Trace 1300 1310 Userguide Es

298
Nº ref. 31715030, Revisión B, septiembre de 2012 TRACE 1300 y TRACE 1310 Cromatógrafos de gases Guía del usuario

description

Esta guía contiene información detallada sobre la utilización de los sistemas de cromatografíade gases (GC) TRACE 1300 y TRACE 1310.

Transcript of Trace 1300 1310 Userguide Es

Page 1: Trace 1300 1310 Userguide Es

Nº ref. 31715030, Revisión B, septiembre de 2012

TRACE 1300 y TRACE 1310Cromatógrafos de gases

Guía del usuario

Page 2: Trace 1300 1310 Userguide Es

© 2012 Thermo Fisher Scientific Inc. Reservados todos los derechos.TRACE 1300 y TRACE 1310 son marcas comerciales de Thermo Fisher Scientific. Microsoft® es una marca registrada de Microsoft. Adobe® es una marca registrada de Adobe Systems Incorporated en Estados Unidos u otros países, o en ambos. Swagelok® es una marca registrada de Swagelok Company. Todas las demás marcas comerciales son propiedad de Thermo Fisher Scientific y sus filiales.

Editado por Thermo Fisher Scientific S.p.A., Strada Rivoltana 20090 Ródano-Milán (Italia) Tel.: +39 02 95059303; Fax: +39 02 95059388

Thermo Fisher Scientific Inc. suministra este documento a sus clientes con la compra de un producto para que lo apliquen a su funcionamiento. Este documento está protegido por derechos de autor y su reproducción total o parcial está estrictamente prohibida, salvo con la autorización por escrito de Thermo Fisher Scientific Inc.

El contenido de este documento está sujeto a cambios sin previo aviso. Toda la información técnica de este documento se incluye sólo para consulta. Las especificaciones y configuraciones del sistema descritas en este documento sustituyen a toda la información anterior que haya recibido el comprador.

Thermo Fisher Scientific Inc. no se manifiesta sobre la exactitud, precisión o ausencia de errores del presente documento ni será responsable de posibles errores, omisiones, daños o pérdidas que puedan derivarse de su empleo, aun cuando la información contenida en él se siga de forma correcta.

Este documento no forma parte de ningún contrato de venta entre Thermo Fisher Scientific Inc. y el comprador. Este documento no regirá ni modificará en ningún caso las Condiciones de venta, que prevalecerán en caso de conflicto entre la información de ambos documentos.

Historial de ediciones:

Primera edición, marzo de 2012: Traducción de las instrucciones originales “TRACE 1300 and 1310 Gas Chromatographs User Guide, PN 31715003, Revision A-March 2012”

Segunda edición, septiembre de 2012: Traducción de las instrucciones originales “TRACE 1300 and 1310 Gas Chromatographs User Guide, PN 31715003, Revision B-September 2012”

Sólo para uso en investigación. No apto para uso en procedimientos de diagnósticos.

Page 3: Trace 1300 1310 Userguide Es

doblar

doblar

Encuesta de usuarioTRACE 1300 y TRACE 1310 Guía del usuario, nº ref. 31715030, Revisión B

Si procede, anote a continuación sus comentarios. Utilice más hojas si es preciso.__________________________________________________________ ____________________________________________________________________________________________________________________________ ____________________________________________________________________________________________________________________________ ____________________________________________________________________________________________________________________________ ____________________________________________________________________________________________________________________________ ____________________________________________________________________________________________________________________________ ____________________________________________________________________________________________________________________________ ____________________________________________________________________________________________________________________________ ____________________________________________________________________________________________________________________________ __________________________________________________________________

Tarjeta de registro de clienteRegístrese ahora y aproveche las ventajas de ser usuario de los productos Thermo Fisher Scientific, como la asistencia al cliente, los informes de aplicación y los informes técnicos.

Nombre _______________________________________________Cargo__________________________________________________________________Empresa ___________________________________________________ __________________________________________________________________Dirección __________________________________________________ __________________________________________________________________Ciudad/provincia _________________________________ Código postal__________________________________________________________________País_______________________________________________________ __________________________________________________________________Teléfono ________________________________________________ Ext. __________________________________________________________________Nº serie_______________________________________Fecha de compra __________________________________________________________________

Pliegue y envíe por correo postal (o envíe por correo electrónico) a:

Muy de acuerdo

De acuerdo Correcto Desacuerdo Muy

desacuerdoEl manual está bien organizado. 1 2 3 4 5El manual está redactado con claridad. 1 2 3 4 5El manual contiene toda la información que necesito. 1 2 3 4 5Las instrucciones se siguen con facilidad. 1 2 3 4 5Las instrucciones están completas. 1 2 3 4 5La información técnica se comprende con facilidad. 1 2 3 4 5Los ejemplos de funcionamiento son claros y útiles. 1 2 3 4 5Las figuras son útiles. 1 2 3 4 5He podido utilizar el sistema gracias al manual. 1 2 3 4 5

MI EMPRESA ES: (Marque solo una) MI APLICACIÓN PRINCIPAL ES: (Marque solo una)❏ Laboratorio comercial (con fines de lucro) ❏ Analítica❏ Laboratorio público ❏ Biomédica❏ Hospital/Clínica ❏ Clínica/Toxicología❏ Laboratorio industrial ❏ Energía❏ Instituto de investigación ❏ Medioambiental❏ Universidad/Facultad ❏ Alimentación y agricultura❏ Veterinaria ❏ Medicina legal/Toxicología❏ Otro _____________________ ❏ Farmacéutica

❏ Investigación/EducaciónMI CARGO PRINCIPAL ES: (Marque solo una) ❏ Otro _____________________❏ Administración❏ Gestión de laboratorio❏ Operador❏ Otro _____________________

Editor, Technical Publications Thermo Fisher Scientific S.p.A. Strada Rivoltana km 4 20090 Ródano (MI) (Italia) Italia

Editor, Technical Publications Thermo Fisher Scientific SID GC-GC/MS 2215 Grand Avenue Parkway Austin TX 78728-3812 Estados Unidos

Page 4: Trace 1300 1310 Userguide Es
Page 5: Trace 1300 1310 Userguide Es

Declaración

Fabricante: Thermo Fisher Scientific

Thermo Fisher Scientific es el fabricante del instrumento descrito en el presente manual y, como tal, responsable de su seguridad, fiabilidad y rendimiento solo si:• instalación• recalibración• cambios y reparaciones

se han llevado a cabo por parte del personal autorizado y si:• la instalación local es conforme a la normativa legal vigente• el instrumento se utiliza de acuerdo con las instrucciones suministradas y su manejo se confía exclusivamente al

personal adecuadamente formado y cualificado.

Thermo Fisher Scientific no es responsable de los daños derivados del no cumplimiento de las recomendaciones mencionadas.

Cumplimiento de normativas

Thermo Fisher Scientific somete sus productos a pruebas y evaluaciones completas para garantizar que cumplen todas las normativas nacionales e internacionales vigentes.

En el momento de la entrega, el sistema cumple todas las normas de compatibilidad electromagnética (EMC) y seguridad pertinentes

Seguridad

Este aparato cumple las siguientes normas de seguridad de acuerdo con la Directiva de baja tensión 2006/95/CE.• Comisión Electrotécnica Internacional (IEC): 61010-1:2001 (segunda edición) - 61010-2-010:2003

(segunda edición) - 61010-2-081:2001 (primera edición) + A1:(2003)• Diferencias nacionales: CAN/CSA C22.2 nº 61010-1 (2ª edición) - UL 61010-1 (2ª edición)• EuroNorm (EN): 61010-1:2001 (2ª edición) – 61010-2-010:2004 (2ª edición) - 61010-2-081:2002 (1ª edición)

Compatibilidad electromagnética

Este aparato cumple la siguiente normativa sobre compatibilidad electromagnética (CEM/EMC) y las interferencias de radiofrecuencia (RFI) de acuerdo con la directiva 2004/108/CE:• CISPR 11/EN 55011: Grupo 1 Clase A• IEC/EN 61326-1:2006

IMPORTANTE: Los equipos de Clase A están pensados para el uso en entornos industriales. Su utilización en otros entornos puede suponer dificultades para garantizar la compatibilidad electromagnética, dada la posible presencia de alteraciones conducidas e irradiadas.

Page 6: Trace 1300 1310 Userguide Es

Declaración de conformidad FCC

Precaución al levantar y manejar Thermo Scientific Instruments

Por su seguridad, y en cumplimiento de la normativa internacional, el manejo físico de este instrumento de Thermo Fisher Scientific requiere un esfuerzo conjunto para levantarlo o moverlo. Este instrumento pesa demasiado como para que solo una persona lo maneje sin riesgo.

Aviso sobre el uso apropiado de instrumentos de Thermo Scientific Instruments

De conformidad con lo dispuesto en la normativa internacional: La utilización de este instrumento de una forma no especificada por Thermo Fisher Scientific puede reducir la protección que ofrece el instrumento.

Aviso sobre la susceptibilidad de las interferencias electromagnéticas

No utilice transmisores de radiofrecuencia, como teléfonos móviles, cerca del instrumento.

ESTE DISPOSITIVO CUMPLE CON LA PARTE 15 DE LAS NORMAS FCC. SU FUNCIONAMIENTO ESTÁ SUJETO A LAS DOS CONDICIONES SIGUIENTES: (1) ESTE DISPOSITIVO NO PUEDE CAUSAR INTERFERENCIAS PERJUDICIALES, Y (2) ESTE DISPOSITIVO DEBE ACEPTAR TODA INTERFERENCIA RECIBIDA, INCLUIDAS LAS QUE PUEDEN PERJUDICAR SU FUNCIONAMIENTO

PRECAUCIÓN: Antes de utilizarlo, lea y comprenda todas las notas, signos y símbolos de precaución que contiene este manual relacionados con el uso y funcionamiento sin riesgos de este producto.

Page 7: Trace 1300 1310 Userguide Es

WEEE/RoHs Compliance

This product is in compliance with the EU 2002/95/EC (RoHs) Directive on restriction of hazardous substances in electrical and electronic equipment. This product is required to comply with the European Union’s Waste Electrical & Electronic Equipment (WEEE) Directive 2002/96/EC. It is marked with the following symbol:

Thermo Fisher Scientific has contracted with one or more recycling or disposal companies in each European Union (EU) Member State, and these companies should dispose of or recycle this product. See www.thermoscientific.com/rohsweee for further information on Thermo Fisher Scientific’s compliance with these Directives and the recyclers in your country.

WEEE/RoHs Konformität

Dieses Produkt ist in Befolgung mit der EU-2002/95/EG (RoHs) Richtlinie zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten. Dieses Produkt muss die EU Waste Electrical & Electronic Equipment (WEEE) Richtlinie 2002/96/EC erfüllen. Das Produkt ist durch folgendes Symbol gekennzeichnet:

Thermo Fisher Scientific hat Vereinbarungen mit Verwertungs-/Entsorgungsfirmen in allen EU-Mitgliedsstaaten getroffen, damit dieses Produkt durch diese Firmen wiederverwertet oder entsorgt werden kann. Mehr Information über die Einhaltung dieser Anweisungen durch Thermo Fisher Scientific, über die Verwerter, und weitere Hinweise, die nützlich sind, um die Produkte zu identifizieren, die unter diese RoHS Anweisung fallen, finden sie unter www.thermoscientific.com/rohsweee.

Conformité DEEE/RoHs

Ce produit est conformement à la directive européenne 2002/95/CE (RoHs) relative à la limitation de l’utilisation de certaines substances dangereuses dans les équipements électriques et électroniques. Ce produit doit être conforme à la directive européenne (2002/96/EC) des Déchets d’Equipements Electriques et Electroniques (DEEE). Il est marqué par le symbole suivant:

Thermo Fisher Scientific s’est associé avec une ou plusieurs compagnies de recyclage dans chaque état membre de l’union européenne et ce produit devrait être collecté ou recyclé par celles-ci. Davantage d’informations sur la conformité de Thermo Fisher Scientific à ces directives, les recycleurs dans votre pays et les informations sur les produits Thermo Fisher Scientific qui peuvent aider la détection des substances sujettes à la directive RoHS sont disponibles sur www.thermoscientific.com/rohsweee.

Page 8: Trace 1300 1310 Userguide Es

Conformità RAEE/RoHs

Questo prodotto è conforme alla direttiva europea 2002/95/CE (RoHS) sulla restrizione dell’uso di determinate sostanze pericolose nelle apparecchiature elettriche ed elettroniche. Questo prodotto è marcato con il seguente simbolo in conformità alla direttiva europea 2002/96/CE (RAEE) sui rifiuti di apparecchiature elettriche ed elettroniche:

Thermo Fisher Scientific si è accordata con una o più società di riciclaggio in ciascun Stato Membro della Unione Europea (EU), e queste società dovranno smaltire o riciclare questo prodotto. Per maggiori informazioni vedere il sito www.thermoscientific.com/rohsweee.

Conformidad RAEE/RoHs

Este producto es conforme a la Directiva 2002/95/CE (RoHs) de la UE sobre restricciones a la utilización de sustancias peligrosas en aparatos eléctricos y electrónicos. Este producto debe cumplir con la directiva RAEE sobre residuos de aparatos eléctricos y electrónicos de la Unión Europea (2002/96/CE). Está marcado con el siguiente símbolo:

Para eliminar o reciclar este producto, Thermo Fisher Scientific ha contratado empresas de reciclaje o eliminación de residuos en cada país miembro de la Unión Europea (UE). Visite la página www.thermoscientific.com/rohsweee para obtener más información sobre el cumplimiento de estas directivas por parte de Thermo Fisher Scientific y sobre las empresas de reciclaje en su país.

IMPORTANTE Gli utenti italiani devono riferirsi alla dichiarazione di Conformità alle Direttive RAEE allegata allo strumento.

IMPORTANTE

El símbolo indica que el producto no debe desecharse con el resto de residuos domésticos ordinarios. El desecho adecuado del producto evitará cualquier impacto negativo en el medio ambiente y la salud que pudiera derivarse de su manipulación inadecuada.

Las reglas RAEE y RoHS, aun siendo de nivel europeo, están contempladas en las respectivas legislaciones nacio-nales. En las exportaciones a Europa es fundamental cumplir la legislación nacional de cada país. La ley europea es una mera “plantilla” para la redacción de las leyes nacionales, que pueden diferir de modo considerable.

Los Estados Miembros de la UE tienen su propia normativa referente a la aplicación de estas directivas. Por favor, consulte la normativa vigente del país correspondiente.

Page 9: Trace 1300 1310 Userguide Es

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 ix

Í

Prefacio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xixAcerca del sistema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxPotencia nominal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxiCómo contactar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxiDocumentación relacionada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxiAlertas de seguridad e información importante . . . . . . . . . . . . . . . . . . . . . . . . xxii

Símbolos de seguridad y términos de aviso. . . . . . . . . . . . . . . . . . . . . . . . . .xxiiiMarcas y símbolos del instrumento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxivPrecauciones de seguridad con hidrógeno . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

Uso de hidrógeno con TRACE 1300/TRACE 1310 . . . . . . . . . . . . . . . . . xxviiInstrucciones de conexión del hidrógeno . . . . . . . . . . . . . . . . . . . . . . . . . . xxviiiCompra de hidrógeno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxixAlmacenamiento correcto del hidrógeno . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxCódigos, normas y referencias de seguridad del hidrógeno. . . . . . . . . . . . . . xxxi

Precauciones con sustancias peligrosas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxiiiExtracción de gases tóxicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxiii

Precauciones de seguridad con nitrógeno líquido . . . . . . . . . . . . . . . . . . . . . xxxiiiPrecauciones de seguridad con dióxido de carbono . . . . . . . . . . . . . . . . . . . . xxxiv

Capítulo 1 Familiarización con TRACE 1300/TRACE 1310 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1Conceptos básicos del instrumento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Ubicación de etiquetas en el instrumento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Horno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Conectores de columna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Conductos de conexión a MS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Conductos de conexión a HRMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Rack de columna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Salidas de ventilación de horno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Carcasa de módulos inyectores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Carcasa de módulos detectores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Carcasa de módulos externos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Tomas de entrada de gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Uso de un sensor de hidrógeno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Módulo electrónico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Función de las tarjetas electrónicas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Interfaz de usuario de TRACE 1310 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Índice

Page 10: Trace 1300 1310 Userguide Es

Índice

x Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Interfaz de usuario de TRACE 1300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Capítulo 2 Interfaz de usuario de TRACE 1310. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25Descripción de la interfaz de usuario de TRACE 1310 . . . . . . . . . . . . . . . . . . . 26

Iconos de menú . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Teclas de introducción de datos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Teclas de acceso directo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Teclas de cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Reloj de arena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Configuración del instrumento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Menú Oven. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Menús Back Inlet y Front Inlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Menús Back Detector y Front Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Menús Back Column y Front Column . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Evaluación de la columna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Menú Handshaking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Menú Time/Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Menú Touch Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Menú Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Creación de métodos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40Parámetros de horno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Parámetros de inyector trasero y frontal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Parámetros de detector trasero y frontal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Run Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Auxiliar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Válvulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Monitorización de estado del instrumento. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45Estado de ciclo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46Estado de presión . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47Temperatura de zonas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48En espera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Monitorización del nivel de señal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49Realización de un diagnóstico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Información de software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Información de hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Información de red . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Lecturas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Registro de ciclo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Almacenamiento en USB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Page 11: Trace 1300 1310 Userguide Es

Índice

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 xi

Realización de mantenimiento. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Enfriamiento para mantenimiento. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Creación de entrada en registro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Visualización de registro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Comprobación de fugas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Referencia rápida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Capítulo 3 Interfase de usuario del TRACE 1300. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59Descripción de la interfase de usuario del TRACE 1300 . . . . . . . . . . . . . . . . . . 59Preparación y configuración de parámetros de método . . . . . . . . . . . . . . . . . . . 62

Capítulo 4 Configuración y preparación de parámetros de método desde CDS . . . . . . . . .63Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Ficha Configuration General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Handshaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Ficha Configuration Inlets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67Inlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Ficha Configuration Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Detector and Data Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Ficha Configuration Auxiliary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70Auxiliary Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70Auxiliary Carrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Edición de parámetros de métodos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72Página Oven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Gráfico de programa de temperatura de horno . . . . . . . . . . . . . . . . . . . . . . . 73Ramps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73Acquisition Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Página S/SL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75S/SL Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76Inlet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76Surge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77Septum Purge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Carrier Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Carrier Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Carrier Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Programmed Carrier Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Programmed Carrier Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80Carrier Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Page 12: Trace 1300 1310 Userguide Es

Índice

xii Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Página Backflush de S/SL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82S/SL Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Inlet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Surge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84Septum Purge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85Carrier Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85Carrier Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85Carrier Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86Programmed Carrier Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86Programmed Carrier Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87Carrier Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88Backflush. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Página PTV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89PTV Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90Inlet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Surge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Septum Purge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Carrier Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Carrier Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Carrier Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Programmed Carrier Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94Programmed Carrier Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Carrier Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96Injection Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96Cryogenics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Página PTV Backflush. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100PTV Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101Inlet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102Surge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Septum Purge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Carrier Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Carrier Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Carrier Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Programmed Carrier Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105Programmed Carrier Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Carrier Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107Injection phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107Backflush. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Cryogenics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Página FID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Page 13: Trace 1300 1310 Userguide Es

Índice

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 xiii

Página ECD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Página NPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Página TCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Página Auxiliary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120Página Run Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Initial Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123Tabla de programación de eventos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123Adición de eventos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123Edición de eventos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123Eliminación de eventos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Run-Time Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124Event Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Capítulo 5 Horno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127Uso de los parámetros de horno. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Ajuste de un programa de temperatura de una sola rampa . . . . . . . . . . . . . . 129Ajuste de un programa de temperatura de varias rampas . . . . . . . . . . . . . . . 129

Capítulo 6 Módulo inyector Split/Splitless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131Descripción general del módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131Técnica de inyección SSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Modo Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133Modo splitless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134Modo splitless con un pulso de presión . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Consumibles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Septum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Liner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Juntas tóricas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Page 14: Trace 1300 1310 Userguide Es

Índice

xiv Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Uso de los parámetros de SSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137Parámetros del gas portador. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137Modo de inyección . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139Parámetros de entrada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139Parámetros de purga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Parámetros del pulso de presión. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Ajuste de los parámetros de los gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Ajuste de parámetros para modo split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141Ajuste de parámetros para modo splitless . . . . . . . . . . . . . . . . . . . . . . . . . . . 142Ajuste de parámetros para el modo splitless con pulso de presión. . . . . . . . . 142

Capítulo 7 Módulo inyector Split/Splitless con backflush (SSLBKF) . . . . . . . . . . . . . . . . . .143Descripción general del módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143Modo de backflush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Modo split. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145Modo Splitless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146Modo Surged Splitless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Consumibles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146Septum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146Liner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146Juntas tóricas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Uso de los parámetros de SSLBKF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148Parámetros de gas portador . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148Modo de inyección . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150Parámetros del inyector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150Parámetros de purga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151Parámetros de pulso de presión . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151Ajuste de parámetros de gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151Ajuste de parámetros de backflush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152Ajuste de parámetros para modo split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153Ajuste de parámetros para modo splitless . . . . . . . . . . . . . . . . . . . . . . . . . . . 153Ajuste de parámetros para modo surged splitless . . . . . . . . . . . . . . . . . . . . . 154

Capítulo 8 Módulo inyector de evaporación de temperatura programable (PTV) . . . . . . .155Descripción general del módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155Técnicas de inyección . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Modo PTV Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158Modo PTV Splitless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159Modo PTV Large Volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161Modo Split a temperatura constante . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162Modo Splitless a temperatura constante. . . . . . . . . . . . . . . . . . . . . . . . . . . . 162Modo Surged Splitless a temperatura constante . . . . . . . . . . . . . . . . . . . . . . 163Modo PTV on-column . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Page 15: Trace 1300 1310 Userguide Es

Índice

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 xv

Consumibles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163Septum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163Liners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Uso de los parámetros de PTV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166Parámetros de gas portador . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166Modo de inyección . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168Parámetros del inyector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169Parámetros de purga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169Parámetros de pulso de presión . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170Parámetros de fases de inyección . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170Ajuste de parámetros de gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172Ajuste de parámetros para modo PTV Split . . . . . . . . . . . . . . . . . . . . . . . . . 173Ajuste de parámetros para modo PTV Splitless . . . . . . . . . . . . . . . . . . . . . . 173Ajuste de parámetros para modo PTV Large Volume . . . . . . . . . . . . . . . . . 174Programación de parámetros de inyección . . . . . . . . . . . . . . . . . . . . . . . . . . 174Ajuste de parámetros para modo CT Split . . . . . . . . . . . . . . . . . . . . . . . . . . 176Ajuste de parámetros para modo CT Splitless . . . . . . . . . . . . . . . . . . . . . . . 177Ajuste de parámetros para modo CT Surged Splitless . . . . . . . . . . . . . . . . . 177

