designed to run all areas of the data center network, including the

LAN, SAN, and Layer 4 to 7 network services.

Page 61: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 15 of 29

● Modular software design: Cisco NX-OS is designed to support distributed multithreaded processing on

symmetric multiprocessors (SMPs), multicore CPUs, and distributed line-card processors. Computationally

intensive tasks, such as hardware table programming, can be offloaded to dedicated processors distributed

across the line cards. Cisco NX-OS modular processes are instantiated on demand, each in a separate

protected memory space. Thus, processes are started and system resources allocated only when a feature

is enabled. The modular processes are governed by a real-time preemptive scheduler that helps ensure the

timely processing of critical functions.

● Quick development of enhancements and problem fixes: The modularity of Cisco NX-OS allows new

features, enhancements, and problem fixes to be integrated into the software quickly. Thus, modular fixes

can be developed, tested, and delivered in a short time span.

● Troubleshooting and diagnostics: Cisco NX-OS is built with unique serviceability functions to enable

network operators to take early action based on network trends and events, enhancing network planning

and improving network operations center (NOC) and vendor response times. Smart Call Home and Cisco

Generic Online Diagnostics (GOLD) are some of the features that enhance the serviceability of Cisco

NX-OS.

◦ Smart Call Home: The Smart Call Home feature continuously monitors hardware and software

components to provide email-based notification of critical system events. A versatile range of message

formats is available for optimal compatibility with pager services, standard email, and XML-based

automated parsing applications. This feature offers alert grouping capabilities and customizable

destination profiles. It can be used, for example, to directly page a network support engineer, send an

email message to a NOC, and employ Cisco Auto-Notify services to directly generate a case with the

Cisco Technical Assistance Center (TAC). This feature is a step toward autonomous system operation,

enabling networking devices to inform IT when a problem occurs and helping ensure that the problem is

acted on quickly, reducing time to resolution and increasing system uptime.

◦ Cisco GOLD: Cisco GOLD is a suite of diagnostic facilities to verify that hardware and internal data paths

are operating as designed. Boot-time diagnostics, continuous monitoring, and on-demand and scheduled

tests are part of the Cisco GOLD feature set. This industry-leading diagnostics subsystem allows rapid

fault isolation and continuous system monitoring, critical in today’s continuously operating environments.

● Programmatic XML interface: Based on the NETCONF industry standard, the Cisco NX-OS XML interface

provides a consistent API for devices, enabling rapid development and creation of tools to enhance the

network.

● SNMP: Cisco NX-OS complies with SNMPv1, v2, and v3. An extensive collection of MIBs is supported.

● RBAC: With RBAC, Cisco NX-OS enables administrators to limit access to switch operations by assigning

roles to users. Administrators can customize access and restrict it to the users who require it.

● Enhanced virtual PortChannel: The virtual PortChannel (vPC) feature allows one end of a PortChannel to

be split across a pair of Cisco Nexus 5000 Series Switches. vPC provides Layer 2 multipathing through the

elimination of Spanning Tree Protocol blocked ports in dual-homed connections. vPC enables fully used

bisectional bandwidth and simplified Layer 2 logical topologies without the need to change the existing

management and deployment models. vPC feature is further enhanced so that edge devices can connect to

Nexus 2000 platform using vPC as well as Nexus 2000 platform can connect to Nexus 5000 platforms using

vPC at same time.

Page 62: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 16 of 29

● Cisco FabricPath: Cisco FabricPath is a set of multipath Ethernet technologies that combine the reliability

and scalability benefits of Layer 3 routing with the flexibility of Layer 2 networks, enabling IT to build

massively scalable data centers. Cisco FabricPath offers a topology-based Layer 2 routing mechanism that

provides an equal-cost multipath (ECMP) forwarding model. Cisco FabricPath implements an enhancement

that solves the MAC address table scalability problem characteristic of switched Layer 2 networks.

Furthermore, Cisco FabricPath supports vPC+, a technology similar to vPC that allows redundant

interconnection of the existing Ethernet infrastructure to Cisco FabricPath without using Spanning Tree

Protocol. Benefits introduced by the Cisco FabricPath technology include:

◦ Operational simplicity: Cisco FabricPath embeds an autodiscovery mechanism that does not require any

additional platform configuration. By offering Layer 2 connectivity, the “VLAN anywhere” characteristic

simplifies provisioning and offers workload flexibility across the network.

◦ High resiliency and performance: Because Cisco FabricPath is a Layer 2 routed protocol; it offers

stability, scalability, and optimized resiliency along with network failure containment.

◦ Massively scalable fabric: By building a forwarding model on 16-way ECMP routing, Cisco FabricPath

helps prevent bandwidth bottlenecks and allows organizations to add capacity dynamically, without

network disruption.

◦ FabricPath Multi-Topology support for two distinct topologies that provide VLAN localization and reuse in

the network.

● Cisco TrustSec® security: As part of the Cisco TrustSec security suite, Nexus 5000 series will be able to

participate in CTS authentication to ACS server and download ACS policy. Security group access control

lists (SGACLs), a new paradigm in network access control, are based on security group tags instead of IP

addresses, enabling implementation of policies that are more concise and easier to manage because of

their topology independence.

Cisco NX-OX Software Packaging for Cisco Nexus 5000 Series

The software packaging for the Cisco Nexus 5000 Series offers flexibility and a comprehensive feature set while

being consistent with Cisco Nexus access switches. The default system software has a comprehensive Layer 2

feature set with comprehensive security and management features. To enable Layer 3 IP unicast and multicast

routing functions, additional licenses need to be installed.

Table 5 lists the software packaging and licensing available.

