tubos aletados

22
INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA QUÍMICA E INDUSTRIAS EXTRACTIVAS LABORATORIO DE TRANSFERENCIA DE CALOR GRUPO: 21M87 EQUIPO: 4 ALUMNO: DOMINGUEZ BELLO OSCAR ABEL PRACTICA: INTERCAMBIADORES DE SUPERFICIES EXTENDIDAS

Transcript of tubos aletados

Page 1: tubos aletados

INSTITUTO POLITÉCNICO NACIONALESCUELA SUPERIOR DE INGENIERÍA QUÍMICA

E INDUSTRIAS EXTRACTIVAS

LABORATORIO DE TRANSFERENCIA DE CALOR

GRUPO: 21M87

EQUIPO: 4

ALUMNO: DOMINGUEZ BELLO OSCAR ABEL

PRACTICA: INTERCAMBIADORES DE SUPERFICIES EXTENDIDAS

Page 2: tubos aletados

OBJETIVOS

a) Conceptuales

1. Conocer los principios que rigen el intercambio de calor en superficies extendidas

2. Evaluar el coeficiente global de transferencia de calor en un intercambiador de calor de tubo aletado, con aletas del tipo longitudinal, a partir de los coeficientes individuales y compararlos con el teórico

3. Evaluar la eficiencia de las aletas mediante datos experimentales

4. Evaluar el factor de incrustación real del equipo

b) Procedimentales

1. Realizar el diagrama de flujo del equipo de intercambio térmico de aletas extendidas

2. Llevar a cambio el intercambio de calor entre el flujo de agua y el flujo de aire por medio del intercambiador de calor a condiciones constantes

c) Actitudinales

1. Fomentar la participación activa del alumno en forma colaborativa del trabajo en equipo

2. Potenciar las habilidades de recopilación de información bibliográfica y el análisis de la misma

Page 3: tubos aletados

SINTESIS DE LA TEORIA

En la vida diaria se encuentran muchas situaciones físicas en las que es necesario transferir calor desde un fluido caliente hasta uno frío con múltiples propósitos. Por ejemplo, ahorro de energía (combustible) lo que disminuye los costos de operación; ó para llevar al fluido a una temperatura óptima, bien sea para un procesamiento posterior o para alcanzar condiciones de seguridad necesarias en el caso de transporte y/o almacenamiento. 

Para transferir calor existen una amplia variedad de equipos denominados intercambiadores de calor. Los equipos de intercambio de calor se pueden clasificar de acuerdo a diferentes criterios: tipo de contacto entre las corrientes fluidas, relación área de transferencia de calora volumen ocupado, número de fluidos involucrados, de acuerdo al servicio, tipo de construcción, etc.

SUPERIFICE EXTENDIDA.

Cuando existen grandes diferencias entre los coeficientes peliculares de transferencia de calor, se obtiene una mejora importante aumentando la superficie de contacto con el fluido de menor coeficiente.

Tipos de aletas:

Aletas longitudinales

Se utilizan en intercambiadores de tubos concéntricos y de camisa y tubos, cuando uno de los fluidos es viscoso y escurre en régimen laminar.

Los tubos para la transferencia de calor, empleados en el equipo de calentamiento, consisten de una tubería a la cual se le han agregado canales longitudinales en forma de "U" soldadas por la resistencia, lo que permite a los tubos aletados de RADCONSA proporcionar de 5 a 12 veces el área de transferencia de calor en comparación con los tubos convencionales (dependiendo del tamaño del tubo y las aletas). Esta superficie mucho mayor, ofrece una transferencia de calor mas positiva y una disminución en el tamaño de los calentadores lo que redunda en menores costos.Las aletas están permanentemente unidas; las aletas no se desprenden del tubo con el uso aún cuando existan expansiones y contracciones constantes debido al ciclo de calentamiento y enfriamiento estas no se separan, las aletas refuerzan el tubo proporcionándole resistencia, durabilidad y larga vida al serpentín.En la tarea propia de un intercambiador de calor, ya sea en la absorción o en la emisión de calor, la inclusión de la tubería aletada tiene como función intercambiar la superficie conductora entre la fuente de calor y el receptor, lo que ocasiona un intercambio de calor.

Page 4: tubos aletados

Aletas transversales

Usadas ampliamente para el calentamiento o enfriamiento de gases en flujo cruzado.

