Universidad Tecnológica Nacional Facultad Regional · PDF fileSoluciones a utilizar...

7

Click here to load reader

Transcript of Universidad Tecnológica Nacional Facultad Regional · PDF fileSoluciones a utilizar...

Page 1: Universidad Tecnológica Nacional Facultad Regional · PDF fileSoluciones a utilizar (por cada comisión) : ... obteniendo los datos a partir de la gráfica 9-23 de O. Levenspiel.

Universidad Tecnológica Nacional Facultad Regional Rosario

Cátedra de Ing. De las Reacciones

Trabajo practico Nº 4:

HIDRÓLISIS ALCALINA DE ACETATO DE ETILO EN UN REACTOR TUBULAR CONTINUO

AÑO 2013

Ing. Roque Masciarelli - Ing Silvia Stancich - Ing. Stoppani Fernando

Page 2: Universidad Tecnológica Nacional Facultad Regional · PDF fileSoluciones a utilizar (por cada comisión) : ... obteniendo los datos a partir de la gráfica 9-23 de O. Levenspiel.

1

OBJETIVO

Estudiar el comportamiento de un reactor tubular determinando experimentalmente el grado de

conversión alcanzado en el mismo y compararlo con el determinado teóricamente con distintos

modelos de flujo ideal y no ideal. También se desea construir la gráfica de puesta en marcha del

reactor, gráfica que muestra como va evolucionando la conversión alcanza en la salida del reactor en el

tiempo, hasta que finalmente se alcanza el estado estacionario.

FUNDAMENTOS

Como vimos en el TP Nº1 la reacción en estudio es la saponificación del Acetato de Etilo en medio

alcalino. Esta se realiza en fase homogénea (líquida), y a temperatura y volumen constante. La

estequiometría de la reacción es:

3 2 3 3 3 2kCH COOCH CH NaOH CH COONa CH CH OH+ → +

El mecanismo propuesto es:

La ecuación cinética para esta reacción es (se considera reacción irreversible):

( ) AA A B

dCr kC C

dt− = − =

Donde los subíndices A y B representan Acetato de Etilo e Hidróxido de Sodio respectivamente. La

constate cinética viene dada como una función de la temperatura de acuerdo a la ecuación de

Arrhenius:

−=

min*10*6,4)(

58179

mol

leTk T

O (-)

||

CH3 – C (+) – O - C2H5 HO: +

O (-)

|

H3C – C – O – C2H5

|

OH

O

||

CH3 - C - OH + CH3CH2-O (-)

k1

k2

O (-)

|

H3C – C – O – C2H5

|

OH

O

||

CH3 - C – O -- H CH3CH2-O (-) +

k3

k4

O

||

CH3 - C – ONa C2H5 - OH +

Ión Carboxilato

Ión alcóxido

Acetato de Sodio Etanol

Na (+)

Page 3: Universidad Tecnológica Nacional Facultad Regional · PDF fileSoluciones a utilizar (por cada comisión) : ... obteniendo los datos a partir de la gráfica 9-23 de O. Levenspiel.

2

EQUIPOS A UTILIZAR

• Reactor Flujo Pistón: colocado verticalmente, con alimentación por la parte inferior.

• Bomba 1: de desplazamiento positivo. El caudal de la bomba se puede regular variando la carrera

del pistón. Se utiliza para impulsar la solución de hidróxido de sodio a través del reactor. Este tipo

de bomba tiene la característica de brindar un caudal constante.

• Bomba 2: Esta bomba de marca ARES (Modelo DS6-0910-M-PP-2-S), del tipo a diafragma

accionado por un electroimán, posee un modo de regulación manual, un cabezal de polipropileno y

dos válvulas de cerámica y vitón; además la ejecución de la bomba es estándar. El modelo DS6-

0910 tiene un rango de caudal de 0.1 a 9 l/h, trabaja a una presión máxima de 10 bar y las

dimensiones se muestran en la figura.

Sirve para líquidos corrosivos ácidos o alcalinos. Además el cuerpo de la

bomba es de plástico, ideal para ambientes agresivos; aptos para la intemperie.

El diafragma está recubierto por teflón lo cual lo hace apto para todo tipo de

líquidos. No requiere lubricación; una única pieza en movimiento reemplaza

motor, reductor, rodamientos, etc; por lo cual requiere mínimo mantenimiento.