Capítulo 9 Módulo inyector de evaporación de temperatura programable con backflush (PTVBKF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179Descripción general del módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179Modo de backflush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182Consumibles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Septum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183Liners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Uso de los parámetros de PTVBFK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185Parámetros de gas portador . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185Modo de inyección . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187Parámetros del inyector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187Parámetros de purga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188Parámetros de pulso de presión . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188Parámetros de fases de inyección . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189Ajuste de parámetros de gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191Ajuste de parámetros de backflush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192Programación de parámetros de inyección . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Capítulo 10 Módulo detector de ionización de llama (FID) . . . . . . . . . . . . . . . . . . . . . . . . . . .195Descripción general del módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195Principio de funcionamiento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197Suministro de gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197Uso de los parámetros de FID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Ajuste de los parámetros de FID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199Comprobación de FID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Page 16: Trace 1300 1310 Userguide Es

Índice

xvi Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Capítulo 11 Módulo detector de nitrógeno-fósforo (NPD) . . . . . . . . . . . . . . . . . . . . . . . . . . . .205Descripción general del módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205Principio de funcionamiento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208Ahorrador de la Fuente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208Suministro de gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208Uso de los parámetros de NPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Ajuste de los parámetros de NPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210Comprobación de NPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Capítulo 12 Módulo detector de conductividad térmica (TCD) . . . . . . . . . . . . . . . . . . . . . . . .215Descripción general del módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215Principio de funcionamiento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217Selección de gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218Uso de los parámetros de TCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Selección de parámetros operativos de TCD . . . . . . . . . . . . . . . . . . . . . . . . 219Gases de conductividad térmica elevada. . . . . . . . . . . . . . . . . . . . . . . . . . . . 220Gases de conductividad térmica baja . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220Ajuste de los parámetros de TCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Comprobación de TCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Capítulo 13 Módulo detector de captura de electrones (ECD). . . . . . . . . . . . . . . . . . . . . . . . .225Descripción general del módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225Principio de funcionamiento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227Wipe Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228Suministro de gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228Uso de los parámetros de ECD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Ajuste de los parámetros de ECD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229Comprobación de ECD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Capítulo 14 Inicio del análisis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235Confirmación del funcionamiento del sistema GC . . . . . . . . . . . . . . . . . . . . . 236

Comprobación de la alimentación del TRACE 1310. . . . . . . . . . . . . . . . . . 236Comprobación de la alimentación del TRACE 1300. . . . . . . . . . . . . . . . . . 237Verificación del caudal del gas portador. . . . . . . . . . . . . . . . . . . . . . . . . . . . 237Verificación de la presión del tanque del gas portador . . . . . . . . . . . . . . . . . 238Verificación de la temperatura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Ajuste de los parámetros del método . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238Realización de una inyección manual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239Realización de una inyección automática . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Capítulo 15 Solución de problemas analíticos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241Investigación de problemas de línea base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243Investigación de problemas de picos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245Investigación de problemas de resultados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Page 17: Trace 1300 1310 Userguide Es

Índice

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 xvii

Solución de problemas analíticos de SSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249Discriminación de compuestos pesados en modo splitless. . . . . . . . . . . . . . . 250Discriminación de compuestos volátiles en modo splitless. . . . . . . . . . . . . . 250Discriminación en modo split.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Solución de problemas analíticos de PTV y PTVBKF . . . . . . . . . . . . . . . . . . . 250Discriminación de compuestos pesados en modo splitless. . . . . . . . . . . . . . . 251Discriminación de compuestos volátiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 251Discriminación de compuestos volátiles en modo splitless. . . . . . . . . . . . . . 252Discriminación de compuestos volátiles en modo de grandes volúmenes. . . 252Discriminación en modo split.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252Ensanchamiento excesivo del pico de solvente. . . . . . . . . . . . . . . . . . . . . . . 252Pérdida de compuestos volátiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252Falta de sensibilidad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253Degradación de muestra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253Mala reproducibilidad de resultados. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253Solución de problemas analíticos con backflush. . . . . . . . . . . . . . . . . . . . . . 253

Solución de problemas analíticos de FID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254Problemas de ignición de llama.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Solución de problemas analíticos de NPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255Sin respuesta de NPD.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256Respuesta de NPD inferior a la prevista. . . . . . . . . . . . . . . . . . . . . . . . . . . . 256Nivel de fondo alto. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256Respuesta de tipo FID para disolvente y otros compuestos con base

de carbono. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256Efecto de apagado por disolvente. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257Línea base inestable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257Bajo nivel de rechazo de carbono. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Solución de problemas analíticos de TCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257TCD no funciona.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258Fluctuación de línea base. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258Deriva de línea base. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258Sensibilidad baja. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Solución de problemas analíticos de ECD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259Frecuencia alta de línea base. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259Caídas negativas tras los picos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259Deriva de línea base con cambio de tensión de pulso. . . . . . . . . . . . . . . . . . 259

Abreviaturas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261

Page 18: Trace 1300 1310 Userguide Es
Page 19: Trace 1300 1310 Userguide Es

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 xix

P

Prefacio

Esta guía contiene información detallada sobre la utilización de los sistemas de cromatografía de gases (GC) TRACE 1300 y TRACE 1310.

La guía se organiza del modo siguiente:

El Capítulo 1, “Familiarización con TRACE 1300/TRACE 1310”, ofrece información que le permitirá familiarizarse con el sistema GC e incluye una descripción general de sus funciones y opciones.

El Capítulo 2, “Interfaz de usuario de TRACE 1310”, ofrece instrucciones sobre el empleo de la interfaz de usuario de TRACE 1310, incluida información básica sobre las funciones y los menús principales.

El Capítulo 3, “Interfase de usuario del TRACE 1300”, ofrece instrucciones sobre el empleo de la interfaz de usuario de TRACE 1300.

El Capítulo 4, “Configuración y preparación de parámetros de método desde CDS”, contiene instrucciones para configurar el sistema TRACE 1300/TRACE 1310 y modificar los parámetros (según la instalación de inyector frontal/trasero, módulos detectores frontal/trasero y dispositivos opcionales) a través de los sistemas de datos cromatográficos (CDS) Xcalibur, Chrom-Card, ChromQuest o Chromeleon.

El Capítulo 5, “Horno”, contiene información sobre el control del horno y su programación.

En el Capítulo 6, “Módulo inyector Split/Splitless”, se describe el módulo inyector Split/Splitless (SSL) y se ofrece información sobre el control y la programación de los parámetros de ajuste del inyector para los distintos modos de funcionamiento Split/Splitless

En el Capítulo 7, “Módulo inyector Split/Splitless con backflush (SSLBKF)”, se describe el módulo inyector Split/Splitless para aplicaciones de Backflush (SSLBKF) y se ofrece información sobre la programación del inyector en modo de Backflush.

En el Capítulo 8, “Módulo inyector de evaporación de temperatura programable (PTV)”, se describe el módulo inyector de evaporación de temperatura programable (PTV) y se ofrece información sobre la programación del inyector en los distintos modos operativos.

En el Capítulo 9, “Módulo inyector de evaporación de temperatura programable con backflush (PTVBKF)”, se describe el módulo inyector de evaporación de temperatura programable para aplicaciones de Backflush (PTVBKF) y se ofrece información sobre la programación del inyector en modo de Backflush.

Page 20: Trace 1300 1310 Userguide Es

PrefacioAcerca del sistema

xx Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

En el Capítulo 10, “Módulo detector de ionización de llama (FID)”, se describe el detector de ionización de llama (FID) y se ofrecen instrucciones para programar los parámetros del detector y para realizar la comprobación con distintos inyectores.

En el Capítulo 11, “Módulo detector de nitrógeno-fósforo (NPD)”, se describe el detector de nitrógeno-fósforo (NPD) y se ofrecen instrucciones para programar los parámetros del detector y para realizar la comprobación con distintos inyectores.

En el Capítulo 12, “Módulo detector de conductividad térmica (TCD)”, se describe el detector de conductividad térmica (TCD) y se ofrecen instrucciones para programar los parámetros del detector y para realizar la comprobación con distintos inyectores.

En el Capítulo 13, “Módulo detector de captura de electrones (ECD)”, se describe el detector de captura de electrones (ECD) y se ofrecen instrucciones para programar los parámetros del detector y para realizar la comprobación con distintos inyectores.

El Capítulo 14, “Inicio del análisis”, ofrece instrucciones para ejecutar un análisis.

El Capítulo 15, “Solución de problemas analíticos”, contiene información que le ayudará a diagnosticar problemas con sus datos. Describe las causas más comunes de los problemas con líneas base, picos o resultados, además de ofrecer información analítica de solución de problemas con inyectores y detectores.

“Abreviaturas”, contiene la definición de diversos términos utilizados en esta guía. También incluye abreviaturas, siglas, prefijos métricos y símbolos.

Acerca del sistemaLos sistemas Thermo Scientific ofrecen instrumentación de cromatografía de gases (GC) de alta calidad. El sistema GC TRACE 1300/TRACE 1310 puede funcionar como unidad autónoma o bien conectado a otros instrumentos.

La cromatografía de gases es una potente técnica de separación analítica. El usuario inyecta mezclas complejas de compuestos individuales en la columna instalada en el sistema GC, bien a mano o bien mediante un muestreador automático, que separa los compuestos para presentarlos al detector. A continuación el detector genera señales que, procesadas correctamente con un sistema de datos cromatográficos (CDS) Thermo Scientific, ofrecen una cuantificación precisa y exacta de los compuestos individuales presentes en la muestra.

IMPORTANTE Los sistemas Thermo Scientific se han diseñado para optimizar la capacidad de separación y detección de los sistemas GC gracias a su elevado rendimiento analítico, tanto en aplicaciones de investigación como en trabajos de detección periódicos. Hallará más información sobre el empleo de este sistema en las fuentes de documentación relacionadas y a través de la información de contacto pertinente.

Page 21: Trace 1300 1310 Userguide Es

PrefacioPotencia nominal

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 xxi

Potencia nominalCromatógrafo de gases TRACE 1300/TRACE 1310

• 120 VCA, 50/60 Hz, 2.000 VA• 230 VCA, 50/60 Hz, 2.000 VA

Hallará especificaciones detalladas del instrumento en la Especificaciones del producto o en el Folleto del producto.

Cómo contactarThermo Fisher Scientific ofrece asistencia técnica completa en todo el mundo y presta especial atención la calidad del servicio y las relaciones con el cliente.

Utilice la dirección http://www.thermoscientific.com para obtener información sobre productos.

Utilice la dirección http://www.gc-gcms-customersupport.com/WebPage/Share/Default.aspx para ponerse en contacto con su oficina Thermo Fisher Scientific o con su servicio de asistencia al cliente GC-GC/MS asociado.

Documentación relacionadaAdemás de esta guía, Thermo Fisher Scientific proporciona los siguientes documentos relacionados para TRACE 1300 y TRACE 1310.

TRACE 1300 and TRACE 1310 Document Set, nº ref. 31715000

• TRACE 1300 and TRACE 1310 Preinstallation Requirements Guide, nº ref. 31715001

• TRACE 1300 and TRACE 1310 Hardware Manual, nº ref. 31715002

ADVERTENCIA Los sistemas Thermo Scientific funcionan con seguridad y fiabilidad en condiciones ambientales cuidadosamente controladas. La utilización del equipo de modo distinto al que especifica el fabricante puede comprometer la protección que ofrece. Si el mantenimiento del equipo no se ciñe a las especificaciones indicadas en esta guía, pueden producirse fallas de muchos tipos que incluyen la posibilidad de lesiones graves o mortales. La reparación de averías del instrumento a consecuencia de una utilización distinta de las especificaciones del fabricante se excluye de forma explícita de la cobertura que ofrecen la garantía estándar y el contrato de servicio.

ADVERTENCIA Para utilizar este sistema es preciso emplear sustancias químicas con diferentes especificaciones de riesgo. Antes de utilizar cualquier producto químico, lea las indicaciones de riesgo y la información de la ficha de datos de seguridad suministrada por el fabricante con referencia al número CAS (Chemical Abstract Service) correspondiente.

Page 22: Trace 1300 1310 Userguide Es

PrefacioAlertas de seguridad e información importante

xxii Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

• Guía del usuario de TRACE 1300 y TRACE 1310, nº ref. 31715030

• TRACE 1300 and TRACE 1310 Spare Parts Guide, nº ref. 31715004

Si tiene alguna sugerencia para la mejora de la documentación, siga este enlace y responda a nuestra Encuesta de usuario.

Alertas de seguridad e información importanteRespete todos los avisos preventivos incluidos en este manual. En los recuadros aparecen avisos de seguridad y otros avisos especiales, incluidos los siguientes:

ADVERTENCIA Llama la atención sobre riesgos para las personas o el entorno. Éste es el símbolo de seguridad de advertencia general y el término de alerta de seguridad para impedir acciones que podrían causar lesiones personales. Las alertas de seguridad ADVERTENCIA van precedidas de este símbolo de seguridad o del símbolo de seguridad que proceda (consulte “Símbolos de seguridad y términos de aviso” en la página xxiii) y seguidas del mensaje de precaución de seguridad correspondiente. Cuando vea una alerta de seguridad en su instrumento o en la documentación, siga estrictamente las instrucciones de seguridad antes de continuar.

PRECAUCIÓN Llama la atención sobre acciones que pueden causar lesiones personales o daños al instrumento. Con ella destacamos información necesaria para evitar lesiones personales o daños al software, pérdida de datos o resultados de pruebas no válidos, o bien información crucial para el rendimiento óptimo del sistema. Las alertas de seguridad PRECAUCIÓN van precedidas del símbolo de seguridad que proceda (consulte “Símbolos de seguridad y términos de aviso” en la página xxiii). Les sigue el mensaje de precaución pertinente. Cuando vea una alerta de seguridad en su instrumento o en la documentación, siga estrictamente las instrucciones de seguridad antes de continuar.

IMPORTANTE Destaca información necesaria para evitar daños al software, pérdida de datos o resultados de pruebas no válidos, o bien información crucial para el rendimiento óptimo del sistema.

Nota Subraya información importante sobre una tarea.

Sugerencia Aporta información útil que puede facilitar una tarea.

Page 23: Trace 1300 1310 Userguide Es

PrefacioAlertas de seguridad e información importante

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 xxiii

Símbolos de seguridad y términos de aviso

Todos los símbolos de seguridad están seguidos de los términos ADVERTENCIA o PRECAUCIÓN, que indican el grado de riesgo de lesiones personales o daños al instrumento. Las precauciones y las advertencias están seguidas de una expresión descriptiva, como RIESGO DE QUEMADURAS. La ADVERTENCIA tiene como fin impedir acciones incorrectas que podrían ocasionar lesiones personales. Por su parte, el objetivo de la PRECAUCIÓN es evitar acciones incorrectas que podrían causar lesiones personales o daños al instrumento. Hallará los siguientes símbolos de seguridad en el instrumento y en la presente guía:

RIESGO BIOLÓGICO. Este símbolo indica que podría producirse o se producirá un riesgo biológico.

BOTAS OBLIGATORIAS. Este símbolo indica que para la tarea en cuestión es necesario utilizar botas ya que, en caso contrario, podrían producirse lesiones personales.

RIESGO DE QUEMADURAS. Este símbolo indica que una superficie caliente podría provocar quemaduras.

VESTIMENTA OBLIGATORIA. Este símbolo indica que para la tarea en cuestión es preciso utilizar ropa de trabajo ya que, en caso contrario, podrían producirse lesiones personales.

RIESGO DE DESCARGA ELÉCTRICA. Este símbolo indica que podría producirse una descarga eléctrica.

RIESGO DE EXPLOSIÓN. Este símbolo advierte del riesgo de explosión. El símbolo indica que este riesgo podría ocasionar lesiones personales.

RIESGO DE INCENDIO. Este símbolo indica riesgo de incendio o inflamación, o bien que podrían producirse o se producirán daños por incendio o inflamabilidad.

PELIGRO POR GAS INFLAMABLE. Este símbolo advierte de la presencia de gases comprimidos, licuados o disueltos bajo presión que pueden arder en contacto con una fuente de ignición. El símbolo indica que este riesgo podría ocasionar lesiones personales.

GUANTES OBLIGATORIOS. Este símbolo indica que para la tarea en cuestión es necesario utilizar guantes ya que, en caso contrario, podrían producirse lesiones personales.

RIESGO QUÍMICO Y PARA LAS MANOS. Este símbolo indica que podrían producirse o se producirán daños químicos o lesiones personales.

NOCIVO. Este símbolo indica la presencia cierta o posible de materiales nocivos.

DAÑOS AL INSTRUMENTO. Este símbolo indica que podrían producirse daños al instrumento o el módulo. Es posible que la garantía estándar no cubra estos daños.

Page 24: Trace 1300 1310 Userguide Es

PrefacioMarcas y símbolos del instrumento

xxiv Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Marcas y símbolos del instrumentoEn la tabla siguiente se explican los símbolos utilizados en los instrumentos de Thermo Fisher Scientific. En los equipos TRACE 1300/TRACE 1310 solo se emplean unos pocos, que se destacan con un asterisco.

RIESGO AL ELEVAR (CARGAR). Este símbolo indica que hacen falta dos o más personas para levantar el objeto con el fin de evitar las lesiones personales que podrían producirse.

RIESGO MATERIAL Y OCULAR. Este símbolo indica que podrían producirse o se producirán daños oculares. Es preciso llevar protección ocular.

RIESGO RADIACTIVO. Este símbolo indica la posible presencia de material radiactivo.

LEA EL MANUAL. Este símbolo advierte de la necesidad de leer atentamente las instrucciones de funcionamiento del instrumento antes de utilizarlo para garantizar su funcionalidad y la seguridad del usuario. No leer atentamente las instrucciones podría entrañar riesgo de lesiones personales.

RIESGO DE SUSTANCIAS TÓXICAS. Este símbolo indica que la exposición a una sustancia tóxica podría producir o producirá lesiones personales o mortales.

Éste es el símbolo de advertencia general que la norma ISO 3864-2 identifica como señal de advertencia general para prevenir lesiones personales. Es un triángulo con un signo de exclamación en su interior y precede al término de alerta de seguridad ADVERTENCIA. En el vocabulario de señalización de ANSI Z535, este símbolo indica un posible riesgo de lesiones personales si el instrumento se utiliza de forma incorrecta o si se realizan acciones inseguras. Utilizamos este símbolo y otros símbolos de seguridad apropiados para alertar de un riesgo inminente o potencial que podría causar lesiones personales.

Tabla 1. Marcas y símbolos del instrumento (Hoja 1 de 2)

Símbolo Descripción

Corriente continua

* Corriente alterna

Corriente continua y alterna

Corriente alterna trifásica

Terminal de tierra

Terminal conductor protector

Terminal del bastidor o chasis

3

Page 25: Trace 1300 1310 Userguide Es

PrefacioPrecauciones de seguridad con hidrógeno

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 xxv

Precauciones de seguridad con hidrógenoEl hidrógeno es un gas incoloro e inodoro altamente inflamable con la fórmula molecular H2 y un peso atómico de 1,00794, lo que lo convierte en el elemento más ligero. El gas hidrógeno implica riesgos, ya que es combustible en una amplia variedad de concentraciones: a temperatura ambiente y presión atmosférica, oscila entre el 4 y el 74,2% por volumen.

El hidrógeno tiene un punto de encendido de -253 °C (-423 °F) y una temperatura de ignición espontánea de 560 °C (1.040 °F). Su energía de ignición es muy baja y presenta la velocidad de combustión más elevada de todos los gases. Si se le permite expandirse rápidamente a alta presión, puede inflamarse espontáneamente. El hidrógeno arde con una llama que puede resultar invisible si la luz es intensa.

Equipotencial

* Encendido (alimentación)

* Apagado (alimentación)

Equipo protegido enteramente por DOBLE AISLAMIENTO o AISLAMIENTO REFORZADO (equivalente a la clase II de IEC 536)

* Símbolo del manual de instrucciones adherido al producto. Indica que el usuario debe consultar el manual para ver la información de ADVERTENCIA o PRECAUCIÓN de que se trate con el fin de evitar lesiones personales o daños al producto.

Precaución, riesgo de descargas eléctricas

* Precaución, superficie caliente

* Precaución, riesgo biológico

Posición activada de pulsador basculante

Posición desactivada de pulsador basculante

Toma para clavija

* Símbolo conforme con la Directiva 2002/96/CE sobre residuos de aparatos eléctricos y electrónicos (RAEE) puestos en el mercado europeo después del 13 de agosto de 2005.

Tabla 1. Marcas y símbolos del instrumento (Hoja 2 de 2)

Símbolo Descripción

+ -

Page 26: Trace 1300 1310 Userguide Es

PrefacioPrecauciones de seguridad con hidrógeno

xxvi Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Antes de empezar a utilizar hidrógeno, debe efectuar una evaluación de riesgos basada en la cantidad de hidrógeno que vaya a utilizarse y en las condiciones del laboratorio. Hágase estas preguntas:

“¿Qué riesgos del hidrógeno pueden darse con más probabilidad en este proyecto?”

“¿Qué riesgos del hidrógeno pueden tener las peores consecuencias en este proyecto?”

• Intente reducir o eliminar los mayores riesgos utilizando la ventilación adecuada para eliminar el gas hidrógeno antes de que pueda acumularse en concentraciones inflamables. Para reducir aún más el riesgo, también debe considerar purgar el hidrógeno y asegurarse de que las personas que trabajan con este gas cuentan con formación básica de seguridad sobre el hidrógeno.

• Al igual que con la seguridad del laboratorio en general, asegúrese de utilizar gafas de seguridad, batas de laboratorio, guantes, etc. Normalmente no hay requisitos específicos para el hidrógeno gaseoso, excepto la protección ocular cuando se trabaja con gases comprimidos. Si trabaja con hidrógeno líquido (criogénico), además de la protección ocular debe llevar guantes aislados y zapatos protectores.