Table 5. Software Packaging and Licensing

License Chassis Based or Port Based

Part Number Supported Features and Platforms

Cisco Nexus 5548 FCoE NPV License

Chassis N5548-FNPV-SSK9 FCoE NPV features supported on Cisco Nexus 5548

Cisco Nexus 5596 FCoE NPV License

Chassis N5596-FNPV-SSK9 FCoE NPV features supported on Cisco Nexus 5596

Cisco Nexus 5500 Storage Protocols Services License, 8 Ports

Port N55-8P-SSK9 Fibre Channel and FCoE and FCoE NPV features supported on any 8 ports of Cisco Nexus 5548 and 5596

Cisco Nexus 5500 Storage Protocols Services License, 48 Ports

Port N55-48P-SSK9 Fibre Channel and FCoE and FCoE NPV features supported on any 48 ports of Cisco Nexus 5548 and 5596

Cisco Nexus 5500 Layer 3 Base Software License

Chassis N55-BAS1K9 Static routing, RIPv2, OSPFv2, EIGRP stub, HSRP, VRRP, IGMPv2 and v3, PIMv2 (sparse mode), routed ACL; OSPF scalability is limited to 256 dynamically learned routes, VRF-lite (IP-VPN)

Page 63: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 17 of 29

License Chassis Based or Port Based

Part Number Supported Features and Platforms

Cisco Nexus 5500 Layer 3 Enterprise Software License

Chassis N55-LAN1K9 Full EIGRP, OSPF with scalability up to 8000 routes, BGP; maximum routes supported by Layer 3 hardware: 8000 entries; uRPF

Cisco Nexus 5500 VM-FEX Software License

Chassis N55-VMFEXK9 Cisco Data Center VM-FEX supported on Cisco Nexus 5548 and Cisco Nexus 5596

Cisco Nexus 5548 Enhanced Layer 2 Software License

Chassis N5548-EL2-SSK9 Cisco FabricPath supported on Cisco Nexus 5548

Cisco Nexus 5596 Enhanced Layer 2 Software License

Chassis N5596-EL2-SSK9 Cisco FabricPath supported on Cisco Nexus 5596

Cisco DCNM SAN Software License

Chassis DCNM-SAN-N5K-K9 Cisco DCNM for SAN Advanced Edition for Nexus 5000 Series

Cisco DCNM LAN Software License

Chassis DCNM-L-NXACCK9 Cisco DCNM for LAN Advanced Edition for Cisco Nexus 3000 and 5000 Series

Cisco Data Center Network Manager

The Cisco Nexus 5000 is supported in Cisco DCNM. Cisco DCNM is designed for hardware platforms enabled for

Cisco NX-OS, which are the Cisco Nexus Family of products. Cisco DCNM is a Cisco management solution that

increases overall data center infrastructure uptime and reliability, hence improving business continuity. Focused on

the management requirements of the data center network, Cisco DCNM provides a robust framework and

comprehensive feature set that meets the routing, switching, and storage administration needs of present and

future data centers. In particular, Cisco DCNM automates the provisioning process, proactively monitors the LAN

by detecting performance degradation, secures the network, and streamlines the diagnosis of dysfunctional

network elements.

Specifications

Table 6 lists the specifications for the Cisco Nexus 5500 platform.

Table 6. Product Specifications

Performance

● Cisco Nexus 5548P and 5548UP: Layer 2 hardware forwarding at 960 Gbps or 714.24 mpps; Layer 3 performance of up to 160 Gbps or 240 mpps

● Cisco Nexus 5596UP and 5596T: Layer 2 hardware forwarding at 1920 Gbps or 1428 mpps; Layer 3 performance of up to 160 Gbps or 240 mpps

● MAC address table entries: 32,000

● Low-latency cut-through design that provides predictable, consistent traffic latency regardless of packet size, traffic pattern, or enabled features on 10 Gigabit Ethernet interfaces

● Line-rate traffic throughput on all ports

Interfaces

● Cisco Nexus 5548P: 32 fixed 1 and 10 Gigabit Ethernet and FCoE ports; additional interfaces through one expansion module

● Cisco Nexus 5548UP: 32 fixed ports configurable as 1 and 10 Gigabit Ethernet and FCoE or 8/4/2/1-Gbps native Fibre Channel; additional interfaces through one expansion module

● Cisco Nexus 5596UP: 48 fixed ports configurable as 1 and 10 Gigabit Ethernet and FCoE or 8/4/2/1-Gbps native Fibre Channel; additional interfaces through up to three expansion modules

● Cisco Nexus 5596T: 32 fixed ports of 1 and 10G BASE-T and 16 SFP+ fixed ports configurable as 1 and 10 Gigabit Etherent and FCoE or 8/4/2/1-Gbps native Fibre Channel; additional interfaces through up to three expansion modules

● Expansion modules

● 16-port 1 and 10 Gigabit Ethernet and FCoE module

● 8-port 8/4/2/1-Gbps Fibre Channel plus 8-port 1 and 10 Gigabit Ethernet and FCoE module

● Unified port module consisting of 16 ports configurable as 8/4/2/1-Gbps Fibre Channel or 1 and 10 Gigabit Ethernet and FCoE

● 4-port QSFP expansion module

● 12-port 10G BASE-T module (Cisco Nexus 5596T only)

● Layer 3 module (Cisco Nexus 5596UP and 5596T only; one per system)

● Layer 3 daughter card (Cisco Nexus 5548P and 5548UP only; one per system)

● Extension through the Cisco Nexus 2000 Series

Page 64: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 18 of 29

Layer 2 Features

● Layer 2 switch ports and VLAN trunks

● IEEE 802.1Q VLAN encapsulation

● Support for up to 4096 VLANs

● Rapid Per-VLAN Spanning Tree Plus (PVRST+) (IEEE 802.1w compatible)

● Multiple Spanning Tree Protocol (MSTP) (IEEE 802.1s): 64 instances

● Spanning Tree PortFast

● Spanning Tree root guard

● Spanning Tree Bridge Assurance

● Cisco EtherChannel technology (up to 16 ports per EtherChannel)

● Cisco vPC technology

● Enhanced vPC enable vPC between Cisco Nexus 5000 and 2000 Series as well as between Cisco Nexus 3000 Series and end host

● vPC configuration synchronization

● Link Aggregation Control Protocol (LACP): IEEE 802.3ad

● Advanced PortChannel hashing based on Layer 2, 3, and 4 information

● Jumbo frames on all ports (up to 9216 bytes)

