Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5....

205
UNIVERSIDAD DE LEÓN FACULTAD DE BIOLOGÍA DEPARTAMENTO DE BIOLOGÍA VEGETAL VARIACIONES ESTRUCTURALES Y FUNCIONALES DE LOS FANERÓFITOS DOMINANTES EN LAS COMUNIDADES DE ENCINAR A LO LARGO DE UN GRADIENTE CLIMÁTICO ATLÁNTICO-MEDITERRÁNEO Memoria que para optar al grado de Doctor en Biología presenta: PILAR CASTRO DIEZ Zaragoza, Marzo de 1996

Transcript of Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5....

Page 1: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

UNIVERSIDAD DE LEÓN

FACULTAD DE BIOLOGÍA

DEPARTAMENTO DE BIOLOGÍA VEGETAL

VARIACIONES ESTRUCTURALES Y FUNCIONALES DE LOS

FANERÓFITOS DOMINANTES EN LAS COMUNIDADES DE

ENCINAR A LO LARGO DE UN GRADIENTE CLIMÁTICO

ATLÁNTICO-MEDITERRÁNEO

Memoria que para optar al grado de

Doctor en Biología presenta:

PILAR CASTRO DIEZ

Zaragoza, Marzo de 1996

Nota
Pulse en esta página para regresar al directorio de tesis.
Page 2: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 3: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

Gabriel MONTSERRAT MARTI, Colaborador Científico del Consejo Superior de

Investigaciones Científicas, y Jaime ANDRES RODRIGUEZ, Profesor Titular del Dpto. de

Biología Vegetal de la Universidad de León, director y tutor de esta Tesis

CERTIFICAN: Que la Tesis Doctoral titulada "Variaciones estructurales y funcionales de

los fanerófitos dominantes en las comunidades de encinar a lo largo de un

gradiente climático atlántico-mediterráneo" de la que es autora la licenciada

en Ciencias Biológicas Dña. Pilar CASTRO DÍEZ, ha sido realizada en el

Instituto Pirenaico de Ecología (C.S.I.C.) y reúne todas las condiciones para

optar al Grado de Doctora en Ciencias Biológicas.

Lo que suscribimos como Director y Tutor de la Tesis

Zaragoza, 25 de marzo de 1996. León, 26 de marzo de 1996

Gabriel Montserrat Martí Jaime Andrés Rodríguez

Page 4: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 5: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

A mis padres,

a Carmen Pérez y a Pedro Villar

Page 6: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 7: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

Agradecimientos

La realización de esta Memoria Doctoral no sólo me ha dado la oportunidad de adquirir unaformación científica, sino de conocer y colaborar con muchas personas cuya calidad humanano puede ser reflejada en esta Tesis.

Antes de empezar con la larga lista de personas que de alguna forma me han ayudado, deseoagradecer al Ministerio de Educación y Ciencia que me concedió una beca FPI, sin la cuál nohubiera podido realizar este trabajo, al Instituto Pirenaico de Ecología, que puso a midisposición todos sus medios, y al Instituto Nacional de Meteorología, que me cedió los datosclimáticos, imprescindibles para la elaboración de casi todos los capítulos.

A Gabriel Montserrat, director de esta Memoria, quiero agradecer su dedicación, su esfuerzo ysu constante disposición a ofrecer su ayuda. De él he aprendido que la disciplina, el rigorcientífico y la seriedad en el trabajo son compatibles con la cordialidad y la amistad.

A Carmen Pérez y a Pedro Villar, que han colaborado a poner en marcha el laboratorio delIPE, no sólo he de agradecer el esfuerzo y el rigor que han demostrado en su trabajo, sin elcuál la realización de esta Tesis no hubiera sido posible, sino también las calurosas"discusiones científicas" y, sobre todo, su amistad, que en el fondo es mucho más importanteque cualquier título.

A Melchor Maestro, que puso a punto el laboratorio de análisis químico, quiero agradecer queanalizara cientos de muestras sin perder el buen humor.

A Joaquín Guerrero por sus correcciones de la versión final, por su compañerismo y por esesentido del humor inquebrantable.

A Eustaquio Gil por sus ideas y por sus críticas constructivas de la versión final de la Tesis.

A Hans Cornelissen, a John Hodgson, a Françoise Romane y a Richard Groves por suscomentarios de algunos capítulos.

A Puri Almansa y a Conchi Alonso, que me ayudaron con los muestreos durante el verano de1993 y soportaron con dignidad las abrasantes temperaturas de agosto en los Monegros.

A Clara y a Carlos por su colaboración en el trabajo de laboratorio durante el verano de 1995.

A Javier Alvarez por su ayuda y perfeccionismo en la elaboración de gráficos.

A José Manuel Nicolau por esa ayuda tan oportuna en los apuros finales.

A todo el personal del Instituto Pirenaico de Ecología que no he mencionado y que, de algúnmodo, han hecho que me sintiera a gusto entre ellos durante estos años.

Page 8: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 9: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

A mis padres que siempre me han apoyado y han soportado con resignación la escasafrecuencia de mis visitas.

A todos mis amigos que, no habiendo colaborado directamente en el trabajo de la Tesis, mehan ayudado a sobrellevar los momentos de desánimo.

¡Encinares castellanosen laderas y altozanos,serrijones y colinasllenas de oscura maleza,encinas, pardas encinas;humildad y fortaleza!

Mientras que llenándoos vael hacha de calvijares,¿nadie cantaros sabrá,encinares?

Antonio Machado

Page 10: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 11: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

Indice

Page 12: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 13: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

CAPÍTULO 1. Introducción........................................................................ 15

PRIMERA PARTE

Area de estudio

CAPÍTULO 2. El medio físico y la vegetación........................................... 29

SEGUNDA PARTE

Variación de los caracteres del encinar a lo largo de un gradiente climático

CAPÍTULO 3. El papel del clima y las perturbaciones en la composición

florística, en los caracteres morfoanatómicos y en la estructura de las

comunidades de Quercus ilex

3.1 Introducción ....................................................................... 59

3.2 Material y métodos .............................................................. 61

3.3 Resultados ........................................................................... 67

3.4 Discusión ............................................................................ 74

TERCERA PARTE

Variaciones estructurales de las especies a lo largo de un gradiente

climático

III. 1 Introducción........................................................................... 81

III. 2 Material y métodos................................................................. 84

CAPÍTULO 4. Respuestas foliares y xilemáticas de tres especies de Quercus

(Fagaceae) a lo largo de un gradiente climático

4.1 Introducción......................................................................... 89

4.2 Resultados............................................................................ 91

4.3 Discusión............................................................................. 96

Page 14: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

CAPÍTULO 5. Morfología foliar, composición química foliar y caracteres

xilemáticos del tallo en dos especies de Pistacia (Anacardiaceae) a lo

largo de un gradiente climático

5.1 Introducción......................................................................... 105

5.2 Resultados........................................................................... 106

5.3 Discusión............................................................................. 109

CAPÍTULO 6. Respuestas foliares y xilemáticas de cuatro fanerófitos

perennifolios mediterráneos a lo largo de un gradiente climático

6.1 Introducción......................................................................... 115

6.2 Resultados........................................................................... 116

6.3 Discusión ............................................................................ 123

III. 3 Conclusiones ........................................................................ 129

CUARTA PARTE

Variaciones de las especies a lo largo del ciclo anual

CAPÍTULO 7. Comportamiento fenológico de diez fanerófitos mediterráneos

en función de sus caracteres estructurales

7.1 Introducción ........................................................................ 137

7.2 Material y métodos ............................................................. 139

7.3 Resultados........................................................................... 145

7.4 Discusión............................................................................. 169

CAPÍTULO 8. Conclusiones .................................................................... 177

BIBLIOGRAFIA ................................................................................... 185

APENDICE............................................................................................ 203

Page 15: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

CAPITULO 1

Introducción

Page 16: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 17: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

El clima mediterráneo se caracteriza por la coincidencia de temperaturas elevadas con

escasas precipitaciones durante el verano, lo cual genera un período de aridez que restringe el

potencial fotosintético de las plantas sometidas a él (Nahal, 1981). Además, en muchas

regiones los inviernos son lo suficientemente fríos como para ralentizar el metabolismo hasta

niveles basales, con lo cual el período favorable para la actividad vegetativa queda limitado a

dos estaciones, la primavera y el otoño (Mitrakos, 1980). Esta discontinuidad dificulta la

culminación de algunas fenofases, que se inician en primavera, pueden ser interrumpidas o

ralentizadas durante el verano, y no siempre se reanudan en otoño.

Este clima tan peculiar aparece solamente en cinco lugares de la tierra, muy distantes

entre sí: la cuenca del Mediterráneo, la parte central de Chile, Califonia y las costas occidentales

de Sudáfrica y Australia. A causa de la lejanía geográfica, la relación filogenética que existe

entre sus floras es muy escasa, lo cual hace enormemente llamativo el hecho de que sus

comunidades vegetales muestren una gran similitud fisionómica (Mooney y Dunn, 1970;

Di Castri y Mooney, 1973; Shmida, 1984). En las cinco regiones encontramos un relevo

análogo de formas de crecimiento a lo largo de un gradiente de humedad: cuando el clima es

típicamente mediterráneo, el paisaje aparece dominado por densas formaciones arbóreas o

arbustivas de plantas perennifolias, comunidades que reciben nombres diversos: matorral en

España y Chile, chaparral en California, maquis en Francia e Italia y mallee en Australia (Di

Castri, 1981). Cuando aumenta la altitud o la latitud y el estrés hídrico disminuye, las

formaciones arbóreas caducifolias de invierno desplazan al matorral perennifolio. Por el

contrario, en áreas más aridas dominan las plantas heteromorfas, que reducen su biomasa foliar

en verano, ya sea desprendiéndose de todas sus hojas, como hacen los deciduos de verano, o

de buena parte de sus ramas, comportamiento típico de muchos caméfitos (Mooney et al., 1970;

Parsons, 1976; Cowling y Campbell, 1980; Orshan et al., 1984).

Page 18: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

18

Esta apariencia de homogeneidad fisionómica entre las comunidades vegetales de estas

regiones se debe, en gran parte, a una similitud morfológica y anatómica entre las

hojas de los fanerófitos dominantes, que ha hecho que estos últimos sean calificados como

"esclerófilos". Este término hace referencia a la textura de las hojas (escleromorfas), pero

carece de una definición precisa o cuantitativa. Frente a las hojas de plantas “malacófilas”

(blandas, delgadas y fáciles de rasgar) las hojas escleromorfas poseen una textura rígida, dura y

coriácea (Cowling y Campbell, 1983), resistente a la fractura (Lucas y Pereira, 1990; Choong

et al., 1992). Estas propiedades se deben al engrosamiento de las cutículas y las paredes

externas de la epidermis, a la abundancia de tejido de sostén (Fahn, 1982; Turner, 1994a), a un

mesófilo denso y a un parénquima en empalizada bien desarrollado (Kummerow, 1973).

Suelen ser hojas pequeñas y gruesas, de elevada masa específica (Turner, 1994a) y baja

concentración de nitrógeno y fósforo (Loveless, 1961; Turner, 1994a). Estos caracteres con

frecuencia corresponden a hojas longevas, que confieren a la planta un hábito perennifolio

(Chabot y Hicks, 1982; Reich et al., 1991).

Las especies esclerófilas de las distintas regiones han sido seleccionadas por un

factor ambiental común, la escasez de agua en verano, lo cual hace que su comportamiento

fisiológico muestre similitudes encaminadas a un uso eficiente de este recurso. Sin embargo,

dado que las economías del agua, del carbono y de los nutrientes están fuertemente

interrelacionadas (Bloom et al., 1985), las deficiencias en uno de estos recursos repercuten en

el uso de los demás. Por ejemplo, a través de los estomas abiertos entran moléculas de CO2 y

salen moléculas de agua, de forma que el cierre estomático que induce el estrés hídrico para

evitar la pérdida de agua, inhibe también la adquisición de carbono; los nutrientes llegan a la

planta transportados por el flujo de agua desde el suelo hasta la raíz, de forma que si el potencial

hídrico del suelo es muy bajo no se absorberá ninguno de los dos recursos (Bloom et al., 1985;

De Lillis y Fontanella, 1992; Sabaté et al., 1995). Con estos ejemplos se puede entender que la

fisiología de las plantas que viven en climas de tipo mediterráneo no solamente se asemeja en la

economía hídrica, sino también en la del carbono y en la de los nutrientes.

A) Economía del agua -- En condiciones de estrés hídrico las plantas esclerófilas

presentan, en comparación con las malacófilas, una menor tasa máxima de transpiración

(Larcher, 1980; Chabot y Hicks, 1982), una resistencia estomática máxima superior y una

transpiración cuticular más baja (Turner, 1994a); son capaces de reducir fuertemente su

potencial hídrico con pequeños déficits de saturación de agua (Salleo y Lo Gullo, 1990), de

soportar sin marchitarse potenciales más bajos (Larcher, 1980; Turner, 1994a) e incluso de

mantener ciertos niveles de fotosíntesis, con potenciales hídricos a los que otras especies ya han

cerrado totalmente los estomas (Morrow y Mooney, 1974; Cody y Mooney, 1978). En

ambientes secos y soleados, el pequeño tamaño y el elevado espesor que suelen caracterizar a

las hojas escleromorfas contribuyen a un uso más eficiente del agua (Givnish, 1979).

Page 19: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

19

B) Economía del carbono -- La tasa de asimilación de carbono de las plantas que

habitan en las regiones templadas sufre oscilaciones cíclicas impuestas por las condiciones

ambientales. En el caso de las regiones de clima mediterráneo el período óptimo para la

asimilación es la primavera, cuando la actividad metabólica no está restringida ni por falta de

agua ni por baja temperatura (Mooney et al., 1974; Arianoutsou-Faraggitaki y Diamantopoulos,

1985). Durante el verano, sin embargo, muchas especies reducen su tasa de asimilación para

poder mantener su status hídrico (Tretiach, 1993). El otoño vuelve a ser un período favorable,

mientras que el invierno induce una nueva reducción de actividad por efecto de las bajas

temperaturas (Mooney, 1983). Por otra parte, la demanda de carbono para la realización de las

funciones vitales de la planta, también varía a lo largo del año y no siempre de forma paralela a

la tasa de asimilación: La máxima demanda de carbono tiene lugar en primavera, cuando se

produce la mayor parte del crecimiento (Kozlowski, 1962a), y la mínima en invierno, cuando la

actividad metabólica se reduce a niveles basales. Sin embargo, la tasa de demanda estival puede

llegar a ser muy alta, ya sea porque se están desarrollando los frutos (Kozlowski, 1962a;

Mooney y Bartholomew, 1974), o solamente para cubrir las necesidades de respiración, que

alcanza cotas máximas cuando la temperatura es elevada (Larcher, 1980). Este desfase que

existe entre asimilación y demanda se puede amortiguar almacenando reservas de carbono en

distintas partes de la planta (Bloom et al., 1985). Los procesos de almacenaje y movilización

posterior de reservas consumen energía (Chapin III et al., 1990) y anulan la posibilidad de

obtener el "interés compuesto" que resultaría de reinvertir directamente los recursos en la

construcción de hojas nuevas (Harper, 1989). Por lo tanto, el precio que ha de pagar la planta

por almacenar reservas, es una pérdida de competitividad a corto plazo, pero obtiene el

beneficio de asegurar su supervivencia durante períodos críticos (Bloom et al., 1985), como

son el verano y el invierno mediterráneos. Esta apuesta por la persistencia frente a la

competitividad se ha puesto de manifiesto en los patrones de almacén y uso de reservas de

algunas plantas mediterráneas, tanto caméfitos (Meletiou-Christou et al., 1992) como

fanerófitos (Mooney y Hays, 1973; Larcher y Thomaser-Thin, 1988), y es acorde con la baja

capacidad fotosintética (Cody y Mooney, 1978; Mooney, 1981), el alto costo de construcción

por unidad de área foliar (Merino et al., 1984; Chapin III, 1989; Sobrado, 1991) y la elevada

longevidad de las hojas escleromorfas (Kikuzawa, 1991).

C) Economía de nutrientes -- La eficiencia en el uso de nutrientes aumenta cuanto

menor es la tasa de pérdida de los mismos. Este efecto se puede conseguir construyendo tejidos

pobres en nutrientes, alargando el período de retención de las hojas y/o retranslocando los

nutrientes de las hojas a otras partes de la planta antes de su abscisión (Aerts, 1995). Las hojas

de las especies esclerófilas mediterráneas muestran una baja proporción de nutrientes respecto a

fibras (Loveless, 1961; Rundel, 1988; Turner, 1994b), poseen longevidades medias que con

frecuencia alcanzan y superan los dos años (Specht, 1988; Orshan, 1989), sufren un proceso

de abscisión gradual (Escudero et al., 1992) y muestran una tasa de descomposición muy lenta

Page 20: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

20

(Monk, 1966; Mooney y Dunn, 1970; Aerts, 1995) que reduce el riesgo de pérdida de

nutrientes por lavado. Aunque la eficiencia de retranslocación parece ser menor que en las

especies caducifolias (Escudero et al., 1992; Reich et al., 1992), los caracteres previamente

mencionados bastan para justificar la elevada eficiencia de uso de nutrientes que demuestran las

especies esclerófilas (Aerts, 1995). Por otra parte, la dinámica de consumo y almacén de estos

recursos muestra una periodicidad anual, análoga a la que hemos descrito en el apartado anterior

para el carbono. La disponibilidad de nutrientes accesibles por la planta es máxima durante la

primavera, cuando el aumento de las temperaturas promueve la descomposición de la materia

orgánica del suelo y hay agua suficiente para absoberlos, y mínima en verano e invierno

(Bonilla y Rodà, 1992). Las plantas pueden aprovechar los períodos de abundancia para

almacenar estos recursos e ir consumiéndolos en los momentos de escasez. Por ejemplo, en

árboles de distintos ecosistemas se ha observado que durante el crecimiento se retransloca

nitrógeno desde diversas partes de la planta hacia los órganos en crecimiento, recargándose las

reservas en otoño (Chapin III y Kedrowski, 1983; Helmisaari, 1990). Sin embargo, la

dinámica de almacén y consumo de nutrientes ha sido muy poco estudiada en las especies

mediterráneas (ver por ej. Escudero et al., 1992; Sabaté et al., 1995).

A partir de las propiedades fisiológicas y funcionales mencionadas hasta el momento, se

han propuesto diversas interpretaciones del significado adaptativo de la esclerofilia.

Algunos autores consideran que es una adaptación a los ambientes áridos, dada su mejor

capacidad para conservar el agua (Shields, 1950; Oppenheimer, 1960; Levitt, 1980), otros la

entienden como una adaptación para la conservación de nutrientes (Loveless, 1961; Monk,

1966; Small, 1972; Levitt, 1980) y otros creen que responde a una selección en favor de hojas

más resistentes y, en consecuencia, más longevas (Herms y Mattson, 1992; Turner, 1994a).

Las hojas de vida larga son ventajosas en ambientes donde la escasez de recursos (agua o

nutrientes) limitan la tasa de asimilación, ya que la acumulación en la planta de cohortes de

hojas con distintas edades permite compensar su reducida tasa de asimilación. De este modo,

las plantas esclerófilas son capaces de igualar, e incluso superar, la producción neta anual de las

especies malacófilas (Reich et al., 1992; Aerts, 1995).

La anatomía de la madera de cada especie es el resultado del equilibrio entre dos

fuerzas de selección contrapuestas: una que tiende a incrementar la eficiencia conductora del

agua en el xilema y otra que tiende a proporcionar una conducción más segura (Zimmermann,

1983). En los climas de tipo mediterráneo existen dos períodos en que aumenta el riesgo de que

el xilema sufra disfunciones. Por una parte, la aridez estival genera fuertes tensiones hídricas en

los conductos, lo que aumentan la probabilidad de que se formen embolias y favorece la

propagación de éstas a conductos vecinos. Por otra parte, las heladas invernales pueden

provocar cavitación, ya que el aire disuelto en el agua se libera cuando ésta se congela y no

siempre se redisuelve cuando se vuelve a fundir el hielo (Tyree et al., 1994). En estas

Page 21: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

21

condiciones cabe esperar que sean seleccionadas las maderas que sacrifican eficiencia

conductora en favor de seguridad. Sin embargo, los caracteres que pueden garantizar cierta

seguridad de conducción pueden ser muy diversos, y no están necesariamente ligados a la

anatomía de madera (Carlquist y Hoekman, 1985; Tyree et al., 1994). Si a ésto se une el hecho

de que muchos aspectos de la madera están más condicionados por la filogenia que por las

factores ambientales (Carlquist y Hoekman, 1985; Fahn et al., 1986), es fácil entender que

entre las plantas mediterráneas la estructura de la madera no sea tan homogénea como la de las

hojas. Sin embargo, existen una serie de caracteres que aparecen con mayor frecuencia en las

plantas de zonas áridas y que confieren mayor seguridad en la conducción del agua. Entre ellos

cabe citar la elevada densidad de vasos por unidad de superficie del xilema, el reducido tamaño

de sus elementos (tanto en diámetro como en longitud), la presencia de placas de perforación

simple y de engrosamientos helicoidales en las paredes de los vasos (Baas y Carlquist, 1985;

Carlquist y Hoekman, 1985; Fahn et al., 1986). El elevado número de vasos por unidad de

superficie hace que la pérdida de conductividad hidráulica que se produce cuando cavita una

proporción fija de vasos, sea menor que si éstos son poco numerosos. Tanto el acortamiento

como el estrechamiento de los vasos disminuye el volumen de agua que pueden contener y éste

es directamente proporcional a la probabilidad de que un conducto cavite (Tyree et al., 1994).

Además de las adaptaciones morfológicas, anatómicas y fisiológicas de las que nos

hemos ocupado hasta el momento, las plantas pueden ajustarse a la alternancia de períodos

favorables y desfavorables adecuando su morfología a las condiciones de cada momento. Los

procesos de crecimiento dan lugar a unas variaciones cíclicas de los órganos vegetativos y

regenerativos, que son estudiadas por la fenomorfología (Orshan et al., 1988). En los

ambientes mediterráneos estas adaptaciones pueden ser más importantes incluso que las de tipo

fisiológico (Orshan et al., 1988), de forma que para entender el modo en que las plantas se

ajustan a su ambiente, es fundamental el conocimiento de su patrón fenomorfológico. Sin

embargo, los estudios fenológicos no son muy abundantes, aunque cabe destacar los de Orshan

(1972 y 1989), Margaris (1981) y Floret et al., (1990) en cuenca mediterránea, los de

Montenegro et al. (1979 y 1982) en Chile y los de Mooney et al. (1974) en California, entre

otros. En estos trabajos se pone de manifiesto la existencia de dos grandes grupos

fenomorfológicos, según su respuesta a la aridez estival: el de las plantas isomorfas, que

mantienen una biomasa transpiradora más o menos constante a lo largo del año, y el de las

heteromorfas, que reducen de forma patente dicha biomasa durante el verano (Evenari et al.,

1975; Mooney, 1981; Orshan et al., 1989). La principal diferencia estructural que justifica uno

y otro comportamiento parece ser la profundidad de la raíz, que permite o no acceder a las capas

más profundas del suelo, que son menos susceptibles de secarse en verano. Si la raíz es

somera, es probable que cuando llegue el verano no pueda abastecer toda la biomasa foliar que

ha desarrollado en primavera, de forma que la planta ha de desprenderse de una parte de la

misma (Kummerow, 1981; Mooney, 1981; Orshan et al., 1988).

Page 22: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

22

El momento óptimo para que las plantas desarrollen sus funciones vitales en climas de

tipo mediterráneo es la primavera (Mooney et al., 1974; Arianoutsou-Faraggitaki y

Diamantopoulos, 1985). De hecho, el crecimiento vegetativo se suele concentrar en esta

estación, especialmente en Chile, California y la cuenca del Mediterráneo (Mooney et al., 1974;

Orshan, 1989). En Sudáfrica y Australia el patrón de crecimiento difiere sustancialmente, ya

que se produce durante todo el año en la primera región (Orshan et al., 1989) y se extiende al

período seco en la segunda (Cody y Mooney, 1978). Estas diferencias pueden estar motivadas

por factores distintos a la aridez, como son el estrés nutricional o un muy distinto origen

filogenético (Mooney y Kummerow, 1981).

Esta confluencia de caracteres entre las floras mediterráneas de las distintas regiones del

mundo, se ha considerado como un ejemplo clásico de convergencia evolutiva (Specht,

1969; Mooney y Dunn, 1970; Di Castri y Mooney, 1973; Mooney, 1977; Di Castri et al., 1981;

Tenhunen et al., 1987a; Arroyo et al., 1995). La explicación que se ha dado a este fenómeno

argumenta que cuando coinciden diversos tipos de estrés en un ambiente, se reduce

notablemente el número de posibles estrategias que permiten a las plantas perdurar en él. En los

climas de tipo mediterráneo los factores de estrés que confluyen son el frío de invierno, la

aridez de verano, la impredecibilidad de la lluvia, las perturbaciones frecuentes, etc. (Mooney y

Dunn, 1970). En estas circunstancias es más probable que los caracteres de las plantas posean

valor adaptativo (Parsons, 1976), en lugar de responder a factores de tipo filogenético o

histórico (Herrera, 1992).

Los estudios que tratan de explicar la interacción entre las plantas y el ambiente en

regiones de clima mediterráneo, han tropezado con una serie de dificultades. La primera de

ellas resulta de la enorme heterogeneidad que encierran estos ambientes, que se debe a su

complejidad topográfica y geológica, a la posición de frontera que ocupan entre el mundo

tropical y el mundo templado (Di Castri, 1981), y a los rápidos cambios climáticos que se han

sucedido durante los últimos milenios (Axelrod, 1973; Raven, 1973). A ello hay que añadir los

efectos del intenso manejo antrópico que las comunidades mediterráneas han sufrido desde el

Neolítico (Le Houerou, 1981) y que ha provocado la aparición de formaciones vegetales que no

están en equilibrio con su clima (Reille y Pons, 1992). Todo ello dificulta la identificación y

cuantificación de los factores que influyen en la estructura de las comunidades vegetales. Por

otra parte, la interpretación funcional de los caracteres más observados por los científicos

(normalmente los de medida más sencilla, como son los morfológicos) no resulta fácil (Orshan,

1986). Con frecuencia sólo se analiza un tipo de órgano (normalmente las hojas o los tallos),

cuando la estrategia de una planta sólo se puede entender integrando el funcionamiento de todas

sus partes (Bloom et al., 1985; Chapin III et al., 1987). En concreto, la estructura de la raíz

Page 23: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

23

resulta de gran importancia para entender los mecanismos que permiten a las plantas vivir en los

ambientes áridos (Orshan et al., 1989), pero la dificultad y el elevado coste de tales estudios en

especies de fanerófitos hacen que sean poco frecuentes (ver por ej. Kummerow, 1981; Rambal,

1984). Otra dificultad que supone la interpretación funcional de caracteres morfológicos reside

en que muchas adaptaciones fisiológicas no muestran ninguna manifestación visual, de forma

que morfologías similares pueden esconder estrategias funcionales diferentes (Lo Gullo y

Salleo, 1988).

El objetivo global de esta memoria es aportar nueva información que ayude a

entender las interacciones entre la vegetación leñosa mediterránea y su ambiente. Para ello

hemos buscado un área de estudio donde los factores de estrés propios del clima mediterráneo

se manifiesten con distinta intensidad y donde los elementos dominantes de las comunidades

forestales soportan una variada gama de condiciones ambientales. La franja que se extiende en

línea recta desde la costa vasca hasta el centro de la Depresión del Ebro, cumple ambos

requisitos: En un transecto de apenas 300 km, se pasa gradualmente de un clima oceánico, con

suaves oscilaciones térmicas y precipitación abundante, a un clima mediterráneo seco y

fuertemente continentalizado (Ruiz Urrestarazu, 1982). A lo largo de todo este gradiente es

posible encontrar masas forestales presididas por Quercus ilex (subsp. ilex en la costa y subsp.

ballota en el interior). El grado de conservación de estos bosques es variable y con frecuencia se

observa en ellos la huella de antiguas talas para la obtención de carbón vegetal, práctica

frecuente antes de que el petróleo y el gas natural se convirtieran en la principales fuentes de

energía.

A lo largo del área de estudio mencionada trataremos de identificar variaciones en la

vegetación, tanto a nivel de comunidad como de especie, que permitan entender sus

mecanismos de interacción con el ambiente. Algunas de la preguntas que queremos contestar

son las siguientes: ¿Cómo responden las comunidades de encinar a este endurecimiento

progresivo de las condiciones climáticas? ¿De qué modo sus variaciones estructurales favorecen

la ocupación de condiciones ambientales diversas? ¿Es posible identificar la huella de la

perturbación antrópica sobre las comunidades de encinar? ¿Se ve alterada la respuesta de estas

formaciones a los factores climáticos por la intervención humana?

Por otra parte, muchos de los fanerófitos que componen las comunidades de encinar

aparecen en amplios transectos del gradiente. ¿Qué mecanismos permiten a estas especies

mantener su funcionalidad bajo condiciones ambientales tan diversas? ¿Responden todas las

especies de forma homogénea frente las mismas variaciones ambientales o, por el contrario, la

respuesta está mediatizada por la estructura, la filogenia o la historia de cada una?

Page 24: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

24

Por último también nos preguntamos por el comportamiento de las especies frente a las

variaciones ambientales temporales. En un clima tan marcadamente estacional como el que

domina en la parte más oriental del área de estudio, ¿cómo distribuyen las plantas sus funciones

de crecimiento y reproducción a lo largo del año? ¿Cómo pueden completar su ciclo anual con

un período favorable dividido entre la primavera y el otoño? ¿Qué papel juegan las reservas de

carbono y de nutrientes en el mantenimiento de las funciones vitales durante los períodos de

escasez de recursos? ¿De qué modo influye la estructura de las especies en su fenología y en su

patrón de almacén y consumo de reservas?

A lo largo de esta memoria trataremos de dar respuesta a las preguntas planteadas. Está

estructurada en cuatro partes y ocho capítulos (incluyendo esta introducción y las conclusiones

generales). Cada parte y cada capítulo poseen cierta autonomía, pudiendo contener

introducción, material y métodos, resultados y discusión.

La primera parte (capítulo 2º) se dedica a la descripción del área de estudio,

abordando aspectos como la geología, el relieve, el clima y la vegetación que podemos

encontrar a lo largo de la zona de estudio. Se hará especial referencia al clima, tratando de

establecer intervalos de estrés hídrico y térmico, que serán utlilizados en capítulos posteriores.

En la segunda parte (capítulo 3º) se analizan los cambios que se producen en las

comunidades de Quercus ilex y sus primeras etapas de degradación a lo largo del gradiente

mencionado, atendiendo sólo al componente arbóreo y arbustivo. Hemos seleccionado la

precipitación y las temperaturas como los factores ambientales implicados en la selección de las

características de la vegetación (Mooney y Dunn, 1970; Mitrakos, 1980; Nahal, 1981; Terradas

y Savé, 1992). También tendremos en cuenta el estado de conservación y la intensidad de

explotación realizada por el hombre, que hemos tratado de cuantificar estableciendo cuatro

grados de 'perturbación', en función de la estructura que muestran las comunidades. Este factor

resulta imprescindible para poder interpretar los paisajes mediterráneos, donde apenas quedan

comunidades climácicas a causa del intenso y continuo manejo antrópico desde el Neolítico (Le

Houerou, 1981).

La adaptación de las comunidades a unas condiciones ambientales determinadas tiene lugar

mediante la selección de las especies que poseen los caracteres más adecuados para sobrevivir,

reproducirse y competir en ese ambiente. Los cambios florísticos asociados a variaciones

ambientales han sido ampliamente estudiados con métodos fitosociológicos (Braun-Blanquet y

Bolòs, 1957; Loidi y Herrera, 1990) etc. Pero estos cambios también suponen una alteración de la

estructuración de la biomasa en la comunidad, de sus caracteres morfoanatómicos medios y de su

espectro de formas de crecimiento, aspectos que contribuyen a entender el funcionamiento global de

Page 25: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

25

las comunidades (Specht, 1969; Orshan, 1982; Halloy, 1990; Turner, 1994b). Ambas perspectivas

serán abordadas en el capítulo 3.

En la tercera parte (capítulos 4º, 5º y 6º) trataremos de entender los mecanismos por

los que nueve especies leñosas son capaces de vivir y reproducirse en las diferentes condiciones

ambientales que propicia un intenso gradiente climático. La plasticidad permite a las plantas

asumir el fenotipo más adecuado para cada situación y compensar así las variaciones de

recursos espaciales y temporales (Grime et al., 1986). Esta plasticidad se manifiesta a diversos

niveles de organización de la planta (proporción de biomasa entre los distintos órganos,

arquitectura, morfología y anatomía de tallos y hojas, composición química de las hojas,

respuesta fisiológica y fenológica, etc). En esta parte nos centraremos en la morfología y la

composición química de las hojas, así como en la anatomía del tallo; a partir de estos caracteres

y de su variación en el gradiente, trataremos de deducir otros aspectos y, con todo ello,

establecer y comparar los mecanismos que permiten a estas especies ajustarse a las condiciones

ambientales de los diferentes sectores del gradiente ambiental. En el capítulo 4º se estudian tres

especies del género Quercus, en el 5º dos de Pistacia y en el 6º cuatro especies de otros tantos

géneros (Arbutus unedo, Buxus sempervirens, Rhamnus alaternus y Viburnum tinus). Con

esta organización pretendemos saber si las similitudes adaptativas entre las especies están

mediatizadas por su relación filogenética. Los caracteres de las plantas que comparamos a lo

largo del gradiente hacen referencia a la composición química de las hojas, a su forma y tamaño

y a la anatomía de los tallos.

Las hojas han de cumplir la función de fijar carbono, pero al mismo tiempo necesitan unas

estructuras que les proporcionen resistencia física frente a las agresiones del entorno. Existe un

equilibrio entre los caracteres que promueven un aumento de la productividad y los que generan

hojas más resistentes, de forma que los primeros aumentan la fragilidad de la hoja y los segundos

reducen su capacidad de producción (Kikuzawa, 1991; Herms y Mattson, 1992; Aerts, 1995;

Kikuzawa, 1995). El equilibrio entre ambas tendencias depende de las condiciones del medio y se

puede manifestar en la composición química de las hojas: las especies de crecimiento lento,

resistentes al estrés, muestran una mayor proporción de componentes de pared (fibras) y menor de

contenido citoplasmático y vacuolar, mientras que las de crecimiento rápido se caracterizan por una

proporción inversa (Niemann et al., 1992; Garnier y Laurent, 1994; Van Arendonk y Poorter,

1994). Por tanto, la composición de las hojas puede aportar una importante información sobre la

estrategia funcional de las especies.

El tamaño y la forma de las hojas también posee importantes implicaciones funcionales

(Givnish, 1979). Las hojas grandes y enteras, debido al mayor grosor de su capa límite de aire,

encuentran una mayor resitencia a perder calor por convección cuando son sometidas a radiaciones

intensas, de forma que se ven obligadas a evaporar agua para refrigerarse. Por el contrario, las hojas

Page 26: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

26

pequeñas o lobuladas, cuya capa límite es más delgada, dependen menos de la transpiración para

mantener una temperatura óptima (Vogel, 1970). Las hojas grandes pueden conseguir tasas

fotosintéticas más altas pero a costa de un mayor gasto de agua por unidad de carbono fijada, por lo

que son favorecidas en ambientes sombreados y/o con buena disponibilidad de agua. Por el

contrario, en ambientes secos y soleados las hojas pequeñas o lobuladas resultan más ventajosas

(Parkhurst y Loucks, 1972; Givnish, 1979).

El xilema de los tallos se encarga de llevar hasta las hojas el agua y los nutrientes que

absorben las raíces. Como ya se ha mencionado, esta función ha de realizarse guardando un

equilibrio entre eficacia y seguridad. Las tendencias que llevan a aumentar la tasa de flujo (vasos

anchos y largos) también incrementan la susceptibilidad a sufrir embolias por efecto de las bajas

temperaturas (Zimmermann, 1983; Tyree et al., 1994). Por tanto, las dimensiones de los

elementos de los vasos de una especie informan de su capacidad para soportar condiciones adversas,

así como de su capacidad hidráulica.

En la cuarta parte (capítulo 7º) abordaremos aspectos fenológicos de varias especies

leñosas. Los objetivos que hemos mencionado hasta el momento tratan de la interacción entre la

planta y su entorno desde una perspectiva estática, es decir, analizando el funcionamiento de la

planta, en un momento dado y en unas condiciones puntuales. Sin embargo, la naturaleza

impone en los ecosistemas de clima templado una variabilidad ambiental distribuida en ciclos

anuales, más o menos predecibles. Asimismo, las plantas tienen que realizar diversas funciones

que demandan recursos (agua, carbono y nutrientes), aprovechando los períodos óptimos y

sorteando los desfavorables, de forma que su balance anual sea un incremento de biomasa y

una producción suficiente de semillas. Dentro de un mismo ambiente existen soluciones

múltiples para la consecución de tales objetivos. Dichas soluciones están mediatizadas por la

estructura de la planta, desde el nivel de distribución de la biomasa entre los distintos órganos,

hasta el nivel bioquímico. El resultado de esta interacción planta-ambiente, analizada desde una

perspectiva dinámica, es el patrón fenológico. En el capítulo 7º describiremos cómo se

distribuyen a lo largo del año las diversas funciones en diez fanerófitos mediterráneos.

Estableceremos también sus patrones de uso de nutrientes y reservas de carbono, tratando de

relacionarlos con su estructura, descrita en los capítulos anteriores.

Para finalizar la memoria, en el capítulo 8º se enumeran algunas de las conclusiones

generales más importantes que hemos extraído de este estudio.

Page 27: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

Primera parte AREA DE ESTUDIO

Page 28: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 29: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

Capítulo 2

El medio físico y la vegetación

Page 30: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 31: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

31

El gradiente climático que se establece en el NE de la Península Ibérica, entre la costa

vasca y el centro de la Depresión del Ebro, constituye uno de los más acentuados de Europa

(Ellemberg, 1988). En una extensión de apenas 300 km, se produce un cambio gradual desde

un clima de tipo oceánico, con precipitación abundante y suaves oscilaciones térmicas, hasta

otro de tipo mediterráneo seco, con fuertes contrastes entre las temperaturas invernales y

estivales. El área en que se desarrolla este estudio incluye este gradiente, quedando

encuadrada entrelas coordenadas 41º 32' a 43º 16' de latitud norte y 2º 53'W a 0º 21'E de

longitud. El área se reparte entre las provincias de Vizcaya, Alava, Rioja, Navarra, Huesca y

Zaragoza (Fig. 2.1).

En la zona de estudio el encinar encuentra su óptimo de distribución entre los pisos

meso y supramediterráneo del Sector Aragonés, Navarra Media y Rioja (Rivas-Martínez,

1987a). Sin embargo, esta formación ocupa un rango geográfico mucho más amplio, aunque a

veces aparece de forma muy localizada. Así podemos encontrar encinares desde los suelos

calizos de la costa vasca (presididos por Quercus ilex subsp. ilex) hasta cerca del centro de la

Depresión del Ebro (con Q. ilex subsp. ballota). En algunos valles pirenaicos rebasan

ampliamente los 1000 m de altitud, refugiándose en barrancos de solana, que encauzan el aire

descendente resecado por efecto Foëhn, lo que genera una cierta aridificación del medio (P.

Montserrat, com. pers.).

Esta amplitud de área hace que el relieve recogido en la zona de estudio sea muy

heterogéneo, variando desde las llanuras de la Depresión del Ebro hasta los escarpados valles

pirenaicos. Para facilitar la descripción del medio físico se dividirá la zona de estudio en

conjuntos más homogéneos.

En este apartado se comentarán globalmente los caracteres geográficos del conjunto del

área, para pasar después a un análisis más detallado de cada una de las zonas en que lo hemos

dividido.

Page 32: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

PAMPLONA

HUESCA

ZARAGOZA

BILBAO

Río Ebro

LOGROÑO

VITORIA

o

MAR CANTABRICO

FRANCIASANTANDER

NANCLARES DE LA OCA, ALAVA (495 m)

Temp. °C Precip. mm

10

0J F M A M J J A S O N D

months

20

30

40

50

60

20

0

40

60

80

100

200

150

ZARAGOZA (225 m)

Temp. °C Precip. mm

20

30

40

50

60

10

0J F M A M J J A S O N D

months

30

40

80

100

200

20

0

ESPAÑA

J F M A M J J A S O N D0

10

20

30

40

50

60

0

20

40

60

80

100

200

SONDICA, VIZCAYA (34 m)

150

Temp. °C Precip. mm

months

50 Km

SAN SEBASTIÁN

1

234

5

67

Fig. 2.1- Localización del área de estudio. Los símbolos representan la posición de los puntos con datosclimáticos, clasificados según el cluster de la Fig. 2.2. También se representan los diagrams climáticos de trespuntos del gradiente.

M O N T E S V A S C O S P I R I N E O S

SISTEMA IBERICO

Page 33: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

33

1. 1 Características generales de la región de estudio

Historia geológica

Durante el Paleozoico existía un macizo montañoso en el lugar que hoy ocupa la

Depresión Media del Ebro. Los materiales erosionados se iban depositando en las cuencas

sedimentarias que lo bordeaban, al norte, en el lugar hoy ocupado por los Pirineos, y al sur,

donde hoy se ubica el Sistema Ibérico. El área que ocupa el País Vasco era un mar poco

profundo que también recibía aportes de sedimentos de las tierras emergidas circundantes.

Este proceso de sedimentación se extendió durante todo el Mesozoico, dando lugar a la

formación de materiales rocosos del tipo de calizas, margas y areniscas. Durante la primera

mitad del Terciario se produjo una inversión tectónica de grandes dimensiones, como

consecuencia de la orogenia Alpina. Los surcos sedimentarios que bordeaban el macizo

paleozoico se elevaron, dando origen a las cordilleras Ibérica y Pirenaica, mientras que la

parte central se hundió, constituyéndose en cuenca sedimentaria. El geosinclinal vasco se

plegó con independencia de los zócalos pirenaico y cantábrico, quedando estas tierras

definitivamente emergidas. Los sedimentos que se acumularon en la Depresión del Ebro a

partir de este momento son materiales blandos, del tipo de las margas y arcillas. Durante el

Eoceno el mar se retiró dejando numerosas lagunas y áreas pantanosas donde se depositaron

materiales salinos, como los yesos. La emersión continuó durante el Oligoceno,

disminuyendo cada vez más el proceso de sedimentación, aunque aún se prolongó durante el

Mioceno. El ciclo de sedimentación terciaria terminó con el depósito de las calizas pontienses

sobre los yesos miocenos. A lo largo de todo el proceso de relleno el surco sedimentario se

fue desplazando hacia el sur (Braun-Blanquet y Bolòs, 1957; De Terán y Sole Sabaris, 1977).

Hidrología

Los ríos de la vertiente cantábrica son cortos, caudalosos y de fuerte pendiente, estando

sometidos a un régimen pluvial oceánico que asegura la regularidad de su caudal. El resto del

territorio de estudio vierte sus aguas hacia el Mediterráneo a través del río Ebro, que recibe

del norte los afluentes que nacen en los Pirineos (Ega, Arga, Aragón, Gállego, Cinca, Esera,

etc) y del sur los que proceden del sistema Ibérico, que son menos caudalosos (Jalón, Huerva,

Aguas Vivas, etc). Estos ríos presentan un perfil medio muy distinto de los vascos, puesto que

la mayor parte de su tramo medio discurre por territorios llanos, dando lugar a un flujo lento,

de escasa capacidad erosiva.

Clima

En el área de estudio encontramos una transición climática gradual. En la vertiente

cantábrica la proximidad al mar y la ausencia de barreras que impidan la penetración de las

masas de aire oceánico, condicionan un clima con abundantes precipitaciones distribuidas

Page 34: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

34

durante todo el año y oscilaciones térmicas suaves. Una vez superada la divisoria de aguas,

las sucesivas barreras montañosas van reteniendo la humedad de los flujos cantábricos,

continentalizándose progresivamente el clima y aumentando su mediterraneidad (Ruiz

Urrestarazu, 1982).

El clima mediterráneo domina en la mayor parte del área de estudio, siendo también

predominante en la Península Ibérica. Emberger lo definió como "un clima extratropical con

fotoperiodicidad diaria y estacional, con la lluvia concentrada en las estaciones frías o

relativamente frías, siendo el verano la estación más calurosa y seca" (Nahal, 1981). Otros

autores matizan esta definición diciendo que se caracteriza por poseer un período de aridez

superior a dos meses (Rivas-Martínez, 1987a). Convencionalmente se acepta que un mes

tiene carácter árido cuando la precipitación en milímetros es inferior al doble de la

temperatura media mensual en grados centígrados (Nahal, 1981). Sin embargo, esta

denominación esconde una amplia variabilidad en cuanto al régimen de temperaturas y

precipitaciones. De hecho se considera al clima mediterráneo como "una familia de climas"

(Strahler y Strahler, 1989).

El carácter de aridez estival genera unas condiciones estresantes para la vegetación, que

se ve obligada a moderar su actividad para poder mantener su balance hídrico. Por otra parte,

la lluvia cae concentrada en cortos períodos, de forma intensa pero poco frecuente, lo que

contribuye a reducir su captabilidad por parte de la vegetación. Además, existe una fuerte

fluctuación interanual entre las precipitaciones mensuales y anuales, lo que incrementa aún

más la severidad del clima mediterráneo (Nahal, 1981). Por último, en las regiones

mediterráneas con carácter continental, que es el que domina en la mayor parte de nuestro

gradiente, las bajas temperaturas de invierno suponen otro freno a la actividad de las plantas,

fragmentando en dos el período favorable del año, que queda limitado la primavera y al

otoño.

En la Tabla 2.1 se muestran una serie de variables termométricas y pluviométricas

pertenecientes a estaciones climáticas de la red del Servicio Meteorológico Nacional,

distribuidas a lo largo del área de estudio. Esta tabla también incluye algunos de los índices

climáticos más usados en Europa y que reflejan el grado de aridez, el carácter mediterráneo

de una región, o la oscilación térmica.

a) (Im3) Indice de Mediterraneidad de Rivas Martínez (1987a): expresa el balance entre

la evapotranspiración potencial de Thornwhite (ETP) y la precipitación (P), durante los meses

de verano.

Im3 = ETP (junio, julio, agosto),

P (junio, julio, agosto)

Se considera como clima mediterráneo todo aquél en que Im3 presenta un valor superior

a 2.5.

Page 35: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

35

b) (Ia) Indice de aridez de Martonne expresa la relación entre las medias anuales de

precipitación (P) y de temperatura (T) (Nahal, 1981).

Ia = P,

T + 10

c) (Q) Coeficiente pluviométrico de Emberger: también expresa la relación entre

precipitación y temperatura, pero a diferencia del índice anterior, recoge la amplitud térmica

(Nahal, 1981).

Q = 2000P,M2 - m2

P (precipitación media anual)

M (temperatura media de las máximas del mes más cálido)m (temperatura media de las mínimas del mes más frío)

d) (Ic) Indice de continentalidad: expresa la amplitud térmica entre las medias

mensuales extremas del año, con un factor de corrección para compensar las anomalías

debidas a la altitud (Rivas-Martínez, 1987a).

Ic = M - m + 0.7 h ,100

h (altitud)

e) (It) Indice de termicidad de Rivas-Martínez (1987a): recoge las temperaturas

mínimas y máximas del mes más frío. Resulta muy útil por la elevada correlación que

presenta con la distribución de las comunidades de plantas.

It = (T + m + mx)10

mx (temperatura media de las máximas del mes más frío)

f) (Pav) Período de actividad vegetal (Rivas-Martínez, 1987a): indica el número de

meses en que la temperatura media supera 7.5 ºC. Este límite se considera el mínimo

necesario para que tenga lugar una actividad vegetal significativa.

Por último, en la Tabla 2.1 también se establecen zonaciones ombroclimáticas en

función de la precipitación media anual, de tipos de invierno según la temperatura media de

las mínimas del mes más frío y distribución de pisos bioclimáticos según el índice de

termicidad, todo ello siguiendo los criterios establecidos por Rivas-Martínez (1987a).

Page 36: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

Tabla 2.1. Datos climáticos de algunas estaciones meteorológicas distribuidadas a lo largo del gradiente e índices climáticos. (Im3- índice de mediterraneidad de Rivas-Martínez; Ia-índice de aridez de Martonne; Q- índice de Emberger; Ic- índice de continentalidad; It- índice de termicidad de Rivas-Martínez; Pav- periodo de actividad vegetal).

Temperatura (ºC)

Localidad Prov. Alt. Pm (mm) Ombroclima Im3 Ia Q Mediaanual (t)

Mes máscalido (M)

Mes másfrío (m)

Tipo deinvierno

Ic It Pisobioclimát.

