Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf ·...

134
Universidad de Salamanca Departamento de Física Aplicada OPTIMIZACIÓN DE MÁQUINAS TÉRMICAS Norma Sánchez Salas Salamanca, Septiembre 2003

Transcript of Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf ·...

Page 1: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

Universidad de Salamanca

Departamento de Física Aplicada

OPTIMIZACIÓN DE MÁQUINAS TÉRMICAS

Norma Sánchez Salas

Salamanca, Septiembre 2003

Page 2: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

Universidad de Salamanca

Departamento de Física Aplicada

OPTIMIZACIÓN DE MÁQUINAS TÉRMICAS

Memoria presentada por Norma Sánchez Salas para optar al

grado de Doctor en Ciencias Físicas.

Page 3: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

D. Antonio Calvo Hernández, profesor titular de Universidad del departamento de

Física Aplicada de la Universidad de Salamanca, autoriza la presentación de la tesis

doctoral titulada ”Optimización de máquinas térmicas” realizada bajo su dirección

por D. Norma Sánchez Salas.

Salamanca, 29 de Septiembre de 2003.

Fdo. A. Calvo Hernández

Page 4: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

Deseo expresar mi más sincero agradecimiento a D. Antonio Calvo Hernández, mi

director de tesis, por su dedicación, asesoría, colaboración y apoyo constantes durante

la realización de este trabajo.

También, quiero agradecer al grupo de investigación dirigido por D. Santiago Velasco

por su apoyo y hospitalidad durante mi estancia en la Universidad de Salamanca. Y,

finalmente a todas las instituciones que apoyaron, en el aspecto económico, mi trabajo

de investigación como son la COFAA-IPN (México) y la AECI.

Page 5: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

Dedico este trabajo a todas las personas que de alguna u otra forma han

hecho posible que haya llegado a buen termino, a los amigos y amigas, pro-

fesores, compañeros, personal administrativo y todos los demás.

Y de forma especial a Sergio por brindarme su compañía y apoyo durante

todos estos años, a toda mi familia, a mis padres y a mis hermanos, Valentín

e Israel.

Page 6: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

6

Page 7: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

Índice general

Índice general 7

1. Introducción 9

2. TTF y criterios de optimización 15

2.1. Antecedentes históricos de la TTF . . . . . . . . . . . . . . . . . . . . . . . 15

2.2. Características y aplicaciones relevantes . . . . . . . . . . . . . . . . . . . 18

2.3. Criterio Omega . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3. Sistemas macroscópicos 25

3.1. Ciclos de potencia tipo Carnot . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1. Ley de conducción lineal . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2. Leyes no lineales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2. Ciclos frigoríficos tipo Carnot . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1. Ley de conducción lineal . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.2. Leyes no lineales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3. Ciclo Brayton regenerativo . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1. Modelo teórico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.2. Resultados numéricos . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.3. Límite Endorreversible . . . . . . . . . . . . . . . . . . . . . . . . . 55

4. Sistemas brownianos 59

4.1. Rectificador mecánico: Ratchet de Feynman . . . . . . . . . . . . . . . . . 62

4.1.1. Caso general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.2. Régimen lineal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2. Rectificador eléctrico: ratchet de Sokolov . . . . . . . . . . . . . . . . . . 70

4.2.1. Descripción del sistema . . . . . . . . . . . . . . . . . . . . . . . . 70

7

Page 8: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

8 ÍNDICE GENERAL

4.2.2. Régimen ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3. Adiabatic Rocked Ratchet . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1. Límite determinista . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.2. Temperaturas finitas . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.3. Corriente neta, energía de entrada y calor disipado . . . . . . . . 91

5. Sistemas cuánticos 99

5.1. Consideraciones generales . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2. Ciclo de potencia armónico con fricción . . . . . . . . . . . . . . . . . . . 101

5.3. Ciclo frigorífico armónico con fricción . . . . . . . . . . . . . . . . . . . . 111

6. Conclusiones 119

Bibliografía 125

Page 9: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

Capítulo 1

Introducción

Es bien conocido que la Termodinámica Clásica del Equilibrio (TCE) proporciona

expresiones analíticas muy simples para el rendimiento de una gran variedad de ciclos

propuestos para modelar el comportamiento de máquinas térmicas (tanto motores, co-

mo frigoríficos y bombas de calor). Sin embargo, dichas expresiones proporcionan re-

sultados numéricos muy diferentes de los observados en las máquinas térmicas reales.

La principal causa de esta discrepancia es, sin duda, el hecho de que los rendimien-

tos calculados dentro de la TCE suponen siempre la hipótesis de procesos reversibles

(duración temporal infinita), con lo cual sus resultados deben considerarse como co-

tas superiores para tales rendimientos. Más aún, al requerir tiempo infinito, los ciclos

reversibles modelan máquinas de potencia nula [1].

El estudio de las máquinas térmicas reales, cuyos ciclos se completan en un tiempo

finito, requiere la localización y análisis de las irreversibilidades inherentes a los pro-

cesos reales que configuran tales ciclos. En este contexto es de destacar el desarrollo

que en los últimos veinticinco años ha experimentado la denominada Termodinámi-

ca de Tiempo Finito (TTF), cuyo principal objetivo es el análisis del funcionamien-

to óptimo de las máquinas térmicas reales y que ha aportado nuevos límites para el

funcionamiento de dispositivos térmicos. Su método de trabajo se basa, fundamental-

mente, en la aplicación sucesiva de los tres puntos siguientes [2]:

Modelar las ligaduras espacio-temporales asociadas a las diferentes fuentes de

irreversibilidad mediante parámetros macroscópicos,

Optimizar una función adecuada con respecto de los parámetros característicos

del problema.

9

Page 10: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

10 1. Introducción

Calcular los estados del dispositivo que sean más adecuados respecto de la opti-

mización planteada.

Conviene resaltar en este punto una diferencia entre la TTF y la Termodinámica

de los Procesos Irreversibles (TPI) [3]. Ambas tratan de la extensión de la TCE a sis-

temas con irreversibilidades y también ambas estudian cómo estas irreversibilidades

afectan al comportamiento de los dispositivos. Sin embargo, mientras que la TPI se

centra fundamentalmente en el planteamiento y posible resolución de las ecuaciones

de evolución en el tiempo (normalmente ecuaciones diferenciales de carácter local) de

las variables termodinámicas del sistema, la TTF se centra en analizar la influencia que

las ligaduras temporales o la realización de un proceso en un tiempo finito tienen sobre

el comportamiento global de tal dispositivo. Así, mientras que la primera se desarrolla

generalmente sobre modelos de tipo local, la segunda lo hace sobre modelos donde

las irreversibilidades se describen mediante constantes macroscópicas tales como coe-

ficientes de rozamiento, viscosidades y conductancias térmicas.

Otro matiz importante de la TTF, que la diferencia respecto de la Termodinámi-

ca tradicional (tanto reversible como irreversible), reside en que la TTF se desarrolló

con el objetivo de intentar mejorar el rendimiento de las máquinas térmicas y, en con-

secuencia, su principal objetivo es la optimización de tales máquinas, analizando los

procesos que originan mayores beneficios respecto de la optimización planteada ori-

ginalmente [4–6].

En la TTF se tiene, en principio, libertad para elegir la función a optimizar (figura

de mérito en muchos textos anglosajones), centrándose el interés en la comparación de

funciones termodinámicas relevantes (rendimiento, potencia, generación de entropía,

etc) bajo diferentes criterios de optimización, una cuestión no tratada generalmente

en la Termodinámica tradicional [4]. Es de resaltar la gran variedad de criterios de

optimización propuestos no solo para motores sino también para frigoríficos y tanto

de tipo económico como termodinámico [7]. La mera existencia de tantos y tan diver-

sos criterios muestra claramente la dificultad de obtener un criterio de optimización

generalizado en el sentido de que sea válido tanto para motores como para frigorífi-

cos y bombas de calor y que además permita obtener situaciones de funcionamiento

eficientes. En TTF se considera como óptimo cualquier régimen de trabajo cuyos valo-

res para el rendimiento y la potencia estén comprendidos entre los correspondientes a

máxima potencia y máximo rendimiento.

Page 11: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

11

Por otra parte, más allá de los dispositivos macroscópicos considerados tradicional-

mente por la Termodinámica, en los últimos años se está realizando una destacada y

exhaustiva investigación en dispositivos a escala celular [8] (con objeto de modelar en

la medida de lo posible el comportamiento de algunos procesos biológicos como la

contracción muscular o el flujo másico a través de membranas) y en dispositivos mi-

croelectrónicos compuestos por diodos semiconductores [9, 10]. Una gran parte de los

modelos desarrollados para ello se basan en los denominados motores brownianos o

ratchets, cuya idea esencial es obtener trabajo en un sistema de tipo mesoscópico, con

escalas espaciales muy pequeñas, mediante la rectificación apropiada de fluctuaciones

provenientes de ruido térmico [11].

La importancia de los sistemas brownianos radica en que, desde la publicación de

un trabajo de Feynman [12] sobre un rectificador de tipo mecánico, se han encontra-

do en ellos pautas de comportamiento semejantes a las que se observan en los de-

nominados motores moleculares [8, 13]: dispositivos capaces de transportar iones en-

tre diferentes partes de una membrana en contra del gradiente electroquímico de los

iones; moléculas que avanzan a lo largo de microtúbulos transportando diverso ma-

terial celular; o moléculas capaces de formar tejido muscular mediante transporte de

filamentos. Todos estos sistemas constan de una proteína que cambia su configuración

tridimensional al hidrolizar ATP (adenosín trifosfato). La proteína es distinta según el

sistema considerado, pero todas ellas son motores capaces de extraer energía química

almacenada en los enlaces de ATP y transformarla en energía mecánica, realizándose

esta transformación en escalas de tiempo y en escalas espaciales donde la influencia de

las fluctuaciones térmicas es ineludible.

Asimismo, otra línea de investigación actual y especialmente activa es el estudio

de máquinas cuánticas [14]. El interés de estos estudios es doble. Desde un punto de

vista práctico se pretende desarrollar modelos de máquinas microscópicas análogas

a las macroscópicas pero cuya dinámica esté gobernada por las leyes de la Mecáni-

ca Cuántica y analizar sus aspectos energéticos más relevantes y modos de operación

eficientes. Se destacan algunos trabajos sobre una partícula cuántica en diferentes po-

tenciales unidimensionales [21] a fin de construir los procesos cuánticos análogos a

los procesos básicos que tienen lugar en cualquier ciclo macroscópico (procesos iso-

baros, isocoros, etc). Desde un punto de vista más formal con estos sistemas se pre-

tende analizar los límites de validez de las leyes fundamentales de la Termodinámica,

para lo cual la comprensión desde un punto de vista microscópico de fenómenos tan

Page 12: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

12 1. Introducción

diversos como la disipación de la energía o la producción de entropía son aspectos con-

ceptuales directamente relacionados con la fundamentación microscópica del Segundo

Principio de la Termodinámica. En particular, temas como la fundamentación cuántica

del teorema de fluctuación-disipación o el movimiento browniano cuántico están aún

lejos de ser comprendidos satisfactoriamente.

El principal objetivo de la presente memoria, continuando el trabajo de investi-

gación del área de Física Aplicada de la Universidad de Salamanca en el campo de la

optimización de dispositivos térmicos, es presentar un análisis sistemático de máquinas

térmicas (motores y frigoríficos) desde el punto de vista de la TTF. Para ello se ana-

liza el comportamiento optimizado de algunas máquinas macroscópicas, brownianas

(mesoscópicas) y cuánticas (microscópicas) bajo tres régimenes de funcionamiento.

Dos de ellos, los de máximo rendimiento y máxima potencia [máxima eficiencia y

máxima potencia de enfriamiento en frigoríficos], son los que de forma natural de-

finen la propia utilidad del dispositivo. El tercero, que se denomina Ω, es un criterio

que puede considerarse como general y unificador en el sentido que es aplicable tanto

a ciclos de potencia como a ciclos frigoríficos y que en todos los casos estudiados, como

se mostrará, proporciona resultados intermedios respecto a los otros dos.

La idea básica más importante que subyace detrás del criterio Ω, como se verá más

adelante, es la del mejor compromiso entre beneficios energéticos y pérdidas por irre-

versibilidades en cualquier dispositivo termodinámico convertidor de energía. Una

consecuencia importante, que se adelanta aquí, es que los resultados obtenidos mues-

tran que todos las sistemas de potencia, por un lado, y todos los sistemas frigoríficos,

por otro lado, e independientemente de su naturaleza y tamaño, presentan un com-

portamiento energético cualitativo similar cuando se analizan bajo los mencionados

criterios de optimización. Dicho de otra forma, todas las máquinas térmicas parecen

mostrar grandes similitudes en el comportamiento de la potencia y del rendimiento

(carga de refrigeración y eficiencia en el caso de frigoríficos) cuando son estudiadas en

términos de variables independientes apropiadas dentro del contexto de la TTF.

El material que constituye la presente memoria se organiza del modo siguiente:

En el capítulo 2, y por razones de completitud, se presenta un breve esquema

histórico sobre la evolución de la TTF, haciendo especial énfasis en sus ideas básicas,

logros más relevantes y en diferentes criterios de optimización y, en particular, sobre el

criterio Ω.

En el capítulo 3 se presenta el análisis de ciclos termodinámicos representativos

Page 13: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

13

de máquinas térmicas macroscópicas, tanto motores como frigoríficos. Los ciclos ana-

lizados corresponden, en primer lugar, a un modelo teórico muy sencillo, pero que

incorpora las tres fuentes de irreversibilidades usuales en todas las máquinas térmicas

reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

en instalaciones de potencia de gas como es el ciclo Brayton regenerativo. En el primer

caso se presenta un estudio detallado de los ciclos termodinámicos bajo diferentes leyes

de conducción de calor: la ley lineal de Newton, la ley inversa, la de Dulong y Petit

y la de Stefan-Boltzman. Se analizará asimismo con cierto detenimiento el llamado

límite endorreversible, cuyos resultados dentro de la TTF pueden considerarse como

paradigmáticos y, en cierta forma, equivalentes a los del teorema de Carnot en la TCE.

En el capítulo 4 se presenta el estudio energético de tres tipos de motores brow-

nianos o ratchets. En primer lugar y por su importancia histórica se presenta la opti-

mización de la llamada máquina de Feynman, un rectificador de fluctuaciones de tipo

mecánico que trabaja en contacto simultáneo con dos focos térmicos a diferentes tem-

peraturas. En segundo lugar el ratchet de Sokolov, que puede considerarse como el

equivalente eléctrico del anterior. En tercer lugar se estudiará el denominado Adiabatic

Rocked Ratchet que es el modelo más simple de ratchet que incorpora todos los ingre-

dientes necesarios para la realizacion de trabajo en un sistema browniano isotermo y

donde el agente responsable de romper el equilibrio es una fuerza externa periódica.

En el capítulo 5 se analiza un ciclo cuántico irreversible cuyo sistema de trabajo es

un conjunto de osciladores armónicos sin interaccionar. Este ciclo cuántico es analizado

tanto cuando opera en el modo de potencia, como en el modo frigorífico y también se

presenta su comportamiento en el límite de altas temperaturas.

Finalmente, se presenta un breve resumen y las principales conclusiones del tra-

bajo, donde se hace un énfasis especial en los comportamientos cualitativos similares

encontrados de los sistemas analizados, independientemente de la naturaleza del con-

vertidor energético considerado y de la ley de transferencia de calor involucrada.

Page 14: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

14 1. Introducción

Page 15: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

Capítulo 2

TTF y criterios de optimización

La Termodinámica de Tiempo Finito es actualmente una disciplina bien funda-

mentada y ampliamente utilizada en el estudio y desarrollo de procesos térmicos efi-

cientes en los más diversos campos: Física, Química, Ingeniería, etc. Aunque existen

numerosas publicaciones especializadas en el tema [4–7] , se resumen brevemente en

este capítulo (por razones de completitud), algunas de sus ideas fundamentales, algo

de su historia y algunos de sus logros más sobresalientes en relación con el trabajo

específico presentado en esta memoria.

2.1. Antecedentes históricos de la TTF

En 1824, Sadi Carnot [15] publicó su célebre trabajo “Réflexions sur la puissance

motrice du feu” (Reflexiones sobre la fuerza motriz del fuego), en el que presentó

los resultados del primer estudio sistemático de los procesos físicos que gobiernan las

máquinas de vapor. Carnot demostró que ningún motor térmico operando entre dos

focos térmicos de temperaturas TH y TC , con TH > TC , puede superar el rendimiento η

dado por η = 1 − (TC/TH) ≡ 1 − τ (con τ = TC/TH) y conocido como rendimiento de

Carnot (ηC).

Este resultado, que proporciona un límite superior especialmente sencillo para el

rendimiento de cualquier motor térmico que funciona entre dos focos térmicos de tem-

peraturas TH y TC , junto con los trabajos posteriores de autores como Gibbs, Clausius

y Kelvin entre otros, originaron un cuerpo de doctrina, la Termodinámica Clásica del

Equilibrio, que aporta una descripción completa de los procesos reversibles, es decir,

15

Page 16: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

16 2. TTF y criterios de optimización

procesos cuasiestáticos no disipativos que tienen una duración infinita [1]. Consecuen-

cia inmediata es que la TCE no es un marco adecuado para la descripción de procesos

reales debido a que estos se realizan en condiciones de irreversibilidad y por lo tanto

producen menos trabajo y más entropía que sus correspondientes reversibles. En par-

ticular, la TCE no permite obtener potencia para los motores, potencia de enfriamiento

para los frigoríficos ó potencia de calentamiento para bombas térmicas.

Aunque anteriormente algunos ingenieros como Novikov y Chambadal ya habían

considerado algunas restricciones que se presentan en las máquinas reales (en concreto,

la duración temporal finita del proceso de intercambio de calor entre el sistema de

trabajo y los focos térmicos) [16, 17], no fue hasta 1975 con el trabajo de Curzon y

Ahlborn (CA) [18] cuando se empezó a desarrollar en la literatura física un estudio

formal y sistemático de los efectos cuantitativos y cualitativos que las irreversibilidades

producen en los ciclos termodinámicos.

En el trabajo de Curzon y Ahlborn [18] se presenta un análisis de un ciclo de Carnot

(dos adiabáticas y dos isotermas) en el que no existe equilibrio térmico entre los focos

térmicos y el sistema de trabajo. Estos autores permitieron en su modelo un intercam-

bio irreversible de calor, descrito mediante una ley de transferencia lineal o newto-

niana. Sin embargo, para poder emplear el formalismo de la Termodinámica Clásica,

acotaron estos procesos irreversibles a los acoplamientos del sistema y sus alrededores,

permitiendo que el sistema de trabajo realizara internamente un proceso cíclico re-

versible. A esta hipótesis se le ha denominado hipótesis de endorreversibilidad. De este

modo, integrando las ecuaciones de transporte se puede evaluar el tiempo de duración

de los procesos de intercambio de calor y calcular el período del ciclo. Con estas su-

posiciones, se obtuvo un ciclo tipo Carnot más realista, con producción de potencia no

nula y con generación de entropía. En particular, estos autores mostraron que un ciclo

como el descrito anteriormente, y trabajando en circunstancias de máxima potencia,

tiene un rendimiento dado por la expresión ηCA = 1 −√

TC/TH ≡ 1 − √τ , donde TC

y TH son las temperaturas de los focos térmicos frío y caliente, respectivamente. Este

resultado, conocido ampliamente como rendimiento de Curzon y Ahlborn, representa

un papel análogo al rendimiento de Carnot pero en ciclos irreversibles trabajando en

condiciones de máxima potencia. Hay que apuntar que los resultados obtenidos de la

ecuación anterior dan valores de rendimientos que logran acercarse notablemente al

rendimiento de plantas reales productoras de potencia (véase tabla 2.1) a pesar de ser

un resultado muy simple que depende sólo de las temperaturas de los focos externos

Page 17: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

2.1. Antecedentes históricos de la TTF 17

Tabla 2.1: Datos de alguna plantas de potencia. ηobs denota el rendimiento real, ηC =

1 − Tc/Th ≡ 1 − τ el de Carnot, ηCA = 1 − √τ el de Curzon-Ahlborn, y ηME = 1 −

τ(τ + 1)/2 el rendimiento en condiciones de máximo para el criterio ecológico (véase

más adelante). Valores tomados de [19].

Plantas Th(K) Tc(K) ηobs ηC ηME ηCA

Doel 4 (nuclear PWR, Bélgica) 566 283 0,350 0,5 0,387 0,293

Almaraz II (nuclear PWR, España) 600 290 0,345 0,516 0,401 0,305

Sizewell B (nuclear PWR, UK) 581 288 0,363 0,504 0,366 0,296

Cofrentes (nuclear BWR, España) 562 289 0,340 0,485 0,391 0,283

Heysham (nuclear AGR, UK ) 727 288 0,4 0,603 0,474 0,371

e independiente de cualquier otra característica del sistema.

Así, el trabajo pionero de Curzon y Ahlborn marcó el nacimiento de la TTF, plan-

teándose a partir de entonces la tarea de proponer modelos físicos de máquinas térmi-

cas que incorporen las inevitables restricciones que se tienen en el mundo real: tiem-

pos finitos y/o tamaño finito. Otro elemento clave de la TTF es que permite de forma

natural analizar las condiciones óptimas de operación para ciclos termodinámicos, me-

diante la optimización de funciones adecuadas y empleando habitualmente métodos

variacionales y teorías de control. Algunos autores también se refieren a la TTF como

“Termodinámica Endorreversible” [20]. En Ingeniería Termodinámica, Bejan incorporó

la minimización de la producción de entropía como el método de optimización más

adecuado en el diseño de procesos y dispositivos térmicos y, como consecuencia, le

asignó el término “Minimización de la Generación de Entropía” [16, 17]. No obstante,

todas estas disciplinas tienen el mismo objetivo: hacer una conexión entre las leyes de

la Termodinámica y de la Transferencia de Calor a fin de conseguir la optimización

de dispositivos y procesos reales, incluyendo las irreversibilidades provenientes de las

restricciones espacio-temporales.

Conviene resaltar que, aunque la TTF incorpora en sus modelos los efectos disi-

pativos observados en procesos reales, se centra también en analizar la influencia de

ellos sobre el comportamiento global del proceso, intentando describir los efectos disi-

pativos con el menor número posible de nuevos parámetros o variables —evitando un

estudio de los procesos y sistemas de manera detallada— de tal forma que los resul-

tados obtenidos sean simples y aporten una guía sobre cómo diseñar los ciclos para

Page 18: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

18 2. TTF y criterios de optimización

alcanzar los objetivos requeridos. En este sentido comparte la misma esencia que la

Termodinámica Clásica.

2.2. Características y aplicaciones relevantes

De forma muy resumida se puede decir que el método de trabajo usado dentro del

campo de la TTF se basa típicamente en el siguiente procedimiento: se hacen ciertas

estimaciones del proceso real para establecer un modelo termodinámico, es decir, las

restricciones de tiempo y/o tamaño finito que incorporen las irreversibilidades me-

diante parámetros macroscópicos, y posteriormente se optimiza el modelo respecto de

una función o criterio que proporcione el régimen de operación óptimo elegido.

Dentro de la TTF, se tiene libertad para elegir cualquier función a optimizar para

luego comparar el rendimiento, o cualquier otra función de interés, bajo diferentes

criterios de optimización [4, 7]. En el caso de los motores térmicos, los criterios de op-

timización naturales son la maximización del rendimiento y de la potencia producida;

en los frigoríficos son la maximización de la potencia de enfriamiento (calor extraído

del foco térmico frío por unidad de tiempo) y de la eficiencia, o bien, la mínimización

de la potencia suministrada. En las siguientes secciones de este capítulo se mostrará

un panorama más amplio sobre otros criterios de optimización utilizados.

Uno de los méritos de la TTF es la posibilidad de su aplicación a una amplia va-

riedad de dispositivos termodinámicos convencionales como motores térmicos, frigo-

ríficos y bombas de calor [7], y a otros no tan convencionales como máquinas cuánticas

[14, 21, 22], fenómenos de transición superconductora [23], reacciones químicas [24,

25] y el comportamiento de los vientos [26], entre otros. Una descripción detallada

de todas las aplicaciones de la TTF está fuera del marco de la presente memoria y

nos limitaremos aquí, por consiguiente, a enumerar algunas de las aplicaciones más

relevantes en relación con el presente trabajo.

Obviamente, el ciclo endorreversible utilizado por Curzon y Ahlborn es el modelo

más estudiado dentro de la investigación realizada en la TTF, no sólo por ser el primero

sino también por su sencillez matemática. Como se explicó anteriormente, en este

modelo el fluido de trabajo realiza un proceso cuasiestático no disipativo y la úni-

ca fuente de irreversibilidad reside en el intercambio de calor con los focos térmicos

siguiendo una ley de tipo lineal en la diferencia de temperaturas. Aparte de la maxi-

Page 19: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

2.2. Características y aplicaciones relevantes 19

mización de la potencia [18], este modelo ha sido estudiado bajo distintos criterios de

optimización, entre los que destacamos los siguientes: la producción de entropía [27],

la potencia específica y la densidad de potencia [28, 29], la función ecológica [30] (un

compromiso entre la potencia y la generación de entropía, véase más adelante), la fun-

ción ahorro [19] (un criterio que permite evaluar de forma sencilla tanto la energía

consumida como la potencia producida y la energía disipada) y también mediante

variados criterios de aspecto termoeconómico [31].

En las máquinas reales no todas las transferencias de calor entre los focos y el fluido

de trabajo obedecen una ley de transferencia de Newton, y aún más, aparte de la re-

sistencia térmica, existen pérdidas de calor globales y disipaciones internas en el fluido

de trabajo. Estas características fueron incorporadas sucesivamente en modelos cada

vez más complejos. Así el modelo original endorreversible de Curzon y Ahlborn fue

analizado utilizando leyes de transferencia de calor no lineales características de pro-

cesos de conducción-convección, [q ∝ (∆T )n] o de radiación [q ∝ ∆(T n)] [32]. Fue

Rubin [33] quién determinó la configuración óptima para un ciclo de una máquina

térmica formada por dos ciclos endorreversibles combinados con focos térmicos de

temperaturas intermedias. Posteriormente, Chen et al. [34] desarrollaron un modelo

cíclico irreversible, que además de los acoplamientos lineales entre el sistema de traba-

jo y los focos térmicos externos, incluye los efectos de irreversibilidades internas en el

fluido de trabajo y pérdidas globales de calor en el ciclo, y lo analizaron bajo los crite-

rios de máxima potencia y máximo rendimiento. Dicho ciclo fue posteriormente ana-

lizado usando leyes de transferencia de calor distintas a la ley de Newton [32,35] y bajo

diferentes criterios de optimización como la función ecológica, mínima producción de

entropía, la exergía y el rendimiento por unidad de tiempo [36].

En el caso de motores de combustión interna, los ciclos Otto [37] y Diesel [38] han

sido optimizados usando teorías de control, encontrándose que la eficiencia y la po-

tencia de estos ciclos optimizados, se pueden incrementar hasta en un 10 % respecto de

los no optimizados y considerando las mismas fuentes de irreversibilidad. Se han pu-

blicado asimismo numerosos artículos donde se analizan los efectos de las irreversibi-

lidades en el comportamiento de ciclos Otto [39] y Diesel [40] bajo variados criterios

de optimización. Para los ciclos de potencia de vapor y gas también existe cuantiosa

literatura. En particular se mencionan los resultados para ciclos tanto endorreversibles

como irreversibles de tipo Rankine [41], Brayton [42, 43], Stirling [44] y Ericsson [45]

optimizados fundamentalmente bajos los criterios de máximo rendimiento, máxima

Page 20: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

20 2. TTF y criterios de optimización

potencia y máxima densidad de potencia.

Es evidente que el método utilizado y las ideas propuestas para analizar a los mo-

tores térmicos pueden ser aplicados también a ciclos frigoríficos y bombas de calor.

Así se han estudiado los comportamientos de frigoríficos endorreversibles e irreversi-

bles, principalmente de tipo Carnot y Brayton invertido usando diferentes criterios de

optimización [46–49]. En esta dirección el grupo de Física Aplicada de la Universi-

dad de Salamanca propuso [50, 51] un criterio diferente para encontrar los límites de

funcionamiento de un frigorífico: el rendimiento por unidad de tiempo (per-unit-time

COP).

Entre los sistemas térmicos no tradicionales analizados con la metodología de la

TTF se citan los siguientes: ciclos térmicos de potencia como las celdas de convección

atmosférica representadas (a nivel global) como ciclos de Carnot irreversibles, con el

aire como sistema de trabajo y la radiación solar como fuente externa [20]; procesos

de fundición de materiales analizados bajo la mínima producción de entropía [52];

dispositivos láser [53]; máquinas impulsadas con luz [54]; sistemas electroquímicos

[25,55], procesos de destilación, reacciones bioquímicas [56]; y la contracción muscular

[57, 58].

Asimismo, en los últimos años se ha desarrollado una activa línea de investigación

con el objetivo de aplicar la filosofía y los métodos de trabajo de la TTF en sistemas

macroscópicos a sistemas microscópicos descritos por las leyes de la Mecánica Cuántica.

En particular, se destacan aquí los trabajos de Kosloff et al. [59–64] y Chen et al. [65–67]

sobre modelos endorreversibles tipo Carnot y ciclos irreversibles tipo Brayton y Ericc-

son, considerando como fluidos de trabajo sistemas de espines y de osciladores cuán-

ticos y diversos trabajos analizando la influencia de la degeneración en gases ideales

cuánticos [68–70].

2.3. Criterio Omega

Esta sección está especialmente dedicada a describir el criterio Omega de opti-

mización, uno de los punto centrales de este trabajo de investigación. Sin embargo,

se empezará describiendo con cierto detalle la denominada función ecológica, que en

cierta medida motivó el desarrollo del criterio Ω, y que puede ser considerada como

un caso particular de él en ciertas situaciones límites.

Page 21: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

2.3. Criterio Omega 21

La función ecológica, E, fue propuesta por F. Angulo-Brown [30] en 1991 con el

objetivo de disminuir la producción de entropía generada en los ciclos de potencia

endorreversibles tipo Carnot. Este autor observó que, con el criterio de máxima poten-

cia utilizado por CA, si bien la potencia obtenida y el rendimiento se acercaban a los

resultados reales de las plantas de potencia, los procesos involucrados en el ciclo ori-

ginan una elevada producción de entropía, lo que representa un efecto no deseable. En

consecuencia, él propuso la función ecológica como un criterio de optimización más

realista puesto que representa un compromiso entre la máxima potencia y la mínima

generación de entropía. La expresión explícita para esta función es E = P−TCσ, donde

P representa la potencia de salida, σ la producción de entropía y TC la temperatura del

foco térmico de temperatura más baja. La maximización de E aporta propiedades in-

teresantes al modelo endorreversible, pues aunque la potencia se reduce aproximada-

mente en un 25 % respecto de la máxima posible, la producción de entropía se reduce

aproximadamente en un 75 % (teorema 75−25). Otra característica muy importante de

este criterio de optimización es que predice en ciclos endorrevesibles un rendimiento

dado por la expresión ηME = 1−√

τ(τ + 1)/2, el cual, al igual que el de Carnot y el de

Curzon-Ahlborn, es sólo dependiente de las temperaturas de las focos externos con las

que interacciona el fluido de trabajo. Además, es fácil comprobar que ηME representa

no sólo un valor intermedio entre los rendimientos de Carnot y de Curzon-Ahlborn,

sino que además verifica la relación ηME ≈ (ηC + ηCA)/2, conocida como la propiedad

de semisuma (ver tabla 2.1).

