Transformaciones que conservan ángulos

26
Transformaciones que conservan ángulos w = f(z) definida en un dominio D se llama conforme en z = z 0 en D cuando f preserva el ángulo entre dos curvas en D que se intersectan en z 0 . 2 cos cos 2 ' 2 ' 1 2 ' 2 ' 1 2 ' 2 2 ' 1 1 ' 2 ' 1 2 ' 2 2 ' 1 2 ' 2 ' 1 z z z z z z z z z z z z 2 cos ' 2 ' 1 2 ' 2 ' 1 2 ' 2 2 ' 1 1 w w w w w w

description

Transformaciones que conservan ángulos w = f ( z ) definida en un dominio D se llama conforme en z = z 0 en D cuando f preserva el ángulo entre dos curvas en D que se intersectan en z 0. Transformación conforme. Si f ( z ) es analítica en el dominio D y f ’( z )  0, entonces - PowerPoint PPT Presentation

Transcript of Transformaciones que conservan ángulos

Page 1: Transformaciones que conservan ángulos

Transformaciones que conservan ángulos

w = f(z) definida en un dominio D se llama conforme en z = z0 en D cuando f preserva el ángulo entre dos curvas en D que se intersectan en z0.

2

cos

cos2

'2

'1

2'2

'1

2'2

2'11

'2

'1

2'2

2'1

2'2

'1

zz

zzzz

zzzzzz

2

cos'2

'1

2'2

'1

2'2

2'11

ww

wwww

Page 2: Transformaciones que conservan ángulos

Demostración Si una curva C en D está definida por z = z(t), entonces w = f(z(t)) es la imagen de la curva en el plano w. Tenemos

Si C1 y C2 intersectan en z = z0, entonces:

Si f(z) es analítica en el dominio D y f’(z) 0, entonces

f es conforme en z = z0.

Transformación conforme

)('))(('')),(( tztzfwtzfw

'20

'2

'10

'1 )(',)(' zzfwzzfw

Page 3: Transformaciones que conservan ángulos

Puesto que f (z0) 0, tenemos que:

'2

'1

2'2

'1

2'2

2'11

'20

'10

2'20

'10

2'20

2'101

2cos

)(')('2

)(')(')(')('cos

zz

zzzz

zzfzzf

zzfzzfzzfzzf

(a) f(z) = ez es conforme en todos los puntos del plano complejo, ya que f (z) = ez no es nunca cero.

(b) La función g(z) = z2 es conforme en todos los puntos del plano complejo excepto z = 0, ya que g(z) = 2z 0, para z 0.

Ejemplos:

Page 4: Transformaciones que conservan ángulos

Example 2

• The vertical strip −/2 x /2 is called the fundamental region of the trigonometric function w = sin z. A vertical line x = a in the interior of the region can be described by z = a + it, − t . We find that

sin z = sin x cosh y + i cos x sinh y and so u + iv = sin (a + it)

= sin a cosh t + i cos a sinh t.

Page 5: Transformaciones que conservan ángulos

Since cosh2 t − sinh2 t = 1, then

The image of the vertical line x = a is a hyperbola with sin a as u-intercepts and since −/2 < a < /2, the hyperbola crosses the u-axis between u = −1 and u = 1. Note if a = −/2, then w = − cosh t, the line x = − /2 is mapped onto the interval (−, −1]. Likewise, the line x = /2 is mapped onto the interval [1, ).

1cossin 2

2

2

2

a

v

a

u

Page 6: Transformaciones que conservan ángulos

The complex function f(z) = z + 1/z is conformal at all points except z = 1 and z = 0. In particular, the function is conformal at all points in the upper half-plane satisfying |z| > 1. If z = rei, then w = rei + (1/r)e-i, and so

Note if r = 1, then v = 0 and u = 2 cos . Thus the semicircle z = eit, 0 t , is mapped onto [−2, 2] on the u-axis. If r > 1, the semicircle z = reit, 0 t , is mapped onto the upper half of the ellipse u2/a2 + v2/b2 = 1, where a = r + 1/r, b = r − 1/r. See Fig 20.12.

(3) sin)1

( ,cos)1

( r

rvr

ru

Page 7: Transformaciones que conservan ángulos

For a fixed value of , the ray tei, for t 1, is mapped to the point u2/cos2 − v2/sin2 = 4 in the upper half-plane v 0. This follows from (3) since

Since f is conformal for |z| > 1 and a ray = 0 intersects a circle |z| = r at a right angle, the hyperbolas and ellipses in the w-plane are orthogonal.