● Pause frames (IEEE 802.3x)

● Storm control (unicast, multicast, and broadcast)

● Private VLANs

● Private VLAN over trunks (isolated and promiscuous)

● Private VLANs over vPC and EtherChannels

● VLAN Remapping

● Cisco FabricPath

● EvPC and vPC+ with FabricPath

● Cisco Adapter FEX

● Cisco Data Center VM FEX

● Support for up to 24 fabric extenders on each Cisco Nexus 5500 platform

Layer 3 Features

● Layer 3 interfaces: Routed ports on Cisco Nexus 5500 platform interfaces, switch virtual interface (SVI), PortChannels, subinterfaces, and PortChannel subinterfaces for a total of 4096 entries

● Support for up to 8000 prefixes and up to 16000 IPv4 and 8000 IPv6 host entries

● Support for up to 8000 multicast routes

● Support for up to 8000 IGMP groups

● Support for 1000 VRF entries

● Support for up to 4096 VLANs

● 16-way equal-cost multipathing (ECMP)

● 1664 ingress and 2048 egress access control list (ACL) entries

● Routing protocols: Static, Routing Information Protocol Version2 (RIPv2), Enhanced Interior Gateway Routing Protocol (EIGRP), Open Shortest Path First Version 2 (OSPFv2), and Border Gateway Protocol (BGP)

● IPv6 Routing Protocols: Static, Open Shortest Path First Version 3 (OPFv3), Border Gateway Protocol (BGPv6), Enhanced Interior Gateway Routing Protocol (EIGRPv6)

● IPv6 VRF Lite

● Hot-Standby Router Protocol (HSRP) and Virtual Router Redundancy Protocol (VRRP)

● ACL: Routed ACL with Layer 3 and 4 options to match ingress and egress ACL

● Multicast: Protocol Independent Multicast Version 2 (PIMv2) sparse mode, Source Specific Multicast (SSM), Multicast Source Discovery Protocol (MSDP), Internet Group Management Protocol Versions 2, and 3 (IGMP v2, and v3), and Multicast VLAN Registration (MVR)

● Virtual Route Forwarding (VRF): VRF-lite (IP VPN); VRF-aware unicast; and BGP-, OSPF-, RIP-, and VRF-aware multicast

● Unicast Reverse Path Forwarding (uRFP) with ACL; strict and loose modes

● Jumbo frame support (up to 9216 bytes)

● Support for up to 16 fabric extender on each Nexus 5500 with L3 modules

● RFC 896

QoS

● Layer 2 IEEE 802.1p (CoS)

● 8 hardware queues per port

● Per-port QoS configuration

● CoS trust

● Port-based CoS assignment

Page 65: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 19 of 29

● Modular QoS CLI (MQC) compliance - IPv4 and IPv6

● ACL-based QoS classification (Layers 2, 3, and 4)

● MQC CoS marking

● Per-port virtual output queuing

● CoS-based egress queuing

● Egress strict-priority queuing

● Egress port-based scheduling: Weighted Round-Robin (WRR)

● Control Plan Policing (CoPP) - IPv4 and IPv6

Security

● Ingress ACLs (standard and extended) on Ethernet and virtual Ethernet ports

● Standard and extended Layer 2 ACLs: MAC addresses, protocol type, etc.

● Standard and extended Layer 3 to 4 ACLs: IPv4 and IPv6, Internet Control Message Protocol (ICMP and ICMPv6), TCP, User Datagram Protocol (UDP), etc.

● VLAN-based ACLs (VACLs)

● Port-based ACLs (PACLs)

● Named ACLs

● Optimized ACL distribution

● ACLs on virtual terminals (VTYs)

● ACL logging on management interface

● Dynamic Host Configuration Protocol (DHCP) snooping with Option 82

● Dynamic Address Resolution Protocol (ARP) Inspection

● IP source guard

● DHCP relay

● Cisco CTS (Authentication and Policy download from ACS)

● Ethernet Port Security

● IPv6 RACL

● IPv6 PACL

● IPv6 VACL

High-Availability Features

● In-Service Software Upgrade (ISSU) for Layer 2

● Hot-swappable field-replaceable power supplies, fan modules, and expansion modules

● 1:1 power redundancy

● N:1 fan module redundancy

Management

● Switch management using 10/100/1000-Mbps management or console ports

● CLI-based console to provide detailed out-of-band management

● In-band switch management

● Locator and beacon LEDs on Cisco Nexus 2000 Series

● Port-based locator and beacon LEDs

● Configuration synchronization

● Module preprovisioning

● Configuration rollback

● Secure Shell Version 2 (SSHv2)

● Telnet

● AAA

● AAA with RBAC

● RADIUS

● TACACS+

● Syslog (8 servers)

● Embedded packet analyzer

● SNMPv1, v2, and v3 (IPv4 & IPv6)

● Enhanced SNMP MIB support

● XML (NETCONF) support

● Remote monitoring (RMON)

● Advanced Encryption Standard (AES) for management traffic

● Unified username and passwords across CLI and SNMP

Page 66: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 20 of 29

● Microsoft Challenge Handshake Authentication Protocol (MS-CHAP)

● Digital certificates for management between switch and RADIUS server

● Cisco Discovery Protocol Versions 1 and 2

● RBAC

● Switched Port Analyzer (SPAN) on physical, PortChannel, VLAN, and Fibre Channel interfaces

● Encapsulated Remote SPAN (ERSPAN)

● Ingress and egress packet counters per interface

● Network Time Protocol (NTP)

● Cisco GOLD

● Comprehensive bootup diagnostic tests

● Call Home

● Smart Call Home

● Cisco Fabric Manager

● Cisco DCNM

● CiscoWorks LAN Management Solution (LMS)

Data Center Bridging

● CEE- and IEEE-compliant PFC (per-priority Pause frame support)

● PFC link distance support: 3000m

● CEE-compliant DCBX Protocol

● CEE- and IEEE-compliant Enhanced Transmission Selection

Fibre Channel and FCoE Features (Requires Storage Services License)