Pav

1 Punta Galea BI 20 1034 Húmedo 2.2 42.73 215.25 14.2 23.0 6.3 Cálido 16.84 326 Colino 122 Bilbao BI 34 1239 Húmedo 1.8 51.84 216.30 13.9 24.8 4.9 Templado 20.14 314 Colino 113 Durango BI 280 1484 Hiperhúmedo 1.7 66.55 247.62 12.3 24.2 3.3 Templado 22.86 252 Colino 94 Valmaseda BI 320 1299 Húmedo 2.1 53.68 186.80 14.2 27.6 3.5 Templado 26.34 302 Colino 125 Vitoria VI 521 890 Subúmedo 2.5 42.00 131.57 11.2 24.4 0.7 Fresco 27.35 197 Colino 106 Nanclares de la Oca VI 495 774 Subúmedo 2.9 35.04 101.26 12.1 27.8 1.2 Fresco 30.07 224 Mesomed. 87 Haro LO 479 473 Seco 3.7 21.21 62.32 12.3 27.7 1.3 Fresco 29.75 223 Mesomed. 98 Laguardia VI 620 566 Seco 3.5 24.83 74.25 12.8 28.0 1.5 Fresco 30.84 234 Mesomed. 99 Logroño LO 379 459 Seco 3.5 20.03 60.50 12.9 28.5 2.2 Templado 28.95 242 Mesomed. 911 Embalse de Alloz NA 475 705 Subúmedo 3.3 30.39 90.54 13.2 28.9 1.9 Fresco 30.33 246 Mesomed. 911 Santa Cruz de Campezo VI 570 796 Subúmedo 2.8 37.02 104.86 11.5 26.7 0.2 Fresco 30.49 195 Supramed. 912 Estella NA 451 476 Seco 4.5 20.35 62.53 13.4 27.7 1.2 Fresco 29.66 243 Mesomed. 913 Ayegui NA 520 675 Subúmedo 3.1 30.82 85.81 11.9 27.8 0.4 Fresco 31.04 204 Supramed. 914 Leyre NA 756 899 Subúmedo 2.8 41.23 116.90 11.8 27.3 0.5 Fresco 32.09 205 Supramed. 915 Embalse de Yesa NA 489 831 Subúmedo 2.8 35.67 101.42 13.3 29.7 1.3 Fresco 31.82 235 Mesomed. 916 Sigüés NA 495 795 Subúmedo 2.9 35.48 91.95 12.4 30.1 0.1 Fresco 33.47 211 Mesomed. 917 Ejea de los Caballeros Z 320 451 Seco 3.9 17.74 52.19 15.4 32.5 2.8 Templado 31.94 279 Mesomed. 1018 Borja Z 448 436 Seco 4.6 17.31 53.16 15.2 32.0 3.8 Templado 31.34 291 Mesomed. 1019 Bailo-Puente la Reina HU 595 762 Subhúmedo 2.3 35.25 83.91 11.6 30.0 -1.6 Frío 35.77 181 Colino 820 Jaca HU 800 831 Subúmedo 2.3 39.21 98.68 11.2 28.2 -1.2 Frío 35.00 186 Colino 721 Embalse de la Peña HU 589 739 Subhúmedo 2.4 34.04 82.41 11.7 29.9 -1.3 Frío 35.32 189 Colino 922 Agüero HU 696 686 Subúmedo 3.3 28.35 93.17 14.2 28.5 3.0 Templado 30.37 274 Mesomed. 923 Nueno HU 726 732 Subúmedo 2.6 31.41 92.38 13.3 28.8 1.3 Fresco 32.58 236 Mesomed. 924 Huesca HU 488 627 Subúmedo 3.2 28.87 73.21 11.7 30.0 0.3 Fresco 33.12 214 Mesomed. 825 Zaragoza Z 225 385 Seco 4.6 15.71 43.56 14.5 32.0 1.5 Fresco 32.08 267 Mesomed. 1026 Daroca Z 787 435 Seco 3.5 19.59 50.47 12.2 29.3 -0.7 Fresco 35.51 203 Supramed. 927 Pallaruelo de Monegros HU 356 402 Seco 4.4 16.36 45.91 14.6 32.3 2.1 Templado 32.69 256 Mesomed. 1028 Foradada del Toscar HU 720 1134 Húmedo 1.3 51.08 126.52 12.2 29.0 -2.3 Frío 36.34 185 Colino 829 Embalse de Mediano HU 504 891 Subúmedo 1.8 38.74 99.34 13 30.1 -1.1 Frío 34.73 200 Colino 930 Estadilla HU 300 588 Seco 2.8 24.68 59.48 13.8 32.9 -1.3 Frío 36.30 222 Mesomed. 931 Embalse de Mequinenza Z 125 410 Seco 4.4 16.86 46.94 14.3 31.1 0.9 Fresco 31.08 236 Mesomed. 9

Page 37: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

37

La principal ventaja de la utilización de índices para la caracterización del clima reside

en su sencillez, pero estos métodos muestran algunas importantes deficiencias, como la

pérdida de información sobre la variabilidad anual, dado su carácter sintético, y que, a

menudo, sólo tienen validez a nivel regional (Mazzoleni et al., 1992). Por ello ha surgido una

nueva metodología, basada en los análisis multivariantes, cuyo uso está cada vez más

extendido. Desde esta perspectiva hemos realizado una clasificación (mediante la rutina

"clustering" del paquete estadístico SPSS 6.0) de 51 estaciones climáticas distribuidas a lo

largo del gradiente, que caracterizan los puntos de muestreo de vegetación del capítulo 3. Los

datos climáticos han sido cedidos por el Servicio Meteorológico Nacional y las variables

seleccionadas son las temperaturas media anual, media de las mínimas de enero y media de

las máximas de julio y las precipitaciones estacionales. De este modo se recoge la amplitud

térmica y la variación de precipitaciones a lo largo del año. El resultado ha sido el

establecimiento de 7 grupos, cada uno de ellos compuesto por localidades geográficamente

cercanas (Fig. 2.2). La primera división que se establece en el clúster separa hacia un lado las

estaciones de clima más húmedo (las de la vertiente cantábrica, Pirineo, Prepirineo y las

subatlánticas) y hacia el otro las de clima más seco (las de la Depresión del Ebro, el pie de

monte prepirenaico y el Sistema Ibérico). Entre las localidades de clima húmedo, el clúster

separa las de régimen térmico más oceánico (estaciones de la vertiente cantábrica, clase 7),

las de la banda de transición entre el mundo eurosiberiano y el atlántico (clase 4), las del

Prepirineo frío (clase 6) y las del Prepirineo más templado (clase 5). En el segundo grupo, los

puntos de corte para establecer clases se han tomado a un nivel de distancia más bajo, dada su

mayor homogeneidad. La clase 1 incluye las estaciones más áridas, situadas preferentemente

en el centro de la Depresión del Ebro; en la clase 2 el grado de aridez disminuye, y recoge las

estaciones del pie de monte prepirenaico; por último, la clase 3 incluye las del Sistema

Ibérico, que además de tener precipitaciones escasas cuentan con temperaturas extremas, muy

frías en invierno y muy cálidas en verano. La localización geográfica de las estaciones de

cada clase se puede ver en la Fig. 2.1.

Por último se ha realizado un Análisis de Componentes Principales con los mismos

datos (SPSS 6.0). Los dos primeros ejes explican el 54 y el 24 % de la varianza,

respectivamente. El primero se correlaciona con las precipitaciones estacionales, y el segundo

con las temperaturas, especialmente con la media de las mínimas del mes más frío y con la

media anual. En la Fig. 2.3 se han representado las estaciones climáticas sobre el plano

factorial, determinado por los dos primeros ejes, diferenciando con símbolos las siete clases

establecidas con la clasificación anterior. El primer eje discrimina las estaciones áridas (a la

izquierda) de las húmedas (a la derecha), mientras que el segundo eje separa hacia arriba las

estaciones cálidas y hacia abajo las frías. En el centro del diagrama se quedan aquéllas con

valores moderados de estrés hídrico y térmico.

Page 38: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

0 5 10 15 20 25

Villatuerta (NA)Villatuerta (NA)

San Cosme (HU)Pebredo (HU)Las Cellas-Ponzano (HU)Agüero (HU)La Sotonera (HU)Olvena (HU)Puente la Reina (HU)

Las Peñas de Riglos (HU)Olvena-Graus (HU)Santa Cruz de la Serós (HU)Logroño (LO)Tudela (NA)Embalse de Santa Ana (HU)

Barbastro (HU)Huerto-Sesa (HU)Maicas (TE)

Alcubierre (HU)Malanquilla (Z)Jarque (Z)Manchones (Z)

Berrueco (Z)Vera del Moncayo (Z)

Mañaria (BI)

Puerto del Perdón (NA)Valmaseda (BI)Orozco (BI)Gorliz (BI)

Villanúa (HU)Vilas del Turbón (HU)

Foradada del Toscar (HU)Cañón de Añisclo (HU)Embalse de Mediano (HU)Lumbier (NA)

Romanzado (NA)Zúñiga (NA)

Urtega (NA)Zambrana (VI)Yesa (NA)Sigüés (Z)San Vicente de la Sonsierra (LO)Mendaza (NA)

Fuencalderas (Z)Nanclares de la Oca (VI)

Zufia (NA)Antoñana (VI)

Jaca (HU)Salvatierra de Escá (Z)Osma (VI)Naváridas (VI)

1

2

3

4

5

6

7

Distancias

Fig. 2.2- Clasificación de los puntos de muestreo en función de sus variables climáticas (tm, m, M, yprecipitaciones estacionales). El clúster se basa en distancias euclídeas al cuadrado y se construyeusando ligamiento completo, con el método aglomerativo y reescalando los varolores de las variablesentre 0 y 1.

Page 39: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

39

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

1

234

5

67

Eje I

Eje

II

Fig. 2.3. Representación de los inventarios en el espacio factorial determinado por los dos primeros ejes delPCA realizado con la matriz de inventarios x caracteres climáticos. Los símbolos representan los gruposseparados por el clúster (Fig. 2.2). Su posición geográfica se puede ver en la Fig. 2.1.

1.2 División de la zona de estudio y caracterización geográfica de lasunidades

Desde la costa vasca hacia el SE se pueden diferenciar distintas zonas, caracterizadas

por un clima progresivamente más mediterráneo y continental, a las que corresponden

distintos tipos de vegetación. A continuación se describe la situación, la estructura litológica,

el relieve, el clima y la vegetación dominante de cada zona.

Vertiente Cantábrica

Es una estrecha franja, de unos 40 km de anchura, comprendida entre el mar Cantábrico

y la divisoria de aguas. El relieve de esta zona, aunque montañoso, está dominado por sierras

y colinas de formas suaves, de altitudes comprendidas entre 300 y 600 m, entre los que

destacan algunos resaltes discontinuos, que superan los 1000 m.

Los materiales que dominan en este territorio corresponden al Cretácico, son de

naturaleza básica y de origen sedimentario. Abundan las rocas calcáreas y las formaciones

tipo flysch, con margas y areniscas. También existen materiales Terciarios, como el flysch

eoceno de la costa guipuzcoana. Pese a la naturaleza básica de las rocas, son frecuentes los

sustratos ácidos, debido a la intensa acción de lavado a que se ven sometidos a causa de la

Page 40: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

40

elevada pluviosidad, especialmente cuando los suelos son profundos e inclinados (Gómez

Piñeiro, 1989).

Los vientos dominantes en esta zona proceden del NO, es decir, tienen origen atlántico y

en consecuencia llegan cargados de humedad. La ausencia de una importante barrera

montañosa continua hace que estos vientos penetren sin dificultad y provoquen

precipitaciones frecuentes durante todo el año. Otro fenómeno importante es la llegada a la

costa vasca de la corriente cálida del Golfo de México, que hace que las temperaturas sean

más suaves de lo que correspondería a esta latitud (Ruiz Urrestarazu, 1982). En las estaciones

localizadas en esta vertiente (Durango, Bilbao, Valmaseda y Punta Galea) las temperaturas

son suaves, como corresponde al piso colino, con inviernos templados y cálidos, e índice de

continentalidad menor de 30. Con ello, el período de actividad vegetal ronda los 12 meses del

año (Tabla 2.1).

Vegetación -- La heterogeneidad topográfica y geológica que caracteriza esta zona,

unida a la frecuente degradación de los ecosistemas, se refleja en una enorme diversidad de

bosques y matorrales. La vegetación del piso colino puede ser agrupada en dos grandes

unidades: el dominio de los robles, que ocupa casi la totalidad de esta zona, y el dominio de

las encinas, que queda restringido a aquellas áreas donde la escasa capacidad del sustrato para

retener agua impone unas condiciones de xericidad que los árboles caducifolios no toleran

(Aseginolaza et al., 1988).

La vegetación potencial más abundante en las cercanías de la costa, cuando los suelos

son profundos, corresponde a bosques mixtos de frondosas, sobre sustratos básicos o

débilmente ácidos y éutrofos, y a robledales acidófilos cuando los sustratos son ácidos y

pobres en nutrientes. Los primeros muestran una flora más variada y exigente en nutrientes,

con fresnos (Fraxinus excelsior), robles (Quercus robur), castaños (Castanea sativa), olmos

(Ulmus glabra), tilos (Tilia platiphyllos), avellanos (Corylus avellana), arces (Acer spp.), etc.

Estos fanerófitos se acompañan de un estrato herbáceo igualmente exuberante y rico en

helechos. A diferencia de otros bosques, ninguna especie domina claramente sobre las otras.

Los robledales acidófilos están dominados por Quercus robur, que a veces es acompañado

por el castaño. Un segundo estrato de vegetación está compuesto por abedules (Betula

celtiberica), acebos (Ilex aquifolium), majuelos (Crataegus monogyna), arraclanes (Frangula

alnus), etc. Es frecuente que exista una variación continua entre ambos tipos de bosques

(Aseginolaza et al., 1988).

El dominio de la encina en los valles atlánticos, aunque de carácter fragmentario, posee

un importante significado biogeográfico. Los encinares son considerados como bosques

relícticos posiblemente del principio del Holoceno (Allorge, 1941; Montserrat Martí y

Montserrat Martí, 1987), período en que el verano debió ser más cálido que el actual

Page 41: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

41

(Montserrat Martí y Montserrat Martí, 1988). Parece que llegaron a colonizar amplias áreas

del País Vasco, ascendiendo por el valle del Ebro y superando los collados bajos de la

divisoria. En la actualidad han quedado relegados a los lugares de suelos secos y pedregosos,

muchas veces esqueléticos, en exposiciones soleadas del piso colino o parte inferior del

montano, donde los bosques caducifolios no pueden competir con ellos (Loidi Aguerri, 1987;

Aseginolaza et al., 1988). Este árbol aparece sobre sustratos pedregosos y secos, bien calizos

o silíceos, acompañado de un cortejo de especies mediterráneas. Sobre suelos calizos forman

bosques densos y tupidos, orlados por arbustos como Rhamnus alaternus, Rosa sempervirens

y una liana espinosa, Smilax aspera, que hace difícil penetrar en ellos. Otras especies del

bosque son el madroño (Arbutus unedo) y el labiérnago (Phillyrea latifolia). Los encinares

sobre margas y sílice son menos frecuentes y a menudo son desplazados por los robles (Q.

robur) y melojos (Q. pyrenaica), que relegan a la encina a los suelos esqueléticos de los

salientes rocosos. Suelen ir acompañados de madroños y, en las zonas más aclaradas, de

diversas especies de Erica y Cistus, así como de Daboecia cantabrica y Pteridium aquilinum.

(Aseginolaza et al., 1987-1991; Aseginolaza et al., 1988).

Foto 1.- Encinar cantábrico en Gorliz(Vizcaya)

Page 42: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

42

Otros tipos de bosques, mucho más minoritarios, son los robledales hibridógenos y los

alcornocales. Los primeros aparecen en solanas calizas, de fuertes pendientes y roca aflorante,

normalmente en posiciones intermedias entre los bosques de las zonas bajas (robledales

mixtos o encinares) y los hayedos de las partes más altas. Están constituidos por un complejo

híbrido entre Quercus faginea, Q. pubescens, Q. robur y Q. pyrenaica, acompañado por un

estrato arbustivo de majuelos, rosas, espinos, etc. Por último, cabe destacar la presencia

puntual de los bosques de alcornoque (Quercus suber) en terrenos donde alternan las

areniscas con microconglomerados y margas, en laderas próximas al mar, orientadas al sur y

que no superan los 280 m de altitud (Aseginolaza et al., 1988).

La divisoria cántabro-mediterránea y los Pirineos

En las montañas vascas de la divisoria es donde se ubican las cumbres más elevadas del

País Vasco. Forman una franja orientada de este a oeste, en la que destacan la sierra Salvada

(1187 m), el macizo del Gorbea (1481 m), las sierras de Elgea (1190 m), Urquilla, Alzania

(1442 m), el macizo de Aitzgorri (1544 m) y la sierra de Aralar (1431 m). Los materiales que

las constituyen son rocas sedimentarias depositadas principalmente en el Mesozoico (calizas

areniscas y margas). Más al este, ya en Navarra, penetramos en un dominio geológico

distinto, donde afloran los materiales Paleozoicos en los macizos de Quinto Real, Cinco

Villas, Oroz-Betelu y la intrusión granítica de las Peñas de Aya, todos ellos emergidos en la

orogenia Herciniana y rejuvenecidos en el Cretácico. Están surcados por valles orientados de

norte a sur. Siguiendo hacia el este entramos en la estructura del Pirineo Navarro-Aragonés,

donde la altitud sigue aumentando de oeste a este. El primer tramo comprende las llamadas

Sierras Interiores y está formado por potentes niveles de calizas cretácicas, emergidas en la

orogenia alpina, con cumbres que superan los 2000 m. En el Pirineo axil, ya en la provincia

de Huesca, aflora de nuevo el núcleo granítico paleozoico, dando lugar a las cumbres más

altas de la cordillera (Aneto, 3404 m; Posets, 3367 m; Vignemale, 3298 m). El relieve de esta

zona está marcado por la erosión fluvioglaciar, que se manifiesta en circos separados por

crestas, valles en artesa y depósitos morrénicos (Bielza de Ory, 1989; Ferrer Regales, 1989).

Los Pirineos y los Montes Vascos actúan de pantalla para los flujos del noroeste,

atrapando la nubosidad en su vertiente septentrional, con el consiguiente desecamiento del

aire cuando pasa a la cara sur (efecto Foëhn). Los montes Vascos y el sector occidental del

Pirineo reciben abundantes precipitaciones todos los meses del año, con un régimen de

máximo invernal y un déficit hídrico casi nulo. La influencia atlántica penetra mucho más

lejos por la cara norte del Pirineo que por la sur, de forma que en su vertiente norte sólo es

propiamente mediterránea la terminación oriental de la cordillera, mientras que en la vertiente

meridional la influencia atlántica apenas alcanza el Pirineo aragonés (Vigo y Ninot, 1987).

Page 43: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

43

Vegetación -- A medida que nos alejamos del litoral cantábrico y ascendemos por

encima de los 500-700 m en los Montes Vascos, entramos de lleno en el cinturón vegetal

dominado por el haya (Fagus sylvatica). Estos bosques son propiciados por la elevada

humedad atmosférica que generan las nieblas y por la cuantiosidad de las precipitaciones. La

abundante precipitación hace que el lavado de nutrientes sea muy intenso, de forma que el

tipo de hayedo más frecuente sobre casi todo tipo de sustratos es el acidófilo (Aseginolaza et

al., 1988). Este bosque está constituido por árboles de elevada talla que interceptan gran parte

de la luz incidente, dejando en penumbra los estratos inferiores, lo que provoca la pobreza de

especies característica del sotobosque de hayas (Loidi Aguerri, 1987). Por otra parte, los

hayedos calcícolas se restringen a laderas calizas, donde afloran las rocas, ya que las zonas

más llanas han sido dedicadas a praderas de montaña. Ello hace que este bosque sea más

abierto que el acidófilo y posea, por tanto, unos estratos arbustivo y arbóreo más

desarrollados (Aseginolaza et al., 1988).

Foto 2.- contacto entre hayedo y encinar. Orozco (Vizcaya)

Entre el dominio de Quercus robur y el de Fagus sylvatica, se pueden encontrar algunos

bosques de transición. Uno de ellos es el melojar (Q. pyrenaica), que ocupa suelos oligótrofos

de laderas bien drenadas, siempre sobre sustratos silíceos, donde la humedad es insuficiente

para cubrir los requerimientos del haya. En la vertiente cantábrica es frecuente que el melojo

se hibride con el roble pedunculado. Mucho más escaso es el roble albar (Quercus petraea)

que, aunque apenas aparece en el País Vasco, tiene algunos buenos representantes en Navarra,

entre altitudes de 400 y 800 m, en cualquier exposición, sobre suelos ácidos y relativamente

secos (Aseginolaza et al., 1988).

Page 44: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

44

La vegetación del sector más occidental del Pirineo es similar a la de los Montes

Vascos. A medida que nos alejamos hacia el este aumenta la altitud de la cordillera, dando

lugar a nuevos pisos de vegetación por encima del montano, cuya vegetación no

comentaremos por estar fuera del área de estudio. En el Pirineo navarro y aragonés los

hayedos siguen manteniendo su dominio en las laderas expuestas al N y al W, donde la

penetración de frentes húmedos desde el Cantábrico provoca nieblas frecuentes. Sin embargo,

la sucesión de sierras interiores alineadas en dirección N-S, cuya altitud a menudo supera los

2000 m, actúan como barreras para los frentes y provocan una reducción progresiva de la

influencia de las nieblas cantábricas. En consecuencia, al este de Cotefablo (Pirineo central),

los hayedos pierden su dominancia y sólo aparecen en barrancos frescos y sombríos

(Montserrat-Recoder et al., 1988).

Descendiendo en latitud y altitud, entramos en la franja submediterránea, donde la

disminución de la humedad atmosférica hace que el haya ceda frente a los quejigos, robles y,

en ocasiones, frente al pino albar (Pinus sylvestris). El quejigar pirenaico está constituido

básicamente por una especie híbrida entre Quercus faginea y Q. pubescens, denominada

Quercus x subpyrenaica, aunque también ha existido intercambio genético con otras especies,

como Q. petraea y Q. pyrenaica. Esta dinámica introgresiva parece ser el resultado de los

avances y retrocesos que sufrieron las áreas de distribución de estas especies, provocados por

los cambios climáticos de los últimos milenios. Los quejigares ocupan una amplia diversidad

de sustratos y ambientes a lo largo de la banda de transición entre el área eurosiberiana y el

área mediterránea, dando lugar a comunidades diferenciables (Montserrat Recoder, 1971;

Vigo y Ninot, 1987; Montserrat-Recoder et al., 1988).

En algunos puntos del Pirineo existen restos de vegetación esclerófila mediterránea,

supervivientes de épocas más cálidas, que encontraron refugio en las solanas de las peñas

calizas o al abrigo de los cañones que drenan el agua y el aire frío, evitando la inversión

térmica y generando unas condiciones de humedad y termicidad que han favorecido la

persistencia de especies termófilas, muchas de ellas propias del encinar (Montserrat Martí y

Montserrat Martí, 1988). El encinar mejor representado en este territorio es el “carrascal

montano”, comunidad pobre en especies, que vive en solanas con suelo muy escaso. Entre las

especies acompañantes cabe destacar el boj (Buxus sempervirens) y los enebros (Juniperus

oxycedrus y J. communis). De oeste a este, encontramos ejemplos de estos carrascales en las

foces de los ríos Esca, Beral y Subordán, en Villanúa, en el cañón de Añisclo y en las solanas

de Peña Montañesa, Cotiella y Turbón (Montserrat Recoder, 1971; Rivas-Martínez, 1987b;

Montserrat-Recoder et al., 1988; Ninot et al., 1993).

Page 45: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

45

Foto 3.- Vista general del Cañón de Añisclo (Huesca), lugar de refugio de numerosos taxones mediterráneos.

Cuencas intermedias

Al sur de las montañas vascas de la divisoria y de los Pirineos se extienden una serie de

cuencas sedimentarias, cuya altura media oscila en torno a 500 m. Estas cuencas, de oeste a

este, son: la Llanada Alavesa, los corredores de Burunda y Araquil, en Álava; las cuencas de

Pamplona y de Lumbier-Aoiz en Navarra; la Depresión Media, entre Yesa y Sabiñánigo, en

las provincias de Navarra, Zaragoza y Huesca. Más al este, se interrumpe esta línea de

cuencas sedimentarias con los valles de los ríos Cinca, Esera y Noguera-Ribagorzana, ya en la

frontera con Lérida, todos ellos descendiendo del Pirineo en dirección norte-sur (Bielza de

Ory, 1989; Gómez Piñeiro, 1989).

Estas cuencas están dentro de la zona de plegamiento pirenaico y han sido rellenadas

durante el Terciario con los materiales erosionados de la cordillera, dando lugar a rocas

blandas de tipo margoso o arcilloso que se erosionan con facilidad (De Terán y Sole Sabaris,

1977).

En las cuencas intermedias, al sur de las cadenas anteriormente citadas, ya se hace

patente la continentalización del clima y el aumento de la influencia mediterránea (Ruiz

Urrestarazu, 1982). En las estaciones climatológicas que representan a este grupo (Tabla 2.1:

Vitoria, Nanclares de la Oca, Bailo, Jaca) se observa un descenso de la precipitación que da

lugar a un ombroclima subhúmedo; el índice de mediterraneidad aumenta, siendo mayor a

medida que nos alejamos del Cantábrico; la continentalidad también aumenta y los inviernos

Page 46: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

46

son más fríos (tipos fresco y frío). Los pisos bioclimáticos representados en estas zonas son el

mesomediterráneo (en áreas mediterráneas) y el montano (en las eurosiberianas). El período

de actividad vegetal se reduce a 8 - 10 meses.

Vegetación -- Los valles situados entre la llanada alavesa y la cuenca de Pamplona están

dominados por robledales de Quercus robur, similares a los vascos del piso colino, pero

empobrecidos en elementos termófilos. Estas formaciones son capaces de sobrevivir en un

ombroclima subhúmedo gracias a la frecuencia de las nieblas y a que ocupan terrenos

cercanos a los ríos, donde el agua freática aflora a poca profundidad. Los robledales han sido

muy castigados para obtener tierras de cultivo, por las prácticas del carboneo y porque la

madera del roble, por su excelente calidad, ha sido requerida para muy diversas tareas

(Aseginolaza et al., 1988). En sustratos más profundos, con abundante reserva de agua, se

establecen los robledales éutrofos, donde el roble puede ir acompañado de arces (Acer

campestre) y fresnos (Fraxinus excelsior). Los robledales acidófilos ocupan los suelos

silíceos, con superficies arenosas, donde los robles están acompañados de abedules (Betula

pendula y B. celtiberica). A medida que nos alejamos de los cauces de los ríos y ascendemos

por las laderas de los valles las condiciones se vuelven más xéricas y el roble cede frente al

quejigo (Quercus faginea) (Aseginolaza et al., 1988). Más al este, al disminuir la influencia

oceánica, esta comunidad es sustituida por los robledales marcescentes, de Quercus

pubescens dentro del dominio eurosiberiano, y de Quercus faginea, más al sur, en la región

mediterránea, aunque la hibridación entre ambos es muy frecuente. (Loidi Aguerri, 1987;

Aseginolaza et al., 1988).

Foto 4.- Bosque de quejigos y encinas en el Condado de Treviño. Llanada Alavesa (Burgos)

Page 47: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

47

En la Depresión Media existían carrascales en las convexidades y en las crestas más

venteadas, que estaban en contacto con los quejigos de las zonas más propicias para la

acumulación de suelo. Estos carrascales fueron talados hace varios años para la obtención de

cultivos de cereal, quedando hoy restos de reducidas dimensiones. Los quejigales son los que

encuentran su óptimo en estas regiones de carácter submediterráneo, mostrando una especial

preferencia por los suelos margosos. Los quejigos (Quercus x subpyrenaica), aparecen

acompañados de un sotobosque arbustivo, donde abundan especies como Buxus

sempervirens, Lonicera etrusca, L. xylosteum, Viburnum lantana, Crataegus monogyna,

Amelanchier ovalis, etc. Más al este, en la zona de Aínsa, encontramos una cubeta de

inversión térmica, donde los quejigos siguen ocupando los suelos margosos, los pinos los más

pobres y secos, pero no existen carrascas (Montserrat-Recoder et al., 1988).

Sierras meridionales

Las sierras meridionales representan el último escalón montañoso antes de la Depresión

del Ebro. Marcan el límite meridional de la deformación alpina. En el País Vasco están

constituidas por los montes de Vitoria (1180 m), Iturrieta y la sierra de Entzia (1128 m) al

norte y las sierras de Toloño (1264 m) y Cantabria (1436 m) al sur. En Navarra, están

representadas por las Sierras Exteriores prepirenaicas, entre las que destacan Cantabria,

Codés, Lózquiz, Andía, Perdón, Alaiz y Leyre, con alturas que oscilan entre 1200 y 1400 m.

Estas se continúan en Huesca con la sierra de San Juan de la Peña al norte y las sierras de

Santo Domingo, Loarre, Gratal y Guara al sur (Bielza de Ory, 1989; Ferrer Regales, 1989;

Gómez Piñeiro, 1989).

El material que domina en estas sierras son calizas y conglomerados mesozoicos. En la

parte más meridional del Prepirineo los macizos de conglomerados procedentes del primer

ciclo de erosión del Pirineo, fueron erosionados en forma de torreones ("mallos") (Bielza de

Ory, 1989).

Estas sierras, situadas al sur de las cuencas intermedias, producen un nuevo efecto

desecante sobre las laderas meridionales, cuando los flujos vienen del noroeste y sobre las

septentrionales cuando vienen del sur (Ruiz Urrestarazu, 1982). Climáticamente, estas zonas

muestran una aridez estival acentuada, aunque en las umbrías se mantienen ciertas

condiciones de humedad. Las características bioclimáticas de las estaciones de esta zona

(Embalse de la Peña, Nueno, Agüero) son similares a las del grupo anterior, ya que están

situadas en los valles.

Vegetación -- En las montañas vasco-riojanas de la transición existen bosques naturales

bien conservados, entre los que se alternan hayedos con quejigales, carrascales y, en menor

Page 48: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

48

medida, melojares. En las zonas donde la intervención humana ha sido más importante y el

clima ya posee un marcado carácter continental, el pino (Pinus sylvestris) ha colonizado

grandes extensiones. El boj es un importante elemento en esta comarca, ya que acompaña a

todos los tipos de bosque citados. Los hayedos se refugian en las umbrías de los montes de

Vitoria, sierras de Cantabria y Codés, Lózquiz, Urbasa y Andía, por encima de los 800 m de

altitud, donde las precipitaciones superan los 1000 mm anuales y las nieblas son frecuentes.

Aparecen tanto sobre calizas, que es el sustrato predominante, como sobre areniscas, dando

lugar a bosques diferenciables por su cortejo florístico. En las laderas expuestas al sur, por

debajo del piso del haya, aparecen los melojares (Q. pyrenaica), que hacen incursiones en el

dominio del hayedo allá donde aflora el sustrato silíceo (Aseginolaza et al., 1988). Más hacia

el este, la precipitación disminuye y con ella la importancia de los hayedos, muy exigentes en

humedad. En las umbrías de Aláiz, Izco, Illón y Leyre sólo quedan hayedos en las partes más

altas, que ceden ante el melojar cuando disminuye la altitud (Rivas-Martínez, 1987b). En la

vertiente sur la situación es bien distinta. El carácter mediterráneo se hace más patente y a

menudo las condiciones de xericidad se acentúan por el escaso desarrollo del suelo y la

naturaleza caliza del mismo. Estas condiciones impiden el desarrollo de robledales,

apareciendo la carrasca (Quercus ilex subsp. ballota) como árbol dominante. Estos

carrascales pertenecen a distintas asociaciones, según nos vamos desplazando de oeste a este,

en virtud del aumento de la mediterraneidad y del consecuente relevo de especies. En las

solanas de los montes de Vitoria, hasta la sierra de Izco encontramos los carrascales

magníficamente conservados de Galbarra, Zúñiga, Campezo, etc, que albergan un rico estrato

de arbustos con especies como Spiraea obovata, Lonicera etrusca, Phyllirea latifolia,

Viburnum tinus, etc. (Loidi Aguerri, 1987; Rivas-Martínez, 1987b)

Más al este y al sur, en las sierras San Juan de la Peña, Loarre, Gratal y Guara, el hayedo

desaparece definitivamente, siendo ocupadas las crestas más altas por pinares albares y los

valles por pino laricio (Pinus nigra subsp. salzmannii) y por quejigos sobre sustratos mejor

desarrollados. El pino laricio indica unas condiciones climáticas de inviernos más suaves y

veranos más secos, estando acompañado por especies esclerófilas, como la gayuba

(Arctostaphyllos uva-ursi) y el boj (Buxus sempervirens), que son capaces de soportar

marcados contrastes de temperatura unidos a estrés hídrico (Montserrat-Recoder et al., 1988).

El pino ha sido favorecido frente al quejigo, por la intensa actividad humana que ha

caracterizado estos valles desde hace siglos, aunque en algunos puntos se puede observar una

recuperación masiva del quejigar (Montserrat Recoder, 1971). Al pie de los glacis de la

vertiente sur de estas sierras, dominan los carrascales (Q. ilex. subsp. ballota), aunque en las

zonas más accesibles han sido destruidos para el cultivo. Los mejores bosques se refugian en

los valles más escarpados de la sierra de Guara. En ellos encuentran refugio algunas especies

de hoja lauroide (Phillyrea latifolia, Viburnum tinus y Arbutus unedo). También encontramos

elementos característicos de los encinares costeros, como la zarzaparrilla (Smilax aspera) y la

Page 49: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

49

propia encina (Q. ilex subsp. ilex). En las laderas más soleadas y secas hace aparición la

coscoja (Quercus coccifera) (Rivas-Martínez, 1987b; Montserrat-Recoder et al., 1988).

Foto 5.- Aspecto general de los encinares de la solana de la Sierra de Guara. Vadiello (Huesca)

Depresión del Ebro

Se extiende de NO a SE, en forma de triángulo abierto hacia el Mediterráneo,

flanqueado al norte por las Sierras Exteriores prepirenaicas, al sur por el sistema Ibérico y al

SE por la cordillera Costero-Catalana.

La litología de la cuenca está dominada por materiales sedimentarios terciarios, blandos,

alcalinos y a menudo salinos (margas, yesos, calizas). Durante el Cuaternario tomaron

importancia los sedimentos aluviales y diluviales que se acumularon en las terrazas de los

ríos, a veces alcanzando potencias importantes. Estas terrazas están constituidas por

materiales tipo pudinga, procedentes de las montañas, totalmente desprovistos de rocas

salinas. La topografía es plana o ligeramente ondulada, con una suave inclinación hacia el

Ebro. Los únicos relieves que aparecen son los sasos (lomas redondeadas) y las muelas

(mesas calizas que han protegido de la erosión al material blando sobre el que se asientan),

separadas por valles de fondo llano o "vales" frecuentemente colmatados por la acción eólica

(Braun-Blanquet y Bolòs, 1957).

Las sucesivas barreras orográficas mencionadas hacen que las masas de aire del noroeste

hayan perdido su humedad, mientras que los frentes procedentes del mediterráneo rara vez

Page 50: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

50

alcanzan esta región. Por otra parte, la disposición de cubeta cerrada favorece los

movimientos verticales y las formaciones locales típicas de una fosa convectiva. No son raros

los fenómenos de gota fría, consecuencia del estancamiento de aire recalentado que genera

una fuerte inestabilidad. La consecuencia es un régimen con precipitaciones muy escasas, con

máximos en primavera y mínimos en verano e invierno. El régimen de temperaturas también

está determinado por la estructura en cubeta. Así el aire tiende a estancarse en el fondo en

situaciones anticiclónicas, acentuando los efectos térmicos de cada estación (De Terán y Sole

Sabaris, 1977; Ruiz Urrestarazu, 1982). Otro efecto orográfico es el fuerte viento, que resulta

de la penetración por los Montes Vascos de las corrientes frías del NO y N, incapaces de

atravesar la barrera cantábrica, que se encauzan y aceleran por el valle del Ebro. Lo mismo

ocurre con los flujos de procedencia NE o E para los que el Pirineo ejerce este efecto de

pantalla. El viento del NO es el más importante y recibe el nombre de "cierzo" (Braun-

Blanquet y Bolòs, 1957).

Los datos climáticos de las estaciones de la Depresión (Zaragoza, Ejea de los

Caballeros, Embalse de Mequinenza, Haro, Logroño, etc.) muestran un ombroclima seco, con

precipitaciones a veces inferiores a los 400 mm y un acusado carácter mediterráneo, como

demuestran los elevados valores de Im3. El tipo de invierno es templado-fresco, aunque las

mínimas absolutas pueden ser muy bajas. El acusado contraste térmico que se da entre el

invierno y el verano se manifiesta en un índice de continentalidad (Ic) mayor de 30. Toda esta

zona se incluye en el piso mesomediterráneo, siendo el período de actividad vegetal de 9-10

meses.

Vegetación -- La vegetación se distribuye en tres cinturones concéntricos, desde el

centro de la Depresión hasta los bordes montañosos según Braun-Blanquet y Bolòs (1957).

En la parte central de la Depresión, entre los 350 y 400 m de altitud, la aridez y

continentalidad extremas hacen que la sabina (Juniperus thurifera) sea el único árbol capaz

de formar bosques. Son formaciones abiertas, con un sotobosque escaso y pobre en especies,

que en la actualidad prácticamente han desaparecido como consecuencia de la acción

antrópica. Las pocas especies leñosas que acompañan a la sabina son arbustos de hoja muy

pequeña o áfilas: Rhamnus lycioides, Juniperus phoenicia y Ephedra nebrodensis. Otros

arbustos perennes de hoja más ancha no soportan las fuertes heladas primaverales ni la

extrema aridez estival. La degradación de estos ecosistemas ha tenido como consecuencia la

extensión de algunas comunidades de afinidad esteparia, como los espartales (Lygeum

spartum), sisallares (Salsola vermiculata) y ontinares (Artemisia herba-alba) .

Los pinares de pino carrasco (Pinus halepensis) con coscoja (Quercus coccifera) se

sitúan por encima del piso anterior (400 a 700 m), allá donde desaparece la inversión térmica.

Forman bosques en torno a los cerros, con un sotobosque más o menos denso, en el que ya

Page 51: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

51

hacen aparición arbustos planifolios como Pistacia lentiscus, Phyllirea media, Ph.

angustifolia, Rhamnus alaternus, etc.

El dominio del encinar se suele situar a mayores altitudes, por encima de los 500-700 m,

ya en contacto con los quejigares somontanos y los encinares supramediterráneos de las

solanas de Guara. En la actualidad se encuentra reducido a pequeñas superficies debido a que

el terreno que cubría ha sido ocupado por cultivos. El encinar aragonés (Bupleuro-rigidi-

Quercetum rotundifoliae) es bastante pobre en especies. El componente arbóreo está

constituido, además de por la carrasca, por el quejigo (Quercus faginea) que tiende a ocupar

las posiciones más cercanas a la capa freática, no llegando a ser parte dominante de la

comunidad. Los arbustos acompañantes se corresponden ampliamente con los mencionados

en la comunidad anterior.

Foto 6.- Encinar en la Depresión Media del Ebro. Sierra de Alcubierre (Huesca-Zaragoza)

El Sistema Ibérico aragonés

Este sistema montañoso cierra la Depresión del Ebro por el suroeste. Consta de dos

alineaciones montañosas discontinuas, separadas por una depresión intermedia. Al noroeste se

sitúa el Moncayo, con un núcleo de cuarcitas y pizarras paleozoicas, recubierto en parte por

calizas mesozoicas. Hacia el sureste descienden dos ramales separados por el curso del Jiloca.

El área de estudio sólo alcanza la rama septentrional, que consta de las sierras de la Virgen,

Vicort, Cucalón y San Just. En el sector zaragozano las sierras son de cumbres bajas, en las

que afloran cuarcitas paleozoicas formando crestas, mientras que en el turolense predominan

Page 52: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

52

las calizas mesozoicas que han sido arrasadas dando lugar a altiplanicies. La Depresión de

Calatayud-Teruel posee una estructura similar a la del Ebro, con materiales sedimentarios

terciarios (conglomerados, areniscas, calizas y yesos) (Bielza de Ory, 1989).

El clima de esta zona se caracteriza por una fuerte aridez estival, a causa de la debilidad

con que llega la influencia atlántica a esta región, y por la corriente de aire desencante que

desciende de la cordillera Ibérica. El régimen de precipitaciones es muy irregular y los

contrastes térmicos muy acusados. Dado que las estaciones termopluviométricas son escasas

en este sector, en la Tabla 2.1 tan solo aparece Daroca como representante de este clima.

Foto 7.- Aspecto de un encinar ibérico en el macizo del Moncayo. Calcena (Zaragoza)

Vegetación -- La dureza del clima hace que el quejigo retroceda frente a la carrasca y

que sólo esta especie, junto con las sabinas y los enebros, sean capaces de formar bosque.

También pueden encontrarse numerosos pinares de repoblación (Montserrat-Recoder et al .,

1988). En el Mapa de Series de Vegetación (Rivas-Martínez, 1987b) se pueden distinguir dos

asociaciones de carrascal, según se asienten sobre sustratos básicos o ácidos. El primer tipo es

similar a las comunidades de la otra orilla del Ebro (Bupluro-rigidi-Quercetum rotundifoliae),

mientras que el segundo (Juniperu oxicedri-Quercetum rotundifoliae) se distingue por la

presencia de comunidades de clara afinidad acidófila entre sus etapas de degradación, como

los piornales, retamales y jarales. A mayor altitud, en el piso supramediterráneo, y otra vez

sobre sustrato calizo, el clima se hace más severo y las carrascas se mezclan con sabinas y

enebros (Junipero thuriferae-Quercetum rotundifoliae). Si seguimos ascendiendo, el aumento

de la precipitación favorece la aparición de bosques marcescentes de Quercus faginea y de Q.

Page 53: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

53

pyrenaica, estos últimos sobre sustrato ácido. En las zonas más altas, sometidas a condiciones

extremas de temperaturas, donde los suelos suelen estar mal desarrollados, dominan los

sabinares de Juniperus thurifera o éstos mezclados con Pinus sylvestris. Por último cabe citar

la presencia de hayedos en la umbría del Moncayo (Rivas-Martínez, 1987b; Montserrat-

Recoder et al., 1988).

Page 54: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 55: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

Segunda parte

VARIACIÓN DE LOS CARACTERES DELENCINAR A LO LARGO DE UN GRADIENTE

CLIMÁTICO

Page 56: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 57: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

Capítulo 3º

El papel del clima y las perturbaciones en lacomposición florística, en la caracterización morfo-

anatómica y estructural de las comunidades deQuercus ilex

Page 58: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 59: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

3.1 Introducción

El clima ejerce una notable influencia sobre la vegetación, que se refleja tanto a nivel

de composición florística (Ellemberg, 1963; Austin, 1987) como de caracteres funcionales de

las especies y de las comunidades (Specht, 1969; Givnish, 1987; Floret et al., 1990; Halloy,

1990). En el caso de la vegetación de la cuenca mediterránea, la existencia de dos períodos

que limitan su actividad, invierno y verano, es un importante factor selectivo para las especies

(Mitrakos, 1980). Las áreas nuestro territorio sometidas a este régimen climático están

dominadas por bosques de Quercus ilex y sus etapas de degradación (comunidades de la

clase Quercetea ilicis) (Le Houerou, 1981), cuya relación con el clima ha atraído la atención

de numerosos investigadores (Braun-Blanquet, 1936; Floret et al., 1990; Terradas y Savé,

1992; Sala et al., 1994)

Pero el clima no es el único factor que modela las características de los paisajes

mediterráneos actuales. Estas regiones han tenido que soportar desde el Neolítico una

creciente presión antrópica, siendo la tala, el pastoreo y la quema las principales actividades

que han llevado a la degradación de las comunidades vegetales (Le Houerou, 1981). La

acción combinada y recurrente de estas agresiones conduce a una degradación progresiva de

los bosques (Naveh, 1994) hasta llegar a estadíos dominados por especies herbáceas (Le

Houerou, 1981). El fuego ha sido el factor de perturbación que más atención ha recibido por

parte de los científicos (por ej.Naveh, 1974; Canadell et al., 1991; Moreno y Oechel, 1994;

Trabaud, 1994, etc) mientras que otro tipo de alteraciones han sido menos estudiadas,

posiblemente a causa de la dificultad que implica su cuantificación (ver por ej. Perevolotsky y

Haimov, 1991; Shackleton et al., 1994). En este trabajo consideramos el grado de

"perturbación" que han sufrido las comunidades vegetales, entendiendo este concepto como

Page 60: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

60

cualquier factor que produzca una pérdida de biomasa viva de las plantas ("disturbance" de

Grime et al. 1988), independientemente de su naturaleza.

Una dificultad que surge cuando se analiza el efecto de múltiples factores sobre la

vegetación es la posible interacción entre ellos. Sabemos que la susceptibilidad de las

comunidades a ser degradadas por perturbaciones aumenta cuando la intensidad del estrés

climático es mayor. Por ejemplo, la vegetación mediterránea se vuelve más inflamable con la

aridez (Trabaud, 1979). Por lo tanto, para poder interpretar la respuesta del paisaje a los

factores a que está sometido, es preciso considerar conjuntamente el clima y la perturbación.

La vegetación puede ser descrita desde varias perspectivas diferentes, desde la

composición florística (Ellemberg, 1963; Braun-Blanquet, 1964; Austin, 1987) hasta la

descripción morfológica de las plantas que la integran (Specht, 1969; Barkman, 1988; Halloy,

1990). Hay autores que utilizan como unidad de estudio el "grupo funcional", esto es, un

conjunto de especies que comparten unos determinados caracteres que condicionan una

estrategia ecológica o funcional semejante (Grime, 1979). Orshan (1982) propone describir la

vegetación a partir de la distribución de clases de frecuencia de caracteres independientes

(formas de crecimiento basadas en un sólo carácter o "monocharacter growth forms") como

un método sencillo para la descripción de la vegetación. Muchos estudios de este tipo han

utilizado caracteres foliares, fenológicos, o caracteres referidos a toda la planta, pero pocas

veces se han incluido caracteres referidos a la madera (un ejemplo es Guthrie, 1989).

A lo largo del área de estudio descrita en el capítulo anterior, podemos encontrar

comunidades de Quercetea ilicis en distintos estados de conservación y soportando

condiciones climáticas muy diversas. En este capítulo se pretende describir la variabilidad de

estas comunidades en función del clima y del grado de perturbación que han sufrido. Los

objetivos específicos son los siguientes.

1- Entender cómo se segregan las comunidades de Q. ilex en función de su composición

florística y si tal segregación puede ser asociada a factores climáticos, a intensidad de

perturbación o a ambos.

2- Asumimos que el valor promedio de un determinado carácter en una comunidad

(calculado como la media de los valores de las especies que la componenen) representa un

punto de convergencia y, por tanto, es probable que refleje una adaptación al ambiente

(Turner, 1994b). En este capítulo se analiza cómo varían los promedios de algunos caracteres

de importancia funcional reconocida a lo largo del gradiente, buscando correlaciones de éstos

con las variables climáticas y la intensidad de perturbación. Los caracteres seleccionados se

refieren a morfología foliar (área, espesor de lámina, masa específica y densidad), a la

anatomía del tallo (diámetro máximo y medio de los elementos de los vasos del xilema,

Page 61: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

61

longitud y densidad de los mismos, densidad de la madera) y hábito foliar. La forma, el

tamaño y la estructura de las hojas condicionan la estrategia de asimilación carbono y de uso

del agua (Parkhurst y Loucks, 1972; Givnish, 1987), así como su capacidad para resistir

agresiones del entorno (Herms y Mattson, 1992). La estructura del xilema determina la

eficiencia y seguridad del transporte del agua por el tallo (Zimmermann, 1978; Tyree y

Sperry, 1989). El hábito foliar, caduco o perenne, refleja la estrategia de vida con que la

planta afronta la alternancia de períodos favorables y desfavorables a lo largo del año y se

relaciona con la tasa de producción (Chabot y Hicks, 1982; Kikuzawa, 1991).

3- Analizar cómo varía el espectro de formas de crecimiento de las comunidades (que

se establecerán según la altura máxima de la planta y su área foliar) en función del

incremento de estrés climático y grado de perturbación. La distribución de las formas de

crecimiento informa sobre el grado de estratificación de la comunidad y de las condiciones

microclimáticas que afectan a cada estrato.

4- Buscar posibles compromisos entre diversos aspectos de cada planta (caracteres de

las hojas, del tallo y talla máxima de la especie), para establecer si es factible cualquier

combinación de caracteres o si, por el contrario, existe alguna que resulta más ventajosa en

los ambientes estudiados.

3.2 Material y métodos

Áreas de estudio

El área de estudio se extiende a lo largo de unos 350 km, desde la costa de Vizcaya

hasta el embalse de Mequinenza (Zaragoza). Abarca un pequeño sector de la vertiente

cantábrica vizcaína; atraviesa los Montes Vascos, penetra en la Depresión del Ebro y

asciende por los piedemonte Prepirenaico e Ibérico, hasta donde desaparece el dominio del

encinar. Las características físicas de esta zona han sido descritas en el capítulo anterior. Sin

embargo, conviene resaltar de nuevo la transición climática que se produce desde la costa

vizcaína, con precipitaciones que superan los 1000 mm anuales y suaves oscilaciones

térmicas, hasta el centro de la depresión del Ebro, que presenta un régimen térmico muy

continentalizado, con precipitaciones medias anuales inferiores a los 400 mm (Tabla 2.1).