Desde su publicación, la función ecológica fue ampliamente aplicada en una gran

variedad de ciclos convencionales y en el análisis de procesos de tipo biológico. En-

tre otras aplicaciones se citan las siguientes: modelos endorreversibles de ciclos Otto

y Joule-Brayton [71]; transición de fase conductor-superconductor [23]; análisis de la

glucólosis aeróbica (respiración) [56]; el modo de operación de algunos procesos bio-

lógicos como la síntesis de ATP y la contracción muscular [57, 58].

Retornando al criterio de optimización Ω, éste fue propuesto recientemente [72] por

el grupo de Física Aplicada de la Universidad de Salamanca, siguiendo la filosofía de

compromiso (trade-off) inherente en la definición de la función ecológica. En particular,

este nuevo criterio se propone como un compromiso entre la energía útil aprovechada

y la energía útil perdida cuando un convertidor energético arbitrario realiza su trabajo

específico. No está, pues, de entrada limitado a ciclos de potencia sino que, como se

verá más adelante, es aplicable en principio cualquier convertidor energético.

Page 22: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

22 2. TTF y criterios de optimización

La función Omega se origina del siguiente planteamiento. Sea un convertidor ener-

gético arbitrario que produce una energía útil Eu(x; α) mediante la transformación

de la energía de entrada Ei(x; α) durante un proceso caracterizado por una variable

independiente apropiada x y un conjunto de parámetros llamados de control que se

denotan genéricamente por α. La definición de rendimiento convencional de este

convertidor es la relación entre la energía útil producida y la energía de entrada

z(x; α) =Eu(x; α)Ei(x; α) , (2.1)

y satisface la siguiente relación

zmin(α) ≤ z(x; α) ≤ zmax(α) (2.2)

donde zmin(α) y zmax(α) son los valores mínimo y máximo de z(x; α), respecti-

vamente, para todo el intervalo de valores permitidos de x y valores dados del con-

junto de parámetros de control. Cabe destacar que, para algunos convertidores ener-

géticos zmin(α) 6= 0. Entonces se tiene que, dada una energía de entrada Ei(x; α),se cumple

zmin(α)Ei(x; α) ≤ Eu(x; α) ≤ zmax(α)Ei(x; α). (2.3)

Estos límites sugieren la definición de la energía útil efectiva como

Eu,eff (x; α) = Eu(x; α) − zmin(α)Ei(x; α)

y la energía útil perdida como

Eu,L(x; α) = zmax(α)Ei(x; α) − Eu(x; α).

Para evaluar el mejor compromiso entre la energía útil y la energía útil perdida se

introduce la función Ω como la diferencia de estas dos cantidades:

Ω(x; α) = Eu,eff (x; α) − Eu,L(x; α)

=2z(x; α) − zmin(α) − zmax(α)

z(x; α) Eu(x; α), (2.4)

que es precisamente la función propuesta para optimizar el modo de operación de

cualquier convertidor energético.

Para aplicar este criterio a máquinas macroscópicas tradicionales en Termodinámi-

ca, primero se distinguen entre motores térmicos (HE, heat engines), frigoríficos (RE,

Page 23: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

2.3. Criterio Omega 23

refrigerators) y bombas (HP, heat pumps). En las HE la energía útil obtenida es el tra-

bajo |W | aportado y la energía de entrada es el calor suministrado |QH |; para RE la

energía útil obtenida es el calor extraído del foco a temperatura baja, |QL| a expensas

del trabajo suministrado |W |; y para las HP la energía útil obtenida es el calor |QH |de abastecimiento al foco térmico de mayor temperatura a expensas del trabajo sumi-

nistrado |W |. Los rendimientos para estos dispositivos son bien conocidos: para los

ciclos de potencia

zHE ≡ η =|W ||QH |

, (2.5)

para los frigoríficos es la eficiencia [o coefficient of performance (COP)],

zRE ≡ ε =|QL||W | , (2.6)

y finalmente para las bombas de calor

zHP ≡ ν =|QH ||W | . (2.7)

Hay que observar que η y ε pueden alcanzar un valor nulo, mientras ν = ε + 1 y,

como consecuencia, para las bombas el valor mínimo de ν es la unidad. Las bombas

son un ejemplo de casos donde zmin 6= 0.

De estas expresiones y usando la ec. (2.4) se obtiene las expresiones para Ω de cada

uno de estos dispositivos térmicos:

ΩHE = 2|W | − |W |max = (2η − ηmax)|QH | = (2η − ηmax)|W |η

, (2.8)

ΩRE = 2|QL| − |QL|max = (2ε − εmax)|W | = (2ε − εmax)|QL|

ε, (2.9)

ΩHP = 2|QH | − |W | − |QH |max = (2ν − 1 − νmax)|W | = (2ν − 1 − νmax)|QH |

ν. (2.10)

A la vista de los resultados precedentes, se destacan las siguientes características de

la función Ω:

Es muy fácil de implementar en cualquier tipo de dispositivo térmico, pues su

definición sólo necesita el conocimiento del rendimiento y de la potencia en mo-

tores; de la carga de refrigeración y eficiencia en frigoríficos; y de la carga de

calentamiento y eficiencia para bombas. Es de destacar que, aunque hasta aho-

ra se han propuesto numerosos criterios de optimización dentro del contexto de

Page 24: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

24 2. TTF y criterios de optimización

la TTF, ninguno tenía la propiedad de poderse aplicar a distintos dispositivos

térmicos - por ejemplo, motores, frigoríficos y bombas térmicas. En este sentido

se puede afirmar que Ω es un criterio general para cualquier convertidor ener-

gético [4, 6].

Su implementación no necesita el conocimiento explícito de la generación de en-

tropía, un problema a menudo difícil y sutil en la mayoría de los sistemas fuera

del equilibrio [4, 6].

Tampoco requiere la consideración de parámetros del entorno como sucede con

la función ecológica o la exergía. Esta propiedad le convierte en un buen criterio

de optimización dentro del contexto de la TTF [4, 6].

Finalmente, otra propiedad destacada de este criterio, y como se podrá comprobar

a lo largo de este trabajo, es su carácter unificador en el sentido de que siempre pro-

porciona valores del rendimiento (eficiencia) y de la potencia (carga de refrigeración)

intermedios a los obtenidos con los criterios de máxima potencia (máxima carga de re-

figeración) y máximo rendimiento (máxima eficiencia) en los ciclos de potencia (frigo-

ríficos). Estas características le otorgan la propiedad de ser un criterio de optimización

óptimo en el contexto de la TTF.

Nótese que la definición de Ω en el caso de bombas de calor se puede obtener di-

rectamente a partir de la del frigorífico, sin más que tener en cuenta que en este tipo

de ciclos |QH | = |QL| + |W | y ν = ε + 1. Así pues, el proceso de optimización de una

bomba de calor bajo el criterio Ω se reduce al proceso de optimización del correspon-

diente ciclo frigorífico y, en consecuencia, no serán presentados resultados explícitos

para estos dispositivos en este trabajo.

Page 25: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

Capítulo 3

Sistemas macroscópicos

El objetivo de este capítulo es mostrar los resultados obtenidos al aplicar los méto-

dos de la TTF a modelos de máquinas térmicas macroscópicas. Se analizaran, como

dos modelos representativos y bien diferentes, un ciclo irreversible tipo Carnot y un

dispositivo de potencia operando según un ciclo Joule-Brayton.

El primer sistema, un ciclo tipo Carnot irreversible estándar es un modelo, que

aunque muy sencillo desde el punto de vista analítico es muy utilizado, ya que in-

troduce las tres principales irreversibilidades que aparecen en todos los dispositivos

térmicos reales [17,34,36]: (a) pérdidas de calor por disipación entre los focos térmicos

externos al sistema (heat leak); (b) irreversibilidades internas en el fluido de trabajo; y

(c) las transferencias de calor en tiempo finito entre los focos térmicos externos y el sis-

tema de trabajo. El análisis presentado para este ciclo incluye los modos de operación

en forma de ciclo de potencia y ciclo frigorífico. Se considerarán en cada caso, además,

cuatro leyes distintas de transferencia de calor: una ley lineal o newtoniana y tres leyes

no lineales como son la ley inversa, la ley de Dulong y Petit y finalmente la ley de

transferencia de calor por radiación de Stefan-Boltzmann [32, 35].

En la segunda parte de este capítulo se analiza el segundo sistema propuesto. Es

un ciclo de potencia que recorre un ciclo irreversible Joule-Brayton con regeneración

y leyes lineales para las transferencias de calor. Es un modelo ampliamente utilizado

como prototipo en la investigación de ciclos de potencia con turbinas de gas [17,43,73,

74].

En todos los casos se analizan los modos de operación optimizados bajo tres regíme-

nes: máxima potencia (máxima potencia de enfriamiento para el frigorífico), máximo

rendimiento (máxima eficiencia en frigoríficos) y máxima función Omega.

25

Page 26: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

26 3. Sistemas macroscópicos

Tc

Th'

Qh

Tc'

Q c

W

σh

σc

Qi

σi

Th

.

.

.

.

Ciclo de

Carnot

Irreversible

Qi

.

Figura 3.1: Esquema de un ciclo de potencia irreversible tipo Carnot.

3.1. Ciclos de potencia tipo Carnot

El modelo teórico [75] que se considera es un ciclo (continuo) irreversible de tipo

Carnot cuyo esquema se muestra en la Fig. 3.1. |Qh| y |Qc| denotan, respectivamente,

el calor por unidad de tiempo (flujo de calor) suministrado por el foco térmico caliente

externo de temperatura Th y el flujo de calor absorbido por el foco térmico frío de

temperatura Tc; |Qi| es el flujo de calor disipado directamente entre los focos externos;

|W | es la potencia obtenida por ciclo; T′

h(< Th) y T′

c(> Tc) son, respectivamente, las

temperaturas del sistema de trabajo a lo largo de las isotermas caliente y fría. Final-

mente, σh y σc denotan las conductancias térmicas asociadas, respectivamente, a las

transferencias de calor entre los focos térmicos caliente y frío y el sistema de trabajo

y σi es la conductancia térmica asociada al flujo de calor intercambiado directamente

entre las dos focos externos (heat leak).

Para el ciclo realizado por el fluido de trabajo, la desigualdad de Clausius es

|Qh|T

h

− |Qc|T ′

c

≤ 0, (3.1)

expresión que puede ser escrita como una igualdad si se utiliza un parámetro I , tal que

Page 27: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

3.1. Ciclos de potencia tipo Carnot 27

|Qh|T

h

= I|Qc|T ′

c

con 0 ≤ I ≤ 1. (3.2)

Un caso límite, ya mencionado en el capítulo anterior, y que será analizado amplia-

mente a lo largo del presente trabajo, corresponde a la situación en la que todas las

irreversibilidades están asociadas exclusivamente a los acoplamientos entre el fluido

de trabajo y los focos térmicos exteriores y, en consecuencia, el ciclo es internamente

reversible. La hipótesis de endorreversibilidad (internamente reversible) [ó exoirreversibi-

lidad (externamente irreversible)] ha sido un elemento central en el desarrollo de la

TTF, aunque hay que puntualizar que también ha sido objeto de numerosas críticas y

disputas [76–78]. A la vista de la ecuación anterior es obvio que se recupera el límite

endorreversible, desde el punto de vista operacional, cuando I = 1.

A fin de simplificar las expresiones analíticas en las siguientes secciones es conve-

niente introducir las siguientes variables adimensionales para la descripción del ciclo

irreversible tipo Carnot:

ah =Th

T′

h

≥ 1, ac =T

c

Tc

≥ 1, τ =Tc

Th

, σhc =σh

σc

y σih =σi

σh

. (3.3)

3.1.1. Ley de conducción lineal

Se considera que todos los flujos de calor involucrados en el ciclo son propor-

cionales a las diferencias de temperaturas. Es decir, se considera una ley de transferen-

cia de calor de tipo Newton. Con la notación de las expresiones (3.3) se obtiene en este

caso que los flujos externos de calor vienen dados por las ecuaciones

|Qh| = σh(Th − T′

h) = σhTh(1 − a−1h ) (3.4)

y

|Qc| = σc(T′

c − Tc) = σcTc(ac − 1), (3.5)

mientras que el flujo de calor |Qi|, transferido directamente entre los dos focos térmicos

de temperaturas Th y Tc, es

|Qi| = σhThσih(1 − τ). (3.6)

Con las ecuaciones anteriores el flujo neto de calor desde el foco térmico de tempe-

ratura Th se puede expresar como

|QH | = |Qh| + |Qi| = σhTh

[

(1 − a−1h ) + σih(1 − τ)

]

, (3.7)

Page 28: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

28 3. Sistemas macroscópicos

y el flujo neto de calor absorbido por el foco térmico de temperatura Tc es

|QC | = |Qc| + |Qi| = σcTc

[

(ac − 1) + σic1 − τ

τ

]

. (3.8)

Las variables ah y ac que aparecen en las ecuaciones anteriores no son indepen-

dientes, sino que están ligadas entre sí mediante la ecuación (3.2). Sustituyendo los

flujos de calor |Qh| y |Qc| en la ec.(3.2) es posible encontrar la siguiente relación para ac

en función de las demás variables,

ac =I

I − σhc(ah − 1). (3.9)

Usando las ecs. (3.4)-(3.9) se obtiene directamente la expresión para la potencia pro-

ducida en el ciclo

P (ah; τ, I, σhc, σih) = |QH | − |QC | (3.10)

= σhThI(ah − 1) − σhc(ah − 1)2 − τ(a2

h − ah)

ah(I + σhc) − σhca2h

,

y para el rendimiento

η(ah; τ, I, σhc, σih) =|QH | − |QC |

|QH |

=(

1 − acahτ

I

)

(

1 + σih1 − τ

1 − a−1h

)−1

. (3.11)

Conocidas las expresiones de la potencia y del rendimiento, la de Ω es (ver sección 2.3)

ΩHE(ah; τ, I, σhc, σih) =

[2η(ah; τ, I, σhc, σih) − ηmax(τ, I, σhc, σih)]P (ah; τ, I, σhc, σih)

η(ah; τ, I, σhc, σih). (3.12)

donde ηmax(τ, I, σhc, σih) es el valor máximo del rendimiento para valores fijos de los

parámetros τ, I, σhc, y σih.

Los comportamientos con ah de η, P y ΩHE [P = P/(σhTh) y ΩHE = ΩHE/(σhTh)]

para ciertos valores de τ , de las conductancias y de I se muestran en la Fig. 3.2(a).

Puede observarse como las tres funciones poseen siempre un valor máximo para un

valor distinto de ah ≥ 1. Además, como los valores de ah que maximizan al rendimien-

to y a la potencia son distintos, cuando se representa la potencia frente al rendimiento

se obtiene un curva en forma de bucle, Fig. 3.2(b), donde se pone de manifiesto que

Page 29: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

3.1. Ciclos de potencia tipo Carnot 29

1.1 1.2 1.3 1.4 1.5 1.6

0.1

0.2

0.3

0.4

ah

P

η

Ω

_

_

0.1 0.2 0.3 0.4 0.5

0.02

0.06

0.1

0.14

P_

η

(a) (b)

Figura 3.2: Comportamiento del rendimiento η potencia P y Ω frente a ah (a) y de la

potencia vs rendimiento (b) para un ciclo de potencia irreversible tipo Carnot con ley

de transferencia de calor lineal. En todos los casos τ = 0,2; I = 0,9, σhc = 1 y σih = 0,1.

• denota el estado de máximo rendimiento y ¥ el de máxima potencia.

los estados termodinámicos correspondientes al de máxima potencia y al de máximo

rendimiento no son coincidentes aunque sí próximos. Esta figura en forma de bucle

para el comportamiento potencia-rendimiento parece ser una seña de identidad es-

pecífica de todas los dispositivos reales de potencia [79]. Se ha comprobado que los

comportamientos cualitativos de las figuras anteriores son independientes de los valo-

res de las conductancias, de las irreversibilidades internas y de las temperaturas de los

focos externos. Este hecho garantiza la optimización de las tres funciones en este sis-

tema considerando ah (i.e., la temperatura interna del fluido de trabajo en la isoterma

de temperatura alta) como la variable independiente apropiada y las restantes varia-

bles, τ, I, σhc, σih, como el conjunto de parámetros de control.

En la fig. 3.3 se muestran los valores optimizados del rendimiento y de la poten-

cia normalizada versus la relación entre las temperaturas de los focos térmicos ex-

ternos τ . Como hechos más relevantes en esta figura se destacan los siguientes: (1)

Los valores del gradiente térmico ah en condiciones de máxima función Ω, ah,max Ω,

son intermedios a los obtenidos en condiciones de máximo rendimiento, ah,max η y

máxima potencia ah,max P ; (2) El rendimiento en condiciones de máxima función Ω,

ηmax Ω = η(ah,max Ω; τ, I, σhc, σih), es para todo τ intermedio entre el máximo rendimien-

to, ηmax = η(ah,max η; τ, I, σhc, σih) y el rendimiento en condiciones de máxima potencia,

ηmax P = η(ah,max P ; τ, I, σhc, σih); (3) La potencia del ciclo en condiciones de máximo Ω,

Pmax Ω = P (ah,max Ω; τ, I, σhc, σih), es para todo τ intermedia entre la máxima potencia,

Page 30: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

30 3. Sistemas macroscópicos

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

ηP

τ

_

0.2 0.4 0.6 0.8 1

1.2

1.4

1.6

1.8

τ1

ah (a) (b)

Figura 3.3: Resultados de la optimización para el ciclo de potencia irreversible tipo

Carnot lineal. (a) Valores de ah, en condiciones de máxima potencia, ah,max P , ( línea

continua superior), máximo Ω, ah,max Ω, (línea discontinua) y máximo rendimiento,

ah,max η, (línea continua inferior). (b) Rendimiento máximo, ηmax, (línea continua supe-

rior), rendimiento en condiciones de máximo Ω, ηmax Ω, (línea discontinua) rendimiento

a máxima potencia, ηmax P , (línea continua inferior). Potencia máxima, Pmax, (línea con-

tinua superior) potencia en condiciones de máxima Ω, Pmax Ω, (línea discontinua) y en

condiciones de máximo rendimiento, Pmax η. En todos los casos I = 0,9; σhc = 1 y

σih = 0,1.

Pmax = P (ah,max P ; τ, I, σhc, σih) y la potencia en condiciones de máximo rendimien-

to, Pmax η = P (ah,max η; τ, I, σhc, σih). Estas dos últimas características son las que con-

vierten a Ω en un criterio óptimo, tal como se indicó en el capítulo anterior. Otras dos

importantes propiedades en la Fig. 3.3 son: (a) que el rendimiento en condiciones de

máximo Ω es aproxidamente la semisuma de los rendimientos máximo y en condi-

ciones de máxima potencia, y (b) la potencia del ciclo en condiciones de máximo Ω es

muy cercana a la máxima potencia.

Límite Endorreversible. En esta situación, donde sólo se consideran fuentes de

irreversibilidad asociadas a los acoplamientos del sistema de trabajo con los focos tér-

micos externos mientras que el ciclo se considera internamente reversible, se obtiene a

partir del caso general presentado anteriormente, haciendo I = 1 y σih = 0. El compor-

tamiento de P , η y Ω en este límite, se muestra en la Fig. 3.4(a). Nótese como ahora el

rendimiento es una función decreciente con ah desde su valor máximo (el rendimien-

to de Carnot) en ah = 1 hasta cero para valores de ah suficientemente grandes. Para

la potencia y la función Ω, sin embargo, se encuentra un comportamiento cualitativo

Page 31: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

3.1. Ciclos de potencia tipo Carnot 31

1.1 1.2 1.3 1.4 1.5 1.6

0.2

0.4

0.6

0.8

ah

η

P_

Ω_

0.2 0.4 0.6 0.8

0.05

0.1

0.15

0

η

P_

(a) (b)

Figura 3.4: Límite endorreversible (σih = 0, I = 1) del ciclo irreversible tipo Carnot

lineal. (a) Comportamiento de η, P y Ω con ah; (b) Comportamiento de P frente a η. En

todos los casos τ = 0,2 y σhc = 1.

similar al del caso general. Una consecuencia directa del comportamiento decreciente

del rendimiento y del comportamiento primero creciente y luego decreciente de la po-

tencia, es que las curvas rendimiento-potencia endorreversibles son de la forma que se

muestran en la Fig. 3.4(b), característica de los modelos que verifican la hipótesis de en-

dorreversibilidad, y bien diferente de la forma de bucle que se observó anteriormente

para el modelo irreversible.

Además de simplificadora, la hipótesis de endorreversibilidad permite obtener ex-

presiones analíticas especialmente sencillas para las funciones termodinámicas de in-

terés. En particular, se destacan las del rendimiento, ya que sólo dependen de las tem-

peraturas externas y son bien conocidas en el ámbito de la TTF: ηmax = 1 − τ ≡ ηC ,

ηmax P = 1−√τ ≡ ηCA, ηmax Ω = 1 −

τ(τ + 1)/2 ≡ ηME . Estos tres resultados merecen

tres comentarios importantes :

El rendimiento de Curzon-Ahlborn se obtiene para ciclos endorreversibles tipo

Carnot cuando la leyes de transferencia de calor entre el sistema de trabajo y

los focos térmicos externos son lineales en la diferencia de temperaturas. Cuan-

do alguna de estas condiciones no se cumple el rendimiento en condiciones de

máxima potencia no es la expresión de Curzon-Ahlborn, tal como se verá poste-

riormente.

El rendimiento en condiciones de máxima Ω, ηmaxΩ, coincide exactamente con el

obtenido por Angulo [30] en la optimización del mismo sistema bajo el criterio

Page 32: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

32 3. Sistemas macroscópicos

0.2 0.6 1

0.2

0.6

1

τ

η

0

η

η

η

C

CA

ηC

+ηCA

2

máxΩ

Figura 3.5: Comportamiento frente a τ de ηC = 1 − τ , ηCA = 1 −√τ y ηmax Ω ≡ ηME =

1−√

τ(τ + 1)/2. Para algunos valores numéricos concretos de estos rendimientos y su

comparación con rendimientos reales de plantas de potencia veáse la tabla 2.1.

ecológico. Es decir, el criterio ecológico y Ω son equivalentes para un ciclo tipo

Carnot endorreversible y lineal. Esto se puede verificar analíticamente de forma

sencilla sin más que tener en cuenta la expresión de la producción de entropía en

este modelo:

E ≡ W − Tc∆S = W − Tc(|Qc|Tc

− |Qh|Th

) = W − |Qc| + |Qh|Tc

Th

=

= W + W − |Qh|(1 − Tc

Th

) = 2W − |Qh|ηC = (2η − ηC)|Qh| ≡ Ω (3.13)

En la figura 3.5 se muestra el comportamiento del rendimiento para estos tres

regímenes en el límite endorreversible. Como se puede observar, el rendimiento

bajo condiciones de máxima función Omega -línea discontinua- es intermedio en-

tre los de Carnot y el de CA. Además se ha incluido una tercera curva continua,

que corresponde a la semisuma del rendimiento de Carnot y de CA, y donde

se puede observar que ηmaxΩ ≈ (ηC + ηCA)/2, de acuerdo con la propiedad de la

semisuma [30], mencionada anteriormente. Hay que apuntar que esta propiedad,

aunque en principio se obtuvo para los modelos endorreversibles tipo Carnot

con leyes lineales de conducción, tiene un intervalo de validez mucho más am-

plio, como se presentó para el modelo irreversible y como se tendrá ocasión de

comprobar reiteradamente a lo largo de este trabajo.

Page 33: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

3.1. Ciclos de potencia tipo Carnot 33

3.1.2. Leyes no lineales

En esta sección se analizan los comportamientos del rendimiento y la potencia op-

timizados bajo las tres situaciones estudiadas en este trabajo, pero considerando leyes

de transferencia de calor no lineales. En primer lugar se presenta el análisis con una ley

inversa, a continuación con una ley de Dulong y Petit y, finalmente, con la de Stefan-

Boltzmann.

Ley Inversa. En este caso las transferencias de calor entre el sistema de trabajo y los

focos térmicos, así como el intercambio directo entre las dos focos térmicos se compor-

tan como q ∝ ∆(1/T ), una ley fenomenológica muy familiar en el contexto de la T.P.I.

Usando una vez más las expresiones para ah, ac, σhc y σih definidas en (3.3), los tres

flujos de calor involucrados quedan expresados como

|Qh| = σh(1

T′

h

− 1

Th

) =σh

Th

(ah − 1), (3.14)

|Qc| = σc(1

Tc

− 1

T ′

c

) =σh

Th

1

τσhc

(1 − 1

ac

), (3.15)

y

|Qi| = σi(1

Tc

− 1

Th

) =σh

Th

σih(1

τ− 1). (3.16)

Al igual que en el caso lineal, de las ecuaciones para los flujos de calor y la ecuación

(3.2), se obtiene ahora que

ac =I −

I2 − 4τ 2ah(ah − 1)Iσhc

2τ 2ah(ah − 1)Iσhc

, (3.17)

ecuación que relaciona ac con ah y los demás parámetros del problema.

Teniendo en cuenta las ecuaciones anteriores, la potencia, el rendimiento y la fun-

ción Ω se pueden expresar, respectivamente, como

P (ah; τ, I, σhc, σih) =σh

Th

[

ah − 1 − 1

τσhc

(

1 − 2τ 2ah(ah − 1)Iσhc

I −√

I2 − 4τ 2ah(ah − 1)τσhc

)]

, (3.18)

η(ah; τ, I, σhc, σih) =I − 2 + 2(ah − 1)σhcτ +

I(I − 4(ah − 1)ahσhcτ 2)

2σhc(σih + (ah − σih − 1)τ), (3.19)

y

ΩHE(ah; τ, I, σhc, σih) = [2η − ηmax]P

η. (3.20)

Page 34: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

34 3. Sistemas macroscópicos

1.5 2 2.5 30

0.2

0.4

0.6

η

Ω

ah

P

_

_

Figura 3.6: Rendimiento η, potencia P y Ω en término de ah con valores de los paráme-

tros de control τ = 0,2, I = 0,9, σhc = 1 y σih = 0,1, para un ciclo irreversible tipo

Carnot usando una ley de transferencia de calor inversa.

Los comportamientos de P (= PTh/σh), η y Ω(= ΩTh/σh) respecto de ah para valores

dados de los parámetros (τ , I , σhc y σih) se muestran en la Fig. 3.6. Como se puede ob-

servar presentan un comportamiento cualitativo similar al encontrado en el caso de

la ley lineal de transferencia de calor, es decir, las tres funciones presentan un sólo

máximo en valores distintos de ah ≥ 1 y en consecuencia el bucle característico de la

potencia vs rendimiento también se obtiene en este caso, aunque no se muestra explíci-

tamente.

Los comportamientos optimizados frente a τ de ah, η y P , en los tres regímenes

de operación, y mostrados en la Fig. 3.7, son similares a los observados en el mismo

modelo con la ley de Newton: en el régimen de máxima función Omega de ah, η y

P son intermedios entre los obtenidos en condiciones de máximo rendimiento y en

condiciones de máxima potencia. Hay que notar como la potencia, en el régimen de

máximo Ω, alcanza un valor muy cercano al máximo posible y como, en el mismo

régimen, el rendimiento es muy cercano a la semisuma de los otros dos. En definiti-

va, todos los comportamientos encontrados en la sección anterioer para la ley lineal

son reproducidos cualitativamente también mediante una ley de transferencia de calor

completamente diferente como es la ley inversa.

En el límite endorreversible (I = 1, σih = 0), la ley de transferencia inversa también

permite obtener algunos resultados analíticos concretos. En particular, se resaltan los

Page 35: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

3.1. Ciclos de potencia tipo Carnot 35

0.1

0.3

0.5

0.2 0.4 0.6 0.8 10

0.2

0.6

1

(a)

(b)

τ

η

P_

2

3

4

5

(c)

ah

Figura 3.7: Resultados del proceso de optimización para el ciclo irreversible tipo Carnot

con ley inversa. (a) ah en condiciones de máxima potencia (línea superior continua),

máxima función Omega (línea discontinua) y máximo rendimiento (línea inferior con-

tinua). (b) Rendimiento máximo, ηmax (línea superior continua), rendimiento en condi-

ciones de máxima Ω, ηmax Ω, (línea intermedia discontinua), rendimiento a máxima po-

tencia, ηmax P (línea inferior continua). (c) Máxima potencia, Pmax (línea superior con-

tinua), potencia a máximo Ω, Pmax Ω (línea intermedia discontinua), potencia a máxi-

mo rendimiento, Pmax η (línea inferior continua). En todos los casos I = 0,9, σhc = 1,

σih = 0,1.

Page 36: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

36 3. Sistemas macroscópicos

dos siguientes para el rendimiento: en condiciones de máxima potencia

ηmax P =1 + σhc −

(1 + σhc)(1 + σhcτ 2)

σhc(1 + τ)(3.21)

y en condiciones de máxima función Omega

ηmaxΩ =

(2 + σhc(1 + τ))(1 + σhcτ2) − (1 + σhcτ)

(1 + σhcτ 2)(4 + σhc(1 + τ)2))

σhc(1 + τ)(1 + σhcτ 2) − σhcτ√

(1 + σhcτ 2)(4 + σhc(1 + τ)2). (3.22)

Nótese como las expresiones para el rendimiento óptimo sí dependen en este ca-

so (ley inversa) del valor de las conductividades térmicas asociadas a las diferentes

transferencias de calor, a diferencia del caso lineal endorreversible, donde las expre-

siones sólo dependían de la relación entre las temperaturas de los focos térmicos, τ . A

continuación se analiza el comportamiento del rendimiento en tres límites: 1) σhc → 1,

i.e., las conductancias térmicas asociadas a la transferencia de calor del fluido de traba-

jo con los focos son idénticas, 2) σhc → 0, la conductancia asociada a la transferencia de

calor entre el fluido de trabajo y el foco caliente es muy pequeña comparada con del

foco térmico frío y, 3) σhc → ∞, la situación inversa que el caso 2), es decir, σh À σc.

Para el rendimiento a máxima potencia se tiene que

lımσhc→1

ηmax P =2 −

√2√

1 + τ 2

1 + τ, (3.23)

un resultado que difiere del obtenido por Chen et al. [32] para el mismo modelo (estos

autores encontraron la expresión lımσhc→1 ηmax P = 1 − 1+3τ3+τ

). Sin embargo, las expre-

siones en los dos límites restantes coinciden con las obtenidas por los mencionados

autores:

lımσhc→0

ηmax P =1 − τ

2, (3.24)

y, finalmente,

lımσhc→∞

ηmax P =1 − τ

1 + τ. (3.25)

Las correspondientes expresiones para η en circunstancias de máxima función Omega,

ηmax Ω, son

lımσhc→1

ηmax Ω =3 + (2 − τ)τ −

(1 + τ 2)(4 + (1 + τ)2)

1 + 3τ, (3.26)

lımσhc→0

ηmaxΩ =3

4(1 − τ), (3.27)

Page 37: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

3.1. Ciclos de potencia tipo Carnot 37

y

lımσhc→∞

ηmaxΩ = 1. (3.28)

Este último resultado se debe a que en el lım σhc → ∞, ah toma el valor de la unidad.