• Coloque señales de “No fumar” y “No encender fuego” para identificar las fuentes y los cilindros de hidrógeno. Mantenga, inspeccione y someta todas las fuentes de hidrógeno a pruebas de fugas con regularidad.

• Es preciso señalar claramente todas las válvulas de cierre del hidrógeno y etiquetar los conductos permanentes de hidrógeno en el punto de suministro o descarga y a intervalos regulares en toda su longitud. Cuando el conducto de gas hidrógeno atraviese una pared, debe etiquetarse a ambos lados de ésta.

• También deben trazarse planes de emergencia para accidentes.

• Tanto el equipo de respuesta ante emergencias del centro como el cuerpo de bomberos local deben conocer la ubicación de todos los depósitos de almacenamiento de hidrógeno.

ADVERTENCIA: RIESGO DE EXPLOSIÓN El uso del hidrógeno como gas portador es peligroso. El hidrógeno es potencialmente explosivo y debe utilizarse con extremo cuidado. Todo uso de gas hidrógeno deberá ser evaluado por el personal competente de seguridad e higiene y todas las instalaciones de sistemas de hidrógeno deberán ceñirse a los códigos y las normas aplicables. Thermo Fisher Scientific no asumirá ninguna responsabilidad por el uso incorrecto de hidrógeno como gas portador.

Page 27: Trace 1300 1310 Userguide Es

PrefacioPrecauciones de seguridad con hidrógeno

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 xxvii

Uso de hidrógeno con TRACE 1300/TRACE 1310

El empleo de hidrógeno como gas portador o combustible en determinados detectores de llama exige por parte del usuario extremar la atención y el cumplimiento de precauciones especiales a causa de los riesgos que entraña.

El hidrógeno es un gas peligroso, especialmente en espacios cerrados si alcanza una concentración equivalente a su nivel explosivo más bajo (4% en volumen). Puede generarse riesgo de explosión en el horno si se utiliza hidrógeno como gas portador y los elementos del horno no están perfectamente conectados entre sí, o si los materiales de conexión están gastados o rotos o presentan cualquier otro defecto.

Observe las siguientes precauciones de seguridad cuando utilice hidrógeno:

• Cerciórese de que los cilindros de hidrógeno cumplen los requisitos de seguridad para un uso y almacenamiento correctos. Los cilindros de hidrógeno y los sistemas de suministro deben cumplir la normativa local.

• Asegúrese de que el suministro de gas está completamente apagado cuando conecte los conductos de hidrógeno.

• Antes de utilizar el instrumento, efectúe una prueba de fugas para asegurarse de que los tubos de hidrógeno son estancos. Repita la prueba hasta eliminar todas las fugas.

• Asegúrese de que el sistema TRACE 1300/TRACE 1310 tiene instalado un sensor de hidrógeno Thermo Fisher Scientific. El sensor de hidrógeno supervisa de forma continua el nivel de hidrógeno del horno.

ADVERTENCIA: RIESGO DE EXPLOSIÓN El hidrógeno es un gas peligroso que, mezclado con aire, puede crear una mezcla explosiva. El empleo de hidrógeno como gas portador exige por parte del usuario extremar la atención. Es preciso tomar precauciones especiales dado el riesgo de explosión. El cromatógrafo de gases debe estar equipado con un sensor de hidrógeno si se utiliza este gas como portador.

No utilice nunca hidrógeno como gas portador en el sistema TRACE 1300/TRACE 1310 a menos que el horno cuente con un sensor de hidrógeno. Los técnicos de servicio de Thermo Fisher Scientific no están autorizados a instalar ni reparar instrumentos que utilicen hidrógeno como gas portador a menos que dichos equipos cuenten con el sensor adecuado.

Si el horno no cuenta con sensor de hidrógeno instalado, póngase en contacto con el representante comercial de Thermo Fisher Scientific. Para cumplir los requisitos de seguridad del instrumento, un técnico de servicio de Thermo Fisher Scientific u otro técnico autorizado debe instalar el sensor en el equipo TRACE 1300/TRACE 1310.

Page 28: Trace 1300 1310 Userguide Es

PrefacioPrecauciones de seguridad con hidrógeno

xxviii Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Instrucciones de conexión del hidrógeno

Siga estas instrucciones para conectar el hidrógeno al sistema con seguridad:

• Conductos: El hidrógeno debe suministrarse al equipo mediante conductos adecuados de tal modo que no suponga básicamente ningún riesgo para los usuarios finales. Los sistemas de conducción para el suministro de hidrógeno debe diseñarlos e instalarlos una persona cualificada con formación específica y experiencia en estos sistemas.

Suele recomendarse el aluminio por ser un material seguro y asequible. No deben utilizarse conductos de hierro negro ni cobre, ya que pueden volverse frágiles con el tiempo. No deben emplearse tubos elastoméricos/plásticos de varios plásticos y polímeros, a menos que estén aprobados para utilizarse con hidrógeno. Si se utilizan tubos elastoméricos/plásticos para el suministro de gas hidrógeno, deben haberse sometido a pruebas de permeabilidad de hidrógeno para minimizar las fugas.

El sistema de conducción de hidrógeno debe ser lo suficientemente flexible para soportar la expansión y contracción térmicas rutinarias. El sistema también debe tener en cuenta las condiciones de temperatura y presión extremas previstas durante el suministro. Los tubos y los soportes también deben resistir las cargas estáticas que supongan elementos tales como el hielo y la nieve, así como las cargas dinámicas de vientos fuertes y terremotos.

Si las tuberías se soterran, es preciso aplicar medidas preventivas. Deben aplicarse controles adecuados para protegerlas de daños y corrosión, así como para impedir que el hidrógeno entre en un edificio si se produce una fuga.

• Conexiones: Todas las conexiones deben ser del tipo adecuado, aprobado o diseñado para utilizarse con gas hidrógeno. Utilice el menor número de conexiones posible para minimizar el riesgo de fugas. Tras la instalación, asegúrese de llevar a cabo una prueba de fugas antes de utilizar el sistema y también periódicamente.

No deben utilizarse cinta de PTFE (teflón) ni otros materiales, como masilla de fontanería, para afianzar las juntas, ya que en realidad las perjudican. Lo ideal es emplear conductos de acero inoxidable con conexiones estancas al gas.

Para las juntas de los sistemas de conducción de hidrógeno suele preferirse la soldadura, ya que proporciona una mejor unión y reduce el potencial de fugas en comparación con las conexiones mecánicas. En los sistemas de hidrógeno no se permiten las soldaduras blandas (debido a su bajo punto de fusión y a su potencial de rotura frágil a temperaturas criogénicas). Las soldaduras duras están permitidas, pero deben protegerse ante la posibilidad de incendio externo.

Las conexiones de los tubos deben fijarse a conexiones de tipo dentado o de ajuste a presión. No deben emplearse abrazaderas de fleje ni de cremallera.

Page 29: Trace 1300 1310 Userguide Es

PrefacioPrecauciones de seguridad con hidrógeno

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 xxix

• Válvulas: Todas las válvulas deben ser aptas para suministrar hidrógeno y para las condiciones de uso de que se trate. Con hidrógeno no deben emplearse válvulas, reguladores incluidos, que no estén diseñados e identificados para tal uso. Suele preferirse el uso de válvulas esféricas por la mayor estanqueidad del asiento. También suelen elegirse accionamientos neumáticos con válvulas controladas a distancia para que las posibles fuentes de ignición (electricidad) queden lejos de la válvula.

Deben colocarse válvulas de cierre manual de alcance inmediato junto a cada punto de uso. Si hay un cilindro o un sistema de generación de hidrógeno al alcance inmediato, normalmente no es necesaria una válvula de cierre independiente en el punto de uso.

Los reguladores de presión que tengan su origen lejos del punto de uso deben tener una válvula de cierre manual junto a este.

Fuera de la zona de uso debe instalarse un dispositivo de cierre de emergencia de gas en un lugar accesible, además de una válvula manual en los puntos de uso de cada espacio educativo o formativo del laboratorio en el que haya conductos de suministro de gas.

Si es necesario, el sistema de conducción debe contar con un dispositivo de limitación ininterrumpida de la presión. Este sistema debe estar diseñado para proporcionar un índice de descarga que evite un mayor aumento de presión y descargar en un lugar seguro del exterior o en la salida de un sistema de ventilación.

Compra de hidrógeno

Siga estas instrucciones cuando adquiera hidrógeno:

• Generador de hidrógeno: Al minimizar la cantidad de hidrógeno presente y reducir el nivel de riesgo, el generador de hidrógeno (también denominado electrolizador) es el modo más seguro de adquirir hidrógeno en la cantidad que se utiliza en los sistemas de cromatografía de gases/espectroscopia de masas.

Sin embargo, para reducir al mínimo el nivel de riesgo, el generador de hidrógeno sólo debe emplearse en entornos no explosivos, ya que la acumulación de hidrógeno puede ser inflamable. Esto significa que el sistema de ventilación de la sala o la campana del laboratorio donde se utiliza el generador deben mantener una tasa de intercambio de aire al menos dos órdenes de magnitud superior a la tasa máxima de producción de hidrógeno del generador. Siga las instrucciones del fabricante sobre el uso y el mantenimiento correctos del regulador.

Con el fin de evitar la posibilidad de fugas de hidrógeno, configure el generador de modo que se apague en los siguientes casos:

− Si se produce una pérdida de flujo hacia el sistema de ventilación.

− Si se dispara la alarma del detector de hidrógeno al 25% del límite inferior de inflamabilidad del hidrógeno en el aire.

Descargue también al exterior el oxígeno expulsado por el electrolizador.

Page 30: Trace 1300 1310 Userguide Es

PrefacioPrecauciones de seguridad con hidrógeno

xxx Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

• Cilindro de hidrógeno: El hidrógeno puede suministrarse en botellas o cilindros de gas para laboratorio estándar. Estos cilindros contienen una cantidad de hidrógeno limitada y son un modo seguro de transportar y almacenar hidrógeno. Sujete siempre los cilindros de gas hidrógeno comprimido, al igual que todos los cilindros de gas comprimido, en posición vertical con una cadena o cable, no combustible siempre que sea posible. Si el cilindro cae, es posible que la válvula se golpee y el cilindro presurizado despegue como un cohete, lo que podría provocar una fuga de hidrógeno, posiblemente una explosión y lesiones graves o mortales. No fuerce nunca la válvula de un cilindro de hidrógeno para eliminar el polvo o la suciedad de las conexiones antes de instalar un regulador, ya que hay riesgo de ignición espontánea.

Almacenamiento correcto del hidrógeno

El almacenamiento y la manipulación de gas hidrógeno comprimido e hidrógeno líquido criogénico presentan riesgos potenciales para la salud y la seguridad. Es fundamental utilizar técnicas correctas de almacenamiento y manipulación para mantener un entorno de trabajo seguro.

Siga estas instrucciones cuando almacene hidrógeno:

• Guarde los cilindros de gas hidrógeno de reserva en el exterior y lejos de puertas, ventanas, entradas de ventilación del edificio, estructuras y rutas de vehículos. Esta precaución es válida tanto si el hidrógeno se usa como si no. El almacenamiento de cilindros de hidrógeno de reserva en interiores conlleva requisitos especiales que escapan al ámbito de este documento. La documentación de cada recipiente debe incluir la descripción del mismo, una lista de dibujos disponibles u otros documentos, los resultados de la última inspección y el nombre de la persona responsable.

• Fije los cilindros de reserva con cadenas para evitar que vuelquen. Las cadenas también deben estar protegidas de la corrosión y el calor excesivo.

• Separe los cilindros de hidrógeno de reserva de los gases oxidantes (como el oxígeno) con una barrera de 1,5 metros (5 pies) de alto y una resistencia ante incendios de media hora, o bien coloque los cilindros a una distancia mínima de 6 metros (20 pies).

• Cuando traslade cilindros de hidrógeno:

− Retire el regulador y vuelva a colocar el tapón de la válvula del cilindro antes de moverlo.

− Traslade los cilindros en carros para cilindros o con otros dispositivos de transporte adecuados.

− Nunca haga rodar ni deje caer un cilindro, ni tampoco no lo levante por el tapón protector.

Page 31: Trace 1300 1310 Userguide Es

PrefacioPrecauciones de seguridad con hidrógeno

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 xxxi

• Los sistemas de hidrógeno a granel incluyen hidrógeno gaseoso o líquido en instalaciones fijas; en algunos sistemas de gas, puede utilizarse un remolque (remolque de tubos) semipermanente. Los recipientes de almacenamiento para gas hidrógeno comprimido o hidrógeno líquido deben estar diseñados, fabricados, probados y mantenidos según los códigos y normas aplicables. Los sistemas de hidrógeno a granel representan un nivel de complejidad que también escapa al alcance de este documento; sin embargo, podemos proporcionar unas directrices generales.

• El sistema de almacenamiento de hidrógeno a granel no debe ubicarse bajo cables de alta tensión, junto a otros gases o líquidos inflamables ni cerca de zonas públicas. Debe ser fácilmente accesible para el personal autorizado y para el equipo de suministro, y al tiempo estar protegido de daños físicos o manipulación indebida.

• Los sistemas de hidrógeno líquido también comportan un riesgo criogénico, por lo que se recomienda adoptar medidas de seguridad adicionales para el uso de líquidos criogénicos.

Códigos, normas y referencias de seguridad del hidrógeno

La siguiente lista de códigos, normas y referencias de seguridad no es de ningún modo exhaustiva. De hecho, es posible que en su localidad haya otros códigos federales, estatales o locales aplicables. Consulte a los organismos competentes de su zona antes de instalar o utilizar un sistema de hidrógeno.

• Air Products Safetygram nº 4, Gaseous Hydrogen

• La norma ANSI/AIAA que dicta las instrucciones de seguridad para el hidrógeno es AIAA G-095-2004, Guide to Safety of Hydrogen and Hydrogen Systems.

• ASME B31.1, Power Piping Code

• ASME B31.3, Process Piping Code

• ASME B31.8, Gas Transmission and Distribution Systems

• BCGA Code Of Practice CP4 Industrial Gas Cylinder Manifolds and Gas Distribution Pipework

• BCGA Code Of Practice CP33 The Bulk Storage of Gaseous Hydrogen at Users’ Premises

• CGA G-5, Hydrogen

• CGA G-5.4, Standard for Hydrogen Piping Systems at Consumer Locations

• CGA G-5.5, Hydrogen Vent Systems

• CGA G-5.6, Hydrogen Pipeline Systems

• CGA G-5.8, High Pressure Hydrogen Piping Systems at Consumer Locations.

• FM Global Property Loss Prevention Data Sheets 7-50: Compressed Gases in Cylinders

• FM Global Property Loss Prevention Data Sheets 7-91: Hydrogen

Page 32: Trace 1300 1310 Userguide Es

PrefacioPrecauciones de seguridad con hidrógeno

xxxii Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

• IGC Doc 121/04/E, Hydrogen Transportation Pipelines System Design Features

• NASA

• NSS 1740.16 Safety Standard For Hydrogen And Hydrogen Systems Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage, and Transportation

• NFPA 52, Vehicular Fuel Systems Code

• NFPA 55, Standard for the Storage, Use, and Handling of Compressed Gases and Cryogenic Fluids in Portable and Stationary Containers, Cylinders, and Tanks, 2005 Edition

• NFPA 68, Standard on Explosion Protection by Deflagration Venting

• NFPA 70, National Electrical Code

• NFPA 497, Recommended Practice for the Classification of Flammable Liquids, Gases, or Vapors and of Hazardous (Classified) Locations for Electrical Installations in Chemical Process Areas

• NFPA 13, Standard for the Installation of Sprinkler Systems

• NFPA 45, Standard on Fire Protection for Laboratories Using Chemicals

• NFPA 55, Standard for the Storage, Use, and Handling of Compressed Gases and Cryogenic Fluids in Portable and Stationary Containers, Cylinders, and Tanks

• NFPA 68, 2007 Standard on Explosion Protection by Deflagration Venting

• NFPA 69, Standard on Explosion Prevention Systems

• NFPA 91, Standard for Exhaust Systems for Air Conveying of Vapors

• NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials

• OSHA 29CFR1910.103 1910.103 Hydrogen

Page 33: Trace 1300 1310 Userguide Es

PrefacioPrecauciones con sustancias peligrosas

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 xxxiii

Precauciones con sustancias peligrosas

Extracción de gases tóxicos

Cuando se analizan compuestos tóxicos, debe tenerse presente que durante el funcionamiento normal del sistema GC parte de la muestra puede expulsarse al exterior del instrumento a través de las salidas de admisión y del detector; por tanto, es preciso dirigir los gases de escape a una campana extractora. Consulte la normativa medioambiental y de seguridad local para conocer las instrucciones pertinentes a la extracción de vapores del sistema.

Precauciones de seguridad con nitrógeno líquidoEl nitrógeno líquido es un líquido y gas bajo presión incoloro, inodoro y extremadamente frío. Puede causar una asfixia rápida en concentraciones suficientes para reducir los niveles de oxígeno por debajo del 19,5%. Se recomienda contar con equipos de respiración autónomos. El contacto con líquidos o vapores fríos puede provocar congelación grave. El vapor frío en aire tiene la consistencia de una niebla blanca, a causa de la condensación de la humedad. Es preciso supervisar la concentración de oxígeno en el área de liberación. Los líquidos criogénicos generan grandes volúmenes de gas cuando se evaporan.

ADVERTENCIA Antes de utilizar sustancias peligrosas (tóxicas, dañinas, etc.), lea las indicaciones y la información sobre riesgos ofrecidas en la hoja de datos de seguridad de materiales correspondiente. Utilice la protección personal oportuna según los requisitos de seguridad.

ADVERTENCIA Antes de utilizar nitrógeno líquido, lea las indicaciones de riesgo y las instrucciones de la ficha de datos de seguridad suministrada por el fabricante con referencia al número CAS (Chemical Abstract Service) 7727-37-9.

Utilice protección personal:

• Guantes protectores: Guantes holgados de piel o térmicos.

• Protección ocular: Se recomienda el uso de protección facial completa y gafas de seguridad.

• Otro equipo de protección: Calzado de seguridad durante el manejo de contenedores. Camisas de manga larga y pantalones sin dobladillo. Es preciso utilizar vestimenta de trabajo que ofrezca una adecuada protección de la piel al contacto.

Page 34: Trace 1300 1310 Userguide Es

PrefacioPrecauciones de seguridad con dióxido de carbono

xxxiv Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Precauciones de seguridad con dióxido de carbonoEl dióxido de carbono o anhídrido carbónico es un líquido criogénico incoloro y, en concentraciones bajas, inodoro. Si la concentración es más elevada, manifiesta un olor ácido y penetrante. En concentraciones entre 2 y 10%, el dióxido de carbono puede producir náuseas, mareo, cefalea, confusión mental, hipertensión arterial y aumento de la velocidad de respiración. Si la concentración alcanza el 10%, pueden producirse asfixia y muerte en cuestión de minutos. El contacto con el gas frío puede provocar la congelación del tejido expuesto. La presencia de humedad en el aire puede causar la formación de ácido carbónico irritante para los ojos. El dióxido de carbono es incombustible en todas sus formas. El dióxido de carbono es más pesado que el aire y debe impedirse su acumulación en áreas bajas.

ADVERTENCIA Antes de utilizar dióxido de carbono, lea las indicaciones de riesgo y las instrucciones de la ficha de datos de seguridad suministrada por el fabricante con referencia al número CAS (Chemical Abstract Service) 124-38-9.

Utilice protección personal:

• Guantes protectores: Guantes holgados de piel o térmicos.

• Protección ocular: Se recomienda el uso de protección facial completa y gafas de seguridad.

• Otro equipo de protección: Calzado de seguridad durante el manejo de contenedores. Camisas de manga larga y pantalones sin dobladillo. Es preciso utilizar vestimenta de trabajo que ofrezca una adecuada protección de la piel al contacto.

Page 35: Trace 1300 1310 Userguide Es

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 1

1

Familiarización con TRACE 1300/TRACE 1310

La información de este capítulo le permitirá familiarizarse con los cromatógrafos de gases TRACE 1300 y TRACE 1310.

Índice

• Conceptos básicos del instrumento

• Ubicación de etiquetas en el instrumento

• Horno

• Carcasa de módulos inyectores

• Carcasa de módulos detectores

• Carcasa de módulos externos

• Tomas de entrada de gas

• Módulo electrónico

• Interfaz de usuario de TRACE 1310

• Interfaz de usuario de TRACE 1300

Page 36: Trace 1300 1310 Userguide Es

1 Familiarización con TRACE 1300/TRACE 1310Conceptos básicos del instrumento

2 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Conceptos básicos del instrumentoEl sistema TRACE 1300/TRACE 1310 consta de:

• El inyector, donde se introduce la muestra. Están disponibles: inyector con Split o Splitless (SSL), inyector con Split o Splitless y con Backflush (SSLBKF), inyector de evaporación de temperatura programable (PTV) e inyector de evaporacin de temperatura programable con Backflush (PTVBKF).

• El horno, donde se instala la columna analítica para separar la muestra en sus componentes.

• El detector, donde se detectan los componentes separados de la muestra. Están disponibles: detector de ionización de llama (FID), detector de captura de electrones (ECD), detector de fósforo-nitrógeno (NPD) y detector de conductividad térmica (TCD). Pueden acoplarse hasta dos espectrómetros de masas (MS) a una versión del sistema GC para espectrometría de masas.

• El módulo electrónico, que suministra alimentación eléctrica al instrumento a 120 o 230 VCA.

• Dos carcasas que albergan módulos externos como los de temperatura auxiliar/criogenia, gas auxiliar o fuente de alimentación termoiónica de NPD.

• La pantalla táctil, que constituye la interfaz de usuario de TRACE 1310.

• El panel de estado, que constituye la interfaz de usuario de TRACE 1300.