Tanto las montañas del Sistema Ibérico como las del Prepirineo se caracterizan por sus bajas

temperaturas, pero el grado de aridez es mucho más acentuado en las primeras.

La perturbación antrópica sobre los encinares estudiados ha disminuido notablemente

en las últimas décadas, como consecuencia de la reducción de población rural y de la

generalización del gas, petróleo y sus derivados como principales fuentes de energía.

Actualmente el pastoreo es la perturbación más importante que soportan los encinares,

mientras que la tala para leña es cada vez menos frecuente. Muchos de los encinares del área

Page 62: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

62

de estudio estuvieron sometidos a ciclos de tala de 20-25 años, cuya huella en la estructura

del dosel arbóreo aún se aprecia claramente. Los incendios son muy esporádicos aunque en

las zonas con matorral, especialmente las dominadas por Quercus coccifera, son más

frecuentes.

Datos de vegetación

A lo largo de la transición climática que nos ocupa, se realizaron 155 inventarios en

comunidades dominadas por Quercus ilex (subespecies ilex y ballota) o por los arbustos

característicos de sus primeras etapas de degradación. Todas estas comunidades se engloban

en la clase fitosociológica Quercetea ilicis (Braun-Blanquet, 1936). Los inventarios se

realizaron durante los veranos de 1992 y 1993, siguiendo la metodología de Zurich-

Montpellier, en cuadrículas de 10 x 10 m, en áreas de vegetación homogénea, evitando

condiciones extremas de topografía y microclima. La cobertura-abundancia se estimó

visualmente para todas las especies, aunque en este estudio sólo se consideran los fanerófitos.

En cada inventario, además, se registraron otras variables que tratan de reflejar la estructura

de la comunidad: cobertura total de la vegetación, altura media y cobertura de los estratos

herbáceo, arbustivo, arbóreo y del suelo desnudo, perímetro medio de las especies arbóreas (a

partir de 10 individuos tomados al azar) y número de pies de árboles que enraizaban dentro

de cada cuadrícula.

El perfil climático de cada inventario se estableció tomando los datos termo-

pluviométricos de la estación más próxima de la red del Servicio Meteorológico Nacional

(ver situación de las estaciones en la Fig. 2.1). Cuando no había ninguna próxima se

extrapolaron los datos de precipitación y temperatura de las cuatro más cercanas, a partir de

regresiones con la altitud. Las variables climáticas con las que hemos trabajado son las

precipitaciones estacionales y las temperaturas medias del año, de las mínimas del mes de

enero y de las máximas del mes de julio.

Características de las plantas

Los caracteres morfológicos y estructurales utilizados se midieron solamente en los

fanerófitos presentes al menos en un 5 % de los inventarios, siendo considerados fanerófitos

las especies que poseen yemas de renovación por encima de 60 cm de altura (ver comentarios

en Orshan, 1986). El muestreo se realizó entre julio y agosto de 1992. Los caracteres foliares

(área, masa específica, espesor y densidad) se registraron en un mínimo de tres poblaciones

por especie (un individuo por población). En cada planta se recolectaron entre 10 y 50 hojas

de las dos últimas cohortes, en la cara sur de la copa y a media altura. El área foliar se midió

con un sistema de análisis de imagen Delta-T (Delta-T Devices LTD, Cambridge. Inglaterra),

considerando el área de los folíolos en las especies de hoja compuesta. El espesor de lámina

Page 63: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

63

se midió con un calibre centesimal modificado, evitando los nervios principales.

Posteriormente, secamos las hojas en la estufa (dos días a 80ºC), para calcular su masa

específica dividiendo el peso seco de cada hoja por su área. La densidad se estimó como el

cociente entre la masa específica y el espesor.

Para medir la densidad de la madera, recogimos un mínimo de tres segmentos de ramas

de más de seis años por especie. El volumen se calculó a partir del agua que desalojaban al

sumergirlos, una vez bien saturados. Posteriormente se secaron dejándolos varios días en la

estufa y se calculó su densidad dividiendo su peso seco por su volumen. El diámetro medio

de los elementos de los vasos y la longitud de los mismos (excluyendo los apéndices con que

se prolongan sus extremos) fueron calculados a partir de maceraciones de las mismas ramas

en que se midió la densidad. Para ello se cortaron trozos de madera de la parte externa de las

ramas y se trataron con solución de Jeffry al 10% (Johansen, 1940). El material macerado se

tiñó con safranina y se montó en agua destilada. El diámetro medio y la longitud de los

elementos de los vasos se calcularon como la media de la anchura y de la longitud,

respectivamente, de 30 elementos elegidos al azar. No incluimos los apéndices de los

elementos en la determinación de su longitud porque pensamos que el significado funcional

de este parámetro está más condicionado por la distancia entre las placas de perforación.

En cada especie se realizaron cortes transversales en dos ramas de tres años procedentes

de otras tantas poblaciones de la parte media del gradiente. Para ello se utilizó un microtomo

de deslizamiento unido a una unidad de congelación (Anglia Scientific AS200, England),

tiñéndose los cortes con safranina y verde rápido. A partir de este material se determinó el

número de vasos por unidad de superficie del xilema (densidad de vasos) y el diámetro medio

de los vasos más grandes (media entre los ejes mayor y menor del lumen de los 25 vasos más

grandes del último anillo), que son los que más aportan a la capacidad de flujo

(Zimmermann, 1983). Ambos parámetros se midieron, respectivamente, con una gradilla y

una regla colocadas en el ocular del microscopio. Otros caracteres de la madera que

consideramos fueron: tipo de porosidad (en anillo, en semianillo o difusa) y tipo de

perforación de las placas que separan los elementos de los vasos (simples o escalariformes) o

ausencia de las mismas cuando sólo existen traqueidas. Las clases de algunos caracteres de la

madera fueron contrastadas con el estudio de Baas y Schweingruber (1987). Solamente se

encontraron unos pocos casos de desacuerdo, en los que optamos por considerar nuestros

datos.

Establecimiento de formas de crecimiento-- . Las especies se agruparon en 6 clases, en

función de su altura máxima, tomada de Flora Iberica (Castroviejo, 1986-93 vols. 3-4) o de

Flora Europaea (Tutin et al., 1964-80), y de su área foliar. Las lianas se consideraron como

un grupo aparte, ya que carecen de sistemas propios de soporte que les permitan alcanzar por

sí mismas la altura asignada (Tabla 3.1).

Page 64: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

Tabla 3.1. Clasificación de las especies estudiadas en formas de crecimiento. A: altura máxima; AF: área foliar

Forma de

crecimiento

Especie Familia Características

Cistus albidus Ca Cistaceae

Cistus laurifolius Cl Cistaceae

Coronilla emerus Ce Leguminosae

1- Arbustos Genista scorpius Gs Leguminosae

pequeños Rhamnus lycioides Rl Rhamnaceae A < 2m

Rhamnus saxatilis Rs Rhamnaceae

Rosmarinus officinalis Ro Labiateae

Spiraea hypericifolia subsp.obovata So Rosaceae

Buxus sempervirens Bs Buxaceae

Erica arborea Ea Ericaceae

Juniperus phoenicia Jp Cupressaceae

2- Arbustos de Ligustrum vulgare Lv Oleaceae 2m< A < 10m

hoja pequeña Pistacia lentiscus Pl Anacardiaceae AF < 300 mm2

Prunus spinosa Ps Rosaceae

Quercus coccifera Qc Fagaceae

Rhamnus alaternus Ra Rhamnaceae

Amelanchier ovalis Ao Rosaceae

Cornus sanguinea Cs Cornaceae

3- Arbustos de Crataegus monogyna Cm Rosaceae

hoja grande Pistacia terebinthus Pt Anacardiaceae 2m< A < 10m

Rosa spp. Rsp Rosaceae AF > 300 mm2

Viburnum lantana Vl Caprifoliaceae

Viburnum tinus Vt Caprifoliaceae

4-Arboles hoja Juniperus communis Jc Cupressaceae A > 10m.

acicular Juniperus oxycedrus Jo Cupressaceae Hojas aciculares

Arbutus unedo Au Ericaceae

Acer monspessulanum Am Aceraceae

5- Arboles Phillyrea latifolia Phl Oleaceae

planifolios Quercus ilex subsp. ilex Qi Fagaceae A > 10 m.

Quercus ilex subsp. ballota Qb Fagaceae Hojas planas

Quercus faginea Qf Fagaceae

Sorbus domestica Sd Rosaceae

Clematis vitalba Cv Ranunculaceae

6-Lianas Hedera helix Hh Araliaceae

Lonicera etrusca Le Caprifoliaceae

Lonicera implexa Li Caprifoliaceae

Page 65: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

65

Análisis de datos

Tipificación del clima y la perturbación -- Se establecieron cuatro grupos de

precipitación y cuatro de temperatura mediante un análisis de componentes principales,

realizado con los datos climáticos de las localidades en que se hicieron los inventarios, tal

como se ha explicado en el capítulo anterior. De esta forma evitamos que la clasificación se

basara en una sola variable o en un índice que promediara varias variables. El grupo 1 de

precipitación incluye las localidades de precipitación más baja, tanto anual como estacional,

mientras que el grupo 4 incluye las de precipitación más alta. El grupo 1 de temperatura

también corresponde a las zonas de temperatura invernal más baja, mientras que el 4 a las

más cálidas.

Los cuatro grupos de perturbación se establecieron inicialmente en el campo para cada

inventario, teniendo en cuenta el desarrollo de los distintos estratos de vegetación del bosque,

el grado de cobertura del mismo y la presencia de síntomas directos de haber sido talados o

pastoreados. Posteriormente, verificamos dicha clasificación ordenando los inventarios con

un PCA en función de las coberturas de la vegetación, de los estratos arbóreo, arbustivo y

herbáceo, de la altura media del estrato arbóreo, del número de troncos por superficie

inventariada y del perímetro medio de los mismos. Los dos primeros ejes del análisis

discriminaron razonablemente bien los grupos preestablecidos (Fig. 3.1).

··

··

·

··

·

·

·

·

·

··

··

··

·

··

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

· ·

··

··

··

· ·

·

·

·

·

· ·

·

·

·

··

··

·

·

·

·

·

·

·

·

··

·

·

··

·

··

·

·

·

··

·

··

··

·

··

·

·

·

·

·

·

··

·

·

··

··

·

·

··

·

·

·

·

·

·

·

·

··

·

··

·

···

·

·

··

·

··

·

·

·

·

·

·

·

·

·

·

· ···

·

·

·

·

···

·

·

·23

3

14

41

2

3

4

1

42

33

44

3

44

4

4

4

3

2

3

4

4

4

4

1

4

2

4

3

4 4

23

34

44

3 2

3

2

2

2

2 2

3

2

2

22

2

4

2

3

3

2

1

3

2

3

2

34

4

2

22

2

11

2

1

4

31

1

14

4

42

11

3

2

1

2

2

1

21

4

1

22

11

4

4

44

4

2

1

3

1

3

1

1

11

1

11

1

111

1

1

11

1

33

2

4

2

2

3

3

2

1

1

1

2 211

3

2

2

2

111

1

1

3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3 4

Eje

II

Eje I

Figura 3.1. Representación de los grupos de perturbación preestablecidos en el campo (númerosdel 1 al 4) sobre el plano factorial definido por los dos primeros ejes del PCA.

Page 66: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

66

Análisis de la variación florística de los inventarios -- Para estudiar la variación de las

comunidades según su composición florística, se ordenaron los 155 inventarios en función de

la cobertura de todas las especies leñosas (91 especies), mediante un análisis de

correspondencias realizado con SYNTAX 5.0.

Análisis de la variación de especies en función del clima y la perturbación -- A partir

del valor de información mutua (Im) (Abramson, 1966) valoramos la importancia que tienen

la temperatura, la precipitación y la perturbación en la distribución de las 36 especies más

frecuentes en los inventarios. En los pares que obtuvieron un elevado valor de este índice, se

calculó la frecuencia corregida (Gounot, 1969), que indica la forma en que la especie se

reparte en un gradiente del factor ambiental.

Análisis de la variación de los caracteres de la vegetación en función del clima y la

perturbación -- En cada inventario se calculó un valor medio de cada una de las variables

numéricas consideradas (área, espesor, masa específica densidad de las hojas, diámetros y

densidad de los vasos del xilema, longitud de sus elementos y densidad de la madera), tanto

en función de la presencia como de la cobertura de las especies que lo componían. El valor

medio de la densidad de vasos se calculó excluyendo las especies de Juniperus, ya que éstas

alcanzaban unas cifras de un orden de magnitud mayor que las de las angiospermas,

desviando fuertemente los promedios cuando estaban presentes.

Una vez asignado cada inventario a su correspondiente grupo de precipitación,

temperatura y perturbación, se valoró mediante análisis de varianza (ANOVA) en qué medida

estos factores explicaban la variabilidad de los caracteres considerados. Con un ANOVA

bifactorial se exploraron las interacciones entre los pares de factores y, cuando existía

interacción, se analizaba el efecto de un factor en cada uno de los niveles del otro. Para hacer

comparaciones múltiples se utilizó el test LSD de Fisher (Zar, 1984).

La variación de los caracteres cualitativos (hábito foliar, tipo de madera, tipo de placas

de perforación) y de las formas de crecimiento se analizó calculando los espectros de

distribución de frecuencia de sus clases en cada uno de los grupos de precipitación,

temperatura y perturbación, tanto en función de la presencia como de la cobertura de especies.

Análisis de las combinaciones de caracteres de las especies del encinar -- Se realizó un

gráfico tridimensional en el que se representan los fanerófitos en función de su altura

máxima, de su área foliar y del diámetro máximo de sus vasos del xilema del tallo. Las lianas

se excluyeron porque carecen de estructuras de soporte propias que les habiliten para alcanzar

la altura máxima que se les asigna.

Page 67: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

67

3.3 Resultados

Variación florística

Los dos primeros ejes del análisis de correspondencias realizado con la matriz de

inventarios por coberturas de especies, tan solo explicó el 20% de la varianza. La

representación de los inventarios sobre el plano factorial muestra tres grupos de puntos,

distribuidos sin discontinuidad entre ellos (Fig. 3.2). El grupo más denso se sitúa en el área

definida por valores bajos de ambos ejes. Estos inventarios corresponden a las comunidades

de la parte central del área de estudio, caracterizada por un clima mediterráneo con niveles de

estrés climático moderados. Otro grupo se dispone hacia el extremo positivo del eje I y se

caracterizan por la importancia de especies como Quercus ilex subsp. ilex, Q. faginea y

Phillyrea latifolia. Estos inventarios corresponden a las zonas de precipitación más alta (costa

atlántica y Prepirineo), que suelen presentar bajos grados de perturbación. El último grupo se

extiende hacia el extremo positivo del eje II, que se caracteriza por frecuencias elevadas de

Quercus coccifera, Rosmarinus officinalis y Pistacia lentiscus. Estos inventarios

corresponden a comunidades fuertemente perturbadas, que son más abundantes en las zonas

más áridas.

-2 -1 0 1 2 3 4-2

-1

0

1

2

3

4

Eje

II

Eje I

Per

turb

ació

n

Precipitación

Figura 3.2. Situación de los inventarios en el plano factorial definido por los dos primeros ejes deun análisis de correspondencias. Los símbolos indican el grado de precipitación y perturbación

En la tabla 3.2 aparecen las especies cuya distribución ha sido más influenciada por las

variaciones de precipitación, temperatura y perturbación. En los inventarios de las zonas más

lluviosas y con escasas muestras de perturbación, predominan Buxus sempervirens, Quercus

faginea, Quercus ilex subsp. ilex, Hedera helix y Arbutus unedo, siendo las tres últimas

Page 68: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

68

especies también características de las zonas con inviernos templados. Juniperus phoenicea,

Rosmarinus officinalis, Quercus coccifera, Rhamnus alaternus y Genista scorpius aparecen

fuertemente asociados a los grupos de perturbación más alta, mientras que Cistus laurifolius,

Rhamnus lycioides, Quercus ilex subsp. ballota y Genista scorpius predominan en los

inventarios de zonas más áridas.

Tabla 3.2. Especies que se asocian fuertemente a los grupos extremos de perturbación, precipitación ytemperatura, determinadas a partir de sus frecuencias corregidas.

Grupo de perturbación Grupo de precipitación Grupo de temperatura

Hedera helix 1 Cistus laurifolius 1 Quercus ilex subsp. ballota 1Quercus ilex subsp. ilex 1 Rhamnus lycioides 1-2 Lonicera etrusca 1Buxus sempervirens 1 Quercus ilex subsp. ballota 1-2 Juniperus oxycedrus 3Rosa spp. 1 Genista scorpius 1-2 Viburnum lantana 3Quercus faginea 1 Juniperus oxycedrus 3 Pistacia lentiscus 3Arbutus unedo 1 Quercus faginea 3 Quercus coccifera 3-4Genista scorpius 3-4 Buxus sempervirens 3-4 Rhamnus alaternus 3-4Rhamnus alaternus 4-3 Quercus ilex subsp. ilex 4 Arbutus unedo 3-4Quercus coccifera 4-3 Phillyrea latifolia 4 Q. ilex subsp. ilex 4Rosmarinus officinalis 4-3 Hedera helix 4 Hedera helix 4Juniperus phoenicia 4 Arbutus unedo 4 Phillyrea latifolia 4

Variación de los caracteres de la vegetación en función del clima y el grado de

perturbación

Los análisis que se basan en la matriz de presencia de especies permiten detectar las

variaciones de caracteres que resultan de la aparición o desaparición de especies a lo largo del

gradiente, mientras que los que se basan en la matriz de coberturas, detectan las variaciones

originadas por cambios de frecuencia de las especies, siendo por tanto mucho más sensible a

los cambios ambientales. Este segundo tipo de análisis ha generado resultados de difícil

interpretación, ya que los cambios que se deben a variaciones de frecuencia de las especies

con coberturas más altas quedan muy resaltados, enmascarando a aquéllos que resultan de los

cambios de frecuencia de las especies de menor cobertura. Por esta razón, hemos optado por

comentar los resultados de las matrices de presencias y utilizar los de coberturas sólo cuando

muestran tendencias muy claras.

Los tres factores ambientales considerados explican significativamente la variación de

alguno de los caracteres promedio de las comunidades. Es frecuente la interacción entre pares

de factores. La precipitación y la perturbación parecen explicar mejor que la temperatura las

características de la comunidad, aunque este último factor interacciona frecuentemente con la

precipitación (Tabla 3.3).

Page 69: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

69

Tabla 3.3. Fuentes de variación significativa de los caracteres numéricos en los inventarios. Se realizó unANOVA bifactorial con la matriz de presencias para todos los caracteres, y también con la de coberturaspara MEF y DF (datos entre paréntesis) * 0.01 < P ≤ 0.001; ** P < 0.001. Abreviaturas: AF: área foliar;MEF: masa específica foliar; DF: densidad foliar; DMx: media de los diámetros máximos de los vasosxilemáticos; DMd: Diámetros medios de los vasos; LEV: longitud de los elementos de los vasos; DM:densidad de la madera.

AF MEF DF DMx DMd LEV DM

Precipitacion (P) ** n.s. (**) n.s. (n.s.) n.s. * * *

Temperatura (T) n.s. n.s. (*) n.s. (n.s.) n.s. n.s. n.s. *

Perturbación (D) ** * (*) * (**) * ** n.s. **

P x T * n.s. (n.s.) n.s. (*) * ** * **

P x D n.s. n.s. (n.s.) n.s. (n.s.) n.s. n.s. n.s. n.s.

T x D n.s. n.s. (*) n.s. (**) n.s. n.s. n.s. n.s.

Tendencias foliares-- Las especies perennifolias son más frecuentes que las de hábito

caduco en el conjunto del área de estudio, estas últimas predominando sólo en los inventarios

de las zonas más frías (Fig. 3.3). El área foliar aumenta con la reducción de la perturbación

(Tabla 3.4), alcanzando valores máximos cuando coinciden temperaturas y precipitaciones

altas (Tabla 3.5). El aumento de precipitación coincide con una disminución de la masa

específica foliar media de la comunidad, estimada en función de la cobertura (Tabla 3.5),

apareciendo este mismo efecto cuando aumenta la temperatura, excepto en el grupo de

máxima perturbación (Tabla 3.6). Ninguno de los factores ambientales considerados produce

tendencias claras en el espesor foliar. La densidad foliar media de la comunidad aumenta con

el grado de perturbación (Tabla 3.4) y con la temperatura, aunque esta última respuesta sólo

aparece cuando la precipitación es baja (Tabla 3.6).

Tabla 3.4. Valores medios de los caracteres en cada grupo de perturbación.Las letras distintas en cada fila indican diferencias significativas entregrupos de perturbación (LSD, α=0.01). El análisis se realizó sobre la matrizde presencias. (Abreviaturas como en la tabla anterior).

Grupo de perturbación

Carácter 1 2 3 4

AF 489 b 353 a 284 a 297 a

DF 536 a 534 a 549 ab 560 b

DMx 48 b 45 ab 42 a 41 a

DMd 35 b 33 b 30 a 28 a

DM 651 a 673 b 685 b 692 b

Page 70: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

70

Tabla 3.5. Valores medios de los caracteres en los inventarios pertenecientes a gruposdeterminados de precipitación y de temperatura. No se ha hecho este desglose de gruposcon MEF porque la interacción de los dos factores no fue significativa. Las letras a laderecha de los datos muestran diferencias significativas entre los grupos de precipitación ylas de la izquierda diferencias entre grupos de temperatura o perturbación. (LSD α=0.01).Los valores medios de las variables se calcularon en función de la matriz de presencias,excepto MEF, donde se usó la de coberturas (valores entre paréntesis).

Grupo de precipitación

CarácterGrupo de

temperatura 1 2 3 4

1 319 371 282 a 297AF 2 299 330 437 ab 411

3 233 275 295 ab 4294 290 a 296 a 286 a b 638 b

MEF todos (18.85 c) (17.97 b) (17.72ab) (16.95 a)

DMx 4 38.47 a 40.99 a 40.77 a 55.94 b

1 33.60 33.76 31.65 a 30.66DMd 2 31.97 31.33 31.75 a 31.75

3 26.82 30.37 30.38 ab 32.494 29.70 a 30.37 a 28.48 a b 38.68 b

LEV 1 218 a 327 b 306b 325 b

1 690 665 679 b 694DM 2 678 687 648 b 684

3 702 688 678 b 6754 688 b 668 b 692 b a 616 a

Tendencias de la madera-- Los diámetros medio y máximo de los vasos del xilema

disminuyen a medida que la perturbación es más intensa (Tabla 3.4). Esto es una

consecuencia de la desaparición de especies de vasos más anchos, como Quercus ilex subsp.

ilex, Rosa spp. y Quercus faginea (Tabla 3.2), lo que hace que los promedios de ambos

caracteres disminuyan en la comunidad. Respecto al clima, estos dos caracteres alcanzan sus

valores más altos en los inventarios donde coinciden precipitación y temperatura altas (Tabla

3.5). Ni la perturbación ni las variables climáticas explican de forma significativa la variación

de la densidad de vasos (datos no mostrados). La longitud de los elementos de los vasos es

mínima en las comunidades más frías y secas (Tabla 3.5), mientras que la densidad de la

madera muestra la tendencia opuesta, siendo mínima en las comunidades de clima más cálido

Page 71: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

71

y húmedo (Tabla 3.5) y en los ambientes menos perturbados (Tabla 3.4). Aunque la madera

de porosidad en anillo tan solo está representada por dos especies (Quercus faginea y

Clematis vitalba) éste es el único tipo de madera que muestra tendencias claras, aumentando

con la precipitación y disminuyendo con el aumento de perturbación. (Fig. 3.3). La mayoría

de las especies poseen placas de perforación simple, siendo su presencia ligeramente superior

en las comunidades de precipitación más baja, y en las de temperatura más alta. Las

perforaciones escalariformes adquieren mayor importancia en las áreas más húmedas y en las

más frías (Fig. 3.3). El grado de perturbación no parece influir en la frecuencia con que

aparecen estos dos tipos de placas de perforación.

0%

10%

20%

30%

40%

50%

60%

1 2 3 4

Precipitation group

RSpDp

Tipo de madera

0%

10%20%

30%

40%

50%60%

70%

1 2 3 4

Temperature group

Fre

cuen

cia

de p

rese

ncia

s

DE

Hábito

0%

10%20%

30%

40%

50%

60%

70%

1 2 3 4

Disturbance group

Pre

senc

e fr

eque

ncy

DE

Hábito

0%

20%

40%

60%

80%

100%

1 2 3 4

S

ScT

Placas de perforación

0%

20%

40%

60%

80%

100%

1 2 3 4

Pre

senc

e fr

eque

ncy

SScT

Placas de perforación

0%

10%

20%

30%

40%

50%

60%

1 2 3 4

Pre

senc

e fr

eque

ncy

RSpDp

Tipo de madera

Figura 3.3. Variación de la frecuencia de los caracteres cualitativos de la vegetación a lo largo de losdiferentes grupos de precipitación, temperatura y perturbación. Tipo de porosidad de la madera: R- en anillo,Sp- en semianillo, Dp- difusa. Hábito foliar: D- deciduo, E- perenne. Tipo de placas de perforación: S-simple, Sc- escaleriforme, T- traqueidas.

Page 72: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

72

Tabla 3.6. Valores medios de DF y MEF en los inventarios en grupos determinados detemperatura y de precipitación o perturbación. Las combinaciones sólo se representan paralos pares de factores que mostraron interacción significativa. Las letras en la derecha de losdatos muestran diferencias entre grupos de temperatura, y las de la izquierda entre gruposde perturbación (LSD α=0.01). El análisis fue realizado sobre la matriz de coberturas.

Grupo de temperatura

Carácter Factor deinteracción 1 2 3 4

DF Precipitación-1 548 a 536 a 593 ab 605 b

Perturbación-1 18.51 b a 17.17 b ab17.69 b 15.97 a

MEF Perturbación-2 18.80 b b 19.12 b b 18.89 b 17.06 a

Perturbación-3 18.70 b b 19.04 b ab18.60ab 17.21 a

Perturbación-4 17.50 ab 17.38 a 17.02 18.01

Variaciones de las formas de crecimiento

El aumento de la perturbación favorece a los arbustos más pequeños y a los grandes de

hoja pequeña, perjudicando a los de hoja grande, a los árboles planifolios y a las lianas. En

las áreas más secas sólo son favorecidos los arbustos más pequeños, mientras que en las más

lluviosas lo son los árboles planifolios y las lianas. Las lianas y los arbustos de hoja pequeña

aumentan su presencia a medida que las inviernos son más suaves, mientras los arbustos de

hoja grande siguen una tendencia opuesta (Fig. 3.4).

Combinaciones de caracteres en las especies del encinar

Las especies de mayor talla poseen también hojas medianas o pequeñas y vasos del

xilema estrechos, con excepción de las especies de Quercus, cuyo diámetro medio máximo de

los vasos alcanza valores elevados. Entre los arbustos existen diversas combinaciones de área

foliar y diámetros de los vasos, aunque no aparecen representadas todas las combinaciones

posibles, no existiendo especies con vasos muy pequeños y hojas grandes a la vez, ni con

hojas grandes y vasos anchos (ver Fig. 3.5).

Page 73: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

73

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 2 3 4

Grupo de precipitación

Pre

sence

fre

quency

GF 1 GF 2 GF 3 GF 4 GF 5 GF 6

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 2 3 4

Grupo de temperatura

Fre

cuen

cia

de p

rese

ncia

s

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 2 3 4

Grupo de perturbación

Pre

sence

fre

quency

Figura 3.4. Variación de la frecuencia de presencia de las formas de crecimiento en los diferentes gruposde precipitación, temperatura y perturbación. (GF-1 pequeños arbustos; GF-2 arbustos de hoja pequeña;GF-3 arbustos de hojas grandes; GF-4 árboles con acículas; GF-5 árboles planifolios; GF-6 lianas)

Page 74: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

74

5

10

15

20

25

5

10

15

20

25

400800

12001600

2030

4050

6070

8090

AF (mm )

DMx (µm)

Qi

Jo

Sd

Phl

BsQb

Jc

Qf

AmJp

RaAu

Vt

VlCsCl

PtRsp

Ea

Pl

QcAo

PsLv Cm

Ca

RsRl

Ro

Ce

GsSo

45

123

H (m)

2

Forma decrecimiento

Fig. 3.5. Representación de las especies en un espacio tridimentsional definido por su área foliar(AF), por la media de los diámetros máximos de los vasos (DMx) y por la altura máxima (H). Losdistintos símbolos representan las formas de crecimiento. Las lianas no han sido incluidas.Abreviaturas de las especies como en Tabla 3.1.

3.4 Discusión

Los resultados de nuestro trabajo demuestran que tanto el clima como la perturbación

son factores que modifican la composición de fanerófitos de las comunidades de Quercus ilex

y los promedios de sus caracteres morfoestructurales. El análisis de la matriz de especies por

inventarios mostró una heterogeneidad florística de las comunidades a lo largo del gradiente,

a la que contribuyen multitud de factores, sin que ninguno de ellos recoja un importante

porcentaje de la varianza. La distribución de inventarios en el plano definido por los dos

primeros ejes del análisis de correspondencias indica que los factores principales de variación

interaccionan fuertemente cuando tienen valores bajos, mientras que, cuando cualquiera de

ellos alcanza valores altos, desaparece dicha interacción. Los inventarios de las zonas más

lluviosas y más perturbadas se sitúan en los extremos positivos de los ejes I y II,

respectivamente, aunque en los extremos negativos no se producen las situaciones opuestas.

Hemos interpretado que el efecto de la precipitación sólo se manifiesta sin interferencias

cuando la perturbación está por debajo de un valor crítico y vice versa. En los inventarios de

las zonas más húmedas (extremo positivo del eje I) las perturbaciones moderadas apenas se

manifiestan porque la capacidad de recuperación de las comunidades es muy alta. Cuando la

precipitación disminuye, la productividad del ecosistema es menor y la misma intensidad de

perturbación provoca efectos más patentes en la composición florística de la comunidad. En

Page 75: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

75

esta situación los inventarios muestran una amplia gama de combianciones entre ambos

factores. En el extremo positivo del eje II únicamente aparecen inventarios con síntomas de

haber sufrido fuertes perturbaciones. El hecho de que no se manifieste interacción con el eje I

puede deberse a que una perturbación extrema afecta a otras variables ambientales que no

consideramos en este estudio (por ej. degración del suelo, fuerte irradiación) y que una

pluviosidad elevada no es capaz de compensar. En cualquier caso, hay que tener en cuenta

que los dos primeros ejes explican un reducido porcentaje de la varianza.

Parte de la variación morfoanatómica observada en las comunidades de Quercus ilex

puede ser explicada por la variación climática y parte por la perturbación. Los inventarios

caracterizados por precipitaciones y temperaturas invernales elevadas presentaron los valores

más altos de área foliar y de diámetros de conductos xilemáticos, y los más bajos de densidad

de la madera. Esto significa que a lo largo del gradiente se produce un relevo de especies;

hacia la costa atlántica desaparecen aquéllas que tienen hojas más pequeñas, madera más

densa y xilema con vasos más estrechos (por ej. Rhamnus lycioides y Genista scorpius),

mientras que aparecen otras con caracteres opuestos (por ej. Q. ilex subsp. ilex y Hedera

helix). La masa foliar específica media de la comunidad sólo tendió a disminuir hacia las

áreas más húmedas cuando se calculó en base a la cobertura de las especies. Esta respuesta

significa que las especies con masa específica foliar elevada no desaparecen cuando aumenta

la precipitación, pero su dominancia disminuye en favor de las que tienen masa específica

menor.

Los patrones de variación morfoanatómica que muestran estas comunidades en relación

con el clima son similares a los descritos por otros autores. Por ejemplo, las tendencias a

reducir el área y a aumentar la masa específica de las hojas cuando la precipitación disminuye

han sido indicadas, entre otros, por Goble-Garratt et al. (1981) y Witkowski y Lamont

(1991) y relacionadas con un uso más eficiente del agua (Givnish, 1989). La reducción del

área foliar cuando disminuye la temperatura, también ha sido descrita por Körner y Pelaez

Menendez-Riedl (1989), que relacionan esta tendencia con una selección de genotipos con

meristemos de menor número de células, a medida que el descenso de la temperatura acorta

el período de actividad vegetal. El aumento de la densidad foliar con el incremento de estrés

hídrico también se cita en la literatura y puede deberse a una finalización precoz de la

expansión foliar causada por un potencial hídrico insuficiente (Hsiao, 1973).

Se esperaba que las maderas de porosidad en anillo y en semianillo adquirieran mayor

relevancia con el aumento la estacionalidad del clima (Carlquist, 1980; Baas et al., 1983),

factor que en nuestro gradiente se asocia con el descenso térmico invernal (Cap. 2). Sin

embargo, sólo la madera de porosidad en anillo mostró tendencias a lo largo del gradiente, y

lo hizo en función de la precipitación. Ello sugiere que la variación de temperatura en el área

Page 76: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

76

de estudio no es suficiente para inducir cambios en el espectro de tipos de madera de la

comunidad.

La tendencia de los conductos xilemáticos a incrementar su diámetro al acentuarse la

precipitación, también ha sido descrita previamente (Carlquist, 1977; Barajas-Morales, 1985;

Woodcock y Ignas, 1994). La menor densidad en la madera que encontramos en áreas

húmedas y templadas probablemente sea consecuencia del mayor diámetro de sus conductos

xilemáticos, como sugieren las correlaciones de esta variable con los diámetros máximos y

medios (r=-0.54 y r=-0.60 P<0.001, respectivamente). Tradicionalmente se ha considerado

que la reducción del diámetro de los conductos xilemáticos disminuye el riesgo a sufrir

embolias, tanto por estrés hídrico como por bajas temperaturas. Sin embargo, últimamente se

ha demostrado que esta interpretación sólo es válida en el caso de las embolias inducidas por

frío y que la susceptibilidad de los vasos a sufrir disfunciones por efecto de fuertes tensiones

hídricas sólo se relaciona con los diámetros de los vasos a nivel intraespecífico (Tyree y

Sperry, 1989; Sperry y Sullivan, 1992). Por lo tanto, en nuestro estudio podemos interpretar

que la reducción del diámetro de los elementos de los vasos a medida que se acentúa la

aridez, responde a un ajuste entre el sistema vascular y un follaje con una capacidad

transpiradora limitada.

Las cuatro especies con placas de perforación escalariforme, mostraron preferencia por

lugares con alta precipitación y baja temperatura, lo cual concuerda con los trabajos que

afirman que este carácter se restringe a climas húmedos y de invierno frío (floras árticas,

templado-mésicas y a las tropicales de alta montaña) (Baas y Schweingruber, 1987). Esta

distribución se ha interpretado como una posible implicación de las placas escalariformes en

la localización y aislamiento de las burbujas de aire, cuya aparición en los conductos del

xilema es inducida por los procesos de hielo-deshielo del agua que éstos contienen

(Zimmermann, 1978; Sperry y Sullivan, 1992).

En los inventarios más perturbados predominan especies con hojas pequeñas, xilema

con conductos estrechos y densidad de la madera elevada, por ej. Genista scorpius, Quercus

coccifera y Rosmarinus officinalis. Horn (1971) encontró que las hojas de las especies

pioneras de los bosques templados también poseen hojas pequeñas. Sin embargo, varios

autores señalan que la densidad de la madera de las plantas de claros de bosques tropicales

lluviosos y de bosques templados europeos es más baja que aquélla de las especies que

conforman las etapas tardías de la sucesión (Swaine y Whitmore, 1988; Brzeziecki y Kienast,

1994). Esta divergencia de resultados se puede explicar por razones climáticas. En las

regiones donde se han realizado estos estudios, el estrés hídrico no es un factro limitante, ni

siquiera en los claros desprovistos de cobertura forestal. Por el contrario, la competencia por

la luz suele ser muy importante, ya que sólo sobreviven las especies capaces de superar la

Page 77: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

77

sombra proyectada por sus vecinas (Horn, 1971). Una madera poco densa resulta adecuada

para estas condiciones, ya que una elevada inversión de biomasa por unidad de volumen en

este tejido restaría capacidad de crecimiento a la planta. En las regiones mediterráneas, sin

embargo, la falta de un dosel arbóreo que filtre la radiación y mantenga la humedad en el

suelo y en el aire, puede provocar un notable déficit hídrico en las plantas. En estas

condiciones resulta mucho más importante conseguir un uso eficaz y moderado del agua que

una elevada tasa de crecimiento, luego la posesión de madera densa, de conductos

xilemáticos estrechos, capaces de moderar la tasa de consumo de agua, puede aumentar la

capacidad de supervivencia de las plantas en las áreas mediterráneas más perturbadas.

También se ha observado que, tanto la aridez como la perturbación, conducen a un

espectro similar de formas de crecimiento. Como hemos dicho anteriormente, la apertura de

claros en el dosel forestal destruye el microclima mésico que éste genera. Por otra parte, la

aridificación del macroclima reduce la superficie transpiradora total de la vegetación que

puede sustentar una unidad de territorio (Specht y Specht, 1989), en consecuencia, la

capacidad protectora que el dosel forestal ejerce sobre el suelo y sobre la vegetación del

subvuelo también es menor. En ambos casos se reduce la frecuencia de árboles y lianas, que

son las formas de crecimiento asociadas a los estratos más altos. Los arbustos de hoja grande

probablemente no puedan tolerar la intensa radiación que les alcanza y son reemplazados por

arbustos de menor talla y de hoja más pequeña.

El análisis de las combinaciones de los caracteres de los fanerófitos más comunes del

encinar (talla máxima, área foliar y diámetro medio de los vasos más grandes) permite

comprender mejor el nicho que ocupa cada especie y el efecto que producen el clima y la

perturbación sobre la estructura de la comunidad. Entre las plantas potencialmente más altas,

las especies de Quercus dominan claramente el estrato arbóreo, probablemente por poseer

una combinación única de caracteres funcionales. Presentan hojas de área media-pequeña,

adecuadas a las condiciones climáticas mediterráneas por su mayor eficiencia en el uso del

agua (Parkhurst y Loucks, 1972; Givnish, 1987) y tallos con conductos xilemáticos anchos,

que permiten una elevada tasa de flujo de agua y nutrientes durante los períodos óptimos de

crecimiento. Además, para lograr un funcionamiento óptimo de dichas estructuras, las

especies mediterráneas de Quercus poseen sistemas radiculares profundos (Specht, 1988;

Valentini et al., 1992). Las demás especies de talla potencialmente elevada (Juniperus

communis, Juniperus oxycedrus, Phillyrea latifolia, Sorbus domestica, Arbutus unedo y Acer

monspessulanum) presentan sistemas vasculares con vasos más estrechos,

independientemente de su área foliar. Estas especies probablemente también poseen sistemas

radicales menos profundos que los Quercus, aunque sólo podemos confirmar el caso

particular de Arbutus unedo (Specht, 1988), dada la escasez de información publicada al

respecto. Las plantas de talla media presentan una mayor variedad de combinaciones de área

Page 78: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

78

foliar y diámetros de los conductos xilemáticos, lo que les habilitan para ocupar nichos

diferentes. Por una parte, las de hojas grandes parecen medrar principalmente a la sombra del

estrato arbóreo (al menos en las zonas más áridas del gradiente), protegidas de la intensa

radiación estival. Estas plantas suelen presentar diámetros de los vasos del xilema

relativamente estrechos, suficientes para abastecer una demanda evaporativa no muy elevada.

Por otra parte, las especies de hojas más pequeñas y, a menudo, los arbustos de menor talla,

tienden a ocupar las zonas más abiertas de la comunidad dada su mayor eficiencia de uso de

agua en condiciones de elevada radiación. En las comunidades analizadas no existen plantas

que muestren a la vez hojas grandes y vasos del xilema anchos, ya que esta estructura permite

la movilización de grandes volúmenes de agua por unidad de tiempo, capacidad que carece de

sentido en las condiciones de escasez hídrica que impone el clima mediterráneo.

Este análisis de la vegetación realizado desde diversas perspectivas ha mostrado que el

clima es un factor de gran importancia en la determinación de la estructura de la vegetación,

pero en los ecosistemas mediterráneos, profundamente manejados por el hombre, también es

necesario considerar el grado de perturbación para poder explicar la estructura actual de las

comunidades. También se pone de manifiesto la necesidad de tener en cuenta las posibles

interacciones entre los factores que actúan sobre la vegetación, ya que el efecto de unos puede

estar modificado por el de otros.

Page 79: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

Tercera parte

VARIACIONES ESTRUCTURALES DE LAS

ESPECIES A LO LARGO DE UN GRADIENTECLIMÁTICO

Page 80: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 81: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

III.1 Introducción

En el capítulo anterior se ha puesto de manifiesto que las comunidades de Quercus ilex

de nuestra zona de estudio, optimizan su funcionamiento a lo largo del gradiente climático en

virtud de una sustitución de especies o de la modificación de la dominancia relativa de las

mismas. Los factores ambientales con que hemos relacionado tales cambios han sido la

precipitación, la temperatura (especialmente la mínima invernal) y la perturbación, coincidiendo

en gran medida con afirmaciones de otros autores, que señalan la aridez estival y el frío de

invierno como los principales factores que limitan la distribución de las especies en las zonas

mediterráneas (Mitrakos, 1980; Nahal, 1981; Terradas y Savé, 1992). Sin embargo, al

descender a una escala inferior de análisis, se observa que algunas especies leñosas ocupan

amplios transectos del gradiente climático. ¿Qué mecanismos permiten a estas especies

mantener su funcionalidad en condiciones ambientales tan diversas?

La forma en que las plantas superiores hacen frente al estrés hídrico se basa

esencialmente en la evitación del mismo, ya que no pueden tolerar la desecación de sus tejidos,

como hacen muchos organismos inferiores (Levitt, 1980). Según este autor, una planta

sometida a un fuerte déficit hídrico atmosférico, tiene dos alternativas para evitar la desecación:

reducir su pérdida de agua (estrategia de ahorro de agua) o absorberla del suelo a una tasa

suficiente para compensar la que se pierde por transpiración (estrategia de gasto de agua).

Ambas estrategias se basan en adaptaciones morfológicas, anatómicas y fisiológicas (Shields,

1950; Levitt, 1980). Por ejemplo, las plantas ahorradoras de agua muestran una baja

transpiración cuticular, superficies transpiradoras reducidas, una rápida respuesta estomática

frente al déficit hídrico, etc. Las gastadoras de agua pueden conseguir una elevada tasa de

absorción aumentando la proporción de biomasa dedicada a la raíz, desarrollando vasos

xilemáticos de grandes dimensiones que reducen la resistencia al flujo del agua, manteniendo

potenciales hídricos muy bajos para extraer agua de suelos más secos, etc.

Page 82: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

82

Las plantas mediterráneas, además de afrontar la aridez, también han de adoptar

mecanismos que eviten los daños que provocan las bajas temperaturas, como la congelación de

sus tejidos foliares (Larcher, 1980; Sakai y Larcher, 1987) o la pérdida de la conductividad

hidráulica por la aparición de embolias en el xilema (Zimmermann, 1983). Las plantas

caducifolias evitan en gran medida el primer riesgo, ya que no exponen sus hojas al rigor

invernal. Además, toleran mejor una conductividad hidráulica deficiente durante el invierno por

carecer de hojas. En estas circunstancias, los caracteres relacionados con la fenología foliar son

más susceptibles de sufrir una alta presión selectiva que los relacionados directamente con la

resistencia al frío (Lechowicz, 1984; Kikuzawa y Kudo, 1995). Las especies perennifolias, por

el contrario, mantienen su biomasa foliar durante el invierno, disponiendo así de un período

potencial más largo para la fijación del carbono (Chabot y Hicks, 1982). En ellas, por tanto, la

capacidad de mantener la funcionalidad de los conductos xilemáticos y de evitar daños por

heladas, puede ser de capital importancia para la ocupación de las zonas más frías del gradiente.

En los tres capítulos siguientes analizaremos cómo varía la estructura de las hojas y del

xilema de los tallos en nueve especies leñosas, a lo largo del gradiente climático descrito en el

Capítulo 2. Trataremos de relacionar la variabilidad estructural de las plantas con la

precipitación media anual, como estimación del grado de estrés hídrico que ha de soportar la

planta, y con la temperatura media de las mínimas del mes más frío, como medida del estrés

térmico. La perturbación no será considerada, ya que siempre muestreamos individuos adultos

que vivían en comunidades poco alteradas. Las preguntas a las que queremos dar respuesta son

las siguientes. ¿Podemos identificar las modificaciones que permiten a estas especies mantener

la economía de sus recursos ajustada a la diversidad de condiciones climáticas del gradiente?

Dicho ajuste ¿se produce a un nivel morfológico, anatómico o fisiológico? ¿En el tallo, en las

hojas o en ambos órganos? ¿Condiciona la estructura de las distintas especies el tipo de

respuesta? ¿ o todas responden de igual modo frente a los mismos problemas ambientales?

Los caracteres han sido seleccionados por su reconocido valor funcional. En la

introducción de esta memoria y en el capítulo anterior ya se han comentado las implicaciones en

la economía del carbono y del agua que tiene la morfología foliar, reflejada en parámetros como

el área, la masa específica, el espesor y la densidad. A ellos añadiremos el área foliar total

sustentada por ramas de tres años y el contenido en nutrientes y fibras de las hojas. Utilizamos

el área foliar total de las ramas para estimar la variación de la superficie transpiradora de la

planta a lo largo del gradiente. El contenido en nutrientes es proporcional a la inversión en

componentes citoplásmicos, que alcanza valores máximos en los tejidos productivos, mientras

que la concentración de fibras, que forman parte de la pared celular, es proporcional a la

inversión en tejidos de sostén (Niemann et al., 1992; Turner, 1994b). En cuanto al xilema,

también se ha mencionado anteriormente el papel funcional que desempeñan el diámetro y

Page 83: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

VARIACIONES ESTRUCTURALES DE LAS ESPECIES EN EL GRADIENTE

longitud de los elementos de los vasos, así como la densidad de los mismos en la eficiencia y

seguridad del flujo (Zimmermann, 1983; Carlquist, 1988; Tyree y Sperry, 1989; Lo Gullo y

Salleo, 1993). A estas variables añadiremos una estimación de la conductividad hidráulica por

unidad de xilema (conductividad específica) y por unidad de superficie foliar sustentada

(conductividad específica foliar), así como la proporción de tejido xilemático que abastece a

cada unidad de superficie foliar (valor de Huber).

De las especies seleccionadas, tres pertenecen al género Quercus (Q. coccifera, Q. ilex,

Q. faginea) dos a Pistacia (P. lentiscus y P. terebinthus) y las cuatro restantes a otros tantos

géneros (Buxus sempervirens, Rhamnus alaternus, Arbutus unedo y Viburnum tinus). Las tres

primeras serán tratadas en el capítulo cuarto, las dos siguientes en el quinto y las cuatro últimas

en el sexto. Hemos organizado los estudios comparativos de este modo para minimizar en lo

posible el riesgo de que las diferencias que encontremos estén condicionadas por la filogenia

(Herrera, 1992). Aunque no se analizan exactamente los mismos parámetros en cada uno de

estos capítulos, en el apartado que sigue (Material y métodos) se detalla la metodología común

para todos ellos. Algunos capítulos abordan algún objetivo más concreto, dentro del marco

general descrito, que serán planteados en la breve introducción con que se inicia cada uno. Por

último, se cerrará esta tercera parte con un apartado de conclusiones que integre y compare los

resultados obtenidos con las nueve especies.

LOGROÑO

VITORIA

FRANCIASANTANDER

2

34

5

6

12

8

9 10

11

13

14

1516

18

1921

2223

24

I

II

III

IV

25

1

50 Km

7

17

20

MAR CANTABRICO

ESPAÑA

Fig. III.1. Localización de las comunidades muestreadas en los cinturones fitoclimáticos: I Atlántico, II sub-Atlántico y sub-Mediterráneo, III Mediterráneo, IV alta montaña. Los números de las localidadescorresponden a la Tabla 4.1.

Page 84: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

84

III.2 Material y métodos

Localidades de estudio

Se seleccionaron 25 puntos de muestreo a lo largo del gradiente climático, en los que, al

menos, estaba presente una de las especies estudiadas (Fig. III.1 y Tabla III.1). Se intentó que

la geología, el sustrato y la topografía de los lugares elegidos fuera lo más homogénea posible.

Todos los puntos se asentaban sobre calizas o margas, excepto la población de Peñaflor, donde

el yeso era un importante componente del suelo. El rango altitudinal de la zona muestreada

varió desde 170 m, junto a la costa, hasta 1030 m en el Prepirineo, aunque la mayoría de las

localidades se situaron entre los 300 y 700 m. El perfil climático de cada localidad procede de la

estación meteorológica más cercana de la red del Servicio Meteorológico Nacional o de

extrapolaciones a partir de varias estaciones próximas respecto a la altitud.

Metodología

El muestreo tuvo lugar en 1992, entre mediados de julio y mediados de agosto, cuando

el desarrollo de la última cohorte de hojas ya se había completado. En cada punto de muestreo

se recolectaron dos ramas de tres años de edad en una planta de cada especie, siempre de las

situadas en la parte media de la copa y en la cara sur de la misma, para evitar la variabilidad que

existe entre distintas partes de la misma planta (Blue y Jensen, 1988). Las diferentes cohortes

de hojas de cada rama fueron separadas en el campo y congeladas para su posterior análisis en

el laboratorio. Los tallos de tres años fueron fijados en acetoformol durante 24 horas y

conservados en etanol al 70 %. Para el análisis químico de las hojas se recogieron muestras de

la última cohorte (nacida en primavera de 1992) de cinco plantas por especie, siempre en la

misma zona de la copa.