Es inmediato comprobar que en todos los casos ηmax ≥ ηmaxΩ ≥ ηmax P .

Leyes de Dulong y Petit y Stefan-Boltzmann. La ley de transferencia de calor de

Dulong y Petit, (∆T )n con n = 5/4, se considera una ley fenomenológica adecuada para

describir las transferencias de calor que tiene lugar simultáneamente por convección

y radiación. La ley de Stefan-Boltzmann, por su parte, tiene la forma T k − T′k, con

k = 4, y describe las transferencias de calor por radiación. En consecuencia, esta ley es

la adecuada en el estudio de todos los dispositivos térmicos utilizados en la conversión

de energía solar [20,80]. De forma unificada para estas dos leyes, los flujos de calor, de

acuerdo al modelo de la Fig. 3.1 se pueden escribir como, usando (3.3)

|Qh| = σh(Tkh − T

′kh )n = σhT

(kn)h (1 − 1

akh

)n, (3.29)

|Qc| = σc(T′kc − T k

c )n = σhT(kn)h

τ (kn)

σhc

(akc − 1)n, (3.30)

|Qi| = σi(Tkh − T k

c )n = σhT(kn)h σih(1 − τ k)n, (3.31)

con k = 1, n = 5/4 para la ley de Dulong-Petit y k = 4, n = 1, para la ley de Stefan-

Boltzmann. Las restricciones impuestas por la ecuación (3.2) para ac y la variable inde-

pendiente ah y las parámetros de control, ac = ac(ah, τ, I, σhc), están dadas por:

σhca1−nh (ah − 1)n =

Iτn−1(ac − 1)n

ac

(3.32)

con n = 5/4 para Dulong-Petit y por

σhc(ah − a−3h ) = Iτ 3(a3

c − a−1c ) (3.33)

para la ley de Stefan-Boltzmann. En ninguno de los dos casos es posible obtener una

solución analítica para ac.

De las ecuaciones (3.29)-(3.31) se obtienen las expresiones de la potencia, el rendi-

miento y la función Omega para estos dos tipos de leyes de transferencia de calor.

Los comportamientos de estas funciones respecto de la variable independiente ah son

similares a los obtenidos para los casos anteriores (leyes lineal e inversa) por lo que

no se mostrarán nuevamente las gráficas correspondientes. Sin embargo, sí se mues-

tran los valores optimizados de estas funciones, obtenidos numéricamente, en los tres

Page 38: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

38 3. Sistemas macroscópicos

0.05

0.15

0.25

0.2 0.4 0.6 0.8

0.02

0.04

0.06

η

τ

0.1

0.3

0.5

0.2 0.4 0.6 0.8

0.05

0.15

0.25

(a)

(b)_

0.7

τ

P

η

_P

(c)

(d)

Figura 3.8: Valores optimizados del rendimiento [(a) y (c)] y de la potencia normaliza-

da [(b) y (d)] para un ciclo tipo Carnot con leyes de transferencia tipo Dulong-Petit

(izquierda) y Stefan-Bolztmann (derecha). En todos los casos I = 0,9; σih = 0,1 y

σhc = 1. La disposición de las curvas es la misma que en la Fig. 3.7.

regímenes de operación analizados. Así, ηmax, ηmax P y ηmax Ω se muestran en la Fig. 3.8(a)

para la ley de Dulong y Petit y en la Fig. 3.8(c) para la de Stefan-Boltzmann. Las

figs. 3.8(b) y (d) muestran, respectivamente, Pmax, PmaxΩ y Pmax η para las dos leyes.

Los valores de la potencia están en unidades reducidas: σhT(5/4)h para la ley de Dulong-

Petit y σhT4h para la ley de Stefan-Boltzmann.

Se deduce de los resultados obtenidos que, a pesar del distinto comportamiento

cuantitativo de las funciones rendimiento y potencia, dependiendo de la ley de trans-

ferencia de calor, se sigue conservando el carácter intermedio de los valores optimiza-

dos mediante el criterio Omega. Se ha comprobado que estos comportamientos son in-

dependientes de los valores dados a los parámetros de control. Es conveniente resaltar

que, para estas leyes de transferencia no lineales, no es posible encontrar soluciones

analíticas en el límite endorreversible.

Page 39: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

3.2. Ciclos frigoríficos tipo Carnot 39

Tc

Th'

Qh

Tc'

Q c

σh

σc

Q

σi

Th

.

.

.W. Ciclo de

CarnotIrreversible

i

Figura 3.9: Esquema de un ciclo frigorífico irreversible tipo Carnot.

3.2. Ciclos frigoríficos tipo Carnot

En esta sección se analiza un modelo de máquina irreversible tipo Carnot trabajan-

do como un frigorífico [51]. En la fig. 3.9 se expone un esquema del dispositivo conside-

rado, utilizando la misma notación que en el caso del ciclo de potencia mostrado en la

Fig. 3.1. Así, Qh y Qc representan, respectivamente, los flujos de calor transferidos en-

tre el sistema de trabajo (refrigerante) y los focos térmicos exteriores de temperatura

Th y Tc (Th > Tc); T′

h(> Th) y T′

c(< Tc) son, respectivamente, las temperaturas del re-

frigerante en los procesos isotermos caliente y frío; Qi es el flujo de calor transferido

directamente entre los dos focos térmicos externos de temperaturas Th y Tc; por úl-

timo, σh y σc son las conductancias térmicas asociadas a los calores intercambiados

entre el sistema de trabajo y los focos externos y σi lo es para el calor intercambia-

do directamente por los focos. Es muy importante percatarse de que en el caso de los

frigoríficos, las temperaturas de los focos térmicos externos tienen que ser intermedias

a las temperaturas de los procesos isotermos seguidos por el refrigerante en el ciclo de

Carnot. Es decir, deben verificarse las siguientes desigualdades entre las temperaturas:

T′

h > Th > Tc > T′

c .

En este caso, el ciclo realizado por el refrigerante verifica nuevamente la desigual-

Page 40: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

40 3. Sistemas macroscópicos

dad de Clausius|Qh|T

h

− |Qc|T ′

c

≤ 0,

que puede escribirse como una igualdad

|Qh|T

h

= I|Qc|T ′

c

con 0 ≤ I ≤ 1, (3.34)

mediante el parámetro I que tiene en cuenta las irreversibilidades internas presentes

en el refrigerante. Obviamente, el modelo endorreversible se recupera cuando I = 1

(ciclo internamente reversible) y σi = 0 (sólo pérdidas en los acoplamientos entre el

refrigerante y los focos térmicos externos).

Debido a las desigualdades de las temperaturas antes mencionadas, es conveniente,

para posteriores operaciones, definir las siguientes variables (distintas a las definidas

para el ciclo de potencia):

ah =T

h

Th

≥ 1, ac =Tc

T ′

c

≥ 1, τ =Tc

Th

, σhc =σh

σc

y σih =σi

σh

. (3.35)

Al igual que en el ciclo de potencia descrito en el apartado anterior, los resultados

que se muestran están ordenados del siguiente modo: en primer lugar se analizará el

caso general del frigorífico irreversible lineal con su límite endorreversible y finalmente

se presenta el estudio del frigorífico usando leyes de transferencia de calor no lineales.

3.2.1. Ley de conducción lineal

Se considera que, tanto las transferencias de calor entre los focos externos y el re-

frigerante, como la transferencia de calor directa entre los focos térmicos, obedecen una

ley lineal. Por lo tanto, se tienen fácilmente las siguientes expresiones para los calores

transferidos en términos de las variables definidas en (3.35):

|Qh| = σh(T′

h − Th) = σhTh(ah − 1), (3.36)

|Qc| = σh(Tc − T′

c) = σhThτ

σhc

(1 − a−1c ), (3.37)

y

|Qi| = σi(Th − Tc) = σhThσih(1 − τ). (3.38)

De la ecuación (3.34) se obtiene la expresión de ac en función de la variable ah y de

los parámetros restantes,

ac = 1 + Iσhc

(

1 − a−1h

)

, (3.39)

Page 41: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

3.2. Ciclos frigoríficos tipo Carnot 41

con lo cual es posible reescribir |Qc| como

|Qc| = σhThτ

σhc

( −Iσhc(ah − 1)

ah + Iσhc(ah − 1)

)

. (3.40)

Utilizando las ecuaciones anteriores es sencillo obtener las expresiones para la po-

tencia de enfriamiento |QL| (flujo de calor extraído por el refrigerante desde el foco

térmico de temperatura Tc) y la eficiencia del frigorífico ε. Los resultados son:

|QL|(ah; τ, I, σhc, σih) = |Qc| − |Qi| =

= σhTh

[

τ

σhc

( −Iσhc(ah − 1)

ah + Iσhc(ah − 1)

)

− σih(1 − τ)

]

, (3.41)

y

ε(ah; τ, I, σhc, σih) =|Qc| − |Qi||Qh| − |Qc|

=

=−(ah + (ah − 1)Iσhc)σih + (ahσih + (ah − 1)I(σhcσih − 1))τ

(ah − 1)(ah + ahIσhc + I(−σhc + τ)). (3.42)

La función Omega para el frigorífico (RE), de acuerdo con la ec. (2.9), viene dada como

ΩRE(ah; τ, I, σhc, σih) =

=2ε(ah; τ, I, σhc, σih) − ε(ah; τ, I, σhc, σih)

ε(ah; τ, I, σhc, σih)|QL|(ah; τ, I, σhc, σih) (3.43)

donde |QL| = |QL|/(σhTh).

Los comportamientos de estas funciones se muestran en la Fig. 3.10(a). Puede ob-

servarse como, con parámetros de control dados, ε y Ω presentan un máximo para

ah ≥ 1, mientras que la potencia de enfriamiento, |QL|, presenta un comportamien-

to creciente y, por consiguiente, su máximo corresponde al valor más alto físicamente

aceptable de ah (el que proporciona eficiencia nula). Se observó en el caso de los ciclos

de potencia irreversibles que el comportamiento rendimiento-potencia en forma de bu-

cle era su signo distintivo. Para los ciclos frigoríficos reales este signo distintivo es el

comportamiento del inverso de la eficiencia, 1/ε, vs. el inverso de la potencia de enfria-

miento, 1/|QL|. Dicha gráfica se muestra para este modelo en la fig. 3.10(b) y cumple

fielmente con la forma característica encontrada en todos los dispositivos frigoríficos

reales de tipo convencional [81]: una brusca disminución de 1/ε para |QL| grandes y

un crecimiento monótono para |QL| pequeños.

Page 42: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

42 3. Sistemas macroscópicos

1.2 1.4 1.6 1.8 2

0.02

0.07

0.12

0.17

ah

ε

Ω_

20 40 60 80 100

6

10

14

ε

QL

.

QL

.

(a) (b)

1

1

Figura 3.10: Ciclo frigorífico tipo Carnot irreversible con ley lineal. (a) Comportamiento

de la eficiencia, ε, de la potencia de enfriamiento, |QL|, y de Ω frente a ah; (b) Compor-

tamiento de 1/ε vs 1/|QL|. En todos los casos I = 0,9, σhc = 1, σih = 0,1 y τ = 0,5.

La Fig. 3.11(a) muestra los resultados optimizados de ah. La Fig. 3.11(b) los resul-

tados optimizados de la eficiencia: la máxima eficiencia y la eficiencia en condiciones

de máximo ΩRE (la eficiencia en condiciones de máxima potencia de enfriamiento ya

se mencionó anteriormente que tiene valor nulo). La fig. 3.11(c) muestra los resulta-

dos optimizados de la otra magnitud de interés en los ciclos frigoríficos, la potencia

de enfriamiento, en condiciones de máxima eficiencia, en condiciones de máximo Ω

y, obviamente, su máximo valor posible. Nótese como la eficiencia en condiciones de

máximo Ω es inferior a la máxima eficiencia para todos los valores del gradiente tér-

mico y como la potencia de enfriamiento en condiciones de máximo Ω es inferior a la

máxima posible y superior a la obtenida en condiciones de máxima eficiencia. Dicho

de otra forma, los resultados de la eficiencia y de la potencia de enfriamiento en el régi-

men Omega son intermedios respecto de los correspondientes valores obtenidos en las

otras dos circunstancias óptimas.

En consecuencia, se puede afirmar que también en ciclos frigoríficos, al menos

con el modelo adoptado aquí, el criterio Ω proporciona un régimen óptimo de fun-

cionamiento. Se mostrará a continuación que esto también se verifica para el mismo

modelo con leyes no lineales y, en el último capítulo, para un sistema cuántico cuyo

ciclo y dinámica son completamente diferentes.

Page 43: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

3.2. Ciclos frigoríficos tipo Carnot 43

0.2 0.4 0.6 0.8

0.1

0.3

0.5

1

3

5

7

(a)

(b)

2

3

4

5

(c)

ahmáxΩ_

ahmáx ε

εmáx

εmáxΩ_

QL

.máx

máx ε

máxΩ_

QL

.

QL

.

Figura 3.11: Resultados de la optimización de un ciclo frigorífico tipo Carnot irre-

versible con ley de transferencia de calor lineal: (a) ah en condiciones de máxima efi-

ciencia, ah,max ε, máximo ΩRE , ah,max Ω [en condiciones de máxima potencia de enfri-

amiento el valor de ah tiende a infinito tal como puede verse en la Fig.3.10]; (b) εmax y

εmax Ω [εmax |QL|

= 0]; (c) |QL|max, |QL|max Ω y |QL|max ε. En todos los casos I = 0,9, σhc = 1,

σih = 0,1.

Page 44: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

44 3. Sistemas macroscópicos

1.1 1.2 1.3 1.4 1.5 1.6

0.2

0.4

0.6

0.8

1

a h

ε

Ω_

(x10)

0 20 60 100

1.5

2

3

1 ε

1

/

/

(a) (b)

QL

.

QL

.

Figura 3.12: Límite endorreversible de un ciclo frigorífico tipo Carnot con ley lineal. (a)

Comportamiento con ah de ε, Ω(x10), y ||QL|. (b) Comportamiento 1/ε vs 1/|QL|. En

todos los casos I = 1, σih = 0, σhc = 1 y τ = 0,5.

Límite endorreversible. Ahora se analiza el límite endorreversible del frigorífico

tipo Carnot lineal, es decir, la situación en la que el calor intercambiado directamente

entre los focos térmicos es nulo y el ciclo interno del refrigerante se realiza de forma

reversible. Por tanto, el modelo endorreversible se recupera nuevamente a partir del

ciclo frigorífico irreversible haciendo I = 1 y σih = 0.

En la Fig. 3.12(a) se ilustra el comportamiento endorreversible de ε, |QL| y Ω. Como

se puede observar la eficiencia ahora presenta un máximo (trivial) en ah = 1, de valor el

máximo posible (la eficiencia de Carnot) y luego decrece monótonamente; la potencia

de enfriamiento es una función creciente en ah (al igual que en el modelo irreversible); y

Ω presenta un máximo en un valor de ah que sigue conservando la siguiente propiedad:

ah max ε ≤ ah max Ω ≤ ah max |Q|L

. Como consecuencia del decrecimiento monótono de la

eficiencia en este límite ahora el comportamiento 1/ε vs. 1/|Q|L es diferente al encon-

trado en el caso irreversible ya que, véase Fig. 3.12(b), presenta una forma hiperbólica,

típica de todos los modelos endorreversibles de ciclos frigoríficos. Hay que destacar

que la principal diferencia con el caso irreversible es el comportamiento que se obtiene

para potencias de enfriamiento pequeñas y eficiencias muy grandes.

En este caso límite es posible encontrar algunas soluciones analíticas para la eficien-

cia en las distintas situaciones óptimas. Por su importancia se destacan dos resultados.

Obviamente que la máxima eficiencia es la de Carnot εmax = τ/(1 − τ) ≡ εC , y que la

Page 45: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

3.2. Ciclos frigoríficos tipo Carnot 45

eficiencia en condiciones de máximo Ω es

εmax ΩRE=

τ√2 − τ − τ

. (3.44)

un resultado sólo dependiente de las temperaturas de los focos térmicos externos, y

que fue obtenido previamente por Yan [82] y Chen [76], en la optimización de un

ciclo frigorífico endorreversible de Carnot bajo el criterio de tipo ecológico ERE =

P − εCT0Sgen cuando T0 toma el valor particular de la temperatura del foco caliente,

TH . De estos resultados se sigue que el criterio Ω es un criterio de tipo ecológico pero

que no necesita involucrar parámetros del medio ambiente, presentes en los tratamien-

tos de tipo exergético, ni cálculos explícitos de la generación de la entropía, necesarios

para un análisis desde el punto de vista de la minimización de entropía.

3.2.2. Leyes no lineales

Ley inversa. Para un frigorífico irreversible tipo Carnot con transferencias de calor

siguiendo una ley inversa, q ∝ ∆(1/T ), los flujos de calor involucrados están dados

por, usando (3.35)

|Qh| = σh(1

Th

− 1

T′

h

) =σh

Th

(1 − a−1h ), (3.45)

|Qc| = σc(1

T ′

c

− 1

Tc

) =σh

Th

1

σhcτ(ac − 1), (3.46)

|Qi| = σi(1

Tc

− 1

Th

) =σh

Th

σih(τ−1 − 1). (3.47)

Usando la ecuación (3.34) y las expresiones para los flujos de calor |Qh| y |Qc|, se

obtiene la dependencia de ac respecto de ah y los demás parámetros, como

ac =ah +

a2h − 4(1 − ah)Iσhcτ 2

2ah

. (3.48)

De las ecuaciones (3.45)-(3.47) y sustituyendo ac, se obtienen las siguientes expresiones

para la potencia de enfriamiento y la eficiencia del frigorífico:

|QL|(ah; τ, I, σhc, σih) = |Qc| − |Qi| =

=σh

Th

1

τ

[

−ah +√

a2h − 4(1 − ah)Iσhcτ 2

2ahσhc

− σih (1 − τ)

]

, (3.49)

Page 46: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

46 3. Sistemas macroscópicos

0.5 0.6 0.7 0.8 0.9

0.05

0.1

0.15

2

1

2

4

6

( a )

( b )

τ0

εmáx

εmáxΩ

_

máx

máxΩ_

máx ε

εmáx QL

.

QL

.

QL

.

QL

.

Figura 3.13: Resultados de la optimización de un ciclo frigorífico tipo Carnot irre-

versible para una ley de transferencia inversa: (a) εmax, εmax Ω y εmax |QL|

; (b) |QL|max,

|QL|max Ω y |QL|max ε. En todos los casos I = 0,9, σhc = 1, σih = 0,1.

ε(ah; τ, I, σhc, σih) =|Qc| − |Qi||Qh| − |Qc|

=

=ah (−1 + 2σhcσih(−1 + τ)) −

a2h − 4(1 − ah)Iσhcτ 2

ah − 2σhcτ + 2ahσhcτ +√

a2h − 4(1 − ah)Iσhcτ 2

(3.50)

Con las dos ecuaciones anteriores se obtiene directamente ΩRE = (2ε− εmax)|Q|L/ε.

Los comportamientos de la potencia, |QL|, la eficiencia, ε, y Ω, respecto de la variable

ah para parámetros de control dados, son similares a los encontrados en el caso del

frigorífico lineal y no se muestran aquí. Sí se muestran los resultados del proceso de

optimización en la Fig. 3.13. Nuevamente se comprueba el resultado intermedio de los

valores optimizados en la situación de máximo Ω. Como diferencia más importante

respecto del caso lineal se destaca que con la ley inversa la eficiencia en condiciones

de máxima potencia de enfriamiento no es nula. Se muestran a continuación algunos

resultados analíticos de la eficiencia optimizada en el límite endorreversible y para

Page 47: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

3.2. Ciclos frigoríficos tipo Carnot 47

diferentes valores de las conductancias térmicas:

lımσhc→1

εmax |Q|L=

τ

1 − τ +√

1 + τ 2, (3.51)

lımσhc→0

εmax |Q|L=

τ

2 − τ(3.52)

lımσhc→∞

εmax |Q|L= 0 (3.53)

lımσhc→0

εmaxΩ =(3 − τ)τ

(τ − 1)(τ − 4)(3.54)

lımσhc→∞

εmax Ω =2τ

3(1 − τ)(3.55)

El lımσhc→1 εmax Ω no tiene una expresión simple por lo que se ha optado por no

mostrar su fórmula junto a las demás.

Leyes de Dulong y Petit y Stefan-Boltzmann. Para finalizar el estudio del frigorí-

fico con leyes de transferencia no lineales, se hará el análisis asumiendo que las leyes

de transferencia de calor son del tipo de Stefan-Boltzmann ó Dulong y Petit de for-

ma análoga a como se procedió para el análisis del ciclo de potencia. Se obtienen las

siguientes expresiones para los flujos de calor calores involucrados durante el ciclo del

frigorífico:

|Qh| = σh(T′kh − T k

h )n = σhT(kn)h

(

akh − 1

)n, (3.56)

es el flujo de calor cedido por el refrigerante al foco térmico de temperatura alta Th;

|Qc| = σc(Tkc − T

′kc )n = σhT

(kn)h

τ (kn)

σhc

(1 − a−kc )n, (3.57)

es el flujo de calor extraído del foco de temperatura baja TC y,

|Qi| = σi(Tkh − T k

c )n = σhT(kn)h (1 − τ k)n (3.58)

es el flujo de calor intercambiado directamente entre las dos focos externos. Si en las

ecuaciones anteriores se hace n = 4 y k = 1 se recupera la ley de Stefan-Boltzmann y

con n = 1 y k = 5/4 la de Dulong-Petit.

La ecuación (3.34) proporciona, para la ley de Dulong y Petit la ecuación

τ 5/4

σhc

(1 − a−1c )5/4 =

τI

acah

(ah − 1)5/4, (3.59)

Page 48: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

48 3. Sistemas macroscópicos

0.2

0.6

1

0.6 0.7 0.8 0.9

0.2

0.4

0.6

8

0.5 τ

0.25

0.75

1.25

1.75

2

0.86 0.9 0.94 0.98

0.2

0.4

0.6

0.8

τ

(a)

(b)

(c)

(d)

εmáx

εmáxΩ

_

máx

máx ε

máxΩ_

εmáx

εmáxΩ

_

máx

máxΩ_

máx εQL

.

QL

.

QL

.

QL

.

QL

.

QL

.

Figura 3.14: Valores optimizados de la eficiencia ε [(a) y (c)] y de la potencia de enfri-

amiento, |QL|, [(b) y (d)] para un ciclo frigorífico tipo Carnot con leyes de transferencia

de calor de tipo Dulong-Petit (izquierda) y Stefan-Boltzmann (derecha). En todos los

casos I = 0,9, σhc = 1 y σih = 0,1.

mientras que para la ley de Stefan-Boltzmann se tiene

τ 4

σhc

(1 − a−4c ) =

τI

acah

(a4h − 1). (3.60)

En ninguno de los dos casos es factible obtener la solución analítica que permita

obtener ac en términos de ah y de los parámetros de control. La solución debe obtenerse

mediante cálculo numérico.

Los comportamientos de |QL| = |Qc|− |Qi| y ε = (|Qc|− |Qi|)/(|Qh|− |Qc|) son simi-

lares a los obtenidos en los casos anteriores y no se muestran explícitamente. Tanto ε

como Ω tienen un máximo especificado en un ah para valores dados de los parámetros

y ambas leyes reproducen los comportamiento típicos del inverso de la eficiencia cuan-

do se representan frente al inverso de la potencia de enfriamiento. Los valores óptimos

de ε y |QL| vs τ siguen conservando en estos dos casos las mismas propiedades que

ya vimos en los casos con leyes lineal e inversa, véase Fig. 3.14. En definitiva, también

Page 49: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

3.3. Ciclo Brayton regenerativo 49

con estas leyes de conducción, ΩRE es un régimen óptimo de funcionamiento en ciclos

frigoríficos.

3.3. Ciclo Brayton regenerativo

Un modelo común utilizado en el estudio de instalaciones de potencia con turbinas

de gas es el ciclo Brayton [o Joule-Brayton] regenerativo de aire-estándar. Este ciclo,

aunque idealizado, es muy útil debido a que permite obtener conclusiones cualitativas

y cuantitativas acerca del rendimiento y de la potencia en dispositivos reales de poten-

cia de gas. En esta sección se presenta el análisis de un ciclo Brayton dentro del contexto

de la TTF bajo las tres situaciones de operación (máxima potencia, máximo rendimien-

to y criterio Omega) siguiendo la línea de los trabajos en la referencias [43, 74].

3.3.1. Modelo teórico

En la Fig. 3.15 se muestra el diagrama temperatura-entropía del ciclo analizado.

Para comenzar se hacen las siguientes consideraciones, habituales en el tratamiento de

este ciclo [16,17,73]: (1) El fluido de trabajo es aire, que se comporta como gas ideal; (2)

El proceso de combustión externa se simula mediante una transferencia de calor entre

un foco térmico de temperatura alta y el fluido de trabajo; y (3) el proceso de descar-

ga de la turbina, normalmente a la atmósfera, se simula mediante una transferencia

de calor desde el fluido de trabajo hacia un foco térmico de temperatura baja; (4) las

irreversibilidades internas del fluido de trabajo se simulan mediante caídas de presión

en los procesos de absorción y cesión de calor con las fuentes externas y mediante el

comportamiento no isoentrópico del compresor y de la turbina; y (5) la actuación del

regenerador se simula mediante un intercambiador de calor en contracorriente insta-

lado entre la salida de la turbina y el proceso de combustión que hace que el fluido

de trabajo sea precalentado antes de entrar en la cámara de combustión, con el consi-

guiente ahorro de combustible.

De forma más concreta el recorrido del ciclo es como sigue. Inicialmente, el fluido

de trabajo realiza un proceso de compresión no adiabático, 1 → 2; a la salida del com-

presor el gas es precalentado hasta un estado x mediante absorción de calor desde la

corriente caliente del regenerador de calor; en el proceso x → 3 el sistema es calentado

hasta la temperatura del estado 3 mediante la absorción de un flujo de calor QH propor-

Page 50: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

50 3. Sistemas macroscópicos

1

22s

3

44s

PH

P

x

P - ∆PH H

P - ∆P

| Q |H

.

| Q |.

TH

T

T

S

y..

Foco Térmico Caliente

Foco Térmico Frío

LL

L

L L

Figura 3.15: Esquema temperatura-entropía de un ciclo Brayton con regeneración.

cionado por un foco térmico infinito de calor a temperatura TH sufriendo una pérdida

de presión ∆PH ; el gas se expande en la turbina mediante un proceso no-isoentrópico

3 → 4 y es enfriado hasta un estado Y mediante una cesión de calor a la corriente fría

del regenerador. Finalmente, el gas es enfriado una vez más desde Y hasta su tempera-

tura inicial TL, con una caída de presión ∆PL, y cediendo el flujo de calor QL a un foco

térmico externo de temperatura TL.

Las caídas de presión del gas en el proceso de combustión, ∆PH , y en el proceso

de enfriamiento, ∆PL, son cuantificadas, respectivamente, por los parámetros ρH y ρL

definidos como

ρH = (P3

P2

)

γ−1

γ

= (PH − ∆PH

PH

)γ−1

γ (3.61)

y

ρL = (P1

P4

)

γ−1

γ

= (PL − ∆PL

PL

)γ−1

γ , (3.62)

de forma que las relaciones de compresión de la turbina, aT , y del compresor, aL,

aT = (T3

T4s

) = (PH − ∆PH

PL

)γ−1

γ (3.63)

Page 51: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

3.3. Ciclo Brayton regenerativo 51

aL = (T2s

T1

) = (PH

PL − ∆PL

)γ−1

γ , (3.64)

están ligadas por la ecuación

aT = aLρHρL. (3.65)

Las irreversibilidades asociadas a los flujos de calor se cuantifican mediante las

denominadas “efectividades"(effectivenesses), las cuales se expresan como la relación

entre la transferencia de calor efectivo y la máxima transferencia de calor. Así

εH =TX − T3

TX − TH

, (3.66)

εL =T1 − TY

TL − TY

, (3.67)

y

εR =TX − T2

T4 − T2

, (3.68)

denotan, respectivamente, las irreversibilidades en los flujos de calor QH , QL y el aso-

ciado al regenerador de calor en contracorriente.

Las irreversibilidades globales en el compresor y la turbina son cuantificadas por

sus respectivos rendimientos isoentrópicos εC y εT definidos como

εC =T2s − T1

T2 − T1

(3.69)

y

εT =T3 − T4

T3 − T4s

. (3.70)

Combinando las ecs. (3.61)-(3.70) se obtienen, después de un laborioso cálculo, la

expresiones para el flujo de calor desde el foco térmico de temperatura TH , |QH |, y para

la transferencia de calor desde el sistema al foco térmico de temperatura TL, |QL| [43]:

|QH | = CW (T3 − Tx) = CW εH(TH − Tx) =

= CW εHTL

[

τ − ZC(1 − εR)T1

TL

− εRZTT3

TL

]

(3.71)

y

|QL| = CW (TY − T1) = CW εC(TY − TL) =

= CW εLTL

[

−1 + ZT (1 − εR)T3

TL

+ εRZCT1

TL

]

, (3.72)

Page 52: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

52 3. Sistemas macroscópicos

donde ahora τ = TH/TL (τ ≥ 1) es el cociente entre las temperaturas más alta y baja

del ciclo, CW es la capacidad calorífica del gas, y

T3

TL

=

=τεH [1 − (1 − εL)εRZC ] + εL(1 − εH)(1 − εR)ZC

[1 − (1 − εL)εRZC ][1 − (1 − εH)εRZT ] − (1 − εH)(1 − εL)(1 − εR)2ZT ZC

, (3.73)

T1

TL

=εL + (1 − εL)(1 − εR)ZT [T3/TL]

1 − (1 − εL)εRZC

, (3.74)

con

ZT = 1 − εT

(

1 − 1

aT

)

= 1 − εT

(

1 − 1

ρHρLaC

)

, (3.75)

ZC = 1 +aC − 1

εC

. (3.76)

Estas ecuaciones muestran que el rendimiento del ciclo, η = 1 − (|QL|/|QH |), y la

potencia neta producida |W | = |QH |− |QL|, dependen únicamente de la relación de las

presiones extremas aC (nuestra variable independiente) y los siguientes parámetros

de control: la relación de temperaturas τ = TH/TL, los términos que contabilizan las

irreversibilidades en las caídas de presión (ρH , ρL), los rendimientos isoentrópicos del

compresor y la turbina (εC , εT ) y, por último, de las irreversibilidades en los intercam-

biadores de calor (εR, εH , εL). Por la forma en que está definida Ω, ec. (2.8), ésta también

es sólo función de la variable independiente y los parámetros mencionados para el

rendimiento y la potencia.