● T11 standards-compliant FCoE (FC-BB-5)

● T11 FCoE Initialization Protocol (FIP) (FC-BB-5)

● Any 10 Gigabit Ethernet port configurable as FCoE

● SAN administration separate from LAN administration

● FCP

● Fibre Channel forwarding (FCF)

● Fibre Channel standard port types: E, F, and NP

● Fibre Channel enhanced port types: VE, TE, and VF

● F-port trunking

● F-port channeling

● Direct attachment of FCoE and Fibre Channel targets

● Up to 240 buffer credits per native Fibre Channel port

● Up to 32 VSANs per switch

● Fibre Channel (SAN) PortChannel

● Native Interop Mode 1

● Native Interop Mode 2

● Native Interop Mode 3

● Native Interop Mode 4

● VSAN trunking

● Fabric Device Management Interface (FDMI)

● Fibre Channel ID (FCID) persistence

● Distributed device alias services

● In-order delivery

● Port tracking

● Cisco N-Port Virtualization (NPV) technology

● N-port identifier virtualization (NPIV)

● Fabric services: Name server, registered state change notification (RSCN), login services, and name-server zoning

● Per-VSAN fabric services

● Cisco Fabric Services

● Diffie-Hellman Challenge Handshake Authentication Protocol (DH-CHAP) and Fibre Channel Security Protocol (FC-SP)

● Distributed device alias services

● Host-to-switch and switch-to-switch FC-SP authentication

● Fabric Shortest Path First (FSPF)

● Fabric binding for Fibre Channel

● Standard zoning

Page 67: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 21 of 29

● Port security

● Domain and port

● Enhanced zoning

● SAN PortChannels

● Cisco Fabric Analyzer

● Fibre Channel traceroute

● Fibre Channel ping

● Fibre Channel debugging

● Cisco Fabric Manager support

● Storage Management Initiative Specification (SMI-S)