Figura 1. Cromatógrafo de gases TRACE 1310 con pantalla táctil

Puerta frontal

Asa de puerta

Pantalla táctil

Puerto USB

Carcasa de detector/inyector

Page 37: Trace 1300 1310 Userguide Es

1 Familiarización con TRACE 1300/TRACE 1310Conceptos básicos del instrumento

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 3

Figura 2. Cromatógrafo de gases TRACE 1300 con panel de estado

Puerta frontal

Panel de estado

Carcasa de detector/inyector

Asa de puerta

Page 38: Trace 1300 1310 Userguide Es

1 Familiarización con TRACE 1300/TRACE 1310Conceptos básicos del instrumento

4 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Figura 3. Vista superior y trasera de TRACE 1300 y TRACE 1310

Tom

as d

e en

trada

de

gas

HidrógenoAire

Interruptor de alimentación

Conector de entrada de CA

RJ45 red local/Ethernet

Interfaz BUS

RUN PHASES

AUTOSAMPLER

Carcasa de inyector

Cubierta trasera

Cubierta superiorVentilador de refrigeración

Soporte de cables

Cable de alimentación de electricidad

AUX SERIAL

Carcasa de módulos externos

GENERIC HANDSHAKE

AUTOSAMPLER HANDSHAKE

Módulo electrónico

Salida de ventilación de horno

Frontal/trasero, portador

Carcasa de detector

Frontal/trasero, reposición

Selector PRIMARY/SECONDARY

Page 39: Trace 1300 1310 Userguide Es

1 Familiarización con TRACE 1300/TRACE 1310Ubicación de etiquetas en el instrumento

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 5

Ubicación de etiquetas en el instrumentoEn las siguientes ilustraciones se muestra la ubicación de las distintas etiquetas que rotulan el instrumento.

Figura 4. TRACE 1300 y TRACE 1310: Etiquetas de nº serie y patentes de EEUU

Figura 5. Módulo electrónico: nº serie, datos eléctricos, código MAC y datos de red local

Etiqueta de patentes de EEUU

Etiqueta de nº serie de TRACE 1300/TRACE 1310

Etiqueta de nº serie de módulo electrónico y datos eléctricos

Etiqueta de aviso de alimentación 120 VCA o 230 VCA

Etiqueta de código MAC y datos de red local

Page 40: Trace 1300 1310 Userguide Es

1 Familiarización con TRACE 1300/TRACE 1310Ubicación de etiquetas en el instrumento

6 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Figura 6. Módulo electrónico: Etiqueta de alerta

Figura 7. Módulos inyector/detector: etiquetas de superficie caliente y alerta

Etiqueta de alerta

Etiqueta de superficie CALIENTE

Etiqueta de alerta

Etiqueta de nº serie

Page 41: Trace 1300 1310 Userguide Es

1 Familiarización con TRACE 1300/TRACE 1310Horno

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 7

HornoPara acceder al horno, abra la puerta frontal del sistema GC con el asa de la izquierda, que debe presionar hacia abajo. Vea la Figura 8. Si el sistema GC está encendido, al abrir la puerta frontal se activa un interruptor magnético de seguridad que apaga de forma automática el calentador del horno, el motor del ventilador de circulación de aire y el sistema criogénico, si está instalado.

Figura 8. Vista interna del horno

Las características del horno son las siguientes:

• Velocidad máxima de aumento de temperatura de 125 °C/min. 32 rampas de temperatura lineal y 33 mesetas, y temperatura operativa mínima de unos pocos grados sobre ambiente, obtenida con dos deflectores de refrigeración modulados y controlados desde el sistema GC.

• Temperatura máxima de 450 °C Con opción criogénica instalada, la temperatura del horno puede alcanzar –50 °C si se utiliza dióxido de carbono y –100 °C si se emplea nitrógeno líquido. El caudal de refrigerante se controla con un sistema criogénico opcional. Los sistemas criogénicos de horno con dióxido de carbono y nitrógeno líquido se muestran en la Figura 9 y la Figura 10 respectivamente.

Deflector de calentamiento de horno

Ventilador de horno

Pared superior de horno

Orificios frontales y traseros para módulos inyectores y detectores

Orificios botón para rack de columna

Page 42: Trace 1300 1310 Userguide Es

1 Familiarización con TRACE 1300/TRACE 1310Horno

8 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Figura 9. Sistema criogénico de horno con dióxido de carbono

Figura 10. Sistema criogénico de horno con nitrógeno líquido

Conectores de columna

Los conectores para instalar la columna en los módulos detector e inyector frontales/traseros sobresalen del horno a través de los orificios frontales/traseros de su pared superior. Vea la Figura 11.

Page 43: Trace 1300 1310 Userguide Es

1 Familiarización con TRACE 1300/TRACE 1310Horno

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 9

Figura 11. Conector de columna saliente

Conductos de conexión a MS

Los conductos preinstalados en las paredes del cuadro del horno permiten el acoplamiento del sistema GC a espectrómetros de masas (MS) Thermo Scientific ISQ, TSQ 8000, DSQ II, ITQ y TSQ. Cuando conecte un espectrómetro de masas, introduzca el tubo interno de su línea de transferencia en el horno del sistema GC a través del conducto correspondiente. Si desea más información, consulte el apartado sobre instalación del manual TRACE 1300 and TRACE 1310 Hardware Manual.

En la Figura 12 se muestra la posición de los conductos, en la pared izquierda, a través de los que los tubos internos de las líneas de transferencia correspondientes a ISQ, TSQ 8000, DSQ II e ITQ pasarán al horno del sistema GC.

Figura 12. Conductos para acoplamiento con espectrómetros de masas ISQ, TSQ 8000, DSQ II o ITQ

Conector de unión a la columna

ISQ/TSQ 8000

DSQ II

ITQ

Page 44: Trace 1300 1310 Userguide Es

1 Familiarización con TRACE 1300/TRACE 1310Horno

10 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

En la Figura 13 se muestra la posición del conducto, en la pared derecha, a través del que el tubo interno de la línea de transferencia correspondiente a TSQ pasará al horno del sistema GC.

Figura 13. Conducto para acoplamiento con espectrómetro de masas TSQ

También puede configurar un sistema GC autónomo para su acoplamiento con un espectrómetro de masas ISQ, TSQ 8000, DSQ II, ITQ o TSQ mediante la instalación del kit de actualización especifico. Si desea más información, consulte el apartado Upgrading a Stand Alone TRACE 1300/TRACE 1310 to MS Version del manual TRACE 1300 and TRACE 1310 Hardware Manual.

Conductos de conexión a HRMS

Los conductos preinstalados en las paredes del cuadro de horno dedicado permiten el acoplamiento del sistema GC y de un espectrómetro HRMS Thermo Scientific como DFS, IRMS e ICP-MS. Vea la Figura 14.

Nota El acoplamiento del sistema GC con un espectrómetro de masas de alta resolución (HRMS) Thermo Scientific requiere un cuadro de horno dedicado con conductos de pared específicos. Consulte “Conductos de conexión a HRMS” en la página 10.

TSQ

Page 45: Trace 1300 1310 Userguide Es

1 Familiarización con TRACE 1300/TRACE 1310Horno

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 11

Figura 14. Conductos para acoplamiento con espectrómetros de masas de alta resolución

Conecte correctamente el espectrómetro de masas; introduzca el tubo interno de su línea de transferencia en el horno del sistema GC a través del conducto correspondiente. Si desea más información, consulte el apartado sobre instalación del manual TRACE 1300 and TRACE 1310 Hardware Manual.

Rack de columna

Pueden instalarse dos columnas capilares analíticas en el horno, en posición frontal o trasera, mediante un rack de columna que actuará de soporte. Vea la Figura 15.

Figura 15. Rack de columna (1)

Pared izquierda Pared derecha

Rack de columna

Page 46: Trace 1300 1310 Userguide Es

1 Familiarización con TRACE 1300/TRACE 1310Horno

12 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Para instalar el rack de columna, inserte los dos ganchos en las ranuras correspondientes del deflector de calentamiento del horno. Vea la Figura 16.

Figura 16. Rack de columna (2)

Si desea más información, consulte el apartado sobre instalación del manual TRACE 1300 and TRACE 1310 Hardware Manual.

Salidas de ventilación de horno

Las salidas de ventilación de la parte trasera del sistema GC descargan aire caliente a una temperatura de hasta 450 °C (842 °F) durante el enfriamiento.

Orificios botón

Deflector de calentamiento de horno

ADVERTENCIA La ventilación del horno puede provocar quemaduras graves. Evite el trabajo detrás del instrumento y cerca de las salidas de ventilación durante los ciclos de enfriamiento. Deje al menos 30 cm (12 pulg.) de espacio libre detrás del instrumento para que el calor de la salida de ventilación pueda disiparse. No exponga a las salidas de ventilación del horno cilindros ni botellas de gas, sustancias químicas, reguladores, cables eléctricos ni ningún otro objeto sensible al calor.

Page 47: Trace 1300 1310 Userguide Es

1 Familiarización con TRACE 1300/TRACE 1310Horno

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 13

Figura 17. Salidas de ventilación de horno

PRECAUCIÓN Para evitar el contacto con el aire caliente de ventilación, agrupe los cables eléctricos en el soporte correspondiente.

Soporte de cables

Salidas de ventilación del horno

Page 48: Trace 1300 1310 Userguide Es

1 Familiarización con TRACE 1300/TRACE 1310Carcasa de módulos inyectores

14 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Carcasa de módulos inyectoresEl sistema TRACE 1300/TRACE 1310 admite hasta dos módulos inyectores en los habitáculos frontal/trasero del lado derecho. Vea la Figura 18.

La carcasa ha de estar siempre ocupada con dos módulos. Si se configura TRACE 1300/ TRACE 1310 con un solo módulo inyector, es preciso colocar un falso módulo de relleno en el lugar del segundo módulo.

Figura 18. Vista de carcasa de inyectores

Cada posición frontal/trasera cuenta con sus propias conexiones eléctricas y de gas, como se muestra en la Figura 19.

Figura 19. Conexiones electrónicas y de gas de la carcasa de inyectores

Cuando el módulo inyector está bien instalado y fijado en su habitáculo, el conector de unión a la columna sobresale hacia el interior del horno a través de la pared superior.

Nota Si se instala un falso módulo, su conexión de gas se cierra con un tapón.

SSL

PTV

PTVBKF

SSLBKF

Módulos

Módulo inyector trasero

Módulo inyector frontal

Conexión de gas

Conexión eléctrica

Page 49: Trace 1300 1310 Userguide Es

1 Familiarización con TRACE 1300/TRACE 1310Carcasa de módulos detectores

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 15

Carcasa de módulos detectoresEl sistema TRACE 1300/TRACE 1310 admite hasta dos módulos detectores en los habitáculos frontal/trasero del lado izquierdo. Vea la Figura 20.

La carcasa ha de estar siempre ocupada con dos módulos. Si se configura TRACE 1300/ TRACE 1310 con un solo módulo detector, es preciso colocar un falso módulo de relleno en el lugar del segundo módulo.

Figura 20. Vista de carcasa de detectores

Cada posición frontal/trasera cuenta con sus propias conexiones eléctricas y de gas, como se muestra en la Figura 21.

Figura 21. Conexiones electrónicas y de gas de la carcasa de detectores

Cuando el módulo detector está bien instalado y fijado en su habitáculo, el conector de unión a la columna sobresale hacia el interior del horno a través de la pared superior.

Nota Si se instala un falso módulo, su conexión de gas se cierra con un tapón.

FID

NPD

TCD

ECD

Módulo detector trasero

Módulos

Módulo detector frontal

Conexión de gas

Conexión eléctrica

Page 50: Trace 1300 1310 Userguide Es

1 Familiarización con TRACE 1300/TRACE 1310Carcasa de módulos externos

16 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Carcasa de módulos externosEl sistema TRACE 1300/TRACE 1310 admite hasta dos módulos externos en los habitáculos correspondientes de la parte trasera inferior del sistema GC. Vea la Figura 22.

Figura 22. Carcasa de módulos externos

• Módulo de temperatura auxiliar/criogenia: El módulo controla el calentamiento de la línea de transferencia (temperatura auxiliar) de dos espectrómetros de masas, la válvula solenoide del sistema criogénico del horno, las válvulas solenoides de los sistemas criogénicos PTV/PTVBKF frontal/trasero y hasta ocho válvulas solenoides para activar eventos externos.

• Módulo de fuente de alimentación termoiónica de NPD: El módulo controla la alimentación y las señales de la fuente termoiónica del módulo detector NPD.

• Módulo de gas auxiliar: El módulo controla la presión de hasta tres gases portadores auxiliares.

Carcasa de módulos externos

Módulos

Módulo de temperatura auxiliar/criogenia

Módulo de gas auxiliar

Módulo de fuente de alimentación termoiónica de NPD

Page 51: Trace 1300 1310 Userguide Es

1 Familiarización con TRACE 1300/TRACE 1310Tomas de entrada de gas

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 17

Tomas de entrada de gasLas tomas de entrada de gas se sitúan en la esquina superior izquierda de la parte trasera del instrumento. Están conectadas directamente a la carcasa de inyector y detector y suministran alimentación a los módulos frontal/trasero correspondientes. Vea la Figura 23.

Figura 23. Conexiones de entrada de gases

Las recomendaciones sobre gases para columnas capilares y Wide-bore se detallan en la Tabla 1:

Nota No conecte al sistema de GC más gases que los indicados en el manual.

Tom

as d

e en

trada

de

gas Portador, frontal

HidrógenoAire

Make-Up, trasero

Gase

s de

det

ecto

r Portador, trasero

Make-Up, frontal

PRECAUCIÓN La máxima presión de entrada nominal de todas las entradas es de 1.000 kPa (145 psig), como se indica en la etiqueta ubicada bajo las tomas de entrada de gas, en la parte trasera del sistema GC. El rango de presión de entrada de trabajo es de 400 kPa (58 psig) a 1.000 kPa (145 psig).

Tabla 1. Recomendaciones sobre gases para columnas capilares y Wide-Bore

Tipo de detector Gas portador Gas de combustión Gas de Make-Up

FID Helio, nitrógeno, hidrógeno Hidrógeno + aire Nitrógeno

NPD Helio, nitrógeno, hidrógeno Hidrógeno + aire Helio, nitrógeno

ECD Helio, nitrógeno, argón Ninguno Nitrógeno, argón/5% metano

TCD Helio, nitrógeno, hidrógeno, argón Ninguno Igual que portador

Page 52: Trace 1300 1310 Userguide Es

1 Familiarización con TRACE 1300/TRACE 1310Tomas de entrada de gas

18 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Uso de un sensor de hidrógeno

El sensor de hidrógeno debe instalarse en la parte trasera del sistema GC, como se muestra en la Figura 24.

Figura 24. Carcasa de sensor de hidrógeno

ADVERTENCIA Antes de utilizar gases, lea atentamente las indicaciones de riesgo y la información de la ficha de datos de seguridad suministrada por el fabricante con referencia al número CAS (Chemical Abstract Service) correspondiente. Es responsabilidad del usuario asegurar que se cumplan todas las normativas locales de seguridad aplicables al uso de gases.

Los cromatógrafos de gases Thermo Scientific suelen emplear un gas inerte como portador. Si desea utilizar hidrógeno como gas portador, es preciso instalar un sensor de hidrógeno. Póngase en contacto con un representante comercial de Thermo Fisher Scientific si tiene intención de utilizar hidrógeno como gas portador en su nuevo sistema TRACE 1300/ TRACE 1310. Si no cuenta con un sensor de hidrógeno, debe utilizar un gas portador inerte.

Los técnicos de servicio de Thermo Fisher Scientific no están autorizados a instalar ni reparar instrumentos que utilicen hidrógeno como gas portador a menos que dichos equipos cuenten con el sensor adecuado.ADVERTENCIA Hallará más información sobre el uso de hidrógeno con TRACE 1300/ TRACE 1310 y las precauciones que deben tomarse en “Precauciones de seguridad con hidrógeno” en la página xxv.

Sensor de hidrógeno

Page 53: Trace 1300 1310 Userguide Es

1 Familiarización con TRACE 1300/TRACE 1310Módulo electrónico

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 19

Para instalar el sensor de hidrógeno en el sistema GC, consulte el manual TRACE 1300 and TRACE 1310 Hardware Manual.

La fiabilidad del sensor depende del cuidado puesto en su mantenimiento. Con el sensor en uso, es preciso revisar de forma periódica su rendimiento operativo y su calibración, según las recomendaciones del fabricante. Consulte las instrucciones de mantenimiento en el manual del sensor de hidrógeno.

Módulo electrónicoEl módulo electrónico contiene los circuitos eléctricos y electrónicos que hacen funcionar el instrumento y lo controlan. Se instala el módulo adecuado a la alimentación eléctrica (120 o 230 VCA).

Figura 25. Módulo electrónico

El módulo electrónico (vea la Figura 25) incluye:

• Interruptor de alimentación (disyuntor de 16 A para fuente de 120 VCA y de 10 A para fuente de 230 VCA) identificado con el rótulo Power, para encender y apagar el instrumento.

– Posición I = instrumento encendido

– Posición O = instrumento apagado

ADVERTENCIA Esta operación debe dejarse en manos del personal técnico de Thermo Fisher Scientific. El módulo electrónico solo debe desmontarse si es imprescindible. Antes de acceder al módulo electrónico, desconecte la fuente de alimentación del instrumento y desenchufe el cable correspondiente.

Asas

Interruptor de encendido/apagado

Ventilador de refrigeración

Interfaz externa

Page 54: Trace 1300 1310 Userguide Es

1 Familiarización con TRACE 1300/TRACE 1310Módulo electrónico

20 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

• Dos asas en la parte superior que facilitan la extracción superior del módulo del sistema GC.

• Ventilador de refrigeración en el lado izquierdo para la circulación de aire frío en el módulo.

• Interfaz externa con los conectores necesarios para realizar conexiones eléctricas y establecer comunicación entre TRACE 1300/TRACE 1310 y dispositivos externos como cargadores automáticos de muestras o equipos informáticos. En la Figura 26 se muestran los componentes de la interfaz externa.

Figura 26. Módulo electrónico: Interfaz externa

1. Cuatro conectores hembra de 15 patillas con el rótulo Bus para comunicación con dispositivos externos.

2. Conector hembra de 25 patillas con el rótulo Run Phases para conexión a dispositivos externos (como una trampa de frío).

3. Conector RJ45 con el rótulo LAN/Ethernet para la conexión en red de TRACE 1300/ TRACE 1310.

4. Botón con el rótulo Reset IP para reiniciar la dirección IP.

5. Conector macho de 9 patillas con el rótulo Autosampler para comunicación con el Muestreador automático de muestras.

6. Conector macho de 9 patillas con el rótulo Aux Serial para comunicación con un segundo muestreador automático o con dispositivos externos de aplicación futura.

7. Conector de 6 patillas con el rótulo Autosampler Handshake para sincronizar el sistema TRACE 1300/TRACE 1310 y el muestreador automático.

8. Conector de 8 patillas con el rótulo Generic Handshake para sincronizar el sistema TRACE 1300/TRACE 1310 con dispositivos externos.

9. Selector con el rótulo Primary/Secondary para elegir un cromatógrafo de gases principal y uno secundario si TRACE 1300/TRACE 1310 está acoplado a otro sistema GC.

876 952 31 4

Page 55: Trace 1300 1310 Userguide Es

1 Familiarización con TRACE 1300/TRACE 1310Módulo electrónico

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 21

Función de las tarjetas electrónicas

A continuación se detalla la función de las distintas tarjetas electrónicas que incorpora el módulo electrónico:

• CPU de horno y control de alimentación (OVN-HRM): Esta tarjeta interactúa con el módulo electrónico y el resto del sistema a través de la tarjeta base posterior (BKP-HRM). Lleva a cabo las siguientes operaciones:

– Recibe la tensión de alimentación a través del interruptor (disyuntor) de encendido/apagado.

– Suministra la tensión de alimentación al transformador principal.

– Genera tensión para alimentar a las tarjetas electrónicas, los módulos inyectores y detectores, los ventiladores y el calentador del horno.

– Incluye el selector de alimentación de 120/230 VCA y un transformador compacto plano de 2 VA que suministra tensión de 12 V a la tarjeta de CPU principal.

Cuenta con cinco fusibles de protección. Vea la Tabla 2.

• CPU principal (CPU-HRM): Esta tarjeta controla todas las operaciones del instrumento. Acciona el dispositivo de corte de seguridad, que activa el modo de seguridad del instrumento en caso de producirse una alarma.

• Tarjeta de interfaz externa (EXT-HRM): Esta tarjeta incluye los conectores Run Phases y Bus de comunicación con dispositivos externos.

Tabla 2. Fusibles de protección

Fusible Tipo para 120 VCA Tipo para 230 VCA Protecciones

F1 T10A; IEC 127/III (5 x 20 mm)

T6.3A; IEC 127/III (5 x 20 mm)

Transformador principal toroidalF2

F3 T200 mA; IEC 127/III (5 x 20 mm)

T100 mA; IEC 127/III (5 x 20 mm)

Transformador compacto plano internoF4

F5 T2A; IEC 127/III (5 x 20 mm)

T1A; IEC 127/III (5 x 20 mm)

Motor de ventilador

IMPORTANTE El sistema incluye una batería de Li de 3 V, 220 mA/h no recargable. La sustitución de la batería debe dejarse en manos de personal técnico especializado de Thermo Fisher Scientific.

Page 56: Trace 1300 1310 Userguide Es

1 Familiarización con TRACE 1300/TRACE 1310Interfaz de usuario de TRACE 1310

22 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Interfaz de usuario de TRACE 1310La interfaz de usuario de TRACE 1310 es una pantalla táctil que muestra el estado inmediato y detallado del equipo, así como pautas que simplifican el uso y el control local. Vea la Figura 27.

Figura 27. Interfaz de usuario de TRACE 1310

Cuando se enciende TRACE 1310 aparece el menú principal que se muestra en la Figura 28.

Figura 28. Menú principal de la pantalla táctil

Cada una de las funciones del instrumento se asocia a un icono que abre el menú correspondiente: Status, Maintenance, Level, Instrument Control, Configuration y Diagnostics.

Consulte más detalles en el Capítulo 2, “Interfaz de usuario de TRACE 1310”. Para utilizar TRACE 1300 a través del sistema de datos cromatográficos, consulte el Capítulo 4, “Configuración y preparación de parámetros de método desde CDS”.

Iconos de menú

Imagen de pantalla

Barra de estado/mensajes

Tecla Siguiente/Inicio/Parada

Page 57: Trace 1300 1310 Userguide Es

1 Familiarización con TRACE 1300/TRACE 1310Interfaz de usuario de TRACE 1300

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 23

Interfaz de usuario de TRACE 1300El sistema TRACE 1300 se suministra sin teclado ni monitor independientes. Se controla desde un sistema de datos cromatográficos (CDS) Thermo Scientific, que también se utiliza para el tratamiento de la información y la interpretación de los resultados obtenidos.