El comportamiento general de las funciones termodinámicas de interés, potencia,

rendimiento y función Omega, así como sus valores optimizados debe ser obtenido

numéricamente. Sólo en algunos casos particulares, como se verá más adelante, se

pueden obtener algunas expresiones analíticas sencillas.

3.3.2. Resultados numéricos

El análisis numérico está basado en las siguientes magnitudes: a) las relaciones de

presión en condiciones de máximo rendimiento, rp,max η = aγ/(γ−1)max η , máxima potencia

neta, rp,max W = aγ/(γ−1)max W y máxima función Omega, rp,max Ω = a

γ/(γ−1)maxΩ ; b) el máximo

rendimiento, ηmax = η(rp,max η), el rendimiento bajo condiciones de máxima potencia,

Page 53: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

3.3. Ciclo Brayton regenerativo 53

2.5 7.5 12.5 17.5

0.2

0.4

0.6

r p

η

Ω.__

0.1 0.2 0.3 0.4

0.2

0.4

0.6

η

(a) (b)

W

.W

Figura 3.16: Ciclo Joule-Brayton: (a) η, |W |, y Ω frente a la relación de presiones rp; (b)

|W | frenta a η. El círculo representa el punto de máximo rendimiento y el cuadrado el

de máxima potencia. En todos los casos ρH = ρL = 0,95, εH = εL = 0,9, εT = εC = 0,9,

εR = 0,8, y τ = 5.

ηmax W = η(rp,max W ) y el rendimiento bajo condiciones de máxima función Ω, ηmax Ω =

η(rp,maxΩ); y c) la potencia máxima |W |max = ( |W |CW TC

)max = |W (rp,max W )|, la potencia

en condiciones de máximo rendimiento, |W |max η = |W (rp,max η)|, y la potencia bajo

condiciones de máxima Ω, |W |max Ω = |W (rp,max Ω)|.En primer lugar, en la Fig. 3.16(a) se muestran los comportamientos del rendimien-

to, η, la potencia, W (rp) y la función Omega Ω(rp) en términos de rp, para valores realis-

tas de los parámetros de control. Se observan una vez más los comportamientos típicos

en forma de parábola para el rendimiento y la potencia respecto de la relación de pre-

siones con máximos en valores únicos de rp, lo que conduce al comportamiento tradi-

cional en forma de bucle cuando se dibuja el rendimiento vs. la potencia, Fig. 3.16(b).

Para la función Omega, además, se advierte que el valor de rp que proporciona máxi-

ma Ω es intermedio entre los precisados para obtener máximo rendimiento y máxima

potencia. Los valores optimizados en términos de la efectividad del regenerador εR

para valores dados de los parámetros restantes se muestran en la parte izquierda de la

Fig. 3.17; en (a) aparecen las relaciones de presiones que proporcionan funciones op-

timizadas, rp,max η, rp,max W y rp,max Ω; en (b) los valores optimizados para el rendimien-

to, ηmax, ηmax W y ηmaxΩ y, finalmente, en (c) se representan las potencias optimizadas

|W |max, |W |max Ω y |W |max η.

La relación de presiones que proporciona máxima función Ω es intermedia entre las

predichas para obtener máximo rendimiento y máxima potencia para todos los valo-

Page 54: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

54 3. Sistemas macroscópicos

5

10

15

20

0.25

0.35

0.45

0.2 0.6 1

0.45

0.55

0.65

r p,máxη

rr

rr

εR

(a)

(b)

(c)

η

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

(a)

0.2

0.6

1

(b)

εR

5

10

15

20

25

30

(c)

p,máx

p,máx

Ωrr p,máxΩ

r p,máxη

rrp,máx

máx

ηmáxΩ

ηmáx

ηmáx

ηmáx

ηmáxΩ

máx

máxη

máxΩ

máxΩ

máxη

máx

W. W

.

W.

W.

W.

W.

W.

W.

W.

W.

Figura 3.17: Optimización de un ciclo Brayton regenerativo frente a εR. Izquierda: caso

general con ρH = ρL = 0,95, εH = εL = 0,9, εT = εC = 0,9, y τ = 5. Derecha: ρH = ρC =

εT = εC = 1 (sin irreversibilidades internas), τ = 5 y εH = εL = 0,9. (a) rp,max |W |

, rp,max η,

y rp,maxΩ. (b) ηmax, ηmax |W |

, y ηmax Ω. (c) |W |max, |W |max η, y |W |max Ω.

Page 55: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

3.3. Ciclo Brayton regenerativo 55

res de εR, independientemente de si la relación de presiones a máximo rendimiento

es mayor (para εR < 0,5) o menor (en εR > 0,5) que la relación de presiones que pro-

porciona máxima potencia. En εR = 0,5, el valor de las tres relaciones de presiones es

idéntico por lo que, en este valor particular de εR, los tres regímenes de optimización

coinciden. Como resultado de esta particularidad, los rendimientos optimizados y las

potencias optimizadas coinciden en εR = 0,5 y progresivamente se van alejando entre

sí a medida que εR → 1 ó εR → 0. Independientemente de esto, nótese que el régimen

del criterio Ω es intermedio entre el de máximo rendimiento y máxima potencia. Otra

característica de los valores optimizados es que, el rendimiento predicho por el criterio

Omega es más cercano al máximo rendimiento que al de máxima potencia y la poten-

cia predicha por el criterio Omega es más próxima a la potencia máxima que a la de

máximo rendimiento.

Se ha comprobado que todas las propiedades mencionadas anteriomente son in-

dependientes de los valores concretos que tomen los parámetros de control. En conse-

cuencia, los comportamientos de la potencia, rendimiento y de los valores optimizados

que hemos mostrado para el ciclo Joule-Brayton son cualitativamente similares a las

que obtuvimos con el ciclo irreversible tipo Carnot.

3.3.3. Límite Endorreversible

Para completar el estudio del ciclo Brayton con regeneración estudiado en esta

sección se presenta su límite endorreversible. Como se ha señalado anteriormente, en

un ciclo endorreversible se tiene como única fuente de irreversibilidades la transfe-

rencia de calor en el acoplamiento entre el sistema de trabajo con los focos térmicos

externos. En esta situación el ciclo se considera internamente reversible y por consi-

guiente ρH = ρL = 1, εT = εC = 1 y εR = 0 (ciclo sin regenerador) ó εR = 1 (ciclo

con regenerador ideal). Las únicas irreversibilidades son pues aquellas cuantificadas

por εH y εL, es decir las asociadas a los flujos de calor entre el gas y las focos térmicos

externos y que simulan los procesos de combustión y descarga.

Los valores optimizados de las relaciones de presión, del rendimiento y la potencia

se muestran en la parte derecha de la Fig. 3.17 respecto de εR. Cabe destacar que se

sigue conservando el carácter intermedio predicho por el criterio Omega tanto para

el rendimiento y la potencia y para todos los valores de εR. Asimismo, se aprecia un

comportamiento simétrico en los valores optimizados del rendimiento y de la potencia

Page 56: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

56 3. Sistemas macroscópicos

respecto εR = 0,5. En particular, este comportamiento simétrico del rendimiento es, en

cierta medida, paradójico. El comportamiento del lado derecho es esperado ya que ηmax

crece a medida que el rendimiento del regenerador aumenta desde 0,5 hasta su límite

reversible superior εR = 1. Sin embargo, en el lado izquierdo, el comportamiento es in-

verso pues el máximo rendimiento también se incrementa cuando εR decrece desde 0,5

hasta 0. Éste es un resultado inesperado aunque el estado de εR = 0 debe ser un estado

de máximo rendimiento (el de Carnot) ya que describe un ciclo Brayton reversible sin

regeneración. Una posible explicación de este hecho puede residir en la violación de

los principios termodinámicos cuando en la optimización de máquinas térmicas con

varios componentes, las irreversibilidades de uno de ellos son consideradas indivi-

dualmente. Este tema ha sido extensamente estudiado por Bejan y como consecuencia

no se discutirá más sobre ello en este trabajo [17].

El límite endorreversible predice distintos valores para la potencia, el rendimien-

to y la relación de presiones cuando no existe regenerador εR = 0, y cuando el re-

generador trabaja reversiblemente, es decir, εR = 1. Sin embargo, vale la pena sub-

rayar que la potencia máxima |W |max, la potencia a máximo rendimiento, |W |max η, la

potencia a máxima Ω, |W |max Ω, el máximo rendimiento, ηmax, el rendimiento a máxi-

ma potencia ηmax |W |, el rendimiento a máxima Ω, ηmaxΩ, tienen los mismos valores en

cualquiera de las condiciones límites -con ó sin regeneración total. En particular, las

expresiones para el rendimiento optimizado en las distintas condiciones tanto para

εR = 0 o εR = 1, son exactamente iguales a los obtenidos en el ciclo endorreversible de

potencia tipo Carnot, es decir, ηmax = 1− (TC/TH) ≡ ηC , ηmax W = 1−√

TC/TH ≡ ηCA y

ηmax Ω = 1 −√

[TC/TH(TC/TH + 1)]/2 ≡ ηmax E . Estas expresiones muestran claramente

que el ciclo Joule-Brayton que presente únicamente irreversibilidades externas se com-

porta exactamente como un ciclo endorreversible tipo Carnot lineal trabajando entre

las temperaturas extremas del ciclo. No es de extrañar este comportamiento ya que la

leyes de transferencia de calor usadas han sido de tipo lineal.

Cabe destacar que otros ciclos de interés técnico como los representativos de mo-

tores alternativos de combustión interna (ciclos Otto y Diesel) cuando incluyen irre-

versibilidades internas, presentan comportamientos cualitativos muy similares a los

encontrados anteriormente para el ciclo Brayton irreversible si se eligen adecuada-

mente las variables independientes: la relación de compresión en el ciclo Otto y las

relaciones de compresión y de combustión en el ciclo Diesel. Estos ciclos también pre-

sentan un límite endorreversible, que en el caso del ciclo Otto con leyes lineales de

Page 57: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

3.3. Ciclo Brayton regenerativo 57

transferencia es absolutamente equivalente al límite endorreversible del Brayton o del

ciclo irreversible tipo Carnot lineal. En el caso del ciclo Diesel lineal no se obtienen

exactamente los mismos resultados, aunque son muy semejantes. Se ha comprobado

que, en general, todos los ciclos constituidos por dos procesos adiabáticos alternando

con otros dos de la misma naturaleza (isotermos en los ciclos tipo Carnot, isocoros en

el Otto, isobaros en el Brayton) y con leyes lineales de transferencia de calor presentan

exactamente el mismo límite endorreversible. Sin embargo, los ciclos constituidos por

dos adiabáticas alternando con dos procesos de naturaleza diferente (una isocora y una

isobara en el ciclo Diesel) presentan propiedades diferentes, aunque cualitativamente

muy similares a los anteriores. Estos ciclos no se tratarán en este trabajo y se remite al

lector interesado a la numerosa literatura existente sobre el tema [7].

Page 58: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

58 3. Sistemas macroscópicos

Page 59: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

Capítulo 4

Sistemas brownianos

En los últimos años se ha producido un enorme interés por los denominados mo-

tores Brownianos o ratchets, sistemas con escalas espaciales pequeñas cuya caracterís-

tica general más sobresaliente es que el ruido térmico no sólo no es despreciable, sino

que juega un papel dominante [8, 11, 13]. En general, estos sistemas permanecen en

contacto con un foco térmico que actúa comos agente disipador y/o generador de rui-

do térmico. El sistema es alejado del equilibrio térmico mediante perturbaciones que

pueden ser de tipo determinista o estocástico. La rectificación o filtrado de las fluc-

tuaciones producidas, mediante algún método adecuado, es la base para que estos sis-

temas produzcan trabajo útil. Desde el punto de vista físico, las perturbaciones pueden

ser originadas por algún agente externo al sistema o bien pueden ser intrínsecas a él,

como por ejemplo las debidas a la presencia de un segundo foco térmico [84–91].

Así pues, además de las perturbaciones que saquen al sistema del equilibrio tér-

mico, es necesario un ingrediente aún más importante en los sistemas brownianos

con objeto de obtener un trabajo: la ruptura de la simetría espacial. La forma más

común de hacerlo es mediante el uso de potenciales periódicos asimétricos, llamados

potenciales ratchet. Otra posibilidad es que las perturbaciones térmicas aporten a su

vez la asimetría espacial. Estas dos condiciones, ruptura del equilibrio térmico y de la

simetría espacial, son necesarias y suficientes para que ocurra el llamado ratchet effect,

es decir, la obtención de trabajo útil de un sistema browniano a pesar de que las fluc-

tuaciones aleatorias y fuerzas actuando sobre él, tengan un valor promedio igual a

cero.

Por su propia naturaleza, estos modelos han sido muy utilizados para describir sis-

temas con amplia aplicación en Nanotecnología y en Biología. Así, por ejemplo, se han

59

Page 60: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

60 4. Sistemas brownianos

utilizado para describir y diseñar microcircuitos eléctricos eficientes con componentes

resistivos, tanto lineales como no lineales, donde el ruido térmico es un factor necesario

para su funcionamiento [9, 10, 92].

También en los últimos años se han realizado numerosas investigaciones que po-

nen de manifiesto cómo una parte significativa de las células eucoriotas -con un núcleo

bien definido, mejor organizadas y de mayor tamaño- confían el transporte de mate-

rial intracelular a “motores” de proteínas que se mueven en una forma determinada a

lo largo de filamentos que constituyen el citoesqueleto. La miosina junto con la actina

puede convertir la energía química del ATP en movimiento contráctil en muchos tipos

de células. Las cabezas de miosina son enzimas capaces de hidrolizar ATP y aprovechar

la energía liberada. La miosina utiliza esta energía para modificar de manera transito-

ria su propia conformación, y puesto que este cambio produce trabajo mecánico, cuan-

do una de estas fibras se encuentra con un microfilamento alineado en paralelo, las

cabezas de miosina tienen preferencia a acoplarse con las moléculas de actina, favore-

ciendo una firme asociación entre ambas estructuras. Es entonces cuando, en presencia

de ATP, se expresan las propiedades motoras de la miosina y sus cabezas literalmente

caminan a lo largo del filamento. Al igual que el movimiento de un pie, este notable

fenómeno ocurre en varias etapas: 1) separación del punto de contacto inicial; 2) avance

hacia una nueva posición; 3) afianzamiento en el nuevo punto de contacto, y 4) efecto

de arrastre sobre el resto de la estructura en esa dirección. Las moléculas de ATP par-

ticipan en las dos primeras etapas a través de dos acciones. Por una parte, tienen la

virtud de desprender las cabezas de miosina del filamento de actina; por la otra, ceden

su energía para permitir que las cabezas ya liberadas recuperen su condición retraída

normal y puedan alcanzar el siguiente punto de anclaje. Cada miosina toma energía

de la molécula de ATP para enderezarse y se ancla nuevamente en un punto vecino

al filamento. Al concluir este último paso, la cabeza de miosina se vuelve a retraer y,

puesto que se halla unida al filamento de actina, la retracción se refleja en el arrastre

de su cola. Dado que otras cabezas de miosina en esa misma fibra efectúan un proceso

equivalente, la fibra se desplaza longitudinalmente sobre el filamento.

Las cabezas de miosina pueden caminar únicamente en un sentido. Esto es con-

secuencia de la polaridad estructural de los filamentos de actina, que acepta la aso-

ciación entre ambas clases de moléculas exclusivamente en una posición específica.

Cuando las cabezas forman parte de una fibra de miosina en la condición natural, el

desplazamiento de la fibra es en dirección hacia el extremo (+), o aquél en donde ocurre

Page 61: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

61

preferentemente la adición de moléculas de actina durante la polimerización.

Por compleja que pueda parecer la descripción, el principio de operación es, en

última instancia, el de una de las máquinas más simples inventadas por el hombre;

corresponde a un trinquete, es decir, un dispositivo en el que un freno avanza a lo largo

de un poste, clavándose sucesivamente en ranuras hendidas de manera periódica sobre

la superficie del mismo. En cada paso, el freno se separa de la ranura que ocupa y

alcanza la ranura siguiente, donde se engancha para iniciar un nuevo ciclo. La forma

del freno y las ranuras es complementaria y oblicua con respecto al eje del poste, de tal

modo que el avance sólo puede efectuarse en una dirección; el mecanismo se atranca

en la dirección contraria. De manera análoga, la miosina avanza unidireccionalmente

como un freno sobre el filamento de la actina. La única diferencia fundamental es que

el freno del trinquete mecánico responde pasivamente a una fuerza externa —aplicada

por la mano de un operador, por ejemplo, mientras que la miosina consume energía

directamente para realizar ella misma todo el trabajo. La energía obtenida del ATP es

utilizada por la miosina de manera específica para enderezar la cabeza y ponerla en

posición de alcanzar un nuevo sitio de anclaje. Es por esta razón que la miosina, a

diferencia del trinquete, es un motor [8].

Aunque existe una enorme variedad de sistemas tipo ratchet [11], que comparten

algunas similitudes con el funcionamiento real de motores moleculares, en este capítu-

lo se analizarán tres modelos representativos. Los dos primeros casos que se analizan

son el Ratchet de Feymann [12] y un dispositivo de diodos (ratchet de Sokolov [9,10]).

En ambos las perturbaciones provienen de un segundo foco térmico y la ruptura de

la simetría espacial se tiene, en el primer modelo, mediante un dispositivo mecánico

y en el segundo mediante un diodo semiconductor. El tercer modelo que se presenta

es el llamado Adiabatic Rocked Ratchet [85–87]: una partícula Browniana en condiciones

isotermas y sometida a un potencial asimétrico con perturbaciones originadas median-

te la aplicación de una fuerza externa periódica y con periodo temporal infinito. Hay

que mencionar que, mientras el ratchet de Feynman admite un tratamiento analítico

tradicional, los otros dos modelos necesitan una fundamentación teórica basada en el

uso de ecuaciones diferenciales estocásticas.

Page 62: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

62 4. Sistemas brownianos

TH

TC

L

Figura 4.1: Esquema del ratchet de Feynman.

4.1. Rectificador mecánico: Ratchet de Feynman

4.1.1. Caso general

El sistema fue propuesto originalmente por Feynman con la finalidad de mostrar

desde el punto de vista molecular la validez de la Segunda Ley de la Termodinámica.

El esquema del dispositivo se presenta en la Fig. 4.1 y es conocido con el nombre de

Ratchet de Feynman. Consiste en dos cajas unidas por un eje. En una de las cajas hay

un sistema de aspas inmerso en un gas que permanece a temperatura constante TH y

que pueden moverse debido a las colisiones aleatorias de las partículas del gas con las

aspas. En la segunda caja, en el otro extremo del eje, hay una rueda dentada e inmer-

sa en un gas que permanece a temperatura constante TC , la cual en principio puede

moverse en un sólo sentido debido a un trinquete que le impide moverse en sentido

contrario. Acoplado al eje común se dispone de una polea por la cual puede eventual-

mente ascender un peso como consecuencia del movimiento de la rueda dentada. Se

obtiene de esta forma, la posibilidad de que el dispositivo realice trabajo como conse-

cuencia de las fluctuaciones térmicas brownianas originadas en la caja de las paletas,

y filtradas (o rectificadas) convenientemente por el mecanismo de trinquete y rueda

dentada.

En su análisis, Feynman obtuvo que el rendimiento del dispositivo era el dado por

el rendimiento de Carnot y, por consiguiente, sólo dependiente de las temperaturas

TH y TC de los focos térmicos e independiente de cualquier otra característica del sis-

Page 63: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

4.1. Rectificador mecánico: Ratchet de Feynman 63

tema. Sin embargo, posteriormente Parrondo et al. [93] demostraron que el análisis

de Feynman no era correcto, ya que el dispositivo utilizado se encuentra en contacto

simultáneamente con dos focos térmicos de diferentes temperaturas TH y TC y, por lo

tanto, no cumple las condiciones para realizar un proceso reversible, a diferencia de

un ciclo de Carnot donde las transferencias de calor pueden ocurrir idealmente de for-

ma reversible debido a que el sistema no está nunca en contacto simultáneo con los

dos focos térmicos. En consecuencia, y de acuerdo con el Segundo Principio de la Ter-

modinámica, la máquina de Feynman nunca puede alcanzar el rendimiento de Carnot

debido al flujo inevitable de calor que se produce entre los dos focos -a pesar de que

el eje no conduzca calor- inducido por el acoplamiento mecánico entre las diferentes

partes del sistema.

Siguiendo los resultados de las Refs. [94, 95] a continuación se describe este sis-

tema incorporando las consideraciones adicionales realizadas por Parrondo y Español

para evitar las inconsistencias del análisis original de Feynman. Sea ε, la energía nece-

saria para levantar el trinquete, θ el ángulo entre dos dientes consecutivos y L el par

de fuerzas actuando en la polea central debido a la presencia del peso externo. Por

lo tanto la energía necesaria para realizar un salto hacia adelante es ε + Lθ (la rue-

da dentada gira en el sentido que el peso es levantado), mientras que ε es la energía

necesaria para realizar un salto hacia atrás. Las aspas están a temperatura TH (foco tér-

mico caliente) y la rueda dentada está a temperatura TC (foco térmico frío). Se supone

que las velocidades de los saltos hacia adelante y hacia atrás son proporcionales a los

correspondientes factores de Arrhenius. En consecuencia se tiene que

N+ =1

te−(ε+Lθ)/kBTh , (4.1)

y

N− =1

te−ε/kBTC , (4.2)

son, respectivamente, el número de pasos hacia adelante y hacia atrás por unidad de

tiempo, kB es la constante de Boltzmann y t una constante de proporcionalidad con

dimensión de tiempo.

Si N+ > N− el mecanismo de Feynman trabaja como un motor térmico, en el cual las

transferencias de energía tienen lugar de acuerdo con las siguientes consideraciones:

La energía ε + Lθ necesaria para realizar un paso hacia delante se toma única-

mente del foco térmico donde se encuentran las aspas, mientras que la energía

disipada, ε, es enviada al foco térmico de la rueda dentada.

Page 64: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

64 4. Sistemas brownianos

La energía ε necesaria para realizar un paso hacia atrás es tomada únicamente del

foco térmico de la rueda dentada, y el exceso de energía ε + Lθ disipada se dirige

al foco de las aspas.

Existe un flujo de energía del foco caliente al frío debido a la conexión mecánica

entre las dos fuentes. Este flujo de energía se da en forma de calor y su expresión

corresponde a una ley de transferencia de calor de Fourier con conductividad

térmica σ.

Con estas consideraciones se tiene que el flujo neto de calor liberado por el foco

térmico caliente está dado por

QH = (N+ − N−)(ε + Lθ), (4.3)

el flujo neto de calor absorbido por el foco térmico frío es

QC = (N+ − N−)ε, (4.4)

y el flujo neto de calor disipado vía la barra de unión es

QL = σ(TH − TC). (4.5)

Con las ecuaciones anteriores la potencia producida por el dispositivo viene dada

como

W = QH − QC = (N+ − N−)Lθ, (4.6)

y el rendimiento mediante la expresión

η =W

QH + QL

. (4.7)

Las ecuaciones (4.6) y (4.7) pueden ser escritas de forma adimensional. Usando las

ecuaciones (4.1) y (4.2), se obtiene

w(x; τ, α, λ) =W t

kBTH

= e−α/τ [ex0−x − 1]x (4.8)

y

η(x; τ, α, λ) =[ex0−x − 1]x

[ex0−x − 1](α + x) + λ(1 − τ)eα/τ, (4.9)

Page 65: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

4.1. Rectificador mecánico: Ratchet de Feynman 65

donde, para obtener estas expresiones adimensionales, se han utilizado las siguientes

definiciones

x =Lθ

kBTH

, α =ε

kBTH

, τ =TC

TH

, λ =tσ

kB

y x0 =(1 − τ)α

τ. (4.10)

Ya que w ≥ 0, la variable adimensional x en (4.10) toma valores dentro del intervalo

0 ≤ x ≤ x0, así L0 = kBTHx0/θ es el par de fuerzas para el cual las velocidades de los

pasos hacia adelante y hacia atrás son iguales. Además, la relación de temperaturas τ

toma valores en el intervalo 0 ≤ τ ≤ 1, α ≥ 0 y, λ ≥ 0. Si x = x0 y λ = 0, la ec. (4.9)

se reduce a η = xα+x

≤ x0

α+x0= 1 − τ y la ec. (4.8) a w = 0, i.e., se tiene la máquina de

Feynman bajo condiciones reversibles: el sistema tiene rendimiento de Carnot y nula

producción de potencia.

Como se puede ver en la ecuación (4.8) la potencia w no depende de la conductivi-

dad térmica λ. Para α y τ fijos, w sólo es función de x. La Fig. 4.2 (a) muestra como

w es una curva cóncava con un máximo que depende de los parámetros α y τ . Por

otro lado, el rendimiento sí depende de λ como puede observarse en la Fig. 4.2 (b).

Nótese que, como se dijo anteriormente, cuando λ = 0 se recupera el modelo original

de Feynman [con rendimiento de Carnot y localizado en x = x0] mientras que a medi-

da que aumenta λ disminuye el valor del rendimiento y el correspondiente máximo se

desplaza hacia valores más pequeños de x. La Fig. 4.2 (c) muestra el comportamiento

de Ω = (2η − ηmax)w, en unidades adimensionales. Como se puede observar también

existe un valor único de x que maximiza esta función en todos los casos, que este valor

depende de los parámetros dados y que es diferente de los que maximizan la potencia

y al rendimiento.

En la Fig. 4.3 se representan algunas curvas paramétricas de la potencia frente al

rendimiento para distintos valores de λ. Cuando λ = 0, la curva w(η) es univaluada,

típica de los modelos endorreversibles. No es de extrañar este hecho ya que λ =

0 implica σ = 0 y, por consiguiente, desaparecen las irreversibilidades asociadas al

acoplamiento mecánico. Sin embargo, cuando λ 6= 0, aparece una curva en forma de

bucle, que muestra claramente que máximo rendimiento y máxima potencia no son es-

tados coincidentes aunque sí cercanos. Esta propiedad del rectificador de Feynman ya

fue obtenida en los ciclos de potencia irreversibles analizados en el capítulo anterior.

Los resultados de la Figs. 4.2 muestran que en este sistema x es la variable inde-

pendiente apropiada en el proceso de optimización, mientras que (τ, α, λ) pueden ser

considerados como el conjunto de parámetros de control. En la fig. 4.4 se muestran

Page 66: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

66 4. Sistemas brownianos

0.02

0.06

0.1

ω

0.2

0.6

1

η λ

0.01

0.1

=0

Ω

XX0

(a)

(b)

0.2 0.4 0.6 0.8

0.02

0.06

0.1

λ=0

0.01

0.1 (c)

Figura 4.2: Comportamiento respecto de x de las siguientes funciones; (a) Potencia, w.

(b) Rendimiento, η, con λ = 0, 0,1 y 0,01 y, (c) Ω, con λ = 0, 0,1 y 0,01. En todos los

casos, α = 0,1 y τ = 0,1.

Page 67: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

4.1. Rectificador mecánico: Ratchet de Feynman 67

0.2 0.4 0.6 0.8

0.02

0.04

0.06

0.08

0.1

ω

ηηc

λ=0

0.1

0.01

Figura 4.3: Gráficas potencia-rendimiento con α = 0,1 y τ = 0,1, para los valores de λ

indicados.

los resultados numéricos del proceso de optimización. El comportamiento respecto

de τ del par de fuerzas x que produce máximo rendimiento, xmax η, máxima poten-

cia, xmax w, y máxima función Omega, xmax Ω, están dibujados en la Fig. 4.4(a). En la

Fig. 4.4(b), se presenta el comportamiento con τ para la potencia optimizada: poten-

cia en condiciones de máximo rendimiento, wmax η, en condiciones de máxima función

Ω, wmax Ω y la potencia máxima wmax. El rendimiento máximo, ηmax, el rendimiento a

máxima potencia, ηmax w, y el rendimiento a máxima Ω, ηmax Ω, están dibujados vs. τ

en la Fig. 4.4(c). Estas figuras muestran claramente cómo la condición de máximo Ω

es intermedio entre el de máximo rendimiento y máxima potencia, por lo que este

criterio se puede considerar como un criterio óptimo de trabajo también en este tipo

de sistemas. Además, destacamos los siguientes características: la potencia bajo condi-

ciones de máxima función Ω está muy próxima a la máxima potencia, mientras que el

rendimiento a máxima Ω es aproximadamente la semisuma de ηmax y ηmax w. Todas es-

tas características ya fueron encontradas en los modelos termodinámicos tradicionales

para ciclos de potencia.

4.1.2. Régimen lineal

Es interesante analizar el comportamiento del dispositivo de Feynman bajo ciertas

condiciones límites. Si, α ¿ τ y λ = 0, es posible aproximar las exponenciales que

aparecen en las expresiones para la potencia y el rendimiento, ecs. (4.8) y (4.9), por

Page 68: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

68 4. Sistemas brownianos

sus términos lineales, y así obtener expresiones analíticas para las funciones termodi-

námicas. Se le denomina a este caso como el régimen lineal del ratchet de Feynman.

En esta situación las ecuaciones para la potencia y el rendimiento quedan expresados,

respectivamente, de la siguiente forma:

w =(

1 − α

τ

)

(x0 − x)x, (4.11)

y

η =(τ − α)(x0 − x)x

(τ − α)(x0 − x)(α + x). (4.12)

La potencia máxima se obtiene cuando

xmax w =x0

2=

(1 − τ)α

2τ, (4.13)

y sustituyendo este resultado en las expresiones para la potencia y el rendimiento, se

tiene que

wmax =(1 − τ)2(τ − α)α2

4τ 3(4.14)

y

ηmax w =1 − τ

1 + τ. (4.15)

Esta expresión para el rendimiento en condiciones de máxima potencia, ya obtenida

en un contexto diferente en la ec. (3.25), juega un papel similar al del rendimiento de

Curzon y Alhborn, ηCA = 1−√τ , en los motores endorreversibles tipo Carnot, aunque

nótese que ahora ηmax w ≥ ηCA.

Por otra parte, la función Omega es máxima en

xmax Ω =1

(

1

τ− 2τ

1 + τ

)

, (4.16)

con lo que se obtiene las siguientes expresiones

wmaxΩ = −α2(α − τ)(τ − 1)2(1 + 2τ)

4τ 3(1 + τ)2(4.17)

y

ηmax Ω = 1 − 2τ(1 + τ)

1 + 3τ(4.18)

para la potencia y el rendimiento en circunstancias de máxima función Omega para el

ratchet lineal de Feynman.

Page 69: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

4.1. Rectificador mecánico: Ratchet de Feynman 69

0.5

1

1.5

2

2.5

0.05

0.15

0.25

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

τ

η

ω

x

(a)

(b)

(c)

0.5

1

1.5

2

2.5

3

0.004

0.008

0.012

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

0.00

0 τ

η

ω

x

(a)

(b)

(c)

x máx

x máx

x máx

Ω

η

ω

máx

máx

Ω

ω

ωmáx

ωmáxΩ

ωmáxη

ηmáx

η

η

Figura 4.4: Comportamiento respecto de τ para: (a) la variable adimensional x, a máx-

imo rendimiento, xmax η(línea superior continua), máxima función Ω, xmax Ω (línea dis-

continua), y máxima potencia, xmax w(línea continua inferior); (b) máxima potencia,

wmax η (línea continua superior), potencia a máxima Ω, wmax Ω (línea discontinua) y po-

tencia a máximo rendimiento, wmax η (línea continua inferior); (c) máximo rendimien-

to, ηmax (línea continua superior), rendimiento a máxima Ω (línea discontinua), y

rendimiento a máxima potencia, ηmax (línea continua inferior). Todas las gráficas han

sido dibujadas para α = 0,3. Las figuras de la izquierda corresponden al caso general

con λ = 0,01 y las de la derecha al régimen lineal (λ = 0).