● Boot from SAN over VPC/EVPC

SNMP MIBs

Generic MIBs

● SNMPv2-SMI

● CISCO-SMI

● SNMPv2-TM

● SNMPv2-TC

● IANA-ADDRESS-FAMILY-NUMBERS-MIB

● IANAifType-MIB

● IANAiprouteprotocol-MIB

● HCNUM-TC

● CISCO-TC

● SNMPv2-MIB

● SNMP-COMMUNITY-MIB

● SNMP-FRAMEWORK-MIB

● SNMP-NOTIFICATION-MIB

● SNMP-TARGET-MIB

● SNMP-USER-BASED-SM-MIB

● SNMP-VIEW-BASED-ACM-MIB

● CISCO-SNMP-VACM-EXT-MIB

Layer 3 MIBs

● UDP-MIB

● TCP-MIB

● OSPF-MIB

● BGP4-MIB

● CISCO-HSRP-MIB

Fibre Channel MIBs

● CISCO-ST-TC

● CISCO-FC-FE-MIB

● CISCO-FCSP-MIB

● CISCO-PORT-TRACK-MIB

● CISCO-PSM-MIB

● CISCO-FC-SPAN-MIB

● CISCO-PORT-CHANNEL-MIB

● CISCO-RSCN-MIB

● CISCO-NS-MIB

● CISCO-FCS-MIB

● CISCO-DM-MIB

● FIBRE-CHANNEL-FE-MIB

● CISCO-FC-ROUTE-MIB

● CISCO-FSPF-MIB

● CISCO-ZS-MIB

● CISCO-ZS-EXT-MIB

● CISCO-VSAN-MIB

● CISCO-CFS-MIB

Page 68: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 22 of 29

● CISCO-FCPING-MIB

● CISCO-FCTRACEROUTE-MIB

● CISCO-FDMI-MIB

● CISCO-FC-DEVICE-ALIAS-MIB

● CISCO-WWNMGR-MIB

● FCMGMT-MIB

● CISCO-VEDM-MIB

● CISCO-FCOE-MIB

Ethernet MIBs

● CISCO-VLAN-MEMBERSHIP-MIB

● CISCO-Virtual-Interface-MIB

Configuration MIBs

● ENTITY-MIB

● IF-MIB

● CISCO-ENTITY-EXT-MIB

● CISCO-ENTITY-FRU-CONTROL-MIB

● CISCO-ENTITY-SENSOR-MIB

● CISCO-FLASH-MIB

● CISCO-SYSTEM-MIB

● CISCO-SYSTEM-EXT-MIB

● CISCO-IP-IF-MIB

● CISCO-IF-EXTENSION-MIB

● CISCO-SERVER-INTERFACE-MIB

● CISCO-NTP-MIB

● CISCO-IMAGE-MIB

● CISCO-IMAGE-CHECK-MIB

● CISCO-IMAGE-UPGRADE-MIB

● CISCO-CONFIG-COPY-MIB

● CISCO-ENTITY-VENDORTYPE-OID-MIB

● CISCO-BRIDGE-MIB

Monitoring MIBs

● DIFFSERV-DSCP-TC

● NOTIFICATION-LOG-MIB

● DIFFSERV-MIB

● CISCO-CALLHOME-MIB

● CISCO-SYSLOG-EXT-MIB

● CISCO-PROCESS-MIB

● RMON-MIB

● CISCO-RMON-CONFIG-MIB

● CISCO-HC-ALARM-MIB

Security MIBs

● CISCO-AAA-SERVER-MIB

● CISCO-AAA-SERVER-EXT-MIB

● CISCO-COMMON-ROLES-MIB

● CISCO-COMMON-MGMT-MIB

● CISCO-RADIUS-MIB

● CISCO-SECURE-SHELL-MIB

● TCP/IP MIBs

● INET-ADDRESS-MIB

● TCP-MIB

● CISCO-TCP-MIB

● UDP-MIB

● IP-MIB

● CISCO-IP-PROTOCOL-FILTER-MIB

Page 69: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 23 of 29

● CISCO-DNS-CLIENT-MIB

● CISCO-PORTSECURITY- MIB

Miscellaneous MIBs

● START-MIB

● CISCO-LICENSE-MGR-MIB

● CISCO-FEATURE-CONTROL-MIB

● CISCO-CDP-MIB

● CISCO-RF-MIB

● CISCO-ETHERNET-FABRIC-EXTENDER-MIB

● CISCO-BRIDGE-MIB

Standards

Industry Standards

● IEEE 802.1D: Spanning Tree Protocol

● IEEE 802.1p: CoS prioritization

● IEEE 802.1Q: VLAN tagging

● IEEE 802.1Qaz: Enhanced transmission selection

● IEEE 802.1Qbb: Per-priority Pause

● IEEE 802.1s: Multiple VLAN instances of Spanning Tree Protocol

● IEEE 802.1w: Rapid reconfiguration of Spanning Tree Protocol

● IEEE 802.3: Ethernet

● IEEE 802.3ad: LACP with fast timers

● IEEE 802.3ae: 10 Gigabit Ethernet

● SFF 8431 SFP+ CX1 support

● RMON

● IEEE 1588-2008: Precision Time Protocol (Boundary Clock)

Fibre Channel Standards

● FC-PH, Revision 4.3 (ANSI/INCITS 230-1994)

● FC-PH, Amendment 1 (ANSI/INCITS 230-1994/AM1 1996)

● FC-PH, Amendment 2 (ANSI/INCITS 230-1994/AM2-1999)

● FC-PH-2, Revision 7.4 (ANSI/INCITS 297-1997)

● FC-PH-3, Revision 9.4 (ANSI/INCITS 303-1998)

● FC-PI, Revision 13 (ANSI/INCITS 352-2002)

● FC-PI-2, Revision 10 (ANSI/INCITS 404-2006)

● FC-PI-4, Revision 7.0

● FC-FS, Revision 1.9 (ANSI/INCITS 373-2003)

● FC-FS-2, Revision 0.91

● FC-LS, Revision 1.2

● FC-SW-2, Revision 5.3 (ANSI/INCITS 355-2001)

● FC-SW-3, Revision 6.6 (ANSI/INCITS 384-2004)

● FC-GS-3, Revision 7.01 (ANSI/INCITS 348-2001)

● FC-GS-4, Revision 7.91 (ANSI/INCITS 387-2004)

● FC-BB-5, Revision 2.0 for FCoE

● FCP, Revision 12 (ANSI/INCITS 269-1996)

● FCP-2, Revision 8 (ANSI/INCITS 350-2003)

● FCP-3, Revision 4 (ANSI/INCITS 416-2006)

● FC-MI, Revision 1.92 (INCITS TR-30-2002, except for FL-ports and Class 2)

● FC-MI-2, Revision 2.6 (INCITS TR-39-2005, except for FL-ports and Class 2)

● FC-SP, Revision 1.6

● FC-DA, Revision 3.1 (INCITS TR-36-2004, except for FL-ports, SB-ports and Class 2)

● Class of Service: Class 3, Class F

● Fibre Channel standard port types: E and F

● Fibre Channel enhanced port types: SD and TE

Page 70: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 24 of 29

Physical Specifications

SFP+ Optics

Cisco Nexus 5500 platform supports 10 Gigabit Ethernet SFP+ copper Twinax cables for short distances and SFP+ optics (10GBASE-SR, 10GBASE-LR, 10GBASE-ER, GLC-ZX-SM and Cisco Nexus 2000 Series Fabric Extender Transceiver [FET-10G]) for longer distances. SFP+ has several advantages compared to other 10 Gigabit Ethernet connectivity options:

● Small 10 Gigabit Ethernet form factor

● Optical interoperability with XENPAK, X2, and XFP interface types

● Low power consumption

● Hot-swappable device

● Cisco Nexus 5500 platform products support 8-Gbps Fibre Channel-compatible SFP+ for native Fibre Channel connectivity options; 8-Gbps Fibre Channel-compatible short-reach and 10-km long-reach SFP transceiver modules operate at 8/4/2 Gbps and are supported in the 8-Gbps-capable native Fibre Channel ports on expansion modules and unified ports

SFP Optics

The Cisco Nexus 5500 platform supports Gigabit Ethernet SFP for Gigabit Ethernet connectivity options, available

in both standard and extended temperature ranges with Digital Optical Monitoring (DOM) support. The following

SFP transceiver modules are supported by hardware in all ports of the Cisco Nexus 5500 platform:

● Cisco 1000BASE-T SFP

● Cisco 1000BASE-SX SFP

● Cisco 1000BASE-LX/LR SFP

● Cisco 8/4/2/1-Gbps Fibre Channel SFP

Power Supply

Table 7 lists the power supply properties of the Cisco Nexus 5500 platform.

Table 7. Power Supply Properties

AC Power Supply Properties Cisco Nexus 5548P and 5548UP Cisco Nexus 5596UP Cisco Nexus 5596T

Typical operating power 390W 660W 900W

Maximum power (Layer 2) 600W (without Layer 3 daughter card)

882W (without Layer 3 expansion module)

1050W (with 3x 10G BASE-T (Cu) expansion module)

Maximum power (Layer 3) 730W (with Layer 3 daughter card) 972W (with Layer 3 expansion module)

1050W (with 3x 10G BASE-T (Cu) expansion module)

Input voltage 100 to 240 VAC 100 to 240 VAC 100 to 240 VAC

Frequency 50 to 60 Hz 50 to 60 Hz 50 to 60 Hz

Efficiency 95 to 98% (50 to 100% load) 95 to 98% (50 to 100% load) 95 to 98% (50 to 100% load)

RoHS compliance Yes Yes Yes

Hot swappable Yes Yes Yes

Typical heat dissipation 1331 BTU/hr 2252 BTU/hr 3071 BTU/hr

Front-to-back air flow power supply

Yes Yes Yes

Back-to-front air flow power supply

Yes (only on Cisco Nexus 5548UP; need fan tray as well)

Yes Yes

DC Power Supply Properties Cisco Nexus 5548P and 5548UP Cisco Nexus 5596UP Cisco Nexus 5596T