La interfaz de usuario del cromatógrafo de gases TRACE 1300 es el panel de estado que se muestra en la Figura 29. Cuenta con tres pilotos LED o diodos de emisión de luz, que indican el estado actual del instrumento, y con las teclas de función Start/Stop y Maintenance.

Figura 29. Panel de estado

Consulte los detalles en el Capítulo 3, “Interfase de usuario del TRACE 1300”. y en el Capítulo 4, “Configuración y preparación de parámetros de método desde CDS”.

Panel de estado

Page 58: Trace 1300 1310 Userguide Es
Page 59: Trace 1300 1310 Userguide Es

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 25

2

Interfaz de usuario de TRACE 1310

En este capítulo se describe la interfaz de usuario de TRACE 1310.

Índice

• Descripción de la interfaz de usuario de TRACE 1310

• Configuración del instrumento

• Creación de métodos

• Monitorización de estado del instrumento

• Monitorización del nivel de señal

• Realización de un diagnóstico

• Realización de mantenimiento

Page 60: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Descripción de la interfaz de usuario de TRACE 1310

26 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Descripción de la interfaz de usuario de TRACE 1310La interfaz de usuario del TRACE 1310 es una pantalla táctil que facilita la visualización inmediata y detallada del estado del equipo, a la vez que proporciona pautas que simplifican el uso y el control local. Cuando se enciende el TRACE 1310, aparece el menú principal de la pantalla táctil. Vea la Figura 30.

Figura 30. Menú principal de la pantalla táctil

Iconos de menú

Cada una de las funciones del instrumento está asociada a un icono que abre el menú correspondiente, como se describe a continuación:

• Seleccione el icono Configuration para configurar el sistema. Consulte “Configuración del instrumento” en la página 29.

• Seleccione el icono Instrument Control para programar y ver los parámetros de método de horno, inyector trasero, inyector frontal, detector trasero, detector frontal y zonas auxiliares. Consulte “Creación de métodos” en la página 40.

• Seleccione el icono Status para supervisar el estado del instrumento. Consulte “Monitorización de estado del instrumento” en la página 45.

• Seleccione el icono Level para ver el nivel de señal de los detectores frontal y trasero. Consulte “Monitorización del nivel de señal” en la página 49.

Iconos de menú

Imagen de pantalla

Barra de estado/mensajes

Tecla Siguiente/Inicio/Parada

Page 61: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Descripción de la interfaz de usuario de TRACE 1310

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 27

• Seleccione el icono Diagnostics para ver información de diagnóstico. Consulte “Realización de un diagnóstico” en la página 50.

• Seleccione el icono Maintenance cuando sea preciso realizar tareas de mantenimiento en alguno de los componentes del sistema GC. Consulte “Realización de mantenimiento” en la página 54.

Teclas de introducción de datos

Cuando se pulsa el nombre de un parámetro o un campo de valor real o de ajuste, aparece un teclado en el panel derecho del menú Instrument Control y Status.

Este teclado incluye los números del 0 al 9. El teclado numérico incluye un punto decimal y una tecla “menos” que actúa como signo negativo (para introducir valores de temperatura inferior a ambiente) y como tecla de rango (para introducir conjuntos de números). Vea la Figura 31.

Figura 31. Teclado de introducción de datos

• Utilice la tecla Enter para confirmar la entrada o la modificación realizada.

• Utilice la tecla Clear para borrar el valor de ajuste o la modificación realizada.

• Utilice la tecla Back para borrar el último dígito tecleado.

• Utilice la tecla Off/On para activar o desactivar el valor de ajuste seleccionado.

• Utilice la tecla para cerrar el teclado.

Cómo introducir o modificar un parámetro

Para introducir o modificar un parámetro, siga estos pasos:

1. Pulse el nombre del parámetro que desea introducir o modificar; por ejemplo, Temperature. El valor en el campo de ajuste se realza.

2. Teclee el valor deseado, por ejemplo, 250, y pulse Enter para confirmar la modificación.

Nota Si seleccionó el campo Actual o Setpoint, borre el valor realzado con la tecla Clear antes de teclear el valor deseado.

Page 62: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Descripción de la interfaz de usuario de TRACE 1310

28 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Teclas de acceso directo

Las teclas de acceso directo aparecen en la barra de estado/mensajes de cada menú y submenú.

Las teclas de acceso directo son:

Atrás: para regresar al menú anterior.

Ir a estado: para volver de inmediato al menú Status.

Ir a nivel: para volver de inmediato al menú Nivel.

Teclas de cursor

Estas teclas indican la presencia de elementos de menú que no son visibles. Pueden aparecer tres:

• Flecha abajo indica que puede desplazarse hacia abajo.

• Flecha arriba indica que puede desplazarse hacia arriba.

• Fase indica que puede ver líneas adicionales del menú Phase si utiliza un inyector PTV o PTVBKF.

Reloj de arena

El reloj de arena indica la necesidad de esperar a que el sistema realice una acción o un ajuste.

Page 63: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Configuración del instrumento

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 29

Configuración del instrumentoEl sistema TRACE 1310 se ha configurado en fábrica de acuerdo con las especificaciones del usuario. Quizá deba reconfigurar el instrumento si realiza cambios de componentes. El sistema debe volver a configurarse si se agregan nuevos componentes o se cambian módulos inyectores, módulos detectores, gases portadores o tipos de columna.

Pulse el icono Configuration del menú principal de la pantalla táctil para configurar TRACE 1310. Vea la Figura 32.

Figura 32. Menú principal de la pantalla táctil: Configuration

Aparece el menú Configuration. Vea la Figura 33.

Figura 33. Menú Configuration

Page 64: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Configuración del instrumento

30 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Pulse el icono deseado para abrir el menú correspondiente. Consulte:

• Menú Oven

• Menús Back Inlet y Front Inlet

• Menús Back Detector y Front Detector

• Menús Back Column y Front Column

• Evaluación de la columna

• Menú Handshaking

• Menú Time/Units

• Menú Touch Screen

• Menú Network

Menú Oven

Oven: Permite ajustar acciones de preparación del horno.

• Auto prep run: Las opciones son On/Off. Elija On para activar la ejecución automática de la preparación de ciclo sin necesidad de pulsar Prep Run.

• Auto Start: Habilita la ejecución de inicio automático sin necesidad de pulsar la tecla de inicio. Las opciones son On/Off.

• Prep run timeout: Ajuste la duración de la preparación de ciclo. Introduzca un valor de 0 a 999,99 min. La inyección debe producirse en este periodo; de lo contrario el sistema GC volverá al estado de espera.

• Cryogenic Type: Active o desactive el sistema criogénico si está instalado y configurado con dióxido de carbono o nitrógeno líquido como refrigerante. Elija entre N2, CO2, o ninguno.

– Cryo timeout: Introduzca el momento de desactivación del sistema criogénico. Introduzca un valor entre 0 y 30 min.

– Cryo Threshold: Especifique la temperatura a la que el sistema criogénico empieza a administrar refrigerante. Introduzca un valor entre 40 y 200 °C.

• Equilibration time: Se trata del tiempo necesario para equilibrar la temperatura del horno una vez ajustada o modificada. Introduzca un valor entre 0 y 999,99 min.

• Ready delay: Ajuste el intervalo de retardo antes de que el sistema GC entre en modo listo para inyección. Introduzca un valor entre 0 y 99,9 min. Este intervalo no puede ser superior al de Prep run timeout.

• Oven max temp: Ajuste la temperatura máxima admisible del horno para proteger la columna contra temperaturas altas no deseadas. Introduzca un valor de 0 a 450 °C según las indicaciones del fabricante de la columna con respecto a la temperatura de funcionamiento máxima recomendada.

Page 65: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Configuración del instrumento

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 31

Menús Back Inlet y Front Inlet

Back/Front Inlet: Configura el módulo inyector instalado en posición frontal/trasera.

TRACE 1310 funciona con los siguientes tipos de inyectores:

• SSL (inyector Split/Splitless)

• SSLBKF (inyector Split/Splitless con backflush)

• PTV (inyector de evaporación a temperatura programable)

• PTVBKF (inyector de evaporación a temperatura programable con backflush)

Configuración de un inyector SSL

Ajuste los siguientes parámetros:

• Purge Flow: Introduzca un valor entre 0,5 y 50 ml/min.

• Gas Type: Seleccione el gas portador que utilizará en la columna. Las opciones son He, H2, N2, Ar/CH4, Ar o ninguno.

Configuración de un inyector SSLBKF

Ajuste los siguientes parámetros:

• Purge Flow: Introduzca un valor entre 0,5 y 50 ml/min.

• Gas Type: Seleccione el gas portador que utilizará en la columna. Las opciones son He, H2, N2, Ar/CH4, Ar o ninguno.

• Backflush yes/no: Para habilitar o deshabilitar el backflush.

Configuración de un inyector PTV

Ajuste los siguientes parámetros:

• Purge Flow: Introduzca un valor entre 0,5 y 50 ml/min.

• Gas Type: Seleccione el gas portador que utilizará en la columna. Las opciones son He, H2, N2, Ar/CH4, Ar o ninguno.

Las siguientes opciones determinan los parámetros que se habilitan en el menú Injection Phase:

• Cryogenic Type: Active o desactive el sistema criogénico si está instalado y configurado con CO2 o LN2 como refrigerante. Seleccione entre N2, CO2, o ninguno.

– Cryo timeout: Introduzca el momento de desactivación del sistema criogénico. Introduzca un valor entre 0 y 30 min.

Page 66: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Configuración del instrumento

32 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

– Cryo Threshold: Especifique la temperatura a la que el sistema criogénico empieza a administrar refrigerante. Introduzca un valor entre 40 y 200 °C.

– Cryo Cool at: Seleccione el momento de administrar refrigerante al instrumento. Elija entre Prep-Run o Post -Run.

• Evaporation Phase? yes/no: Habilita/deshabilita los parámetros de Evaporation Phase.

• Cleaning Phase? yes/no: Habilita todos los parámetros de Cleaning Phase. Esta opción no está disponible en los modos CT.

• Ramped Pressure? yes/no: Habilita/deshabilita los parámetros de presión que aparecen en Injection Phases cuando el modo de inyección es Splitless. Las opciones son On y Off.

Configuración de un inyector PTVBKF

Ajuste los siguientes parámetros:

• Purge Flow: Introduzca un valor entre 0,5 y 50 ml/min.

• Gas Type: Seleccione el gas portador que utilizará en la columna. Las opciones son He, H2, N2, Ar/CH4, Ar o ninguno.

Utilice las siguientes opciones para determinar los parámetros que se habilitan en el menú Injection Phase:

• Cryogenic Type: Active o desactive el sistema criogénico si está instalado y configurado con CO2 o LN2 como refrigerante. Elija entre N2, CO2, o ninguno.

– Cryo timeout: Introduzca el momento de desactivación del sistema criogénico. Introduzca un valor entre 0 y 30 min.

– Cryo Threshold: Especifique la temperatura a la que el sistema criogénico empieza a administrar refrigerante. Introduzca un valor entre 40 y 200 °C.

– Cryo Cool at: Seleccione el momento de administrar refrigerante al instrumento. Elija entre Prep-Run o Post -Run.

• Evaporation Phase? yes/no: Habilita/deshabilita los parámetros de Evaporation Phase.

• Cleaning Phase? yes/no: Habilita todos los parámetros de Cleaning Phase. Esta opción no está disponible en el modo CT.

• Ramped Pressure? yes/no: Habilita/deshabilita los parámetros de presión que aparecen en Injection Phases cuando el modo de inyección es Splitless. Seleccione On u Off.

• Backflush while Clean? yes/no: Habilita/deshabilita el backflush durante la fase de limpieza.

• Backflush on Inj./Evap: Habilita el backflush en las fases de inyección y evaporación.

• Backflush in CT: Habilita el backflush en el modo CT.

Page 67: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Configuración del instrumento

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 33

Menús Back Detector y Front Detector

Back/Front Detector: Configura el módulo detector instalado en posición frontal/trasera.

TRACE 1300/TRACE 1310 funciona con los siguientes tipos de detectores:

• FID (detector de ionización de llama)

• NPD (detector de nitrógeno-fósforo)

• TCD (detector de conductividad térmica)

• ECD (detector de captura de electrones)

Para cambiar un detector, monte y conecte el módulo detector, configure el sistema GC y el sistema de datos y realice las conexiones de suministro de gas adecuadas.

Configuración de un detector FID

Elija el tipo de gas make-up entre He y N2.

Configuración de un detector NPD

Elija el tipo de gas make-up entre He y N2.

Ajuste la tensión de polarización de 1 a 100 V.

Configuración de un detector TCD

Elija la fuente de gas portador entre Front y Back.

Configuración de un detector ECD

Elija el tipo de gas make-up entre N2 y Ar/5%CH4.

Elija una corriente de referencia de 0,1 a 1,5 nA.

Elija una amplitud de pulso de 5 a 50 V.

Elija una anchura de pulso de 0,1 a 2,0 μs.

Page 68: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Configuración del instrumento

34 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Menús Back Column y Front Column

Back/Front Column: Evalúa la columna utilizada en posición frontal/trasera. Consulte también “Evaluación de la columna” en la página 35.

Ajuste los siguientes parámetros:

• Description: Introduzca una descripción de la columna, si lo desea.

• Column length (m): Introduzca la longitud de la columna.

• Column nominal ID (mm): Introduzca el diámetro interno de la columna.

• Film thickness (mm): Introduzca el grosor de película de la columna.

• Pre Column? (yes/no): Si hay una precolumna instalada, seleccione yes; en caso contrario, elija no. Si hay una precolumna instalada, el menú pide al usuario que ajuste su longitud y diámetro interno nominal en los mismos rangos válidos para la columna.

• Pre Column Length: Introduzca la longitud de la precolumna.

• Pre Column ID: Introduzca el diámetro interno de la precolumna.

• Post Column (yes/no): Si hay una post-columna instalada, seleccione yes; en caso contrario, elija no. Si hay una post-columna instalada, el menú pide al usuario que ajuste su longitud y diámetro interno nominal en los mismos rangos válidos para la columna.

• Post Column Length: Introduzca la longitud de la post-columna.

• Post Column ID: Introduzca el diámetro interno de la post-columna.

• Calculated ID: Indica el diámetro interno nominal correcto de la columna. Consulte también K factor y Evaluation icon.

• Column K Factor: El sistema calcula y muestra el factor K teórico de la columna según las dimensiones nominales de ésta.

Page 69: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Configuración del instrumento

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 35

Se utiliza para el funcionamiento en modo de caudal. La desviación del valor nominal con respecto al ID real afecta sobre todo al caudal de la columna. Para garantizar la máxima precisión en el cálculo del caudal de gas portador de la columna, se recomienda llevar a cabo el procedimiento de evaluación de la columna.

Evaluación de la columna

Esta función permite calcular el diámetro interno real de la columna de acuerdo con el caudal real de gas portador medido en la salida de la columna. El procedimiento requiere el empleo de un conector columna/caudalímetro y de un caudalímetro digital. Consulte el manual TRACE 1300 and TRACE 1310 Hardware Manual si necesita más información.

• Column Evaluation: Abre la página de evaluación de columna.

Pulse el botón Start para iniciar la rutina de evaluación de la columna.

Con la evaluación de columna en curso, el sistema solicita el caudal de columna medido. Introduzca este valor, entre 0,5 y 10 ml/min y, a continuación, pulse el botón Apply para confirmar.

Si el funcionamiento es correcto, se muestra el mensaje completed successfully.

Se muestra el DI calculado, que refleja la resistencia neumática real de la columna y permite un cálculo más preciso de la velocidad lineal del gas portador.

• Save: Este comando permite guardar las dimensiones nominales de la columna en una llave USB. En la página que se muestra, seleccione una línea de 1 a 9 donde guardará los datos y pulse el botón Ok.

Nota Para cancelar la evaluación de la columna, pulse el botón Cancel.

Page 70: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Configuración del instrumento

36 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

• Load: Carga las dimensiones nominales de una columna antes guardada en una llave USB. En la página que se muestra, seleccione la línea correspondiente a los datos guardados que desea cargar y pulse el botón Ok.

Menú Handshaking

Handshaking: Configura las señales procedentes de dispositivos externos, como un inyector automático o un espectrómetro de masas, durante el análisis. Para que los dispositivos funcionen de forma correcta es preciso indicar el modo en que cambia la señal.

• Remote Start: Permite a otro dispositivo poner en marcha el sistema GC. Las opciones son L to H (de bajo a alto) o H to L (de alto a bajo). Para el inyector automático AI 1300/AS 1300, debe seleccionar H to L.

• Inhibit Ready: Retrasa el estado “listo” hasta que el sistema GC recibe una señal de otro dispositivo. Las opciones son L (bajo), H (alto) o Neither (ninguno).

• End of Run: Indica a otro dispositivo el fin del ciclo. Las opciones son L to H (de bajo a alto) o H to L (de alto a bajo).

• Start of Run: Indica a otro dispositivo el inicio del ciclo. Las opciones son L to H (de bajo a alto) o H to L (de alto a bajo).

• Ready Out: Indica a otro dispositivo que el sistema GC está listo. Las opciones son L (bajo) o H (alto).

• Prep Run: Indica a otro dispositivo que el sistema GC se está preparando para un ciclo. Las opciones son L (bajo) o H (alto).

Page 71: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Configuración del instrumento

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 37

Menú Time/Units

Time/Units: Permite ajustar fecha y hora y elegir las unidades de presión.

• Date: Introduzca la fecha (mm.dd.aaaa) a través del teclado numérico.

• Time: Introduzca la hora (hh.mm) en formato de 24 horas a través del teclado numérico. Por ejemplo, para las 8:05 a.m., introduzca 08.05; para las 2:30 p.m., teclee 14.30.

• Pressure Unit: Elija las unidades de presión entre psi, kPa y bar.

Menú Touch Screen

Touch Screen: Permite elegir el idioma, ajustar el brillo y el volumen, adaptar el color de fondo del panel, cambiar la imagen en pantalla y calibrar la propia pantalla. Vea la Figura 34.

Figura 34. Menú Touch Screen

• Language: El idioma predeterminado es el inglés. Elija uno de los idiomas disponibles. Una vez seleccionado un idioma, menús y ventanas, funciones y mensajes se mostrarán en dicho idioma.

• Brightness: Permite ajustar el brillo de la pantalla. Utilice las teclas de flecha izquierda/derecha para reducir o aumentar el nivel de brillo, respectivamente.

• Volume: Ajusta el volumen del sonido que se escucha al pulsar un icono. Utilice las teclas de flecha izquierda/derecha para bajar o subir el volumen, respectivamente.

• Main menu screen saver: Deja la pantalla en blanco transcurrido un periodo de inactividad. Seleccione On u Off. Con el valor On, la función está activada; si es Off, está desactivada.

Page 72: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Configuración del instrumento

38 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

• Panel Backcolor: De forma predeterminada, el color de fondo es gris. Elija un color entre los disponibles en la paleta de colores.

• Restore Default Screen: Sustituye la imagen de pantalla predeterminada. Carga una nueva imagen de pantalla, en formato *.bmp, desde una llave USB conectada al puerto USB situado bajo la pantalla táctil.

• Display Calibration: Pulse este icono para calibrar la pantalla según la herramienta utilizada para tocarla. Aparece una cruz en el centro de una página en blanco. Pulse la cruz con un lápiz o con un dedo; siga pulsándola según las instrucciones que aparecen en la parte superior de la pantalla. La cruz desaparece cuando termina la calibración. Al término de la calibración, toque la pantalla en cualquier punto para abandonar la página.

Page 73: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Configuración del instrumento

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 39

Menú Network

Network: Configura los parámetros de red que permiten el control del sistema GC en una red de área local (LAN) a través de los sistemas de datos cromatográficos Thermo Scientific. Vea la Figura 35.

Figura 35. Menú Network

TRACE 1300/TRACE 1310 se suministra con una dirección IP predeterminada que quizá no sea la adecuada en la red local donde se instala el sistema GC. Para cambiar los valores predeterminados, solicite al administrador de red la dirección IP, la máscara de subred y, en su caso, el puerto al que deben asignarse.

• La dirección IP consta de cuatro campos de tres dígitos (por ejemplo, 192.168.127.10) que le proporcionará el administrador de red.

• La máscara de subred consta de cuatro campos de tres dígitos (por ejemplo, 255.255.255.0) que le proporcionará el administrador de red.

• El puerto es un número (por ejemplo, 2551) que le proporcionará el administrador de red.

Una vez ajustados los parámetros necesarios, pulse el botón Apply.

Page 74: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Creación de métodos

40 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Creación de métodosAquí podrá programar los parámetros de control de todos los módulos presentes en el sistema.

Pulse el icono Instrument Control en el menú principal de la pantalla táctil para programar los parámetros del método analítico. Vea la Figura 36.

Figura 36. Menú principal de la pantalla táctil: Instrument Control

Aparece el menú Instrument Control. Vea la Figura 37.

Figura 37. Ejemplo de menú Instrument Control

El menú Instrument Control permite al usuario programar y visualizar los parámetros de horno, inyector trasero, inyector frontal, detector trasero y detector frontal. A través de la Run Table puede configurar el detector, válvulas y eventos externos en el momento Prep-Run o durante el análisis.

Nota Si desea información sobre el ajuste de los parámetros de control de otros instrumentos o software, consulte los manuales correspondientes.

Page 75: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Creación de métodos

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 41

Pulse el icono deseado para abrir el submenú correspondiente, donde podrá definir los parámetros de ajuste con el teclado numérico que aparece en el panel derecho al pulsar el nombre de cada parámetro, o bien los campos correspondientes a los valores de ajuste y reales.

Pulse el icono deseado para abrir el submenú correspondiente. Consulte:

• Parámetros de horno

• Parámetros de inyector trasero y frontal

• Parámetros de detector trasero y frontal

• Run Table

• Auxiliar

• Válvulas

Parámetros de horno

Oven: En esta sección se muestran los parámetros de programación de la temperatura del horno, desde la inicial a la final; pueden utilizarse hasta 32 rampas de temperatura durante el ciclo analítico. Puede ajustar programas de una única rampa (isotérmico) o de múltiples rampas.

Consulte la descripción detallada en Uso de los parámetros de horno, en el Capítulo 5.