Page 70: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

70 4. Sistemas brownianos

Finalmente, en condiciones de máximo rendimiento se observó que xmax η = (1 −τ)α/τ = x0, wmax η = 0, y ηmax = 1 − τ = ηC . Nótese como el valor del rendimiento en

condiciones de máxima Omega, está situado entre los de máxima potencia y el máximo

posible, i.e., ηmax ≥ ηmax Ω ≥ ηmax w.

Los resultados anteriores y la parte derecha de la Fig. 4.4, donde se han represen-

tado frente a τ los valores optimizados de x, de w y η, muestran que el ratchet de

Feynman lineal puede ser equiparable al modelo endorreversible en los ciclos endorre-

versibles tipo Carnot o al ciclo Brayton endorreversible, pero con dos salvedades: en

el régimen lineal del ratchet de Feynman el rendimiento a máxima potencia no es el

de Curzon-Ahlborn y el rendimiento en condiciones de máxima Ω no es el ecológi-

co, aunque es fácil comprobar que las diferencias numéricas entre ellos son pequeñas

para todo τ . Una posible explicación de esta diferencia puede ser el hecho de que en

el ratchet de Feynman, incluso en el régimen lineal, los flujos de calor no son estricta-

mente lineales en las diferencias de temperaturas de los focos.

El ratchet de Feynman analizado en esta sección se ha limitado al caso en el cual

la rueda dentada está colocada en el foco térmico de temperatura baja (cold ratchet).

Esta situación fue la analizada por Feynman [12] y posteriormente por Parrondo [93],

ya que se considera como el modo natural de funcionamiento del ratchet. Sin embar-

go, existe también la posibilidad de colocar a la rueda dentada en el foco térmico de

mayor temperatura. Cuando se tiene esta situación se habla de un hot ratchet. Se ha

demostrado que el funcionamiento de este dispositivo no es simétrico respecto del cold

ratchet, aunque cuando se realizó su análisis, no mostrado en este trabajo, mediante la

aplicación de los criterios de optimización todas las propiedades cualitativas obtenidas

fueron similares al ratchet normal.

4.2. Rectificador eléctrico: ratchet de Sokolov

4.2.1. Descripción del sistema

A diferencia del caso anterior, donde las rectificaciones de las fluctuaciones se pro-

ducían mediante un elemento mecánico, a continuación se analizará un dispositivo

eléctrico capaz de realizar trabajo mediante rectificaciones de las fluctuaciones con un

elemento semiconductor. El sistema considerado es una generalización del dispositivo

estudiado por Sokolov [10] y su esquema se muestra en la Fig. 4.5. Consiste en dos dio-

Page 71: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

4.2. Rectificador eléctrico: ratchet de Sokolov 71

D D

TT

C2

2

1

1

i

Figura 4.5: Esquema del ratchet de Sokolov.

dos (que por simplicidad se consideran idénticos) conectados en direcciones opuestas

y un condensador de capacidad C. El sistema realiza trabajo contra un generador de

corriente (i). Cada uno de los diodos está en contacto un foco térmico a temperaturas

T1 y T2, respectivamente.

El análisis que se presenta aquí está basado en los trabajos [95–97]. Siguiendo el

formalismo de Van Kampen [98] para el tratamiento del ruido en diodos, se comienza

por describir al sistema en un espacio discreto de estados, numerados por un índice

n que representa el número de exceso de unidades de carga (“electrones de carga ξ ”)

en la placa superior del condensador. Se supone que los electrones pueden pasar de

la placa inferior a la superior del condensador o en la dirección opuesta a través de

uno de los tres canales independientes, i.e. a través del generador de corriente (con n-

independientes velocidades de transición W(0)n,n±1, la cual es distinta de cero sólo entre

los estados n y n + 1 para i > 0 y sólo entre los estados n y n − 1 para i < 0), o a través

de uno de los dos diodos con velocidades de transición W(1)n,n±1 y W

(2)n,n±1. La energía del

sistema está determinada por la carga q del condensador y es igual a En = (nξ)2/2C.

Este proceso está descrito por una ecuación maestra para la carga del condensador,

q = nξ,

dpn

dt= −pn(Wn,n+1 + Wn,n−1) + pn−1Wn−1,n + pn+1Wn+1,n (4.19)

con velocidades de transición Wn,n±1 = W(0)n,n±1+W

(1)n,n±1+W

(2)n,n±1. Esta ecuación es típica

de los procesos ganancia-pérdida: procesos markovianos donde la matriz de transición

Page 72: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

72 4. Sistemas brownianos

sólo permite saltos entre estados adyacentes. Cada uno de los dos últimos canales sa-

tisfacen la condiciones de balance detallado, para su propia temperatura Tj ,

W jn,n+1 = W j

n+1,n exp[−En+1 − En

kBTj

] (4.20)

W jn−1,n = W j

n,n−1 exp[−En − En−1

kBTj

] (4.21)

con j = 1 , 2 y donde En denota la energía del estado n.

De las ecuaciones (4.19)-(4.21) se desprende que el proceso es no lineal, donde el

término "no lineal"se refiere a que los coeficientes Wn,n±1 no dependen linealmente de

n. En estos casos no lineales, el procedimiento para encontrar la solución de la Ec. (4.19)

consiste en usar un método aproximado mediante un desarrollo en serie de potencias

del paramétro ξ. Físicamente, esto corresponde a considerar que en los procesos de

este tipo, las fluctuaciones originadas son pequeñas, lo que matemáticamente permite

pasar de la ecuación discreta (4.19) a una ecuación diferencial continua en terminos de

q como se verá más adelante.

Introduciendo las funciones W (q) = W (nξ) = Wn+1,n, E(q) = E(nξ) = En y

p(q) = p(nξ) = pn se procede a hacer un desarrollo de Taylor de los estados n + 1

y n − 1 alrededor de q hasta los terminos de orden ξ2. Así, se obtienen las siguientes

expresiones para las probabilidades de los diferentes estados n + 1 y n − 1, respectiva-

mente:

pn+1 ≡ p ((n + 1)ξ) = p(q + ξ) ≈ p(q) + ξ∂p(q)

∂q+

ξ2

2

∂2p(q)

∂q2, (4.22)

pn−1 ≡ p ((n − 1)ξ) = p(q − ξ) ≈ p(q) − ξ∂p(q)

∂q+

ξ2

2

∂2p(q)

∂q2, (4.23)

y las dos siguientes para las energías de los mismos estados:

En+1 ≡ E ((n + 1)ξ) = E(q + ξ) ≈ E(q) + ξ∂E(q)

∂q+

ξ2

2

∂2E(q)

∂q2(4.24)

En−1 ≡ E ((n − 1)ξ) = E(q − ξ) ≈ E(q) − ξ∂E(q)

∂q+

ξ2

2

∂2E(q)

∂q2. (4.25)

A partir de las dos ecuaciones anteriores la diferencia de energías entre estados con-

secutivos se puede escribir como

Page 73: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

4.2. Rectificador eléctrico: ratchet de Sokolov 73

En+1 − En ≈ ξ∂E(q)

∂q+

ξ2

2

∂2E(q)

∂q2. (4.26)

y

En − En−1 ≈ ξ∂E(q)

∂q− ξ2

2

∂2E(q)

∂q2. (4.27)

Repitiendo el proceso del desarrollo en serie de potencias se obtiene -al segundo orden

del desarrollo- que la velocidad Wn,n−1 es

Wn,n−1 = W ((n − 1)ξ) = W (q − ξ) ≈ W (q) − ξ∂W (q)

∂q+

ξ2

2

∂2W (q)

∂q2. (4.28)

Introduciendo la ecuación (4.26) en (4.20), y expandiendo de nuevo la función ex-

ponencial en serie de potencias se obtiene (a segundo orden):

Wn,n+1 ≈ W (q)

[

1 − ξ

kBT

∂E(q)

∂q− ξ2

2kBT

∂2E(q)

∂q2+

1

2

ξ2

(kBT )2

∂2E(q)

∂q2

]

, (4.29)

siendo kB la constante de Boltzmann. Sustituyendo ahora las ecuaciones (4.27) y (4.28)

en (4.21) y expandiendo nuevamente la exponencial se obtiene

Wn−1,n ≈ Wn,n−1

[

1 − ξ

kBT

∂E(q)

∂q+

ξ2

2kBT

∂2E(q)

∂q2+

1

2

ξ2

(kBT )2

∂2E(q)

∂q2

]

[

W (q) − ξ∂W (q)

∂q+

ξ2

2

∂2W (q)

∂q2

]

×

×[

1 − ξ

kBT

∂E(q)

∂q+

ξ2

2kBT

∂2E(q)

∂q2+

1

2

ξ2

(kBT )2

∂2E(q)

∂q2

]

(4.30)

Si ahora se sustituyen las ecuaciones (4.22), (4.23), (4.28), (4.29) y (4.30) en la parte

derecha de la ecuación (4.19) y tomando sólo términos hasta de orden ξ2, resulta la

siguiente ecuación para la variación temporal de la probabilidad p(q):

∂p(q)

∂t=

∂q

(

W (q)ξ2

kBTf(q)p(q) + W (q)ξ2∂p(q)

∂q

)

, (4.31)

una ecuación continua de tipo Fokker-Planck (FP), donde, la fuerza que actúa se toma

como f(q) = dE/dq. En esta ecuación se puede asociar el valor de W (q)ξ2 = D(q)

con el término fluctuante y el valor de W (q)ξ2/kBT = µ(q) con la movilidad clásica

(conductividad). Entonces la ecuación de Fokker-Planck (4.31) toma su forma usual

Page 74: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

74 4. Sistemas brownianos

∂p(q)

∂t=

∂q

(

µ(q)f(q)p(q) + D(q)∂p(q)

∂q

)

. (4.32)

Un problema importante desde el punto de vista de la Termodinámica es la posi-

bilidad de que el sistema considerado pueda realizar trabajo. Para ello se considera el

hipotético acoplamiento del sistema a un medio o aparato externo. Este aparato estaría

fuera de equilibrio con cualquiera de los focos térmicos y la correspondiente transi-

ción de probabilidad no debería satisfacer las condiciones de balance detallado. Un

acoplamiento hipotético de este tipo corresponde a considerar un generador de co-

rriente externo al sistema que mantenga una corriente constante independientemente

del voltaje [9]. Con esta aproximación se simplifican enormemente los cálculos, debido

a que se desprecian las fluctuaciones introducidas por el medio sobre el que trabaja el

sistema. El generador de corriente toma i unidades de carga por unidad de tiempo de

la placa superior del condensador y las lleva a la placa inferior. Este hecho correspon-

dería a considerar un término adicional de arrastre −i, que debe tenerse en cuenta en

la ecuación (4.32). Así pues, se obtiene

∂p(q)

∂t− i

∂p(q)

∂q=

=∂

∂q

[((

1

R1(u)+

1

R2(u)

)

q

C

)

p(q) +

(

kBT1

R1(u)+

kBT2

R2(u)

)

∂p(q)

∂q

]

, (4.33)

donde u = f(q) = q/C es el voltaje del condensador (asociado con f ) y donde se

ha sustituído la movilidad macroscópica por la resistencia R(u). La ecuación (4.33)

es completamente análoga a una ecuación de difusión de partículas en un campo de

velocidad constante (en este caso representada por −i). La dirección de i se ha elegido

de tal manera que la potencia neta del rectificador sea positiva cuando tanto u como i

sean positivos. La correspondiente ecuación puede ser reescrita fácilmente como una

ecuación para el voltaje fluctuante u, obteniéndose que

∂p(u)

∂t=

∂u

[(

1

R1(u)C+

1

R2(u)C

)

u +i

C

]

p(u) +

(

kBT1

R1(u)C2+

kBT2

R2(u)C2

)

∂p(u)

∂u

, (4.34)

la cual tiene la forma de una ecuación de Fokker-Planck no lineal, dentro de una for-

mulación canónica [99].

Page 75: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

4.2. Rectificador eléctrico: ratchet de Sokolov 75

El objetivo ahora, es obtener la solución estacionaria de la ecuación diferencial

(4.34). Para ello nótese que el término entre paréntesis en la derecha de la igualdad,

que se define como S,

S =

[(

1

R1(u)C+

1

R2(u)C

)

u +i

C

]

p(u) +

(

kBT1

R1(u)C2+

kBT2

R2(u)C2

)

∂p(u)

∂u,

no es otra cosa que la expresión para la densidad de probabilidad de corriente en una

ecuación de Fokker-Planck. En un estado estacionario, p(u)est, S debe ser una constante

y por condiciones de frontera debe ser cero cuando u → ±∞. Haciendo entonces S = 0

e integrando, la solución estacionaria p(u)est se encuentra fácilmente y está dada por la

siguiente expresión

p(u) = A exp

[

−∫

du

[

(1

R1(u)C+

1

R2(u)C)u +

i

C

]

/

(

kBT1

R1(u)C2+

kBT2

R2(u)C2

)]

, (4.35)

donde A es una constante de normalización.

En el caso de equilibrio térmico, T1 = T2 = T e i = 0, la ecuación (4.35) se reduce a

la distribución normal Gaussiana p(u) = A exp[−Cu2/2kBT ] que corresponde a la dis-

tribución de Boltzmann de la energía del condensador en equilibrio. Esta distribución

es simétrica respecto a u y no da lugar al fenómeno de autorectificación. Hay que sub-

rayar que la distribución de Boltzmann y la ausencia de autorectificación en el sistema

es absolutamente independiente del comportamiento particular voltaje-corriente que

tengan los elementos resistivos del sistema. Usando la distribución de probabilidad

dada por la ecuación (4.35), se puede calcular el voltaje medio V =∫ ∞

−∞up(u)du y con

esto la potencia media del sistema

P = i < u >≡ i

∫ ∞

−∞

up(u). (4.36)

Con el propósito de obtener más información de tipo termodinámico del dispo-

sitivo considerado, se requiere contar con la expresión para el calor absorbido por el

elemento resistivo, en función de la distribución de probabilidad p(q). La variación

media de energía por unidad de tiempo para el sistema en el estado n es entonces

4E = Wn,n+1(En+1 − En) − Wn,n−1(En − En−1). Expandiendo estas funciones para

valores de q = nξ y conservando nuevamente los términos hasta de orden ξ2 (véase

ecuaciones (4.26)-(4.29)) se obtiene que

Page 76: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

76 4. Sistemas brownianos

4E = −D(q)[f(q)]2

kBT+

d

dq(f(q)D(q)). (4.37)

El flujo de calor del foco térmico de mayor temperatura hacia el sistema se obtiene co-

mo el promedio, < 4E >, sobre la distribución de q. Después de hacer una integración

del segundo término en la ecuación (4.37) se obtiene

·

Q= −∫

f(q)

[

D(q)∂p(q)

∂q+ f(q)

D(q)

kBTp(q)

]

dq, (4.38)

o en términos del potencial como,

QTj= −

u

[

kBTj

Rj(u)C

∂p(u)

∂u+

u

Rj(u)p(u)

]

du, (4.39)

donde Tj es la temperatura del foco térmico caliente. La expresión entre corchetes se

indentifica fácilmente con la probabilidad de corriente a través de la resistencia en el

foco, de acuerdo con la terminología usada habitualmente en procesos estocásticos des-

critos por la ecuación de Fokker-Planck. En equilibrio, cuando p(q) es la distribución

de energías de Bolztmann,·

Q se hace igual a cero, y no existe ningún flujo de calor.

A partir de las expresiones para la potencia, P = iV y el flujo de calor del foco tér-

mico del dispositivo, ecuación (4.39), se puede calcular el rendimiento del rectificador.

El rendimiento, η, viene dado por el cociente P/QTj.

Como una versión extendida del planteamiento original propuesto por Sokolov, se

proponen las siguientes dependencias voltaje-corriente para los elementos resistivos

del dispositivo:

Rj(u) = R+j θ(u) + R−

j θ(−u) (j = 1, 2), (4.40)

donde θ(u) es la función paso. Sustituyendo la ecuación (4.40) en (4.35) se obtiene la

siguiente expresión para p(u):

p(u) = A

exp[−(αu2 + βu)], si u > 0;

exp[−(α′

u2 + β′

u)], si u < 0.(4.41)

donde

α =1

2

(

R+1 + R+

2

T 1R+2 + T 2R

+1

)

: α′

=1

2

(

R−2 + R−

1

T 1R−2 + T 2R

−1

)

(4.42)

β =iR+

2 R+1

T 1R+2 + T 2R

+1

; β′

=iR−

1 R−2

T 1R−2 + T 2R

−1

(4.43)

Page 77: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

4.2. Rectificador eléctrico: ratchet de Sokolov 77

con T j = kBTj/C.

Sustituyendo la ecuación (4.41) en (4.36) se obtiene la expresión para la potencia, P ,

P

A i√2α

α−

π

2

α′

α

β√2α

eβ2/4α

[

1 − erf

(

β

2√

α

)]

−1 −√

π

2

β′

√2α′

eβ′2/4α

[

1 + erf

(

β′

2√

α′

)]

, (4.44)

donde

erf(z) =2√π

∫ z

0

ey2

dy

es la función error y,

A−1

=

π

2

α

α′eβ2/4α

[

1 − erf

(

β

2√

α

)]

+ eβ′2/4α

[

1 + erf

(

β′

2√

α′

)]

. (4.45)

Sustituyendo la ec. (4.41) en (4.39) se obtiene después de un cálculo laborioso, que

QTjestá dado por

A−1

QTj= Cj

1

√πeβ

/4α′

[

1 +β

′2

2α′

] [

1 + erf

(

β′

2√

α′

)]

√α′

−Cj2

π

2

β′

√2α′

eβ′2/4α

[

1 + erf

(

β′

2√

α′

)]

+ 1

+Cj3

√πeβ2/4α

[

1 +β2

] [

1 − erf

(

β

2√

α

)]

− β√α

(

α′

α

)3/2

+Cj4

1 −√

π

2

β√2α

eβ2/4α

[

1 − erf

(

β

2√

α

)]

α′

α, (4.46)

donde

Cj1 =

1√2(T j2α

′ − 1)1

2α′

1

R−j

, (4.47)

Cj2 = T j

β′

√2α′

1

R−j

, (4.48)

Cj3 =

1√2(T j2α − 1)

1

2α′

1

R+j

, (4.49)

Cj4 = T j

β√2α′

1

R+j

, (4.50)

Page 78: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

78 4. Sistemas brownianos

Los resultados originales obtenidos por Sokolov [9] para una resistencia lineal R a

temperatura T1 y un diodo ideal no lineal a temperatura T2 < T1 pueden ser considera-

dos como un caso particular de las expresiones generales dadas en las ecuaciones (4.44)

y (4.46) haciendo R+1 = R−

1 = R y R+2 = 0, R−

2 = ∞. El caso de dos diodos conectados

en sentido contrario corresponde a los valores de Rj(u) dados por R+1 = R−

2 = R+ y

R−1 = R+

2 = R−. De aquí en adelante se limitará el análisis de esta última situación.

Dos diodos conectados en direcciones opuestas. Se considera que el diodo eti-

quetado con 1 está inmerso en el foco térmico de mayor temperatura, T1 > T2. Las

expresiones obtenidas anteriormente para las funciones termodinámicas pueden ser

evualadas ahora considerando que el calor que entra al dispositivo es QT1.

En la Fig. 4.6 se muestran los comportamientos de la potencia, P , el calor absorbido,

QT1, el rendimiento, η = P/QT1

y la función Omega, Ω, respecto de i para R+

= 1, R−

=

100, T 1 = 10 y τ = 0,1 (T 2 = 1). Todas las figuras han sido obtenida numericamente

usando el programa Mathematica. De la figura se destacan las siguientes propiedades:

P , η y Ω presentan valores máximos para distintos valores de i (imax P , imax η y

imax Ω respectivamente) los cuales satisfacen la relación imax P > imax Ω > imax η.

El máximo rendimiento obtenido está por debajo del valor del de Carnot 1− τ (=

0,9 en este caso particular). Mientras la potencia, el rendimiento -y por definición

la función Omega- tienen valores nulos cuando i → 0, el flujo de calor presenta

un valor distinto de cero en i = 0. Como ya lo había subrayado Sokolov, esto

significa que el dispositivo absorbe calor del foco térmico caliente aún en condiciones de

corriente nula, lo cual supone un modo de operación claramente irreversible.

Debido a que la potencia y el rendimiento son funciones con dos ceros y un valor

máximo a diferente (pero cercano) i, el trazo paramétrico de la potencia frente

al rendimiento tiene como resultado la forma de bucle característica de todos

los dispositivos generadores de trabajo que funcionan bajo condiciones reales

de irreversibilidad, tal como se ha podido comprobar anteriormente. La Fig. 4.7

muestra este comportamiento en forma de bucle para τ = 0,1 y τ = 0,2.

Se ha verificado que todos las propiedades anteriores se siguen cumpliendo para

distintos valores de τ y valores finitos de R+ y R−. Es evidente, pues, que en este sis-

tema la corriente adimensional, i, es una variable independiente apropiada en el pro-

ceso de optimización, mientras que R+

, R−

, T 1 y τ = T 2/T 1 pueden ser considerados

Page 79: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

4.2. Rectificador eléctrico: ratchet de Sokolov 79

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Q

_.

T1

P_

(a)Ω_

η

(b)

i

_1.20.2 0.4 0.6 0.8 1

i

_1.2

Figura 4.6: Comportamiento vs i de P y QT1(a); de η y Ω (b), para el ratchet de Sokolov

con τ = 0,1, R+

= 1, R−

= 100.

0.2 0.4 0.6 0.8

0.2

0.4

0. 6

P_

η

τ=0.1

0.2

Figura 4.7: P vs. η para el ratchet de Sokolov con τ = 0,1 y τ = 0,2. Los círculos indican

máxima potencia y los cuadrados máximo rendimiento.

como el conjunto de parámetros de control. Para los mismos valores de las resistencias

R+

y R−

se presentan en la Fig. 4.8(a), el comportamiento respecto de τ de la corrien-

te i que proporciona máxima potencia, imax P , máximo rendimiento, imax η y máxima

función Omega, imax Ω. La Fig. 4.8(b) muestra el comportamiento con τ , de la potencia

máxima, Pmax = P (imax P , τ), la potencia a máxima función Omega, PmaxΩ, y la po-

tencia en condiciones de máximo rendimiento, Pmax η. Finalmente, en la Fig. 4.8 (c) se

muestran ηmax, ηmax Ω y ηmax P . Los resultados de la figura permiten concluir que todas

las propiedades observadas en el caso del ratchet de Feynman se presentan en este ca-

so para el rectificador eléctrico, i.e., en condiciones de máximo Ω los valores de i, P y η

son intermedios en todos los casos.

Page 80: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

80 4. Sistemas brownianos

0.2

0.4

0.6

0.1

0.3

0.5

0.7

i

P_

η

τ

_(a)

(b)

(c)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

i_

maxP

i_

i_

maxΩ_

maxη

Pmax

_

Pmaxη

_

PmaxΩ

__

ηmax

ηmaxP

ηmaxΩ

Figura 4.8: Ratchet de Sokolov con R+

= 1 y R−

= 100. Comportamiento vs τ para

los valores optimizados de: (a) la corriente, (b) la potencia y (c) el rendimiento [la línea

intermedia es la semisuma de ηmaxP (τ) y ηmax(τ)].

Page 81: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

4.2. Rectificador eléctrico: ratchet de Sokolov 81

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0

P_

η

τ=0.1

0.2

(b)

0.4 0.8

0.2

0.4

0.6

0.8

1

1.2

η

P_

Q._

T1

i0

_

(a)

Figura 4.9: (a) Calor absorbido, QT1, rendimiento y potencia vs. i, con τ = 0,1. (b) P

frente a η, para τ = 0,1 y 0,2. En ambos casos R+

= 1 y R− → ∞.

4.2.2. Régimen ideal

Se tiene una situación interesante cuando el valor de una resistencia de los diodos

se incrementa hasta infinito, ya que en este caso el rendimiento tiende al valor máximo

de Carnot. La Fig. 4.9 (a) muestra el comportamiento respecto de i de P , ¯QT1, y de η,

para valores R− → ∞. En comparación con el caso general donde se tenían resistencias

finitas, se observan las siguientes diferencias:

1. El calor absorbido es cero bajo condiciones de corriente nula, por lo que el recti-

ficador eléctrico teóricamente puede alcanzar el rendimiento de Carnot en i = 0.

Entonces, dos diodos con resistencias infinitas conectados en direcciones opuestas pueden

alcanzar el rendimiento de Carnot a diferencia de lo que sucedía con el ratchet de Feynman

o cuando se tiene una resistencia lineal y un diodo.

2. En estas condiciones la figura de la potencia frente el rendimiento no muestra la

forma de bucle como se puede observar en la Fig. 4.8(b), sino que muestra un

comportamiento cóncavo típico de los modelos endorreversibles.

3. El rendimiento en condiciones de máxima potencia es precisamente el valor de

Curzon-Ahlborn: ηmax P = 1 −√τ . El rendimiento a máxima función Omega es

ηmaxΩ =1 + 2

√τ − τ − 2τ 3/2

1 + 3√

τ, (4.51)

el cual, una vez más, cumple con la condición de estar por debajo del máximo

rendimiento y ser mayor que el rendimiento a máxima potencia, i.e., ηmax = ηC >

Page 82: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

82 4. Sistemas brownianos

ηmax Ω > ηmax P .

Los valores analíticos anteriores se obtienen usando una expansión en serie de Tay-

lor de P (i, τ) de la siguiente forma

P (i, τ) =

2

πi(1 −

√τ − i

π

2) + O(i3), (4.52)

y calculando el valor de imax P con la condición[

∂P (i, τ)

∂i

]

i=imax P

= 0,

se obtiene

imax P =1 −√

τ√2π

,

y sustituyendo esta expresión en la expansión de Taylor para el rendimiento

η(i, τ) =1 − τ − i

π2(1 +

√τ)

1 − i√

π2

+ O(i3) (4.53)

se obtiene finalmente η(imax P , τ) = 1 − √τ . De manera similar se obtiene el resultado

analítico para el rendimiento bajo el criterio Omega. A partir de la condición[

∂Ω(i, τ)

∂i

]

= 0,

se tiene que

imax Ω =1 −√

τ√2π(1 +

√τ)

, (4.54)

y sustituyendo esta expresión en la ecuación (4.53) se obtiene la relación (4.51). Es con-

veniente remarcar aquí que, estos valores analíticos encontrados para el rendimiento a

máxima potencia y máxima función Omega son el resultado de realizar una expansión

en serie de Taylor de expresiones para el rendimiento y la potencia originalmente más

complejas.

4.3. Adiabatic Rocked Ratchet

La última sección del presente capítulo tiene como objetivo presentar el análisis de

un modelo ratchet completamente diferente, llamado Adiabatic Rocked Ratchet. Mientras

en los dos primeros sistemas analizados en este capítulo el responsable de romper

Page 83: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

4.3. Adiabatic Rocked Ratchet 83

0

V(x)

x

Q+ l λ

l λ

l x

1

λ λ1 2

Figura 4.10: Esquema del potencial V (x) = V0(x) + VL(x).

el equilibrio fue un segundo foco térmico, en este caso el equilibrio del sistema, que

trabaja en condiciones isotermas, se rompe por perturbaciones que tienen su origen en

una fuerza externa conductora, F (t).

Siguiendo el trabajo de Kamegawa et al. [100] se considera una partícula browniana

sobre-amortiguada moviéndose a temperatura T en un potencial ratchet homogéneo

bajo una fuerza externa F (t) periódica, cuya evolución está descrita mediante una

ecuación de Langevin dada por

x = −[

∂V0(x)

∂x+

∂VL(x)

∂x

]

+ F (t) + ξ(t), (4.55)

donde ξ(t) es ruido blanco, con media igual a cero, y por tanto cumple que < ξ(t)ξ(t′

) >=

2kTδ(t−t′

) (k es la constante de Boltzmann); V0(x) es un potencial periódico y asimétri-

co y definido por partes (lineales) mediante la expresión

V0(x) =

Q

λ1

x 0 < x ≤ λ1

λ1 + λ2 − x

λ2

Q λ1 < x ≤ λ1 + λ2,(4.56)

y, por consiguiente, con magnitud Q, periodo espacial λ = λ1 + λ2, y asimetría ∆ =

λ1 − λ2; VL(x) es el potencial debido a una carga l, ∂VL(x)/∂x = l > 0. En la fig. 4.10 se

muestra el potencial total V (x) = V0(x) + VL(x).

El término adiabatic es consecuencia de considerar que la perturbación externa F (t)

cambia en el tiempo muy lentamente, por lo que en cualquier instante t, la trayectoria

Page 84: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

84 4. Sistemas brownianos

de la partícula tiene prácticamente el mismo valor que un estado de corriente esta-

cionario. En presencia del ruido térmico, la densidad de probabilidad inducida por la

ecuación (4.55) obedece a una ecuación de Fokker-Planck [101], en forma de una ley de

conservación de probabilidad, es decir,

∂tP + ∂xJ = 0, (4.57)

donde P (x, t) es la densidad de probabilidad de localizar a la partícula browniana en

x a tiempo t, y J(x, t), es la densidad de probabilidad de corriente

J(x, t) = −kT∂xP (x, t) + [−∂xV0(x) + F (t) − l] P (x, t). (4.58)

La solución en el estado estacionario, cuando F es constante, se obtiene fácilmente.

La ec. (4.58) se puede reescribir como

dP (x)

dx+ r(x)P (x) = s(x) (4.59)

donde

r(x) =

− 1

kT

(

−Q

λ1

+ F − l

)

= r1 0 < x ≤ λ1

− 1

kT

(

Q

λ2

+ F − l

)

= r2 λ1 < x ≤ λ1 + λ2,(4.60)

y

s(x) = − J

kT= srJ. (4.61)

La solución general de (4.59) está dada por

P (x) = e−∫ x r(u)du

[∫ x

srJe∫ u r(y)dydu + C

]

(4.62)

y, en particular, en el intervalo 0 < x ≤ λ1 es

P1(x) = e−r1x

[

srJ

r1

(er1x − 1) + P (0)

]

, (4.63)

y en el intervalo λ1 < x ≤ λ es

P2(x) = e−r2(x−λ1)

[

srJ

r2

(er2(x−λ1) − 1) + P (λ1)

]

. (4.64)

Los coeficientes P (λ1) y P (0) que aparecen en las ecuaciones anteriores se pueden

determinar a partir de las condiciones de continuidad y periodicidad, respectivamente,

para las probabilidades. Así, de la condición de continuidad,

lımλ→λ−

1

P1(x) = lımλ→λ+

1

P2(x) (4.65)

Page 85: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

4.3. Adiabatic Rocked Ratchet 85

y utilizando (4.63) y (4.64) se obtiene

P (λ1) = e−r1λ1

[

srJ

r1

(er1x − 1) + P (0)

]

, (4.66)

que sustituida en (4.64) permite obtener la solución

P2(x) = e−r2(x−λ1)

srJ

r2

[er2(x−λ1) − 1] + e−r1λ1

[

srJ

r1

(er1x − 1) + P (0)

]

(4.67)

en el intervalo λ1 < x ≤ λ.