Typical operating power 390W 680W 900W

Maximum power (Layer 2) 680W (without Layer 3 daughter card)

882W (without Layer 3 expansion module)

1050W (with 3x 10G BASE-T (Cu) expansion module)

Maximum power (Layer 3) 730W (with Layer 3 daughter card) 1079W (with Layer 3 expansion module)

1079W (with 3x 10G BASE-T (Cu) expansion module)

Page 71: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 25 of 29

DC Power Supply Properties Cisco Nexus 5548P and 5548UP Cisco Nexus 5596UP Cisco Nexus 5596T

Input voltage -40 to -72 VDC -40 to -72 VDC -40 to -72 VDC

Frequency N/A N/A N/A

Efficiency 88% 88% 88%

RoHS compliance Yes Yes Yes

Hot swappable Yes Yes Yes

Typical heat dissipation 1331 BTU/hr 2320 BTU/hr 3071 BTU/hr

Front-to-back air flow power supply

Yes Yes Yes

Back-to-front air flow power supply

No No No

Environment

Table 8 lists the environment properties of the Cisco Nexus 5500 platform.

Table 8. Environment Properties

Property Cisco Nexus 5548P and 5548UP Cisco Nexus 5596UP and 5596T

Physical (height x width x depth) 1.72 x 17.3 x 29.5 in. (4.4 x 43.9 x 74.9 cm) 3.47 x 17.3 x 29.5 in. (8.8 x 43.9 x 74.9 cm)

Operating temperature 32 to 104°F (0 to 40°C) 32 to 104°F (0 to 40°C)

Nonoperating (storage) temperature -40 to 158°F (-40 to 70°C) -40 to 158°F (-40 to 70°C)

Humidity 5 to 95% (noncondensing) 5 to 95% (noncondensing)

Altitude 0 to 10,000 ft (0 to 3000m) 0 to 10,000 ft (0 to 3000m)

Weight

Table 9 lists the weight of the Cisco Nexus 5500 platform switches.

Table 9. Weight

Component Weight

Cisco Nexus 5548P or 5548UP with two 750W power supplies, 1 expansion module, and 2 fan modules 35 lb (15.88 kg)

Cisco Nexus 5596UP or 5596T with two 1100W power supplies, 3 unified port expansion modules, and 4 fan modules

47.5 lb (21.55 kg)

Software Requirements

The Cisco Nexus 5500 platform is supported by Cisco NX-OS Software Release 5.0 and later. The Cisco Nexus

5548UP, 5596UP, unified port expansion module, and Layer 3 modules are supported by Cisco NX-OS Software

Release 5.0(3)N1.1 and later. The Cisco Nexus 5596T and N55-M12T (12 x 10G BASE-T Module) is supported by

Cisco NX-OS Software Release 5.2(1)N1(1b) and later. FCoE support on 10G Base-T ports is supported by Cisco

NX-OS Software Release 6.0(2)N1(1) and later. N55-M4Q is supported by Cisco NX-OS Software Release

6.0(2)N1(2) and later. Cisco NX-OS interoperates with any networking OS, including Cisco IOS Software, that

conforms to the networking standards mentioned in this data sheet.

For the latest software release information and recommendations, please see the product bulletin at

http://www.cisco.com/go/nexus5000.

Page 72: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 26 of 29

Regulatory Standards Compliance

Table 10 summarizes regulatory standards compliance for the Cisco Nexus 5500 platform.

Table 10. Regulatory Standards Compliance: Safety, Security and EMC

Specification Description

Regulatory compliance Products should comply with CE Markings according to directives 2004/108/EC and 2006/95/EC

Safety ● UL 60950-1 Second Edition

● CAN/CSA-C22.2 No. 60950-1 Second Edition

● EN 60950-1 Second Edition

● IEC 60950-1 Second Edition

● AS/NZS 60950-1

● GB4943

EMC: Emissions ● 47CFR Part 15 (CFR 47) Class A

● AS/NZS CISPR22 Class A

● CISPR22 Class A

● EN55022 Class A

● ICES003 Class A

● VCCI Class A

● EN61000-3-2

● EN61000-3-3

● KN22 Class A

● CNS13438 Class A

EMC: Immunity ● EN55024

● CISPR24

● EN300386

● KN 61000-4 series

Security ● FIPS 140-2 Level 1

RoHS The product is RoHS 6 compliant with exceptions for leaded ball grid array (BGA) balls and lead press-fit connectors

Ordering Information

Table 11 presents ordering information for the Cisco Nexus 5500 platform. Note that the Cisco Nexus 2000 Series

Fabric Extenders can be ordered either separately or along with the Cisco Nexus 5500 platform.

Table 11. Ordering Information

Part Number Description

Chassis

N5K-C5548P-FA Chassis includes 32 fixed ports, Front-to-Back Airflow, 2 750W AC Power Supplies, Fan Trays, 1 Expansion Slot

N5K-C5548UP-FA Chassis includes 32 fixed unified ports, Front-to-Back Airflow, 2 750W AC Power Supplies, Fan Trays, 1 Expansion Slot

N5K-C5596UP-FA Chassis includes 48 fixed unified ports, Front-to-Back Airflow, 2 1100W AC Power Supplies, Fan Trays, 3 Expansion Slots

N5K-C5596T-FA Chassis includes 32 10G BASE-T fixed ports and 16 1/10G SFP+ fixed ports, Back-to-Front Airflow, 2 1100W AC Power Supplies, Fan Trays, 3 Expansion Slots

Fan Modules

N5548P-FAN(=) Cisco Nexus 5548P/5548UP Fan Module, Front-to-Back Airflow, Spare

N5548P-FAN-B(=) Cisco Nexus 5548UP Fan Module, Back-to-Front Airflow, Spare

N5596UP-FAN(=) Cisco Nexus 5596UP/5596T Fan Module, Front-to-Back Airflow, Spare

N5596UP-FAN-B(=) Cisco Nexus 5596UP/5596T Fan Module, Back-to-Front Airflow, Spare