TUBERIA ALETADA TIPO G

La Transferencia de energía con tubos con aletas incrustadas ofrece una eficiencia térmica, a mayor temperatura oscila con sólidos de contacto del tubo. Las aletas son mecánicamente encerradas en un surco helicoidal en el exterior del tubo. La temperatura máxima de funcionamiento para este tipo de aletas es de 450ºC. Material de aletas: Aluminio o Cobre. Material de tubos: Teóricamente sin límites.

TUBERIA ALETADA TIPO L

Es altamente eficiente y rentable, los tubos con aletas tipo "L" ofrece una máxima transferencia de calor a temperaturas mas bajas. La forma de diseño tipo "L" mantienen rígidas las aletas para resistir el calor y alta velocidad de las vibraciones de aire. La temperatura máxima de funcionamiento para este tipo de alteas es de 150ºC. Material de aletas: Aluminio o Cobre. Material de tubos: Teóricamente sin límites.

TUBERIA ALETADA TIPO KL Se manufactura exactamente como la aleta "L", excepto que el tubo de base es bordeado ante la aplicación del pie de la aleta. Después de la aplicación, el pie de la aleta es bordeado en el borde correspondiente en el tubo de base, aumentando el acoplamiento entre aleta y tubo, lo que mejora las características de intercambio de calor. La temperatura máxima de funcionamiento para este tipo de alteas es de 260ºC. Material de aletas: Aluminio o cobre. Material de tubos: Teóricamente sin límites.

Page 5: tubos aletados

TUBERIA ALETADA TIPO LL

Se manufactura exactamente como la aleta "L", excepto que el pie de la aleta es solapado para que rodee el tubo de base completamente, lo que causa una excelente resistencia a la corrosión. Este tipo de tubo se suele usar como alternativa al tipo más costoso, la aleta estirada, en entronos corrosivos. La temperatura máxima de funcionamiento para este tipo de alteas es de 180ºC. Material de aletas: Aluminio o cobre. Material de tubos: Teóricamente sin límites.

TUBERIA TIPO EXTRUIDA

La tubería de aleta extruido se forman una espiral de bi-metal. El resultado es un tubo con aletas constituidos íntegramente con una excepcional eficiencia y longevidad. A altas temperaturas, o ambiente corrosivo, la tubería de aleta extruido son una gran opción para la aplicación de intercambiadores de calor. La temperatura máxima de funcionamiento para este tipo de alteas es de 350ºC.Material de aletas: Perfil de Aluminio. Material de tubos: Teóricamente sin límites.

Page 6: tubos aletados

EFICIENCIA TERMICA DE LA ALETA

Suposiciones:

Régimen estacionario de transferencia de calor

El material de la aleta es homogéneo e isotrópico

La conductividad térmica de la aleta es constante

El coeficiente de pelicular de transferencia de calor es constante sobre toda la superficie de la aleta.

La temperatura en la base es uniforme

No hay gradientes de temperatura en el espesor de la aleta

La temperatura del fluido que rodea la aleta es constante

Se desprecia el calor transferido a través de los bordes de la aleta

La unión entre la aleta y el tubo no ofrece resistencia térmica

ENFRIADORES DE AIRE

Siempre es posible utilizar aire atmosférico como fluido de en enfriamiento en sustitución o combinación con agua, que es el medio de enfriamiento más frecuente.

Ventajas

Disponibilidad infinita y sin costo

Disminuye el requerimiento del recurso agua

Elimina problemas de contaminación térmica y/o química del agua

Bajos costos de mantenimiento

En caso de corte de energía eléctrica mantienen una capacidad de enfriamiento de hasta el 30%, por tiraje natural

Page 7: tubos aletados

Desventajas de los enfriadores a aire

En el enfriamiento con agua se pueden alcanzar temperaturas menores que con aire

Los enfriadores a aire requieren tubos aletados que son más costosos

Las variaciones estaciónales de la temperatura del aire afectan el rendimiento del equipo, mientras que el sol y la lluvia diarias dificultan el control de la operación del equipo

CARACTERIZTICAS CONSTRUCTIVAS

Ejemplo: tubos con aletas transversales ofrecidos por Vulcan Finned Tubes:

Diámetro exterior de tubo o caño: 1" to 12-3/4"

Altura de la aleta: 3/8" a 1-1/4"