Para encontrar el valor de P (0) es necesario usar la condición de periodicidad, i.e.

P (0) = P (λ). A partir de (4.67) se tiene que

P (λ) = e−r2(λ−λ1)

srJ

r2

[er2(λ−λ1) − 1] + e−r1λ1

[

srJ

r1

(er1λ − 1) + P (0)

]

= P (0) (4.68)

de donde

P (0) =sr

r1

1 +(r1 − r2)(e

r2λ − er2λ1)

r2(er2λ − e(−r1+r2)λ1)

J. (4.69)

Utilizando la condición de normalización,∫ λ1

0

P1(x)dx +

∫ λ

λ1

P2(x)dx = 1, (4.70)

se encuentra la expresión para J ,

J =A

B + D, (4.71)

donde

A = r21r

22(e

r2λ − e(−r1+r2)λ1), (4.72)

B = sr

[

(r2 − r1)e−r1λ1−r2λ2(er1λ1 − 1)(r2e

r2(λ1+λ2)) − er2λ(r1 − (r1 − r2)er2λ2)

]

(4.73)

y

D = r1r2(er2λ − e(−r1+r2)λ1)(r2λ1 + r1λ2) (4.74)

Por último, sustituyendo los valores para r1, r2, sr, ecs. (4.60) y (4.61), teniendo en

cuenta que λ1 = (λ + ∆)/2 y λ2 = (λ − ∆)/2 y convirtiendo las exponenciales a sus

equivalentes funciones hiperbólicas se obtiene

J(F ) =P 2

2 sinh[

λ(F−l)2kT

]

kT[

λQ

]2

P3 − λQP1P2 sinh

[

λ(F−l)2kT

](4.75)

Page 86: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

86 4. Sistemas brownianos

con

P1 = ∆ +(λ2 − ∆2)(F − l)

4Q, (4.76)

P2 =

[

1 − ∆(F − l)

2Q

]2

−[

λ(F − l)

2Q

]2

(4.77)

y

P3 = cosh

[

2Q − ∆(F − l)

2kT

]

− cosh

[

λ(F − l)

2kT

]

. (4.78)

Suponiendo que F -que varía muy lentamente- se comporta como una onda cuadra-

da de amplitud A, es posible obtener para la energía (por unidad de tiempo) trans-

ferida a la partícula browniana desde la fuente externa de fluctuaciones, Ein, para

el trabajo realizado W y el rendimiento de la transformación, η, las siguientes expre-

siones [100]:

Ein =A[J(A) − J(−A)]

2, (4.79)

W =l[J(A) − J(−A)]

2, (4.80)

η =W

Ein

=l[J(A) − J(−A)]

A[J(A) − J(−A)]. (4.81)

A partir de las ecuaciones anteriores es posible proceder a realizar el proceso de

optimización de este sistema. Debido a la complejidad de las expresiones para las

funciones termodinámicas el análisis que se presenta es esencialmente númerico. En

primer lugar se analiza la situación límite en que la temperatura del sistema tiende a

cero (el llamado límite determinista [102, 103]). Posteriormente se estudia el compor-

tamiento del ratchet para temperaturas finitas [104, 105]. En tercer lugar y debido a lo

relevante [106] que resulta un estudio sobre la corriente neta, la energía de entrada y

el calor disipado de este sistema se hacen algunas reflexiones sobre el comportamiento

de estas funciones.

4.3.1. Límite determinista

Este límite corresponde a una situación en la que se considera ausencia de ruido

térmico, i.e., donde T → 0. En este caso la densidad de corriente está dada por

J(A) =

0 − Qλ2

≤ A − l ≤ Qλ1

1

λ

[

(A − l) − Q2

Q∆ + λ1λ2(A − l)

]

en otro caso.(4.82)

Page 87: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

4.3. Adiabatic Rocked Ratchet 87

2

4

6 0

0.5

1

1.5

0

1

A

W

(a)

2

0

2

4

6 0

0.5

1

1.5

0.6

A

l

η

(b)

2

l

Figura 4.11: Potencia (a) y rendimiento (b) frente a A y l en el límite determinista, kT =

0, para los siguientes parámetros: Q = 1, λ1 = 0,8, λ2 = 0,2. Los valores representados

para las cargas y las amplitudes corresponden únicamente a los valores para los cuales

el ratchet es capaz de extraer energía.

En la Fig. 4.11 se muestran los comportamientos tridimensionales de la potencia W y

del rendimiento η, para valores del potencial Q = 1, λ1 = 0,8 y λ2 = 0,2, y utilizando la

ec. (4.82) para la densidad de corriente J(A). Asimismo, en la Fig. 4.12 se muestra W y

η frente a la amplitud externa A para diversos valores fijos de la carga l.

Es claro a partir de las dos figuras mencionadas, que el trabajo y el rendimiento son

funciones que se pueden optimizar con respecto a A y a l. Para valores fijos de l(A)

cada uno de las funciones presentan un máximo relativo para algún A(l). Sin embargo,

los valores de los máximos absolutos se obtiene para un par único (A, l). Figuras simi-

lares cualitativamente se encuentran para valores finitos de la temperatura (ver más

adelante). En consecuencia, tanto A como l pueden ser consideradas como variables

independientes apropiadas para optimizar este sistema, mientras que la temperatu-

ra del foco térmico y los parámetros que definen el potencial forman el conjunto de

parámetros de control.

Debido a la no-linealidad de J(A, l), fuera del intervalo de movilidad

−Q

λ2

≥ A − l ≥ Q

λ1

,

la obtención de soluciones analíticas del problema para valores arbitrarios de A y l es

no trivial, aún en el límite determinista. Así todos los valores son obtenidos númeri-

camente utilizando el programa Mathematica. Los valores encontrados, en el caso de-

Page 88: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

88 4. Sistemas brownianos

0.2

0.6

1

1 2 3 4 60.0

0.2

0.4

0.6

3.12 3.13

0.008

A

1.872

1.87

3.13

A

1.87 1.872

3.12

0.6

A0

l = 0.1

0.5

0.95

1.54

1.8(b)

0.1

0.5

l = 0.95

1.54

1.8

(a)

ηW

1 2 3 4 6A0

Figura 4.12: Resultados en el caso determinista para W (a) y η (b) en términos de A

para distintos valores de l. En particular, l = 0,95 es la carga óptima en condiciones

de máximo trabajo y l = 1,54 en condiciones de máxima Ω. Los recuadros presentan el

comportamiento en el límite en que l → lmaxη = 1,875.

terminista, para la amplitud y la carga que proporcionan máximo rendimiento, Amax η,

y lmax η, respectivamente, y el rendimiento máximo ηmax ≡ η(Amax η, lmax η) concuerdan

con los obtenidos por Sokolov [102] en términos de los parámetros del potencial del

ratchet:

Amax η = 3,125 =Q(λ1 + λ2)

2λ1λ2

,

lmax η = 1,875 =Q(λ1 − λ2)

2λ1λ2

,

y

ηmax = 0,60 =lmax η

Amax η

=(λ1 − λ2)

(λ1 + λ2)=

2λ1

λ1 + λ2

− 1.

El máximo trabajo en el límite determinista,

W (Amax W , lmax W ) ≡ Wmax = 1,04,

se alcanza para valores de A ligeramente mayores y l menores [Amax W = 4,04 y lmax W =

0,95], en los cuales el rendimiento es

ηmax W ≡ η(Amax W , lmax W ) = 0,235.

La situación de máximo rendimiento en el límite determinista no es operativo, ya que

esta situación implica trabajo nulo. Por su parte, operar en circunstancias de máximo

trabajo determinista provoca una disminución drástica del rendimiento hasta 0,235

Page 89: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

4.3. Adiabatic Rocked Ratchet 89

0

0.2

0.6

1

0

0.2

2

4

6

W

A

l

(a)

0

0.2

0.6

1

0

0.15

2

4

6

η

A

l

(b)

Figura 4.13: Como en la fig. 4.10 pero en este caso kT = 0,1.

desde 0,6. Entre estas dos situaciones el criterio Omega proporciona un rendimien-

to intermedio, ηmax Ω ≡ η(AmaxΩ, lmaxΩ), aproximadamente de valor 0,44 -cercano al

máximo, 0.6- mientras que el trabajo, Wmax Ω ≡ W (AmaxΩ, lmaxΩ), tiene un valor finito

con valor cercano a 0,63 -aproximadamente la mitad del máximo. Por otra parte, la

amplitud y la carga necesarias para optimizar Ω son, AmaxΩ = 3,46 y lmax Ω = 1,54, res-

pectivamente. En la Fig. 4.12 se puede observar como η y W se comportan frente a A

para algunos valores concretos de l. Nótese en particular como el máximo rendimiento

se alcanza cuando el trabajo se acerca a cero [A → 3,125 y l → 1,875].

4.3.2. Temperaturas finitas

Para todas las temperaturas finitas los resultados numéricos son obtenidos utilizan-

do la expresión general (4.75) para la densidad de corriente. Como ejemplo ilustrativo

en la Fig. 4.13 se representa el comportamiento en 3D de η y W para kT = 0,1.

Es evidente de las anteriores figuras que tanto A como l resultan variables inde-

pendientes apropiadas también a temperaturas finitas. Los resultados para los valores

optimizados del rendimiento, la potencia, la amplitud de la fuerza externa aplicada,

y la carga se dibujan en la Fig. 4.14, frente a la temperatura del sistema. A la vista de

estas figuras se pueden enumerar las siguientes conclusiones [107]:

1. A medida que se incrementa kT , el trabajo máximo y el trabajo en condiciones

de máximo Ω decrecen de forma monótona, tal como muestra la Fig. 4.14 (a).

Page 90: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

90 4. Sistemas brownianos

2

3

4

5

6

0

0.2

0.4

0.6

0.8

1

0 0.1 0.3 0.50

0.1

0.2

0.3

0.4

0.5

0.6

W max

W maxΩ

W maxη

maxWη maxΩ η

maxη

A maxW

A maxΩA maxη

l

maxW

maxΩ

maxη

0 0.1 0.3 0.5

0.25

0.5

0.75

1

1.25

1.5

1.75

kT

1

0

(c)

(d)

(a)

(b)

kT

l

l

Figura 4.14: Valores númericos optimizados para el trabajo (a), el rendimiento (b), las

amplitudes externas (c), y las cargas (d) frente a kT .

Page 91: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

4.3. Adiabatic Rocked Ratchet 91

El mismo comportamiento decreciente se obtiene para el rendimiento en los tres

regímenes de optimización, Fig. 4.14 (b).

2. A diferencia de los anteriores comportamientos decrecientes, el trabajo en condi-

ciones de máximo rendimiento, Wmax η, presenta primero un comportamiento cre-

ciente y luego decreciente, con un valor máximo aproximadamente en kT = 0,1.

3. Al igual que en el límite determinista, a temperaturas finitas Ω proporciona ren-

dimientos y trabajos intermedios entre los predichos por los de condiciones de

máximo rendimiento y máximo trabajo.

4. Los valores de las amplitudes optimizadas en los tres criterios muestran un com-

portamiento decreciente hasta kT ≈ 0,15 mientras que a temperaturas supe-

riores aumentan rápidamente, Fig. 4.14 (c). Cabe destacar que también en este

caso Amax Ω es intermedia entre Amax η y Amax W para cada temperatura [Amax η <

Amax Ω < Amax W ].

5. Para los valores de las cargas óptimas necesarias se observa un comportamien-

to con la temperatura bastante distinto al que se observó para las amplitudes,

puesto que las cargas decrecen continuamente cuando la temperatura aumenta

en los tres regímenes, ver Fig. 4.14 (d). Cabe destacar que lmaxΩ es intermedia

entre lmax η y lmax W tanto para valores pequeños de la temperatura como para

valores de kT aproximadamente mayores de 0,1. Además, en kT aproximada-

mente mayor que 0,1, se tiene, lmax W > lmax η mientras que a temperaturas bajas

lmax η > lmax W , en contra de lo observado para las amplitudes.

6. A temperaturas suficientemente altas el efecto Ratchet tiende a desaparecer y las

tres condiciones de optimización proporcionan valores prácticamente nulos tanto

para el rendimiento como para el trabajo obtenidos. Puede decirse que a estas

temperaturas se requieren amplitudes cada vez mayores para mover cargas cada

ves más pequeñas, lo que provoca que el ratchet sea altamente ineficiente debido

a la importancia progresiva del ruido térmico frente a los efectos de rectificación.

4.3.3. Corriente neta, energía de entrada y calor disipado

Debido a que el sistema estudiado está en contacto solamente con un baño térmico

a temperatura T , su energética puede ser expresada facilmente en términos de la pro-

Page 92: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

92 4. Sistemas brownianos

ducción de entropía o del calor disipado, Qdis, en el baño térmico a la temperatura T

y de la energía de entrada Ein. Así, en este sistema en particular el rendimiento y el

trabajo se pueden expresar como η = 1 − [Qdis/Ein] y W = Ein − Qdis, mientras que

Qdis/Ein es la producción total de entropía por partícula ya que el sistema se considera

estacionario con entropía constante.

Todos los comportamientos optimizados mostrados en la Fig. 4.14 pueden ser in-

terpretados mediante un análisis de la evolución de Ein y Qdis respecto de kT . Sin

embargo, primero, se dará una explicación intuitiva del porqué de los comportamien-

tos de las amplitudes y la cargas en la Figs. 4.14(c) y (d) partiendo del valor medio de

la densidad de corriente,

〈J〉 =J(A, l) + J(−A, l)

2. (4.83)

En la Fig. 4.15, se representa 〈J〉 frente a la amplitud A para algunos valores de l

y ciertos valores representativos de la temperatura: kT = 0, 0,1 y 0,4. En condiciones

deterministas, Fig. 4.15(a), cada contribución de l en 〈J〉 presenta una pendiente posi-

tiva [que proviene de la corriente directa J(A, l)] para valores de la amplitud dentro

del intervalo de movilidad

A =Q

λ1

+ l

y con un máximo en

A =Q

λ2

− l.

A la derecha del máximo, la corriente inversa J(−A, l) provoca una pendiente nega-

tiva en cada línea. Cuando l aumenta el máximo se desplaza hacia la izquierda y por

encima de cierto valor de l, 〈J〉 se vuelve negativa para cualquiera A. En consecuen-

cia, el trabajo máximo, proporcional al máximo de 〈J〉, (ecs. (4.80) y (4.83)) se debe

obtener para alguna carga l no muy pequeña (para intentar mantener a J(A, l) tan

alta como sea posible) y tampoco muy grande (para evitar los valores negativos de

J(A, l)) y por supuesto, deberá estar localizado en alguna amplitud A dentro del inter-

valo de movilidad. En este caso, los cálculos númericos proporcionan, lmax W = 0,95 y

Amax W = 4,04. Cuando la temperatura se incrementa, Fig. 4.15(b), dos factores cobran

protagonismo: el intervalo de movilidad se desplaza hacia la izquierda y la corriente

inversa J(−A, l) se hace progresivamente más importante, aún para cargas pequeñas.

Entonces, 〈J〉 se mantiene positiva para cargas más bajas, para las cuales los máxi-

mos están claramente desplazados hacia amplitudes menores. Con más incremento de

Page 93: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

4.3. Adiabatic Rocked Ratchet 93

A

E inkT=0

kT=0.1 E in

0.95

1.875

1.875

0.50.95

l=0.10.50.95

l=0.1

0.50.95

(b)

(a)

-2

0

2

4

6

8

-1

0

1

2

3

4

5

1 2 3 4 5 6

-0.1

0

0.1

0.2

0.3

0.4

0.5 (c)kT=0.4

l=0.050.1 0.2

E in

<J>

<J>

l=0.5

<J>

Figura 4.15: Energía de entrada, Ein (líneas continuas) y corriente neta 〈J〉 (línea pun-

teada) frente a A para kT = 0 (a), 0,1 (b) y 0,4 (c) para los valores indicados de l. En

(c) los diversos valores de Ein(l) son indistinguibles. Nótese, las distintas escalas uti-

lizadas en el eje vertical de las tres figuras.

Page 94: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

94 4. Sistemas brownianos

la temperatura, Fig. 4.15(c), corrientes netas pequeñas se pueden obtener sólo a car-

gas muy bajas, con máximos en valores altos de A. De todo lo anterior se concluye

que el comportamiento -esperado- monótono decreciente en función de kT de lmax W

y probablemente el inesperado comportamiento no monótono de Amax W se debe a la

conjunción de estos dos factores: evitar la corriente inversa cuando la temperatura se

incrementa y el desplazamiento hacia la izquierda (valores más bajos de A dentro del

intervalo de movilidad) de los máximos de 〈J〉.En el caso determinista, el rendimiento máximo se alcanza en valores de A y l para

los cuales el valor medio de la corriente desaparece y, en consecuencia, el trabajo es

nulo. Esto se verifica cuandoQ

λ1

+ l =Q

λ2

− l,

y A es igual al semiancho del intervalo de movilidad. Entonces se tiene que

lmax η =Q

2(

1

λ2

− 1

λ1

) = 1,875

y

Amax η = 3,125.

A medida que se incrementa la temperatura la localización del máximo rendimien-

to, impuesto principalmente por la del máximo trabajo, está influenciado también por

la evolución de la energía de entrada. Ya que el valor mínimo (y nulo) de cada Ein(A, l)

se traslada a amplitudes y cargas más bajas cuando la temperatura se incrementa,

Figs. 4.15 (a), (b), cada Amax η debería ser inferior al correspondiente Amax W y cada

lmax η debe disminuir más rápidamente que el correspondiente lmax W . Este último efec-

to desaparece a temperaturas suficientemente grandes por la casi nula dependencia de

Ein con la carga, Fig. 4.15 (c), y entonces, se encuentra finalmente que, lmax η → lmax W

en estas temperaturas.

Puesto que la función Ω puede ser expresada como Ω = [2η − ηmax]/Ein, la lo-

calización de sus máximos depende principalmente de los máximos tanto de η co-

mo de Ein. Debido al crecimiento monótono de Ein respecto de A para cualquier l la

primera consecuencia es que, a una temperatura dada, cada AmaxΩ es mayor que el

correspondiente Amax η. La dependencia de l en Ω es una cuestión un poco más com-

pleja. A temperaturas bajas, para las cuales Amax Ω disminuye, las cargas necesarias

para una energía de entrada máxima son más bajas, Figs. 4.15(a), (b), pero cuando se

incrementa kBT el valor de AmaxΩ también crece y el máximo de la energía de entrada

Page 95: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

4.3. Adiabatic Rocked Ratchet 95

se alcanza en cargas mayores. Quizás esta dependencia irregular de Ein(A, l) puede

deberse a la inesperada disminución de lmaxΩ en comparación con la de lmax η y lmax W

en la Fig. 4.14(d).

No obstante, hay que subrayar que el hecho de que el valor de lmaxΩ no sea interme-

dio en un intervalo particular de temperaturas bajas, no invalida a Ω como un criterio

de optimización. En TTF, cualquier régimen que proporcione rendimientos superiores

a los de máxima potencia y potencias por encima de las predichas por la condición de

máximo rendimiento se considera como óptimo. En esta línea, el criterio Ω es un cri-

terio óptimo de operación en el adiabatic rocked ratchet analizado, independientemente

del comportamiento concreto de una de las variables independientes.

En la Fig. 4.16, se muestran Qdis y Ein frente a l para kT = 0 y 0,1 y para los valores

de A que proporcionan máximos en cada régimen. También se representa en cada caso

el correspondiente rendimiento y trabajo. En las Figs. 4.16 (a) y (d), que corresponden

a la situación de operación de máximo trabajo, los valores (A, l) para cada temperatura

son, como se esperaba, los que proporcionan máximo Ein − Qdis y valores mínimos de

Ein y Qdis. Entonces, para cada temperatura los valores optimizados de lmax W y Amax W

son precisamente los necesarios para que el ratchet presente mínimos (relativos) de la

energía de entrada y del calor disipado, siendo su diferencia la máxima posible. En

condiciones de máximo rendimiento, Figs. 4.16 (c), (f), lmax η y Amax η son los valores

necesarios de forma que se obtenga un mínimo del cociente (Qdis/Ein) a cualquier

temperatura. Sólo para kT = 0, Fig. 4.16 (c), el mínimo de (Qdis/Ein) coincide con

el mínimo (absoluto) tanto de Qdis como de Ein: el máximo rendimiento es alcanzado

cuando Qdis → 0 y Ein → 0 con Qdis/Ein → 0,4 (ηmax = 1 − 0,4 = 0,6). Sin embargo,

en estas condiciones deterministas Ein − Qdis → 0, lo que conduce a un valor nulo del

trabajo en condiciones de máximo rendimiento. El régimen de máxima Ω implica un

mínimo relativo para Ein y Qdis en condiciones deterministas, Fig. 4.16 (b), pero esto

no se cumple para temperaturas finitas, Fig. 4.16 (e).

Los resultados anteriores muestran que, únicamente el régimen de máximo traba-

jo, implica valores mínimos (relativos) de la energía de entrada y del calor disipado a

cualquier temperatura, mientras que el mínimo absoluto de estas magnitudes se tiene

sólo en el límite determinista del régimen de máximo rendimiento. Algunas observa-

ciones sobre la producción de entropía en el baño, (Qdis/T ), son pertinentes en este

momento. Para cada valor de A, existe un valor de l que minimiza la producción de

entropía a una temperatura dada. A temperaturas bajas las cargas que minimizan a la

Page 96: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

96 4. Sistemas brownianos

0.5

1

1.5

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

l

E in

Q dis

E in

Q dis

l=0.49

l=0.37

η

W

1

3

5

E in

Q dis

l=0.47A=3.43

A=2.30

A=1.48

W(x10)

η(x10)

W(x2)

η(x2)

(d)

(e)

(f)

0

1

2

3

4

5

6

0.5 1 1.5 2

1

2

3

4

0

l

l=0.95

A=4.04

E in

Q dis

l=1.54

A=3.46

A=3.125

l=1.875

E in

Q dis

1

2

3

4

(a)

(c)

(b)

E in

Q dis

kT=0

kT=0

kT=0

kT=0.1

kT=0.1

kT=0.1

Figura 4.16: Energía de entrada y calor disipado frenta a la carga, para los valores

indicados de A con kT = 0 y 0,1. (a) y (d) corresponden al régimen de máximo trabajo,

(b) y (e) al régimen de máxima Ω, y, (c) y (f) al de máximo rendimiento. Los valores A

y l indicados son los que proporcionan el máximo para cada uno de los regímenes en

cada temperatura considerada.

Page 97: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

4.3. Adiabatic Rocked Ratchet 97

0

2

4

6

8

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

kT

Ein

Ein

Ein

Qdis

Qdis

Qdis

maxW

maxΩ

maxη

(a)

(b)

Figura 4.17: Evolución de la energía de entrada y el calor disipado con respecto de kT

en condiciones de máximo trabajo y máxima Ω (a), y máximo rendimiento (b).

entropía, disminuyen cuando la amplitud se incrementa y por encima de ciertas am-

plitudes la carga tiende a cero. A temperaturas suficientemente altas, la producción de

entropía es una función de A creciente con un mínimo relativo en l → 0. De los re-

sultados para Qdis en las Figs. 4.16(a)-(c) es claro que, en condiciones deterministas los

estados de máximo W , máximo Ω y máximo η corresponden a los que proporcionan

valores mínimos locales de la superficie de la entropía. Sin embargo, a temperaturas

finitas esto es sólo cierto para estados bajo condiciones de máximo trabajo.

En la Fig. 4.17, finalmente, se muestra con más detalle la evolución de Ein y Qdis

en cada régimen óptimo respecto de kT . Es cierto que ambas magnitudes se incremen-

tan cuando la temperatura aumenta, pero, sin embargo, para una temperatura fija, son

mayores las proporcionadas por la condición de máximo trabajo y por debajo están

las del régimen de máximo rendimiento. Como era de preveer, el criterio Omega pro-

porciona resultados intermedios. Por lo tanto, desde el punto de vista de la energía de

entrada necesaria y el inevitable calor disipado, el máximo trabajo es una situación de

Page 98: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

98 4. Sistemas brownianos

operación muy desfavorable en el Rocked Ratchet adiabático a cualquier temperatura,

en oposición a lo que sucede en condiciones de máximo rendimiento. De la Fig. 4.16 es

inmediato explicar el comportamiento monótono decreciente con la temperatura frente

al rendimiento optimizado como del trabajo. En particular, el comportamiento del tra-

bajo en condiciones de máximo rendimiento se sigue directamente de la Fig. 4.17(b):

como se ha señalado previamente Ein − Qdis → 0 en kT = 0, esto conduce a un valor

nulo del trabajo bajo condiciones de máximo rendimiento en el caso determinista, sin

embargo, cuando kT se incrementa la diferencia entre, Ein − Qdis = W , al principio

crece y posteriormente disminuye con un valor máximo alrededor de kT = 0,1, que es

exactamente el comportamiento observado de Wmax η en la Fig. 4.14(a).

Page 99: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

Capítulo 5

Sistemas cuánticos

5.1. Consideraciones generales

Durante los últimos años el análisis de ciclos cuánticos ha experimentado un no-

table incremento a fin de extender las características de los ciclos tradicionales a sis-

temas gobernados por las leyes de la Mecánica Cuántica [14, 21, 22]. Así, una gran

variedad de ciclos, la mayoría de ellos de caracter endorreversible, trabajando con sis-

temas de espines, osciladores armónicos, gases ideales cuánticos (constituidos tanto

por fermiones como bosones) han sido objeto de numerosos análisis [59–70].

El objetivo fundamental de este último capítulo es presentar el estudio de un ciclo

recorrido por un conjunto de osciladores armónicos cuánticos que incluye irreversibili-

dades internas asociadas a fenómenos de fricción. Los ciclos analizados son semejantes

a los considerados por Feldmann y Kosloff [108, 109] para un conjunto de espines sin

interaccionar haciendo especial énfasis en la optimización, usando teorías de control,

respecto de los tiempos de duración de cada uno de los procesos que lo componen. A

diferencia de estos autores, aquí se presentará un análisis basado fundamentalmente en

la optimización del rendimiento y de la potencia bajo los tres regímenes usados en esta

memoria, supuesto que el tiempo total de duración del ciclo es constante. Conviene

señalar también que, aunque el origen cuántico de la fricción ha sido investigado con

cierto detalle [110], en este trabajo se considera como una descripción fenomenológica.

Antes de pasar a la descripción y estudio del ciclo se presentan algunas considera-

ciones básicas referentes al sistema de trabajo. Puesto que éste consiste en un conjunto

de osciladores armónicos sin interaccionar, todo el estudio referente al intercambio de

99

Page 100: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

100 5. Sistemas cuánticos

energía con los alrededores puede hacerse en términos de las características de un os-

cilador. Los niveles de energía, En, del oscilador armónico están dados por (no se

considera la energía del punto cero)

En = nw, n = 0, 1, 2, ..., (5.1)

donde w > 0 es la frecuencia del oscilador (en unidades donde ~ = 1) y n denota la

población. El valor medio de la energía del sistema en cualquier instante t está dado

por

〈E〉(t) =∞

n=0

Pn(t)En = w∞

n=0

Pn(t)n = w〈n〉, (5.2)

donde Pn(t) es la probabilidad de encontrar al oscilador en el nivel n−ésimo en el

tiempo t y 〈n〉 es la población de equilibrio de los osciladores a una temperatura T , que

puede ser expresada como

〈n〉 =1

exp[βω] − 1, (5.3)

con β = 1/T y donde T representa la temperatura absoluta en unidades de energía (se

ha supuesto kB = 1).

Si los osciladores se usan como sistema de trabajo en un ciclo, su energía interna

puede variar bien por el cambio de frecuencia, w, bien por el cambio de las poblaciones,

〈n〉, de acuerdo con la ecuación

d〈E〉 = 〈n〉dw + wd〈n〉, (5.4)

que se puede considerar como la Primera Ley de la Termodinámica si se asocia el

primer término (los cambios en la frecuencia del oscilador) a la transferencia de energía

en forma de trabajo y el segundo (los cambios de las poblaciones) a la transferencia de

energía en forma de calor:

dW = 〈n〉dw ; dQ = wd〈n〉 (5.5)

Si como consecuencia de las interacciones con el medio exterior sólo se permiten

transiciones tal que ∆〈n〉 = ±1, la población en el estado n puede ser descrita por la

ecuación maestra [98, 108]

dPn

dt= k↑〈n〉Pn−1 + k↓〈n + 1〉Pn+1 − [k↓〈n〉 + k↑〈n + 1〉] Pn, (5.6)

Page 101: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

5.2. Ciclo de potencia armónico con fricción 101

donde la probabilidad (por unidad de tiempo) de pasar del estado 〈n − 1〉 al 〈n〉 es

k↑〈n〉 y la de pasar del estado 〈n + 1〉 al 〈n〉 es k↓〈n + 1〉.Cuando t → ∞, se debe obtener el equilibrio termodinámico entre las poblaciones

y el foco térmico de temperatura T con el cual está en contacto. Esta situación corres-

ponde a que las probabilidades estén descritas por una distribución de Boltzmann,

P eqn = ce−βwn , (5.7)

donde c es una constante de normalización. La sustitución de (5.7) en (5.6) permite

obtener la condición de balance detallado para las velocidades de transición

k↑

k↓

= e−βw. (5.8)

De la ec.(5.6) se obtiene la variación temporal de la población, 〈n〉, como

d〈n〉dt

= −Γ[〈n〉 − 〈n〉eq], (5.9)

donde Γ = k↓ − k↑ y

〈n〉eq =k↑

k↓ − k↑

=1

eβw − 1. (5.10)

La solución de (5.9) se obtiene fácilmente y está dada por

〈n〉(t) = 〈neq〉 + [〈n(0)〉 − 〈neq〉] e−Γt. (5.11)

La dinámica del sistema a lo largo de las trayectorias del ciclo en las que sólo se

intercambia calor con un foco térmico está descrita por el cambio de poblaciones [véase

ec. (5.5)] por lo que se utilizará la relación (5.11) para modelar los intercambios de calor

entre los focos térmicos externos y el sistema de osciladores armónicos.

5.2. Ciclo de potencia armónico con fricción

El esquema del ciclo de potencia recorrido por el sistema de osciladores armónicos

se muestra en la Fig. 5.1 en un diagrama 〈n〉-ω. Se trata de ciclo irreversible con cuatro

etapas y recorrido de tal forma que se produce trabajo neto positivo.