Caracteres foliares -- En cada planta muestreada se seleccionaron 50 hojas (25 de cada

rama) de cada una de las dos últimas cohortes en las especies perennifolias y se midió su área,

espesor, masa específica y densidad, de la forma descrita en el Capítulo 3. El área foliar total de

las ramas de tres años se calculó a partir del peso seco de sus hojas y de la masa específica

media de cada cohorte de hojas.

Análisis químicos -- Las hojas se lavaron cuidadosamente con agua destilada y se

secaron en la estufa durante tres días a 80ºC. El contenido en nitrógeno (N) se valoró mediante

el método de Kjendahl y las fibras mediante el de Van Soest (Goering y Van Soest, 1970). La

concentración de fósforo (P) se evaluó mediante colorimetría con vanado-molibdato (Becker,

1961). La concentración de fibras y nutrientes se expresa tanto por unidad de masa como por

unidad de superficie.

Page 85: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

85

Tabla III.1. Características climáticas y especies muestreadas en las localidades de estudio. Abreviaturas de lasespecies: Au- Arbutus unedo; Bs- Buxus sempervirens; Pl- Pistacia lentiscus; Pt- Pistacia terebinthus; Qc- Quercuscoccifera; Qf- Q. faginea; Qi- Q. ilex y Vt- Viburnum tinus.

Localidades Altitud

(m)

Precipit

anual.

(mm)

Media

min. de

enero.

(oC)

Media

max. de

julio.

(oC)

Especies muestreadas

1- Gorliz 170 1034 6.3 23.0 Qi - Pl - - Ra - Au

2- Gallarta 260 1034 6.3 23.0 - Qc - - - - - - -

3- Arceniega 260 1217 3.3 27.3 - - Qf - - - - Vt -

4- Mañaria 220 1484 3.3 24.2 Qi - - - - - - - -

5- Nanclares de Oca 520 774 1.2 27.8 Qic Qcc Qfc - - Bs - - Au

6- Laguardia 500 514 1.3 27.7 - - Qf Pl - - - - -

7- Haro 480 473 1.3 27.7 - - - - Pt Bs Ra - -

8- Lumbier 420 801 0.2 30.0 Qi Qc - - Pt Bs Ra - -

9- Puente de la Reina 620 761 -1.6 30.0 Qic Qcc - - - Bs - - -

10- Jaca 720 831 -1.2 28.2 - - Qf - - - - - -

11- Villanúa 1030 1201 -1.2 28.2 Qic - Qf - - Bsc - - -

12- Ejea de los Caballeros 570 450 2.8 32.5 Qi Qc Qf Pl - Bs Ra - Au

13- Agüero 680 686 0.0 29.6 Qic Qcc Qf - - Bs Ra Vt Au

14- Nueno 710 732 1.3 28.8 Qi Qc Qfa - - Bs - - -

15- Vedado de Peñaflor 370 371 1.5 32.0 Qi Qc - Pl - - - - -

16- Sierra de Alcubierre 580 452 1.9 32.1 Qi Qc Qf Pl - - Ra - -

17- Las Cellas 500 621 -1.7 31.0 - - - - Pt Bs Ra - -

18- Valle de Añisclo 730 1093 - - Qib - Qfc - - Bs Ra - Au

19- Mediano 500 891 -1.1 30.1 Qi Qc Qf - Pt Bs Ra Vt -

20- Campo 740 1134 -2.3 29.0 - - - - Pt - - - -

21- Sta. Liestra 600 910 -2.8 29.7 Qi - - - - - - - -

22- El Grado 470 628 -0.4 31.9 - - Qf - - Bs - - -

23- Olvena 360 588 0.0 32.9 Qi Qc - Pl Pt - Ra Vt -

24- Fraga 250 410 0.9 31.1 - Qc - Pl Pt Bs Ra - -

25- Presa de Santa Ana 370 455 0.3 32.2 Qi Qc Qf Pl Pt Bs Ra Vt -

a En "Nueno" se muestrearon dos plantas de Q. faginea que crecían en un microhábitat xérico y mésico respectivamente.b En "Valle de Añisclo" se seleccionaron dos plantas de Q. ilex, una perteneciente a la subsp. ilex y la otra a subsp.ballota.c En estas localidades solo se tomaron muestras de hojas.

Page 86: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

86

Anatomía del xilema de los tallos -- Para los estudios de xilema se utilizaron las dos

ramas de tres años recogidas en cada población. El diámetro medio de los 25 vasos más

grandes del último anillo, la densidad de vasos y la longitud de los elementos de los vasos se

midieron de la forma descrita en el capítulo anterior. Además, para valorar la eficiencia

hidráulica del xilema, se estimaron la conductividad específica del tallo (Ks-t) y la

conductividad específica foliar (CEF-t) de la siguiente manera:

Ks-t = KhAx

siendo Kh (mm4) la conductividad hidráulica, estimada como la suma de los diámetros medios

de los 25 vasos más grandes, elevados a la cuarta potencia y Ax la superficie que ocupa el

xilema en la sección transversal del tallo (incluyendo la médula). La conductividad específica

foliar se calculó como:

CEF-t = KhAt

donde At (mm2) es el área foliar total distal al punto de sección. Por último, para estimar la

proporción entre tejido conductor y transpirador, se calculó el valor de Huber (VH) como el

cociente entre Ax y At.

Análisis estadístico -- Se ensayaron diversos tipos de regresiones entre los caracteres de

las plantas y las variables climáticas (precipitación media anual y temperatura media de las

mínimas de enero), siendo la regresión lineal la que rindió mejores resultados. Las relaciones

de los caracteres foliares entre sí y entre éstos y los xilemáticos se establecieron mediante

análisis de correlación. En el caso de las especies perennifolias, las regresiones se hicieron de

forma independiente con las cohortes de hojas de 1992 y de 1991. Los resultados de ambas

fueron muy similares, aunque ligeramente mejores con la cohorte de un año, posiblemente

debido al desarrollo retardado en las hojas de la última cohorte que observamos en alguna

población, como consecuencia del retraso de las precipitaciones primaverales. Por ello sólo

mostramos las regresiones calculadas con las hojas de 1991. Las correlaciones entre caracteres

de las plantas sólo se realizaron con las hojas de 1992.

Page 87: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

Capítulo 4º

Respuestas foliares y xilemáticas de tres especies deQuercus (Fagaceae) a lo largo de un gradiente climático

Page 88: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 89: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

4.1 Introducción

La coscoja (Quercus coccifera), la encina (Q. ilex) y el quejigo (Q. faginea) son tres

especies comunes a lo largo del gradiente climático estudiado, que difieren tanto en fisionomía

como en ecología.

Q. coccifera L. es un arbusto de hoja perenne, con una altura media de 2-3 m. Es el

principal componente de las comunidades climácicas en el extremo árido del gradiente (Braun-

Blanquet y Bolòs, 1957), aunque también es un importante componente de los matorrales de

degradación en áreas de encinar. Llega a alcanzar la costa vasca en un reducido número de

localidades, siempre en exposiciones sur de vertientes calcáreas (Uribe-Echebarría, 1989).

Quercus ilex L. es una especie arbórea perennifolia, que en la Península Ibérica

comprende dos subespecies: subsp. ilex y subsp. ballota (Desf.) Samp. in Bol. (Q. rotundifolia

Lam.) (Amaral Franco, 1990). Quercus ilex subsp. ilex alcanza una talla de hasta 27 m, posee

hojas más grandes y alargadas. Requiere mayor humedad e inviernos más suaves que la subsp.

ballota, distribuyéndose en nuestro país a lo largo de las costas cantábrica y mediterránea,

penetrando en el interior por los fondos de valle abrigados y húmedos. Q. ilex subsp. ballota

alcanza tallas menores, que no suelen superar los 12 m y posee hojas más pequeñas y coriáceas

que la subsp. ilex. Es capaz de soportar condiciones ambientales mucho más extremas, tanto en

cuanto a frío como a aridez, lo que le ha habilitado para ocupar extensas áreas continentalizadas

de la Península Ibérica, donde es el principal árbol climácico. En las áreas en que ambas

subespecies entran en contacto es frecuente su hibridación, dando lugar a individuos de

caracteres intermedios, como también ocurre en otras zonas de transición (Rafii et al., 1993).

Hemos muestreado ambas subespecies a lo largo del gradiente climático descrito en el segundo

capítulo. Q. ilex subsp. ilex se recolectó en dos localidades de la costa vasca (puntos 1 y 4 de la

Tabla III.1) y en otras dos del área submediterránea, en el interior de barrancos húmedos

(puntos 18 y 19 de la Tabla III.1).

Page 90: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

90

Quercus faginea Lam. es un árbol caducifolio o marcescente, muy abundante en el área

de transición entre las regiones fitogeográficas Eurosiberiana y Mediterránea (ver cap. 2) que,

en el gradiente estudiado, evita los lugares más secos. Alcanza una altura de hasta 20 m y forma

híbridos introgresivos con otros robles deciduos, principalmente Q. pubescens (Loidi y

Herrera, 1990), dando lugar a un complejo específico de gran variabilidad morfológica. Sin

embargo, en este estudio no hemos tenido en cuenta tales diferencias taxonómicas, a veces muy

difíciles de identificar, y hemos considerado al conjunto de este complejo como Quercus

faginea.

En este capítulo nos planteamos tres objetivos. El primero, como ya se ha mencionado

en la introducción de la parte III, pretende describir la variabilidad morfoanatómica de las tres

especies a lo largo del gradiente climático, tratando de establecer alguna relación entre ésta y el

cambio de precipitación y temperatura.

Existe cierta confusión en la interpretación funcional de las tendencias morfológicas

foliares que se producen dentro de una misma especie, ya que la mayoría de los estudios que

abordan relaciones entre forma y función de las hojas lo hacen a un nivel interespecífico, y no

siempre se pueden transferir las conclusiones de una escala a la otra. Cuando se comparan

especies, las hojas de masa específica más alta también muestran una mayor proporción de

tejidos de soporte respecto a tejidos productivos (Garnier y Laurent, 1994; Van Arendonk y

Poorter, 1994) y, por tanto, menor concentración de nitrógeno (Reich et al., 1992; Turner,

1994b), menor capacidad fotosintética (Field y Mooney, 1986) y menor capacidad de

crecimiento (Lambers y Poorter, 1992). Sin embargo, dentro de una misma especie las hojas

pueden poseer mayor masa específica por haber recibido una intensidad lumínica más fuerte

durante su formación, lo que fomenta un mayor desarrollo del espesor del parénquima en

empalizada (tejido productivo) y, en consecuencia, una mayor capacidad fotosintética por

unidad de área (Chabot y Chabot, 1977; Jurik, 1986; Kull y Niinemets, 1993). El segundo

objetivo consiste en interpretar las consecuencias funcionales de las variaciones morfológicas

en las hojas de las tres especies analizando la correlación de estas variables con la concentración

foliar de nutrientes (relacionada con la capacidad fotosintética) y de fibras (relacionada con la

resistencia física).

Por último, trataremos de demostrar la hipótesis de que los dos órganos estudiados

(hojas y xilema) han de covariar de alguna manera, en virtud del paralelismo de su desarrollo

ontogénico (Fahn y Werker, 1990) y de los vínculos funcionales que existen entre ambos

órganos (Rury y Dickison, 1984; Baas y Schweingruber, 1987; Wang et al., 1992; Sobrado,

1993).

Page 91: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

91

4.2 Resultados

Diferencias interespecíficas

Los valores medios de los caracteres de las hojas y del xilema se muestran en las Tablas

4.1 a 4.3. La morfología foliar fue significativamente distinta en las tres especies, poseyendo

Q. coccifera las hojas más densas, Q. ilex las más gruesas y Q. faginea las más grandes y de

menor masa específica (Tabla 4.1).

Tabla 4.1. Caracteres foliares de las tres especies de Quercus (medias ± error estándar).(At: area foliar sustentada por ramas de tres años; AF: área foliar; EF: espesor foliar;MEF: masa específica foliar y DF: densidad foliar. La misma letra en una columnaindica que no hay diferencia significativa entre esos valores (P≥ 0.05).

Especies At

(cm2)

AF

(mm2)

EF

(µm)

MEF

(mg cm-2)

DF

(mg cm-3)

Q. coccifera 133±15a 93±9a 276±10b 20.6±1.28b 744±41b

Q. ilex 531±15b 281±22b 363± 9c 20.4±0.57b 563± 9a

Q. faginea 599±83b 641±73c 227± 5a 12.5±0.52a 556±25a

Tabla 4.2. Concentración de distintos componentes foliares en las tres especies de Quercus,con base en el peso seco (fila superior) y en el área (fila inferior) (medias ± error estándar). (N:nitrógeno; P: fósforo). La misma letra en una columna indica que no hay diferencia significativaentre esos valores (P≥ 0.05).

Especies N(mg g-1)

(10-1 mg cm-2)

P(mg g-1)

(10-2 mg cm-2)

Hemicel.%peso seco(mg cm-2)

Celulosa%peso seco(mg cm-2)

Lignina%peso seco(mg cm-2)

Q. coccifera 13.2±0.33a

2.5±0.18a

0.7±0.04a

1.3±0.08a

11.8±0.24a

2.2±0.13a

20.2±0.43b

3.7±0.26b

16.7±0.44b

3.1±0.22b

Q. ilex 13.9±0.34a

2.6±0.09a

0.9±0.04a

1.7±0.06b

13.0±0.24a

2.5±0.09a

24.1±0.54c

4.6±0.13c

17.2±0.55b

3.3±0.10b

Q. faginea 21.6±0.50b

2.7±0.09a

1.2±0.08b

1.5±0.07ab

17.0±0.50b

2.1±0.11a

17.2±0.40a

2.1±0.08a

14.7±0.51a

1.8±0.09a

Page 92: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

92

Cuando las concentraciones de componentes foliares se expresaron por unidad de masa,

Quercus faginea mostró los mayores valores de N, P y hemicelulosa y los menores de celulosa

y lignina; las especies perennifolias sólo difirieron en el contenido en celulosa, que fue superior

en Q. ilex. En función del área foliar, todas las especies mostraron contenidos similares de

hemicelulosa y N, Q. ilex mostró el contenido más alto en celulosa y P, mientras que Q. faginea

presentó las concentraciones más baja de celulosa y de lignina (Tabla 4.2).

La madera de Quercus faginea es de porosidad en anillo, mientras que la de las dos

especies perennifolias es de porosidad difusa. En los tres Quercus spp. los poros del xilema se

disponen en solitario y los elementos de los vasos poseen placas de perforación simple

(apéndice I). Los diámetros de los vasos xilemáticos adoptan una distribución normal en Q. ilex

y Q. coccifera, mientras que los de Q. faginea siguen una distribución de Poisson debido al

elevado número de vasos pequeños. Esta última especie es la que desarrolla un mayor diámetro

medio de los vasos más grande, lo que hace que sus conductividades específicas xilemática

(Ks-t) y foliar (CEF-t) sean mayores. No se han observado diferencias significativas de

diámetro máximo de los vasos, ni de densidad de los mismos, ni de Ks-t entre Q. ilex y Q.

coccifera. La conductividad específica foliar y el valor de Huber son mayores en la coscoja que

en la encina. La longitud de los elementos de los vasos es similar en las tres especies (Tabla

4.3).

Tabla 4.3 . Caracteres xilemáticos de las tres especies de Quercus (media ± error estándar). (DMx:diámetro medio de los vasos más grandes; DV: densidad de vasos; LEV: longitud de los elementos delos vasos; VH: valor de Huber; Ks-t: conductividad específica del tallo; CEF-t: conductividadespecífica foliar). La misma letra en una columna indica que no hay diferencias significativas(P≥0.05).

EspeciesDMx

(µm)

DV

(mm-2)

LEV

(µm)

VH

(10-6)

Ks-t

(10-5 mm2)

CEF-t

(10-9 mm2)

Q. coccifera 46±3a 80±10a 254±6a 759±87b 1.46±0.24a 11.1±2.25ab

Q. ilex 55±3a 85±12a 230±9a 330±43a 2.04±0.22a 6.3±0.99a

Q. faginea 72±2b 116±10a 253±9a 216±17a 7.12±0.78b 14.9±1.81b

Page 93: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

93

Respuesta de las especies a lo largo del gradiente climático

En las especies perennifolias (Q. ilex y Q. coccifera) ninguno de los parámetos

analizados siguió tendencia alguna respecto a las temperaturas invernales; en cambio, existen

varias regresiones significativas entre éstos y la precipitación media anual (Tablas 4.4 y 4.5).

Ningún carácter morfológico de las hojas de Q. coccifera mostró correlación alguna con

la aridez, aunque la composición foliar sí lo hizo. Los contenidos de N y lignina por unidad de

peso y de área foliar, y el de celulosa por unidad de área, tendieron a aumentar

significativamente a medida que aumentaba la precipitación, mientras que la hemicelulosa por

unidad de peso siguió la tendencia opuesta (Tabla 4.4). Por otra parte, el xilema de esta especie

mostró unas tendencias muy marcadas a lo largo del gradiente de precipitación: los elementos de

los vasos tendieron a ser más estrechos y cortos con el aumento de la aridez; la conductividad

hidráulica, tanto por unidad de área del xilema (Ks-t) como de área foliar sustentada (CEF-t),

tendió a disminuir con la aridez, mientras que la densidad de vasos siguió una tendencia opuesta

(Tabla 4.5).

Tabla 4.4. Coeficientes de regresión entre los caracteres foliares de Q. coccifera, Q. ilex y Q. faginea y laprecipitación anuala. Las regresiones con los componentes foliares han sido calculados con base en el peso seco yen el área (entre paréntesis).

At AF MEF EF DF N P Hemicel. Celulosa Lignina

Q. coccifera 0.39 0.04 0.42 -0.09 0.55 0.65*

(0.61*)

-0.03

(0.38)

-0.71**

(0.25)

0.46

(0.57*)

0.60*

(0.61*)

Q. ilex 0.47 0.74** -0.67** -0.59* -0.25 0.11

(-0.44)

0.70**

(0.46)

-0.21

(-0.61**)

0.27

(-0.41)

0.50*

(-0.09)

Q. faginea 0.20 0.23 -0.07 -0.09 0.04 0.43

(0.23)

0.26

(0.32)

0.16

(0.03)

0.12

(-0.05)

0.51

(0.24)

a * 0.05<P≤0.01 ** 0.01<P≤0.001 *** P<0.001

En Q. ilex hemos observado que tanto la morfología como la composición de las hojas

se correlacionan con la precipitación media anual. El área foliar y los contenidos de P y lignina

por unidad de peso disminuyeron con la aridez, mientras que la masa específica, el espesor y la

hemicelusosa por unidad de área tendieron a aumentar. En el xilema observamos una reducción

del diámetro y longitud de los elementos de los vasos, así como de la conductividad específica,

(Ks-t) a medida que la precipitación disminuía (Tabla 4.5).

Page 94: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

94

Tabla 4.5. Coeficientes de regresión entre las variables del xilema de Q. ilex, Q.coccifera y Q. faginea y la precipitación anuala.

DMx DV LEV VH Ks-t CEF-t

Q. coccifera 0.88** -0.68* 0.93** -0.05 0.86** 0.84**

Q. ilex 0.69** -0.45 0.58* -0.51 0.65* 0.10

Q. faginea 0.33 -0.33 0.10 0.02 0.12 0.16

a *0.05<P≤0.01 **0.01<P≤0.001 ***P<0.001

En contraste con las dos especies anteriores, ni las variables foliares ni las xilemáticas

de Q. faginea mostraron correlación alguna con la precipitación media anual. Unicamente el

espesor foliar aumentó de forma significativa a medida que ascendían las temperaturas mínimas

de invierno (Fig. 4.1).

R2 = 0.52p = 0.005

180

190

200

210

220

230

240

250

-2 -1 0 1 2 3 4

Temperatura media de las mínimas de enero

EF

(µm

)

Fig . 4 .1 . Regresión entre la temperatura media de las mínimas de enero yel espesor foliar de Quercus faginea (Las barras representan el error estándar)

Relaciones de los parámetros foliares entre sí

Las correlaciones entre las variables foliares se muestran en la Tabla 4.6. La masa

específica se correlacionó positivamente con la densidad en Q. coccifera y en Q. faginea,

mientras que en Q. ilex lo hace con el espesor. Cuando aumentaba la masa específica y la

densidad en Q. coccifera y en Q. faginea, también aumentaban todos los componentes foliares

(nutrientes y fibras) por unidad de área, excepto el P en Q. faginea, que incluso disminuía si se

expresaba por unidad de peso. En Q. ilex la masa específica y el espesor se correlacionaron

positivamente con los contenidos de N, celulosa y hemicelulosa por unidad de área, mientras

que el P por unidad de peso siguió una correlación inversa con la masa específica.

Page 95: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

95

Tabla 4.6. Coeficientes de correlación entre los caracteres de las hojas en las tres especies de Quercus. Loscomponentes químicos se han calculado tanto con base en el peso seco (primera fila) como en el área de las hojas(entre paréntesis) a.

EF DF N P Hemicel. Celulosa Lignina

MEF 0.46 0.85*** 0.33

(0.96 ***)

-0.33

(0.66*)

-0.27

(0.95***)

0.13

(0.96***)

0.20

(0.94***)

Quercus coccifera EF -0.07 0.06

(0.40)

-0.27

(0.54)

0.11

(0.52)

0.39

(0.53)

-0.14

(0.37)

DF 0.36

(0.84***)

-0.07

(0.59*)

-0.38

(0.75**)

-0.08

(0.76**)

0.27

(0.83***)

MEF 0.81*** 0.43 -0.03

(0.76***)

-0.66**

(-0.23)

-0.08

(0.62**)

-0.32

(0.67**)

-0.48

(0.42)

Quercus ilex EF -0.18 0.20

(0.75***)

-0.48

(-0.10)

-0.01

(0.54*)

-0.21

(0.60*)

-0.45

(0.30)

DF -0.41

(0.08)

-0.36

(-0.20)

-0.12

(0.21)

-0.19

(0.23)

-0.11

(0.26)

MEF 0.13 0.86*** -0.52

(0.78***)

-0.65**

(-0.10)

0.04

(0.84***)

-0.38

(0.84**)

-0.09

(0.76**)

Quercus faginea EF -0.39 -0.17

(0.01)

-0.05

(0.04)

0.54*

(0.39)

0.22

(0.28)

0.14

(0.19)

DF -0.37

(0.74**)

-0.57*

(-0.10)

-0.19

(0.60*)

-0.51

(0.61*)

-0.15

(0.60*)

a * 0.05<P≤0.01 ** 0.01<P≤0.001 *** P≤0.001

Correlaciones entre caracteres foliares y del xilema

En las dos especies arbóreas el incremento de la superficie foliar de las ramas (y en Q.

ilex también el área de las hojas) se ve acompañado por un aumento del diámetro de los vasos

(en la coscoja se observa la misma tendencia, aunque no llega a ser significativa). La masa

específica y el espesor de las hojas de Q. ilex se correlacionan inversamente con el diámetro de

los vasos, mientras que en Q. coccifera la masa específica, la densidad y el contenido foliar de

N por unidad de peso se correlacionan positivamente tanto con el diámetro de los vasos como

Page 96: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

96

con la conductividad específica foliar. En la encina el valor de Huber se correlaciona

negativamente con el área foliar y con la superficie foliar sustentada por las ramas, mientras que

en el quejigo sólo es significativa la correlación con la primera. En ambas especies existe una

correlación positiva del valor de Huber con la masa específica y con la densidad de las hojas.

Por último la densidad de vasos en el quejigo disminuye cuando aumenta la superficie foliar de

las ramas y en la coscoja cuando aumenta la densidad foliar (Tabla 4.7).

Tabla 4.7. Coeficientes de correlación entre los caracteres foliares y los del xilema de Q. coccifera, Q.ilex y Q. faginea. Se ha utilizado la concentración de N por unidad de área. (DMx: diámetro medio delos vasos más grandes; CEF-t: conductividad específica foliar; VH: valor de Huber; DV: densidad devasos).a

At AF MEF EF DF N

Q. coccifera. 0.57 -0.13 0.58* 0.12 0.63** 0.82***

DMx Q. ilex 0.73** 0.59* -0.56* -0.61* -0.14 -0.03

Q.faginea 0.83*** 0.25 -0.03 -0.15 0.05 0.14

Q. coccifera. 0.05 -0.64 0.81** 0.22 0.84** 0.73*

CEF-t Q. ilex -0.45 -0.26 0.28 0.27 0.1 0.1

Q. faginea 0.12 -0.3 0.27 -0.2 0.34 -0.04

Q. coccifera. -0.46 -0.43 0.24 0.12 0.18 0

VH Q. ilex -0.69** -0.73** 0.62* 0.38 0.62* -0.31

Q. faginea -0.4 -0.78** 0.74** 0.42 0.64* 0.26

Q. coccifera. -0.68* -0.31 0.11 0.14 0.03 -0.31

DV Q. ilex -0.45 -0.29 0.37 0.47 -0.05 0.25

Q. faginea -0.5 0.03 -0.5 0.04 -0.64* -0.47

a * 0.05<P≤0.01 ** 0.01<P≤0.001 *** P≤0.001

4.3 Discusión

La estructura de las plantas responde a un compromiso entre producción y persistencia

(Herms y Mattson, 1992; Aerts, 1995). La hojas en que la relación tejido productivo / tejido de

sostén es alta podrán alcanzar una tasa fotosintética mayor que aquéllas en que tal relación es

baja, pero éstas últimas están capacitadas para vivir más tiempo en virtud de su mayor

resistencia física (Reich et al., 1992). En comparaciones interespecíficas las hojas del primer

grupo muestran una menor masa específica (Reich, 1993; Garnier y Laurent, 1994) y una

mayor proporción de componentes citoplásmicos (nutrientes) respecto a componentes de pared

(fibras) (Niemann et al., 1992) que las hojas del segundo grupo.

Page 97: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

97

Entre las especies estudiadas, las hojas de Q. faginea son las que muestran una menor

masa específica, una mayor cantidad de nutrientes y menor de fibras. A estas características hay

que sumar la mayor superficie de estas hojas respecto a las de sus congéneres perennifolios.

Las hojas grandes pueden generar mayores demandas evaporativas, pero también mayores tasas

de fotosíntesis (Givnish, 1979). En concordancia con lo mencionado en el apartado anterior, las

hojas del quejigo viven menos tiempo que las de la coscoja y la encina. El xilema del primero

posee mayor conductividad específica que el de las segundas, de acuerdo con la mayor tasa de

demanda de agua que generarán unas hojas más grandes y productivas. Todos estos caracteres

explican que el quejigo sea la especie más exigente respecto a disponibilidad hídrica.

Respuestas al gradiente

Los patrones de variación foliar y xilemática difieren claramente entre las tres especies.

En Q. faginea los caracteres estudiados no responden a la precipitación media anual. Una

explicación a este hecho puede ser que el quejigo se abastezca prioritariamente de aguas

freáticas. Existen una serie de razones de índole estructural y funcional que apoyan esta

hipótesis: En primer lugar, teniendo en cuenta la relativa mesomorfía de las hojas y su

longevidad de entre cinco y siete meses, algunos de los cuales pueden ser de severa aridez,

resultaría inviable que esta especie ocupara la parte más seca del gradiente si tuviera que

abastecerse de las escasas e infrecuentes precipitaciones. En segundo lugar, el elevado diámetro

de los conductos xilemáticos de esta especie le hará muy vulnerable a sufrir embolia si ha de

soportar un fuerte estrés hídrico, como observaron Borghetti et al. (1992), comparando

especies caducifolias y perennifolias de Quercus. Por último, aunque no hemos encontrado

información sobre la profundidad que alcanza la raíz del quejigo, se ha demostrado que Q.

pubescens, especie muy similar en morfología y en ecología, alcanza los depósitos de agua del

subsuelo gracias a un aparato radical muy profundo (Valentini et al., 1992). Todos estos datos

apoyan la hipótesis de que Q. faginea tiende a compensar la reducción de precipitaciones

buscando posiciones topográficas y suelos favorables para la acumulación de agua, más que

modificando su estructura para moderar el consumo de este recurso.

Por otra parte, Q. faginea es la única de las tres especies que ha respondido a la

variación de temperaturas, aumentando el espesor de sus hojas a medida que la temperatura

mínima invernal se hacía más alta. Aunque este factor no puede actuar directamente sobre las

hojas, dado el hábito caducifolio de la especie, el endurecimiento del invierno conlleva un

acortamiento del periodo de actividad vegetal, disponiendo las hojas de menos tiempo para

asimilar el carbono necesario para cubrir las necesidades de la planta. Por tanto, es razonable

esperar que en tales circunstancias se favorezcan hojas que maximicen el rendimiento por

unidad de coste de formación, a costa de una vida más corta (Kikuzawa y Kudo, 1995). La

reducción del espesor de las hojas de las poblaciones más frías, podría interpretarse como una

forma de optimizar su productividad neta a corto plazo (Givnish, 1979). Además, hemos

Page 98: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

98

observado que, efectivamente, las hojas de las poblaciones emplazadas en las zonas más frías

viven menos tiempo, ya que se expanden más tarde y entran en senescencia aproximadamente al

mismo tiempo que las de las poblaciones de áreas más cálidas (ver capítulo 7).

La morfología foliar de Q. coccifera, tampoco parece ajustarse al gradiente de aridez.

Otros autores que compararon poblaciones de coscoja sometidas a regímenes de precipitación

contrastados, tampoco encontraron correlación entre las variaciones de masa específica foliar y

de precipitación (Rambal y Leterme, 1987). Sin embargo, podemos destacar que la

concentración de N foliar aumenta hacia las poblaciones más húmedas, de lo que se puede

deducir que también la tasa de fotosíntesis aumenta, dada la correlación que existe entre ambas

variables (Field y Mooney, 1986; Hollinger, 1992). El mayor contenido de celulosa y lignina

en las hojas de las poblaciones de zonas más húmedas podría ser consecuencia de que el

crecimiento es más sensible al estrés que la fotosíntesis; en condiciones de estrés moderado, se

inhibiría el primero, pero no la segunda, dando lugar a un exceso de carbohidratos que podrían

acumularse en compuestos como la celulosa y la lignina (Herms y Mattson, 1992).

En contraste con las especies anteriores, la morfología foliar de Q. ilex si responde a las

variaciones de precipitación. Tanto la reducción del área foliar como el aumento de la masa

específica y del espesor de las hojas, hacen que aumente la eficiencia del uso del agua en

detrimento de la capacidad fotosintética (Parkhurst y Loucks, 1972; Mooney et al., 1978;

Givnish, 1979). También existe una tendencia, aunque no significativa, a reducir la superficie

transpiradora total de las ramas a medida que aumenta la aridez, que podría indicar una

disminución global de la potencialidad de las plantas a perder agua.

A nivel de xilema, las dos especies perennifolias muestran una respuesta al descenso de

la precipitación que podría ir encaminada tanto a moderar el consumo de agua (disminución de

Ks-t y CEF-t) como a evitar riesgos de sufrir embolias por estrés hídrico (reducción de la

longitud y anchura de los elementos de los vasos), siendo la respuesta de la coscoja mucho más

patente que la de la encina. Se ha observado que a nivel intraespecífico existe una correlación

entre el diámetro de los vasos y la pérdida de conductividad hidráulica por efecto de la fuerte

tensión hídrica que provoca la aridez (Tyree y Dixon, 1986; Tyree y Sperry, 1989). Diversos

estudios han mostrado que, dentro de la misma especie, los elementos de los vasos son más

cortos a medida que disminuye la precipitación (Fahn et al., 1986; Xinying et al., 1988). Esta

tendencia se relaciona con una mayor seguridad de conducción, ya que las uniones entre los

elementos de los vasos constituyen estrechamientos capaces de retener las burbujas de aire que

se forman en el xilema, evitando su propagación (Carlquist, 1988). En Q. coccifera, además, se

observa que las poblaciones de localidades más secas tienen mayor número de vasos por unidad

de superficie transversal de xilema, lo que podría contribuir a reducir el impacto de la embolia

en virtud de una mayor redundancia de los vasos (Tyree et al., 1994)

Page 99: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

99

La divergencia de respuesta a lo largo del gradiente que han mostrado las dos especies

perennifolias podrían ser consecuencia de una diferente estrategia de adaptación frente al estrés

hídrico. Q. coccifera no optimiza la eficiencia del uso del agua de sus hojas, ni reduce la

superficie de transpiración de sus ramas. Tampoco muestra a nivel estomático una regulación

importante de su consumo de agua durante el verano, ya que mantiene una conductancia

superior a la de otros esclerófilos (Tenhunen et al., 1985; Duhme y Hinckley, 1992). A pesar

de ello, es una especie abundante en las zonas áridas. Nuestros resultados sugieren que el

control del consumo de agua se realiza mediante ajustes en la raíz y en el tallo. El hecho de que

la conductividad hidráulica del tallo sea menor en las zonas áridas, puede representar un

mecanismo de moderación de la tasa de consumo de un recurso escaso. Concretamente, la

fuerte caída de la conductividad específica foliar indica que la tasa de flujo de agua con que se

abastece a cada unidad de área foliar es menor en las zonas áridas; esto implica que, a igual

disponibilidad de agua por unidad de superficie transpiradora, una coscoja de la parte húmeda la

agotará en menos tiempo que una coscoja de la parte árida. Este ajuste en el xilema del tallo se

completa con un aparato radical profundo que, en lugar de absorber el agua disponible en todo

el perfil de forma simultánea, va explotando capas progresivamente más profundas a medida

que avanza el verano y los horizontes superficiales se van secando (Rambal, 1984). Pero aún

podría existir otro mecanismo de moderación del consumo de agua, actuando a una escala

temporal mucho más corta. Este se basaría en un ajuste la proporción de biomasa foliar que se

desprende en verano a la disponibilidad de agua en el suelo. Esta hipótesis surgió de observar

en el campo que las mismas plantas se desprendieron de proporciones de biomasa foliar

diferentes en dos años consecutivos de contrastado régimen de precipitación.

Q. ilex regula el consumo de agua tanto a nivel de morfología foliar como de anatomía

del xilema. Además, ésta es la especie que muestra una tendencia más marcada a reducir la

superficie foliar de las ramas hacia el extremo árido, aunque no lo hace de forma significativa.

A diferencia de lo que ocurría en la coscoja, en la encina los cambios de conductividad

hidráulica del xilema de las ramas son proporcionales a los de superficie foliar de las mismas,

de forma que la potencialidad de abastecer agua a cada unidad de superficie foliar (indicada por

CEF-t) tiende a mantenerse a lo largo del gradiente. Por último, los estudios fisiológicos en esta

especie, han mostrado que es capaz de una rápida respuesta estomática cuando aumenta el estrés

hídrico, lo que representa otro mecanismo de moderación de la pérdida de agua (Larcher, 1960;

Duhme y Hinckley, 1992; Tretiach, 1993).

Correlaciones de los caracteres foliares

Los patrones de covariación entre los parámetros foliares difieren entre las tres especies.

En Quercus coccifera la densidad foliar es el principal componente de la masa específica. El

aumento de densidad puede ser consecuencia de cambios anatómicos, como la reducción del

Page 100: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

100

tamaño de las células, el aumento del grosor de las paredes celulares o de una mayor proporción

de los tejidos más densos (Witkowski y Lamont, 1991; Garnier y Laurent, 1994). Todos estos

cambios desplazarían la proporción de citoplasma respecto a pared celular hacia el segundo

término, primando el soporte frente a la producción (Niemann et al., 1992). Pero este no parece

ser el caso de Q. coccifera, ya que tanto las fibras como los nutrientes, que representan la

inversión en pared y citoplasma, respectivamente, aumentan por unidad de área a medida que la

densidad se hace mayor, sin que se concentre ni se diluya ningún componente. Es más probable

que la densidad y la masa específica aumenten por un incremento proporcional del número de

células en todos los tejidos, acompañado de una compactación de los mismos.

En Quercus ilex la masa específica foliar aumenta por un incremento del espesor. Los

materiales que se adicionan para incrementar el valor de ambas variables, poseen N, celulosa y

hemicelulosa, ya que se observa que la cantidad de los tres componentes aumenta por unidad de

área foliar a medida que aumentan la masa específica y el espesor. La tasa de incremento de N

es superior a la de las fibras, lo que hace pensar que la biomasa que se adiciona corresponde a

un tejido más rico en nutrientes que en fibras, como es el mesófilo. Sin embargo el P no sigue

la misma tendencia que el N, a diferencia de los resultados de varios estudios interespecíficos

que encuentran que ambos elementos covarían (Rundel, 1988; Turner, 1994b), siendo diluido a

medida que aumenta la masa específica.

En Quercus faginea, como en la coscoja, la densidad aumenta cuando lo hace la masa

específica. Sin embargo, la composición del material que se adiciona es ligeramente distinta. El

N por unidad de área foliar aumenta más deprisa que la celulosa y la lignina, como ocurriría si

se adicionara parénquima, pero el P se va diluyendo, igual que ocurre en la encina.

De todo ésto se deduce que en estas especies no se puede establecer un paralelismo entre

masa específica foliar y capacidad de fotosíntesis, como se ha hecho en otros estudios. Las

relaciones que se establecen dentro de una especie entre forma y función de las hojas, parecen

ser mucho más complejas cuando los cambios se producen a lo largo de un gradiente climático,

en el que pueden estar actuando multitud de factores.

Correlaciones entre caracteres foliares y del xilema

El diámetro medio de los vasos más grandes de las ramas tiende a aumentar en las tres

especies a medida que lo hace la superficie total de hojas que sustentan. Esta tendencia es más

marcada en el quejigo, en el que la densidad de vasos disminuye al mismo tiempo. Esto sugiere

que la capacidad de transporte de agua por el xilema se adapta a las necesidades evaporativas del

follaje de las tres especies, como ocurre en las plántulas de Quercus rubra y Liriodendron

tulipifera (Shumway et al., 1993) y de Palicourea guianensis (Tyree et al., 1995). La

correlación negativa que muestra la encina entre el valor de Huber y la superficie foliar de las

Page 101: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

101

ramas indica que ésta última aumenta a mayor velocidad que el área del xilema del que se

abastece. Los resultados de la tabla de correlaciones parecen indicar que el incremento de la

superficie transpiradora de la rama es acompañado de un aumento de la capacidad de flujo de su

xilema, que tiene lugar a costa de vasos más grandes pero menos numerosos. Dado que la

conductividad hidráulica del xilema es proporcional al diámetro medio de los vasos más grandes

elevado a la cuarta potencia (Tyree et al., 1994)., se entiende que un pequeño aumento de

superficie conductora en las ramas sea suficiente para abastecer un aumento proporcionalmente

mayor de superficie transpiradora. Por último, se observa que en la coscoja las hojas más

densas, de mayor masa específica y las de mayor concentración de N están mejor abastecidas

(con tallos de mayor capacidad hidráulica y con mayor área de xilema por unidad de superficie

foliar) que las que muestran caracteres opuestos, sugiriendo que éstas hojas tienen una demanda

de agua y un potencial de producción más elevados.

Con la excepción de Q. ilex, especie en la cual hay una diferenciación genética a lo largo

de gradiente, ignoramos si los cambios morfoanatómicos observados son el resultado de una

plasticidad fenotípica, de una selección genotípica, o responde a ambos factores. Sea cual sea el

origen de tales cambios, algunos de los que se observan en las especies perennifolias conducen

a una utilización más moderada del agua, a medida que este recurso se vuelve más escaso. La

encina reduce su gasto de agua desarrollando hojas capaces de usarla con más eficiencia y

reduciendo la superficie total traspiradora de las ramas. Los cambios que se producen en el

xilema parecen encaminados a ajustarse a la reducción de la demanda evaporativa del follaje. En

la coscoja encontramos una estrategia distinta. En ella no hay modificaciones de la morfología

foliar que indiquen una mayor eficiencia del uso del agua; sin embargo, la tasa con que éste

recurso es consumido parece regulada por la capacidad hidráulica de los tallos. A nivel de

abscisión foliar se produce un segundo mecanismo de control, ya que la proporción de hojas

que se pierden parece depender de las condiciones hídricas del momento. Por último, la

estrategia del quejigo es muy distinta, ya que no está encaminada a moderar su consumo de

agua en las zonas áridas, sino que, probablemente, trata de compensar el aumento de demanda

evaporativa con una extracción más eficiente del agua del suelo o seleccionanado hábitats donde

el sustrato tenga mayor capacidad de retener agua.

La diferencia de estrategia para afrontar la aridez se manifiesta en la distribución de las

especies. La encina es el árbol que domina en las áreas mediterráneas de estrés moderado, pero

cuando la aridez se acentúa o sobre suelos esqueléticos, cede su lugar a la coscoja. El quejigo

desplaza a la encina en áreas submediterráneas, más mésicas, cuando los suelos están bien

desarrollados y son capaces de acumular agua. También es capaz de vivir en zonas de aridez

bastante acentuada, pero nunca lo hace como especie dominante, ya que en estos casos se

localiza en puntos donde la topografía o el sustrato favorecen la acumulación de agua.

Page 102: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 103: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

Capítulo 5

Morfología foliar, composición química foliar ycaracteres xilemáticos del tallo en dos especies de Pistacia

(Anacardiaceae) a lo largo de un gradiente climático

Page 104: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 105: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

5.1 Introducción

En este capítulo nos centramos en dos especies del género Pistacia. P. lentiscus y P.

terebinthus son componentes importantes de los bosques y matorrales abiertos de la región

mediterránea. Ambos son arbustos o arbolillos de hojas compuestas. Pistacia lentiscus tiene

hábito perennifolio y un marcado carácter termófilo que la liga a áreas de inviernos suaves

(Mitrakos, 1980), mientras que P. terebinthus es de hábito caducifolio y ocupa áreas con

inviernos más fríos (Montserrat Martí y Montserrat Martí, 1988).

Al igual que en el capítulo anterior, trataremos de entender los mecanismos de ajuste

que permiten a ambas especies ocupar sus respectivas áreas de distribución, a partir del

análisis de la morfología y composición de sus hojas y de la anatomía de sus tallos. Dado que

contamos con una especie termófila, para la cual las temperaturas mínimas de invierno

suponen un factor limitante, podremos analizar cómo se enfrenta esta especie a dos tipos de

estrés: hídrico y térmico. Por otra parte, el hábito caducifolio que exhibe Pistacia terebinthus

le permite evitar los daños por heladas en invierno, pero acorta el período en que es posible

obtener rendimiento fotosintético. Para saber en qué medida el frío y la aridez limitan el área

de distribución de las dos especies, representaremos sobre un plano definido por la

precipitación anual y la temperatura media de las mínimas de enero, las 62 localidades

climáticamente caracterizadas, en que se realizaron los 155 inventarios del capítulo 3,

distinguiendo aquéllas en que aparece cada especie.

Los objetivos que nos planteamos en este capítulo se pueden resumir en dos puntos:

1. Comparar los caracteres funcionales de ambas especies y tratar de establecer a

partir de los mismos qué estrategia adopta cada una para afrontar el estrés hídrico y las bajas

temperaturas, en función de los caracteres que exhiben sus hojas y el xilema de sus tallos.

Page 106: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

106

2. Entender los mecanismos por los que las dos especies mantienen su funcionalidad a

medida que aumentan ambos tipos de estrés. Establecer en qué medida las modificaciones

encaminadas a soportar la aridez restringen la resistencia al frío y vice versa.

5.2 Resultados

Diferencias entre las especies

Los folíolos de Pistacia terebinthus mostraron mayor superficie y menor masa

específica, espesor y densidad que los de P. lentiscus (Tabla 5.1). Respecto a su composición

química, los de P. terebinthus son más ricos en N y celulosa y más pobres en hemicelulosa

cuando los componentes se expresan por unidad de peso seco, mientras que por unidad de

área P. lentiscus contiene más hemicelulosa y lignina que P. terebinthus. El resto de los

caracteres foliares no difieren significativamente entre las dos especies (Tabla 5.2).

Tabla 5.1. Valores medios de los parámetros morfológicos foliares de lasespecies ± error estándar (AF: área foliar; EF: espesor foliar; MEF; masaespecífica foliar; DF: densidad foliar). Los asteriscos indican diferenciassignificativas entre las dos especies.

Especie AF

(mm2)

EF

(µm)

MEF

(mg cm-2)

DF

(mg cm-3)

P. lentiscus 133±12 329±20 22.4±1.11 698±36

P. terebinthus 827±64* 195± 8* 11.6±0.50* 598± 25*

Tabla 5.2. Contenido de nutrientes y fibras en las dos especies de Pistacia ± error estándar, expresados porunidad de peso seco (primera fila) y de área foliar (segunda fila) (N: nitrógeno; P: fósforo). Los asteriscosindican diferencias significativas entre las dos especies.

Especies N

(mg g-1)

(10-1 mg cm-2)

P

(mg g-1)

(10-2 mg cm-2)

Hemicelulosa

%

(mg cm-2)

Celulosa

%

(mg cm-2)

Lignina

%

(mg cm-2)

P. lentiscus 15.3±0.57

2.6±0.15

1.1±0.10

2.0±0.23

15.0±0.92

2.5±0.21

11.0±0.84

1.9±0.20

14.5±1.23

2.5±0.30

P. terebinthus 19.8±1.05*

2.3±0.11

1.5±0.0.13

1.7±0.1 7

9.4±1.41*

1.1±0.16 *

15.5±0.34 *

1.8±0.05

15.9±1.55

1.8±0.12*

Page 107: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

107

La madera de P. terebinthus unas veces se aproxima más al tipo de porosidad en

anillo y otras al de semianillo, mientras la de P. lentiscus pertenece claramente al grupo de

porosidad en semianillo. Las dos especies presentan elementos de los vasos con placas de

perforación simple (Apéndice I) y la distribución de frecuencias de las clases de diámetros de

vasos sigue un modelo de Poisson, siendo los conductos de P. terebinthus más anchos y

menos numerosos que los de P. lentiscus (Tabla 5.3).

Tabla 5.3. Valores medios de los parámetros xilemáticos de las especies ± errorestándar. (DMx: diámetro medio de los vasos más grandes; DV: densidad devasos; LEV: longitud de los elementos de los vasos). Los asteriscos indicandiferencias significativas entre las especies.

Especies DMx

(µm)

DV

(mm-2)

LEV

(µm)

P. lentiscus 55±2 355±17 201±4

P. terebinthus 85±5 * 172±20 * 202±3

8

9

10

11

12

13

14

300 400 500 600 700 800 900 1000 1100 1200Precipitación anual (mm)

ME

F (m

g cm

-2)

r=0.93p=0.003

160

170

180

190

200

210

220

230

300 400 500 600 700 800 900 1000 1100 1200Precipitación anual (mm)

EF

(µm

)

r=-0.73p=0.04

8

9

10

11

12

13

14

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5Temperatura media de las mínimas de enero (ºC)

ME

F (m

g cm

-2)

r=0.88p=0.004

160

170

180

190

200

210

220

230

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5Temperatura media de las mínimas de enero (ºC)

EF

(µm

)

r=0.84p=0.009

Fig. 5.1. Regresiones entre MEF y EF con la precipitación anual y la temperatura media de lasmínimas de enero en Pistacia terebinthus. El coeficiente de regresión de MEF respecto a laprecipitación se calculó sin el punto señalado con la flecha. Si se incluye este punto p ≥ 0.05. Lasbarras indican el error estándar.

Page 108: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

108

Variaciones intraespecíficas en respuesta a las variables climáticas

200

250

300

350

400

450

-1 0 1 2 3 4 5 6 7

EF

(µm

)

r=-0.900p= 0.002

280

320

360

400

440

480

-1 0 1 2 3 4 5 6 7

Temperatura media de las mínimas de enero (ºC)

DV

(mm

-2)

r= 0.720p=0.040

170

180

190

200

210

220

230

-1 0 1 2 3 4 5 6 7

LEV

(µm

)

r= 0.930p≤ 0.001

Fig . 5 .2 . Regresiones entre EF, LEV y DV con la temperaturamedia de las mínimas de enero en Pistacia lentiscus . Las barrasindican error estándar

En P. terebinthus, a medida que

aumenta la precipitación anual, disminuyen

la masa específica, el espesor de las hojas

(Fig. 5.1) y su contenido de celulosa por

unidad de área (r=-0.79 P=0.02). Las dos

primeras variables también disminuyen con

el descenso de temperatura (Fig. 5.1). El

contenido en celulosa por unidad de peso

seco foliar muestra una relación inversa con

la temperatura de invierno (r=-0.81 P=0.01),

mientras que si se expresa por unidad de

área la relación es directa (r=0.84 P=0.009).

Ningún otro parámetro foliar ni xilemático

de P. terebinthus se relacionó

significativamente con las variables

climáticas consideradas.

Entre los caracteres analizados en P.

lentiscus no hemos encontrado ninguno que

se ajuste significativamente con la

precipitación media anual. Sin embargo, el

espesor de los folíolos y la densidad de

vasos en el xilema disminuyeron

significativamente con el aumento de la

temperatura media de las mínimas de enero,

mientras que la longitud de los elementos de

los vasos aumentó (Fig. 5.2).