Espesor de la aleta: 0.035" a 0.120”

Separación entre aletas: de 1 a 6 aletas por pulgada

Materiales: cualquier combinación que puedan ser soldadas

Longitud de tubo: sin límites prácticos

Otros aspectos:

• El aluminio es material más conveniente para aletas hasta temperaturas de 400ºC

• El ancho de los haces tienen de 1 a 5 metros de ancho, siendo habitual que el ancho esté comprendido entre la mitad y el total de la longitud de los tubos

• Cada haz de tubos puede contener de 3 a 30 camadas de tubos, dispuestos en tresbolillo y con una separación entre centros de 2 a 2,5 pulgadas

• El área libre para el flujo de aire a través del enfriador es aproximadamente del 50% de la sección del haz de tubos, encontrándose velocidades de aires en condiciones estándar de 1.5 a 4 m/s

CABEZALES

Contienen divisiones para distribuir al fluido de proceso

Entre pares, en forma similar que los intercambiadores de camisa y tubos.

Page 8: tubos aletados

• Generalmente las conexiones de entrada y salida están montadas en el mismo cabezal, siendo flotante el otro, para absorber las dilataciones térmicas.

• Los cabezales suelen tener tapas desmontables abulonadas o agujeros roscados enfrentados a cada tubo (diseño para altas presiones.

VENTILADORES

Se emplean ventiladores de flujo axial, con 4 o 6 paletas de diámetro igual o levemente inferior al ancho del haz de tubos

• El ángulo de las paletas puede se fijo, ajustable manualmente o automáticamente, para variar el flujo de aire.

La velocidad del aire en los ventiladores generalmente está comprendida entre 4 a 10 m/s

• La velocidad periférica de los ventiladores no supera los 60 m/s para evitar ruido.

• Para asegurar una distribución razonablemente uniforme del aire sobre los tubos se aconseja que los ventiladores cubran como mínimo un 40% del área del haz.

VENTAJAS DEL FLUJO FORZADO

Requiere menor potencia para impulsar aire frío

Mejor vida mecánica de la transmisión y ventilador (El tiro inducido no se aconseja para temperaturas de aire de salida superiores a los 100ºC)

Menores costos estructurales

Mejor acceso para mantenimiento y ajuste del ventilador y transmisión

VENTAJAS DEL FLUIDO INDUCIDO (más usado)

• Disminuye riesgos de recirculación del aire de salida caliente

• Evita los efectos del sol y de la lluvia en la fila superior del haz de tubos aletados

• Produce distribución más uniforme del aire en toda la sección

• Facilita la instalación del enfriador elevado por encima de otros equipos

Page 9: tubos aletados

DATOS DEL DISEÑO

Para comenzar el dimensionamiento se debe establecer los siguientes datos básicos:

Requerimientos del proceso

Caudal del fluido a ser enfriado (W)

Temperaturas de entrada y salida del fluido dentro de tubos (T1 y T2)

Propiedades químicas y físicas del fluido dentro de tubos

Pérdida de carga admisible

Datos generales del lugar donde se instalará el equipo

Temperatura de bulbo seco del aire para el diseño (t1). Se debe tomar la media de los máximos diarios del mes más caliente del año, o una temperatura que no sea superada más del 5% del tiempo durante los tres meses más cálidos del año.

Propiedades físicas de diseño del aire (considerar la presión atmosférica del lugar)

Limitaciones de espacio para instalar el equipo en fábrica

Page 10: tubos aletados

DATOS EXPERIMENTALES

FLUJO(L/min) T1

Entrada

T2

Salida

T3

Vapor

T5 Taire

Entrada

Vaire(m/s)

Pvap

(Kg/cm²) T aire

Salida

10 49 44 91 33 20 17.7 1.03 33

15 47 47 84 32 22.9 10.9 0.28 32

20 48 48 87 31 23.5 6.2 0.18 31

SECUENCIA DE CALCULOS

1-GASTO MASA DE AIRE

Gm= ρa*((Va*di²*П)/4)

Gm= (1.204kg/m³)/4 *(17.7m/s)*(3600s/1h)*(0.0525m)²*П

Gm= 166.077kg/h

2-CALCULO DEL CALOR TRANSFERIDO

Q=Gm*cp*ΔT

Q= (166.077kg/h)*(0.24Kcal/kg°C)*(33°C-20°C)