En el proceso 1 → 2, el sistema de trabajo se acopla a un foco térmico de tempera-

tura Th durante un tiempo th, manteniendo la frecuencia constante con valor wh. En

este proceso la población cambia desde nc hasta nh debido a la absorción de calor. La

Page 102: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

102 5. Sistemas cuánticos

n

ω

h

c

ω ωhc

n

nc

h

1

2

2'3

4

4'

t a

t

tt

b

hc

T

T

><

Figura 5.1: Esquema 〈n〉-w de un ciclo de potencia, usando como sistema de trabajo un

conjunto de osciladores armónicos sin interaccionar.

temperatura interna del sistema de trabajo debe mantenerse inferior a Th, por lo que se

debe cumplir la siguiente desigualdad (a partir de ahora y por simplificar la notación

se suprime el valor medio en las poblaciones)

nh <1

eβhwh − 1≡ neq

h ≡ n2 (5.12)

Debido a que w se mantiene fijo, no se realiza trabajo, ec. (5.5), y la única transferencia

de energía es el calor absorbido desde el foco térmico a temperatura Th y que viene

dado por

|Q1→2| = wh(nh − nc). (5.13)

En el siguiente proceso, 2 → 3, el sistema de trabajo se desacopla del foco térmico

por un período ta y el cambio de energía interna del sistema se debe a dos efectos. En

primer lugar a un cambio de la frecuencia que, por sencillez, se supone lineal en el

tiempo w(t) = ωt + w(0). En segundo lugar a un cambio de velocidad constante en

la velocidad de cambio de población n, descrita por un coeficiente fenomenológico de

fricción σ tal que

n =(σ

t′

)2

(5.14)

donde t′ es el tiempo asignado a dicho proceso. Los cambios temporales en las pobla-

Page 103: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

5.2. Ciclo de potencia armónico con fricción 103

ciones debido a σ tienen entonces la siguiente expresión,

n(t) = n(0) +(σ

t′

)2

t. (5.15)

Las hipótesis anteriores suponen, pues, un modelo fenomenológico de fricción con

objeto de intentar soslayar las limitaciones impuestas por el caracter no interaccionante

de los osciladores. Los efectos de la fricción no aparecen en las etapas donde se inter-

cambia calor con los focos térmicos externos, pues en ellas la frecuencia w permanece

constante en el tiempo. Las irreversibilidades en estas etapas no-adiabáticas son de-

bidas únicamente a las transiciones (Γ) de la ecuación maestra. Un modelo donde se

hace un suposición similar a la que se presenta en ec. (5.14), fricción interna disipativa,

ha sido realizado previamente por Gordon y Huleihil [111].

En este proceso 2 → 3, de tipo adiabático, se hace trabajo para vencer la fricción

interna, que produce calor, y provoca un incremento en la población de nh a n3. El

cambio de temperatura interna se debe a dos contribuciones opuestas. Primero, una

disminución de la frecuencia conduce a una disminución de la temperatura interna

cuando se mantiene constante la población n. Segundo, un incremento de la población

debido a la fricción interna conduce a un incremento de la temperatura interna para

un valor fijo de w. Por tanto la temperatura T en el punto 3 puede ser más alta o más

baja que en el punto inicial 2.

De acuerdo con las hipótesis anteriores referentes a los cambios lineales de las

poblaciones y de la frecuencia del oscilador, el trabajo realizado por el sistema de tra-

bajo sobre los alrededores en este proceso es

W2→3 =

∫ ta

0

n(t)wdt =

∫ ta

0

[

nh +σ2

t2at

] [

wc − wh

ta

]

dt = (wc − wh)[nh +1

2

σ2

ta]. (5.16)

El calor generado en el sistema de trabajo a lo largo de este proceso debido a la fricción,

|Q2→3| =

∫ ta

0

w(t)ndt =

∫ ta

0

[

wh +wc − wh

tat

]

σ2

t2adt =

1

2

σ2

ta(wh + wc), (5.17)

se supone que es trabajo frente a la fricción, por lo que el trabajo total en este proceso

es

Wtot,2→3 = (wc − wh)

[

nh +1

2

σ2

ta

]

+1

2

σ2

ta(wh + wc). (5.18)

Page 104: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

104 5. Sistemas cuánticos

El tercer proceso, 3 → 4, es similar al primero. El sistema de trabajo ahora se acopla

a un foco térmico frío de temperatura Tc durante el tiempo tc. La población cambia en

este tramo desde n3 hasta n4, donde n4 debe ser menor que nc y mayor que n′4. Al final

del proceso la temperatura del sistema de trabajo deber ser más alta que la del foco

térmico frío, T4 > Tc, lo que conduce a tener

n4 < n′4 =

1

eβcwc − 1. (5.19)

El calor cedido por el sistema de trabajo a sus alrededores en esta trayectoria está dado

por

|Q3→4| = wc(n4 − n3) = wc

[

(nh − nc) + σ2

(

1

ta+

1

tb

)]

. (5.20)

El cuarto proceso 4 → 1 cierra el ciclo y es similar al segundo. El sistema de trabajo

se desacopla del foco térmico frío y durante el tiempo tb la frecuencia alcanza de nuevo

su valor inicial wh y se produce un aumento de las poblaciones del sistema. El cálculo

del trabajo total realizado sobre el sistema por los alrededores en esta trayectoria es

similar al realizado en la segunda y el resultado es

Wtot,4→1 = (wh − wc)

[

nc −1

2

σ2

tb

]

+σ2

2tb(wh + wc). (5.21)

Teniendo en cuenta las ecuaciones precedentes, el trabajo neto realizado por el sis-

tema de trabajo sobre sus alrededores durante un ciclo es

Wtot = −(Wtot,2→3 −Wtot,4→1)

= (wh − wc)(nh − nc) − σ2wc

[

1

ta+

1

tb

]

, (5.22)

mientras que el calor neto absorbido en un ciclo es simplemente el dado por |Q1→2|:

Qabs = wh(nh − nc). (5.23)

Nótese que en ausencia de rozamiento el trabajo neto realizado por el sistema de

trabajo correspondería al área de la parte rectangular del ciclo: la compuesta por los

dos procesos adiabáticos (de población constante) y los dos procesos de frecuencia

constante donde se intercambia calor con los focos térmicos externos. Las ecs. (5.22) y

(5.23) muestran que es suficiente conocer la expresión de (nh − nc) para encontrar la

forma explícita del trabajo neto y del calor absorbido. Es posible expresar la diferencia

(nh − nc) en términos de cantidades conocidas como las poblaciones en el equilibrio

Page 105: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

5.2. Ciclo de potencia armónico con fricción 105

y los tiempos en cada uno de los procesos. Para ello se hace uso de la ecuación (5.11),

según la cual las poblaciones que resultan de acoplar el sistema de trabajo con los focos

térmicos caliente y frío (ver fig. 5.1) se pueden escribir como

nh = neqh (1 − e−Γth) + nce

−Γth (5.24)

n4 = neq4 (1 − e−Γtc) + n3e

Γtc , (5.25)

o en términos de las variables

x = e−Γctc e y = e−Γhth (5.26)

como

nh = neqh (1 − y) + ncy (5.27)

n4 = neq4 (1 − x) + n3x. (5.28)

Por otro lado, de la ecuación (5.15) se obtienen las poblaciones después de que el sis-

tema de trabajo haya efectuado los procesos donde se presenta fricción (ver fig. 5.1):

n3 = nh +σ2

ta, (5.29)

y

nc = n4 +σ2

tb. (5.30)

Mediante la combinación adecuada de las ecuaciones anteriores es posible derivar

las siguientes expresiones para nh y nc en términos de los tiempos empleados en cada

proceso y de las poblaciones en el equilibrio:

nh = neq4 +

∆neq(1 − y) + σ2yG(x)

1 − xy, (5.31)

y

nc = neq4 +

∆neqx(1 − y) + σ2G(x)

1 − xy. (5.32)

A partir de la ecuación anterior se tiene entonces que

nh − nc = ∆neqF (x, y) − σ2G(x)(1 − y)

1 − xy, (5.33)

donde

F (x, y) =(1 − x)(1 − y)

1 − xy, (5.34)

Page 106: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

106 5. Sistemas cuánticos

0.4

0.6

0.8

1 0

0.001

0.002

0.003

0

0.001

0.003

0.4

0.6

0.8

0.4

0.6

0.8

1 0

0.001

0.002

0.003

0

0.2

0.6

0.4

0.6

0.8

W_

z

σ

z

σ

η

(a) (b)

Figura 5.2: Ciclo armónico cuántico; (a) Trabajo normalizado, W tot, y (b) Rendimiento,

η, respecto de z y σ. En ambos casos Γc = 1, Γh = 2, th = tc = ta = tb = 0,01, Tc = 2000,

Th = 8000 y wh = 6000.

∆neq = neqh − neq

4 ≡ n′2 − n′

4 ≡1

exp(βhwh) − 1− 1

exp(βcwc) − 1, (5.35)

y

G(x) =

(

x

ta+

1

tb

)

. (5.36)

El trabajo total obtenido durante el ciclo,

Wtot = (wh − wc)

[

∆neqF (x, y) − σ2G(x)(1 − y)

1 − xy

]

− σ2wc

[

1

ta+

1

tb

]

, (5.37)

se puede separar como

Wtot = (wh − wc)∆neqF (x, y) −Wσ, (5.38)

donde la contribución

Wσ =σ2

1 − xy

wh

[

x

ta+

1

tb

]

(1 − y) + wc(1 − x)

[

1

ta+

y

tb

]

, (5.39)

representa la pérdida de trabajo útil debido a la fricción.

El calor absorbido por el sistema de osciladores es

Qabs = wh

[

∆neqF (x, y) − σ2G(x)(1 − y)

1 − xy

]

. (5.40)

Page 107: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

5.2. Ciclo de potencia armónico con fricción 107

0.2 0.4 0.6 0.8 1

0.4

0.8

1.2

1.6

0.1 0.2 0.3 0.4 0.5

0.0002

0.0006

0.001

0.0014

0 η

W

_

η

W

_(x1000)

Ω

_(x1000)

z

(a)(b)

Figura 5.3: Ciclo armónico cuántico; (a) Trabajo normalizado, W(x1000), rendimiento,

η, y Ω(x1000) respecto de z. (b) Comportamiento W-η. En ambos casos σ = 0,002,

Γc = 1, Γh = 2, th = tc = ta = tb = 0,01, Tc = 2000, Th = 8000 y wh = 6000.

y, en consecuencia, el rendimiento queda expresado como

η =Wtot

Qabs

= η0 −σ2wc

[

1ta

+ 1tb

]

wh

[

∆neqF (x, y) − σ2G(x)(1−y)1−xy

] , (5.41)

donde

η0 = 1 − wc

wh

,

es el rendimiento en ausencia de fricción (σ = 0).

En términos de la variable z = wc/wh se obtiene las siguientes expresiones adimen-

sionales para el trabajo total

W tot =Wtot

wh

(5.42)

= (1 − z)∆neqF (x, y) − σ2

1 − xy

z(1 − x)

[

1

ta+

y

tb

]

+

[

x

ta+

1

tb

]

(1 − y)

,

y para el calor absorbido

Qabs =Qabs

wh

= ∆neqF (x, y) − σ2G(x)(1 − y)

1 − xy. (5.43)

Los comportamientos tridimensionales del trabajo neto obtenido y del rendimiento

se muestran en la Fig. 5.2 respecto a z y σ. Como era de esperar ambas cantidades

disminuyen cuando el valor de la fricción, medido con el parámetro σ, aumenta. El

comportamiento con z es diferente, como puede apreciarse en la Fig. 5.3(a), donde se

Page 108: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

108 5. Sistemas cuánticos

zmáx

0.0005

0.0015

0.0025

0.1

0.3

0.5

0.7

0.0005 0.001 0.0015 0.002 0.0025 0.003

0.4

0.8

0

σ

zmáx w_

η

Ω_

zmáx

zmáx

η

Ω_

máx

máx

η

η

η

máx

máx w_

Ω_

máx

wmáx

w_

w_

(a)

(b)

(c)

Figura 5.4: Resultados de la optimización para el ciclo armónico cuántico; (a) zmaxW ,

zmax Ω y zmax η. (b) Wmax, Wmax Ω y Wmax η. (c) ηmax, ηmax Ω y ηmaxW . En todos los casos

Γc = 1, Γh = 2, th = tc = ta = tb = 0,01, Tc = 2000, Th = 8000 y wh = 6000.

Page 109: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

5.2. Ciclo de potencia armónico con fricción 109

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

0.1 0.3 0.5 0.7

0.0005

0.001

0.0015

0.002(a)

z

W

_(x1000)

Ω

_(x1000)η

W

_(b)

η

Figura 5.5: Ciclo armónico cuántico sin fricción interna (σ = 0); (a) Trabajo normaliza-

do, W(x1000), rendimiento, η, y Ω(x1000) respecto de z. (b) Comportamiento W-η. En

ambos casos, Γc = 1, Γh = 2, th = tc = ta = tb = 0,01, Tc = 2000, Th = 8000 y wh = 6000.

han representado (para un σ dado) el rendimiento, el trabajo y la función Ω, ΩHE =

[2η − ηmax]W/η. Como puede apreciarse en esta figura las tres funciones presentan un

máximo en valores diferentes de z con zmax η < zmax Ω < zmaxW .

En la Fig. 5.3 (b) se presenta el comportamiento paramétrico de W vs. η, que como

puede apreciarse ofrece la característica forma de bucle encontrada previamente en to-

dos los sistemas irreversibles abordados en este trabajo. De las figuras anteriores es

obvio que en este sistema la variable independiente apropiada para el proceso de opti-

mización es z y los parámetros Γc, Γh, th, tc, ta, tb, Tc, Th pueden considerarse de control.

Los resultados de la optimización se muestran en la Fig. 5.4 frente al coeficiente de

fricción σ. Como se puede observar, el criterio Omega conserva su caracter intermedio

también este sistema ya que Wmax η < Wmax Ω < Wmax y ηmaxW < ηmax Ω < ηmax.

Los resultados como consecuencia de omitir los efectos de fricción en las adiabáti-

cas, es decir, cuando σ = 0, se ilustran en la Fig. 5.5, que ha sido dibujada con los

mismo parámetros de la Fig. 5.3. Este caso es interesante debido, especialmente, a que

el comportamiento del rendimiento es decreciente desde el valor máximo posible (el

de Carnot) hasta cero, mientras que los comportamientos de las otras dos funciones

siguen siendo similares a los encontrados en el caso en que la fricción era considerada.

Consecuencia inmediata es que ahora la gráfica paramétrica de W vs. η ya no presen-

ta la forma de bucle sino que es un comportamiento cóncavo similar al observado en

ciclos de tipo endorreversible.

Page 110: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

110 5. Sistemas cuánticos

Límite Endorreversible. A pesar de las apariencias, la ausencia de rozamiento por

sí misma no permite obtener que el rendimiento en condiciones de máximo trabajo sea

el valor de Curzon-Ahlborn. Para ello se tiene que imponer al sistema una condición

adicional: que la temperaturas de los focos térmicos sean muy altas. Con σ = 0 las

expresiones para el trabajo, el calor absorbido y el rendimiento se reducen, respectiva-

mente, a

W = (1 − z)∆neqF (x, y) (5.44)

Qabs = ∆neqF (x, y) (5.45)

η = 1 − z. (5.46)

donde

∆neq =

(

1

eβhwh − 1− 1

eβcwc − 1

)

. (5.47)

Teniendo en cuenta la condición de altas temperaturas [Th >> wh, Tc >> wc], los

términos exponenciales que aparecen en las expresiones de las poblaciones de equili-

brio se pueden aproximar por los correspondientes términos lineales y las expresiones

resultantes para el trabajo y el calor quedan como

W ≈ (1 − z)F (x, y)

[

1 − βh

βc

1

z

]

1

βh

, (5.48)

Qabs ≈ F (x, y)1

βh

[

1 − βh

βc

1

z

]

. (5.49)

Las ecuaciones anteriores permiten obtener analíticamente los valores de z que pro-

porcionan condiciones de máximo para el rendimiento y la función Omega. Resolvien-

do dWdz

= 0, se obtiene para z la ecuación

z =

(

βh

βc

)1/2

=

(

Tc

Th

)1/2

, (5.50)

que sustituida en (5.46) permite obtener que

ηmaxW = 1 −√

Tc

Th

,

expresión que coincide con el rendimiento de CA para un motor endorreversible tipo

Carnot con leyes de transferencia de calor lineales.

Resolviendo ahora dΩdz

= 0, se obtiene que el rendimiento a máxima función Omega

resulta

ηmax Ω = 1 −√

τ(τ + 1)

2,

Page 111: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

5.3. Ciclo frigorífico armónico con fricción 111

n

ω

c

ω ωhc

n

nc

h

2'

4'

t a

t

tt

b

hc

1

2

3

4

h

><

Τ

Τ

Figura 5.6: Esquema 〈n〉-w de un ciclo armónico cuántico operando como frigorífico.

Respecto del ciclo de potencia nótese ahora la diferente localización de las poblaciones

y de las isotermas

que, como era previsible, coincide con el rendimiento para un motor endorreversible

tipo Carnot optimizado con el criterio ecológico.

5.3. Ciclo frigorífico armónico con fricción

La Fig. 5.6 ilustra el ciclo anterior pero trabajando ahora en el modo frigorífico, con

el objetivo de extraer calor del foco térmico frío (carga de refrigeración) mediante el

empleo de trabajo externo. En el primer proceso 1 → 2, el sistema de trabajo se pone

en contacto con el foco térmico frío a temperatura Tc durante el tiempo tc mantenien-

do constante la frecuencia con valor wc. Las condiciones son tales que la temperatura

interna del sistema es más baja que Tc. A lo largo de este proceso, la población varía de

n1 a nc y como w es constante no se realiza trabajo y únicamente existe la transferencia

de calor

|Q1→2| = wc(nc − n1), (5.51)

absorbida por el sistema de trabajo del foco térmico a temperatura Tc. Esta magnitud

es por lo tanto la carga de refrigeración. En este proceso se verifica

nc <1

eβcwc − 1. (5.52)

Page 112: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

112 5. Sistemas cuánticos

En el proceso 2 → 3, el sistema se separa del foco térmico frío y se modifica su

energía mediante el cambio conjunto en la frecuencia y en las poblaciones, que varían

de acuerdo con una ley lineal desde nc a n3 debido a la fricción. Siguiendo un cálculo

análogo al realizado en el proceso 2 → 3 del ciclo de potencia, se obtiene que el trabajo

realizado por los alrededores sobre el sistema viene dado por

W2→3 = (wh − wc)

[

nc +1

2

σ2

ta

]

, (5.53)

al que se debe agregar el trabajo realizado para vencer la fricción que se disipa en forma

de calor

|Q2→3| =1

2σ2(wh + wc). (5.54)

Por lo tanto el trabajo neto realizado sobre el refrigerante es

Wtot,2→3 = (wh − wc)

[

nc +1

2

σ2

ta

]

+1

2σ2(wh + wc). (5.55)

El proceso 3 → 4 es similar al primero. El sistema de trabajo se acopla al foco térmi-

co caliente a temperatura Th durante el tiempo τc. La población cambia desde n3 a n4 y

al final del proceso la temperatura interna del refrigerante, T4, debe ser mayor que Th,

por lo que se verifica que

nh >1

eβhwh − 1. (5.56)

El calor cedido por el refrigerante al foco térmico caliente está dado por

|Q3→4| = (nc − n1)wh + σ2wh

[

1

ta+

1

tb

]

. (5.57)

Finalmente se tiene el proceso 4 → 1, similar al segundo. El sistema se desacopla,

durante un periodo tb, del foco térmico caliente y su energía varía de modo que se

finaliza en el valor original de la frecuencia wc aumentando las poblaciones. El trabajo

total desarrollado por el sistema de trabajo sobre sus alrededores es

Wtot,4→1 = (wc − wh)

[

n1 −1

2

σ2

tb

]

+σ2

2tb(wh + wc). (5.58)

Ya se observó que el calor total absorbido del foco frío en un ciclo (la carga de

refrigeración) viene dada por

QL = wc(nc − n1), (5.59)

Page 113: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

5.3. Ciclo frigorífico armónico con fricción 113

mientras que el trabajo neto total realizado por los alrededores sobre el sistema de

trabajo se calcula a partir de las ecuaciones (5.54) y (5.57) y tal. El resultado es

Wtot = (wh − wc)(nc − n1) + whσ2

[

1

ta+

1

tb

]

, (5.60)

por lo que la eficiencia queda expresada como

ε =QL

Wtot

=wc

wh

nc − n1

(1 − wc

wh)(nc − n1) + σ2

[

1ta

+ 1tb

]

. (5.61)

De forma similar al ciclo de potencia, también ahora es posible expresar el trabajo

sobre el sistema, la carga de refrigeración y la eficiencia en términos de las poblaciones

en el equilibrio y de los tiempos empleados en cada uno de los procesos. Usando las

expresiones (5.11) y (5.15) se tiene (ver Fig. 5.6) que

n3 = nc +σ2

ta,

n1 = nh +σ2

tb,

nc = neqc (1 − x) + n1x,

y

nh = neqh (1 − y) + n3y.

La combinación adecuada de las cuatro ecuaciones anteriores permite obtener la

siguiente expresión para nc − n1:

nc − n1 =∆neq

re(1 − x)(1 − y)

1 − xy−

σ2[

yta

+ 1tb

]

(1 − x)

1 − xy, (5.62)

que sustituida en las ecuaciones del trabajo, carga de refrigeración y eficiencia nos

permite el cálculo explícito de estas funciones en términos de los parámetros deseados.

Al igual que en el ciclo motor, es conveniente definir magnitudes adimensionales

introduciendo el cociente z = wc/wh. Se obtiene fácilmente la expresión

W =Wtot

wh

= (1 − z)(nc − n1) + σ2

[

1

ta+

1

tb

]

=

Page 114: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

114 5. Sistemas cuánticos

0.05

0.1

0.15

0.20

0.002

0.004

0.006

0

0.002

0.01

0.05

0.1

0.15

0.05

0.1

0.150

0.002

0.004

0.006

0

0.1

0.2

0.05

0.1

0.15z z

σσ

QLε

(a) (b)

Figura 5.7: Ciclo frigorífico armónico: Calor extraído del foco térmico frío, QL, (a) y

eficiencia, ε, (b) respecto de z y σ. En ambos casos Γc = 1, Γh = 2, th = tc = ta = tb =

0,01, Tc = 100, Th = 500 y wh = 100.

0.05 0.1 0.15 0.2

0.02

0.04

0.06

0.08

0.1

0.12

1000 3000 5000

20

60

100

z

ε

Ω

QL

ε1_

1 Q L

(a) (b)

(x10)

(x10)

/

Figura 5.8: Ciclo frigorífico armónico; (a) Calor extraído, QL(x10), eficiencia, ε, y Ω(x10)

respecto de z. (b) Comportamiento 1/ε − 1/QL. En ambos casos σ = 0,005, Γc = 1,

Γh = 2, τh = τc = τa = τb = 0,01, Tc = 100, Th = 500 y wh = 100.

Page 115: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

5.3. Ciclo frigorífico armónico con fricción 115

(1 − z)∆neqreF (x, y) − σ2

1 − xy

(1 − z)(1 − x)

[

y

ta+

1

tb

]

+ (1 − xy)

[

1

ta+

1

tb

]

, (5.63)

para el trabajo,

QL =QL

wh

= z(nc − n1) = z

∆neqreF (x, y) − σ2(1 − x)

1 − xy

[

y

ta+

1

tb

]

, (5.64)

para el calor extraído del foco frío, y

ε =WQL

.

para la eficiencia. F (x, y) es la función definida durante el ciclo de potencia ec.(5.34).

En las Figs. 5.7 (a), (b) se muestran los comportamientos 3D del calor extraído y de

la eficiencia en términos de z y σ. Se observa que la eficiencia crece cuando aumenta z

y disminuye, como era de esperar, cuando el coeficiente de fricción σ aumenta [Fig. 5.7

(b)]. Para el calor extraído el comportamiento es algo distinto, pues disminuye cuando

z aumenta su valor y disminuye ligeramente cuando σ crece.

La Fig. 5.8 (a) muestra el comportamiento frente a z de la carga de refrigeración, de

la eficiencia y de ΩRE = (2ε− εmax)QL/ε para un valor dado del coeficiente de fricción.

Nótese el caracter cóncavo de ε y ΩRE en contraposición con el comportamiento de-

creciente de QL y, en consecuencia, la típica función 1/ε vs 1/QL [ver Fig. 5.8 (b)] que

ya fue encontrada en los frigoríficos irreversibles tipo Carnot en el capítulo 3 de la

memoria. Los resultados del proceso de optimización, considerando z como variable

independiente y todos los demás parámetros como los controles, se muestran en la

Fig. 5.9. De nuevo se resalta de estas figuras el carácter intermedio de los resultados

obtenidos para z, ε y QL con el criterio Ω en relación con los obtenidos usando los de

máxima eficiencia y máxima carga de refrigeración.

Page 116: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

116 5. Sistemas cuánticos

0.05

0.1

0.15

0.2

0.05

0.1

0.15

0.2

0.25

0.002 0.004 0.006

0.002

0.004

0.006

0.008

(a)

(b)

(c)

zmáx

zmáx

Ω

máxΩ

ε

máx

εmáx

εmáxΩ

QL

QL

QLmáxε

Figura 5.9: Resultados de la optimización para el frigorífico cuántico. (a) zmaxQL, zmax Ω

y zmax ε. (c) εmax, εmax Ω y εmaxQL. (b) QL max, QL max Ω y QL max ε. En todos los casos Γc = 1,

Γh = 2, th = tc = ta = tb = 0,01, Tc = 100, Th = 500 y wh = 100.

Page 117: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

5.3. Ciclo frigorífico armónico con fricción 117

0.05 0.1 0.15 0.2

0.05

0.1

0.15

0.2

0.25

1000 3000 5000

20

60

100

Q L

ε

Ω

z

ε1_

1

Q L

(a) (b)

(x10)

(x100)

Figura 5.10: Frigorífico cuántico sin fricción interna (σ = 0); (a) Calor absorbido extraí-

do, QL(x10), eficiencia, ε, y Ω(x100) respecto de z. (b) Comportamiento 1/ε− 1/QL. En

ambos casos, Γc = 1, Γh = 2, th = tc = ta = tb = 0,01, Tc = 100, Th = 500 y wh = 100.

Límite endorreversible. Si los efectos de fricción se desprecian, el calor extraído, el

trabajo y la eficiencia, se pueden expresar, respectivamente, como

QL = z∆neqreF (x, y), (5.65)

W = (1 − z)∆neqreF (x, y), (5.66)

η =z

1 − z, (5.67)

donde

∆neqre =

(

1

eβcwc − 1− 1

eβhwh − 1

)

. (5.68)

Los comportamientos de las anteriores funciones se muestran en la Fig. 5.10(a),

donde se puede apreciar como en este límite de σ = 0 la eficiencia es una función

creciente con z, a diferencia de lo que sucedía en el caso anterior con σ 6= 0. Como es

de esperar ahora las gráficas 1/ε vs 1/QL tiene la forma parabólica típica de los ciclos

frigoríficos endorreversibles, tal como se puede apreciar en la Fig. 5.10 (b).

Si además se considera el límite de altas temperaturas, Th À wh, Tc À wc, el de-

sarrollo en serie de las exponenciales en las ecuaciones anteriores permite expresar el

trabajo y la carga de refrigeración como

W ≈ (1 − z)

βcwh

(

1

z− βc

βh

)

Page 118: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

118 5. Sistemas cuánticos

y

QL ≈ z

βcwh

(

1

z− βc

βh

)

.

De las ecuaciones anteriores es inmediato comprobar que la eficiencia en condi-

ciones de máxima carga de refrigeración es nula. Sin embargo, imponiendo la condi-

ción dΩRE

dz= 0 se obtiene que

z =βh

[βc(2βc − βh)]1/2con

βc

βh

=Th

Tc

,

de donde se llega finalmente a que la eficiencia en condiciones de máxima ΩRE viene

dada por la expresión

εmax Ω =τ√

2 − τ − τ, (5.69)

un resultado que coincide con el obtenido cuando se analizó el límite endorreversible

del frigorífico tipo Carnot con ley de transferencia lineal en el capítulo 3.

A partir de los resultados obtenidos con el ciclo armónico cuántico en este capítulo

se puede concluir que los comportamientos del rendimiento (eficiencia) y del trabajo

(carga de refrigeración) son cualitativamente iguales a los obtenidos con los dispo-

sitivos de potencia (frigoríficos) macroscópicos y brownianos cuando se representan

frente a la variable independiente adecuada. Señalar también que: (a) el ciclo de poten-

cia cuántico analizado reproduce los valores de Curzon-Ahlborn y del criterio ecológi-

co para el rendimiento en condiciones de máxima potencia y el rendimiento en condi-

ciones de máxima ΩHE en el límite de altas temperaturas y en ausencia de fricción;

(b) el ciclo frigorífico cuántico en el mismo límite reproduce el valor obtenido con el

criterio ecológico para la eficiencia en condiciones de máxima ΩRE

Los valores endorreversibles anteriores, aquí obtenidos en el límite de fricción nula

y altas temperaturas, se pueden obtener también a partir de un ciclo cuántico tipo

Carnot compuesto por dos isotermas y dos procesos donde las poblaciones sean cons-

tantes (adiabáticas) y recorrido tanto por sistemas de osciladores como de espines sin

interaccionar.

Page 119: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

Capítulo 6

Conclusiones

Se ha presentado en esta memoria un estudio sistemático de la potencia produci-

da (carga de refrigeración) y del rendimiento (eficiencia) en diversos dispositivos ter-

modinámicos productores de potencia (frigoríficos), haciendo especial hincapié en la

optimización de estas funciones y en su comportamiento bajo un régimen de fun-

cionamiento, criterio Ω, que representa un compromiso entre la energía útil obtenida

y la energía util disipada en cada caso. Así definido, el criterio Ω generaliza diferentes

criterios de tipo ecológico existentes anteriormente sin necesidad de tener en cuenta

parámetros externos al convertidor energético ni de evaluar la generación de entropía

que tiene lugar en un proceso irreversible arbitrario, un problema sutil y difícil en la

mayoría de los sistemas fuera del equilibrio. En este sentido se puede decir que el cri-

terio Ω cumple las condiciones exigidas a un buen criterio de optimización y además,

al poder aplicarse a cualquier convertidor energético, parece tener una validez gene-

ralizada.

Los sistemas estudiados han sido de muy diferente naturaleza. Así en el capítu-

lo 3 se analizaron algunos sistemas macroscópicos tradicionalmente estudiados bajo

el contexto de la Termodinámica de Tiempo Finito, como los ciclos irreversibles tipo

Carnot (trabajando en el modo de potencia y en el de frigorífico) y un ciclo Brayton,

considerando los tres tipos de irreversibilidades habituales en este tipo de sistemas:

las provenientes de los acoplamientos entre el sistema de trabajo y los focos térmicos

externos; las irreversibilidades internas en el sistema de trabajo; y las asociadas direc-

tamente a las pérdidas de calor entre los focos térmicos.