Distribución de las dos especies en función de las variables climáticas

Dentro de la región estudiada, el área de distribución de P. lentiscus se caracteriza por

unas temperaturas medias de las mínimas de enero superiores a -0.5 ºC y por una

precipitación media aunal de 360 a 1000 mm. P. terebinthus ocupa lugares más fríos y

lluviosos, con un límite inferior de temperatura invernal de -2ºC y un intervalo de

precipitaciones de entre 400 y 1400 mm (Fig. 5.3). La discontinuidad de la distribución de las

dos especies de Pistacia que se observa en la figura se debe a la ausencia de zonas que

combinen niveles moderados de frío invernal y de precipitación en el territorio estudiado.

Page 109: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

CAPÍTULO 5

Temperatura media de las mínimas de enero, °C

200

400

600

800

1000

1200

1400

1600

1 0-1-2-3 2 3 4 5 6 7

Fig. 5.3. Distribución de P. terebintus (triángulos) y P. lentiscus (cuadrados), enfunción de la temperatura media de las mínimas de enero y de la precipitación mediaanual, en un conjunto de 62 localidades a lo largo del gradiente climático.

5.3 Discusión

Comparaciones interespecíficas

Los resultados de este trabajo indican que las dos especies de Pistacia presentan

muchos caracteres morfoanatómicos propios de las plantas gastadoras de agua (Levitt, 1980).

En comparación con los otros 34 fanerófitos analizados en el Capítulo 3, todos ellos propios

de comunidades de Quercus ilex, P. terebinthus posee folíolos grandes, con elevada

concentración de N y P, y conductos del xilema anchos (Apéndice I). Ello sugiere que esta

especie tiene un alto potencial de transporte de agua por el xilema (Zimmermann, 1983) y una

elevada tasa de transpiración y de fotosíntesis (Field y Mooney, 1986; Givnish, 1987; Reich

et al., 1992). Los estudios fisiológicos disponibles indican que durante el verano mantiene

altos valores en las tasas de asimilación y transpiración (Duhme y Hinckley, 1992; Tretiach,

1993). Estos datos sugieren que P. terebinthus depende de una fuente de agua segura y

constante para poder mantener semejante comportamiento, por ejemplo gracias a un sistema

radicular muy profundo, capaz de alcanzar los niveles freáticos del suelo. Aunque no hemos

encontrado referencias sobre la profundidad de la raíz de esta especie, Spiegel-Roy et al.

(1977) midieron en Pistacia vera , una especie funcionalmente cercana a P. terebinthus , una

profundidad de al menos 210 cm.

111

Page 110: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

110

En comparación con P. terebinthus, los caracteres foliares de P. lentiscus sugieren una

menor tasa fotosintética (folíolos más pequeños, de mayor masa específica y más pobres en

N), pero cuando se compara con otras especies perennifolias de las comunidades de Quercus

ilex, P. lentiscus posee contenidos relativamente altos de nutrientes y bajos de fibras. P.

lentiscus también posee un sistema radicular profundo (Oppenheimer, 1957; Kummerow,

1981; Specht, 1988) y unos conductos del xilema de diámetro relativamente grande,

observaciones que no están de acuerdo con los elevados valores de resistividad hidráulica

encontrados por Correia y Catarino (1994) (ver Apéndice I).

Estos datos parecen indicar que ambas especies de Pistacia están preparadas para

mantener una tasa de actividad relativamente elevada durante el verano y no para moderar el

consumo de agua, como hemos visto que ocurría en Quercus ilex y Q. coccifera (capítulo 4),

por lo que estarían más próximas a la estrategia de gasto de agua (sensu Levitt, 1980).

Además ambas especies poseen hojas compuestas, una característica poco común entre las

plantas leñosas mediterráneas y que suele relacionarse con una alta capacidad de crecimiento

(Givnish, 1978), siendo, por tanto, esta morfología más compatible con la estrategia de gasto

de agua. El hecho de que Ceratonia siliqua, un árbol perennifolio mediterráneo de hoja

compuesta, también sea un gastador de agua (Lo Gullo y Salleo, 1988), contribuye a apoyar

nuestra interpretación.

A pesar de las característica propias de gastadora de agua que presenta P. lentiscus, los

estudios fisiológicos demuestran que esta especie reduce notablemente su conductancia

estomática durante el verano (Rhizopoulou et al., 1991; Duhme y Hinckley, 1992), en

contraste con la elevada conductancia y la importante actividad fotosintética que es capaz de

mantener P. terebinthus en la misma estación (Duhme y Hinckley, 1992). En las condiciones

de fuerte sequía estival que impone el clima mediterráneo, parece que P. lentiscus no es capaz

abastecer de agua a sus hojas con la misma eficiencia que P. terebinthus y necesita cambiar a

la estrategia de ahorro de agua para mantener su balance hídrico. Por otra parte, el follaje

menos productivo de P. lentiscus puede imponer un ritmo de desarrollo de la raíz más lento,

tal vez insuficiente para desarrollar con eficacia una estrategia de gasto de agua en las áreas

mediterráneas.

Respuestas de los parámetros foliares y xilemáticos a lo largo del gradiente

La respuesta de los folíolos de Pistacia terebinthus a la precipitación anual puede

deberse a un favorecimiento de caracteres más xeromorfos a medida que aumenta la aridez,

aunque, el hecho de que su madera no se ajuste para moderar el consumo de agua, lleva a

considerer la posibilidad de que los cambios foliares sean inducidos por otros factores

ambientales que covaríen con la precipitación. En las poblaciones de P. terebinthus, hemos

encontrado que la altitud y la temperatura media de las mínimas de enero se correlacionan

Page 111: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

111

significativamente con la precipitación (r=0.82 P=0.01 y r=-0.78 P=0.02, respectivamente).

De esta forma los cambios de espesor y masa específica podrían ser inducidos por variaciones

de la radiación asociadas a la altitud (Körner et al., 1986), por cambios de la presión de vapor

en el aire, y/o por adaptación al acortamiento del período favorable con el aumento de altitud

(Kikuzawa, 1995).

Las tendencias de las hojas en respuesta a la variación de la temperatura media de las

mínimas de enero fue distinta en las dos especies. En P. terebinthus el espesor y la masa

específica disminuyeron a medida que descendía la temperatura invernal, mientras que el

espesor en P. lentiscus mostró la tendencia contraria. Debido a su hábito deciduo, las hojas de

P. terebinthus no tienen que soportar las bajas temperaturas de invierno. Sin embargo, a

medida que los inviernos son más fríos también se acorta la duración del período favorable, lo

que podría favorecer una selección de hojas más productivas y de menor coste de

construcción, que se amorticen en menos tiempo (Kikuzawa, 1995), esto es, hojas de menor

espesor y masa específica (Givnish, 1987). En contraste, las hojas de P. lentiscus tienen que

soportar el frío invernal. El aumento de espesor asociado al descenso de temperatura coincide

con respuestas observadas en otras especies (Chabot y Chabot, 1977; Körner y Larcher, 1988;

Körner et al., 1989). Se ha sugerido que el aumento de espesor foliar incrementa el cociente

entre la superficie del mesófilo y la de la hoja, lo cual reduce la resistencia a la difusión del

CO2 y favorece su asimilación en condiciones de baja temperatura (Körner et al., 1989). Otra

explicación sugiere que, en contraste con las especies deciduas, las perennifolias responderían

al acortamiento de la estación favorable alargando la longevidad de sus hojas (Schoettle,

1990; Kikuzawa, 1995), lo que iría acompañado de una reducción de su productividad y de un

incremento de su resistencia física (Chabot y Hicks, 1982). El aumento de espesor observado

en P. lentiscus podría reflejar este reforzamiento de la estructura física de la hoja.

Desafortunadamente, carecemos de información sobre la longevidad foliar en las distintas

poblaciones del gradiente para poder confirmar esta hipótesis.

En cuanto al xilema de P. lentiscus , a medida que los inviernos son más fríos, la

densidad de vasos en aumenta, mientras la longitud de sus elementos se acorta. Estos mismos

cambios han sido obesrvados en estudios a gran escala (Oever et al., 1981; Carlquist y

Hoekman, 1985; Woodcock y Ignas, 1994). Ambas tendencias se consideran implicadas en la

minimización del impacto de la embolia inducida por heladas, la primera porque aumenta la

redundancia de conductos en el xilema (Zimmermann, 1983; Tyree et al., 1994) y la segunda

porque favorece la localización de las burbujas de aire que se forman en los conductos,

atrapándolas en las constricciones que existen entre los elementos de los vasos (Carlquist,

1975). Por otra parte, existen numerosas evidencias experimentales que demuestran una

estrecha relación entre los diámetros de los vasos y la vulnerabilidad a sufrir embolia por

heladas (Tyree y Sperry, 1989; Sperry y Sullivan, 1992; Lo Gullo y Salleo, 1993). Sin

Page 112: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

112

embargo, en P. lentiscus no se ha observado que este parámetro disminuya a medida que los

inviernos se hacen más fríos. Parece que esta especie minimiza el impacto de la embolia

solamente aumentando la redundancia en el xilema mediante el incremento del número de

vasos por unidad de superficie. Esta ausencia de respuesta del diámetro de los vasos a la

temperatura invernal sugiere que la necesidad de las plantas gastadoras de agua de mantener

una elevada conductividad hidráulica limita la posibilidad de incrementar la seguridad del

xilema. Se ha sugerido que la escasa resistencia al frío de P. lentiscus y otras perennifolias

mediterráneas se debe a que sus yemas están protegidas por un reducido número de catáfilos,

haciéndolas susceptibles a las heladas (Christodoulakis, 1992). Sin embargo, los resultados de

este estudio sugieren que la limitación del área de distribución de P. lentiscus a zonas de

invierno suave se debe a que su xilema es vulnerable a la embolia inducida por el frío y

probablemente también a la imposibilidad de que, por causa de la menor temperatura, su

follaje alcance el nivel de productividad necesario para desarrollar con eficacia una estrategia

de gasto de agua. Por el contrario, P. terebinthus es capaz de colonizar zonas más frías, a

pesar de que tiene vasos del xilema más anchos. Esto es posible porque la reducción de

actividad que se consigue con la pérdida de las hojas, hace posible la supervivencia en

invierno con una escasa conductividad hidráulica. Durante la primavera es probable que la

mayor proporción de conducción de agua corra a cargo del nuevo anillo, libre de embolias,

que se forma al inicio de la estación de crecimiento (Lechowicz, 1984).

Los resultados de este trabajo se podrían situar en un contexto más amplio, en el cual

la baja temperatura invernal y el hábito de la planta restringirían las respuestas de las especies

mediterráneas a la escasez de agua. Para mantener un buen ajuste a estas condiciones, las

plantas deciduas, cuyas hojas viven menos tiempo, tenderían a desarrollar estrategias de gasto

de agua y alcanzarían altas tasas de crecimiento. Este sería el caso de P. terebinthus. En el

caso de las especies perennifolias, es posible concentrar el período de máxima actividad a la

parte más húmeda del año (incluyendo el invierno) o en los meses libres de heladas

(incluyendo el verano). En el primer caso, cabría esperar que las plantas ralentizaran su

consumo de agua mediante adaptaciones propias de una estrategia de ahorro, las cuales les

permitiría además soportar bajas temperaturas. En el segundo caso, las plantas se

comportarían como gastadoras de agua, con caracteres que reducen la tolerancia al frío. Este

sería el caso de P. lentiscus. Para comprobar esta hipótesis sería necesario analizar un amplio

número de especies.

Page 113: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

Capítulo 6

Respuestas foliares y xilemáticas de cuatrofanerófitos perennifolios mediterráneos a lo largo de un

gradiente climático

Page 114: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 115: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

6.1 Introducción

En el presente capítulo analizamos las variaciones foliares y xilemáticas de cuatro

especies perennifolias que pertenecen a otros tantos géneros (Arbutus unedo, Buxus

sempervirens, Rhamnus alaternus y Viburnum tinus). A. unedo es un arbolillo que puede

alcanzar una altura de hasta 12 m. El tamaño de sus hojas supera la media de las especies

perennifolias típicas del encinar. Tiene madera de porosidad en semianillo y elementos de vasos

con placas de perforación simple (Apéndice I). Es una especie moderadamente termófila, que

necesita ambientes relativamente mésicos y prefiere los terrenos silíceos o suelos acidificados,

lo que hace que sea poco frecuente en nuestra zona de estudio.

El boj (B. sempervirens) es un arbusto de hojas pequeñas y gruesas, que puede alcanzar

hasta 8 metros de altura. Su madera, de porosidad difusa y elementos de vasos con placas de

perforación escalariforme, es una de las más densas encontradas entre las especies leñosas

mediterráneas del área de estudio (Apéndice I). El óptimo de distribución de esta especie está en

el área submediterránea, aunque aparece puntualmente en zonas más áridas de la Depresión del

Ebro, (por ej., Ejea de los Caballeros, Vedado de Fraga - Tabla III.1- Castejón de Valdejasa,

etc), siempre en laderas umbrías y semiboscosas, y asciende por las laderas del Prepirineo. El

rango altitudinal que ocupa oscila entre menos de 200 m hasta los 2150 m que alcanza en el

macizo del Turbón (Ninot et al., 1993).

El aladierno (Rhamnus alaternus) es un arbusto de hasta 5 m de altura, de hojas

relativamente mesomorfas, madera de porosidad difusa y elementos de vasos con placas de

perforación simple (Apéndice I). En nuestra zona de estudio forma parte de las comunidades de

degradación de los encinares; se distribuye desde la costa vasca hasta la depresión del Ebro,

siendo frecuente en las solanas del Prepirineo.

Page 116: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

116

El durillo (Viburnum tinus) es un arbusto o arbolillo que puede alcanzar hasta 7 m de

altura. Posee hojas grandes y mesomorfas, madera de porosidad difusa y elementos de vasos

con placas de perforación escalariforme (Apéndice I). Caracteriza los enclaves húmedos de los

ambientes mediterráneos, donde se asocia a las primeras etapas de degradación de los

encinares. Está mejor representado en las partes navarra y vasca del gradiente, volviéndose más

escaso a medida que nos adentramos en Aragón, donde se refugia en los barrancos profundos y

húmedos del Prepirineo.

En este capítulo se han planteado los mismos objetivos que en el capítulo cuarto, pero en

este caso el objeto de estudio son cuatro especies pertenecientes a distintos géneros. En primer

lugar, trataremos de establecer relaciones entre la variabilidad morfoanatómica de cada especie y

las variaciones de temperatura media de las mínimas de invierno y de precipitación media anual

dentro del área de estudio. En segundo lugar, exploraremos las consecuencias funcionales de

las variaciones morfológicas en las hojas, a partir los cambios de composición química de que

se acompañan en cada especie. Por último, analizaremos el grado de correlación que existe entre

caracteres de las hojas y del xilema.

6.2 Resultados

Comparación interespecífica

Las hojas más grandes corresponden a V. tinus y a A. unedo, mientras que las más

gruesas y de mayor masa específica pertenecen a B. sempervirens y A. unedo. Las hojas de R.

alaternus son las más densas y las de menor contenido en fibras y mayor en nitrógeno por

unidad de peso seco, aunque por unidad de área, éste último componente es mayor en las del

boj. Las hojas de V. tinus son las más pobres en nitrógeno, las de B. sempervirens las de

mayor concentración en celulosa y hemicelulosa, y las de A. unedo las más ricas en lignina

(Tablas 6.1 y 6.2).

Tabla 6.1. Caracteres foliares de las cuatro especies (medias ± error estándar). (At:área foliar sustentada por ramas de tres años; AF: área foliar; EF: espesor foliar; DF:densidad foliar; MEF: masa específica foliar). La misma letra en una columna indicaque no hay diferencia significativa entre especies (P≥ 0.05).

Especies At

(cm2)

AF

(mm2)

EF

(µm)

MEF

(mg cm-2)

DF

(mg cm-3)

A. unedo 888±176b 836±122b 281±15c 15.43±1.48b 550±40a

B. sempervirens 478± 75a 155± 5a 304± 9c 17.06±0.42b 567±12a

R. alaternus 375± 98a 190± 32a 191±11a 12.76±0.68a 638±27b

V. tinus 964±266b 1058±234b 235±12b 11.79±0.52a 515±25a

Page 117: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

117

Tabla 6.2. Concentración de los componentes de la hoja por unidad de peso seco (primera fila) yde área (segunda fila) de las cuatro especies. (N: nitrógeno; P: fósforo). La misma letra en unacolumna indica que no hay diferencia significativa entre especies (P≥ 0.05).

EspeciesN

(mg g-1)

(10-1 mg cm-2)

P

(mg g-1)

(10-2 mg cm-2)

Hemicel.

%peso seco

(mg cm-2)

Celulosa

%peso seco

(mg cm-2)

Lignina

%peso seco

(mg cm-2)

A. unedo 13.05±0.78a

2.02±0.25b

0.98±0.14b

1.46±0.17b

4.14±1.42a

0.59±0.19a

12.15±0.95ab

1.91±0.31b

22.89±1.96c

3.60±0.62c

B. sempervirens 16.00±0.44b

2.73±0.09c

0.73±0.03a

1.25±0.07ab

12.57±0.95b

2.16±0.20b

15.58±0.47c

2.65±0.09c

19.95±0.39b

3.41±0.11c

R. alaternus 18.52±0.96c

2.32±0.10b

0.91±0.04b

1.15±0.07a

3.30±0.57a

0.43±0.09a

11.16±0.24a

1.42±0.07a

7.79±0.43a

0.99±0.07a

V. tinus 10.95±0.14a

1.29±0.07a

0.83±0.04ab

0.98±0.03a

2.01±0.71a

0.23±0.08a

13.67±0.40b

1.62±0.10ab

19.65±1.34b

2.32±0.20b

Los vasos xilemáticos más anchos aparecen en las ramas de A. unedo y V. tinus, siendo

los de B. sempervirens los más estrechos y, en consecuencia, su conductividad específica,

tanto por unidad de área de xilema (Ks-t) como de superficie foliar sustentada (CEF-t), es la

más baja. La longitud de los elementos de los vasos de V. tinus supera ampliamente la de las

otras especies. Por último, las ramas de R. alaternus son las que mayor superficie de xilema

poseen por unidad de área foliar abastecida (Valor de Huber) (Tabla 6.3).

Tabla 6 .3 . Caracteres xilemáticos de las cuatro especies (media ± error estándar). (DMx: diámetromedio de los vasos más grandes; DV: densidad de vasos; LEV: longitud de los elementos de los vasos;VH: valor de Huber; Ks-t: conductividad específica del tallo; CEF-t: conductividad específica foliar). Lamisma letra en una columna indica que no hay diferencias significativas (P≥0.05).

EspeciesDMx

(µm)

DV

(mm-2)

LEV

(µm)

VH

(10-6)

Ks-t

(10-7 mm2)

CEF-t

(10-10mm2)

A. unedo 39±1.4c 445±31 280±13b 287±17ab 26.3±2.95b 7.59±1.17b

B. sempervirens 20±0.7a 817±46 236±5a 245±34a 5.3±0.17a 1.20±0.09a

R. alaternus 30±1.4b 226±5a 540±123b 21.5±2.7b 9.67±1.46b

V. tinus 36±1.6c 312±15 830±6c 260±41ab 25.0±5.6b 6.86±2.27b

Page 118: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

118

La distribución de las cuatro especies en función de la temperatura media de las mínimas

de enero y de la precipitación media anual que se muestra en la Fig. 6.1, procede de los

inventarios de vegetación analizados en el capítulo 3. Arbutus unedo y Viburnum tinus evitan

las áreas más frías y secas, pudiendo vivir en zonas de mínimas inferiores a 0ºC sólo cuando la

precipitación anual supera los 700 mm. Buxus sempervirens ocupa el cuadrante más húmedo y

frío del gráfico, como corresponde a su distribución submediterránea, aunque es capaz de

alcanzar áreas de precipitación próxima a 400 mm. Por último, Rhamnus alaternus se extiende

desde las áreas templadas y húmedas de la costa, hasta las zonas más frías y secas de la

Depresión del Ebro, donde la precipitación es inferior a 400 mm (Fig. 6.1).

0

200

400

600

800

1000

1200

1400

1600

-3 -2 -1 0 1 2 3 4 5 6 7

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3 3

33

3

3

3

3

3

33

3

4

4

Arbutus unedoBuxus sempervirensRhamnus alaternusViburnus tinus

Temperatura media de las mínimas de enero (ºC)

Fig . 6 .1 . Distribución de las cuatro especies sobre el plano definido por la temperatura media delas mínimas del mes más frío y de la precipitación media anual. (Los datos proceden de los 155inventarios de vegetación analizados en el capítulo tercero).

Respuesta de los parámetros de las especies al gradiente climático

Como consecuencia del carácter fragmentario de las áreas de distribución de A. unedo y

de V. tinus en el gradiente estudiado, sólo se ha podido estudiar un reducido número de

poblaciones. Por lo tanto, en estas especies es difícil establecer con seguridad relaciones entre

caracteres de las plantas y variables climáticas. Las regresiones de los caracteres foliares

respecto a las variables climáticas han sido realizadas con las hojas de la cohorte de 1992, al

igual que en los capítulos anteriores.

Page 119: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

119

A medida que aumenta la precipitación, el área foliar de las cuatro especies tiende a

aumentar, aunque en V. tinus esta tendencia no es significativa. El espesor foliar de R.

alaternus también aumenta, así como el contenido de P por unidad de peso seco en las hojas de

A. unedo y el de celulosa por unidad de área en las de B. sempervirens. Entre los parámetros de

xilema, únicamente respondió a la precipitación la densidad de vasos del boj, que aumenta hacia

las zonas más áridas (Tabla 6.4).

Tabla 6.4. Coeficientes de regresión entre caracteres foliares y xilemáticos de las cuatro especies y laprecipitación anuala. En los componentes foliares los valores de la primera fila se han calculado con laconcentración por unidad de peso seco y los de la segunda (entre paréntesis) por unidad de área.Solamente se muestran los caracteres de resultados más relevantes.

At AF EF P Celulosa DMx DV

A. unedo 0.70 0.89* 0.12 0.92*

(0.59)

0.38

(-0.11)

0.71 -0.26

B. sempervirens 0.39 0.64* 0.38 0.24

(0.42)

0.13

(0.55*)

0.27 -0.62*

R. alaternus 0.38 0.75* 0.76* 0.24

(0.38)

0.07

(0.24)

0.16 --

V. tinus 0.02 0.92 -0.16 0.69

(-0.28)

-0.67

(-0.84)

0.58 -0.48

a * 0.05<P≤0.01 ** 0.01<P≤0.001 *** P<0.001

También hemos observado que, con el incremento de la temperatura media de las

máximas de julio, disminuyen significativamente el área foliar de A. unedo y R. alaternus, la

superficie foliar de las ramas de B. sempervirens y R. alaternus, el diámetro medio de los vasos

más grandes y la longitud de sus elementos en B. sempervirens (Tabla 6.5).

Tabla 6.5. Coeficientes de regresión de algunas variables de las cuatroespecies y la temperatura media de las máximas de julio. Solamente serepresentan las variables que, al menos en una especie, rindieronresultados significativosa.

At AF DMx LEV

A. unedo -0.40 -0.95* -0.91 -0.09

B. sempervirens -0.70** -0.37 -0.68* -0.62*

R. alaternus -0.84** -0.81* -0.57 -0.39

V. tinus -0.03 -0.68 -0.22 -0.20

a *0.05<P≤0.01 **0.01<P≤0.001 ***P<0.001

Page 120: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

120

Cuando se eleva la temperatura media de las mínimas de enero, aumentan en R.

alaternus el área de las hojas y la superficie foliar total que sustentan las ramas de tres años,

mientras que en las hojas de V. tinus disminuye el contenido de N por unidad de superficie. La

única respuesta del xilema aparece en R. alaternus, donde el diámetro medio de los vasos más

grandes aumenta a medida que lo hace la temperatura mínima de invierno (Tabla 6.6).

Tabla 6.6. Coeficientes de regresión de algunas variables de lascuatro especies y la temperatura media de las mínimas de enero.Solamente se representan las variables que, al menos en una especie,rindieron resultados significativosa

At AF DMxN

(mg/cm2)

A. unedo -0.19 0.55 0.28 -0.29

B. sempervirens 0.23 -0.26 0.27 -0.32

R. alaternus 0.73* 0.84** 0.71* 0.29

V. tinus 0.57 0.93 -0.02 -0.93*

a *0.05<P≤0.01 **0.01<P≤0.001 ***P<0.001

Correlaciones entre los caracteres foliares

La masa específica foliar se correlaciona positivamente con el espesor en A. unedo, B.

sempervirens y R. alaternus; en la primera especie, además, muestra un elevado índice de

correlación con la densidad, aunque no llega a ser significativo. En V. tinus la masa específica

no se correlaciona significativamente con ninguna de las dos variables, aunque mantiene una

relación positiva con la densidad y negativa con el espesor. Estas dos variables aparecen

inversamente relacionadas en V. tinus y en B. sempervirens, aunque solo de forma significativa

en la segunda. En Arbutus unedo, a medida que aumenta la masa específica foliar, tienden a

aumentar los contenidos de N, celulosa y lignina por unidad de área, aunque sólo la celulosa

muestra una correlación significativa. En las hojas de Buxus sempervirens la masa específica es

directamente proporcional a los contenidos de N, P, hemicelulosa y lignina por unidad de área,

estando los dos últimos positivamente correlacionados también con el espesor foliar. En R.

alaternus la masa específica se correlaciona positivamente con los contenidos de P, celulosa,

hemicelulosa y lignina por unidad de área, pero negativamente con la concentración de N por

unidad de peso seco; su espesor mantiene correlaciones similares, excepto con el N y la lignina.

Por último, en V. tinus el aumento de masa específica se acompaña de un mayor contenido de

Page 121: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

121

N y celulosa por unidad de superficie, el espesor se correlaciona positivamente con la

proporción de lignina, tanto por unidad de peso como de superficie, mientras la densidad sigue

una relación inversa con este componente (Tabla 6.7).

Tabla 6.7. Coeficientes de correlación entre los caracteres de las hojas en las cuatro especies. Loscomponentes foliares se han calculado tanto con base en peso seco y con base en el área (entre paréntesis) a.

EF DF N P Celulosa Hemicel. Lignina

MEF 0.91* 0.84 0.10

(0.87)

-0.56

(0.30)

0.59

(0.91*)

-0.56

(-0.40)

0.57

(0.88)

A.unedo EF 0.54 0.50

(0.74)

-0.16

(0.45)

0.64

(0.69)

0.27

(0.42)

0.08

(0.42)

DF -0.25

(0.60)

-0.67

(0.03)

0.27

(0.68)

-0.87

(-0.75)

0.64

(0.83)

MEF 0.70** 0.14 -0.07

(0.64*)

0.21

(0.56*)

-0.26

(0.51)

0.44

(0.64*)

0.15

(0.82***)

B. semperviresn EF -0.61* -0.16

(0.37)

0.19

(0.46)

-0.28

(0.29)

0.44

(0.55*)

0.23

(0.67**)

DF 0.22

(0.31)

0.01

(0.07)

0.08

(0.22)

-0.15

(-0.06)

-0.09

(0.09)

MEF 0.90** 0.13 -0.65*

(0.31)

-0.26

(0.68*)

-0.24

(0.92***)

0.31

(0.59*)

-0.14

(0.59*)

R. alaternus EF -0.32 -0.54

(0.19)

-0.04

(0.66*)

-0.12

(0.75**)

0.64*

(0.82**)

-0.38

(0.22)

DF -0.12

(0.17)

-0.34

(-0.03)

-0.18

(0.18)

-0.54

(-0.38)

0.38

(0.51)

MEF -0.44 0.54 0.86

(0.99**)

-0.87

(0.29)

0.62

(0.93*)

-0.64

(-0.49)

0.06

(0.57)

Vi. tinus EF -0.92 0.23

(0.39)

0.01

(0.83)

0.39

(0.46)

-0.66

(-0.64)

0.88*

(0.94*)

DF 0.31

(0.25)

-0.58

(-0.64)

-0.06

(0.11)

0.33

(0.41)

-0.92*

(-0.64)

a * 0.05<P≤0.01 ** 0.01<P≤0.001 *** P≤0.001

Page 122: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

122

Correlaciones entre los caracteres foliares y xilemáticos

Las ramas de B. sempervirens y de R. alaternus poseen vasos xilemáticos más anchos

cuanto mayor es la superfice foliar que sustentan y, en la segunda especie, también cuanto

mayor es el área de las hojas. La conductividad específica foliar y el valor de Huber se

correlacionan negativamente con área total en el boj y con el área foliar en el aladierno. En A.

unedo y V. tinus también existen estas relaciones inversas, aunque sólo alcanzan valores

significativos las del área total y del área foliar con el valor de Huber en V. tinus. Por último, la

densidad foliar de R. alaternus se correlaciona negativamente con la conductividad específica y

positivamente con el valor de Huber (Tabla 6.8).

Tabla 6.8. Correlaciones entre parámetros foliares y xilemáticos de las cuatro especies a.

Dmax Ks-t LSC-t HV

At 0.30 -0.86 -0.73 -0.47

AF -0.10 -0.56 -0.70 -0.85A. unedo EF 0.78 0.63 0.66 0.59

MEF 0.20 0.31 0.52 0.80

DF -0.30 0.04 0.27 0.64

N (%) 0.84 -0.28 -0.29 -0.22

At 0.94*** 0.13 -0.64* -0.54*

AF 0.21 0.46 0.09 -0.26B. sempervirens EF 0.46 -0.02 -0.17 -0.30

MEF 0.40 -0.14 -0.12 -0.06

DF -0.17 -0.11 0.16 0.41

N (%) 0.06 -0.04 0.39 0.51

At 0.82** 0.50 -0.51 -0.55

AF 0.61* 0.51 -0.70* -0.73**

R. alaternus EF -0.02 0.07 -0.55 -0.48

MEF -0.26 -0.35 -0.25 -0.03

DF -0.38 -0.62* 0.55 0.75**

N (%) 0.56 0.20 0.11 -0.14

At -0.41 -0.72 -0.86 -0.95*

AF -0.15 -0.56 -0.83 -0.94*

V.tinus EF 0.41 0.50 0.46 0.06

MEF -0.20 0.13 0.52 0.57

DF -0.55 -0.39 -0.09 0.37

N (%) -0.49 -0.36 0.06 0.21

a * 0.05<P≤0.01 ** 0.01<P≤0.001 *** P≤0.001

Page 123: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

123

6.3 Discusión

Diferencias interespecíficas

A. unedo y V. tinus poseen un área foliar que supera ampliamente la de B.

sempervirens y la de R. alaternus. Las implicaciones funcionales de esta variable se relacionan

con la capacidad de enfriamiento por convección, que en las hojas expuestas al sol disminuye

cuanto mayor es su tamaño (Vogel, 1970). Las hojas recalentadas de este modo son capaces de

alcanzar una mayor tasa de fotosíntesis, pero a costa de una tasa de transpiración más alta por

unidad de carbono fijado (Givnish, 1979). La superficie foliar total sustentada por ramas de

tres años también es mayor en las especies de hoja grande, de forma que su capacidad de

evaporación, por unidad de rama, también es más alta. Sin embargo, la mayor potencialidad

para gastar agua que se deduce de estos caracteres, no parece estar acompañada de una

capacidad fotosintética más elevada, como indica la baja concentración de N por unidad de peso

foliar observada en las especies de hoja grande (Field y Mooney, 1986; Reich et al., 1992), que

contribuye a reducir aún más la eficiencia de uso de agua de A. unedo y V. tinus. Las especies

de hoja pequeña, aunque tengan una capacidad de producción inferior debido a su menor

superficie foliar, probablemente sean capaces de hacer un uso más eficiente del agua. Ello

incrementaría la probabilidad de éxito en ambientes más xéricos, explicando que colonicen

zonas más áridas en el área de estudio (Fig. 6.1).

En consonancia con la mayor demanda de agua que se genera en las ramas de las

especies de hoja grande, sus vasos xilemáticos poseen un diámetro mayor y, por tanto, son

capaces de albergar una tasa de flujo más alta. Sin embargo, esta misma cualidad les hace más

susceptibles de sufrir pérdidas de conductividad hidráulica por efecto de las bajas temperaturas

(Zimmermann, 1983; Tyree et al., 1994). Los elementos de los vasos del xilema, también más

largos que en las especies de hoja pequeña, se relacionan con una menor seguridad en la

conducción, ya que las punteaduras que comunican los elementos de los vasos contribuyen a

evitar la difusión de embolias (Carlquist, 1975).

Las hojas del boj, además de ser pequeñas, poseen una elevada masa específica y una

alto contenido en fibras. En comparaciones interespecíficas se ha demostrado que ambos

caracteres corresponden a especies de crecimiento lento (Niemann et al., 1992; Reich et al.,

1992). Estos caracteres, además, confieren a las hojas una elevada resistencia física y, en

consecuencia, una mayor capacidad para perdurar en el tiempo (Herms y Mattson, 1992). De

de hecho, hemos observado que algunas hojas de boj viven hasta cuatro años (capítulo 7). El

xilema de esta especie presenta unos vasos muy estrechos y numerosos que darán lugar a una

baja conductividad hidráulica (Zimmermann, 1983) y, a su vez, bajos valores de Ks-t y CEF-t.

Page 124: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

124

Un xilema de tales características implica necesariamente un consumo de agua moderado y, por

tanto, es de esperar que también limite la tasa de producción y de crecimiento. Por otra parte,

tales caracteres del xilema contribuyen a reducir su susceptibilidad de cavitar por bajas

temperaturas (Tyree et al., 1994), lo que puede explicar que, entre las cuatro especies

estudiadas, sea el boj la que ocupa las áreas más frías de la zona de estudio.

Por último, las hojas de Rhamnus alaternus, pese a presentar un tamaño similar a las del

boj, poseen caracteres relativamente mesomorfos (valores bajos de espesor, masa específica y

contenido en fibras, y elevada concentración de N y P) que denotan una capacidad fotosintética

superior a la de las demás especies (Field y Mooney, 1983; Reich et al., 1992) y,

posiblemente, también una mayor tasa de crecimiento (Niemann et al., 1992). Los vasos del

xilema muestran diámetros mayores que el boj y menores que el madroño y el durillo. La

inversión de xilema por unidad de área foliar en las ramas (valor de Huber), supera

ampliamente a la de las demás especies, aunque la conductividad específica foliar no es

significativamente mayor que la de las especies de hoja grande, a causa del reducido tamaño de

los diámetros de los vasos.

Respuestas al gradiente

La respuesta más evidente que muestran estas especies al incremento de aridez es una

reducción del área foliar, tendencia que conlleva un uso del agua más eficiente (Givnish, 1979).

Entre los caracteres del xilema, únicamente el boj responde al incremento de aridez aumentando

la densidad de sus vasos, lo cual hace que la pérdida de conductividad hidráulica por cavitación

de una proporción determinada de vasos, sea menor que en las especies de baja densidad de

vasos (Tyree et al., 1994).

La elevada temperatura que se puede alcanzar en verano incrementa el potencial

evaporativo de la atmósfera, favoreciendo la aparición de un déficit hídrico en las plantas. Por

otra parte, las hojas con los estomas cerrados por causa del estrés hídrico son susceptibles a

sufrir fotoinhibición cuando son sometidas a elevada radiación y temperatura, como se ha

demostrado que ocurre en A. unedo (Bilger et al., 1987). En nuestro gradiente existe una

relación inversa entre la precipitación media anual y la temperatura media de las máximas de

julio y, a pesar de ello, hemos detectado que algunos parámetros que no respondían a la

primera lo hacen a la segunda. A. unedo y R. alaternus tienden a hacer un uso más eficiente del

agua en las localidades más cálidas reduciendo el área foliar, mientras que R. alaternus y B.

sempervirens responden disminuyendo su superficie transpiradora por unidad de rama. Ambas

respuestas probablemente lleven a una disminución del LAI, a igual que ocurre en las

comunidades australianas de Eucalyptus spp. a medida que aumenta la aridez (Specht y Specht,

Page 125: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

125

1989). Todas las especies tienden a reducir los diámetros de los vasos xilemáticos con el

incremento de la temperatura estival (aunque sólo B. sempervirens lo hace de forma

significativa). Tal tendencia puede interpretarse, bien como un ajuste del xilema a una reducción

del potencial transpirador de las ramas, o bien como un mecanismo para restringir el consumo

de agua y alargar el tiempo de disponibilidad de este recurso. Esta segunda hipótesis tendría

sentido sólo en el caso de plantas que extraen el agua de cierta profundidad, ya que la de los

estratos más superficiales se perdería por evaporación.

R. alaternus es la especie que parece más afectada por la variación de la temperatura

media de las mínimas de enero. La tendencia del diámetro medio de sus vasos a reducirse en las

poblaciones más frías, puede favorecer una conducción más segura, a costa de una menor

conductividad hidráulica (Zimmermann, 1983). La reducción del área foliar asociada a la

disminución de las temperaturas también ha sido observada por Körner y Pelaez Menendez-

Riedl (1989) en un gradiente altitudinal e interpretada como una selección de genotipos con

meristemos de menor número de células en ambientes de alta montaña. En este caso, tal

tendencia podría estar impuesta por la capacidad hidráulica del xilema, que no podría sustentar

superficies foliares mayores. El hecho de que el aladierno sea la única especie en que aparece

esta respuesta, puede deberse a que es la que ocupa un rango de temperaturas más amplio (Fig.

6.1). Aunque el madroño también parece soportar una amplia gama de temperaturas, en sus

localidades más frías parece refugiarse en enclaves abrigados, lo que podría implicar que la

temperatura mínima real que soportan no sea tan baja como aparece en la figura.

El hecho de que estas especies tiendan a reducir sus pérdidas de agua disminuyendo la

superficie foliar de sus ramas o el área de las hojas a medida que aumenta la aridez, indica que

la disponibilidad de agua durante el verano es un factor limitante para ellas. En el caso de A.

unedo, algunos autores han observado que en esta estación experimenta una importante caída

de conductancia estomática a mediodía (Beyschlag et al., 1987; Tenhunen et al., 1987b), lo que

indica que en esos momentos la velocidad de absorción de agua no es capaz de compensar la

tasa de pérdida por transpiración. Son pocos los datos publicados sobre la profundidad de

raíces, pero hemos constatado que ésta no supera los 5 m en A. unedo y que oscila tan sólo

entre 1 y 2 m en R. alaternus (Specht, 1988), valores inferiores a los que se consideran para las

especies de Pistacia y de Quercus de los capítulos anteriores. De esta información se puede

concluir que la estrategia que estas cuatro especies adoptan frente a la aridez responde más al

modelo de ahorro que al de gasto de agua (Levitt, 1980). Sin embargo, los caracteres de las

especies de hoja grande parecen poco adecuados para el ahorro de agua. Posiblemente su

morfología resulte de una adaptación al paleoambiente tropical en que evolucionaron, donde el

estrés hídrico, si existía, sería mucho más moderado que en el clima mediterráneo actual

(Axelrod, 1973). Cuando el clima se volvió más árido, al no poseer ni estructuras para

absorber elevadas cantidades de agua, ni hojas capaces de un uso eficiente de la misma, se

Page 126: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

126

vieron obligadas a mantener su status hídrico a costa de cerrar estomas y perder, por tanto,

potencial de producción. Si a ello se suma que las bajas temperaturas durante el invierno

tampoco permiten una actividad fotosintética duradera, es fácil entender que deban restringir su

distribución a enclaves térmicos y mésicos, donde pueden mantener un balance fotosintético

anual positivo.

Interrelaciones entre parámetros

Excepto en V. tinus, el aumento de masa específica foliar se debe a que aumenta el

espesor de las hojas, al igual que encontramos que ocurría en la encina. Esta tendencia se suele

asociar con un aumento de la capacidad fotosintética a nivel intraespecífico, ya que el espesor

foliar aparece correlacionado con el desarrollo del mesófilo (Chabot y Chabot, 1977; Jurik,

1986; Kull y Niinemets, 1993). Ello conllevaría un aumento en la concentración de nutrientes y

una disminución en la de fibras, ya que este tejido es rico en los primeros y pobre en las

segundas (Niemann et al., 1992). Sin embargo, en las tres especies parece que el material que

se adiciona para incrementar el peso seco por unidad de superficie es más rico en fibras

(celulosa en A. unedo y R. alaternus, y lignina en B. sempervirens) que en nutrientes, como

indican los coeficientes de correlación más elevados de estos últimos. En R. alaternus, además,

encontramos que el N está más diluido en las hojas de mayor masa específica, lo que puede

corresponder a una menor capacidad fotosintética (Hollinger, 1992).

En V. tinus no existe ninguna correlación significativa entre la masa específica foliar con

ninguno de sus componentes, tal vez a causa del reducido número de poblaciones estudiadas.

Sin embargo, cabe reseñar que, a diferencia de las tres especies anteriores, la relación de esta

variable con el espesor es de signo negativo. Las cantidades de celulosa y de N por unidad de

superficie foliar tienden a aumentar cuando lo hace la masa específica, de forma que no

podemos establecer si biomasa que se adiciona es más rica en un tejido o en otro. Unicamente

podemos interpretar que las hojas más gruesas poseen una mayor proporción de tejidos de

sostén y/o haces conductores (ricos en lignina), mientras que las más densas poseen caracteres

opuestos, dadas las correlaciones que se establecen entre espesor y densidad con el contenido

de lignina.

En las especies de hoja pequeña, B. sempervirens y R. alaternus, la capacidad

hidráulica (proporcional al diámetro medio de los vasos más grandes) aumenta a medida que la

superficie foliar de las ramas se hace mayor. Sin embargo, según aumenta esta última variable,

tienden a disminuir tanto el valor de Huber como la conductividad específica foliar. Ello implica

que en las ramas de menor superficie foliar se invierte mayor proporción de biomasa en

estructuras que suministran agua (madera) y menor en las que la pierden (hojas), siendo

probable que este ajuste se complete con una mayor proporción de raíz. Esta misma tendencia

se manifiesta en las especies de hoja grande, A. unedo y V. tinus, aunque no siempre de forma

Page 127: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

127

significativa debido al reducido número de poblaciones. Sin embargo, en ellas, ni el aumento

de la superficie foliar de las ramas ni el de las hojas se ve acompañado de un incremento de los

diámetros de los vasos xilemáticos.

Los resultados de este trabajo indican que el boj y el aladierno (las especies de hoja

pequeña), están mejor adaptadas para soportar los dos estreses característicos del clima

mediterráneo: por una parte, tanto sus caracteres foliares como xilemáticos, les permiten un uso

más moderado del agua, favoreciendo la supervivencia en verano; por otra parte, la posesión de

conductos xilemáticos delgados les permiten soportar temperaturas más bajas en invierno, con

pérdidas menores de conductividad hidráulica. Por el contrario, las especies de hoja grande

(madroño y durillo) no parecen adecuadas para soportar ninguno de los dos tipos de estrés, lo

cual es consecuente con su área de distribución fragmentaria, siempre al abrigo de umbrías o

barrancos que mantengan unas condiciones más mésicas que las que impone el macroclima.

Estas observaciones hacen pensar que ambas especies no están adaptadas al clima

mediterráneo, sino al paleoclima tropical que reinaba en estas latitudes antes de las glaciaciones

cuaternarias (Raven, 1973).

Page 128: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 129: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

129

III. 3 Conclusiones

Comparando los caracteres y las respuestas al gradiente de las nueve especies

estudiadas en los tres capítulos anteriores, se pone de manifiesto que existen estrategias

diversas para hacer frente a las limitaciones que impone el clima mediterráneo y que la

proximidad filogenética no implica la adopción de estrategias similares. Se pueden establecer

grupos de especies con respuesta similar al gradiente, que además comparten algunos

caracteres morfoanatómicos.

A) Especies caducifolias (Quercus faginea y Pistacia terebinthus)

Estas especies soportan bien los inviernos rigurosos ya que, al carecer de hojas

durante este período, evitan sufrir en ellas daños por congelación. Además, debido a la

interrupción de la actividad metabólica y a la formación de vasos nuevos antes del

crecimiento primaveral, la pérdida de conductividad hidráulica por cavitación no tiene

consecuencias nefastas para el abastecimiento de los órganos, como ocurriría en las especies

perennifolias. El inconveniente de poseer este hábito foliar estriba en que se cuenta con un

período más corto para asimilar carbono. Diversos autores han demostrado que esta menor

duración del período vegetativo de los caducifolios se compensa con una mayor capacidad

de asimilación por unidad de tiempo (Chabot y Hicks, 1982; Reich et al., 1992; Aerts, 1995).

El hecho de que estas dos especies sean las únicas en las que el espesor foliar disminuye a

medida que la temperatura invernal es más baja, puede ser interpretado como una tendencia a

desarrollar hojas más baratas y productivas, pero menos longevas, a medida que el período

favorable se acorta, tal como predice el modelo de Kikuzawa y Kudo (1995) para las especies

caducifolias. Los valores más altos de área foliar, concentración de N y diámetro de los vasos

xilemáticos que muestran Q. faginea y P. terebinthus frente a las especies caducifolias,

contribuyen al logro de una mayor tasa fotosintética (Givnish, 1979; Field y Mooney, 1986).

Pero estas mismas cualidades generan una mayor demanda de agua, que en ambientes

mediterráneos puede hacer peligrar el mantenimiento de su status hídrico. Como ya hemos

mencionado anteriormente, hay dos mecanismos posibles para evitar el déficit hídrico en

condiciones de aridez: 1) reducir la pérdida de agua por transpiración, y con ello la tasa de

fotosíntesis, 2) absorber el agua del suelo a la misma velocidad con que se pierde (Levitt,

1980). Si las plantas caducifolias detuvieran su actividad también en verano, quedaría muy

reducido su período de asimilación, lo que, probablemente, no sea factible en especies

leñosas de gran tamaño, que tienen que desarrollar y mantener una importante proporción de

tejidos no productivos. Pensamos, por tanto, que las especies leñosas caducifolias que deban

permanecer activas en períodos áridos, han de poseer sistemas radiculares profundos con los

que alcanzan niveles freáticos o reservas de agua subterráneas, asegurando un suministro de

agua más o menos estable. Esto les permite independizarse, en cierta medida, del régimen de

Page 130: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

130

precipitación, pero les hace dependientes del sustrato y de la topografía. Es por ello por lo

que sus caracteres no muestran ninguna correlación con la variación de la precipitación.

B) Especies perennifolias de hoja pequeña o mediana (Quercus ilex, Quercus

coccifera, Pistacia lentiscus, Buxus sempervirens y Rhamnus alaternus)

Estas especies cuentan con un período más largo para conseguir un balance de

carbono anual positivo, ya que pueden aprovechar períodos favorables durante el invierno.

Normalmente poseen varias cohortes de hojas simultáneamente. El mantenimiento de hojas

durante el invierno supone un doble inconveniente: por una parte, la capacidad de

incrementar la conductividad hidráulica estará más limitada que en las especies caducifolias,

ya que no pueden alcanzar un diámetro de vasos que ponga en peligro el abastecimiento del

follaje; en consecuencia, la tasa de flujo de agua de las especies perennifolias estará limitada

por la crudeza del invierno que han de soportar (Zimmermann, 1983). Por otra parte, para

vivir más tiempo, las hojas de estas especies requieren una mayor inversión en tejidos

estructurales, lo que redunda en una la tasa fotosintética menor que la de las especies

caducifolias (Chabot y Hicks, 1982; Reich et al., 1992).

Las especies que encabezan este apartado, en comparación con las especies

caducifolias, poseen hojas más pequeñas y más pobres en nitrógeno, vasos del xilema más

estrechos y mayor proporción de tejido conductor por unidad de superficie foliar sustentada,

caracteres que parecen acordes con una menor capacidad de crecimiento. Estas especies

podrían adoptar cualquiera de las dos estrategias mencionadas para afrontar el estrés hídrico

(ahorro o gasto de agua). La ausencia de respuesta al gradiente de precipitación que ha

mostrado P. lentiscus parece indicar que, al igual que las especies caducifolias, depende más

del agua subterránea que de la de lluvia. El resto de las especies han mostrado algún tipo de

ajuste morfoanatómico asociado al aumento de aridez. La coscoja restringe la absorción de

agua disminuyendo la capacidad hidráulica de su xilema, el boj y el aladierno aumentan la

eficiencia del uso de agua disminuyendo el tamaño de sus hojas y la encina muestra ambas

respuestas. Ello significa que todas estas especies son dependientes del agua de precipitación,

a pesar de que, al menos Q. ilex y Q. coccifera, poseen un aparato radical profundo (Specht,

1988).

En el capítulo quinto relacionamos las apetencias termófilas de P. lentiscus con la

confluencia de dos cualidades: la posesión de vasos de elevado diámetro en el xilema, que los

hace susceptibles a cavitar, y el hábito perennifolio, que requiere el mantenimiento del

conductividad hidráulica en invierno. Tal interpretación es respaldada por la escasa

resistencia al frío que muestran A. unedo y V. tinus, especies en que también coinciden las

mencionadas cualidades. Sin embargo, Q. ilex y Q. coccifera, también perennifolias y con

vasos xilemáticos más anchos que los de las especies anteriores, no limitan su distribución a

zonas de inviernos suaves. Esta tolerancia a las bajas temperaturas podría relacionarse con la

Page 131: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

131

distribución de vasos, ya que un elevado número de vasos pequeños podría ser suficiente para

mantener el bajo ritmo de actividad invernal, aunque caviten los vasos más grandes. Otra

explicación podría buscarse en la fenología, ya que las especies sensibles al frío (madroño,

durillo y, en menor medida el lentisco) mantienen actividad durante el invierno, desarrollando

frutos, flores y yemas florales (ver capítulo 7), mientras que la carrasca y la coscoja no

inician la actividad hasta la primavera. Estas hipótesis no han sido testadas en este trabajo, y

se requeriría una nueva fase de experimentación para poder verificarlas.