Page 73: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 27 of 29

Part Number Description

Power Supplies

N55-PAC-750W(=) Cisco Nexus 5548P/5548UP PSU Front-to-Back Airflow module spare, A/C, 100-240V, 750W

N55-PAC-750W-B(=) Cisco Nexus 5548UP PSU Back-to-Front Airflow module spare, A/C, 100-240V, 750W

N55-PDC-750W(=) Cisco Nexus 5548P/5548UP PSU Front-to-Back Airflow module spare, D/C, -40 to -72VDC, 750W

N55-PDC-1100W(=) Cisco Nexus 5596UP/5596T PSU Front-to-Back Airflow module spare, D/C, - 40 to -72VDC, 1100W

N55-PAC-1100W(=) Cisco Nexus 5596UP PSU Front-to-Back Airflow module spare, A/C, 100-240V, 1100W

N55-PAC-1100W-B(=) Cisco Nexus 5596UP/5596T PSU Back-to-Front Airflow module spare, A/C, 100-240V, 1100W

NXA-PAC-1100W(=) Cisco Nexus 5596T Platinum PSU Front-to-Back Airflow module spare, A/C, 100-240V, 1100W

NXA-PAC-1100W-B(=) Cisco Nexus 5596T Platinum PSU Back-to-Front Airflow module spare, A/C, 100-240V, 1100W

Miscellaneous

N55-M-BLNK(=) Cisco Nexus 5500 Blank module cover

Software

N5KUK9-602N1.2(=) Cisco Nexus 5000 Base OS Software Release 6.0(2)N1(2)

N5KUK9-521N1.1B(=) Cisco Nexus 5000 Base OS Software Release 5.2(1)N1(1b)

N5KUK9-521N1.1A(=) Cisco Nexus 5000 Base OS Software Release 5.2(1)N1(1a)

N5KUK9-521N1.1(=) Cisco Nexus 5000 Base OS Software Release 5.2(1)N1(1)

N5KUK9-513N2.1C(=) Cisco Nexus 5000 Base OS Software Release 5.1(3)N2(1c)

N5KUK9-513N2.1(=) Cisco Nexus 5000 Base OS Software Release 5.1(3)N2(1)

N5KUK9-513N1.1A(=) Cisco Nexus 5000 Base OS Software Release 5.1(3)N1(1a)

N5KUK9-513N1.1(=) Cisco Nexus 5000 Base OS Software Release 5.1(3)N1(1)

N5KUK9-503N2.1(=) Cisco Nexus 5000 Base OS Software Release 5.0(3)N2(1)

N5KUK9-503N1.1B(=) Cisco Nexus 5000 Base OS Software Release 5.0(3)N1(1b)

N5KUK9-503N1.1(=) Cisco Nexus 5000 Base OS Software Release 5.0(3)N1(1)

N5KUK9-502N1.1(=) Cisco Nexus 5000 Base OS Software Release 5.0(2)N1(1)

N55-8P-SSK9(=) Cisco Nexus 5500 8-Port Storage Protocol Services License

N5000FMS1K9(=) Cisco Nexus 5000 Series Fabric Manager Server License

N55-LAN1K9(=) Cisco Nexus 5500 Layer 3 Enterprise Software License

N55-BAS1K9(=) Cisco Nexus 5500 Layer 3 Base Software License

Expansion Modules and Daughter Card

N55-M16P(=) 16-port 1/10GE Ethernet/FCoE module (Requires SFP+ for 8Gbps or SFP for 4Gbps operation)

N55-M12T(=) 12-port 10G BASE-T Ethernet Module (Only supported on 5596T chassis)

N55-M8P8FP(=) 8-port FC (8/4/2/1G) + 8-port Eth/FCoE Module

N55-M16UP(=) 16-port Unified Port Expansion Module

N55-M4Q(=) 4-port QSFP expansion module

N55-D160L3(=) Nexus 5548 Layer 3 Daughter Card

N55-D160L3-V2(=) Nexus 5548 Layer 3 Daughter Card, version 2

N55-M160L3(=) Nexus 5596 Layer 3 Expansion Module

N55-M160L3-V2(=) Nexus 5596 Layer 3 Expansion Module, version 2

Cables and Optics

SFP-10G-SR(=) 10GBASE-SR SFP+ Module

SFP-10G-LR(=) 10GBASE-LR SFP+ Module

SFP-10G-ER(=) 10GBASE-ER-SFP+ Module

SFP-H10GB-CU1M(=) 10GBASE-CU SFP+ Cable 1 Meter

SFP-H10GB-CU3M(=) 10GBASE-CU SFP+ Cable 3 Meter

Page 74: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 28 of 29

Part Number Description

SFP-H10GB-CU5M(=) 10GBASE-CU SFP+ Cable 5 Meter

SFP-H10GB-ACU7M(=) Active Twinax cable assembly, 7m

SFP-H10GB-ACU10M(=) Active Twinax cable assembly, 10m

GLC-T(=) 1000BASE-T SFP

GLC-ZX-SM(=) 1000BASE-ZX SFP transceiver module for SMF, 1550-nm wavelength, dual LC/PC connector

GLC-SX-MM(=) GE SFP, LC connector SX transceiver

GLC-SX-MMD(=) GE SFP, LC connector SX transceiver with Digital Optical Monitoring (DOM) and Extended Temperature Range

GLC-LH-SM(=) GE SFP, LC connector LX/LH transceiver

GLC-LH-SMD(=) GE SFP, LC connector LX/LH transceiver with Digital Optical Monitoring (DOM) and Extended Temperature Range

SFP-GE-T(=) 1000BASE-T SFP, Extended Temperature Range

SFP-GE-S(=) GE SFP, LC connector SX transceiver, with Digital Optical Monitoring (DOM) and Extended Temperature Range

SFP-GE-L(=) GE SFP, LC connector LX/LH transceiver, with Digital Optical Monitoring (DOM) and Extended Temperature Range