En el capítulo cuatro se analizaron sistemas brownianos de naturaleza mesoscópica,

descritos por un conjunto reducido de parámetros macroscópicos pero cuya dinámica

119

Page 120: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

120 6. Conclusiones

está determinada por el teorema de fluctuación-disipación como consecuencia de que

el ruido térmico es un elemento ineludible en el dominio de las escalas espaciales rele-

vantes en estos sistemas. La rectificación apropiada de las fluctuaciones (efecto ratchet)

hace que estos sistemas puedan realizar trabajo útil. En particular, se han analizado tres

sistemas diferentes. En los dos primeros [el rectificador mecánico (ratchet de Feynman)

y el rectificador eléctrico (ratchet de Sokolov)], las fluctuaciones que permiten romper

el equilibrio son producidas por un segundo foco térmico acoplado al sistema, mien-

tras que en el tercero [adiabatic rocked ratchet], de tipo isotermo, las fluctuaciones son

originadas por un fuerza externa al sistema y rectificadas por un potencial periódico y

asimétrico.

En el capítulo cinco se ha estudiado un ciclo cuántico, tanto en el modo de potencia

como de frigorífico, recorrido por un conjunto de osciladores armónicos desacoplados.

Independientemente de su naturaleza y de la ley de transferencia de calor involu-

crada, en todos los ciclos de potencia irreversibles analizados se ha obtenido que tanto

la potencia de salida como el rendimiento presentan un comportamiento cualitativo

similar. Ambas magnitudes presentan sendos máximos y dos ceros cuando se repre-

sentan frente a una variable independiente adecuada: el gradiente térmico en los ciclos

tipo Carnot, la relación de presiones en el ciclo Brayton clásico, el par de fuerzas de-

bida al peso externo en el ratchet de Feynman, la intensidad de corriente en el ratchet

de Sokolov, la amplitud de la fuerza externa y la carga en el adiabatic rocked ratchet, y

la frecuencia de los osciladores en el ciclo cuántico armónico. Consecuencia inmediata

es que las gráficas potencia frente al rendimiento presentan una típica forma de bu-

cle donde máximo rendimiento y máxima potencia son estados próximos aunque no

coincidentes.

En los ciclos frigoríficos irreversibles, y también independientemente de su natu-

raleza y de la ley de transferencia de calor involucrada, se ha obtenido que la carga de

refrigeración es una función creciente con la variable independiente apropiada mien-

tras que la eficiencia es una función cóncava con un único máximo. Consecuencia de

esta conducta es que las gráficas del inverso de la eficiencia frente al inverso de la

carga de refrigeración presenta un típico comportamiento fuertemente decreciente al

principio y posteriormente creciente casi de forma lineal.

El análisis del rendimiento y de la potencia para todos los sistemas de potencia tra-

bajando en condiciones de máxima ΩHE nos ha permitido obtener las dos siguientes

conclusiones: independientemente de los valores dados a los parámetros de control del

Page 121: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

121

sistema, el rendimiento es siempre intermedio entre el máximo posible y el rendimien-

to en condiciones de máxima potencia, mientras que la potencia es siempre intermedia

entre la máxima posible y la potencia en condiciones de máximo rendimiento. Estas

dos características hacen del criterio Ω un régimen óptimo de funcionamiento para

motores en el contexto de la TTF. Además hay que resaltar dos hechos adicionales: en

condiciones de máxima Ω la potencia es siempre muy próxima a la máxima posible y el

rendimiento es muy próximo a la semisuma del máximo rendimiento y del rendimien-

to en condiciones de máxima potencia. Estos dos hechos generalizan a cualquier dis-

positivo de potencia resultados previos válidos para ciclos tradicionales en los que las

irreversibilidades se reducen a los acoplamientos del sistema de trabajo con los focos

térmicos externos (límite endorreversible).

El análisis de la carga de refrigeración y de la eficiencia para todos los ciclos frigorí-

ficos irreversibles trabajando en condiciones de máxima ΩRE nos ha permitido obte-

ner las dos siguientes conclusiones: independientemente de los valores dados a los

parámetros de control del sistema, la carga de refrigeración es siempre intermedia en-

tre la máxima posible y la carga de refrigeración en condiciones de máxima eficiencia,

mientras que la eficiencia es siempre intermedia entre la máxima posible y la eficiencia

en condiciones de máxima carga de refrigeración. Estas dos propiedades pueden con-

siderarse como la generalización a sistemas frigoríficos del carácter óptimo del criterio

Ω.

En los ciclos tradicionales una situación interesante desde el punto de vista pedagó-

gico se presenta cuando las irreversibildades se reducen a los acoplamientos entre el

sistema y los focos térmicos externos. Este límite endorreversible se caracteriza porque

el rendimiento (la eficiencia) es una función decreciente con la variable independiente

apropiada desde el valor de Carnot hasta cero y en consecuencia, la curva potencia-

rendimiento (inverso de la eficiencia vs inverso de la carga de refrigeración) es de for-

ma cóncava (hipérbola) en lugar de la típica formas encontradas en las situaciones

reales. También en este límite se cumple el caracter intermedio del criterio Ω tanto en

motores como frigoríficos y aunque las expresiones análiticas del rendimiento (eficien-

cia) difieren de unas situaciones a otras se resaltan dos hechos importantes:

El rendimiento de Curzon-Ahlborn, típico de ciclos de potencia endorreversibles

con leyes de transferencia de calor lineales, ha sido encontrado también en el rec-

tificador eléctrico con diodos ideales y en el ciclo cuántico sin fricción a altas tem-

Page 122: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

122 6. Conclusiones

peraturas. Esto parece demostrar que el célebre rendimiento de Curzon-Ahlborn

tiene validez en situaciones donde las leyes de transferencia son aproximadamente

lineales. La misma conclusión se puede aplicar al rendimiento en condiciones de

máxima Ω que ha sido también obtenido en ciclos tradicionales con leyes lineales

y como límite clásico del ciclo armónico cuántico.

Para ciclos frigoríficos con leyes lineales, la eficiencia en condiciones de máxima

carga de refrigeración es un valor que también depende sólo de las temperaturas

de los focos externos y puede ser obtenida como caso particular del ciclo cuántico

de refrigeración en ausencia de fricción y a altas temperaturas.

Resumiendo muy brevemente los resultados de esta memoria, y más allá de valores

numéricos concretos, podemos decir que los motores térmicos (frigoríficos) parecen

presentar similitudes en el comportamiento del rendimiento y de la potencia (eficien-

cia y carga de refrigeración) cuando son analizados en términos de variables apropia-

das, independientemente de su naturaleza y tamaño. Además, el análisis unificado

bajo diferentes criterios de optimización es el camino más adecuado para el estudio

y diseño de convertidores energéticos eficientes y comparar su funcionamiento bajo

diferentes situaciones. En concreto, los criterios de optimización basados en un com-

promiso (trade-off) deseado parecen ser los más realistas para describir no sólo proce-

sos físicos o biológicos, sino también variadas facetas de la actividad humana [112,113].

Para terminar, se enumeran a continuación las publicaciones a las que ha dado lugar

la memoria presentada:

1. N. Sánchez Salas, S. Velasco, and A. Calvo Hernández; Unified working regime of

irreversible Carnot-like heat engines with nonlinear heat transfer laws; Energy Con-

version and Management 43, 2341 (2002). Los apartados 3.1 y 3.2 de la presente

memoria están basados en este trabajo.

2. N. Sánchez Salas and A. Calvo Hernández; Nonlinear systems rectifying thermal

fluctuations: maximum power and maximum efficiency regimes; J. Phys. D: Applied

Physics 35, 1442 (2002). El apartado 4.2 está basado en este trabajo.

3. N. Sánchez Salas and A. Calvo Hernández; Unified working regime of nonlinear sys-

tems rectifying thermal fluctuations; Europhysics Letters 61, 287 (2003). Los aparta-

dos 4.1 y 4.2 están inspirados en este trabajo.

Page 123: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

123

4. N. Sánchez Salas, and A. Calvo Hernández; Adiabatic rocking ratchets: optimum-

performance regimes; Phys. Rev. E. En prensa. El apartado 4.3 está basado en este

trabajo.

5. N. Sánchez Salas and A. Calvo Hernández; Optimal working regimes of regenera-

tive Brayton thermal cycles; Proceedings of the congress ECOS 2003, Copenague

(Dinamarca), June 30-july 2, 2003. El apartado 3.3 está basado en este trabajo.

6. N. Sánchez Salas, and A. Calvo Hernández; Optimal working regimes in irreversible

quantum cycles; En preparación. El capítulo 5 está basado en este trabajo.

Page 124: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

124 6. Conclusiones

Page 125: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

Bibliografía

[1] M. W. Zemansky y R. H. Dittman, Calor y Termodinámica, McGrawHill, Madrid

(1998); H. B. Callen, Thermodynamics and an Introduction to Thermostatitics,

Wiley, New York (1985); B. H. Wood, Applications of Thermodynamics, Waveland

Press (1991); K. Wark, Termodinámica, McGraw-Hill, México (1987).

[2] S. Sieniutycz y P. Salamon, Eds., Finite-Time Thermodynamics and Thermoeco-

nomics, Taylor and Francis, New York (1990).

[3] I. Prigogine, Termodinámica de los Procesos Irreversibles, Selecciones científi-

cas, Madrid (1974); D. Jou, J. Casas-vázquez and G. Lebon, Extended Irreversible

Thermodynamics, Springer-Verlag, Heildelberg (1993).

[4] S. Berry, V. A. Kazakov, S. Sieniutycz, Z. Szwast and A. M. Tsirlin, Eds., Ther-

modynamics Optimization of Finite-Time Processes, Wiley and Sons, Chichester

(1999).

[5] A. Bejan, G. Tsatsaronis and M. Moran, Thermal Design and Optimization, Wiley

and Sons, New York, (1996).

[6] A. Bejan and E. Mamut, Eds., Thermodynamics Optimization of Complex Energy

Systems, NATO Science Series, Kluwer Academic, Dordrecht (1999).

[7] C. Wu, L. Chen and J. Chen, Eds., Recent Advance in Finite-Time Thermodyna-

mics, Nova Science Publisher, New York (1999).

[8] J. Howard, Molecular Motors: Structural Adaptations to Cellular functions, Na-

ture, 389, 561-567 (1997); R. D. Astumian, Thermodynamics and Kinetics of a

Brownian Motor, Science, 276, 917-922 (1997).

125

Page 126: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

126 BIBLIOGRAFÍA

[9] I. M. Sokolov, On the energetics of a nonlinear system rectifying thermal fluctua-

tions, Europhys. Lett., 44, 278-283 (1998).

[10] I. M. Sokolov, Reversible fluctuation rectifier, Phys. Rev. E, 60, 4946-4949 (1999).

[11] P. Reimann, Brownian motors: noisy transport far from equilibrium, Phys. Rep.,

361, 57-265 (2002); Ver también el volumen especial Ratchets and Brownian Mo-

tors: Basics, Experiments, and Applications, Appl. Phys. A, 75 (2002).

[12] R. P. Feynman, R. B. Leighton, M. Sands: The Feynman Lectures on Physics, Vol.

1, Chapt. 46, Adison-Wesley, Reading, MA (1963).

[13] R. D. Astumian and I. Derényi, Fluctuation driven transport and models of mole-

cular motors and pumps, Eur. Biophys. J., 27, 474-489 (1998); F. Julicher, A. Ajdari

and J. Prost, Modeling Molecular Motors, Rev. Mod. Phys., 69, 1269-1281 (1997).

[14] D. P. Sheehan Ed., Quantum Limits to The Second Law, AIP Conference Procce-

dings 643, First International Conference on Quantum Limits to the Second Law,

San Diego, California (2002).

[15] S. Carnot, Réflexions sur la puissance motrice du feu. Paris: Bachelier (1824).

[16] A. Bejan, Entropy Generation Minimization, CRC Press, Florida (1996).

[17] A. Bejan, Advanced Engineering Thermodynamics, Wiley and Sons, New York

(1997).

[18] F. L. Curzon and B. Ahlborn, Efficiency of a Carnot engine at maximum power

output, Am. J. Phys., 43, 22-24 (1975).

[19] S. Velasco, J. M. M. Roco, A. Medina J. A. White and A. Calvo Hernández, Op-

timization of heat engines including the saving of natural resources and the re-

duction of thermal pollution, J. Phys. D: Appl. Phys., 33, 355-359 (2000).

[20] A. De Vos, Endoreversible Thermodynamics of Solar Energy Conversion, Oxford

University Press, Oxford (1992).

[21] C. M. Bender, D. C. Brody and B. K Meister, Quantum mechanical Carnot en-

gine, J. Phys. A, 33, 4427-4436, (2001); Entropy and temperature of a quantum

Page 127: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

BIBLIOGRAFÍA 127

Carnot engine, Proceedings of the Royal Society of London Series A- Mathema-

tical Physical and Engineering Sciences, 458, 1519-1526 (2002)

[22] R. A. Kosloff, A quantum mechanical open systems as a model of a heat engine,

J. Chem Phys., 80, 1625-1631 (1984).

[23] F. Angulo-Brown, E. Yépez and R. Zamorano-Ulloa, Finite-time thermodynamics

approach to the superconducting transition, Phys. Lett. A, 183, 431-436 (1993).

[24] F. Angulo-Brown and L. A. Arias-Hernandez, van’t Hoff’s equation for endore-

versible chemical reactions, J. Phys. Chem., 100, 9193-9195 (1996).

[25] A. De Vos, Endoreversible thermodynamics and chemical reactions, J. Phys.

Chem., 95, 4534-4540 (1991) .

[26] M. A. Barranco-Jimenez and F. Angulo-Brown, A nonendoreversible model for

wind energy as a solar driven heat engine, J. Appl. Phys., 80, 4872-4876 (1996).

[27] P. Salamon and A. Nitzan, Finite time optimizations of a Newton’s law Carnot

cycle, J. Chem. Phys., 74, 3546-3560 (1981).

[28] D. Gutowicz-Frusin, J. Procaccia and J. Ross, On the efficiency of rate processes:

Power and efficiency of heat engines, J. Chem. Phys., 69, 2898-3906 (1978).

[29] B. Andresen, P. Salamon and R. S. Berry, Thermodynamics in finite time: extremal

for imperfect heat engines, J. Chem. Phys., 66, 1571-1577 (1977).

[30] F. Angulo-Brown, An ecological optimization criterion for finite-time heat engines,

J. Appl. Phys., 69, 7465-7469 (1991). F. Angulo-Brown and R. Páez-Hernández,

Endoreversible thermal cycle with a nonlinear heat transfer, J. Appl. Phys.,

74, 2216-2219 (1993). F. Angulo-Brown, L. A. Arias-Hernández and R. Páez-

Hernández, A general property of non-endoreversible thermal cycles, J. Phys.

D: Appl. Phys., 32, 1415-1420 (1999).

[31] A. De Vos, Endorreversible Economics, Energy, Covers. Mgmt., 38, 311-317

(1997).

[32] L. Chen, F. Sun and C. Wu, Effect of heat transfer law on the performance of a

generalized irreversible Carnot Engine, J. Phys. D: Appl. Phys., 32, 99-105 (1999);

Page 128: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

128 BIBLIOGRAFÍA

L. Chen and Z. Yan, The effect of heat-transfer law on the performance of a two-

heat-source endoreversible cycle, J. Chem. Phys., 90, 3740-3743 (1989).

[33] M. H. Rubin and B. Andresen, Optimal staging of endorreversible heat engine, J.

Appl. Phys., 53, 1-7 (1982).

[34] J. Chen, The maximun power output and maximum efficiency of an irreversible

Carnot heat engine, J. Phys. D:Appl. Phys., 27, 1144-1149 (1994).

[35] S. Ozkaynak, S. Goktun and Yavuz, Finite-time Thermodynamics analysis of a

radiative heat engine with internal irreversibility, J. Phys. D: Appl. Phys., 27, 1139-

1143 (1994).

[36] A. Calvo Hernández, J. M. M. Roco, S. Velasco and A. Medina, Irreversible Carnot

cycle under per-unit-time efficiency optimization, Appl. Phys. Lett., 73, 853-855

(1998).

[37] M. Mozurkewick and R. S. Berry, Optimal paths for thermodynamics systems.

The ideal Otto cycle, J. Appl. Phys., 53, 34-42 (1982).

[38] K. H. Hoffman and R. S. Berry, Optimal paths for thermodynamic systems. The

ideal Diesel cycle, J. Appl. Phys., 58, 2125-2134 (1985).

[39] F. Angulo-Brown, J. Fernandez-Betanzos and C. A. Diaz Pico, Compression ratio

of an optimized air standard Otto-cycle model, Eur. J. Phys., 15, 38-42 (1994); D.

A. Blank and C. Wu, Optimization of the endoreversible Otto cycle with respect

to both power and mean effective pressure, Energy Covers. Mgmt., 34, 1255-1209

(1993).

[40] D. A. Blank and C. Wu, The effects of combustion on a power optimized endore-

versible Diesel cycle, Energy Convers. Mgmt., 34 493-498 (1993).

[41] O. M. Ibrahim and S.A. Klein, High-power multi-stage Rankine cycles, ASME

Trans. J. Energy Resources Tech., 117, 192-196 (1995).

[42] C. Cheng and C. Chen, Power optimization of an endoreversible regenerative

Brayton cycle, Energy, The Int. J., 21, 241-247 (1996); B. Sahin, A. Kodal and S. S.

Kaya, A comparative performance analysis of irreversible regenerative reheating

Page 129: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

BIBLIOGRAFÍA 129

Joule-Brayton engines under maximun power density and maximum power con-

ditions, J. Phys. D: Appl. Phys., 31, 2125-2131 (1998). Ver también referencias en

su interior.

[43] J.M. Roco, S. Velasco, A. Medina and A. Calvo Hernández, Optimum perfor-

mance of a regenerative Brayton thermal cycle, J. Appl. Phys., 82, 2735-2741

(1997).

[44] F. Wu, L. Chen C. Wu and F. Sun, Optimum performance of an irreversible Stirling

engine with imperferct regeneration, Energy Convers. Mgmt., 39, 727-732 (1998).

Ver también referencias en su interior.

[45] D. A. Blank and C. Wu, Power limit of an endoreversible Ericcson cycle with

regeneration, Energy Convers. Mgmt., 37, 59-66 (1996).

[46] M. M. Ait-Ali, A class of internally irreversible refrigeration cycles, J. Phys. D:

Appl. Phys., 29, 593-599 (1996). The maximum coefficient of performance of in-

ternally irreversible refrigerators and heat pumps, Ibid., 29, 975-980 (1996).

[47] L. Chen, S, Zhou, F. Sun and C. Wu, Performance of heat-transfer ireversible

regenerated Brayton refrigerators, J. Phys. D: Appl. Phys., 34, 830-837 (2001).

[48] C.H. Blanchard, Coefficient of performance for finite-speed heat pump, J. Appl.

Phys., 51, 2471-2472 (1980).

[49] L. Chen, C. Wu, and F. Sun, Optimization of the specific rate of heat pumping in

combined heat pump cycle, Energy Convers. Mgmt., 39, 113-116 (1998).

[50] S. Velasco, J. M. M. Roco A. Medina and A. Calvo Hernández, New Perfor-

mance Bounds for a Finite-Time Carnot Refrigerator, Phys. Rev. Lett., 78 3241-

3244 (1997).

[51] S. Velasco, J. M. M. Roco A. Medina and A. Calvo Hernández, Irreversible refrige-

rators under per-unit-time coefficient of performance optimization, Appl. Phys.

Lett., 71, 1130-1132 (1997).

[52] J. M. Gordon , I. Rubinstein and Z. Yarmi, On optimal heating and cooling strate-

gies for melting and freezing, J. Appl. Phys., 67, 81-84 (1990).

Page 130: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

130 BIBLIOGRAFÍA

[53] A. Bartana, R. Kosloff and D. J. Tannor, Laser cooling of internal degrees of free-

dom, J. Chem. Phys., 106, (4) 1435-1448 (1997).

[54] S. J. Watowich, K. H. Hoffamann and R. S. Berry, Optimal paths for a biomolecu-

lar, light-driven engine, Nouvo Cimento B, 104, 131-147 (1989).

[55] J. M.Gordon and V. N. Orlov, Performance characteristics of endoreversible

chemical engines, J. Appl.Phys., 74, 5303-5309 (1993).

[56] F. Angulo-Brown, M. Santillán and E. Calleja-Quevedo, Thermodynamic optima-

lity in some biochemical reactions, Nuovo Cimento D, 17, 87-90 (1995).

[57] M. Santillán, L. A. Arias-Hernandez and F. Angulo-Brown, Some optimization

criteria for biological systems in linear irreversible thermodynamics, Nuovo Ci-

mento D., 19 99-109 (1997).

[58] M. Santillán and F. Angulo-Brown, A thermodynamics approach to the compro-

mise between power and efficiency in muscle contraction, J. Theor. Biol., 189,

391-398 (1997).

[59] E. Geva and R. Kosloff, A quantum-mechanical heat engine operating in finite

time. A model consisting of spin-1/2 systems as the working fluid, J. Chem. Phys.,

96, 3054-3067 (1992); On the classical limit of quantum thermodynamics in finite

time, Ibid., 97, 4396-441 (1992).

[60] E. Geva and R. Kosloff, Three-level quantum amplifier as a heat engine: A study

in finite-time thermodynamics, Phys. Rev. E, 49, 3903-3918 (1994).

[61] E. Geva and R. Kosloff, On the relaxation of a two-level systems driven by a

strong electromagnetics field, J. Chem. Phys., 102, 8541-8561 (1995).

[62] E. Geva and R. Kosloff, The quantum heat engine and heat pump: An irreversible

thermodynamics analysis of the three-level amplifier, J. Chem Phys., 104, 7681-

7699 (1996).

[63] J. P. Palao, R. Kosloff and J. M. Gordon, Quantum thermodynamic cooling cycle,

Phys. Rev. E, 64, 56130-1 (2001).

[64] R. Kosloff, E. Gelva and J. M. Gordon, Quantum refrigerators in quest of the

absolute zero, J. Appl. Phys., 87, 8093-8097 (2000).

Page 131: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

BIBLIOGRAFÍA 131

[65] B. Lin and J. Chen, Performance analysis of an irreversible quantum heat engine

working with harmonic oscillators, Phys. Rev. E, 67, 046105-1 (2003); B. Lin, J. Chen

and B. Hua, The optimal performance of a quantum refrigeration cycle working

with harmonic oscillators, J. Phys. D: Appl. Phys., 36, 406-413 (2003).

[66] J. Chen, B. Lin and B. Hua, The performance of a quantum heat engine working

with spin systems, J. Phys. D: Appl. Phys., 35, 2051-2057 (2002).

[67] J. He, J. Chen and B. Hua, Quantum refrigeration cycles using spin-1/2 systems

as the working substance, Phys. Rev. E, 65, 036145-1 (2002).

[68] A. Sisman and H. Saygin, The improvement effect of quantum degeneracy on the

work from a Carnot cycle, Appl. Energy, 68, 367-376 (2001).

[69] H. Saygin and A. Sisman, Brayton refrigeration cycles working under quantum

degeneracy conditions, Appl. Energy, 69, 77-85 (2001).

[70] J. He, J. Chen and B. Hua, Influence of quantum degeneracy on the performance

of a Stirling refrigerator working with an ideal Fermi gas, Appl. Energy, 72, 541-

554 (2002).

[71] F. Angulo-Brown, J. A. Rocha Martínez and I. D. Navarrete-Gonzalez, A non-

endorreversible Otto cycle model: improving power output and efficiency, J. Phys.

D:Appl. Phys., 29, 80-83 (1996); C. Y. Cheng and C. K. Chen, Ecological optimiza-

tion of an endoreversible Brayton cycle, Energy Convers. Mgmt., 39, 33-44 (1998).

[72] A. Calvo Hernández, A. Medina, J. M. M. Roco, J. A White and S. Velasco, Unified

optimization criterion for energy converters Phys. Rev. E 63, 037102-1 (2001).

[73] M. J. Moran and H. N. Shapiro, Fundamentos de Termodinámica Técnica, Edi-

torial Reverté, Barcelona (1993).

[74] N. Sánchez Salas and A. Calvo Hernández, Optimal working regimes of regene-

rative Brayton thermal cycles, Proceedings of the congress ECOS 2003, Copen-

hagen (Denmark), June 30-july 2 (2003).

[75] N. Sánchez Salas, S. Velasco, and A. Calvo Hernández, Unified working regime

of irreversible Carnot-like heat engines with nonlinear heat transfer laws, Energy

Convers. Mgmt., 43, 2341-2348 (2002).

Page 132: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

132 BIBLIOGRAFÍA

[76] L. Chen, C. Wu and F. Sun, Finite Time Thermodynamics Optimization or Entropy

Generation Minimization of Energy Systems, J. Non-Equilib. Thermody., 24, 327-

359 (1999).

[77] J. Chen, Z. Yan, G. Lin and B. Andresen, On the Curzon-Ahlborn efficiency and

its connection with the efficiencies of real heat engines, Energy Convers. Mgmt.,

42, 173-181 (2001).

[78] D. P. Sekulic, A fallacious argument in the finite time thermodynamic concept of

endoreversibility, J. Appl. Phys., 83, 4561-4565 (1998); B. Andresen, Comment on

A fallacious argument in the finite time thermodynamic concept of endoreversibi-

lity , ibid., 90, 6557-6559 (2001); D. P. Sekulic, Reply, ibid., Appl. Phys., 90, 6560-

6551 (2001).

[79] J. M. Gordon and M. Huleihil, General performance characteristic of real heat

engines, J. Appl. Phys., 72, 829-837, (1992).

[80] S. Sieniutycz and A. De Vos, Eds., Thermodynamics of Energy Conversion and

Transport, Springer, New York (2000).

[81] J. M. Gordon and K. C. Ng, Cool Thermodynamics, Cambridge International

Science Publishing (2000).

[82] Z. Yan and L. Chen, Optimization of the rate of exergy output for an endore-

versible Carnot refrigerator, J. Phys. D: Appl. Phys., 29, 3017-3021 (1996).

[83] R. D. Astumian and P. Hanggi, Brownian Motors, Physics Today, 33-39, Novem-

ber (2002).

[84] P. Reimann and P. Hanggi, Introduction to the physics of Brownian motors, Appl.

Phys. A, 75, 169-178 (2002).

[85] M. O. Magnasco, Forced Thermal Ratchet, Phys. Rev. Lett., 71, 1477-1481 (1993).

[86] A. Ajdari and J. Prost, Mouvement induit par un potentiel périodique de basse

symétrie: diélectrophorese pulsée, C.R. Acad. Sci. Paris, 315, 1635-1639 (1992) .

[87] K. Sekimoto, Kinetic Characterization of Heat Bath and the Energetics of Thermal

Ratchet Models, J. Phys. Soc. Jpn., 66, 1234-1237 (1997).

Page 133: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

BIBLIOGRAFÍA 133

[88] A. Parmeggiani, F. Julicher, A. Ajdari and J. Prost, Energy transduction of isother-

mal ratchets:Generic aspects and specific examples close to and far from equi-

librium, Phys. Rev. E, 60, 2117-2140 (1999).

[89] I. Derényi, M. Bier and R.D. Astumian, Generalizes Efficiency and its Application

to Microscopic Engines, Phys. Rev. Lett., 83, 903-906 (1999).

[90] J. M. R. Parrondo, B. Jiménez and R. Brito, Thermodynamics of Isothermal Brow-

nian Motors, In: Stochastic Processes in Physics: Chemistry, and Biology, J.A.

Freund, T. Poschel (Eds), Lec. Notes Phys. 527, Springer, Berlín (2000).

[91] J. M. R. Parrondo and B. J. Cisneros, Energetics of Brownian motors: a review,

Appl. Phys. A, 75, 179-191 (2002).

[92] A. E. Allahverdyan and T. M. Nieuwenhuizen, Testing the violation of the Clau-

sius inequality in nanoscale electric circuits, Phys. Rev. B, 66, 115309 (2002).

[93] J. M. R. Parrondo and P. Español, Criticism of Feynman’s analysis of the ratchet

as an engine, Am. J. Phys., 64, 1125-1130 (1996).

[94] S. Velasco, J. M. M. Roco, A. Medina and A. Calvo Hernández, Feynman’s ratchet

optimization maximum power and maximum efficiency regimes, J. Phys. D:Appl.

Phys., 34, 1000-1006 (2001).

[95] N. Sánchez Salas and A. Calvo Hernández, Unified working regime of nonlinear

systems rectifying thermal fluctuations, Europhysics Lett., 61, 287-293 (2003).

[96] N. Sánchez Salas, Optimización Termodinámica de Rectificadores de Fluctua-

ciones, Grado de Salamanca, Salamanca (2001).

[97] N. Sánchez Salas and A. Calvo Hernández, Nonlinear systems rectifying thermal

fluctuations: maximum power and maximum efficiency regimes, J. Phys. D: App.

Phys., 35, 1442-1446 (2002).

[98] N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, North Ho-

lland, Amsterdam (1997).

[99] J. Keiser, Stastistical Thermdynamics of Nonequilibrium Processes, Springer,

New York (1987).

Page 134: Universidad de Salamancadiarium.usal.es/termodinamica/files/2015/11/tesisNorma.pdf · 2015-11-30 · reales, llamado ciclo irreversible tipo Carnot y, en segundo lugar, un ciclo habitual

134 BIBLIOGRAFÍA

[100] H. Kamegawa, T. Hondou and F. Takagi, Energetics of a forced thermal ratchet,

Phys. Rev. Lett., 80, 5251-5254 (1998).

[101] H. Risken, The Fokker-Planck Equation, Springer-Verlag, Berlin (1989).

[102] I. M. Sokolov, Irreversible and reversible modes of operation of deterministic

ratchets, Phys. Rev. E, 63, 021107-1 (2001).

[103] A. Sarmiento and H. Larralde, Deterministic transport in ratchet, Phys. Rev. E, 59,

4878-4883 (1999).

[104] R. D. Chialvo and M. M. Millonas, Asymmetric unbiased fluctuations are suffi-

cient for the operation of a correlation ratchet, Phys. Lett. A, 209, 26-30 (1995).

[105] K. Sumithra and T. Sintes, Efficiency optimization in forced ratchets due to ther-

mal, Phys. A, 297, 1-12 (2001).

[106] J. Buceta, J.M. Parrondo, C. Van den Broeck and F. J. de la Rubia, Negative resis-

tance and anomalous hysteresis in a collective molecular motor, Phys. Rev. E, 61,

6287-6293 (2000).

[107] N. Sánchez Salas, and A. Calvo Hernández, Adiabatic rocking ratchets: optimum-

performance regimes, Phys. Rev. E. En prensa (2003).

[108] T. Feldmann, E. Geva and R. Kosloff, Heat engine in finite time governed by

master equations, Am. J. Phys., 64, 485-492 (1996).

[109] T. Feldmann, E. Geva and R. Kosloff, Performance of dicrete heat engines and

heat pumps in finite time, Phys. Rev. E, 61, 4774-4790 (2000).

[110] R. Kosloff and T. Feldmann, Discrete four-stroke quantum heat engine exploring

the origin of friction, Phys. Rev. E, 65, 055102-1 (2002).

[111] J. M. Gordon and M. Huleihil, On optimizing maximum-power heat engines, J.

Appl. Phys., 69, 1-7 (1991).

[112] N. S. Greenspan, You can’t have it all, Nature, 409, 137 (2001).

[113] J. H. Marden and L. R. Allen, Molecules, muscles, and machines: Universal per-

formance characteristics of motors, PNAS, 99, 4161-4166 (2002).