El caudal de la bomba se puede regular variando la frecuencia de los impulsos

o la carrera del diafragma. Se utiliza para alimentar la solución de acetato de

etilo.

• Recipiente 1: Para contener la solución de NaOH, es de plástico.

• Recipiente 2: Para contener la solución de Acetato de Etilo; es de vidrio y de menor tamaño

que el anterior.

DROGAS

Soluciones a utilizar (por cada comisión):

• 15 Lts de NaOH 0,008 N, para alimentar el reactor.

• 2 Lt de Acetato de Etilo (5ml/Lt).

• 1/2 Lt de NaOH 0,01 N, para titulación.

• 1/2 Lt de HCl 0,01 N (considerar que el ácido también se utiliza para titular las solución de

hidróxido si éstas no se valoran con droga patrón).

Page 4: Universidad Tecnológica Nacional Facultad Regional · PDF fileSoluciones a utilizar (por cada comisión) : ... obteniendo los datos a partir de la gráfica 9-23 de O. Levenspiel.

3

MATERIALES DE LABORATORIO

• Termómetros (1).

• Pipeta o volpipeta de 20 ml (2): para dosificación del HCl en los recipientes donde se recogen

las muestras y para la toma de muestras a la salida del reactor.

• Vaso de ppdo. de 150 ml (1): para recoger las muestras a la salida del reactor.

• Pera de aspiración (2).

• Erlenmeyers de 150 ml aprox. (7 u 8).

• Bureta, Piseta.

• Fenolftaleína.

• Soporte universal.

• Hielo: para refrigerar los recipientes donde se colocan las muestras donde se colocan las

muestras.

• Recipientes para mezcla refrigerante (3): para los erlenmeyers con ácido previamente

refrigerado, para el vaso de ppdo donde se recoge la muestra y para el erlenmeyer dónde se

realiza la titulación.

TÉCNICA OPERATORIA

Para poder utilizar los resultados obtenidos en el TP Nº 3, es necesario que el caudal de

alimentación al reactor sea el mismo que el utilizado anteriormente. Además se precisa

que la alimentación al reactor de Acetato de Etilo (A) e Hidróxido de Sodio (B) sea

equimolar, ya sea porque se simplifican las expresiones matemáticas o bien porque se

dispone de graficas en la bibliografía para esta condición. Para esto es necesario regular

los caudales de ambas corrientes. Por tal motivo se realiza un balance en el punto de

entrada al reactor.

Balance global en el punto de mezcla:

A B Ev v v+ =

Balance por componentes en el punto de mezcla:

A EA A A E

B EB B B E

C v C v

C v C v

=

=

Las condiciones que se deben cumplir son:

150 *A B E o

E EA B

v v v v ml min

C C

+ = = =

=

*Caudal utilizado en la experiencia realizada para determinar la DTR

E

B

A

FP

Page 5: Universidad Tecnológica Nacional Facultad Regional · PDF fileSoluciones a utilizar (por cada comisión) : ... obteniendo los datos a partir de la gráfica 9-23 de O. Levenspiel.

4

De las expresiones anteriores se deduce que:

A BA A B BC v C v=

Y como A BA BC y C son conocidas se llega finalmente a:

Con las ecuaciones anterior calculamos los caudales de A y B para que la alimentación se equimolar.

Se llena el reactor con la solución de NaOH utilizando la bomba de desplazamiento positivo, y se

regula su caudal vA a la salida del reactor.

Por otra parte se regula el caudal del acetato de etilo (vB) calculado anteriormente; el ajuste del caudal

de trabajo deseado se regula variando la frecuencia y la carrera del diafragma. Se debe tener la

precaución de sostener la conducción plástica a la altura de la salida del reactor (altura de descarga).

A continuación se conecta la manguera al reactor. En el instante en que se comienza a alimentar el

reactor con el éster se considera tiempo igual a cero. En ese instante y a intervalos de 5 min se toman

muestras a la salida del reactor recogiendo una cantidad mayor a 20 ml en un vaso de ppdo

refrigerado; luego se pipetean 20 ml y se trasvasan a un erlenmeyer donde previamente se han

colocado 20 ml de HCl 0,01 M refrigerado. Se titula el exceso de ácido con solución de NaOH 0,01 N

utilizando fenolftaleína como indicador.