Parámetros de inyector trasero y frontal

Back/Front Inlet: En esta sección se muestran los parámetros de programación de los módulos inyectores instalados en posición frontal/trasera:

• Inyector Split/Splitless (SSL) Consulte: Uso de los parámetros de SSL en el Capítulo 6.

• Inyector Split/Splitless con backflush (SSLBKF) Consulte: Uso de los parámetros de SSLBKF en el Capítulo 7.

• Inyector de evaporación a temperatura programable (PTV) Consulte: Uso de los parámetros de PTV en el Capítulo 8.

• Inyector de evaporación a temperatura programable con backflush (PTVBKF) Consulte: Uso de los parámetros de PTVBFK en el Capítulo 9.

PRECAUCIÓN No es posible programar parámetros si hay un análisis en ejecución.

Page 76: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Creación de métodos

42 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Parámetros de detector trasero y frontal

Back/Front detector: En esta sección se muestran los parámetros de programación de los módulos detectores instalados en posición frontal/trasera:

• Detector de ionización de llama (FID) Consulte: Uso de los parámetros de FID en el Capítulo 10.

• Detector de nitrógeno-fósforo (NPD) Consulte: Uso de los parámetros de NPD en el Capítulo 11.

• Detector de conductividad térmica (TCD) Consulte: Uso de los parámetros de TCD en el Capítulo 12.

• Detector de captura de electrones (ECD) Consulte: Uso de los parámetros de ECD en el Capítulo 13.

Run Table

Run Table — Ajusta detectores, válvulas y eventos externos a los parámetros en el momento del Prep-Run o durante el análisis. Ver ejemplo en Figura 38.

Figura 38. Run Table Menu

Los eventos visualizados en la página de Run Table aparecen tras ser seleccionados en la ventana de Run-Time Event. Vern la Figura 39.

La tabla tiene tres columnas: Tiempo, Item, y ajuste. Los eventos son ordenados por tiempo automáticamente.

Time — Indica el momento del análisis en el que el evento tiene lugar.

Item — Muestra el tipo de evento e identifica el evento externo o válvula a usar.

Page 77: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Creación de métodos

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 43

Action — Indica la acción asociada al evento indicado.

Los eventos pueden ser añadidos, modificados o eliminados usando los botones Add, Modify o Remove. El botón Add abre la ventana de Run-Time Event.

La ventana Run-Time Event se visualiza cuando se pulsa el botón Add. Ver ejemplo en la Figura 39.

Figura 39. Ventana Run-Time Event

Time — Seleccione la opción Prep Run or Run Time. Cuando seleccione la opción Prep Run el campo del tiempo se deshabilita. Seleccionando la opción Run Time se habilita el campo asociado. Introduzca el tiempo en el que el evento ocurre dentro del rango de 0.00 a 999.99 min.

Item — Los detectores o el gas auxiliar son algunos de los tipos de eventos a usar. Seleccione el evento necesario para activar los campos asociados al mismo.

Action — Activa la acción apropiada para el tipo de evento seleccionado.

Las opciones de los eventos son:

• Autozero — Aplicable a todos los tipos de detectores.

• Neg. Polarity — Aplicable solo al detector TCD. Este parámetro invierte la polaridad del detector en el momento indicado.

• Source Current — Aplicable solo al detector NPD. Este parámetro cambia el valor de la corriente de fuente en el momento indicado.

• On — Cambia el evento a On (activo).

• Off — Cambia el evento a Off (inactivo).

Auxiliar

Auxiliary: Permite ajustar los parámetros de los módulos auxiliares externos. Vea el ejemplo de Figura 40.

Page 78: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Creación de métodos

44 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Figura 40. Menú Auxiliary

Válvulas

Valves: Permite activar (On) o desactivar (Off ) hasta ocho válvulas externas conectadas al módulo de temperatura auxiliar/criogenia. Vea el ejemplo de la Figura 41.

Figura 41. Menú Valves

Page 79: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Monitorización de estado del instrumento

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 45

Monitorización de estado del instrumentoPuede ver el estado del ciclo, la presión de los inyectores, y los valores de temperatura reales y de ajuste de horno, inyectores y detectores. Sin embargo, solo puede modificar el valor de ajuste de las temperaturas. Pulse el icono Status del menú principal de la pantalla táctil para monitorizar el estado de TRACE 1310. Vea la Figura 42.

Figura 42. Menú principal de la pantalla táctil: Status

Aparece el menú Status. Vea la Figura 43.

Figura 43. Menú Status

Pulse el icono deseado para abrir el submenú correspondiente. Consulte:

• Estado de ciclo

• Estado de presión

• Temperatura de zonas

• En espera

• Monitorización del nivel de señal

Page 80: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Monitorización de estado del instrumento

46 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Estado de ciclo

Run Status: Monitoriza hora y fecha actuales, temperatura del horno, tiempo del último ciclo y ciclo siguiente, tiempo transcurrido y visualización de los pilotos LED de estado de TRACE 1310 durante cada etapa del ciclo. Vea el ejemplo de la Figura 44.

Figura 44. Estado de ciclo

Los pilotos LED de rampa del horno indican las etapas de la rampa de temperatura durante un ciclo. Para seguir el avance de un ciclo, observe estos pilotos y el mensaje correspondiente de la barra de estado. Vea la Figura 45.

Figura 45. Etapas de ciclo y pilotos LED de estado

Las etapas de un ciclo son:

• Not Ready: TRACE 1310 está a la espera de que uno o más parámetros estén listos.

• Standby: Todos los parámetros del sistema GC están en estado listo.

Barra de estado

Page 81: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Monitorización de estado del instrumento

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 47

• Preparing to run: Con el sistema GC en modo Standby, inicie la rutina de preparación de ciclo con el botón verde de inicio que aparece en la esquina inferior izquierda de la página. El sistema GC ajusta todas las condiciones del ciclo.

• Ready to Inject: La fase preparatoria ha terminado y el usuario ya puede realizar la inyección manual de la muestra o poner en marcha un inyector automático de muestras. El botón verde de inicio aparece en el panel derecho de la página. Pulse el botón verde para iniciar el ciclo analítico. Vea la Figura 46.

Figura 46. Botón verde de inicio

• Initial Temperature: Este LED se ilumina cuando se inicia un ciclo y permanece encendido durante el tiempo de mantenimiento inicial.

• Ramp: Este LED se ilumina cuando la temperatura empieza a ascender en la primera rampa y permanece encendido hasta que se alcanza la temperatura de la última rampa.

• Final Temperature: Este LED se ilumina cuando se alcanza la temperatura de la última rampa y permanece encendido durante el tiempo de mantenimiento de la última rampa.

• Cooling: TRACE 1310 regresa a las condiciones de temperatura y presión iniciales durante esta etapa.

Otros pilotos LED son:

• Gas Saver: Este LED se ilumina cuando se activa la función de ahorro de gas.

• Run Log: Este LED se ilumina si el registro del ciclo contiene entradas. Consulte “Registro de ciclo” en la página 53.

Estado de presión

Pressure Status: Monitoriza la presión actual de cada módulo inyector instalado. El valor mostrado no puede modificarse.

Botón de inicio

Page 82: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Monitorización de estado del instrumento

48 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Temperatura de zonas

Zone Temperature: Monitoriza los valores de temperatura real y de ajuste de todas las zonas calefaccionadas del TRACE 1300. Puede modificar el valor de temperatura de ajuste de una zona determinada a través del teclado numérico que aparece en el panel derecho. Vea el ejemplo de la Figura 47.

Figura 47. Página de estado de temperatura de zona

• El fondo verde del valor real indica que se ha alcanzado el valor de ajuste programado.

• El fondo rojo del valor real indica que aún no se ha alcanzado el valor de ajuste.

En espera

Waiting for: Esta función monitoriza y muestra las acciones o condiciones en las que el sistema GC espera a entrar en modo listo. Consulte la lista en el ejemplo de la Figura 48.

Figura 48. Ejemplo en espera para función

Page 83: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Monitorización del nivel de señal

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 49

Monitorización del nivel de señalPulse el icono Level del menú principal de la pantalla táctil para monitorizar el nivel de señal de los detectores frontales o traseros. Vea la Figura 49.

Figura 49. Menú principal de la pantalla táctil: Level

Aparece la página Level. Vea la Figura 50.

Figura 50. Página Level

Para ver el nivel de señal del módulo detector pertinente, pulse los iconos Front o Back.

Page 84: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Realización de un diagnóstico

50 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Realización de un diagnósticoPulse el icono Diagnostics del menú principal de la pantalla táctil para abrir información sobre diagnósticos. Vea la Figura 51.

Figura 51. Menú principal de la pantalla táctil: Diagnostics

Aparece el menú Diagnostics. Vea la Figura 52.

Figura 52. Menú de diagnóstico

Pulse el icono deseado para abrir el submenú correspondiente. Consulte:

• Información de software

• Información de hardware

• Información de red

• Lecturas

• Error

• Registro de ciclo

• Almacenamiento en USB

Page 85: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Realización de un diagnóstico

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 51

Información de software

Software Info: Indica la versión de firmware del sistema GC, el horno y los módulos inyectores y detectores. Vea el ejemplo de la Figura 53.

Figura 53. Página Software Info

Información de hardware

Hardware Info: Indica el número total de ciclos realizados, la fecha de fabricación y el número de serie del sistema GC, y el número de serie de cada componente y módulo instalado. Vea el ejemplo de la Figura 54.

Figura 54. Página Hardware Info

Page 86: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Realización de un diagnóstico

52 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Información de red

Network Info: Indica las especificaciones de la conexión de red (dirección IP, máscara de subred, etc.) y la descripción de sufijo DNS. Vea el ejemplo de la Figura 55.

Figura 55. Página Network Info

Lecturas

Reading: Muestra el estado de los diferentes dispositivos. Vea el ejemplo de la Figura 56.

Figura 56. Página Readings

Error

Error: Indica el diagnóstico de posibles errores.

Page 87: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Realización de un diagnóstico

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 53

Registro de ciclo

Run Log: Esta función abre el registro de ciclo, donde se guardan los errores que se han producido durante el tiempo de ejecución de los ciclos. También muestra la hora y la descripción de cualquier desviación que se haya producido.

El registro de ciclo permite el seguimiento de errores y desviaciones durante el ciclo. Esta información puede utilizarse para satisfacer las normas BPL (buenas prácticas de laboratorio). Por ejemplo, si interrumpe el ciclo por cualquier motivo, en el registro de ciclo se anota la hora, el ciclo detenido y una interpretación del evento.

Si el registro de ciclo contiene entradas, el piloto LED de Run Log Status se ilumina. Para ver el diario de eventos, pulse el icono Run Log. El registro de ciclo se borra y reinicia al comienzo de cada ciclo nuevo.

Almacenamiento en USB

• Save: Este comando guarda el contenido de los submenús de diagnóstico, en formato de texto, en una llave USB. El sistema crea de forma automática un nombre de archivo donde incluye el nombre del instrumento y la fecha y hora de almacenamiento.

Page 88: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Realización de mantenimiento

54 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Realización de mantenimientoPulse el icono Maintenance del menú principal de la pantalla táctil para realizar una tarea de mantenimiento necesaria. Vea la Figura 57.

Figura 57. Menú principal de la pantalla táctil: Maintenance

Aparece el menú Maintenance. Vea la Figura 58.

Figura 58. Menú Maintenance

Pulse el icono deseado para abrir el submenú correspondiente. Consulte:

• Enfriamiento para mantenimiento

• Creación de entrada en registro

• Visualización de registro

Page 89: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Realización de mantenimiento

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 55

• Comprobación de fugas

• Referencia rápida

Enfriamiento para mantenimiento

Cool For Maintenance: Esta función permite enfriar el sistema para realizar tareas de mantenimiento. Vea la Figura 59.

Figura 59. Página Cool for Maintenance

En esta página, seleccione Yes en las zonas que desea enfriar para realizar actividades de mantenimiento y pulse el botón Begin Cooldown.

Creación de entrada en registro

Make Log Entry: Esta función muestra la página de entradas del registro de mantenimiento. Vea la Figura 60. Pulse los botones blancos pertinentes para marcar las tareas de mantenimiento realizadas. Pulse el botón Enter into log para guardar los ajustes en el registro. Consulte también Visualización de registro.

Figura 60. Página Make Log Entry

Page 90: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Realización de mantenimiento

56 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Visualización de registro

View Logbook: Esta función muestra un registro donde se anotan la hora y la descripción de todas las tareas de mantenimiento realizadas. Vea la Figura 61.

Figura 61. Página View Logbook

Comprobación de fugas

Leak Check: Esta función permite realizar una comprobación de fugas. Vea la Figura 62. Para llevar a cabo este procedimiento es preciso un conector columna/caudalímetro. Consulte el manual TRACE 1300 and TRACE 1310 Hardware Manual si necesita más información.

Figura 62. Página Leak Check

En esta página, seleccione el inyector frontal/trasero, ajuste la presión y la duración de la comprobación de fugas y la caida de presión admitida. Para iniciar la rutina, pulse el botón Begin leak check.

Page 91: Trace 1300 1310 Userguide Es

2 Interfaz de usuario de TRACE 1310Realización de mantenimiento

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 57

Referencia rápida

Quick Reference: Esta función abre la página de referencia rápida. Vea la Figura 63.

Figura 63. Página de referencia rápida

Esta página muestra la profundidad adecuada de inserción de columna para SSL, PTV, ECD, FID, TCD y NPD. La profundidad de inserción de detector e inyector se mide desde la parte superior de la férula.

Para abandonar esta página, pulse el botón de salida.

Page 92: Trace 1300 1310 Userguide Es
Page 93: Trace 1300 1310 Userguide Es

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 59

3

Interfase de usuario del TRACE 1300

En este capítulo se describe la interfase de usuario del TRACE 1300.

Descripción de la interfase de usuario del TRACE 1300La interfase de usuario del cromatógrafo de gases TRACE 1300 es el panel de estado que se muestra en la Figura 64. Consta de tres pilotos LED o diodos de emisión de luz, que indican el estado actual del instrumento, y de las teclas de función Start/Stop y Maintenance.

Figura 64. Panel de estado

Todos los eventos y las fases del instrumento están asociados a un estado de los pilotos LED, como se detalla a continuación:

1. Encendido del sistema GC

a. Todos los pilotos LED del panel de estado se iluminan de forma simultánea. A continuación, el piloto Power se mantiene encendido en color verde y el resto de luces se apagan. Vea la Figura 65.

Figura 65. Encendido

b. El sistema GC entra en estado de espera. El piloto Power permanece encendido en color verde y el resto de luces se apagan. Vea la Figura 66.

Índice

• Descripción de la interfase de usuario del TRACE 1300

• Preparación y configuración de parámetros de método

Page 94: Trace 1300 1310 Userguide Es

3 Interfase de usuario del TRACE 1300Descripción de la interfase de usuario del TRACE 1300

60 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Figura 66. Estado de espera

2. Análisis

a. Pulse la tecla Start/Stop. Si los parámetros del sistema GC aún no han alcanzado sus valores de referencia, el piloto Ready parpadea en color naranja para indicar que el equipo no está listo. Vea la Figura 67.

Figura 67. Estado no listo

Cuando todos los parámetros están listos, el piloto Ready se apaga y el sistema GC pasa al modo de espera. Solo el piloto Power permanece encendido. Vea la Figura 66.

b. Pulse la tecla Start/Stop. Si todos los parámetros están listos, el sistema GC entra en la fase de preparación de ciclo (PrepRun). El piloto Ready emite un parpadeo rápido en color verde. Vea la Figura 68.

Figura 68. Preparación de ciclo

Una vez terminada la fase Prep Run, el piloto Ready se mantiene encendido en color verde. El sistema GC pasa al modo listo para inyección (Ready to Inject). Vea la Figura 69.

Figura 69. Listo para inyección

c. Con el sistema GC en modo Ready to Inject, pulse la tecla Start/Stop. El piloto Ready se apaga y el piloto Run se enciende en color azul. Comienza el ciclo analítico. Vea la Figura 70.

Figura 70. Ciclo

Page 95: Trace 1300 1310 Userguide Es

3 Interfase de usuario del TRACE 1300Descripción de la interfase de usuario del TRACE 1300

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 61

Una vez finalizado el ciclo analítico, el piloto Run se apaga y el sistema GC entra en la fase de enfriamiento.

d. La fase de enfriamiento comienza cuando el ciclo analítico termina o se detiene; los parámetros se restablecen con los valores de referencia iniciales. El piloto Ready parpadea en color naranja para indicar que el sistema no está listo. Vea la Figura 71.

Figura 71. Estado no listo

Cuando termina la fase de enfriamiento, el piloto Ready se apaga y el sistema GC pasa al modo de espera. Solo el piloto Power permanece encendido. Vea la Figura 66 en la página 60. El sistema GC está listo para un ciclo analítico nuevo.

3. Mantenimiento

Esta función no está disponible durante la ejecución de ciclos.

a. Pulse la tecla Maintenance y manténgala pulsada durante tres segundos. El piloto de la tecla parpadea en color verde, lo que indica que el sistema GC está enfriándose para poder realizar el mantenimiento. Vea la Figura 72.

Figura 72. Tecla Maintenance (1)

Todas las zonas calientes se enfrían hasta 60 °C. Esta función también lleva a cabo las siguientes acciones de forma automática:

• Apaga la llama y los gases de combustión del detector FID.

• Apaga la fuente termoiónica y los caudales de hidrógeno y aire del detector NPD.

• Apaga los filamentos del detector TCD.

b. Cuando el sistema GC está listo para el mantenimiento, el piloto de la tecla cambia a color verde. Vea la Figura 73.

Figura 73. Tecla Maintenance (2)

Nota Para detener un ciclo analítico en curso, pulse la tecla Start/Stop. Esta acción reinicia el sistema GC, que cambia de estado Run a Not Ready.

Page 96: Trace 1300 1310 Userguide Es

3 Interfase de usuario del TRACE 1300Preparación y configuración de parámetros de método

62 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

c. Una vez terminado el mantenimiento, pulse la tecla Maintenance. El piloto de la tecla se apaga y el piloto Ready parpadea en color naranja para indicar que el sistema no está listo. Vea la Figura 74.

Figura 74. Estado no listo

Cuando todos los parámetros se han restablecido, el piloto Ready se apaga y el sistema GC pasa al modo de espera. Solo el piloto Power permanece encendido. Vea la Figura 66 en la página 60.

4. Error

a. Si se detecta un estado de alarma, los pilotos Power y Ready parpadean y el sistema emite un sonido (bip) característico. El suministro de alimentación, temperatura y gases se interrumpe de inmediato. Vea la Figura 75.

Figura 75. Estado de error

5. Carga de firmware

a. Durante la actualización del firmware integrado, los pilotos Power y Maintenance permanecen encendidos en color verde, el piloto Ready está apagado y el piloto Run se enciende en color azul. Vea la Figura 76.

Figura 76. Carga de firmware

Preparación y configuración de parámetros de métodoEl sistema TRACE 1300 se suministra sin teclado ni monitor independientes. Se controla desde un sistema de datos cromatográficos (CDS) Thermo Scientific, que también se utiliza para el tratamiento de la información y la interpretación de los resultados obtenidos.

Para configurar el sistema GC, ajustar el instrumento, crear métodos, procesar muestras y estudiar los datos, consulte el manual correspondiente al CDS utilizado.

Para obtener más detalles, consulte:

• Capítulo 4, “Configuración y preparación de parámetros de método desde CDS”.

Page 97: Trace 1300 1310 Userguide Es

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 63

4

Configuración y preparación de parámetros de método desde CDS

Este capitulo contiene instrucciones para configurar el sistema TRACE 1300/TRACE 1310 y modificar los parámetros (según los dispositivos de inyector delantero/trasero, módulos de detector delantero/trasero y dispositivos opcionales instalados) a través de los sistemas de datos cromatográficos (CDS) Xcalibur, Chrom-Card, ChromQuest o Chromeleon.

Índice

• Introducción

• Ficha Configuration General

• Ficha Configuration Inlets

• Ficha Configuration Detectors

• Ficha Configuration Auxiliary

• Edición de parámetros de métodos

• Página Oven

• Página S/SL

• Página Backflush de S/SL

• Página PTV

• Página PTV Backflush

• Página FID

• Página ECD

• Página NPD

• Página TCD

• Página Auxiliary

• Página Run Table

• Run-Time Event

Page 98: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSIntroducción

64 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

IntroducciónEjecute el sistema de datos cromatográficos (Xcalibur, Chrom-Card, ChromQuest, o Chromeleon) y abra la ventana de configuración de TRACE 1300. Vea el ejemplo de la Figura 77.

Figura 77. Ventana de configuración

La ventana de configuración se divide en las siguientes fichas.

• Ficha Configuration General

• Ficha Configuration Inlets

• Ficha Configuration Detectors

• Ficha Configuration Auxiliary

La ventana de configuración incluye los siguientes botones comunes:

Get: Utilice este botón en cualquier momento para introducir de forma automática las configuraciones ya incluidas en el GC.

Ok: Utilice este botón para cerrar el cuadro de diálogo y confirmar la selección.

Cancel: Utilice este botón para borrar las modificaciones realizadas.

Help: Utilice este botón para abrir las instrucciones de ayuda.

Nota Los procedimientos de evaluación de columna y de fugas no se incluyen en este capítulo. Para ejecutarlos, consulte el manual del sistema de datos utilizado.

Page 99: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSFicha Configuration General

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 65

Ficha Configuration GeneralEn esta ficha puede configurar la dirección de red, los parámetros de protocolo de enlace y la unidad de presión. Vea la Figura 78.

Figura 78. Ventana de configuración: Ficha General

Esta ficha incluye los siguientes campos:

• Connection

• Options

• Handshaking

Connection

En este campo se define la comunicación de red local (LAN) entre TRACE 1300 y el sistema de datos. Los parámetros se describen a continuación.

• Network Address: Introduzca la dirección IP que permitirá el control en red del sistema GC a través de Thermo Scientific CDS.

TRACE 1300 se suministra con una dirección IP predeterminada que quizá no sea la adecuada en la red local donde se instala el sistema GC. Para cambiar los valores predeterminados, solicite al administrador de red la dirección IP, la máscara de subred y, en su caso, el puerto al que deben asignarse.

– La dirección IP es un número con cuatro campos de tres dígitos (por ejemplo, 192.168.127.10) que le proporcionará el administrador de red.

Page 100: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSFicha Configuration General

66 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

• Advanced: Pulse este botón para abrir la ventana Advanced LAN Setting, donde podrá configurar parámetros avanzados de comunicación en la red local.