C) Perennifolias de hojas grande (Arbutus unedo y Viburnum tinus)

Los caracteres de estas especies indican que poseen un elevado potencial de

evaporación (hojas más grandes incluso que las de las especies caducifolias), una reducida

capacidad fotosintética (poseen las concentraciones de N por unidad de peso foliar más bajas

de las nueve especies) y conductividad hidráulica baja (en ambas los vasos son de diámetro

reducidos; además, los elementos de los vasos del durillo poseen placas escalariformes, que

contribuyen a ralentizar aún más el flujo de agua). Aunque responden al aumento de aridez

reduciendo el tamaño de sus hojas y, probablemente, también su LAI, el conjunto los

caracteres mencionados no parece muy adecuado para soportar los fuertes niveles de

irradiación de los veranos mediterráneos, ya que se generarían déficits hídricos que la

limitada capacidad hidráulica del xilema no podría compensar. Parecen, por el contrario, más

ajustadas a ambientes de sombra, donde la demanda de agua que se genera no es tan fuerte y

la disponibilidad de este recurso es suficiente para compensar las pérdidas. Todo ello parece

indicar que están adaptadas al paleoclima tropical que dominaba en las zonas templadas

durante el Terciario (Axelrod, 1973) y mantuvieron su presencia en áreas mediterráneas

refugiándose en localidades umbrías y mésicas.

Page 132: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 133: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

Cuarta parte

VARIACIONES DE LAS ESPECIES A LO LARGODEL CICLO ANUAL

Page 134: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 135: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

Capítulo 7º

Comportamiento fenológico de diez fanerófitosmediterráneos en función de sus caracteres

estructurales

Page 136: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 137: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

7.1 Introducción

Las plantas tienen que desarrollar a lo largo del año una serie de funciones para poder

perpetuarse en el ambiente que ocupan. Estas funciones son el mantenimiento de su estructura,

el crecimiento y la reproducción. Todas ellas demandan unos recursos que obtienen de su

entorno. Normalmente el crecimiento de las distintas estructuras de las plantas no es

simultáneo debido a la limitación de estos recursos (Mooney y Chiariello, 1984). La

secuenciación de las distintas funciones está muy influenciada por la disponibilidad de

recursos en cada momento del año, de forma que los procesos que más energía demandan (por

ej. el crecimiento) tienden a producirse fuera de los períodos desfavorables.

Sin embargo, dentro del mismo ambiente puede existir una amplia gama de respuestas

fenológicas, y no todas se ajustan, como cabría esperar, a la alternancia de períodos favorables

y desfavorables que se sucede en el ambiente. Por ejemplo, en los bosques tropicales con una

estación seca muchos árboles pueden florecer, o incluso iniciar el crecimiento durante el

período de aridez (Reich y Borchet, 1984; Borchet, 1994). En el "fynbos", una formación

arbustiva que se desarrolla en el sur de Africa en un clima de tipo mediterráneo, el porcentaje

de especies en crecimiento se mantiene más o menos constante durante todo el año, a pesar de

la existencia de un claro período de estrés hídrico (Orshan, 1989). Esta asincronía entre

demanda y oferta de recursos puede sustentarse en las reservas acumuladas (Bloom et al.,

1985), poniendo de manifiesto que para entender el ciclo fenológico de una especie es

necesario conocer, no sólo las fluctuaciones de recursos de su ambiente, sino también el

modelo de utilización de los mismos.

Page 138: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

138

Las plantas que viven en climas mediterráneos tienen que soportar un invierno con

temperaturas mínimas cercanas a 0ºC y un verano árido, a veces con meses de precipitación

nula y temperaturas que alcanzan los 40ºC (ver Tabla 2.1). A ello se añade un alto grado de

impredecibilidad de las precipitaciones (Nahal, 1981; Baker et al., 1982; De Lillis y

Fontanella, 1992), que agrava aún más las condiciones de vida de las plantas. Desde el punto

de vista de la vida vegetal, la principal característica que define al clima mediterráneo es la

interrupción del período favorable, que se inicia en primavera, por un período de aridez en

verano, que resulta de la escasez de precipitación unido a unas temperaturas muy altas

(Mooney y Dunn, 1970; Orshan, 1989). El restablecimiento de condiciones favorables durante

el otoño puede ser parcialmente aprovechado, unas veces retomándose el crecimiento y otras,

acumulando reservas de carbono para el invierno en la raíz e incluso en la hojas, como en el

caso de los esclerófilos mediterráneos (Larcher y Thomaser-Thin, 1988; Meletiou-Christou et

al., 1992).

La escasez de agua en el suelo también conlleva un estrés nutricional (Baker et al.,

1982; De Lillis y Fontanella, 1992; Sabaté et al., 1995), ya que el flujo del agua por el xilema

es el medio de transporte por el que los nutrientes llegan hasta los órganos en formación

(Bloom et al., 1985). De este modo, la optimización de la ganancia de carbono por unidad de

nutrientes invertidos se convierte en una necesidad vital para las plantas que habitan en los

ambientes mediterráneos (Rundel, 1982).

Los fanerófitos de nuestro área de estudio son árido-activos, es decir, mantienen una

cierta actividad durante un período en que la demanda evaporativa de la atmósfera es muy alta

(Evenari et al., 1975). La estrategia que adopta cada especie para hacer frente a este período de

estrés se puede explicar a tres niveles. Por una parte, depende de la forma en que la planta

estructura su biomasa en el espacio y en el tiempo, es decir, de la forma vital (Schulze, 1982).

Por ejemplo, los heteromorfos estivales reducen su pérdida de agua en verano perdiendo toda

(caducifolios de verano) o parte (caméfitos) de su biomasa transpiradora (Evenari et al., 1975;

Orshan et al., 1988). Un segundo nivel se refiere a la anatomía y morfología de los órganos.

Por ejemplo, las hojas de pequeño tamaño y cutículas gruesas ayudan al mantenimiento del

contenido hídrico, mientras que una raíz profunda y un xilema de vasos anchos favorecen una

eficaz captación y transporte de agua para reponer con rapidez las pérdidas (Levitt, 1980) Por

último, el tercer nivel se relaciona con los procesos metabólicos de cada planta, como es la

eficiencia de captación y asimilación de recursos y los patrones de uso de los mismos. Por

ejemplo, las plantas difieren en el destino que dan a los recursos que absorben, pudiendo

invertirlos directamente en crecimiento o almacenarlos para utilizarlos en períodos de escasez

Page 139: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

139

(Bloom et al., 1985; Chapin III et al., 1990). Otra adaptación a este nivel es la capacidad de

algunas plantas para disminuir el potencial hídrico de sus hojas, ya sea en virtud de las

propiedades elásticas de la pared (Lo Gullo y Salleo, 1988) o por la acumulación de solutos en

las células (Levitt, 1980; Meletiou-Christou et al., 1992). Ello incrementa la diferencia de

potencial entre el suelo y la planta, favoreciendo la extracción de agua de suelos secos.

De todo lo expuesto se deducen dos estrategias básicas para hacer frente al estrés

hídrico: la primera consiste en reducir al máximo la pérdida de agua en los períodos de escasez

y la segunda en conseguir una tasa de absorción suficiente para compensar de forma inmediata

las pérdidas por evaporación (Orshan et al., 1988). Estas dos posibilidades coinciden con las

dos estrategias descritas por Levitt (1980), de las que se ha hablado en capítulos anteriores: la

de "ahorro de agua" (water saving) y la de "gasto de agua" (water spending).

En este capítulo se analiza el patrón fenológico de tres especies caducifolias de invierno

(heteromorfas) y de siete perennifolias (isomorfas), todas ellas fanerófitos bien representados

en el área de estudio. Estableceremos para cada una el calendario de los eventos fenológicos

más destacados: crecimiento, formación de yemas florales, floración, desarrollo del fruto,

diseminación de los frutos o semillas y abscisión foliar. Trataremos de explicar las diferencias

que encontremos entre ellos utilizando la información obtenida en los capítulos anteriores. Por

otra parte, analizaremos el patrón de uso y almacenado de nutrientes y reservas de carbono de

las hojas mediante el seguimiento mensual de las distintas fracciones. Ello permitirá conocer la

importancia que tiene el almacenado de nutrientes e hidratos de carbono para la iniciación del

crecimiento, de la floración o para la formación del fruto. Integrando toda esta información

podremos predecir los momentos críticos a los que se enfrentan las plantas leñosas

mediterráneas, tema que puede ser de gran interés práctico para un adecuado manejo de las

especies y las comunidades vegetales que pueblan nuestra región.

7.2 Material y métodos

Area de estudio

Las especies seleccionadas para el seguimiento fenológico son tres caducifolios de

invierno (almez-Celtis australis-, terebinto-Pistacia terebinthus- y quejigo -Quercus faginea-) y

siete perennifolios (madroño-Arbutus unedo-, boj-Buxus sempervirens-, lentisco-Pistacia

lentiscus-, coscoja-Quercus coccifera-, encina-Quercus ilex subsp. ballota-, aladierno-

Rhamnus alaternus - y durillo-Viburnum tinus-), siendo todos ellos fanerófitos, arbóreos o

arbustivos, frecuentes en las comunidades de encinar del NE de la península Ibérica.

Page 140: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

CAPÍTULO 7

FRANCIA

Zaragoza

HuescaOlvena

Alcubierre

Agüero

Peñaflor

+ Barbastro

+ Leciñena

Jaca

N

0 10 20 30 40 50

+ Ayerbe

+

Zaragoza-Aula Dei+

Fig. 7.1 - Localización de los puntos de muestreo (círculos) y de lasestaciones meteorológicas de las que toman los datos (cruces).

Los muestreos se realizaron en cinco localidades situadas a lo largo de un gradiente

altitudinal, que se extiende desde el centro de la Depresión del Ebro (Peñaflor y Zaragoza-Aula

Dei) hasta la ladera sur del Prepirineo (Agüero, Olvena), con una estación intermedia en la

Sierra de Alcubierre (Fig. 7.1). Todas ellas se caracterizan por un clima típicamente

mediterráneo, con precipitaciones máximas en primavera y otoño y mínimas en verano, que

son más escasas hacia el centro de la depresión (Fig. 7.2). Los inviernos son frescos, siendo

frecuentes los fenómenos de inversión térmica en el fondo de la Depresión del Ebro. La

población de Olvena se localiza en un barranco abrigado, de forma que los inviernos podrían

ser menos rigurosos que de lo que indican los datos de la estación meteorológica más próxima.

Los ejemplares de la parcela de Zaragoza-Aula Dei (B. sempervirens, R. alaternus y V. tinus)

fueron plantados y se encuentran fuera de su área de distribución natural, manteniéndose

gracias a una irrigación periódica. Además, incluimos los diagramas fenológicos obtenidos por

G. Montserrat en Jaca (Boalar de Jaca), durante 1991, para algunas de las especies que cubre

nuestro estudio. Esta localidad, más septentrional que las anteriores, se sitúa en la banda de

transición entre las regiones Mediterránea y Eurosiberiana (Fig. 7.1), donde el clima es

típicamente submediterráneo. En esta localidad se estudió Quercus x subpyrenaica, estirpe

hibridógena entre Q. faginea y Q. pubescens (Amaral Franco, 1990) que domina en esta zona

de transición en el Pirineo Central (cap. 2). También hemos recogido los diagramas

fenológicos

Page 141: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

141

Fig . 7 .2 . Precipitaciones (barras) y temperatura media de las máximas y de las mínimas(líneas) de las localidades de estudio. Las líneas continuas y las barras grises indican losdatos del año de estudio y del anterior, mientras que las líneas discontinuas y las barrasblancas indican los datos promedio de todos los años registrados. Los asteriscos indicanausencia de dato.

ALCUBIERREEstación de Leciñena

-20

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

P (

mm

)

-10

0

10

20

30

40

50

60

70

80

T(º

C)

1992 1993

*

OLVENAEstación de Barbastro

-20

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

P (

mm

)

-10

0

10

20

30

40

50

60

70

80

T(º

C)

1992 1993

***

AGÜERO Estación de Ayerbe

-20

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

P (

mm

)

-10

0

10

20

30

40

50

60

70

80

T (

ºC)

1992 1993

**

JACA(Estación de Jaca)

-20

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

P (

mm

)

-10

0

10

20

30

40

50

60

70

80

T(º

C)

19911990

Page 142: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

142

de las especies seleccionadas que publicaron Floret et al., (1989) y que proceden de

poblaciones situadas en el sur de Francia (Languedoc, Cévennes y Provence). Esta zona se

caracteriza por un clima mediterráneo de carácter oceánico, siendo el invierno la estación más

lluviosa y la aridez estival no tan rigurosa como en las localidades de la Depresión del Ebro .

En esta zona no existen ni Q. faginea ni Q. ilex subsp. ballota, aunque se encuentran taxones

similares, como Q. pubescens y Q. ilex subsp. ilex, respectivamente, cuyos diagramas

fenológicos también representamos. La Tabla 7.1 resume las características climáticas de todas

estas localidades, las especies muestreadas en cada una y el tipo de dato recogido. Por último,

también mencionaremos, cuando sea relevante, los patrones fenológicos de De Lillis y

Fontanella (1992), tomados en el centro de Italia, y de Cabezudo et al. (1993), procedentes de

la Sierra de Málaga, donde la precipitación es de 700-800 mm anuales. Con todo esto

cubrimos un amplio rango de condiciones climáticas mediterráneas, que permiten analizar la

variabilidad fenológica intraespecífica.

Tabla 7.1. Localidades de muestreo fenológico, características climáticas y especies recolectadas. Lasabreviaturas indican el tipo de datos tomados: Fn- seguimiento de fenofases, MEF- de la masa específica foliar yNu- de la composición de las hojas.

LOCALIDAD Sur deFrancia (1)

Jaca (2) Agüero Olvena Alcubierre Peñaflor Aula Dei

Alt (m): 50-500 800 455-870 380 600-685 345-380 230

Tm (ºC): -- 11.2 14.2 13.2 14.2 14.5 14.5

Pm (mm): 650-1537 831 586 587 452 371 385

Arbutus unedo Fn -- Fn MEF Nu -- -- -- --

Buxus sempervirens Fn Fn Fn MEF Nu Fn MEF Nu -- -- Fn

Celtis australis -- -- -- Fn MEF Nu -- -- --

Pistacia lentiscus Fn -- Fn MEF Nu Fn Fn Fn --

Pistacia terebinthus Fn -- -- Fn Nu -- -- --

Quercus pubescens Fn -- -- -- -- -- --

Quercus coccifera Fn -- Fn Fn Fn Fn --

Quercus faginea -- -- Fn MEF Nu -- Fn MEF Nu --

Q. ilexsubsp.ballota

-- Fn Fn MEF Nu Fn Fn MEF Nu Fn MEF Nu --

Q. ilex subsp.ilex Fn -- -- -- -- -- --

Q. x subpyrenaica -- Fn -- -- -- -- --

Rhamnus alaternus Fn Fn -- -- -- -- --

Viburnum tinus Fn -- Fn Fn MEF Nu -- -- Fn

(1) Datos procedentes de Orshan (1989) (2) Datos de la colección de G.Montserrat (Herbario de Jaca, no publicado).

Page 143: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

143

En la Fig. 7.2 se reflejan las temperaturas y precipitaciones mensuales de los años 92 y

93, (90 y 91 para Jaca) junto con los valores medios de los mismos parámetros para el

conjunto de los años de lectura. Cada localidad fue caracterizada por la estación meteorológica

más próxima que dispusiera de datos de los años 92 y 93. Para Peñaflor y Zaragoza-Aula Dei

se tomaron los datos de la estación de Aula Dei; para Agüero de Ayerbe; para Olvena de

Barbastro, para Alcubierre de Leciñena y para el Boalar de Jaca los de la estación de Jaca. La

localización de estas estaciones meteorológicas se muestra en la Fig. 7.1.

Muestreo fenológico

El muestreo comenzó en septiembre de 1992. Antes de empezar, se seleccionó y marcó

un ejemplar maduro de cada especie, que sirvió de referencia para el seguimiento

fenomorfológico de la población. A partir de la fecha de inicio y hasta diciembre de 1993 las

poblaciones se visitaron cada mes, anotando la presencia o ausencia de las siguientes

fenofases: crecimiento vegetativo, desarrollo de yemas florales, floración, maduración de fru-

tos, dispersión de frutos y/o semillas y abscisión foliar. Además, se recolectaron unas ramas,

representativas del estado fenológico de la planta, que posteriormente se prensaron y se alma-

cenaron en un herbario fenomorfológico. Una vez completado el muestreo se analizó todo el

material registrado y prensado de cada especie. La comparación de pliegos permitió establecer

con mayor precisión la iniciación y duración de cada fenofase. Este método, tomado de Orshan

(1989) es el mismo utilizado por Floret et al. (1989), Cabezudo et al., (1993) y G. Montserrat.

Evolución de la morfología y composición química de las hojas

Durante el año 93 (desde enero hasta diciembre) se tomaron mensualmente 25 hojas de

cada especie, en la parte media de la copa y en la cara expuesta al sur, siempre bien soleada.

Para ello se seleccionaron varios individuos, cercanos al que utilizamos de referencia. Este

muestreo abarcó un ciclo completo de las hojas de las especies caducifolias, desde su aparición

hasta su muerte, mientras que en las perennifolias se siguieron dos cohortes de hojas hasta

final de 1993, desde enero en el caso de la nacida en 1992 y desde el mes de su aparición la

nacida en la primavera del mismo año. En estas hojas se midió el área foliar, la masa específica

(peso seco por unidad de área foliar), el contenido de nitrógeno (N), fósforo (P) y fibra cruda

(paredes celulares), expresados en función del peso seco y del área foliar. La metodología

empleada para la medida de todas estas variables se detalla en el tercer capítulo. Además,

intentamos recoger la variación de sustancias de reserva (hidratos de carbono y lípidos). Para

ello sustrajimos de la cantidad de materia seca foliar el porcentaje de cenizas (materia mineral),

fibra bruta (paredes celulares) y proteínas (%N x 6.25); la fracción resultante incluye azúcares,

almidón, lípidos, pectinas, ácidos orgánicos y otras sustancias solubles en agua (Treviño y

Page 144: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

144

Caballero, 1973). Asumimos que los cambios experimentados por esta fracción se deben a la

entrada y salida de sustancias de reserva hidrolizadas. Para la correcta interpretación de estos

datos hay que tener en cuenta que parte de las oscilaciones de estos parámetros a lo largo del

año se debe a la heterogeneidad de las hojas, que no son las mismas en cada mes de muestreo.

Si consideramos que la fracción de fibra bruta no es móvil y permanece sin cambios una vez

ha madurado la hoja, ésta puede recoger la mencionada variabilidad, de forma que sólo

asumiremos como procesos de importación-exportación de sustancias aquellas variaciones que

superen a las que sufre la fibra bruta.

Este seguimiento se realizó en todas las especies, excepto en Q. coccifera y Rhamnus

alaternus. En Pistacia terebinthus no se determinó la masa específica mensual, con lo que los

nutrientes y las reservas sólo se han podido expresar con base en el peso seco (Tabla 7.1).

En abril de 1993 se colocaron dos trampas de hojas en la localidad de Agüero, en el

interior de la comunidad vegetal, cerca de las especies muestreadas. Estas trampas consistían

en un recipiente cuadrado de un metro de lado, construido con un soporte metálico y una malla

de plástico muy fina. Desde abril de 1993 hasta marzo de 1994 se recogió mensualmente el

material caído, separándolo según su naturaleza, y pesando cada fracción, una vez secada en la

estufa durante 3 días a 80 ºC. Las hojas recogidas pertenecieron a Q. ilex subsp. ballota, Q.

faginea y Arbutus unedo. Con ello se determinó en estas especies la proporción de biomasa

foliar caída en cada mes. Además, en el mes de máxima caída de cada una, se tomó una

muestra de 25 hojas y se determinó su contenido en N y P y su masa específica, para calcular

el porcentaje de nutrientes retranslocados.

Retranslocación de nutrientes

Para saber la cantidad de nutrientes (N y P) que se reciclan antes de la abscisión foliar

se calculó la diferencia entre su concentración en el momento en que alcanzaba el valor

máximo, una vez finalizado el desarrollo foliar (cuando la masa específica se había

estabilizado) y la de las hojas caídas en las trampas o en el suelo, en el mes de máxima caída.

La eficiencia de la retranslocación es el cociente entre esta diferencia y la concentración máxima

(Chapin III y Kedrowski, 1983; Escudero et al., 1992; Pugnaire y Chapin III, 1993; Sabaté et

al., 1995). Además, se calcularon las oscilaciones de nutrientes que sufrieron las hojas (en las

especies perennifolias sólo en la cohorte de 1992) a lo largo del año de muestreo, siempre

como porcentajes respecto al contenido máximo. Consideramos que el área foliar es una base

más fiable que el peso seco para expresar la concentración de nutrientes, porque apenas sufre

oscilaciones una vez finalizada la expansión, mientras que el peso cambia debido a la entrada y

salida de sustancias de reserva que se producen a lo largo del año, especialmente antes de la

Page 145: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

145

abscisión (Woodwell, 1975; Pugnaire y Chapin III, 1993; Sabaté et al., 1995). Sin embargo,

en C. australis y P. terebinthus no medimos la masa específica de las hojas escindidas, lo cual

imposibilitó el cálculo de la eficiencia de retranslocación con base en el área. En los demás

casos hemos calculado esta cifra utilizando ambas bases, lo cual nos permite comparar

nuestros datos con los de otros autores que usan uno u otro criterio.

Las cifras de retranslocación que hemos calculado pueden sobrestimar el valor real de

este parámetro porque las hojas permanecen hasta un mes en el suelo antes de ser recogidas y

analizadas, pudiendo perder nutrientes por lavado durante este lapso de tiempo. También

puede haber un lavado de nutrientes en las hojas vivas, aunque se ha demostrado que estas

pérdidas son escasas (Chapin III y Kedrowski, 1983). Además, las hojas secas que recogimos

del suelo representaban una mezcla aleatoria de hojas de distintas posiciones de la copa y de

diversas cohortes de hojas, en el caso de las perennifolias, mientras que las hojas vivas de

referencia estaban expuestas al sol y pertenecían a una misma cohorte. Sabemos que ambos

factores son responsables de una importante variación en el contenido de nutrientes (Sabaté et

al., 1995).

7.3 Resultados

Arbutus unedo

Es un arbusto o arbolillo de hoja grande, perenne, con masa específica de valor medio-

alto. La madera es de porosidad en semianillo, con vasos de diámetro pequeño-medio,

bastante numerosos por unidad de superficie (Tabla 7.2).

Las fenofases se solapan muy poco y se extienden ocupando los doce meses del año.

Es la única especie en que el crecimiento vegetativo precede a la prefloración. Crece desde

principios de abril hasta finales de junio, dando paso a la prefloración, que se extiende hasta

mediados de octubre. Las flores se abren durante octubre, noviembre y parte de diciembre. El

fruto empieza a madurar a finales de octubre, proceso que dura todo el año y concluye con su

diseminación entre noviembre y diciembre del siguiente año (Fig. 7.3). La caída de las hojas

parece ser bastante repentina, ya que entre un 40 y un 65% de la biomasa total de hojas

recogidas en las trampas cayeron durante el mes de junio. En mayo, julio y agosto también

registramos abscisión foliar, pero menos masiva (Fig. 7.4). La longevidad foliar en Agüero

oscila entre 14 y 26 meses, aunque son pocas las hojas que superan los dos años de edad. Los

patrones fenológicos de las localidades de Agüero y el del sur de Francia (Floret et al., 1989)

son muy semejantes.

Page 146: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

146

Tabla 7 .2 . Caracteres de las hojas y del xilema del tallo de las especies estudiadas. Hábito: P- perenne, D-deciduo; AF: área foliar; EF: espesor foliar; MEF: masa específica foliar; DF: densidad foliar; Tipo de madera:D- porosidad difusa, A- porosidad en anillo y S- porosidad en semianillo; DMx: diámetro medio de los vasosmás grandes; DMd: diámetro medio de los vasos; DV: número de vasos por unidad de superficie del xilema;DM: densidad de la madera. (Los datos de la madera proceden del Capítulo 3).

Especie Hábito AF

(mm2)

EF

(µm)

MEF

(mg/cm2)

DF

(mg/cm3)

Tipo

madera

DMx

(µm)

DMd

(µm)

DV

(mm-2)

DM

(g/cm3)

Arbutus unedo P 816 303 17.19 564 S 42.2 33.5 367 0.63

Buxus sempervirens P 149 310 18.22 594 D 22.5 22.5 513 0.80

Celtis australis C 1614 263 11.45 434 A 83.5 44.9 78 --

Pistacia lentiscus P 142 326 21.03 648 S 45.1 28.3 464 0.65

Pistacia terebinthus C 827 195 11.57 598 S 82.7 42.5 79 0.67

Quercus coccifera P 100 271 19.32 716 D 51.9 14.6 62 0.74

Quercus faginea C 641 227 12.49 556 A 75.6 26.0 130 0.70

Q. ilex subsp. ballota P 258 372 20.13 546 D 59.6 51.7 65 0.75

Rhamnus alaternus P 198 207 13.73 676 D 22.6 27.0 367 0.69

Viburnum tinus P 993 246 13.19 539 D 35.9 32.4 195 0.67

Arbutus unedo

Crecimiento vegetativoFormación de yemas floralesFloraciónMaduración del frutoDiseminación del frutoAbscisión foliar

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Agüero Longevidad foliar: 14-26 meses

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Longevidad foliar: 12-24 mesesSur de Francia

Fig . 7 .3 . Diagramas fenológicos de Arbutus unedo, procedentes de dospoblaciones (el primero está tomado de Floret et al. (1989). Las barrasabiertas señalan los períodos en que las fenofases pueden aparecer deforma ocasional.

Page 147: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

147

0%

10%

20%

30%

40%

50%

60%

70%

Abr May Jun Jul Ago Sep Oct Nov Dic Ene Feb Mar

Q. ilex

A. unedoQ. faginea

A)

0%

10%

20%

30%

40%

50%

60%

70%

Abr May Jun Jul Ago Sep Oct Nov Dic Ene Feb Mar

B)

Fig . 7 .4 . Proporción de hojas caídas cada mes en las dos trampas(A y B) colocadas en la población de Agüero, de cada especie(Quercus ilex subsp. ballota , Arburtus unedo y Quercus faginea ). Los cálculos han sido realizados a partir de la biomasa foliar totalrecogida desde abril de 1993 hasta marzo de 1994.

% d

e bi

omas

a ca

ída

en u

n añ

o

La cohorte de hojas que se inicia en primavera del 93 no alcanza su masa específica

definitiva hasta agosto. Las hojas de un año sufren una ligera pérdida de carbohidratos+grasas

en marzo, justo antes del inicio del crecimiento, que se recupera al mes siguiente. Entre mayo

y julio tiene lugar un fuerte descenso del N y el P que, con un 52 y un 57% respectivamente

(calculados con base en el área foliar), suponen el descenso estival de nutrientes más marcado

de las especies estudiadas (Tabla 7.3). Sin embargo, la exportación de reservas de carbono es

poco importante (Fig. 7.5). Este período coincide con el final del crecimiento y el inicio de la

prefloración. Parece que existe una fuerte demanda de nutrientes que la tasa de absorción es

incapaz de satisfacer, de forma que éstos se extraen de las hojas viejas, lo que puede acelerar

su caída (Mooney, 1983). A principios de otoño se produce una ligera recuperación del N

pero no del P. No existen datos de los últimos meses de las hojas del 92, porque en las plantas

Page 148: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

148

muestreadas ya casi no quedaban hojas de esta edad. Sin embargo, en las del 93 se observa

un descenso de nutrientes y carbohidratos + grasas entre noviembre y diciembre, coincidiendo

con el inicio de la maduración del nuevo fruto. La eficiencia de retranslocación calculada para

esta especie alcanza un 79% para el N y un 87% para el P (Tabla 7.3).

Tabla 7.3. Porcentajes de entrada y salida de nitrógeno (N), fósforo (P) y carbohidratos + grasas (HC) de lashojas respecto al contenido máximo, en distintos momentos del año y retranslocación final. Siempre que hasido posible se han calculado estos valores utilizando las concentraciones de nutrientes con base en el área(mg/cm2) y con base en el peso seco (%). "-" indica que no hay dato; "#" que no existe pérdida o recuperacióndel componente.

% Pérdida enverano

% Recuperación enotoño

% Reciclajetotal

Especie y población N P HC N P HC N P

Arbutus unedo mg/cm2 52 57 11 7 # 12 80 87

(Agüero) % 56 58 0 24 18 - 78 85

Buxus sempervirens mg/cm2 13 21 11 7 2 # - -

(Agüero) % 33 43 7 22 19 # - -

Buxus sempervirens mg/cm2 28 41 26 24 30 8 - -

(Olvena) % 15 31 8 17 30 12 - -

Celtis australis mg/cm2 17 20 # 13 15 # - -

(Olvena) % # 16 # # 15 # 54 52

Pistacia lentiscus mg/cm2 31 39 11 12 18 23 - -

(Olvena) % 32 39 8 0 23 16 - -

Pistacia terebinthus mg/cm2 - - - - - - - -

(Olvena) % 12 31 6 0 16 15 58 61

Quercus faginea mg/cm2 13 29 21 13 18 36 78 82

(Agüero) % # # 19 # # 22 68 72

Quercus faginea mg/cm2 8 8 0 4 # 10 60 58

(Alcubierre) % 8 # # 7 # 11 50 47

Q. ilex subsp. ballota mg/cm2 33 45 9 8 12 15 71 68

(Agüero) % 28 42 5 8 17 8 60 54

Q. ilex subsp. ballota mg/cm2 33 40 4 13 27 15 - -

(Alcubierre) % 30 37 16 27 9 - -

Q. ilex subsp. ballota mg/cm2 39 50 9 13 28 27 - -

(Peñaflor) % 29 42 2 12 18 18 - -

Viburnum tinus mg/cm2 33 37 16 20 56 16 - -

(Olvena) % 27 47 4 21 54 8 - -

Page 149: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

149

5

10

15

20

25

J A O D E M M J S N

mg

por

cm2

de h

oja

MEF

Cohorte de 1992Cohorte de 1993A)

0

2

4

6

8

10

12

14

16

J A O D E M M J S N

mg

por

cm2

de h

oja FB

HC+GR

C)

0,00

0,05

0,10

0,15

0,20

0,25

0,30

J A O D E M M J S N

mg

por

cm2

de h

oja

N

10*P

B)

Fig . 7 .5 . Variaciones mensuales de las siguientesvariables en dos cohortes de hojas de Arbutus unedo : a) masa específica foliar (MEF) b) contenido en N y P porunidad de superficie y c) contenido de fibras (FB) ycarbohidratos + grasas (HC+GR)

Buxus sempervirens

Es un arbusto perennifolio, de hojas pequeñas, muy esclerófilas. La madera es de

porosidad difusa, con vasos del xilema muy estrechos y numerosos, lo que le confiere una

elevada densidad (Tabla 7.2).

El solapamiento de las fenofases es bastante escaso y éstas se distribuyen durante todo

el año. Las yemas florales aparecen ya en el verano anterior, permaneciendo como tales hasta

Page 150: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

150

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Sur de Francia

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Jaca Longevidad foliar: 28-40 meses

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Agüero Longevidad foliar: 28-40 meses

Longevidad foliar: 12-24 meses

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Olvena Longevidad foliar: 28-40 meses

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Zaragoza- Aula Dei Longevidad foliar: 30-42 meses

Crecimiento vegetativoFormación de yemas floralesFloración

Maduración del frutoDiseminación del frutoAbscisión foliar

Fig. 7.6. Diagramas fenológicos de Buxus sempervirens procedentes devarias poblaciones. El primero está tomado de Floret et al. (1989) y elsegundo de Montserrat Martí (no publicado). Las barras abiertas señalan losperíodos en que las fenofases pueden aparecer de forma ocasional.

Buxus sempervirens

Page 151: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

151

febrero o marzo del siguiente año. Parece que las flores también pueden abrirse ese mismo

otoño, como ocurrió en los ejemplares de Zaragoza-Aula Dei y Olvena, que florecieron a partir

de noviembre. Los frutos suelen madurar entre abril y junio, aunque el ejemplar de Zaragoza-

Aula Dei llegó incluso a iniciar algún fruto a final de otoño. La diseminación se produce en un

corto espacio de tiempo, entre junio y agosto. El crecimiento vegetativo parece que puede

iniciarse siempre que las condiciones ambientales son favorables, como demuestra la frecuente

aparición de varios segmentos de crecimiento en los tallos del mismo año. Las localidades

analizadas muestran una amplia gama de posibilidades de crecimiento, según sea inhibido por

la aridez, por el frío o por ambos. En el sur de Francia el crecimiento de los dolicoblastos se

produce entre marzo y agosto. En Agüero la abundancia de lluvias caídas en abril y agosto del

año de muestreo (Fig. 7.2) posiblemente paliaron el déficit hídrico estival, permitiendo a la

planta crecer desde marzo a diciembre. En Zaragoza-Aula Dei el crecimiento se inicia en

noviembre y se inhibe a principios de junio, probablemente debido a la rigurosidad del verano.

Por último, en Olvena y Jaca se observa una respuesta intermedia, con una inhibición del

crecimiento por la aridez estival, una recuperación parcial en otoño y otra inhibición por el frío

de invierno (Fig. 7.6).

5

10

15

20

25

M J J A S O N D E F M A M J J A S O N D

mg

por

cm2 d

e ho

ja

MEF

Cohorte de 1992Cohorte de 1993A)

0

2

4

68

10

12

14

16

J J A S O N D E F M A M J J A S O N D

mg

por

cm2

de h

oja

FBHC+GR

C)

0,00

0,050,10

0,150,20

0,250,300,350,40

0,45

M J J A S O N D E F M A M J J A S O N D

mg

por

cm2

de h

oja N

P*10

B)

5

10

15

20

25

A M J J A S O N D E F M A M J J A S O N D

MEF

Cohorte de 1992Cohorte de 1993

A

0

2

4

6

8

10

12

14

16

J J A S O N D E F M A M J J A S O N D

FBHC+GR

C)

0,000,050,100,150,20

0,250,300,350,400,45

M J J A S O N D E F M A M J J A S O N D

NP*10

B)

Fig. 7 .7 . Variaciones mensuales de las siguientes variables en dos cohortes de hojas de Buxus sempervirens : a) masaespecífica foliar (MEF) b) contenido en N y P por unidad de superficie y c) contenido de fibras (FB) y carbohidratos + grasas(HC+GR)

Page 152: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

152

Hemos observado en esta especie una longevidad foliar máxima de 42 meses, siendo

frecuente que las hojas superen los tres años de vida. Estas cifras contrastan con la longevidad

de 1-2 años que señalan Floret et al. (1989) para el sur de Francia.

La hojas nuevas alcanzan su masa específica definitiva en su tercer mes de vida. En

Agüero las oscilaciones de nutrientes en las hojas de un año son muy suaves, observándose un

pequeño descenso en marzo (inicio del crecimiento) y otro en junio (inicio de la aridez). La

dinámica de los carbohidratos + lípidos parece deberse, en gran parte, a variabilidad entre las

hojas, dado su paralelismo con las oscilaciones que sufren las fibras. En todo caso se puede

hacer notar un leve descenso en febrero y otro más fuerte en junio. En Olvena los nutrientes

foliares disminuyen en mayo-junio y en agosto-septiembre, seguidos de una recuperación. Las

reservas de carbono siguen las mismas oscilaciones que las fibras, con lo que no podemos

concluir que haya claras entradas o salidas de las hojas (Fig. 7.7 y Tabla 7.3).

Celtis australis

Es un árbol caducifolio, con hojas grandes, madera de porosidad en anillo y vasos del

xilema anchos (Tabla 7.2).

La prefloración, la floración y el crecimiento de los dolicoblastos comienzan en marzo,

prolongándose éste último hasta mayo. El fruto madura entre abril y noviembre,

diseminándose durante este mes y principios de diciembre, coincidiendo con la abscisión

foliar. La longevidad foliar es, por tanto, de siete u ocho meses (Fig. 7.8).

Celtis australis

Crecimiento vegetativoFormación de yemas florales

FloraciónMaduración del frutoDiseminación del frutoAbscisión foliarENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Olvena Longevidad foliar: 7-8 meses

Fig. 7.8. Diagrama fenológico de Celtis australis procedente de lapoblación de Olvena.

Page 153: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

153

0

2

4

6

8

10

12

14

E F M A M J J A S O N D

mg

por

cm2

de h

oja

MEF

A)

0

1

2

3

4

5

6

7

8

E F M A M J J A S O N D

mg

por

cm2

de h

oja

FBHC+GR

C)

0,00

0,05

0,10

0,15

0,20

0,25

E F M A M J J A S O N D

mg

por

cm2

de h

oja

N

P*10

B)

Fig . 7 .9 . Variaciones mensuales de las siguientes variablesen las hojas de Celtis australis : a) masa específica foliar(MEF) b) contenido en N y P por unidad de superficie y c)contenido de fibras (FB) y carbohidratos + grasas (HC+GR)

Las hojas alcanzan su masa

específica definitiva en julio y

luego sufren suaves oscilaciones.

En noviembre, el último mes que

el árbol posee hojas, el peso aún

no ha descendido, y carecemos de

datos posteriores a la abscisión.

El contenido de N y P por unidad

de área foliar desciende en el mes

de agosto (17 y 20% del máximo,

respectivamente), se recupera en

septiembre (13% del N y 15% del

P) y vuelve a disminuir antes de

la abscisión. El porcentaje total de

retranslocación sólo se ha podido

calcular con base en el peso seco,

alcanzando un 54% en el caso del

N y un 52% en el P. No se

aprecian variaciones de las

reservas de carbono (Fig. 7.9 y

Tabla 7.3).

Pistacia lentiscus

Es un arbusto perennifolio, de hojas compuestas y folíolos pequeños, de elevada masa

específica. La madera es de porosidad en semianillo, con vasos de diámetro mediano y muy

numerosos por unidad de superficie del xilema (Tabla 7.2).

Existe una superposición del crecimiento con las fenofases reproductivas, pero éstas se

suceden con escaso solapamiento. La prefloración y la floración se completan entre abril y

mayo. El crecimiento vegetativo tiene lugar desde mitad de abril hasta mitad de julio en las

localidades más meridionales, de mitad de mayo a final de julio en la más septentrional

(Agüero), al igual que observan De Lillis y Fontanella (1992) en el centro de Italia. Si las

condiciones son buenas, algunas ramas pueden seguir creciendo en verano y otoño, aunque en

el caso del año 1992 en las poblaciones de Agüero y Peñaflor, este alargamiento pudo ser

Page 154: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

154

consecuencia del retraso de la lluvia primaveral. En nuestras localidades el crecimiento suele

iniciarse cuando la floración está terminando, pero en el sur de Francia el crecimiento es más

temprano y duradero. El fruto madura desde final de mayo hasta diciembre-febrero y se

dispersa de noviembre a marzo. En Italia la maduración es hasta diciembre (De Lillis y

Fontanella, 1992) y en el sur de Francia hasta final de enero. La abscisión foliar se concentra

entre final de primavera y verano. La hojas suelen vivir entre dos y tres años, aunque en

Peñaflor algunas vivieron poco más de un año. En el sur de Francia Floret et al. (1989)

señalan una longevidad inferior a dos años (Fig. 7.10).

Pistacia lentiscus

Crecimiento vegetativoFormación de yemas florales

FloraciónMaduración del fruto

Diseminación del frutoAbscisión foliar

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Sur de Francia Longevidad foliar: <24 meses

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Agüero Longevidad foliar: 22-35 meses

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Olvena Longevidad foliar: 24-35 meses

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Alcubierre Longevidad foliar: 22-35 meses

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Peñaflor Longevidad foliar: 18-35 meses

. . . . . . . . . . . .

Fig. 7.10. Diagramas fenológicos de Pistacia lentiscus procedentes devarias poblaciones. El primero está tomado de Floret et al. (1989). Lasbarras abiertas señalan los períodos en que las fenofases puedenaparecer de forma ocasional.

Page 155: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

155

5

10

15

20

25

J A S O N D E F M A M J J A S O N D

mg

por

cm2

de h

oja

MEF

Cohorte de 1992Cohorte de 1993A)

0

2

4

6

8

10

12

14

16

J A S O N D E F M A M J J A S O N D

mg

por

cm2

de h

oja

FBHC+GR

C)

0,00

0,05

0,10

0,15

0,20

0,25

0,30

J A S O N D E F M A M J J A S O N D

mg

por

cm2

de h

oja

N

P*10

B)

Fig . 7 .11 . Variaciones mensuales de las siguientes variables en dos cohortes de hojas de Pistacia lentiscus : a) masa específica foliar(MEF) b) contenido en N y P por unidad de superficie y c) contenidode fibras (FB) y carbohidratos + grasas (HC+GR)

Las hojas nuevas no alcanzan su

masa específica definitiva hasta

octubre. Las hojas de ambas

cohortes sufren una pérdida de

peso en agosto, que se recupera

posteriormente. A este descenso

de masa foliar contribuyen las tres

fracciones analizadas. El N de las

hojas del 92 empieza ya a

descender a partir de marzo y en

agosto ya se ha perdido el 31 %; el

P desciende desde mayo hasta

julio, con una pérdida del 39%.

Las reservas de carbono oscilan

menos y muestran un mínimo en

junio y otro en agosto. Al finalizar

el verano se recuperan las tres

fracciones, alcanzando los

carbohidratos + lípidos valores

más altos que aquéllos con los que

iniciaron el año (Fig. 7.11, Tabla

7.3).

Pistacia terebinthus

Es un arbusto caducifolio, de hojas compuestas, con folíolos grandes y de baja masa

específica. La madera es de porosidad en semianillo, con vasos de diámetro grande y poco

numerosos por unidad de superficie (Tabla 7.2).

La prefloración y la floración se solapan con el período de crecimiento vegetativo a

finales de abril, extendiéndose éste último hasta junio. Los frutos maduran de junio a octubre y

caen entre octubre y diciembre, coincidiendo en gran parte con la caída de las hojas. El registro

del sur de Francia presenta ligeras variaciones, siendo el crecimiento vegetativo más largo y

más corta la maduración del fruto. La longevidad foliar que hemos estimado es de unos 5-7

meses (Fig. 7.12).

Page 156: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

156

Pistacia terebinthus

Crecimiento vegetativoFormación de yemas floralesFloraciónMaduración del fruto

Diseminación del frutoAbscisión foliar

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Sur de Francia Longevidad foliar: 6-7 meses

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Pistacea terebinthus (Olvena) Longevidad foliar: 5-7 meses

Fig. 7.12. Diagramas fenológicos de Pistacia terebinthus procedente de dos poblaciones. El primero está tomado de Floret et al. (1989). Las barrasabiertas señalan los períodos en que las fenofases pueden aparecer deforma ocasional.

La concentración de los componentes foliares sólo ha sido calculada con base en el

peso seco. Los nutrientes se diluyen durante la expansión foliar, a medida que se adicionan

fibras. En verano se pierde el 12% de N y el 31% de P, sufriendo una disminución final en

otoño, previa a la abscisión. Los carbohidratos + lípidos se acumulan a lo largo del verano,

diluyendo el contenido de fibra. Esto parece indicar que durante este período la asimilación

supera a la demanda de compuestos de carbono, caso que no es común en las especies de

fanerófitos mediterráneos, en los que la tasa de asimilación en verano alcanza valores muy

bajos (Tretiach, 1993). Los porcentajes de retranslocación son del 58% para el N y del 61%

para el P. Probablemente estas cantidades sean inferiores a la retranslocación real, ya que,

como se ha visto en otras especies, las hojas pierden masa antes de su caída, de forma que se

concentran los elementos restantes (Pugnaire y Chapin III, 1992) (Fig. 7.13 y Tabla 7.3).

Page 157: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

157

10

15

2025

30

35

4045

50

55

E F M A M J J A S O N D

mg

por

100

mg

de h

oja

FBHC+GR

B)

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

E F M A M J J A S O N D

mg

por

100

mg

de h

oja

N

P*10

A)

Fig . 7 .13 . Variaciones mensuales de las siguientes variables en las hojas de Pistacia terebinthus : a) contenido en N y P por unidad de superficie y b) contenido de fibras (FB) ycarbohidratos + grasas (HC+GR)

Quercus coccifera

Es un arbusto perennifolio, de hojas pequeñas y esclerófilas. Su madera es de

porosidad difusa y con vasos relativamente grandes y poco numerosos por unidad de

superficie (Tabla 7.2).

La prefloración, floración, crecimiento vegetativo e inicio de la maduración del fruto

coinciden en gran medida, concentrándose entre abril y mayo. A diferencia de las otras dos

especies de Quercus estudiadas, la maduración del fruto requiere unos 17 meses, desde mayo-

junio al otoño del siguiente año. Este proceso no es homogéneo, ya que hasta la primavera

siguiente apenas aumenta el tamaño de la bellota y a partir de entonces el desarrollo es muy

rápido. En las cuatro localidades estudiadas el fruto cae en octubre, mientras que en el sur de

Francia este proceso se extiende hasta diciembre. La abscisión de las hojas se concentra entre

mayo y junio, al final del crecimiento vegetativo, aunque parece que puede continuar algunos

meses más. La duración media de las hojas oscila entre uno y tres años, variando bastante

según las condiciones ambientales. En el verano de 1993, los ejemplares de Peñaflor y

Alcubierre mantenían casi exclusivamente hojas de la última cohorte, aunque en septiembre de

1992 muchas ramas de los mismos individuos de Alcubierre contaban con tres cohortes de

hojas (Fig. 7.14).

Page 158: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

158

Quercus coccifera

Crecimiento vegetativoFormación de yemas floralesFloraciónMaduración del frutoDiseminación del frutoAbscisión foliar

Agüero Longevidad foliar: 13-25 meses

Olvena Longevidad foliar: 13-25 meses

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Alcubierre Longevidad foliar: 12-25 meses

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Sur de Francia Longevidad foliar: 25-27 meses

Peñaflor Longevidad foliar: 13-25 meses

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Fig. 7.14. Diagramas fenológicos de Quercus coccifera procedentes de variaspoblaciones. El primero está tomado de Floret et al. (1989). Las barras abiertasseñalan los períodos en que las fenofases pueden aparecer de forma ocasional.

Page 159: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

159

Quercus gr. faginea

Es un árbol caducifolio o marcescente, de hojas más grandes y de menor masa

específica que su congéneres perennifolios. La madera es de porosidad en anillo, con vasos

grandes y poco numerosos por unidad de superficie (Tabla 7.2).

Hemos incluido la ficha fenomorfológica de Quercus x subpyrenaica , realizada por G.

Montserrat en el Boalar de Jaca y la de Q. pubescens de Floret et al. (1989) del sur de

Francia, para poder cubrir una mayor rango ambiental, ya que ambas son bastante similares

ecológica y funcionalmente a Q. faginea.

Entre abril y mayo coinciden la formación de yemas florales, la floración, el

crecimiento vegetativo y el inicio de la maduración del fruto. Existe un desfase de un mes en la

iniciación de estas fenofases entre la población más meridional de Alcubierre, donde se inician

en abril, y la más septentrional de Jaca, donde se inician en mayo. El crecimiento vegetativo es

muy rápido, completándose en poco más de un mes. Si llueve suficientemente en verano, se

puede reanudar el crecimiento de un reducido porcentaje de las ramas, como ocurrió en Agüero

en 1992 y en el sur de Francia. En los montes de Málaga, Cabezudo et al. (1993) señalan un

período de crecimiento entre abril a junio, y Q. pubescens en el sur de Francia lo hace durante

abril y mayo (Floret et al., 1989). Dado que los árboles con madera de porosidad en anillo

desarrollan los dolicoblastos en muy poco tiempo (Lechowicz, 1984), es probable que estos

largos períodos respondan a un crecimiento secuencial entre distintos individuos de la

población. El desarrollo de la bellota se extiende hasta octubre-noviembre y su diseminación se

produce durante estos dos meses. Las hojas caen mayoritariamente en el mes de noviembre,

aunque una pequeña proporción permanecieron en las ramas, verdes (sólo en la parte inferior

de los árboles, en rebrotes y en plántulas) o secas, hasta la primavera siguiente, antes de la

aparición de las nuevas. Sin embargo, la longevidad normal oscila entre cinco y siete meses.