Q=518.1602Kcal/h

3-CALCULO DEL COEFICIENTE GLOBAL DE TRANSFERENCIA DE CALOR EXPERIMENTAL REFERIDO AL AREA INTERNA

Uexp= Q/ (Atc*ΔTml)

Atc= 2di*П*L

ΔTml= (ΔTa1-ΔTa2)/ (ln (ΔTA1÷ΔTa2))

ΔT entrada= 49°C-20°C= 29°C

ΔT salida= 44°C-33°C= 11°C

ΔTml= (29°C-11°C)/ (ln (29°C ÷11°C))

Page 11: tubos aletados

ΔTml= 18.56°C

Atc= (0.03591m)*П*2*1.856m= 0.41876m

Uexp= (518.1602Kcal/h) ÷ (0.41876m*18.56°C)

Uexp= 66.6685kcal/hm²°C

4-CALCULO DEL DIAMETRO EQUIVALENTE

a= (П*(Di²-dE²)/4)-Nb*b*eb

Ph= П*De+Nb*(2b-eb)

De= 4a/Ph

a= (П/4*((0.072m)²-(0.04114m)²) -24+0.01231m+0.00139m

a= 0.002331m²

Ph= (П*0.04114m) + (0.24*(2*0.01231m-0.00139m))

Ph= 0.6867m

De= (4*0.002331m²) ÷0.6867m

De= 0.01357m

5-CALCULO DEL NÚMERO DE REYNOLDS

Re= (Gm*De)/ (μ*a)

Re= (166.077kg/h*0.01357m)÷ (0.07845kg/mh*0.00233m²)

Re=12328.838

6-CALCULO DEL COEFICIENTE DE PELICULA DEL AIRE REFERIDO AL AREA DEL ANULO (grafica 1)

Jf= 2.5

hf= jf*(k/De)*((cp*μ)/k) ^⅓

hf= 2.5*(0.0223kcal/hm²°C÷0.01357m)*(0.24*0.07845 kg/m÷0.0223kcal/hm²°C)⅓

hf= 3.883kcal/hm²°C

Page 12: tubos aletados

LEER EL VALOR DE hfi DE LA GRAFICA 2

Hfi=20

7-CALCULO DEL COEFICIENTE DE PELICULA INTERNO REFERIDO AL AREA INTERNA

Re= (v*ρ*di)/μ

V= Gv/ (П/4*di²)

Gv= (10L/min)*(1m³/1000l)*(60min/1h)

Gv=0.6m³/s

V= (0.6m³/s) ÷ (П/4*(0.03591m)²)

V= 592.2106m/h

Re= (592.2106m/h*990kg/m³*0.03591m)÷1.8972kg/hm

Re= 11097.2063 turbulento

FLUJO TURBULENTO

Npr= (cp*μ) ÷ k

Npr= (0.5833 Kcal/kg°C*2.1 kg/m)/0.5488 kcal/hm²°C

Npr= 2.232

Nnu= hi*Di/k= 0.027*Re^0.8*Npr^⅓*ø^-1

hi= 0.027*Re^0.8*Npr^⅓*ø^-1(k/Di)

hi =0.027*11097.2063^0.8*2.232^⅓*1^-1*(0.5488 kcal/hm²°C/0.03591m)

hi= 928.861kcal/hm²°C

FLUJO LAMINAR

ENTRAR A GRAFICA 3 CON EL RE CALCULADO E INTERCEPTAR L/D=120 Y LEER EL FACTOR jh

hi= (jh*k)÷((μ/μw)^-0.14*(cp*μ/k)^-⅓*dj)

Page 13: tubos aletados

8-CALCULO DEL COEFICIENTE DE TRANSFERENCIA DE CALOR TEORICO

1/Uteo= 1/hi+ 1/hfi

Uteo= 1÷ (1/928.861 kcal/hm²°C+1/20 kcal/hm²°C)

Uteo= 19.578 kcal/hm²°C

9-CALCULO DE LA EFICIENCIA TERMICA DE LA ALETA

ax= lb*eb

ax=1.436*0.00139

ax=0.001996m²

m= (hf*pb/kax) ^½

m= (3.883kcal/hm²°C*1.436/50*0.001996m²)^½

m=7.474

Ώ=tanhmb/mb

Ώ= tanh(7.474*0.01231)/ (7.474*0.01231)