DS-SFP-FC4G-SW(=) 4Gbps Fibre Channel-SW SFP, LC

DS-SFP-FC4G-LW(=) 4Gbps Fibre Channel-LW SFP, LC

DS-SFP-FC8G-SW(=) 8Gbps Fibre Channel-SW SFP+, LC

DS-SFP-FC8G-LW(=) 8Gbps Fibre Channel-LW SFP+, LC

DS-CWDM4G1470(=) 1470 nm CWDM 1/2/4-Gbps Fibre Channel SFP (Color: Grey)

DS-CWDM4G1490(=) 1490 nm CWDM 1/2/4-Gbps Fibre Channel SFP (Color: Violet)

DS-CWDM4G1510(=) 1510 nm CWDM 1/2/4-Gbps Fibre Channel SFP (Color: Blue)

DS-CWDM4G1530(=) 1530 nm CWDM 1/2/4-Gbps Fibre Channel SFP (Color: Green)

DS-CWDM4G1550(=) 1550 nm CWDM 1/2/4-Gbps Fibre Channel SFP (Color: Yellow)

DS-CWDM4G1570(=) 1570 nm CWDM 1/2/4-Gbps Fibre Channel SFP (Color: Orange)

DS-CWDM4G1590(=) 1590 nm CWDM 1/2/4-Gbps Fibre Channel SFP (Color: Red)

DS-CWDM4G1610(=) 1610 nm CWDM 1/2/4-Gbps Fibre Channel SFP (Color: Brown)

QSFP-40G-SR4(=) 40GBASE-SR4 QSFP module, (multimode fiber [MMF] at 100m)

QSFP-40G-CSR4 40GBASE Extended CSR4 QSFP module, (MMF at 300m)

QSFP-4x10G-AC7M Cisco 40GBASE-CR4 QSFP+ to 4 10GBASE-CU SFP+ direct-attach breakout cable, 7m, active

QSFP-4x10G-AC10M Cisco 40GBASE-CR4 QSFP+ to 4 10GBASE-CU SFP+ direct-attach breakout cable, 10m, active

QSFP-H40G-CU1M Cisco 40GBASE-CR4 QSFP+ direct-attach copper cable, 1m, passive

QSFP-H40G-CU3M Cisco 40GBASE-CR4 QSFP+ direct-attach copper cable, 3m, passive

QSFP-H40G-CU5M Cisco 40GBASE-CR4 QSFP+ direct-attach copper cable, 5m, passive

QSFP-H40G-ACU7M Cisco 40GBASE-CR4 QSFP+ direct-attach copper cable, 7m, active

QSFP-H40G-ACU10M Cisco 40GBASE-CR4 QSFP+ direct-attach copper cable, 10m, active

Power Cords

CAB-250V-10A-AR AC Power Cord - 250V, 10A - Argentina (2.5 meter)

CAB-9K10A-AU Power Cord, 250VAC 10A 3112 Plug, Australia (2.5 meter)

CAB-250V-10A-BR AC Power Cord - 250V, 10A - Brazil(2.1 meter)

CAB-250V-10A-CN AC Power Cord - 250V, 10A - PRC (2.5 meter)

CAB-9K10A-EU Power Cord, 250VAC 10A CEE 7/7 Plug, EU (2.5 meter)

CAB-IND-10A 10A Power cable for India (2.5 meter)

CAB-250V-10A-IS AC Power Cord - 250V, 10A - Israel (2.5 meter)

CAB-9K10A-IT Power Cord, 250VAC 10A CEI 23-16/VII Plug, Italy (2.5 meter)

CAB-250V-10A-ID AC Power Cord - 250V, 10A, South Africa(2.5 meter)

CAB-9K10A-SW Power Cord, 250VAC 10A MP232 Plug, SWITZ (2.5 meter)

Page 75: Virtual Port Channel

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 29 of 29

Part Number Description

CAB-9K10A-UK Power Cord, 250VAC 10A BS1363 Plug (13 A fuse), UK (2.5 meter)

CAB-9K12A-NA Power Cord, 125VAC 13A NEMA 5-15 Plug, North America (2.5 meter)

CAB-AC-L620-C13= North America, NEMA L6-20-C13 (2.0 meter)

CAB-N5K6A-NA Power Cord, 200/240V 6A North America (2.5 meter)

CAB-C13-CBN Cabinet Jumper Power Cord, 250 VAC 10A, C14-C13 Connectors (0.7 meter)

CAB-C13-C14-2M Power Cord Jumper, C13-C14 Connectors, 2 Meter Length (2 meter)

CAB-C13-C14-AC Power cord, C13 to C14 (recessed receptacle), 10A (3 meter)

Accessory Kit

N5548-ACC-KIT= Accessory Kit for Nexus 5548 Chassis

N5596-ACC-KIT= Accessory Kit for Nexus 5596 Chassis

Warranty

The Cisco Nexus 5500 platform has a 1-year limited hardware warranty. The warranty includes hardware

replacement with a 10-day turnaround from receipt of a return materials authorization (RMA).

Service and Support

Cisco offers a wide range of services to help accelerate your success in deploying and optimizing the Cisco Nexus

5500 platform in your data center. The innovative Cisco Services are delivered through a unique combination of

people, processes, tools, and partners and are focused on helping you increase operation efficiency and improve

your data center network. Cisco Advanced Services uses an architecture-led approach to help you align your data

center infrastructure with your business goals and achieve long-term value. Cisco SMARTnet® Service helps you

resolve mission-critical problems with direct access at any time to Cisco network experts and award-winning

resources. With this service, you can take advantage of the Smart Call Home service capability, which offers

proactive diagnostics and real-time alerts on your Cisco Nexus 5500 platform. Spanning the entire network

lifecycle, Cisco Services offerings help increase investment protection, optimize network operations, support

migration operations, and strengthen your IT expertise.

For More Information

● Cisco Nexus 5000 Series Switches: http://www.cisco.com/go/nexus5000

● Cisco Nexus 2000 Series Fabric Extenders: http://www.cisco.com/go/nexus2000

● Cisco NX-OS Software: http://www.cisco.com/go/nxos

Printed in USA C78-618603-13 11/14