Escudero et al. (1987) detectan un pequeño pico de abscisión estival en una localidad próxima

a Salamanca, que en nuestro seguimiento de Agüero no aparece. Los patrones fenológicos de

Q. pubescens y Q. x subpyrenaica son básicamente iguales a los de Q. faginea (Fig. 7.15).

Page 160: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

160

Quercus gr. faginea

Crecimiento vegetativoFormación de yemas floralesFloración

Maduración del frutoDiseminación del frutoAbscisión foliar

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Sur de Francia (Quercus pubescens) Longevidad foliar: 6-8 meses

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Jaca (Quercus x subpyrenaica) Longevidad foliar: 5-6 meses

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Alcubierre (Quercus faginea) Longevidad foliar: 6-7 meses

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Agüero (Quercus faginea) Longevidad foliar: 6-7 meses

Fig. 7.15. Diagramas fenológicos de Quercus faginea procedentes de variaspoblaciones. El primero está tomado de Floret et al. (1989) y el segundo deMontserrat Martí (no publicado). Las barras abiertas señalan los períodosen que las fenofases pueden aparecer de forma ocasional.

Las hojas alcanzan su peso final al segundo o tercer mes de vida. En agosto se observa

una pérdida de masa foliar, más marcada en Agüero que en Alcubierre, que coincide con un

descenso poco importante de los nutrientes. Los carbohidratos + lípidos sólo experimentan

variaciones paralelas a las de las fibras. Hay una pequeña recuperación de nutrientes en otoño,

antes de iniciarse la retranslocación final, que afecta en torno al 60 % del N y del P en

Alcubierre, y al 80% en Agüero (Fig. 7.16 y Tabla 7.3).

Page 161: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

161

5

7

9

11

13

15

E F M A M J J A S O N D

mg

por

cm2

de h

oja

MEF

A)

0

1

2

3

4

5

6

7

8

E F M A M J J A S O N D

mg

por

cm2

de h

oja

FBHC+GR

C)

0,00

0,05

0,10

0,15

0,20

0,25

0,30

E F M A M J J A S O N D

mg

por

cm2

de h

oja

N

P*10

B)

5

7

9

11

13

15

E F M A M J J A S O N D

MEF

A)

0

1

2

3

4

5

6

7

8

E F M A M J J A S O N D

FBHC+GR

C)

0,00

0,05

0,10

0,15

0,20

0,25

0,30

E F M A M J J A S O N D

N

P*10

B)

Fig . 7 .16 . Variaciones mensuales de las siguientes variables en las hojas de Quercus faginea : a)masa específica foliar (MEF) b) contenido en N y P por unidad de superficie y c) contenido de fibras(FB) y carbohidratos + grasas (HC+GR)

Quercus ilex subsp. ballota

Es un árbol perennifolio con hojas esclerófilas de tamaño medio. La madera es de

porosidad difusa, con vasos de diámetro grande y poco numerosos por unidad de superficie

(Tabla 7.2).

El patrón fenológico es similar al de la especie anterior. La formación de yemas flora-

les, la floración, el crecimiento y el inicio de la fructificación se solapan durante un mes, entre

Page 162: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

162

abril y mayo, aunque el crecimiento dura entre un mes y medio y dos meses y medio. Existe

una gradación del momento en que se inicia el crecimiento, desde marzo, en las localidades

más bajas (Peñaflor, Alcubierre), hasta mayo en la más alta (Jaca), pasando por Olvena,

Agüero, montes de Málaga (Cabezudo et al., 1993) y sur de Francia (Q. ilex subsp. ilex,

Floret et al., 1989), donde lo hace en abril. Floret et al. (1989) y De Lillis y Fontanella (1992)

señalan un segundo período de crecimiento, entre julio y septiembre y en septiembre,

respectivamente, que nosotros no hemos observado durante los años de estudio, tal vez debido

a que la precipitación estival no fue suficiente para iniciar este segundo crecimiento. La

maduración del fruto requiere unos 5-7 meses, diseminándose las bellotas en torno a

noviembre (en Peñaflor este proceso se adelantó un mes y las bellotas cayeron sin estar

completamente formadas). Cabezudo et al. (1992) y Floret et al. (1989) señalan que la caída

del fruto se extiende hasta enero. La abscisión foliar, determinada a partir de las trampas

colocadas en Agüero (Fig. 7.4), se produce de forma gradual entre mayo y enero, con dos

picos de máxima caída en junio y en agosto. Este patrón es similar al que detectaron Escudero

et al. (1987) en una población de Salamanca, aunque difiere ligeramente del indicado por

Floret et al. (1989), donde el segundo pico de abscisión se inicia en septiembre y se extiende

hasta el invierno. La longevidad foliar oscila entre dos y tres años, aunque en Peñaflor muchas

hojas apenas superaron un año. Escudero et al. (1992) citan una longevidad media de 25

meses y máxima de 40 en poblaciones de Salamanca (Fig. 7.17).

La masa específica de las hojas nacidas en primavera del 93 se estabiliza en dos o tres

meses. En las hojas de 1992 de Peñaflor y Agüero se observa un descenso de peso por unidad

de área, antes de iniciarse el crecimiento de los dolicoblastos (en febrero y marzo,

respectivamente). Esto puede ser consecuencia de una exportación de nutrientes y de consumo

de reservas de carbono, posiblemente para abastecer dicho crecimiento. Entre junio y julio se

produce un nuevo y más importante descenso de nutrientes en las mismas hojas (33-39% de N

y 40-49% de P) y, en menor medida, de reservas de carbono, que hacen descender la masa

específica. Este proceso coincide con el inicio de la aridez estival, el final del crecimiento y el

principio de la fructificación. El escaso éxito de fructificación observado en las dos

poblaciones más áridas (Alcubierre y Peñaflor) podría relacionarse con una limitación de

recursos durante el verano. En otoño se recuperan parte de los nutrientes exportados y se

acumulan reservas carbonadas (Fig. 7.18 y Tabla 7.3).

Page 163: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

163

Quercus ilex

Crecimiento vegetativoFormación de yemas floralesFloraciónMaduración del fruto

Diseminación del frutoAbscisión foliar

Longevidad foliar: 36 mesesSur de Francia (Quercus ilex subsp. ilex)

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Longevidad foliar: 24-40 mesesAgüero (Quercus ilex subsp. ballota)

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Longevidad foliar: 25-40 mesesOlvena (Quercus ilex subsp. ballota)

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Longevidad foliar: 24-36 mesesAlcubierre (Quercus ilex subsp. ballota)

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Longevidad foliar: 15-30 mesesPeñaflor (Quercus ilex subsp. ballota)

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Jaca (Quercus ilex subsp. ballota) Longevidad foliar: 22-42 meses

Fig. 7.17. Diagramas fenológicos de Quercus ilex (subsp. ilex en el sur deFrancia y ballota en el resto) procedentes de varias poblaciones. El primero estátomado de Floret et al. (1989) y el segundo de Montserrat Martí (no publicado).Las barras abiertas señalan los períodos en que las fenofases pueden aparecer deforma ocasional.

Page 164: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

164

5

10

15

20

25

30

35

J A O D E M M J S N

mg

por

cm2

de h

oja

MEF

Cohorte de 1992Cohorte de 1993A)

02468

1012141618

J A O D E M M J S N

mg

por

cm2

de h

oja

FBHC+GR

C)

0,00

0,10

0,20

0,30

0,40

0,50

J A O D E M M J S N

mg

por

cm2

de h

oja

N

P*10

B)

5

10

15

20

25

30

35

M J S N F A J A O D

MEF

Cohorte de 1992Cohorte de 1993A)

02468

1012141618

M J S N F A J A O D

FBHC+GR

C)

0,00

0,10

0,20

0,30

0,40

0,50

M J S N F A J A O D

NP*10

B)

5

10

15

20

25

30

35

J A O D E M M J S N

MEF

Cohorte de 1992Cohorte de 1993A)

02468

1012141618

J A O D E M M J S N

FBHC+GR

C)

0,000,050,100,150,200,250,300,350,400,450,50

J A O D E M M J S N

NP*10

B)

Fig . 7 .18 . Variaciones mensuales de las siguientes variables en dos cohortes de hojas de Quercus ilex subsp. ballota : a) masa específica foliar (MEF) b) contenidoen N y P por unidad de superficie y c) contenido de fibras (FB) y carbohidratos + grasas (HC+GR)

Page 165: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

165

La eficiencia de retranslocación que hemos calculado en Agüero a partir de las hojas

recogidas en las trampas alcanza un 71% para el N y un 68% para el P, utilizando las

concentraciones por unidad de área foliar, y un 60% y un 54%, respectivamente, con

concentraciones por unidad de peso seco. Estos datos superan bastante las cifras dadas por

otros autores (29.7% para el N, Escudero et al., 1992; 47-52% para el N y 57-62% para el P,

Sabaté et al., 1995; 33% para el N y un 43% para el P, Mayor y Rodà, 1992). En los dos

primeros trabajos se hacen los cálculos sobre concentraciones con base en el área y en el

último con base en el peso seco.

Rhamnus alaternus

Es un arbusto perennifolio que, en la zona estudiada, posee hojas pequeñas,

relativamente mesomorfas, madera de porosidad difusa con vasos muy estrechos y numerosos

(Tabla 7.2).

El ciclo fenológico se parece bastante al de Buxus sempervirens. Se caracteriza por

unas fenofases bastante largas y con escaso grado de superposición, que en conjunto ocupan

el año entero. Las yemas florales se empiezan a formar en otoño (octubre o noviembre), crecen

lentamente durante el invierno y se abren en primavera, en febrero-marzo en las localidades

más cálidas y en abril-mayo en la más septentrional. En el sur de Francia las yemas florales se

desarrollan entre enero y febrero, posiblemente gracias a un invierno más benigno. La

floración dura uno o dos meses, dando paso a la maduración del fruto, que se produce entre

abril y julio en los puntos más áridos y entre mayo y septiembre en Jaca; en el sur de Francia

este proceso es más largo (entre mayo y octubre). El crecimiento vegetativo parece seguir un

patrón oportunista, ya que se produce siempre que ni el frío ni la sequía lo impidan. Por un

lado, las poblaciones de Jaca y Zaragoza-Aula Dei crecen entre primavera y principio de

verano; por otro la población de Olvena, aunque crece principalmente en primavera, también

puede hacerlo en otoño e invierno, posiblemente gracias a su localización en un enclave

abrigado. Alcubierre representa una situación intermedia, con un crecimiento primaveral, una

parada en verano, y un reinicio parcial en otoño. En el sur de Francia la aridez estival parece

menos marcada, y esta especie crece sin interrupción de mayo a agosto. La abscisión foliar se

concentra en verano, aunque puede extenderse a los meses de otoño. La longevidad de las

hojas oscila entre seis meses y más de dos años, aunque con frecuencia, apenas supera un

año. En el sur de Francia la longevidad señalada es de 24-26 meses (Fig. 7.19).

Page 166: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

166

Rhamus alaternus

Crecimiento vegetativoFormación de yemas floralesFloración

Maduración del frutoDiseminación del frutoAbscisión foliar

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Sur de Francia Longevidad foliar: 24-26 meses

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Jaca Longevidad foliar: 13-16 meses

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Olvena Longevidad foliar: 15-26 meses

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Alcubierre Longevidad foliar: 6-25 meses

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Zaragoza-Aula Dei Longevidad foliar: 14-26 meses

Fig. 7.19. Diagramas fenológicos de Rhamnus alaternus procedentes devarias poblaciones. El primero está tomado de Floret et al. (1989) y elsegundo de Montserrat Martí (no publicado). Las barras abiertas señalan losperíodos en que las fenofases pueden aparecer de forma ocasional.

Page 167: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

167

Viburnum tinus

Es un arbusto perennifolio, de hojas grandes y relativamente mesomorfas. Su madera

es de porosidad difusa, con vasos pequeños y densamente distribuidos (Tabla 7.2).

Presenta fenofases bastante largas, que se superponen muy poco. Las yemas florales

empiezan a desarrollarse en verano u otoño, pasan el invierno sin cambios y se abren cuando

las temperaturas comienzan a subir, a final de esta estación, aunque tampoco es raro que se

empiecen a abrir en pleno invierno. En comparación con el resto de las especies, florece

tempranamente y lo hace de forma secuencial, esto es, las yemas se abren sucesivamente, pu-

diendo durar este proceso hasta tres meses. En Zaragoza-Aula Dei y en Olvena el crecimiento

Viburnum tinus

Crecimiento vegetativo

Formación de yemas floralesFloraciónMaduración del frutoDiseminación del frutoAbscisión foliar

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Sur de Francia Longevidad foliar: 12-14 (24) meses

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Agüero Longevidad foliar: 14-26 meses

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Olvena Longevidad foliar: 14-24 meses

ENE FEB MAR ABR MAY JUN JUL AGO SEP NOV DICOCT

Zaragoza-Aula Dei Longevidad foliar: 15-27 meses

Fig. 7.20 Diagramas fenológicos de Viburnum tinus procedentes de variapoblaciones. El primero está tomado de Floret et al. (1989). Las barrasabiertas señalan los períodos en que las fenofases pueden aparecer deforma ocasional

Page 168: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

168

5

7

9

11

13

15

17

19

J A O D E M M J S N

mg

por

cm2

de h

oja

MEF

Cohorte de 1992Cohorte de 1993A)

0

2

4

6

8

10

12

J A O D E M M J S N

mg

por

cm2

de h

oja

FBHC+GR

C)

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

J A O D E M M J S N

mg

por

cm2

de h

oja

N

P*10

B)

Fig . 7 .21 . Variaciones mensuales de las siguientes variables endos cohortes de hojas de Viburnum tinus : a) masa específicafoliar (MEF) b) contenido en N y P por unidad de superficie y c)contenido de fibras (FB) y carbohidratos + grasas (HC+GR)

vegetativo se inicia en febrero y se

extiende hasta julio, mientras que

en Agüero, donde las

temperaturas son más bajas, no se

inicia hasta abril y se prolonga

hasta agosto. La maduración del

fruto requiere unos cinco o seis

meses, entre marzo/abril y

septiembre/octubre. Aunque la

abscisión foliar no ha sido

definida con mucha precisión,

parece que puede producirse a lo

largo del verano, otoño e

invierno, con un máximo en

verano. Cabezudo et al. (1993)

señalan el período de caída de las

hojas entre junio y julio, mientras

que Floret et al. (1981) lo sitúan

entre mayo y junio. La longevidad

foliar oscila entre 12 y 27 meses

(Fig. 7.20).

La masa específica de la nueva cohorte de hojas no se estabiliza hasta agosto. Las hojasdel año anterior sufren en febrero una pérdida de peso por unidad de área, provocada por undescenso de N y carbohidratos + lípidos, antes del inicio del crecimiento vegetativo. En mayose recuperan ambas fracciones, especialmente la segunda, tal vez debido a unas condiciones detemperatura y humedad más favorables para la absorción y la asimilación. En junio se produceun nuevo descenso de peso, coincidiendo con el inicio de la sequía estival. Durante este perío-do de estrés el contenido en N por unidad de área desciende en las hojas de 1992 un 33% y elde P un 37%, volviéndose a recuperar a final de año (de octubre a diciembre) cuando laslluvias otoñales han recargado el perfil del suelo y las fenofases que más recursos demandanse han completado. Las reservas de carbono se mantienen altas desde julio y caen de nuevo ennoviembre y diciembre (Fig. 7.21 y Tabla 7.3).

Page 169: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

169

7.4 Discusión

La zona de estudio se caracteriza por la existencia de dos períodos desfavorables para la

producción fotosintética, el invierno por las bajas temperaturas y el verano por la sequedad

(Mitrakos, 1980). Este hecho condiciona notablemente la distribución de las fenofases en el

tiempo, de forma que todas las especies procuran evitar que su época de mayor demanda de

recursos coincida con dichos períodos de estrés climático. A continuación compararemos los

patrones fenomorfológicos de las especies estudiadas, tratando de buscar convergencias

explicables por una estructura común.

Crecimiento, formación de yemas florales y floración

El crecimiento en las plantas está regulado por un equilibrio interno entre sustancias

promotoras e inhibidoras, cuyos niveles se ven alterados por fluctuaciones ambientales. Entre

los diversos estímulos que pueden inhibir el crecimiento se encuentran las bajas temperaturas y

el estrés hídrico (Kozlowski, 1971) .

La iniciación del crecimiento es temprana en B. sempervirens y V. tinus, tardía en P.

lentiscus, excepto en el sur de Francia, e intermedia en Quercus spp., P. terebinthus, C.

australis y A. unedo. Las ramas de R. alaternus empiezan a crecer bastante tarde en todas las

localidades, excepto en Olvena, donde crece ya desde invierno. Las dos especies más

tempranas poseen madera de porosidad difusa y vasos xilemáticos muy estrechos. Tal

característica les confiere una elevada resistencia frente a la cavitación por frío (Tyree et al.,

1994), de forma que pueden conservar gran parte de su funcionalidad al inicio de la primavera,

pudiendo empezar a crecer inmediatamente. Por el contrario, las especies con vasos más

anchos y susceptibles de cavitar, probablemente pierdan gran parte de su conductividad

hidráulica en invierno y tengan que formar un nuevo anillo antes de empezar a crecer

(Lechowicz, 1984). Este argumento no explica la existencia de especies de hoja más tardía y

con vasos medianos (P. lentiscus) o pequeños (R. alaternus). Estos casos podrían deberse a

un origen extramediterráneo de las especies (Lechowicz, 1984).

Dado que el crecimiento y la reproducción se abastecen de los mismos recursos

(Mooney et al., 1974; Lechowicz, 1995), la capacidad de poder desarrollar ambos procesos

simultáneamente es limitada. Hemos distinguido dos grupos de patrones fenológicos, según el

grado de solapamiento de las fenofases, de forma similar a la clasificación que Baker et al.

(1982) hacen con varias especies mediterráneas.

Page 170: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

170

a) Celtis australis, Pistacia terebinthus, Quercus coccifera, Q. faginea y Q. ilex subsp.

ballota concentran el desarrollo de las yemas florales, la floración y el crecimiento vegetativo

en la primavera, antes del inicio del verano. El quejigo y la encina pueden restablecer el

crecimiento en verano o en otoño, aunque ello solo afecta a una parte de las ramas (Floret et

al., 1989; De Lillis y Fontanella, 1992; Cabezudo et al., 1993).

Este grupo incluye los tres caducifolios estudiados, que poseen maderas con porosidad

en anillo o semianillo, y dos perennifolios, Q. coccifera y Q. ilex subsp. ballota, con madera

de porosidad difusa. Sin embargo, las cinco especies muestran un carácter común, y es que el

diámetro medio de los vasos más grandes de su xilema supera las 50 micras. Dado que la tasa

de flujo del agua por el xilema es proporcional al diámetro de los vasos elevado a la cuarta

potencia (Zimmermann, 1983), es probable que la capacidad de abastecer las demandas de

varias fenofases a la vez, esté limitada por la eficiencia de transporte por el xilema. Además,

las especies caducifolias, tienen más necesidad de concentrar sus fenofase, debido a la menor

duración de su período vegetativo, parte del cual corresponde con el período de aridez.

La comparación de los diagramas fenológicos de cada una de estas especies entre

distintas localidades, muestra escasas variaciones. Únicamente observamos un retraso general

en las poblaciones de localidades más frías respecto a las de sitios más cálidos, que demuestra

una mayor implicación de la temperatura que del fotoperíodo en el desencadenamiento de las

fenofases, como suele ocurrir en los árboles caducifolios de zonas templadas (Lechowicz,

1995).

b) Arbutus unedo, Buxus sempervirens, Rhamnus alaternus y Viburnum tinus, alargan

y ralentizan sus fenofases, adelantando o atrasando el desarrollo de yemas florales y flores

respecto al crecimiento. Mooney et al. (1974) sugieren que el hecho de que las funciones en

las que invierte el carbono se vayan alternando, constituye una forma de economizar los

recursos. Excepto en A. unedo, las yemas florales tardan mucho en desarrollarse, pues son

visibles ya en verano u otoño y no se abren hasta la primavera. Estas especies son arbustos

perennifolios, con madera de porosidad difusa o en semianillo y xilema cuyos vasos tienen un

diámetro máximo medio inferior a 45 micras. La menor conductividad hidráulica que esto

implica, parece imponer un límite a la tasa de conducción de recursos, y posiblemente también

a la capacidad de solapar crecimiento y reproducción. Tal estructura del xilema puede constituir

un mecanismo de control para moderar y regular el consumo, evitando así que los recursos se

agoten antes de que se termine el verano.

Dentro de este grupo se ha observado una plasticidad fenológica notablemente superior

a la del anterior, es decir, existe un mayor grado de indeterminación en el período de

Page 171: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

171

crecimiento. En particular, B. sempervirens, R. alaternus y V. tinus (que son los que poseen

vasos más pequeños), parecen capaces de crecer en cualquier momento del año, siempre que

las condiciones sean más o menos propicias.

P. lentiscus constituye un caso intermedio. Con una madera de porosidad en semianillo

y un diámetro máximo medio de los vasos de 45 micras, desarrolla las yemas florales en un

período corto de tiempo y muestra cierto solapamiento de fenofases.

Fructificación

La fructificación es un proceso que puede demandar gran cantidad de energía. En

árboles frutales puede llegar a consumir hasta el 35% del carbono asimilado durante el año

(Larcher, 1980). Aunque en especies forestales no se alcanzan valores tan altos, también

supone un importante sumidero de recursos, especialmente si los frutos son de gran tamaño.

Así es frecuente que en árboles se alternen años de cosechas cuantiosas con años de

fructificación nula, siendo notablemente inferior la biomasa foliar que se produce en los

primeros (Kozlowski, 1962b). Normalmente, las reservas no se invierten en la formación del

fruto hasta que no ha finalizado el crecimiento (Mooney y Hays, 1973), fenofase de carácter

prioritario durante la primavera (McLaughling y McConathy, 1979).

El desarrollo de los frutos se inicia a final de primavera o principio de verano en todas

las especies, excepto en el madroño, que lo hace en invierno. Esto supone que una buena parte

del proceso de maduración coincide con el mínimo de producción estival (o invernal, en el

caso del madroño). La mayoría de las especies diseminan el fruto en el otoño siguiente (C.

australis, P. lentiscus, P. terebinthus, Q. faginea, Q. ilex, V. tinus), aunque otras lo hacen

hacia mediados (B. sempervirens) o finales de verano-principios de otoño (R. alaternus), y

por tanto completan esta fenofase en menos tiempo. A. unedo y Q. coccifera también

diseminan los frutos en otoño, pero necesitan más de un año para desarrollarlos. En el caso de

A. unedo este retraso está impuesto por la fenología de la floración, que se produce durante el

otoño, de forma que la iniciación del fruto pronto tropieza con el descenso térmico invernal y

la caída de la tasa de asimilación que ello implica (Larcher, 1980). Cuando se restablecen las

condiciones óptimas, el fruto en desarrollo tiene que compartir los recursos con el crecimiento

vegetativo y, más tarde, con la floración. Este período de reproducción tan atípico en las zonas

templadas puede ser un carácter remanente de una adaptación a un clima tropical pretérito

(Lechowicz, 1984; Cabezudo et al., 1993). El caso de Q. coccifera es distinto. La incapacidad

para completar la maduración de sus voluminosas bellotas en una sola estación se puede

relacionar con el padecimiento de un estrés estival más acusado que sus congéneres arbóreos,

que ocupan zonas menos áridas y suelos más desarrollados. De hecho se ha observado que

Page 172: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

172

esta especie sufre una notable caída de potencial hídrico al final del verano y con ello, también

disminuye fuertemente su tasa de fotosíntesis (Tenhunen et al., 1985; Tenhunen et al., 1987c).

Superada la crisis estival, el otoño resulta demasiado corto para completar la maduración del

fruto. Adentrarse en la primavera con unos frutos preformados permite que éstos empiecen a

abastecerse de recursos almacenados más pronto, tal vez evitando que sean completamente

consumidos por el crecimiento.

Abscisión foliar

La tasa de mortalidad de las hojas parece depender de señales ambientales externas

(Addicot y Lyon, 1973) y de la fuerza con que otras partes del árbol demandan recursos

(Mooney y Parsons, 1973). De este modo se pueden producir diversas situaciones, según la

forma en que se organicen las funciones de la planta y las condiciones ambientales en cada

momento. Entre las especies analizadas se pueden distinguir tres modelos de abscisión foliar

(Addicott y Lyon, 1973).

a) Las tres especies caducifolias (C. australis, P. terebinthus y Q. faginea) muestran

abscisión otoñal, propia de los caducifolios de climas templados. El acortamiento del

fotoperíodo parece ser el principal factor ambiental que desencadena este proceso (Osborne,

1973). Previamente se retransloca la mayor parte del P y del N, al igual que en otras especies

caducifolias (Chapin III y Kedrowski, 1983; Del Arco et al., 1991; Nordell y Karlsson,

1995),

b) B. sempervirens, R. alaternus y V. tinus inician la abscisión entre mayo y junio

(abscisión estival), período de inicio de la aridez estival (Fig. 7.2). En este grupo la abscisión

foliar se desencadena por la competencia entre los distintos órganos de la planta por los

recursos, cuando la tasa de asimilación empieza a ser limitada por la sequía (Addicott y Lyon,

1973). Este proceso, además, favorece el restablecimiento del estatus hídrico en la planta, no

sólo por la reducción de la superficie transpiradora que ello implica, sino también porque las

hojas viejas parecen poseer un menor control estomático (Borchet, 1994).

c) A. unedo, P. lentiscus, Q. coccifera y Q. ilex empiezan a perder las hojas entre abril

y mayo, poco después de la expansión de los nuevos brotes y antes de que se haya iniciado el

estrés hídrico (abscisión vernal). La abscisión en este caso probablemente se debe a que los

órganos en desarrollo suponen un importante sumidero de recursos, que deja desabastecidas a

las hojas viejas, sin necesidad de que disminuya la tasa de asimilación (Kozlowski, 1971;

Osborne, 1973). De acuerdo con la mayor predecibilidad de la abscisión en este grupo, las

hojas viejas sufren una retirada de nutrientes durante el desarrollo de los nuevos brotes

superior a la que aparece en las especies del grupo anterior (Tabla 7.3).

Page 173: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

173

No es fácil trazar una barrera entre los dos últimos grupos, ya que en el tercero, el

proceso de abscisión se puede prolongar todo el verano. El caso de la encina, que presenta un

pico de abscisión en junio y otro en agosto, ocupa claramente una posición intermedia

(Escudero et al., 1987). Es probable que en la coscoja también suceda algo parecido, ya que

hemos observado que la cantidad de follaje que se desprende entre primavera y verano está

fuertemente controlada por el grado de aridez que soporta la planta.

Dinámica de los componentes foliares

La desviación de recursos para almacernar reservas supone una reducción de la

capacidad de crecimiento a corto plazo y, por tanto, de la capacidad competitiva (Harper,

1989). Por ello, solamente resulta rentable si aporta unos beneficios a largo plazo, como la

posibilidad de recuperación tras períodos de frío o de sequía (Bloom et al., 1985). Las

oscilaciones mensuales de componentes foliares que hemos observado, parecen indicar que las

hojas desempeñan una función de reserva de nutrientes y carbohidratos + grasas, que son

movilizados en los períodos críticos, en los que la demanda supera a la asimilación (Chapin

III, 1980; Chabot y Hicks, 1982; Chapin III y Kedrowski, 1983; Sabaté et al., 1995). Las

hojas viejas de las especies perennifolias son las más implicadas en la función de almacén de

nutrientes y carbono, disminuyendo así los gastos asociados al transporte hacia otras partes de

la planta (Bloom et al., 1985). Hemos visto que también las hojas de corta edad, tanto de

especies caducifolias como perennifolias, pueden exportar recursos en algún momento. Los

patrones de oscilación de reservas dependen del balance entre la disponibilidad de recursos en

el medio y de la demanda de los mismos en cada momento.

En Q. ilex y V. tinus se ha observado un descenso de masa de las hojas viejas al final

de invierno, previo al inicio del crecimiento. En estos casos, ni la actividad fotosintética de

estas hojas, ni la tasa de absorción de nutrientes parecen suficientes para cubrir la demanda de

recursos en un momento en que la disponibilidad de nitrógeno en el suelo es baja (Bonilla y

Rodà, 1992) y la temperatura está por debajo de las condiciones óptimas para la fijación del

carbono (Kozlowski, 1962b; Larcher, 1980) . Esta pérdida de masa foliar no es muy acusada,

ya que las hojas de años anteriores pueden cubrir con su producción parte de la demanda de

carbono. Sin embargo, la elongación de las ramas en especies caducifolias se produce cuando

la planta carece de órganos asimiladores, por lo que ha de cubrir todas sons necesisdades con

las reservas acumuladas. Diversos autores han señalado que tales reservas se encuentran en

ramas, tronco y raíces y que proceden de la acumulación de carbohidratos en períodos de

máxima asimilación y de la retranslocación de sustancias de las hojas durante su senescencia

(Kozlowski, 1962b; Mooney y Hays, 1973; Chapin III y Kedrowski, 1983). El consumo de

reservas durante el período de crecimiento ha sido observado en plantas de diversos

Page 174: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

174

ecosistemas (Mooney y Hays, 1973; Chapin III, 1980; Larcher, 1980; Helmisaari, 1990;

Tissue y Wright, 1995).

Entre el final de la primavera y el comienzo del verano, cuando se inicia el período de

aridez, las plantas acusan un descenso generalizado de sustancias de reserva en sus hojas, que

afecta tanto a las viejas como a las nuevas y tanto a especies caducifolias como perennifolias

(Larcher y Thomaser-Thin, 1988). En este momento la tasa fotosintética desciende (Tenhunen

et al., 1985; Tretiach, 1993), la sequedead limita la absorción de agua y, con ella, la de

nutrientes (Bertiller et al., 1991; De Lillis y Fontanella, 1992), al tiempo que la tasa de

respiración se hace más alta (Janzen y Wilson, 1974; Tissue y Wright, 1995). Todo esto

coincide con el período de formación de los frutos de casi todas las especies, proceso que

requiere una alto porcentaje de la asimilación neta anual (Kozlowski, 1962b; Larcher, 1980).

Solamente dos de las plantas estudiadas (Celtis australis y Q. faginea de Alcubierre) parecen

mantener una tasa fotosintética suficiente como para cubrir las necesidades de los frutos en

formación, mientras que el resto tienen que movilizar las reservas de las hojas (y posiblemente

también de otras partes de la planta) para cubrir esta demanda (Oliveira et al., 1994). Hemos

encontrado que entre las plantas estudiadas existe una correlación negativa entre los diámetros

medios máximos del xilema y el porcentaje de pérdida estival de carbohidratos + grasas (por

unidad de área foliar), lo cual significa que las especies de vasos grandes pueden mantener una

tasa fotosintética más elevada durante el verano, probablemente gracias a una estrategia de

gasto de agua mantenida por aparatos radicales profundos (Fig. 7.22).

R2 = 0.69p < 0.01

-5

0

5

10

15

20

25

30

0 20 40 60 80 100

DMx (mm)

% p

érdi

da e

stiv

al d

e H

C

Fig . 7 .22 . Regresión entre el diámetro medio máximo de losvasos del xilema (DMx) y el porcentaje de reservas de carbonoconsumidas durante el verano por las especies. El cálculo se harealizado excluyendo Q. faginea de Agüero (punto señalado).

Page 175: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

175

Las lluvias de final de verano u otoño ponen fin a la crisis estival. Este segundo

período favorable se utiliza para recargar las reservas consumidas, tanto de nutrientes como de

carbohidratos + lípidos, al igual que observan otros autores en plantas mediterráneas (Larcher,

1980; Meletiou-Christou et al., 1992; Sabaté et al., 1995). Algunos ejemplares de B.

sempervirens, P. lentiscus, Q. coccifera, R. alaternus y V. tinus, además, aprovecharon este

período para reiniciar el crecimiento. El descenso de nutrientes y reservas de carbono durante

el verano también ha sido observado por otros autores en especies mediterráneas (Larcher,

1980; De Lillis y Fontanella, 1992; Meletiou-Christou et al., 1992; Sabaté et al., 1992;

Oliveira et al., 1994).

Las especies caducifolias muestran una importante retirada de biomasa de sus hojas

antes de la abscisión. Este proceso es simultáneo o posterior a la caída de los frutos,

sugiriendo que los recursos que se retranslocan de las hojas en otoño no van a parar a los

frutos, sino que se almacenan en los tallos y raíces para cubrir necesidades futuras

(Kozlowski, 1962b; Chapin III y Kedrowski, 1983). Lechowicz (1995) llega a una

conclusión similar para explicar la escasa relación que encuentra entre las fechas de abscisión

foliar y de caída de los frutos en árboles caducifolios de zonas templadas. Por otra parte, los

datos de otros autores parecen indicar que las especie perennifolias tienen una menor eficiencia

de retranslocación que las caducifolias (Escudero et al., 1992), pero los valores que hemos

encontrado en Q. ilex y A. unedo son similares a los de las especies caducifolias, y superan

ampliamente los publicados por otros autores (Escudero et al., 1992; Mayor y Rodà, 1992;

Sabaté et al., 1995).

Podemos concluir que la distribución de fenofases en los árboles y arbustos

mediterráneos analizados, se ajustan a la existencia de dos períodos de estrés (invierno y

verano). El modelo fenomorfológico que adopta cada especie parece estar fuertemente

condicionado por la estructura de la madera, de forma similar a lo que encuentra Lechowicz

(1984) en árboles caducifolios de climas templados. Las reservas de hidratos de carbono y

nutrientes de las hojas parecen jugar un importante papel en el inicio del crecimiento y, sobre

todo, en el abastecimiento de las demandas de recursos que tienen lugar durante el período de

estrés estival, generadas en gran medida por el desarrollo de los frutos. Ello sugiere una

dependencia de los procesos de reproducción respecto a la dinámica foliar (Lechowicz, 1995).

El restablecimiento de condiciones favorables en otoño se aprovecha para recargar los recursos

consumidos y, en algunos casos, para reiniciar el crecimiento. El reciclaje de nutrientes parece

ser muy importante, tanto en caducifolios como en perennifolios, demostrándose la

importancia que tiene la eficiencia del uso de estos recursos en los ambientes mediterráneos

(Sabaté et al., 1995).

Page 176: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 177: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

Capítulo 8º

Conclusiones generales

Page 178: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 179: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

En el cuadrante NE de la península Ibérica, entre la costa vasca y el centro de la

Depresión del Ebro, se sitúa uno de los gradientes climáticos más acentuados que existen en

Europa. En tan solo 350 km se pasa de un clima oceánico, con precipitaciones por encima de

los 1000 mm anuales y suaves oscilaciones térmicas, hasta uno mediterráneo seco, con lluvias

que apenas superan los 300 mm y oscilaciones térmicas entre invierno y verano de más de 40ºC

(capítulo 2). A lo largo de todo este gradiente es posible encontrar comunidades vegetales de la

clase Quercetea ilicis. En el extremo oceánico solamente se localizan sobre suelos calizos,

incapaces de retener el agua. A medida que la mediterraneidad se va acentuando, estas

comunidades adquieren un papel cada vez más preponderante, hasta dominar completamente el

paisaje vegetal. La composición florística de los encinares cambia notablemente con el clima,

abundando en la costa elementos termófilos y exigentes en humedad (Quercus ilex subsp. ilex,

Smilax aspera, Phillyrea latifolia y Arbutus unedo) que son sustituidos por otros más

resistentes al frío y a la aridez a medida que nos acercamos al centro de la Depresión del Ebro

(Quercus ilex subsp. ballota, Quercus coccifera, Rhamnus lycioides, Rosmarinus officinalis,

etc). Asociado a este relevo de especies, se produce un empobrecimiento progresivo del

sotobosque del encinar según aumenta la aridez (capítulos 2 y 3).

Por otra parte, el estado de conservación de las comunidades a lo largo de esta zona no

es homogéneo. Las prácticas de tala, quema y pastoreo han sido muy frecuentes en los bosques

mediterráneos debido a la fuerte presión humana que existe en estas regiones desde los tiempos

del Neolítico. La composición florística de las comunidades vegetales también se ve afectada

por el tipo y la intensidad de manejo a que se han sometido (capítulo 3).

Page 180: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

180

El objetivo general de esta memoria ha sido tratar de entender las relaciones que se

establecen entre las comunidades de encinar y los factores ambientales. Hemos aprovechado la

heterogeneidad del área descrita para establecer correlaciones entre variaciones ambientales y

cambios en la vegetación. Algunas de las preguntas planteadas han sido: ¿cómo responden las

comunidades de encinar ante un incremento de estrés hídrico y de perturbación? ¿Es posible

identificar cambios en la estructura de las comunidades que ayuden a entender cómo se produce

el ajuste a las condiciones del medio? ¿En qué medida es la plasticidad morfoanatómica de una

especie responsable de que ésta pueda ocupar zonas de características climáticas contrastadas?

¿Qué mecanismos adoptan los fanerófitos del encinar para enfrentarse al estrés hídrico y a las

bajas temperaturas? Por último, ¿en qué modo el patrón fenológico de las especies contribuye a

su adaptación al medio ambiente mediterráneo? A continuación se enumeran las principales

conclusiones que se han obtenido en este estudio.

1. Los cambios florísticos que se producen en los encinares a lo largo del gradiente,

hacen que los caracteres morfológicos, anatómicos y estructurales de la comunidad varíen. Las

técnicas multivariantes utilizadas han demostrado que tales cambios se relacionan con los de

precipitación y perturbación y, en menor medida, con los de temperatura. Existe una acción

sinérgica entre los dos tipos de estrés climático, de forma que es necesaria la confluencia de

temperaturas invernales suaves y elevada precipitación para que la comunidad exhiba hojas

significativamente más grandes, vasos del xilema del tallo con conductos más anchos y madera

menos densa. Por otra parte, hemos encontrado que las tendencias asociadas al aumento de

aridez coinciden en gran medida con las asociadas a los niveles de perturbación más altos. Este

fenómeno se explica atendiendo a la degeneración de la estructura de la comunidad que produce

la acción humana. El aclarado o eliminación de la cobertura arbórea deja a los estratos inferiores

expuestos a una fuerte intensidad de radiación que incrementa la evaporación del suelo y la

transpiración de las plantas, destruyendo el microclima mésico que se genera en el seno de las

comunidades cerradas. En tales circunstancias la selección actúa en favor de arbustos de

carácter más xeromorfo, esto es, de menor talla, con hojas más pequeñas y de mayor masa

específica (capítulo 3).

2. El nicho que puede ocupar cada especie está condiciondo, entre otros caracteres, por

su talla, morfología foliar y la anatomía del xilema. En la región estudiada, las que alcanzan las

tallas mayores, y por tanto ocupan el estrato más expuesto a la radiación, nunca poseen hojas

grandes y sus vasos xilemáticos tienden a ser estrechos. La excepción la constituyen las

especies arbóreas del género Quercus (Q. ilex y Q. faginea) cuyos vasos alcanzan diámetros

muy grandes. El éxito competitivo de estas especies en las regiones mediterráneas podría

deberse a que combinan hojas que usan el agua con eficiencia, con tallos capaces de una elevada

Page 181: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

181

tasa de flujo y, probablemente, también con raíces muy desarrolladas, carácter necesario para

mantener la funcionalidad en estos ambientes. Los arbustos de comunidades abiertas tienen

superficies foliares reducidas y vasos xilemáticos estrechos, caracteres ambos que promueven

un consumo moderado del agua. Los arbustos de hojas grandes ocupan los sotobosques de las

comunidades cerradas o microclimas umbríos y mésicos. No existen en esta zona especies que

combinen grandes superficies foliares con vasos xilemáticos de diámetros muy anchos, a

excepción de algunas lianas leñosas como Clematis vitalba. Sin embargo, esta forma de

crecimiento constituye un caso especial, ya que, al utilizar como soporte a otras especies, no

necesitan invertir gran cantidad de recursos en desarrollar una estructura capaz de soportar su

propio peso (capítulo 3).

3. Además de los ajustes que se producen en las comunidades en respuesta al clima,

hemos observado que una misma especie también puede mostrar cambios estructurales a lo

largo del gradiente climático, que le permitan ajustarse a una variada gama de condiciones

ambientales. Las especies leñosas han demostrado diversas estrategias de ajuste al mismo

gradiente ambiental. Las respuestas mostradas por nueve fanerófitos, característicos del área de

estudio, respecto al gradiente de precipitación, se pueden agrupar en dos tipos: aquéllas cuyas

variaciones morfoanatómicas se correlacionan con la cantidad de precipitación que reciben al

año (Quercus ilex, Quercus coccifera, Arbutus unedo, Buxus sempervirens, Rhamnus alaternus

y Viburnum tinus) y aquéllas en las que la precipitación no parece jugar un papel decisivo

(Quercus faginea, Pistacia terebinthus y Pistacia lentiscus).

A) Interpretamos que las especies del primer grupo se abastecen fundamentalmente del

agua de precipitación, y por tanto experimentan un mayor estrés cuanto menos llueve. Entre

ellas existen dos mecanismos, no excluyentes, para reducir el gasto de agua, a medida que

aumenta la aridez. Uno consiste en reducir el tamaño de las hojas para incrementar la eficiencia

de uso de agua, como ocurre en Q. ilex, A. unedo, B. sempervirens, Rhamnus alaternus y

Viburnum tinus, y otro en reducir el diámetro de los conductos del xilema para moderar el

consumo de agua, como ocurre en Q. ilex y Q. coccifera. La asociación que se encuentra a nivel

interespecífico entre capacidad de resistencia al estrés hídrico y elevada masa específica, no

parece ampliable al nivel intraespecífico, pues solamente aparece en la encina y en el terebinto.

Esta divergencia podría deberse a que las diferencias estructurales de la hoja responsables de las

variaciones de masa específica, no son las mismas en uno y otro nivel.

B) Las especies del segundo grupo, probablemente poseen raíces profundas, que les

hacen más dependientes de los niveles freáticos y otras reservas de agua subterránea que del

agua de precipitación. Como contrapartida, nunca llegan a ser especies dominantes en las zonas

áridas, ya que su distribución se limita a aquellos puntos donde la capacidad del sustrato de

almacenar agua asegura el suministro de sus raíces (capítulos 4, 5 y 6).

Page 182: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

182

4. También hemos observado que en algunas de las especies analizadas, las variaciones

morfoanatómicas responden al frío invernal. Las especies caducifolias (Q. faginea y P.

terebinthus) muestran hojas más delgadas en las zonas con inviernos más fríos y períodos

favorables más cortos que, posiblemente, serán más rentables a corto plazo, pero vivirán menos

tiempo que la hojas más gruesas de las zonas más cálidas. Algunas de las especies perennifolias

reducen los diámetros de sus vasos (R. alaternus), o incrementan la densidad de los mismos (P.

lentiscus), a medida que el rigor invernal se acentúa, en un claro intento de reducir la

susceptibilidad de perder conductividad hidráulica por efecto de las embolias que provoca el

frío. En otros casos, las especies restringen su distribución a las zonas donde las heladas

invernales no son frecuentes (P. lentiscus, A. unedo y V. tinus). En el caso de P. lentiscus,

parece que los ajustes del xilema para soportar las bajas temperaturas no pueden superar cierto

límite y por ello no es capaz de colonizar las zonas más frías. Probablemente, este límite sea

impuesto por la estrategia que adopta frente a la aridez, que se basa en una rápida extracción de

agua, para reponer los gastos de la transpiración y, por tanto, requiere un tamaño mínimo de

vasos en el xilema para poder actuar con eficiencia. La elevada resistencia al frío que muestran

Q. ilex y Q. coccifera, especies perennifolias de vasos anchos, sin necesidad de ajustar el

diámetro de sus vasos al descenso de temperaturas, podría residir en caracteres fenológicos o en

el tipo de distribución de clases de diámetros de vasos en el xilema, pero estas posibilidades no

han sido exploradas en esta Memoria (capítulos 4, 5 y 6).

5. A. unedo y V. tinus muestran unos caracteres poco adecuados para vivir en

ambientes mediterráneos, ya que sus grandes hojas, cuando están directamente expuestas a la

radiación solar, pueden perder agua por transpiración a una tasa que la baja conductividad

hidráulica de sus xilemas no podría compensar. Por ello no viven en las partes más áridas del

gradiente, y en sus límites de distribución se refugian en umbrías y en sotobosques mésicos. A

estas características se une un ciclo fenológico con una importante actividad durante el invierno

(el madroño empieza a desarrollar sus frutos en invierno y el durillo a menudo florece en esta

estación), que también contribuye a que sean sensibles a los inviernos fríos. Estas

características refuerzan la hipótesis de que ambas especies están adaptadas a un paleoclima

tropical y en el clima mediterráneo actual deben refugiarse en enclaves donde las condiciones

son más parecidas a aquel paleoambiente (capítulos 6 y 7).

6. El patrón fenológico de las especies también forma parte de su estrategia adaptativa

para afrontar las limitaciones del ambiente y está condicionado por los caracteres estructurales y

fisiológicos de la planta. El clima mediterráneo impone limitaciones a la actividad vegetal

durante dos períodos al año, en invierno por las bajas temperaturas y en verano por la aridez.

Las especies que aprovechan al máximo la abundancia de recursos primaverales, concentrando

en este período su crecimiento, floración e inicio de la fructificación, poseen conductos

xilemáticos de diámetros amplios, capaces de albergar una tasa de flujo suficiente para abastecer

Page 183: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

183

a la vez tales funciones (Quercus faginea, Q. ilex, Q. coccifera, Celtis australis y Pistacia

terebinthus). Por el contrario, unos vasos estrechos limitan la tasa de consumo por unidad de

tiempo, obligando a las especies a extender sus fenofases a lo largo de períodos más largos y a

reducir la superposición entre ellas (Arbutus unedo, Buxus sempervirens, Rhamnus alaternus y

Viburnum tinus). P. lentiscus supone un caso intermedio entre ambas tendencias (capítulo 7).

7. Las especies con fenofases cortas y concentradas muestran un patrón mucho más

rígido que las que poseen fenofases lentas y sucesivas. Las primeras parecen regirse más por

las temperaturas, cuya variación interanual en ambientes mediterráneos no es tan fuerte como la

de las precipitaciones. Las segundas son capaces de iniciar el crecimiento, y a veces la

floración, siempre que las condiciones de humedad y temperatura sean favorables (capítulo 7).

8. En los fanerófitos mediterráneos el almacenaje de sustancias de reserva, tanto de

carbono como de nutrientes, resulta de importancia vital para superar los períodos de estrés.

Las hojas de las especies perennifolias actúan como órganos de almacén de reservas, que son

movilizadas a finales de invierno para iniciar el crecimiento vegetativo y en verano para

mantener las funciones vitales y soportar el desarrollo de los frutos. En las especies caducifolias

las hojas también exportan reservas durante el verano, indicando que los recursos que adquiere

la planta en esta estación no son suficientes para cubrir las demandas, que pueden ser muy altas

durante la formación del fruto. El inicio del crecimiento en primavera es sustentado por reservas

almacenadas en otras partes de la planta, probablemente en tallos, troncos y raíces (capítulo 7).

9. Las especies que consumen mayor cantidad de reservas de carbono en verano son las

que tienen xilemas de vasos más estrechos. Esta correlación parece indicar que la tasa de flujo

que éstos pueden proporcionar resulta insuficiente para abastecer la tasa de producción

fotosintética necesaria para abastecer por completo la demanda de recursos que generan los

frutos en fase de maduración (capítulo 7).

10. La eficiencia de retranslocación de nutrientes previa a la abscisión foliar es muy

elevada, tanto en especies caducifolias como perennifolias, no existiendo diferencias

significativas entre ambos grupos (capítulo 7).

Page 184: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 185: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

Bibliografía

Page 186: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 187: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

187

Abramson N., 1966. Teoría de la información y codificación. Paraninfo. Madrid.

Addicott F. T. y Lyon J. L., 1973. “Physiological ecology of abscission”. En: Kozlowski T.T. (ed.).Shedding of plant parts. pp. 85-124 Academic Press. New York.

Aerts R., 1995. The advantage of being evergreen. Trends in Ecology and Evolution 10: 389-430.

Allorge P.,1941. La chêne-vert et son cortège au versant atlantique du Pays Basque espagnol.Bull. Soc. Bot. de France 88: 45-60.

Amaral Franco J., 1990. "Quercus". En: Castroviejo S., Laínz M., López González G.,Montserrat P., Muñoz Garmendia F., Paiva J. y Villar L. (eds.).Flora Iberica. Vol. 2.pp. 15-36 Real Jardín Botánico, C. S. I. C. Madrid.

Arianoutsou-Faraggitaki M. y Diamantopoulos J., 1985. Comparative phenology of fivedominant plant species in maquis and phrygana ecosystems in Greece. Phyton (Austria)25: 77-85.

Arroyo M. T. K., Zedler P. H. y Fox M. D., eds. 1995. Ecology and Biogeography ofMediterranean ecosystems in Chile, California, and Australia. Ecological Studies.Springer-Verlag. New York.

Aseginolaza C., Gómez D., Lizaur X., Montserrat G., Morante G., Salaverria M. R. y Uribe-Echebarría P. M., 1987-1991. Mapa de vegetación de la Comunidad Autónoma del PaísVasco. Escala 1:25000. of Ed. Viceconsejería de Medio Ambiente del GobiernoVasco. Vitoria.

Aseginolaza C., Gómez D., Lizaur X., Montserrat G., Morante G., Salaverría M. R. y Uribe-Echebarría P. M., 1988. Vegetación de la Comunidad Autónoma del País Vasco. Publ.del Gobierno Vasco. Vitoria.

Austin M. P.,1987. Models for the analysis of species' response to environmental gradients.Vegetatio 69: 35-45.