Ώ=0.996

10-CALCULO DEL % DE DESVIACION

%D= (Ute-Uexp)/ Ute *100

%D= (19.578 kcal/hm²°C-66.6685kcal/hm²°C)/ 19.578kcal/hm²°C *100

%D= -240.527

ESPECIFICACIONES DEL EQUIPO

Page 14: tubos aletados

1. Intercambiador de calor de tubos aletados de doble paso de acero comercial

TUBO INTERIOR :

Øint = 0.03591m

Øext = 0.04114m

TUBO EXTERIOR

Øint = 0.072m

Longitud de por paso de tubo con aletas de 1.436m y una longitud total de tubo por paso de 1.856.

ALETAS

Material de acero

Numero de aletas: 24

Altura: 0.01231m

Espesor: 0.00139m

SALIDA DEL AIRE

Ø= 0.0525m

CONCLUSION

Page 15: tubos aletados

Se trabajo con un Intercambiador de calor de tubos aletados de doble paso de acero comercial, estos equipos se usan en la industria para mejorar la transferencia de calor en diversos procesos, la superficie extendida permite una mayor área de contacto y una mejor transferencia ya sea para enfriar o calentar el fluido.

Se utilizo agua y aire como medio de enfriamiento, la transferencia de calor depende también del fluido usado para enfriar y en especial de su capacidad calorífica, de la velocidad y de su gasto masa en este caso se obtuvo un calor cedido de 512.9470Kcal/h.

El valor del coeficiente global de transferencia de calor experimental, se encuentra referido al valor del calor intercambiado y el producto del área de transferencia de calor por la temperatura media logarítmica.

Para los intercambiadores de calor se utiliza el calculo de la temperatura media logarítmica ya que el flujo es paralelo y en el mismo sentido por lo tanto se determina una técnica que involucra las temperaturas de los fluidos en contacto de esta forma se obtiene una temperatura representativa del fenómeno ocurrido

Se obtuvo un valor Uexp= 66.6685 kcal/hm²°C

Los valores de Uteo están en función del equipo el número de aletas, los diámetros de los tubos el material, la altura de las aletas, y finalmente del régimen del flujo.

Se observa que el coeficiente global de transferencia de calor teórico aumenta si los coeficientes de película internos tanto del aire y del área interna disminuyen, por lo tanto para que la transferencia sea eficiente estos parámetros se deben controlar.

Se obtuvo un valor de Uteo= 19.172 kcal/hm²°C

OBSERVACIONES

Page 16: tubos aletados

Se debe llegar al régimen permanente para comenzar la lectura de los datos de temperatura

Se debe tener un control de la presión del aire y vigilar constantemente el valor de este, para obtener una correcta lectura de la velocidad del aire

Se debe comprobar el estado de los termopares con un termómetro y realizando una lectura en un punto representativo, por ejemplo medir la temperatura de entrada del fluido ya que se puede medir la temperatura directamente del fluido con el termómetro en el tanque

Realizar la purga en la línea del aire ya que puede contener una cantidad pequeña de agua lo que puede alterar los resultados

Se debe tener cuidado con el tanque que recibe el agua caliente, para evitar quemaduras

Tener control y fijar el gasto volumétrico en el rotametro ya que en ocasiones el flujo se puede aumentar o disminuir

BIBLIOGRAFIA

http://www.fing.edu.uy/iq/cursos/cm2/teorico/Superficie%20extendida.pdf

http://www.radconsa.com/tuberia.html

RESULTADOS

Page 17: tubos aletados

GV(L/min) hfi hi Uteo Uexp Ώ %D

10 20 928.861 19.578 66.6685 0.996 -240.527

15 22 1258.263 21.748 29.556 0.995 -35.902

20 28 1570.369 27.856 12.328 0.9958 57.249

ANEXOS

Page 18: tubos aletados

DENSIDAD Y VISCOSIDAD DEL AIRE:

MOTT FLUJO DE FLUIDOS

SEXTA EDICION

EDITORIAL PEARSON

PAGINA 597 TABLA E.1

CP DEL AIRE

http://www.esi2.us.es/~jfc/Descargas/TC/Coleccion_tablas_graficas_TC.pdf

DENSIDAD AGUA

MOTT FLUJO DE FLUIDOS

SEXTA EDICION

EDITORIAL PEARSON

PAG 589 TABLA A.1