411

sincos

22

2

2

2

2

tt

tt

vu

Page 8: Transformaciones que conservan ángulos

Contents

• 20.1 Complex Functions as Mappings

• 20.2 Conformal Mappings

• 20.3 Linear Fractional Transformations

• 20.4 Schwarz-Christoffel Transformations

• 20.5 Poisson Integral Formulas

• 20.6 Applications

Page 9: Transformaciones que conservan ángulos

20.1 Complex Functions as Mappings

• IntroductionThe complex function w = f(z) = u(x, y) + iv(x, y) may be considered as the planar transformation. We also call w = f(z) is the image of z under f. See Fig 20.1.

Page 10: Transformaciones que conservan ángulos

Fig 20.1

Page 11: Transformaciones que conservan ángulos

Example 1

• Consider the function f(z) = ez. If z = a + it, 0 t , w = f(z) = eaeit. Thus this is a semicircle with center w = 0 and radius r = ea. If z = t + ib, − t , w = f(z) = eteib. Thus this is a ray with Arg w = b, |w| = et. See Fig 20.2.

Page 12: Transformaciones que conservan ángulos

Fig 20.2

Page 13: Transformaciones que conservan ángulos

Example 2

• The complex function f = 1/z has domain z 0 and

22222

22

22

)21

()21

( ,01

as written becan ),( ,0When

) ,( :partimaginary

) ,( :part real

ay

axyx

ax

ayxua

yx

yyxv

yx

xyxu

Page 14: Transformaciones que conservan ángulos

Example 2 (2)

• Likewise v(x, y) = b, b 0 can be written as

See Fig 20.3.

222 )21

()21

(bb

yx

Page 15: Transformaciones que conservan ángulos

Fig 20.3

Page 16: Transformaciones que conservan ángulos

Translation and Rotation

• The function f(z) = z + z0 is interpreted as a translation. The function is interpreted as a rotation. See Fig 20.4.

zezg i 0)(

Page 17: Transformaciones que conservan ángulos

Example 3

Find a complex function that maps −1 y 1 onto 2 x 4.

SolutionSee Fig 20.5. We find that −1 y 1 is first rotated through 90 and shifted 3 units to the right. Thus the mapping is

33)( 2/ izzezh i

Page 18: Transformaciones que conservan ángulos

Fig 20.5

Page 19: Transformaciones que conservan ángulos

Magnification

• A magnification is the function f(z) = z, where is a fixed positive real number. Note that |w| = |z| = |z|. If g(z) = az + b and then the vector is rotated through 0, magnified by a factor r0, and then translated using b.

00

iera

Page 20: Transformaciones que conservan ángulos

Example 4

Find a complex function that maps the disk |z| 1 onto the disk |w – (1 + i)| ½.

Solution Magnified by ½ and translated to 1 + i, we can have the desired function as w = f(z) = ½z + (1 + i).

Page 21: Transformaciones que conservan ángulos

Power Functions

• A complex function f(z) = z where is a fixed positive number, is called a real power function. See Fig 20.6. If z = rei, then w = f(z) = rei.

Page 22: Transformaciones que conservan ángulos

Example 5

Find a complex function that maps the upper half-plane y 0 onto the wedge 0 Arg w /4.

Solution The upper half-plane can also be described by 0 Arg w . Thus f(z) = z1/4 will map the upper half-plane onto the wedge 0 Arg w /4.

Page 23: Transformaciones que conservan ángulos

Successive Mapping

• See Fig 20.7. If = f(z) maps R onto R, and w = g() maps R onto R, w = g(f(z)) maps R onto R.

Page 24: Transformaciones que conservan ángulos

Fig 20.7

Page 25: Transformaciones que conservan ángulos

Example 6

Find a complex function that maps 0 y onto the wedge 0 Arg w /4.

Solution We have shown that f(z) = ez maps 0 y onto to 0 Arg and g() = 1/4 maps

0 Arg onto 0 Arg w /4. Thus the desired mapping is w = g(f(z)) = g(ez) = ez/4.

Page 26: Transformaciones que conservan ángulos

Example 7

Find a complex function that maps /4 Arg z 3/4 onto the upper half-plane v 0.

Solution First rotate /4 Arg z 3/4 by = f(z) = e-

i/4z. Then magnify it by 2, w = g() = 2.

Thus the desired mapping is w = g(f(z)) = (e-

i/4z)2 = -iz2.