Page 188: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

188

Axelrod D. I., 1973. "History of the Mediterranean ecosystem in California". En: Di Castri F.y Mooney H. A. (eds.). Mediterranean type ecosystems. Origin and structure. pp. 405Springer-Verlag. Berlin.

Baas P. y Carlquist S., 1985. A comparison of the ecological wood anatomy of the floras ofSouthern California and Israel. IAWA Bull. n. s. 6: 349-353.

Baas P. y Schweingruber F. H.,1987. Ecological trends in the wood anatomy of trees, shrubsand climbers from Europe. IAWA Bull. 8: 245-274.

Baas P., Werker E. y Fahn A.,1983. Some ecological trends in vessel characters. IAWA Bull.n. s. 4: 141-159.

Baker G. A., Rundel P. W. y Parsons D. J.,1982. Comparative phenology and growth in threechaparral shrubs. Bot. Gaz. 143: 94-100.

Barajas-Morales J.,1985. Wood structural differences between trees of two tropical forests inMexico. IAWA Bulletin n. s. 6: 355-364.

Barkman J. J., 1988. "New systems of plant growth forms and phenological plant types". En:Werger M. J. A., Aart P. J. M. v. d., During H. J. y Verhoeven J. T. A. (eds.).Plant formand vegetation structure. pp. 9-44 SPB Academic Pub. The Hague.

Becker M., 1961. Análisis y valoración de piensos y forrajes. Acribia. Zaragoza.

Bertiller M. R., Beekow A. M. y Coronato F.,1991. Seasonal environmental variation andplant phenology in arid Patagonia (Argentina). Journal of Arid Environments 21: 1-11.

Beyschlag W., Lange O. L. y Tenhunen J. D., 1987. “Diurnal patterns of leaf internal CO2partial pressure of the schlerophyll shrub Arbutus unedo growing in Portugal”. En:Tenhunen J. D., Catarino F. M., Lange O. L. y Oechel W. C. (eds.).Plant response tostress. Functional analysis in Mediterranean ecosystems. NATO ASI Series, Vol. G.15. pp. 355-368 Springer-Verlag. Berlin.

Bielza de Ory V., 1989. “Aragón”. En:Atlas de España. Editorial Planeta-De Agostini.Barcelona.

Bilger W., Schreiber U. y Lange O. L., 1987. “Chlorophyll fluorescence as an indicator ofhead induced limitation of photosynthesis in Arbutus unedo”. En: Tenhunen J. D.,Catarino F. M., Lange O. L. y Oechel W. C. (eds.).Plant response to stress.Functional analysis in Mediterranean ecosystems. NATO ASI Series, Vol. G. 15. pp.391-400 Springer-Verlag. Berlin.

Bloom A. J., Chapin III F. S. y Mooney H. A., 1985. Resource limitation in plants-aneconomic analogy. Ann. Rev. Ecol. Syst. 16: 363-392.

Blue M. P. y Jensen R. J.,1988. Positional and seasonal variation in oak (Quercus; Fagaceae)leaf morphology. Amer. J. Bot. 75: 939-947.

Bonilla D. y Rodà F., 1992. Soil nitrogen dynamics in a holm oak forest. Vegetatio 99-100:247-257.

Borchet R.,1994. Soil and stem water storage determine phenology and distribution oftropical dry forest trees. Ecology 75: 1437-1449.

Borghetti M., De Angelis P., Raschi A., Scarascia Mugnozza G. y Valentini R., 1992.“Relations between sap velocity and cavitation in broad-leaved trees”. En: BorghettiM., Raschi A. y Grace J. (eds.). Global changes and plant water relations. pp. 114-128

Page 189: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

189

Cambridge University Press. Cambridge.

Braun-Blanquet J., 1936. La chênaie d'Yeuse méditerranéenne (Quercion ilicis). SIGMAMem. Soc. Sci. Nat. Nîmes, Comm. 45

Braun-Blanquet J., 1964. Pflanzensoziologie. 3 Ed. Aufl. Springer. Wien-New York.

Braun-Blanquet J. y Bolòs O.,1957. Les groupements vegetaux du Bassin Moyen de l'Ebre etleur dynamisme. Ann. Est. Exp. Aula Dei 5: 1-266.

Brzeziecki B. y Kienast F.,1994. Classifying the life-history strategies of trees on the basis ofthe Grimian model. Forest Ecology and Management 69: 167-187.

Cabezudo B., Pérez Latorre A. V., Navarro T. y Nieto Caldera J. M.,1993. Estudiofenomorfológico en la vegetación del sur de España. II. AlcornocalesMesomediterráneos (Montes de Málga, Málaga). Acta Botanica Malacitana 18: 179-188.

Canadell J., Lloret F. y López-Soria L.,1991. Resprouting vigour of two mediterranean shrubspecies after experimental fire treatments. Vegetatio 95: 119-126.

Carlquist S., 1975. Ecological strategies of xylem evolution. Univ. California Press. Berkeley.

Carlquist S., 1977. Ecological factors in wood evolution: a floristic approach. Amer. J. Bot.64: 887-896.

Carlquist S., 1980. Further concepts in ecological wood anatomy, with comments on recentwork in wood anatomy and evolution. Aliso 9: 499-553.

Carlquist S., 1988. Comparative wood anatomy. Systematic, ecological and evolutionaryaspects of dicotyledon wood. Springer-Verlag. Berlin.

Carlquist S. y Hoekman D. A., 1985. Ecological anatomy of the woody southern Californianflora. IAWA Bull. n. s. 6: 319-347.

Castroviejo S., Acedo C., Cirujano S., Laínz M., López González G., Montserrat P., MoralesR., Muñoz Garmendia F., Navarro C., Paiva J. y Soriano C., eds. 1993. Flora Iberica.Vol. 3-4. Real Jardín Botánico, C. S. I. C. Madrid.

Cody M. L. y Mooney H. A., 1978. Convergence versus nonconvergence in mediterranean-climate ecosystems. Ann. Rev. Ecol. Syst. 9

Correia O. A. y Catarino F. M.,1994. Seasonal changes in soil-to-leaf resistance in Cistus sp.and Pistacia lentiscus. Acta Oecologica 15: 289-300.

Cowling R. M. y Campbell B. M., 1980. Convergence in vegetation structure in themediterranean communities of California, Chile and South Africa. Vegetatio 43: 191-197.

Cowling R. M. y Campbell B. M., 1983. A comparison of fynbos and non-fynbos coenoclinesin the lower Gamtoos River Valley, southeastern Cape, South Africa. Vegetatio 53:161-178.

Chabot B. F. y Chabot J. F.,1977. Effects of light and temperature on leaf anatomy andphotosynthesis in Fragaria vesca. Oecologia (Berl.) 26: 363-377.

Chabot B. F. y Hicks D. J.,1982. The ecology of leaf life spans. Ann. Rev. Ecol. Syst. 13: 229-259.

Page 190: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

190

Chapin III F. S.,1980. The mineral nutrition of wild plants. Ann. Rev. Ecol. Syst. 11: 233-260.

Chapin III F. S., 1989. The cost of tundra plant structures: evaluation of concepts andcurrencies. The American Naturalist 133: 1-19.

Chapin III F. S., Bloom A. J., Field C. B. y Waring R. H., 1987. Plant responses to multipleenvironmental factors. BioScience 37: 49-57.

Chapin III F. S. y Kedrowski R. A., 1983. Seasonal changes in nitrogen and phosphorousfractions and autum retranslocation in evergreen and deciduous taiga trees. Ecology 64:376-391.

Chapin III F. S., Schulze E.-D. y Mooney H. A., 1990. The ecology and economics of storagein plants. Annu. Rev. Ecol. Syst. 21: 423-447.

Choong M. F., Lucas P. W., Ong J. S. Y., Pereira B., Tan H. T. W. y Turner I. M., 1992. Leaffracture toughness and sclerophylly. New Phytol. 121: 597-610.

Christodoulakis N. S.,1992. Structural diversity and adaptations in some Mediterraneanevergreen sclerophyllous species. Environmental and Experimental Botany 32: 295-305.

De Lillis M. y Fontanella A., 1992. Comparative phenology and growth in different speciesof the Mediterranean maquis of central Italy. Vegetatio 99-100: 83-96.

De Terán M. y Sole Sabaris L., 1977. Geografía regional de España. Ariel.

Del Arco J. M., Escudero A. y Vega Garrido M.,1991. Effects of site characteristics onnitrogen retranslocation from senescing leaves. Ecology 72: 701-708.

Di Castri F., 1981. "Mediterranean-type shrublands of the world". En: Di Castri F., GoodallD. W. y Specht R. L. (eds.). Mediterranean-type shrublands. Ecosystems of the world11. pp. 1-52 Elsevier. Amsterdam.

Di Castri F., Goodall D. W. y Specht R. L., eds. 1981. Mediterranean-type shrublands.Ecosystems of the world 11. Elsevier. Amsterdam.

Di Castri F. y Mooney H. A., eds. 1973. Mediterranean type ecosystems. Origin andstructure. Ecological Studies 7. Springer-Verlag. Berlin.

Duhme F. y Hinckley T. M.,1992. Daily and seasonal variation in water relations of macchiashrubs and trees in France (Montpellier) and Turkey (Antalya). Vegetatio 99-100: 185-198.

Ellemberg H., 1963. Vegetation Mitteleuropas mit den Alpen. Fishcher. Jena.

Ellemberg H., 1988. Vegetation ecology of Central Europe. Cambridge University Press.Cambridge.

Escudero A., Del Arco J. M. y Garrido M. V., 1992. The efficiency of nitrogenretranslocation from leaf biomass in Quercus ilex ecosystems. Vegetatio 99-100: 225-237.

Escudero A., Del Arco J. M. y Moreiro M. S.,1987. Variation saisonnière de la production dela litière par plusieurs espèces ligneuses méditerranéennes. Forêt Méditerranéenne 9:15-22.

Page 191: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

191

Evenari M., Schulze E. D., Kappen L., Buschbom U. y Lange O. L., 1975. "Adaptativemechanisms in desert plants". En: Vernberg E. J. (ed.). Physiological adaptations to theenvironment. pp. 111-129

Fahn A., 1982. Anatomía vegetal. Ed. Pirámide. Madrid.

Fahn A. y Werker E., 1990. "Seasonal Cambial activity". En: Iqbal M. (ed.).The vascularcambium. pp. 139-157 Research Studies Press. Tauton.

Fahn A., Werker E. y Baas P., 1986. Wood anatomy and identification of trees and shrubsfrom Israel and adjacent regions. The Israel Academy of Sciences and Humanities.Jerusalem.

Ferrer Regales M., 1989. “Navarra”. En:Atlas de España..Editorial Planeta-De Agostini.Barcelona.

Field C. y Mooney H. A.,1983. Leaf age seasonal effects on light, water, and nitrogen useefficiency in a California shrub. Oecologia (Berl.) 56: 348-355.

Field C. y Mooney H. A., 1986. "The photosynthesis-nitrogen relationship in wild plants".En: Givnish T. J. (ed.).On the economy of plant form and function. pp. 25-55Cambridge Univ. Press. Cambridge.

Floret C., Galan M. J., Floc’h E. l., Leprince F. y Romane F., 1989. “France”. En: Orshan G.(ed.).Plant pheno-morphological studies in Mediterranean type ecosystems. Geobotany,12. pp. 9-97 Kluwer Acad. Pub. Dordrecht.

Floret C., Galan M. J., LeFloc'h E., Orshan E. y Romane F., 1990. Growth forms andphenomorphology traits along an environmental gradient: tools for studying vegetation?J. Veget. Sci. 1: 71-80.

Garnier E. y Laurent G., 1994. Leaf anatomy, specific mass and water content in congenericannual and perennial species. New Phytologist 128: 725-736.

Givnish T. J., 1978. "On the adaptive significance of compound leaves, with particularreference to tropical trees". En: Tomlinson P. B. y Zimmermann M. H. (eds.).Tropicaltrees as living systems. pp. 351-380 Cambridge Univ. Press. Cambridge.

Givnish T., 1979. "On the adaptative significance of leaf form". En: Solbrig O. T., Jain S.,Johnson G. B. y Raven P. H. (eds.).Topics in plant population biology. pp. 375-407Columbia Univ. Press. New York.

Givnish T. J., 1987. Comparative studies of leaf form: assessing the relative roles of selectivepressures and phylogenetic constraints. New Phytol. 106 (Suppl.): 131-160.

Givnish T. J., 1989. "Ecology and evolution of carnivorous plants". En: Abrahamson W. G.(ed.).Plant-animal interactions. pp. 243-290 McGraw-Hill Book Co. New York.

Goble-Garratt E. M., Bell D. T. y Loneragan W. A.,1981. Floristic and leaf structure patternsalong a shallow elevational gradient. Aust. J. Bot. 29: 329-347.

Goering H. K. y Van Soest P. J., 1970. Forage fiber analysis (apparatus, reagents,procedures and some applications). Agric. Handbook nº 379. ARS-USDA. WashingtonDC.

Gómez Piñeiro F. J., 1989. “Comunidad Autónoma Vasca”. En:Atlas de España. EditorialPlaneta-De Agostini. Barcelona.

Page 192: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

192

Gounot M., 1969. Méthodes quantitatives d'étude de la végétation. Masson. París.

Grime J. P., 1979. Plant strategies and vegetation processes. John Wiley. Chichester.

Grime J. P., Crick J. C. y Rincon J. E., 1986. "The ecological significance of plasticity". En:Jennings D. H. y Trewevas A. J. (eds.). Plasticity in plants. pp. 5-29 The Society ofExperimental Biology. Cambridge.

Grime J. P., Hodgson J. G. y Hunt R., 1988. Comparative plant ecology. A functionalapproach to common British species. Unwin Hyman. London.

Guthrie R. L.,1989. Xylem structure and ecological dominance in a forest community. Amer.J. Bot. 76: 1216-1228.

Halloy S.,1990. A morphological classification of plants, with special reference to the NewZealand alpine flora. J. Veget. Sci. 1: 291-304.

Harper J. L., 1989. The value of a leaf. Oecologia (Berlin) 80: 53-58.

Helmisaari H., 1990. Temporal variations in nutrint concentrations of Pinus sylvestrisneedles. Scand. J. For. Res. 5: 177-193.

Herms D. A. y Mattson W. J.,1992. The dilemma of plants: to growth or defend. QuaterlyRev. Biol. 67: 283-335.

Herrera C., 1992. Historical effects and sorting processes as explanations for contemporaryecological patterns: character syndromes in mediterranean woody plants. The AmericanNaturalist 140: 421-446.

Hollinger D. Y.,1992. Leaf and simulated whole-canopy photosynthesis in two co-occurringtree species. Ecology 73: 1-14.

Horn H. S., 1971. The adaptive geometry of trees. Princeton Univ. Press. Princeton, NewJersey.

Hsiao T. C.,1973. Plant responses to water stress. Annu. Rev. of Plant Physiol. 24: 519-570.

Janzen D. H. y Wilson D. E.,1974. The cost of being dormant in the tropics. Biotropica 6:260-262.

Johansen D. A., 1940. Plant Microtechnique. McGraw-Hill Book Co. New York.

Jurik T. W.,1986. Temporal and spatial patterns of specific leaf weight in successionalnorthern hardwood tree species. Am. J. Bot. 73: 1083-1092.

Kikuzawa K., 1991. A cost-benefict analysis of leaf habit and leaf longevity of trees and theirgeographical pattern. The American Naturalist 138: 1250-1263.

Kikuzawa K., 1995. Leaf phenology as an optimal strategy for carbon gain in plants.Canadian Journal of Botany 73: 158-163.

Kikuzawa K. y Kudo G.,1995. Effects of the length of the snow-free period on leaf longevityin alpine shrubs: a cost-benefit model. Oikos 73: 214-220.

Körner C., Bannister P. y Mark A. F.,1986. Altitudinal variation in stomatal conductance,nitrogen content and leaf anatomy in different plant life forms in New Zealand.Oecologia (Berl.) 69: 577-588.

Page 193: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

193

Körner C. y Larcher W., 1988. "Plant life in cold climates". En: Long S. F. y Woodward F. I.(eds.).Plants and Temperture. Symp. Soc. Exp. Biol. pp. 25-57 The Company ofBiologists Limited. Cambridge.

Körner C., Neumayer M., Pelaez Menendez-Riedl S. y Smeets-Scheel A.,1989. Funtionalmorphology of mountain plants. Flora 182: 353-383.

Körner C. y Pelaez Menendez-Riedl S., 1989. “The significance of developmental aspects inplant growth analysis”. En: Lambers H., Cambridge M. L., Konings H. y Pons T. L.(eds.).Causes and consecuences of variation in growth rate and productivity of highplants. pp. SPS Academic Publishing BV, The Hogue. The Netherlands.

Kozlowski T. T., ed. 1962. Tree Growth. The Ronal Press Company. New York.

Kozlowski T. T., 1971. Growth and development of trees. Physiological Ecology, 1.Academic Press. New York.

Kull O. y Niinemets Ü.,1993. Variations in leaf morphometry and nitrogen concentration inBetula pendula Roth., Corylus avellana L. and Lonicera xylosteum L. Tree Physiology12: 311-318.

Kummerow J., 1973. "Comparative anatomy of sclerophylls of Mediterranean climaticareas". En: Di Castri F. y Mooney H. A. (eds.). Mediterranean type ecosystems. Originand structure. pp. 157-167 Springer-Verlag. Berlin.

Kummerow J., 1981. "Structure of roots and root systems". En: Di Castri F., Goodall D. W. ySpecht R. L. (eds.). Ecosystems of the world -11. Mediterranean-type shrublands.Ecosystems of the world 11. pp. 269-288 Elsevier. Amsterdam.

Lambers H. y Poorter H.,1992. Inherent variations in growth rate between higher plants: asearch for physiological causes and ecological consecuences. Advances in EcologicalResearch 23: 187-261.

Larcher W., 1960. Transpiration and photoshynthesis of detached leaves and shoots ofQuercus pubescens and Q. ilex during deseccation under standard conditions. Bull.Res. Counc. of Israel 8 D: 213-224.

Larcher W., 1980. Physiological plant ecology. Springer-Verlag. Berlin.

Larcher W. y Thomaser-Thin W., 1988. Seasonal changes in energy content and storagepatterns of mediterranean sclerophylls in a northernmost habitat. Acta Oecologica.Oecol. Plant. 9: 271-283.

Le Houerou H. N., 1981. "Impact of man and his animals on Mediterranean vegetation". En:Di Castri F., Goodall D. W. y Specht R. L. (eds.).Mediterranean-type shrublands.Ecosystems of the world 11. pp. 479-522 Elsevier. Amsterdam.

Lechowicz M. J.,1984. Why do temperate deciduous trees leaf out at different times?Adaptation and ecology of forest communities. Am. Nat. 124: 821-842.

Lechowicz M. J.,1995. Seasonality of flowering and fruiting in temperatate forest trees.Candian Journal of Botany 73: 175-182.

Levitt J., 1980. Responses of plants to environmental stresses. Volume II. Water, radiation,salt, and other stresses. Physiological Ecology. Academic Press. New York.

Lo Gullo M. A. y Salleo S., 1988. Different strategies of drought resistance in threeMediterranean sclerophyllous trees growing in the same environmental conditions. New

Page 194: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

194

Phytol. 108: 267-276.

Lo Gullo M. A. y Salleo S., 1993. Different vulnerabilities of Quercus ilex L. to freeze- andsummer drought-induced xylem embolism: an ecological interpretation. Plant, Cell andEnvironment 16: 511-519.

Loidi Aguerri J., 1987. “El Pais Vasco”. En: Peinado Lorca M. y Rivas-Martínez S. (eds.).Lavegetación de España. pp. 544 Servicio de publicaciones de la Universidad de Alcaláde Henares. Alcalá de Henares.

Loidi J. y Herrera M., 1990. The Quercus pubescens and Quercus faginea forests in theBasque Country (Spain): distribution and typology in relation to climatic factors.Vegetatio 90: 81-92.

Loveless A. R., 1961. A nutritional interpretation of sclerophylly based on differences inchemical composition of sclerophyllous and mesophytic leaves. Ann. Bot. 25: 168-184.

Lucas P. W. y Pereira B., 1990. Estimation of the fracture toughness of leaves. FunctionalEcology 4: 819-822.

Margaris N. S., 1981. "Adaptive strategies in plants dominating mediterranean-typeecosystems". En: Di Castri F., Goodall D. W. y Specht R. L. (eds.). Mediterranean-typeshrublands. pp. 309-315 Elsevier. Amsterdam.

Mayor X. y Rodà F.,1992. Is primary production in holm oak forests nutrient limited? Acorrelational approach. Vegetatio 99-100: 209-217.

Mazzoleni S., Lo Porto A. y Blasi C., 1992. Multivariate analysis of climatic patterns of theMediterranean basin. Vegetatio 98: 1-12.

McLaughlin S.B.,y McConathy R.K., 1979. Temporal and spatial patterns of carbonallocation in the canopy of white oak. Can. J. Bot.57: 1407-1413.

Meletiou-Christou M. S., Rhizopoulou S. y Diamantoglou S., 1992. Seasonal changes incarbohydrates, lipids and fatty acids of two mediterranean dimorphic phrygana species.Biochem. Physiol. Pflanzen 188: 547-259.

Merino J., Field C. y Mooney H. A., 1984. Construction and maitenance costs ofmediterranean-climate evergreen and deciduous leaves. II. Biochemical pathwayanalysis. Acta Oecologica. Oecol. Plant. 5: 211-229.

Mitrakos K. A., 1980. A theory for Mediterranean plant life. Acta Oecologica. Oecol. Plant.1: 245-252.

Monk C. D., 1966. An ecological significance of evergreenness. Ecology 47: 504-505.

Montenegro G., Aljaro M. E. y Kummerow J., 1979. Growth dynamics of Chilean matorralshrubs. Bot. Gaz. 140: 114-119.

Montenegro G., Araya S., Aljaro M. E. y Avila G., 1982. Seasonal fluctuations of vegetativegrowth roots and shoots of Central Chilean shrubs. Oecologia (Berl.) 53: 235-237.

Montserrat Martí G. y Montserrat Martí J.,1987. Historical interpretation of the distributionof several floristic elements of Vizcaya (Basque Country, N-Spain). Pirineos 130: 65-74.

Montserrat Martí J. y Montserrat Martí G.,1988. Hypothesis on the postglacial dynamics ofthermo-mediterranean plants on the Southern slopes of the Pyrenees. Monogr. Inst. Pir.

Page 195: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

195

Ecol. 4: 649-660.

Montserrat Recoder P., 1971. La Jacetania y su vida vegetal. Caja de Ahorros y Monte dePiedad de Zaragoza, Aragón y Rioja.

Montserrat-Recoder P., Gastón-Nicolás R., Gómez-García D., Montserrat-Martí G. y Villar-Pérez L., 1988. Enciclopedia temática de Aragón. Flora. Ediciones Moncayo, S.A.Zaragoza.

Mooney H. A., ed. 1977. Convergent evolution in Chile and California. Mediterraneanclimate ecosystems. US/IBP Synthesis Series, 5. Dowden, Hutchinson & Ross.Stroudsburg, Pennsylvania.

Mooney H. A., 1981. "Primary production in mediterranean-climate regions". En: Di CastriF., Goodall D. W. y Specht R. L. (eds.). Mediterranean-type shrublands. Ecosystems ofthe world 11. pp. 249-255 Elsevier. Amsterdam.

Mooney H. A., 1983. "Carbon-gaining capacity and allocation patterns of Mediterraneanclimate plants". En: Kruger F. J., Mitchell D. T. y Jarvis J. U. M. (eds.). Mediterranean-type ecosystems. The role of nutrients. pp. 103-119 Springer-Verlag. Berlin.

Mooney H. A. y Bartholomew B., 1974. Comparative carbon balance and reproductivemodes of two Californian Aesculus species. Bot. Gaz. 135: 306-313.

Mooney H. A. y Chiariello N. R., 1984. “The study of plant function. The plant as a balancedsystem”. En: Dirzo R. y Sarukhán J. (eds.).Perspectives on plant population ecology. pp.305 Sinauer Ass. Sunderland, Massachusetts.

Mooney H. A. y Dunn E. L., 1970. Convergent evolution of Mediterranean-climate evergreensclerophyll shrubs. Evolution 24: 292-303.

Mooney H. A., Dunn E. L., Shropshire F. y Song L., 1970. Vegetation comparisons betweenthe Mediterranean climatic areas of California and Chile. Flora 159: 480-496.

Mooney H. A., Ferrar P. J. y Slatyer R. O.,1978. Photosynthetic capacity and carbonallocation patterns in diverse growth forms of Eucalyptus. Oecologia 36: 103-111.

Mooney H. A. y Hays R. I., 1973. Carbohydrate storage cycles in two CalifornianMediterranean climate trees. Flora Bol. 162, S: 295-304.

Mooney H. A. y Kummerow J., 1981. "Phenological development of plants inMediterranean-climate regions". En: Di Castri F., Goodall D. W. y Specht R. L. (eds.).Mediterranean-type shrublands. Ecosystems of the world 11. pp. 303-307 Elsevier.Amsterdam.

Mooney H. A. y Parsons D. J., 1973. “Structure and function of the California chaparral- anexample from San Dimas”. En: Di Castri F. y Mooney H. A. (eds.).Mediterranean typeecosystems. Origin and structure. pp. 83-112 Springer-Verlag. Berlin.

Mooney H. A., Parsons D. J. y Kummerow J., 1974. "Plant development in Mediterraneanclimates". En: Lieth H. (ed.). Phenology and seasonality modeling. pp. 255-267Springer-Verlag. Berlin.

Moreno J. M. y Oechel W. C., eds. 1994. The role of fire in Mediterranean-type ecosystems.Ecological Studies. Springer-Verlag. New York.

Morrow P. A. y Mooney H. A., 1974. Drought adaptations in two Californian evergreensclerophylls. Oecologia (Berl.) 15: 205-222.

Page 196: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

196

Nahal I., 1981. "The Mediterranean climate from a biological viewpoint". En: Di Castri F.,Goodall D. W. y Specht R. L. (eds.). Mediterranean-type shrublands. Ecosystems of theworld 11. pp. 63-86 Elsevier. Amsterdam.

Naveh Z., 1974. "Effects of fire in the Mediterranean Region". En: Kozlowski T. T. yAhlgren C. E. (eds.).Fire and ecosystems. pp. 401-434 Academic Press. New York.

Naveh Z., 1994. "The role of fire and its management in the conservtion of Mediterraneanecosystems and landscapes". En: Moreno J. M. y Oechel W. C. (eds.).The role of fire inMediterranean-type ecosystems. Ecological Studies. pp. 163-185 Springer-Verlag. NewYork.

Niemann G. J., Pureveen J. B. M., Eijkel G. B., Poorter H. y Boon J. J., 1992. Differences inrelative growth rate in 11 grasses correlate with differences in chemical composition asdetermined by pyrolysis mass spectrometry. Oecologia 89: 567-573.

Ninot J. M., Romo A. y Sesé J. A., 1993. Macizo del Turbón y Sierra de Sis. Flora, pisajevegetal e itinerarios (Prepirineo Aragonés). Gobierno de Aragón. Zaragoza.

Nordell K. O. y Karlsson P. S.,1995. Resoption of nitrogen and dry matter prior to leafabscission: variation among individuals, sites and years in the mountain birch.Functional Ecology 9: 326-333.

Oever L. v. d., Baas P. y Zandee M.,1981. Comparative wood anatomy of Symplocos andlatitude and altitude of provenance. IAWA Bull. n. s. 2: 3-24.

Oliveira G., Correia O., Martins-Louçao M. A. y Catarino F. M.,1994. Phenological andgrowth patterns of the Mediterranean oak Quecus suber L. Trees 9: 41-46.

Oppenheimer R. H., 1957. Further observations on roots penetrating into rocks and theirstructure. Bull. Res. Counc. of Israel 6D: 18-31.

Oppenheimer H. R., 1960. "Adaptation to drought: xerophytism". En: UNESCO (ed.). Plant-water relationships in arid and semi-arid conditions. pp. 105-138 UNESCO.

Orshan G., 1972. Morphological and physiological plasticity in relation to drought. of 245-254 pp. Ed. Utah State Univ.

Orshan G., 1982. Monocharacter growth form types as a tool in an analytic-synthetic study ofgrowth forms in Mediterranean type ecosysstems. A proposal for an inter-regionalprogram. Ecologia Mediterranea 8: 159-171.

Orshan G., 1986. Plant form as describing vegetation and expressing adaptation toenvironment. Annali di Botanica 44: 7-38.

Orshan G., ed. 1989. Plant pheno-morphological studies in Mediterranean type ecosystems.Geobotany, 12. Kluwer Acad. Pub. Dordrecht.

Orshan G., Floret C., Floc'h E. l., Roux A. l., Montenegro G. y Romane F., 1989. "GeneralSynthesis". En: Orshan G. (ed.). Plant pheno-morphological studies in Mediterraneantype ecosystems. Geobotany, 12. pp. 389-399 Kluwer Acad. Pub. Dordrecht.

Orshan G., Le Floc'h E., Le Roux A. y Montenegro G., 1988. "Plant pheno-morphology asrelated to summer drought Mediterranean type ecosystems". En: di Castri F., Floret C.,Rambal S. y Roy J. (eds.). Time scales and water stress. pp. I. U. B. S. Paris.

Orshan G., Le Roux A. y Montenegro G., 1984. Distribution of monocharacter growth form

Page 197: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

197

types in mediterranean plant communities of Chile, South Africa and Israel. Bull. Soc.Bot. Fr., Actual. bot. 131: 427-439.

Osborne D. J., 1973. “Internal factors regulating abscission”. En: Kozlowski T. T.(ed.).Shedding of plant parts. pp. 125-147 Academic Press. New York.

Parkhurst D. F. y Loucks O. L.,1972. Optimal leaf size in relation to environment. J. Ecol.60: 505-537.

Parsons D. J., 1976. Vegetation structure in the Mediterranean scrub communities ofCalifornia and Chile. J. Ecol. 64: 435-447.

Perevolotsky A. y Haimov Y.,1991. Structural response of Mediterranean woodland speciesto disturbance: evidence of different defense strategies. Israel Journal of Botany 40:305-313.

Pugnaire F. I. y Chapin III F. S.,1992. Environmental and physiological factors governingnutrient resorption efficiency in barley. Oecologia (Berl.) 90

Pugnaire F. I. y Chapin III F. S.,1993. Controls over nutrient resorption from leaves ofevergreen Mediterranean species. Ecology 74: 124-129.

Rafii Z. A., Dodd R. S. y Pelleau Y.,1993. Biochemical diversity and systematics ofMediterranean evergreen oak from South East France. Biochemical Systematics andEcology 21: 687-694.

Rambal S., 1984. Water balance and pattern of root water uptake by a Quercus coccifera L.evergreen scrub. Oecologia (Berl.) 62: 18-25.

Rambal S. y Leterme J., 1987. "Changes in aboveground structure and resistances to wateruptake in Quercus coccifera along a rainfall gradient". En: Tenhunen J. D., Catarino F.M., Lange O. L. y Oechel W. C. (eds.).Plant response to stress. Functional analysis inMediterranean ecosystemsNATO ASI Series. pp. 668 Springer-Verlag. Berlin.

Raven P. H., 1973. "The evolution of Mediterranean floras". En: Di Castri F. y Mooney H. A.(eds.). Mediterranean type ecosystems. Origin and structure. pp. 213-224 Springer-Verlag. Berlin.

Reich P. B., 1993. Reconciling apparent discrepancies among studies relating life span,structure and function of plant leaves in contrasting plant life forms and climates:'theblind men and the elephant retold'. Functional Ecology 7: 721-725.

Reich P. B. y Borchet R.,1984. Water stress and tree phenology in a tropical dry forest in thelowlands of Costa Rica. Journal of Ecology 72: 61-74.

Reich P. B., Uhl C., Walters M. B. y Ellsworth D. S., 1991. Leaf lifespan as a determinant ofleaf structure and function among 23 amazonian tree species. Oecologia (Berlin) 86:16-24.

Reich P. B., Walters M. B. y Ellsworth D. S., 1992. Leaf life-span in relation to leaf, plant,and stand characteristics among diverse ecosystems. Ecol. Monogr. 62: 365-392.

Reille M. y Pons A., 1992. The ecological significance of sclerophyllous oak forests in thewestern part of the Mediterranean basin: a note on pollen analytical data. Vegetatio 99-100: 13-17.

Rhizopoulou S., Melitou-Christou M. S. y Diamantoglou S.,1991. Water relations for sun andshade leaves of four Mediterranean evergreen sclerophylls. J. exp. Bot. 42: 627-635.

Page 198: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

198

Rivas-Martínez S., 1987a. Memoria del mapa de series de vegetación de España. Ministeriode Agricultura, Pesca y Alimentación. ICONA. Madrid.

Rivas-Martínez S., 1987b. Mapa de series de vegetación de España. Ministerio deAgricultura, Pesca y Alimentación. ICONA. Madrid.

Ruiz Urrestarazu E., 1982. La transición climática del Cantábrico Oriental al Valle Mediodel Ebro. Diput. Foral de Alava. Vitoria.

Rundel P. W.,1982. Nitrogen utilization efficiencies in Mediterranean-climate shrubs ofCalifornia and Chile. Oecologia (Berl.) 55: 409-413.

Rundel P. W., 1988. "Vegetation, nutrition and climate-data-tables. (2) Foliar analyses.". En:Specht R. L. (ed.). Mediterranean-type ecosystems. A data source book. pp. 63-80Kluwer Academic Publishers. Dordrecht.

Rury P. M. y Dickison W. C., 1984. "Structural correlations among wood, leaves and planthabit". En: Withe R. A. y Dickison W. C. (eds.).Contemporary problems in plantanatomy. pp. 495-540 Academic Press.

Sabaté S., Calvet S. y Gracia C. A.,1992. Premiliminary results of a fertilization-irrigationexperiment in a Quercus ilex forest in relation to leaves and twigs characteristics.Vegetatio 99-100: 283-287.

Sabaté S., Sala A. y Gracia C., 1995. Nutrient content in Quercus ilex canopies: Seasonal andspatial variation within a catchment. Plant and Soil 168-169: 297-304.

Sakai A. y Larcher W., 1987. Frost survival of plants. Responses and adaptation to freezingstress. Ecological Studies, 62. Springer. Berlin.

Sala A., Sabaté S., Gracia C. y Tenhunen J. D.,1994. Canopy structure within a Quercus ilexforested watershed: variations due to location, phenological development, and wateravailability. Trees 8: 254-261.

Salleo S. y Lo Gullo M. A., 1990. Sclerophylly and plant water relations in threeMediterranean Quercus species. Ann. Bot. 65: 259-270.

Schoettle A. W.,1990. The interaction between leaf longevity and shoot growth and foliarbiomass per shoot in Pinus contorta at two elevations. Tree Physiology 7: 209-214.

Schulze E. D., 1982. “Plant life forms and their carbon, water and nutrient relations”. En:Lange O. L., Nobel P. S., Osmond P. S. y Ziegler H. (eds.).Encyclopedia of PlantPhysiology, New Series. pp. 615-676 Springer-Verlag. Berlin.

Shackleton C. M., Griffin N. J., Banks D. I., Mavrandonis J. M. y Shackleton S. E.,1994.Community structure and species composition along a disturbance gradient in acommunally managed South African savanna. Vegetatio 115: 157-167.

Shields L. M., 1950. Leaf xeromorphy as related to physiological and structural influences.Bot. Rev. 16: 399-447.

Shmida A., 1984. Convergence and non-convergence of mediterranean-type communities.Bull. Soc. Bot. Fr. (Actual Bot.) 131: 465-472.

Shumway D. L., Steiner K. C. y Kolb T. E.,1993. Variation in seedling hydraulic architectureas a function of species and environment. Tree Physiology 12: 41-54.

Page 199: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

199

Small E., 1972. Photosynthetic rates in relation to nitrogen recycling as an adaptation tonutrient deficiency in peat bog plants. Canadian Journal of Botany 50: 2227-2233.

Sobrado M. A., 1991. Cost-benefit relationships in deciduous and evergreen leaves of tropicaldry forest species. Functional Ecology 5: 608-616.

Sobrado M. A., 1993. Trade-off between water transport and leaf life-span in a tropical dryforest. Oecologia 96: 19-23.

Specht R. L., 1969. A comparison of the sclerophyllous vegetation characteristic of theMediterranean type climates in France, California, and Southern Australia. Aust. J. Bot.17: 293-308.

Specht R. L., ed. 1988. Mediterranean-type ecosystems. A data source book. Tasks forvegetation science 19. Kluwer Academic Publishers. Dordrecht.

Specht R. L. y Specht A., 1989. Canopy structure in Eucalyptus-dominated communities inAustralia along climatic gradients. Acta Oecologica, Oecol. Plant. 10: 191-213.

Sperry J. S. y Saliendra N. Z., 1994. Intra and inter-plant variation in xylem cavitation inBetula occidentalis. Plant, Cell and Environment 17: 1233-1241.

Spiegel-Roy P., Mazigh D. y Evenari M.,1977. Response of Pistachio to low soil moisturecondicions. J. Amer. Soc. Hort. Sci. 102: 470-473.

Strahler A. N. y Strahler A. H., 1989. Geografía Física. Ediciones Omega. Barcelona.

Swaine M. D. y Whitmore T. C.,1988. On the definition of ecological species groups intropical rain forests. Vegetatio 75: 81-86.

Tenhunen J. D., Beyschlag W., Lange O. L. y Harley P. C., 1987. “Changes during summerdrought in leaf CO2 uptake rates of macchia shrubs growing in Portugal: Limitationsdue to photosynthetic capacity, carboxylation efficiency, and stomatal conductance”.En: Tenhunen J. D., Catarino F. M., Lange O. L. y Oechel W. C. (eds.).Plant responseto stress. Functional analysis in Mediterranean ecosystems. NATO ASI Series, Vol. G.15. pp. 305-327 Springer-Verlag. Berlin.

Tenhunen J. D., Catarino F. M., Lange O. L. y Oechel W. C., eds. 1987. Plant response tostress. Functional analysis in Mediterranean ecosystems. NATO ASI Series. Springer-Verlag. Berlin.

Tenhunen J. D., Harley P. C., Beyschlag W. y Lange O. L., 1987. “A model of netphotosynthesis for leaves of the sclerophyll Quercus coccifera”. En: Tenhunen J. D.,Catarino F. M., Lange O. L. y Oechel W. C. (eds.).Plant response to stress. Functionalanalysis in Mediterranean ecosystems. NATO ASI Series, Vol. G. 15. pp. 339-354Springer-Verlag. Berlin.

Tenhunen J. D., Lange O. L., Harley P. C., Beyschlag W. y Meyer A.,1985. Limitations dueto water stress on leaf net photosynthesis of Quercus coccifera in the Portugueseevergreen scrub. Oecologia (Berl.) 67: 23-30.

Terradas J. y Savé R., 1992. The influence of summer and winter stress and waterrelationships on the distribution of Quercus ilex L. Vegetatio 99-100: 137-145.

Tissue D. T. y Wright S. J.,1995. Effect of seasonal water availability on phenogy and theannual shoot carbohydrate cycle of tropical forest shrubs. Functional Ecology 9: 518-527.

Page 200: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

200

Trabaud L., 1979. Etude du comportement du feu dans la garrigue de chêne Kermès à partirdes températures et des vitesses de propagation. Ann. Sci. For. 36: 13-38.

Trabaud L., 1994. "Postfire plant community dynamics in the Mediterranean Basin". En:Moreno J. M. y Oechel W. C. (eds.).The role of fire in Mediterranean-type ecosystems.Ecological Studies. pp. 1-15 Springer-Verlag. New York.

Tretiach M., 1993. Photosynthesis and transpiration of evergreen Mediterranean anddeciduous trees in an ecotone during a growing season. Acta Oecologica 14: 341-360.

Treviño J. y Caballero R.,1973. La predicción del valor alimenticio de los forrajes pormétodos de laboratorio. As. Alimentación y Mejora Animal 14: 433-567.

Turner I. M., 1994a. Sclerophylly: primarily protective? Functional Ecology 8: 669-675.

Turner I. M., 1994b. A quantitative analysis of leaf form in woody plants from the world'smajor broadleaved forest types. Journal of Biogeography 21: 413-419.

Tutin T. G., Heywood V. H., Burges N. A., Moore D. M., Valentine D. H., Walters S. M. yWeeb D. A., eds. 1964-80. Flora Europaeae, 1-5. Cambridge Univ. Press. Cambridge.

Tyree M. T., Davis S. D. y Cochard H., 1994. Biophysical perspectives of xylem evolution: isthere a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA journal15: 335-360.

Tyree M. T. y Dixon M. A.,1986. Water stress induced cavitation and embolism in somewoody plants. Physiol. Plant. 66: 397-405.

Tyree M. T. y Sperry J. S., 1989. Vulnerability of xylem to cavitation and embolism. Annu.Rev. Plant Phys. Mol. Bio. 40: 19-38.

Uribe-Echebarría P. M.,1989. Los matorrales de coscoja, Quercus coccifera, entre el Ebro yel Cantábrico. Est. Mus. Cienc. Nat. de Alava 4: 63-67.

Valentini R., Scarascia G. E. y Ehleringer J. R.,1992. Hydrogen and carbon isotope ratios ofselected species of a mediterranean macchia ecosystem. Functional Ecology 6: 627-631.

Van Arendonk J. J. C. M. y Poorter H.,1994. The chemical composition and anatomicalstructure of leaves of grass species differing in relative growth rate. Plant, Cell andEnvironment 17: 963-970.

Vigo J. P. y Ninot J. M., 1987. “Pirineos”. En: Peinado Lorca M. y Rivas-Martínez S.(eds.).La vegetación de España. pp. Servicio de Publicaciones de la Universidad deAlcalá de Henares. Alcalá de Henares.

Vogel S., 1970. Convective cooling at low airspeeds and the shapes of broad leaves. J. exp.Bot. 21: 91-101.

Wang J., Ives N. E. y Lechowicz M. J.,1992. The relation of foliar phenology to xylemembolism in trees. Functional Ecology 6: 469-475.

Witkowski E. T. F. y Lamont B. B.,1991. Leaf specific mass confounds leaf density andthickness. Oecologia (Berl.) 88: 486-493.

Woodcock D. W. y Ignas C. M.,1994. Prevalence of wood characters in Eastern NorthAmerica: What characters are most proising for interpreting climates and fossil wood?

Page 201: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

201

Amer. J. Bot. 81: 1243-1251.

Woodwell,1975. Variation in the nutrient content of leaves of Quercus alba, Quercuscoccinea and Pinus rigida in the Brookhaven forest from bud-break to abscission.American Journal of Botany 61: 749-753.

Xinying Z., Liang D. y Baas P.,1988. The ecological wood anatomy of the lilacs (Syringaoblata var. giraldii) on mount Taibei in northwestern China. IAWA Bull. n. s. 9: 24-30.

Zar J. H., 1984. Biostatistical analysis. Prentice-Hall International, Inc.

Zimmermann M. H., 1978. "Structural requirements for optimal water conduction in treestems". En: Tomlinson P. B. y Zimmermann M. H. (eds.).Tropical trees as livingsystems. pp. 517-532 Cambridge Univ. Press. Cambridge.

Zimmermann M. H., 1983. Xylem structure and the ascent of sap. Springer Series in WoodScience. Springer-Verlag. Berlin.

Zimmermann M. H. y Milburn J. A., 1983. "Transport and storage of water". En:Zimmermann M. H. (ed.).Xylem structure and the ascent of sap. pp. 135-151 Springer-Verlag. Berlin.

Page 202: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 203: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

Apéndice

Page 204: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo
Page 205: Variaciones estructurales y funcionales de los fanerofitos. Publicaciones/2... · C. APÍTULO. 5. Morfología foliar, composición química foliar y caracteres xilemáticos del tallo

Apendice I- Tabla de los datos de las especies utilizadas en el Capítulo 3 (más Celtis australis).A.Max- Altura máxima. HF- Hábito foliar: * 0- perenne; 1- caduco. AF- Area foliar (1). EF- Espesor foliar (1). MEF- Masa específica foliar (1). DF- Densidad foliar (1). TM- Tipo de madera: ** 1-porosidad en anillo; 2- semianillo; 3- poro difuso. PP- Tipo de placas de perforación: *** 1- simple; 2- escalariforme; T- traqueidas. LEV-Longitud de los elementos de los vasos. DMx- Diámetromáximo de los vasos más grandes del xilema (2,3). DMd- Diámetro medio (2,4). DV- Densidad de vasos (2). DM- Densidad de la madera. % de peso seco de N, P, Celulosa, Hemicelulosa y Lignina

ESPECIESA.Max

(m)

HF

*

AF

(mm2)

EF

(mm)

MEF

(mg/cm2)

DF

(mg/cm3)

TM

**

PP

***

LEV

(mm)

DMx

(mm)

DMd

(mm)

DV

(mm-2)

DM

(mg/cm3)

N

(mg/g)

P

(mg/g)

Celul.

%

Hemice.

%

Lignina

%

Acer monspessulanus 12 1 566 191 8 440 3 1 196 40 28 198 0.68Amelanchier ovalis 4 1 395 148 9 627 2 1 324 29 26 558 0.74Arbutus unedo 12 0 816 303 17 564 2 1 267 42 34 367 0.63 13.0 1.0 12.1 4.1 22.9Buxus sempervirens 8 0 149 310 18 594 3 2 262 23 23 514 0.80 16.0 0.7 15.6 12.6 19.9Celtis australis 25 1 1614 263 11 434 1 1 83 45 79 0.67 20.2 1.6 14.9 10.7 10.0Cistus albidus 1 0 304 41 14 357 3 1 191 33 26 453 0.76Cistus laurifolius 2 0 728 403 17 432 2 1 178 47 26 297 0.73Clematis vitalba 20 1 1828 229 6 279 1 1 200 226 66 77 0.37Cornus sanguinea 4 1 1153 224 9 411 3 2 488 49 51 180 0.60Coronilla emerus 2 1 133 123 5 437 2 1 114 45 32 154 0.68Crataegus monogyna 10 1 403 214 11 516 3 1 296 35 37 431 0.57Erica arborea 7 0 2 181 18 1003 3 1 137 30 28 399 0.71Genista scorpius 1.5 1 15 224 9 490 2 1 72 40 18 165 0.73Hedera helix 30 0 1488 254 9 377 2 1 408 40 52 549 0.46Juniperus communis 15 0 14 274 18 372 3 T 1144 13 14 7416 0.57Juniperus oxycedrus 15 0 13 414 17 438 3 T 1010 13 12 8968 0.70Juniperus phoenicia 8 0 1 274 14 527 3 T 1071 13 10 8639 0.66Ligustrum vulgaris 5 1 244 136 11 832 2 1 224 37 31 363 0.65Lonicera etrusca 10 1 666 163 8 553 2 1 331 41 35 440 0.56Lonicera implexa 10 0 841 232 11 482 2 1 448 36 37 349 0.61Phillyrea latifolia 15 0 247 228 15 672 3 1 221 29 23 315 0.73Pistacia lentiscus 8 0 142 326 21 648 2 1 231 45 28 464 0.65 15.3 1.1 11.0 15.0 14.5Pistacia terebinthus 5 1 827 195 12 598 2 1 185 83 43 79 0.67 19.8 1.5 15.5 9.4 15.9Prunus spinosa 4 1 157 227 7 325 3 1 274 38 34 287 0.58Quercus coccifera 5 0 100 271 19 716 3 1 270 52 15 62 0.74 13.2 0.7 20.2 11.8 16.7Quercus faginea 20 1 641 227 12 556 1 1 206 76 26 130 0.70 21.6 1.2 17.2 17.0 14.7Quercus ilex subsp. ilex 25 0 379 345 18 518 3 1 254 63 47 75 0.71 14.9 1.0 25.5 12.8 19.5Q. ilex subsp ballota 15 0 258 372 20 546 3 1 212 60 52 65 0.75 13.8 0.9 23.6 13.0 16.6Rhamnus alaternus 5 0 198 207 14 676 3 1 198 23 27 367 0.69 18.5 0.9 11.2 3.3 7.8Rhamnus lycioides 2 0 25 300 18 647 3 1 172 21 27 712 0.80Rhamnus saxatilis 2 1 166 222 9 395 3 1 150 26 28 683 0.64Rosa spp 3 1 371 137 8 602 2 1 304 80 52 192 0.59Rosmarinus officinalis 2 0 57 340 14 450 2 1 147 34 24 115 0.72Sorbus domestica 20 1 408 196 10 519 2 1 264 33 33 478 0.67Spiraea obovata 1.5 1 62 107 7 708 3 1 135 27 17 325 0.79Viburnum lantana 6 1 1505 313 10 313 2 2 470 44 40 203 0.59Viburnum tinus 7 0 993 246 13 539 3 2 568 36 32 195 0.67 10.9 0.8 13.7 2.0 19.6

(1) Los datos foliares proceden de la cohorte de hojas de 1993 en las especies caducifolias y de las cohortes de 1992 y 1993 en las perenninfolias. Los valores de cada especie representan la media deentre 3 y 13 poblaciones.

(2) Los datos del xilema de cada especie representan la media de dos poblaciones de la parte central del gradiente climático.(3) DMx se midió en cortes transversales de ramas de tres años, en el último anillo.(4) DMd se calculó a partir de maceraciones realizadas en trozos de madera de la parte externa de ramas de más de seis años.