Esta operación se realiza hasta llegar al estado estacionario, es decir hasta que la conversión obtenida

sea constante.

Recordar que se debe tomar la temperatura de la experiencia y el volumen del reactor si no se lo

conoce previamente.

CÁLCULOS Y RESULTADOS

• Determinación de las concentraciones de alimentación:

Las concentraciones iniciales de los reactivos se calculan teniendo en cuenta que a la entrada del

reactor hay dos corrientes de alimentación y por lo tanto la concentración de la mezcla será

distinta de las concentraciones de cada corriente.

• Determinación de la conversión real en el reactor:

Se hacen los cálculos correspondientes para obtener la conversión alcanzada a cada instante a

partir del volumen de hidróxido gastado en la titulación de la muestra a la salida del reactor.

Indicar en el informe los cálculos realizados y graficar la conversión Vs tiempo.

Se construye la siguiente tabla:

1

EA A

ABB

vv

C

C

=

+

Page 6: Universidad Tecnológica Nacional Facultad Regional · PDF fileSoluciones a utilizar (por cada comisión) : ... obteniendo los datos a partir de la gráfica 9-23 de O. Levenspiel.

5

Alimentación Titulación

Caudal NaOH (ml/min) NaOH (N)

Caudal AcEt (ml/min) HCl (N)

Concentración AcEt (N) en el tanque

Concentración AcEt (N) en la alimentación

Concentración NaOH (N) en el tanque (min)τ

Concentración NaOH (N) en la alimentación Temp. (ºC)

Densidad AcEt (gr/ml) V Reactor (ml)

Tiempo Volumen muestra (ml) Volumen HCl

(ml) Volumen NaOH

gastado (ml) Normalidad

muestra Conversión

0

5

10

• Determinación de la conversión estimada aplicando distintos modelos:

Se realizan de igual forma que en el TP Nº3

I. Modelos ideales

I.1. Flujo pistón ideal para n=2.

I.2. Mezclado perfecto para n=2.

II. Modelos no ideales

II.1. Dispersión axial: considerar el Módulo de Dispersión obtenido en el T.P. anterior. Si la

relación CAo/CBo es 1, se puede considerar a la reacción como del tipo: (-rA) = k CA2

y obtener el valor de la conversión para un reactor real según el Modelo de Dispersión Axial

obteniendo los datos a partir de la gráfica 9-23 de O. Levenspiel.

II.2. Serie de tanques agitados

Con el valor de N calculado en el TP Nº 3

A partir del valor de N calcular el valor de la conversión para una serie de tanques

agitados. Tener en cuenta cual será el valor más razonable a adoptar en caso de que

N no sea un número entero.

II.3. Segregación total

CONCLUCIONES

Por último efectuar la comparación de los valores obtenidos y sacar conclusiones.

BIBLIOGRAFÍA

( )dttExx TADAA ∫∞

=0

,

Page 7: Universidad Tecnológica Nacional Facultad Regional · PDF fileSoluciones a utilizar (por cada comisión) : ... obteniendo los datos a partir de la gráfica 9-23 de O. Levenspiel.

Extraemos

TP Nº 4:HIDRÓLISIS ALCALINA DEL ACETATO DE ETILO EN UN REACTOR TUBULAR CONTINUO MAPA CONCEPTUAL

O B JETIVOS

Obtener la conversión real para una saponificación en el reactor FP

Comparar la conversión real con la obtenida por modelos de: • Flujo ideal • Flujo no-ideal

Se utiliza el FP de Pta Piloto, alimentando con Acetato de etilo e hidróxido de sodio, la alimentación en relación estequiométrica y el mismo caudal utilizado para det DTR

Obtenemos xA real

CA0, CB0

V (Vol RX) v (caudal) T (Temp)

Del TP de DTR en Rx FP, extraemos: • D (Módulo de dispersión) • N (Número de TK´s en

serie) • Curva E(t)

Calculamos conversión para Modelo de Dispersión Axial (Utilizando gráfica)

Calculamos conversión para el Modelo de TK´s en Serie

Calculamos conversión para el modelo de Segregación

Calculamos conversión para los modelos ideales: • FP • MC

xA

Real FP ideal MC ideal Modelo Disp axial Modelo N TK´s Modelo segregación