– Port No: Especifica el número de puerto.

– Timeout (ms): Especifica el intervalo de espera en milisegundos. Por lo general, los dos valores predeterminados son 500 y 2551 respectivamente.

Options

Este campo incluye las siguientes opciones:

• Pressure Unit: Elija una unidad de presión en la lista desplegable: psi, kPa o bar.

• Casilla Lock GC input during run, si no se desean entradas desde GC durante el análisis.

Handshaking

Para configurar las señales procedentes de dispositivos externos, como muestreadores automáticos o espectrómetros de masas, durante el análisis. Para que los dispositivos funcionen de forma correcta es preciso indicar el modo en que cambia la señal.

• Remote Start In: Permite a otro dispositivo poner en marcha el sistema GC. Las opciones son L to H (de bajo a alto) o H to L (de alto a bajo). Para los muestreadores automáticos AI 1310/AS 1310 o AI 3000/AS 3000, debe seleccionar H to L.

• End of Run Out: Indica a otro dispositivo el fin del ciclo. Las opciones son L to H (de bajo a alto) o H to L (de alto a bajo).

• Inhibit Ready: Retrasa el estado “listo” hasta que el sistema GC recibe una señal de otro dispositivo. Las opciones son L (bajo), H (alto) o Neither (ninguno).

• GC Ready Out: Indica a otro dispositivo que el sistema GC está listo. Las opciones son L (bajo) o H (alto).

• Start of Run Out: Indica a otro dispositivo el inicio del ciclo. Las opciones son L to H (de bajo a alto) o H to L (de alto a bajo).

• Prep Run Out: Indica a otro dispositivo que el sistema GC se está preparando para un ciclo. Las opciones son L (bajo) o H (alto).

Page 101: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSFicha Configuration Inlets

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 67

Ficha Configuration InletsUtilice esta ficha para seleccionar los inyectores instalados en el sistema GC, así como el gas portador utilizado. Vea la Figura 79.

Figura 79. Ventana de configuración: Ficha Inlets

Esta ficha incluye los siguientes campos:

• Inlets

• Options

Inlets

Este campo incluye las siguientes opciones:

• Inlet Type: Elija el módulo inyector delantero/trasero instalado en el sistema GC.

– Front: Elija una opción: None, S/SL, S/SL Backflush, PTV o PTV Backflush.

– Back: Elija una opción: None, S/SL, S/SL Backflush, PTV o PTV Backflush.

– Carrier Gas: Elija el tipo de gas portador empleado para alimentar el módulo inyector delantero/trasero.

– Front: Elija una opción: Helium, Hydrogen, Nitrogen, Argon o Argon/Methane.

– Back: Elija una opción: Helium, Hydrogen, Nitrogen, Argon o Argon/Methane.

Options

Marque la casilla Hydrogen sensor si el sistema GC cuenta con sensor de hidrógeno.

Page 102: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSFicha Configuration Detectors

68 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Ficha Configuration DetectorsUtilice esta ficha para configurar los detectores que utilizará con TRACE 1300. Vea la Figura 80.

Figura 80. Ventana de configuración: Ficha Detectors

Si cambia la configuración de detectores, no olvide reconfigurar aquí el sistema TRACE 1300. Los detectores elegidos aquí generarán páginas relacionadas y se enumerarán en Detector Events, en la Página Run Table.

Esta ficha incluye los siguientes campos:

• Detector and Data Channels

• Options

Detector and Data Channels

Este campo incluye las siguientes opciones:

• Detector Type: Elija el módulo detector delantero/trasero instalado en el sistema GC.

– Front: Seleccione el módulo detector delantero (None, FID, ECD, NPD, TCD) instalado en el sistema GC.

– Back: Seleccione el módulo detector trasero (None, FID, ECD, NPD, TCD) instalado en el sistema GC.

• MakeUp Gas: Elija el tipo de gas makeup empleado para los módulos detectores delantero/trasero.

– Front: Elija una opción: Helium, Hydrogen, Nitrogen

– Back: Elija una opción: Helium, Hydrogen, Nitrogen

Page 103: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSFicha Configuration Detectors

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 69

• Sample Rate (Hz): Seleccione el número de puntos de datos que deben tomarse por segundo durante la adquisición.

• Channel Name: Los canales del 1 al 2 son las fuentes de datos conectadas al sistema GC.

Options

Este campo incluye la siguiente opción:

• Line Frequency: Seleccione la frecuencia de la alimentación de CA (50 Hz o 60 Hz) a la que se conecta el sistema GC. La opción de frecuencia de línea indica los valores admisibles de velocidad de barrido.

Page 104: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSFicha Configuration Auxiliary

70 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Ficha Configuration AuxiliaryEstas opciones permiten configurar y utilizar una interfaz auxiliar. Consulte Figura 81.

Figura 81. Ventana de configuración: Ficha Auxiliary

Esta ficha incluye los siguientes campos:

• Auxiliary Control

• Auxiliary Carrier

Auxiliary Control

Las opciones disponibles son:

• Auxiliary Control Module: Marque esta casilla para activar el ajuste de los módulos y opciones de control auxiliar instalados en el sistema GC. Consulte también Página Auxiliary.

• External Events 1- 8: Marque esta casilla para habilitar eventos externos. Consulte también Página Run Table.

• Heater 1 / Heater 2: Utilice la opción Heater 1 si tiene conectado uno de estos dispositivos: Heater 1, Valve Oven y Transfer Line 1. Consulte también Página Auxiliary. Utilice la opción Heater 2 si tiene conectado uno de estos dispositivos: Heater 2, Jet Separation, Open Split y Transfer Line 2. Consulte también Página Auxiliary.

– Heater: Dispositivo que debe utilizarse como interfaz entre el sistema GC y un espectrómetro de masas. Existen dos interfaces auxiliares que pueden utilizarse con el sistema GC: un separador de chorro y un divisor abierto.

Page 105: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSFicha Configuration Auxiliary

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 71

– Valve Oven: Se trata de una zona de calefacción independiente y separada del horno analítico, donde las válvulas se mantienen a temperatura constante para evitar la condensación de analito dentro de ellas. Las válvulas suelen emplearse en los análisis de GC para la introducción de muestras en la columna analítica (válvula de muestreo) o para mejorar la separación de los analitos de otros compuestos de la matriz de la muestra (válvula de conmutación de columna).

– Transfer line: Tubo con calefacción que el efluente de la columna de GC atraviesa antes de entrar en la fuente de iones del detector de MS.

– Jet separator: El separador de chorro también se denomina en ocasiones separador de momento o dispositivo de enriquecimiento. Se utiliza para reducir el caudal de efluente de columna eluido de la columna de GC hasta conseguir uno más bajo que sea compatible con el sistema de vacío del espectrómetro de masas.

– Open split: Una interfaz de divisor abierto se utiliza para reducir el caudal de efluente de columna eluido de la columna de GC hasta conseguir uno más bajo que sea compatible con el sistema de vacío del espectrómetro de masas. La interfaz de divisor abierto suele constar de una línea de transferencia de columna con una línea de transferencia de espectrómetro de masas cerca de ella, o bien insertada en ella. El sistema también puede utilizar gas makeup o de purga adicional para afinar el control de caudal.

• Oven Cryogenics: Marque esta casilla si el sistema de GC tiene instalada la opción criogénica de horno. Consulte también Página Oven.

• Front/Back Inlet Cryogenics: Marque esta casilla si el sistema de GC tiene instalada la opción de entrada criogénica delantera/trasera.

• Cryo Type: Seleccione el tipo de refrigerante de la opción criogénica. Elija entre: Liquid Nitrogen y Carbon Dioxide.

Auxiliary Carrier

Este campo incluye la siguiente opción:

• Auxiliary Carrier Module 1/2: Marque la casilla correspondiente según el módulo de gas portador auxiliar instalado en el sistema GC. Consulte también Página Auxiliary.

Page 106: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSEdición de parámetros de métodos

72 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Edición de parámetros de métodosLos parámetros que han de ajustarse para horno, inyectores y detectores deben adaptarse a la configuración del sistema GC.

Una vez configurado TRACE 1300/1310, ya está listo para ajustar los controles correspondientes al método elegido.

Página OvenEsta página es el editor de métodos para configurar los parámetros del horno. Vea la Figura 82.

Figura 82. Página TRACE 1300 Oven

Esta página incluye los siguientes campos:

• Gráfico de programa de temperatura de horno

• Ramps

• Acquisition Time

• Options

Page 107: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina Oven

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 73

Gráfico de programa de temperatura de horno

Representaciones gráficas del programa de temperatura de horno, incluido cualquier evento posterior al ciclo. Los ejes corresponden a temperatura en grados centígrados y tiempo en minutos. En los ciclos isotérmicos, el ciclo se representa con una línea plana.

Ramps

El programa de temperatura comprende un campo isotérmico inicial seguido de un máximo de 32 rampas lineales. La fila inicial se muestra de forma predeterminada y no puede ocultarse.

Los parámetros de la tabla de tiempos del programa se describen en la Tabla 3.

Tabla 3. Parámetros y botones de las rampas de horno

Columna Función

Botones Ramps Utilice estos botones para agregar o eliminar el número de rampas que se utilizarán en el programa de temperatura del horno. Se trata de la velocidad, en grados centígrados por minuto, a la que el horno del sistema GC se calienta o enfría desde la temperatura inicial o desde la temperatura final de la rampa anterior. Con el botón se agrega de forma automática un nivel de rampa tras la última que aparece en la lista.

Con el botón se elimina el nivel más alto, o bien el que aparece en última posición.

Rate Este campo no está disponible como campo inicial del programa. Introduzca una velocidad de cambio de temperatura en el rango de 0,1-125 °C/min.

Temperature Introduzca un valor de temperatura para el campo isotérmico de la rampa.

• El rango es de 0 a 450 °C.

• El rango es de –50 °C al valor máximo del horno si se ha instalado el sistema criogénico de dióxido de carbono. En caso contrario, el límite inferior es de 0 °C.

• El rango es de -100 °C al valor máximo del horno si se ha instalado el sistema criogénico de nitrógeno líquido. En caso contrario, el límite inferior es de 0 °C.

Hold Time Introduzca el tiempo por el cual la temperatura permanecerá invariable en el rango entre 0,00 y 999,99 min.

Page 108: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina Oven

74 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Acquisition Time

Utilice este campo para ajustar el tiempo del ciclo. Los parámetros de tiempo de adquisición se describen en la Tabla 4.

Options

En este campo se ajustan diversos parámetros del horno. Los parámetros de horno se describen en la Tabla 5.

Tabla 4. Parámetros de tiempo de adquisición

Parámetro Descripción

Oven Run Time

Seleccione esta opción si desea utilizar el tiempo calculado para el programa de horno como tiempo del ciclo. El valor se muestra en el campo adyacente de solo lectura.

Specific Time Seleccione esta opción si desea introducir un tiempo específico para el ciclo. El rango es de 0,01 a 999,99 min.

Tabla 5. Parámetros del campo Options

Parámetro Descripción

Max. Temperature

Introduzca un valor de temperatura máxima del horno entre 0 y 450 °C si no utiliza sistema criogénico. Con sistema criogénico activado, el límite inferior es de –50 °C si emplea dióxido de carbono y de –100 °C si utiliza nitrógeno líquido. Esta entrada controla los valores de temperatura máxima del campo de programa de temperatura.

Prep-run Timeout

Introduzca el periodo de tiempo en que debe producirse la inyección. De no producirse, el cromatógrafo vuelve al estado de espera. El rango es de 0,00 a 999,99 min.

Equilibration Time

Se trata del tiempo necesario para equilibrar la temperatura del horno una vez ajustada o modificada. Introduzca un valor entre 0,00 y 999,99 min.

Ready Delay Ajuste el intervalo de retardo antes de que el sistema GC entre el modo listo para inyección. Introduzca un valor entre 0 y 99,9 min. Este intervalo no puede ser superior al de Prep-run Timeout.

Cryogenics enable

Esta opción se muestra si se seleccionó Oven cryogenics en la sección Instrument Configuration. Consulte “Ficha Configuration Auxiliary” en la página 70. Marque o quite la marca de esta casilla para activar o desactivar el sistema criogénico si se instaló y configuró con CO2 o N2 líquido como refrigerante.

Cryo threshold

Esta opción se muestra si se seleccionó Oven cryogenics en la sección Instrument Configuration. Consulte “Ficha Configuration Auxiliary” en la página 70. Especifique la temperatura a la que el sistema criogénico empieza a administrar refrigerante. Introduzca un valor entre 40 y 200 °C.

Page 109: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina S/SL

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 75

Página S/SLEsta página es el editor de métodos del módulo inyector Split/Splitless delantero/trasero. Vea la Figura 83.

Figura 83. Página S/SL de TRACE 1300.

Esta página incluye los siguientes campos:

• S/SL Mode

• Inlet

• Surge

• Septum Purge

• Carrier Mode

• Carrier Flow

• Carrier Pressure

• Programmed Carrier Flow

• Programmed Carrier Pressure

• Carrier Options

Page 110: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina S/SL

76 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

S/SL Mode

Este parámetro habilita los campos del panel. Las opciones se describen en la Tabla 6.

Inlet

Los parámetros de inyector se ajustan en este campo, común a todos los modos. Los parámetros de inyector se describen en la Tabla 7.

Tabla 6. Opciones de modo S/SL

Opción Función

Split Esta opción solo habilita el campo Inlet. El caudal de portador se divide en el puerto de inyección y el grueso se expulsa por la salida de split del inyector. Utilice este modo de inyección cuando analice concentraciones altas o muestras sin tratar, o bien en casos en que la sensibilidad no tenga la máxima importancia. La salida de split permanece abierta en todo momento. Este método proporciona los picos más estrechos si el gas dividido está bien mezclado.

Splitless Esta opción habilita los campos Inlet y Purge. La salida de split del inyector está cerrada durante la inyección, de modo que la mayor parte de la muestra accede a la columna. Es necesario un efecto solvente para reenfocar los analitos, en particular con los compuestos más volátiles. Para conseguir el efecto solvente puede mantener la columna analítica o la precolumna a una temperatura algo inferior al punto de ebullición del solvente. En este modo, son habituales tiempos de splitless en torno a un minuto.

Splitless w/Surge

Esta opción habilita todos los campos. Funciona igual que la opción Splitless, pero también permite programar un pulso de presión durante la inyección. El pulso comienza en el intervalo de preparación del ciclo y continúa hasta que ha transcurrido el tiempo definido. El pulso de presión se define con más detalle en el siguiente grupo de opciones.

Tabla 7. Parámetros de inyector S/SL (Hoja 1 de 2)

Parámetro Descripción

Temperature Marque la casilla para habilitar el campo adyacente. Introduzca un valor de temperatura de inyector entre 0 y 400 °C.

Split Flow Marque la casilla para habilitar el campo adyacente. Introduzca un valor entre 5 y 1250 ml/min. El valor de Split Ratio se ajusta de modo automático. Además, este valor está controlado por el caudal de columna inicial introducido en el parámetro Carrier mode asociado.

• Si se modifica el caudal, el valor de Split Flow se ajusta para mantener la relación de split. No obstante, si a consecuencia de ello el valor de Split Flow rebasa sus límites, se genera un aviso y es preciso modificar la entrada con un valor válido.

Page 111: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina S/SL

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 77

Surge

Este campo se habilita cuando el valor de S/SL Mode es Splitless o bien Splitless w/Surge. Ajuste en este campo los valores de pulso de presión. Los parámetros de pulso de presión se describen en la Tabla 8.

Split Ratio Este campo se habilita cuando:

• El valor de modo es Split.

• La casilla Split Flow está seleccionada.

• En la opción Carrier mode asociada, el valor de Flow Mode es Constant Flow o bien Programmed Flow.

Esta es la relación entre el caudal dividido hacia la salida de split y el de columna.

Introduzca un valor entre 1 y 12500. La opción Split Flow se ajusta de modo automático.

Splitless Time Este campo se habilita cuando el valor de S/SL Mode es Splitless o bien Splitless w/Surge. Especifique el tiempo que la válvula divisora permanece cerrada tras la inyección en modo Splitless. Introduzca un valor entre 0,00 y 999,99 min.

El tiempo empieza a contar al iniciarse el ciclo. Durante este periodo, la mayor parte de la muestra se transfiere del inyector a la columna. La salida de split vuelve a abrirse cuando finaliza el periodo de splitless definido, para eliminar el exceso de vapor de disolvente.

Tabla 7. Parámetros de inyector S/SL (Hoja 2 de 2)

Parámetro Descripción

SplitRatioSplitFlow

ColumnFlow----------------------------------=

Tabla 8. Parámetros pulso de presión S/SL

Parámetro Descripción

Surge Pressure Presión aplicada durante el tiempo de splitless para generar un pulso de caudal en el inyector que acelere la transferencia de la muestra. Según el análisis, puede estrechar los picos más cercanos al punto de ebullición del disolvente, donde la trampa criogénica resulta ineficaz y el efecto solvente es el principal mecanismo de reenfoque.

Introduzca un valor entre 5 y 1000 kPa (0,725-145 psi; 0,05-10 bares).

Surge Duration Tiempo durante el que se mantiene activo el pulso de presión. Introduzca un valor de 0,00 a 999,99 min. Por lo general, se ajusta para que coincida con el valor de Splitless time.

Page 112: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina S/SL

78 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Septum Purge

Este campo permite controlar la purga del septum del inyector. Se emplea para barrer la parte inferior del septum y reducir la contaminación de los analitos de la muestra. De este modo se evita la contaminación cruzada entre ciclos. La purga del septum evita además la contaminación del inyector por sangrado del septum. Ajuste en este campo los valores de purga.

Los parámetros de purga se describen en la Tabla 9.

Carrier Mode

En este campo puede seleccionar el modo de caudal del gas portador.

La opción elegida aquí controla los parámetros disponibles en los campos Carrier Flow/ Carrier Pressure y Ramps.

• Constant Flow: Está disponible un único campo Flow, con una casilla de verificación para activarlo o desactivarlo. El gráfico muestra una línea horizontal en el caudal indicado. Consulte Carrier Flow.

• Constant Pressure: Está disponible un único campo Pressure, con una casilla de verificación para activarlo o desactivarlo. El gráfico muestra una línea horizontal en la presión indicada. Consulte Carrier Pressure.

• Programmed Pressure: Se muestran los campos de programación de la presión. El gráfico representa las rampas del programa. Consulte Programmed Carrier Flow.

• Programmed Flow: Se muestran los campos de programación del caudal. El gráfico representa las rampas del programa. Consulte Programmed Carrier Pressure.

Carrier Flow

Utilice este campo para ajustar el caudal si seleccionó Constant Flow para el modo del gas portador.

Marque la casilla Flow para habilitar el campo correspondiente. Introduzca un valor entre 0,1 y 100 ml/min. Si quita la marca de la casilla el campo se desactiva y el gráfico representa una línea horizontal de caudal cero.

Tabla 9. Parámetros de purga de S/SL

Parámetro Descripción

Purge Flow Este campo indica el caudal continuo con el que se purga el septum.

Constant Septum Purge

Marque la casilla para purgar el septum de forma continua con un caudal de purga.

Stop Purge Time Este campo se habilita cuando la casilla Constant Septum Purge no está seleccionada. Puede introducir un intervalo de tiempo para el cese de la purga de septum. El rango es de 0,00 a 999,99 min.

Page 113: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina S/SL

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 79

Carrier Pressure

Utilice este campo para ajustar el caudal si seleccionó Constant Pressure para el modo del gas portador.

Marque la casilla Pressure para habilitar el campo correspondiente. Introduzca un valor entre 5 y 1000 kPa (0,725-145 psi; 0,05-10 bares). Si quita la marca de la casilla el campo se desactiva y el gráfico representa una línea horizontal de presión cero.

Programmed Carrier Flow

Utilice este campo para ajustar un programa de caudal si seleccionó Programmed Flow para el modo del gas portador. Vea la Figura 84.

Figura 84. Programmed Carrier Flow

Este modo permite programar un campo de caudal inicial constante seguido de un máximo de tres rampas.

Marque la casilla Flow enable para habilitar el caudal.

Para activar el número de rampas de caudal requeridas, pulse el botón .

De forma inversa, para reducir el número de filas en pantalla, pulse el botón según sea preciso.

La fila inicial se muestra de forma predeterminada y no puede ocultarse.

Si desea inhabilitar las rampas de forma temporal, quite la marca de la casilla Flow enable. De este modo se desactiva la columna de caudal y el programa se ignora, como se muestra en el gráfico, que representa una línea horizontal de caudal cero. Los valores introducidos se conservan y para reactivarlos basta con volver a seleccionar la casilla de verificación.

Los parámetros de la tabla de tiempos son los siguientes:

• Rate: Introduzca un valor de velocidad de cambio de caudal entre 0,001 y 100 ml/min2. Este campo no está disponible como campo inicial del programa.

• Flow: Introduzca un valor en el campo de caudal constante, entre 0,001 y 100 ml/min.

• Hold Time: Introduzca el periodo de tiempo en que debe mantenerse el caudal. El rango es de 0,00 a 999,99 min.

Page 114: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina S/SL

80 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Programmed Carrier Pressure

Utilice este campo para ajustar un programa de presión si seleccionó Programmed Pressure para el modo del gas portador. Vea la Figura 85.

Figura 85. Programmed Carrier Pressure

Este modo permite programar un campo de presión inicial constante seguido de un máximo de tres rampas.

Marque la casilla Pressure enable para habilitar la presión.

Para activar el número de rampas de presión requeridas, pulse el botón .

De forma inversa, para reducir el número de filas en pantalla, pulse el botón según sea preciso.

La fila inicial se muestra de forma predeterminada y no puede ocultarse. Si desea inhabilitar las rampas de presión de forma temporal, quite la marca de la casilla Pressure enable. De este modo se desactiva la columna de presión y el programa se ignora, como se muestra en el gráfico, que representa una línea horizontal de presión cero. Los valores introducidos se conservan y para reactivarlos basta con volver a seleccionar la casilla de verificación.

Los parámetros de la tabla de tiempos son los siguientes.

• Rate: Introduzca un valor de velocidad de cambio de presión entre 0,01 y 1000 kPa/min (0,001-145 psi; 0,0001-10 bares). Este campo no está disponible como campo inicial del programa.

• Pressure: Introduzca un valor en el campo de presión constante entre 5 y 1000 kPa/min. (0,725-145 psi; 0,05-10 bares).

• Hold Time: Introduzca el periodo de tiempo en que debe mantenerse la presión. El rango es de 0,00 a 999,99 min.

Page 115: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina S/SL

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 81

Carrier Options

Este campo incluye los siguientes parámetros:

• Vacuum Compensation: Marque la casilla para activar la función de compensación de vacío. Utilice esta opción solo si TRACE 1300 está conectado a un detector de espectrómetro de masas. Si la casilla no está seleccionada, los cálculos se realizan para un detector GC normal, que suele estar a presión atmosférica.

• Gas Saver: Marque la casilla para activar la función de este campo. Las opciones de ahorro de gas reducen del consumo, en particular cuando se emplea un caudal de split considerable. Se ajusta para su activación en un momento determinado posterior a la inyección, con el fin de conservar gas.

Los parámetros de ahorro de gas se describen en la Tabla 10.

Tabla 10. Parámetros de ahorro de gas

Parámetro Descripción

Gas Saver Flow Introduzca un valor de caudal de ahorro de gas entre 5 y 500 ml/min.

Gas Saver Time Se trata del tiempo (dentro del ciclo) en que se activa la función de ahorro de gas. Introduzca un valor entre 0,00 y 999,99 min.

Page 116: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina Backflush de S/SL

82 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Página Backflush de S/SLEsta página es el editor de métodos del módulo inyector Split/Splitless delantero/trasero con Backflush (inversión de flujo). Vea la Figura 86.

Figura 86. Página S/SLBKF de TRACE 1300.

Esta página incluye los siguientes campos:

• S/SL Mode

• Inlet

• Surge

• Septum Purge

• Carrier Mode

• Carrier Flow

• Carrier Pressure

• Programmed Carrier Flow

• Programmed Carrier Pressure

• Carrier Options

• Backflush

Page 117: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina Backflush de S/SL

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 83

S/SL Mode

Este parámetro habilita los campos del panel. Las opciones se describen en la Tabla 11.

Inlet

Los parámetros de inyector se ajustan en este campo, común a todos los modos. Los parámetros de inyector SSL se describen en la Tabla 12.

Tabla 11. Opciones de modo S/SL Backflush

Opción Función

Split Esta opción solo habilita el campo Inlet. El caudal de portador se divide en el puerto de inyección y el grueso se expulsa por la salida de split del inyector. Utilice este modo de inyección cuando analice concentraciones altas o muestras sin tratar, o bien en casos en que la sensibilidad no tenga la máxima importancia. La salida de split permanece abierta en todo momento. Este método proporciona los picos más estrechos si el gas dividido está bien mezclado.

Splitless Esta opción habilita los campos Inlet y Purge. La salida de split del inyector está cerrada durante la inyección, de modo que la mayor parte de la muestra accede a la columna. Es necesario un efecto solvente para reenfocar los analitos, en particular con los compuestos más volátiles. Para conseguir el efecto solvente puede mantener la columna analítica o la precolumna a una temperatura algo inferior al punto de ebullición del solvente. En este modo, son habituales tiempos de splitless en torno a un minuto.

Splitless w/Surge

Esta opción habilita todos los campos. Funciona igual que la opción Splitless, pero también permite programar un pico de intensidad durante la inyección. El pulso comienza en el intervalo de preparación del ciclo y continúa hasta que ha transcurrido el tiempo definido. El pulso de presión se define con más detalle en el siguiente grupo de opciones.

Tabla 12. Parámetros de inyector S/SL Backflush (Hoja 1 de 2)

Parámetro Descripción

Temperature Marque la casilla para habilitar el campo adyacente. Introduzca un valor de temperatura de entrada entre 0 y 400 °C.

Split Flow Marque la casilla para habilitar el campo adyacente. Introduzca un valor entre 5 y 1250 ml/min. El valor de Split Ratio se ajusta de modo automático. Además, este valor está controlado por el caudal de columna inicial introducido en el parámetro Carrier mode asociado.

• Si se modifica el caudal, el valor de Split Flow se ajusta para mantener la relación de split. No obstante, si a consecuencia de ello el valor de Split Flow rebasa sus límites, se genera un aviso y es preciso modificar la entrada con un valor válido.

Page 118: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina Backflush de S/SL

84 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Surge

Este campo se habilita cuando el valor de S/SL Mode es Splitless o bien Splitless w/Surge. Ajuste en este campo los valores de pulso de presión. Los parámetros de pulso de presión se describen en la Tabla 13.

Split Ratio Este campo se habilita cuando:

• El valor de modo es Split.

• La casilla Split Flow está seleccionada.

• En la opción Carrier mode asociada, el valor de Flow Mode es Constant Flow o bien Programmed Flow.

Esta es la relación entre el caudal dividido hacia la salida de split y el de columna.

Introduzca un valor entre 1 y 12500. La opción Split Flow se ajusta de modo automático.

Splitless Time Este campo se habilita cuando el valor de S/SL Mode es Splitless o bien Splitless w/Surge. Especifique el tiempo que la válvula divisora permanece cerrada tras la inyección en modo Splitless. Introduzca un valor entre 0,00 y 999,99 min.

El tiempo empieza a contar al iniciarse el ciclo. Durante este periodo, la mayor parte de la muestra se transfiere del inyector a la columna. La salida de split vuelve a abrirse cuando finaliza el periodo de splitless definido, para eliminar el exceso de vapor de disolvente.

Tabla 12. Parámetros de inyector S/SL Backflush (Hoja 2 de 2)

Parámetro Descripción

SplitRatioSplitFlow

ColumnFlow----------------------------------=

Tabla 13. Parámetros de pulso de presión S/SL Backflush

Parámetro Descripción

Surge Pressure

Presión aplicada durante el tiempo de splitless para generar un pulso de caudal en el inyector que acelere la transferencia de la muestra. Según el análisis, puede estrechar los picos más cercanos al punto de ebullición del disolvente, donde la trampa criogénica resulta ineficaz y el efecto solvente es el principal mecanismo de reenfoque.

Introduzca un valor entre 5 y 1000 kPa (0,725-145 psi; 0,05-10 bares).

Surge Duration

Tiempo durante el que se mantiene activo el pulso de presión. Introduzca un valor de 0,00 a 999,99 min. Por lo general, se ajusta para que coincida con el valor de Splitless time.

Page 119: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina Backflush de S/SL

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 85

Septum Purge

Este campo permite controlar la purga del septum del inyector. Se emplea para barrer la parte inferior del septum y reducir la contaminación de los analitos de la muestra. De este modo se evita la contaminación cruzada entre ciclos. La purga del septum evita además la contaminación del inyector por sangrado del septum. Ajuste en este campo los valores de purga.

Los parámetros de purga se describen en la Tabla 14.

Carrier Mode

En este campo puede seleccionar el modo de caudal del gas portador.

La opción elegida aquí controla los parámetros disponibles en los campos Carrier Flow/ Carrier Pressure y Ramps.

• Constant Flow: Está disponible un único campo Flow, con una casilla de verificación para activarlo o desactivarlo. El gráfico muestra una línea horizontal en el caudal indicado. Vea la Carrier Flow.

• Constant Pressure: Está disponible un único campo Pressure, con una casilla de verificación para activarlo o desactivarlo. El gráfico muestra una línea horizontal en la presión indicada. Vea la Carrier Pressure.

• Programmed Pressure: Se muestran los campos de programación de la presión. El gráfico representa las rampas del programa. Vea la Programmed Carrier Flow.

• Programmed Flow: Se muestran los campos de programación del caudal. El gráfico representa las rampas del programa. Vea la Programmed Carrier Pressure.

Carrier Flow

Utilice este campo para ajustar el caudal si seleccionó Constant Flow para el modo del gas portador.

Marque la casilla Flow para habilitar el campo correspondiente. Introduzca un valor entre 0,1 y 100 ml/min. Si quita la marca de la casilla el campo se desactiva y el gráfico representa una línea horizontal de caudal cero.

Tabla 14. Parámetros de purga de S/SL Backflush

Parámetro Descripción

Purge Flow Este campo indica el caudal continuo con el que se purga el septum.

Constant Septum Purge

Marque la casilla para purgar el septum de forma continua con un caudal de purga.

Stop Purge Time Este campo se habilita cuando la casilla Constant Septum Purge no está seleccionada. Puede introducir un intervalo de tiempo para el cese de la purga de septum. El rango es de 0,00 a 999,99 min.

Page 120: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina Backflush de S/SL

86 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Carrier Pressure

Utilice este campo para ajustar el caudal si seleccionó Constant Pressure para el modo del gas portador.

Marque la casilla Pressure para habilitar el campo correspondiente. Introduzca un valor entre 5 y 1000 kPa (0,725-145 psi; 0,05-10 bares). Si quita la marca de la casilla el campo se desactiva y el gráfico representa una línea horizontal de presión cero.

Programmed Carrier Flow

Utilice este campo para ajustar un programa de caudal si seleccionó Programmed Flow para el modo del gas portador. Vea la Figura 87.

Figura 87. Programmed Carrier Flow

Este modo permite programar un campo de caudal inicial constante seguido de un máximo de tres rampas.

Marque la casilla Flow enable para habilitar el caudal.

Para activar el número de rampas de caudal requeridas, pulse el botón .

De forma inversa, para reducir el número de filas en pantalla, pulse el botón según sea preciso.

La fila inicial se muestra de forma predeterminada y no puede ocultarse.

Si desea inhabilitar las rampas de forma temporal, quite la marca de la casilla Flow enable. De este modo se desactiva la columna de caudal y el programa se ignora, como se muestra en el gráfico, que representa una línea horizontal de caudal cero. Los valores introducidos se conservan y para reactivarlos basta con volver a seleccionar la casilla de verificación.

Los parámetros de la tabla de tiempos son los siguientes:

• Rate: Introduzca un valor de velocidad de cambio de caudal entre 0,001 y 100 ml/min2. Este campo no está disponible como campo inicial del programa.

• Flow: Introduzca un valor en el campo de velocidad de caudal constante, entre 0,001 y 100 ml/min.

• Hold Time: Introduzca el periodo de tiempo en que debe mantenerse el caudal. El rango es de 0,00 a 999,99 min.

Page 121: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina Backflush de S/SL

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 87

Programmed Carrier Pressure

Utilice este campo para ajustar un programa de presión si seleccionó Programmed Pressure para el modo del gas portador. Vea la Figura 88.

Figura 88. Programmed Carrier Pressure

Este modo permite programar un campo de presión inicial constante seguido de un máximo de tres rampas.

Marque la casilla Pressure enable para habilitar la presión.

Para activar el número de rampas de presión requeridas, pulse el botón .

De forma inversa, para reducir el número de filas en pantalla, pulse el botón según sea preciso.

La fila inicial se muestra de forma predeterminada y no puede ocultarse. Si desea inhabilitar las rampas de presión de forma temporal, quite la marca de la casilla Pressure enable. De este modo se desactiva la columna de presión y el programa se ignora, como se muestra en el gráfico, que representa una línea horizontal de presión cero. Los valores introducidos se conservan y para reactivarlos basta con volver a seleccionar la casilla de verificación.

Los parámetros de la tabla de tiempos son los siguientes.

• Rate: Introduzca un valor de velocidad de cambio de presión entre 0,01 y 1000 kPa/min (0,001-145 psi; 0,0001-10 bares). Este campo no está disponible como campo inicial del programa.

• Rate: Introduzca un valor de velocidad de cambio de presión entre 5 y 1000 kPa/min. (0,725-145 psi; 0,05-10 bares).

• Hold Time: Introduzca el periodo de tiempo en que debe mantenerse la presión. El rango es de 0,00 a 999,99 min.

Page 122: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina Backflush de S/SL

88 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Carrier Options

Este campo incluye los siguientes parámetros:

• Vacuum Compensation: Marque la casilla para activar la función de compensación de vacío. Utilice esta opción solo si TRACE 1300 está conectado a un detector de espectrómetro de masas. Si la casilla no está seleccionada, los cálculos se realizan para un detector GC normal, que suele estar a presión atmosférica.

• Gas Saver: Marque la casilla para activar la función de este campo. Las opciones de ahorro de gas reducen del consumo, en particular cuando se emplea un caudal de split considerable. Se ajusta para su activación en un momento determinado posterior a la inyección, con el fin de conservar gas.

Los parámetros se describen en la Tabla 15.

Backflush

Utilice este campo para ajustar los parámetros de Backflush. Se explican en la Tabla 16.

Tabla 15. Parámetros de ahorro de gas

Parámetro Descripción

Gas Saver Flow Introduzca un valor de caudal de ahorro de gas entre 5 y 500 ml/min.

Gas Saver Time Se trata del tiempo (dentro del ciclo) en que se activa la función de ahorro de gas. Introduzca un valor entre 0,00 y 999,99 min.

Tabla 16. Parámetros de S/SL Backflush

Parámetro Descripción

Backflush Enable Marque la casilla para habilitar el campo de Backflush.

Backflush Start Ajuste aquí el tiempo de inicio del Backflush.

Backflush Duration Elija entre las opciones GC Run Time y Specific Time.

• GC Run Time: Seleccione esta opción si desea utilizar el tiempo calculado para el programa de horno como tiempo del ciclo.

• Specific Time: Seleccione esta opción si desea introducir un tiempo específico para el ciclo.

Duración Este parámetro está activado cuando se selecciona Specific Time. Ajuste aquí la duración del Backflush entre 0,00 y 999,99 min.

Page 123: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 89

Página PTVEsta página es el editor de métodos del módulo inyector de evaporación a temperatura programable (PTV) delantero/trasero. Vea la Figura 89.

Figura 89. Página PTV de TRACE 1300.

Esta página incluye los siguientes campos:

• PTV Mode

• Inlet

• Surge

• Septum Purge

• Carrier Mode

• Carrier Flow

• Carrier Pressure

• Programmed Carrier Flow

• Programmed Carrier Pressure

• Carrier Options

• Injection Phases

• Cryogenics

Page 124: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV

90 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

PTV Mode

La opción Mode controla la disponibilidad de los parámetros de este panel. Seleccione la entrada adecuada a su inyector.

• Todos los modos de inyección PTV permiten llevar a cabo rampas de temperatura programables, en que se varía la temperatura en los tiempos e incrementos especificados. La selección del modo PTV activa diversas opciones del campo Injection Phases.

• Todos los modos de inyección CT son modos de temperatura constante (isotérmicos), en que se opera a valores de temperatura definidos e incrementos de tiempos establecidos. La selección de los modos de CT desactiva las opciones del campo Injection Phases.

• El modo de inyección On-Column se selecciona para utilizar PTV de forma parecida al inyector on-column.

Las opciones se describen en la siguiente tabla.

Tabla 17. Modos de PTV

Modo de PTV Descripción

PTV Split El caudal de portador se divide en el puerto de inyección y el grueso se expulsa por la salida de split del inyector. La salida de split permanece abierta en todo momento.

PTV Splitless Cierra la salida de split durante la inyección para enviar toda la muestra a la columna. En este modo, son habituales tiempos de splitless en torno a un minuto.

PTV Large Volume Elimina el solvente antes de que la muestra pase a la columna.

CT Split Realiza una operación tradicional isotérmica en split. El caudal de portador se divide en el puerto de inyección y el grueso se expulsa por la salida de split del inyector. La salida de split permanece abierta en todo momento.

CT Splitless Realiza una operación tradicional isotérmica en splitless. La salida de split está cerrada durante la inyección para enviar toda la muestra a la columna. En este modo, son habituales tiempos en torno a un minuto.

CT Splitless w/surge Funciona igual que la opción Splitless, pero también permite programar un pulso de presión durante la inyección. El pulso comienza en el intervalo de preparación del ciclo y continúa hasta que ha transcurrido el tiempo definido. El pulso de presión se define con más detalle en el siguiente grupo de opciones.

On-Column Utiliza el inyector PTV como inyector on-column. El inyector se calienta mediatne una rampa de temperatura automática que emula a la del horno. Cuando utilice esta técnica, ajuste la temperatura inicial del horno por debajo del punto de ebullición de solvente.

Page 125: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 91

Inlet

Los parámetros de inyector se definen en este campo y se describen en la Tabla 18.

Tabla 18. Parámetros de inyector PTV (Hoja 1 de 2)

Parámetro Descripción

Temperature Marque la casilla para habilitar el campo adyacente. Si dispone de opción criogénica, introduzca un valor de temperatura de entrada entre -50 y 450 °C (con dióxido de carbono) o entre -100 y 450 °C (con nitrógeno líquido). En caso contrario, el límite inferior es de 0 °C. En el uso no criogénico, esta temperatura suele fijarse justo por encima del punto de ebullición del solvente. La temperatura óptima de los distintos métodos analíticos varía según el método y los requisitos de la muestra. La entrada cuenta además con una casilla de verificación para habilitarla y deshabilitarla, de modo que el ajuste de temperatura puede desactivarse sin que ello afecte al punto de ajuste (por lo general, esto resulta útil en procedimientos de solución de anomalías).

Split Flow Marque la casilla para habilitar el campo adyacente. Introduzca un valor entre 5 y 1250 ml/min. El valor de Split Ratio se ajusta de modo automático. Además, este valor está controlado por el caudal de columna inicial introducido en el parámetro Carrier mode asociado.

• Si se modifica el caudal, el valor de Split Flow se ajusta para mantener la relación de split. No obstante, si a consecuencia de ello el valor de Split Flow rebasa sus límites, se genera un aviso y es preciso modificar la entrada con un valor válido.

Split Ratio Este campo se habilita cuando:

• El valor de modo es PTV Split o bien CT Split.

• La casilla Split Flow está seleccionada.

• En la opción Carrier mode asociada, el valor de Flow Mode es Constant Flow o bien Programmed Flow.

Esta es la relación entre el caudal dividido hacia la salida de split y el de columna.

Introduzca un valor entre 1 y 12500. La opción Split Flow se ajusta de modo automático.

SplitRatioSplitFlow

ColumnFlow----------------------------------=

Page 126: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV

92 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Surge

Este campo se habilita cuando el valor de modo es CT Splitless w/Surge. Los parámetros se describen en la Tabla 19.

Septum Purge

Este campo permite controlar la purga del septum del inyector. Se emplea para barrer la parte inferior del septum y reducir la contaminación de los analitos de la muestra. De este modo se evita la contaminación cruzada entre ciclos. La purga del septum evita además la contaminación del inyector por sangrado del septum. Ajuste en este campo los valores de purga.

Splitless Time Este campo se habilita cuando el valor de S/SL Mode es Splitless o bien Splitless w/Surge. Especifique el tiempo que la válvula divisora permanece cerrada tras la inyección en modo Splitless. El tiempo empieza a contar al iniciarse el ciclo. Durante este periodo, la mayor parte de la muestra se transfiere del inyector a la columna. La salida de split vuelve a abrirse cuando finaliza el periodo de splitless definido, para eliminar el exceso de vapor de disolvente. Introduzca un valor entre 0,00 y 999,99 min.

Splitless Time (cont.)

Este campo se deshabilita cuando el valor de modo es PTV Split o bien CT Split. Se trata del tiempo de cierre de la válvula de split. Introduzca un valor entre 0,00 y 999,99 min.

Tabla 18. Parámetros de inyector PTV (Hoja 2 de 2)

Parámetro Descripción

Tabla 19. Parámetros de pulso de presión PTV

Parámetro Descripción

Surge Pressure El modo CT Splitless w/Surge permite incrementar la presión de entrada que se aplica durante la inyección. Sirve para reducir el volumen de la nube de vapor creada al evaporar la muestra inyectada, lo que puede mejorar la resolución de los analitos separados.

Introduzca un valor entre 5 y 1000 kPa (0,725-145 psi; 0,05-10 bares).

Surge Duration Se trata de la duración del incremento de la presión de entrada, durante el que los analitos se transfieren a la columna con mayor rapidez. Introduzca un valor de 0,00 a 999,99 min.

Page 127: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 93

Los parámetros de purga se describen en la Tabla 20.

Carrier Mode

En este campo puede seleccionar el modo de caudal del gas portador.

La opción elegida aquí controla los parámetros disponibles en los campos Carrier Flow/ Carrier Pressure y Ramps.

• Constant Flow: Está disponible un único campo Flow, con una casilla de verificación para activarlo o desactivarlo. El gráfico muestra una línea horizontal en el caudal indicado. Vea la Carrier Flow.

• Constant Pressure: Está disponible un único campo Pressure, con una casilla de verificación para activarlo o desactivarlo. El gráfico muestra una línea horizontal en la presión indicada. Vea la Carrier Pressure.

• Programmed Pressure: Se muestran los campos de programación de la presión. El gráfico representa las rampas del programa. Vea la Programmed Carrier Flow.

• Programmed Flow: Se muestran los campos de programación del caudal. El gráfico representa las rampas del programa. Vea la Programmed Carrier Pressure.

Carrier Flow

Utilice este campo para ajustar el caudal si seleccionó Constant Flow para el modo del gas portador.

Marque la casilla Flow para habilitar el campo correspondiente. Introduzca un valor entre 0,1 y 100 ml/min. Si quita la marca de la casilla el campo se desactiva y el gráfico representa una línea horizontal de caudal cero.

Carrier Pressure

Utilice este campo para ajustar el caudal si seleccionó Constant Pressure para el modo del gas portador.

Marque la casilla Pressure para habilitar el campo correspondiente. Introduzca un valor entre 5 y 1000 kPa (0,725-145 psi; 0,05-10 bares). Si quita la marca de la casilla el campo se desactiva y el gráfico representa una línea horizontal de presión cero.

Tabla 20. Parámetros de purga de septum de PTV

Parámetro Descripción

Purge Flow Este campo indica el caudal continuo con el que se purga el septum.

Constant Septum Purge

Marque la casilla para purgar el septum de forma continua con un caudal de purga.

Stop Purge Time Este campo se habilita cuando la casilla Constant Septum Purge no está seleccionada. Puede introducir un intervalo de tiempo para el cese de la purga de septum. El rango es de 0,00 a 999,99 min.

Page 128: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV

94 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Programmed Carrier Flow

Utilice este campo para ajustar un programa de caudal si seleccionó Programmed Flow para el modo del gas portador. Vea la Figura 90.

Figura 90. Programmed Carrier Flow

Este modo permite programar un campo de caudal inicial constante seguido de un máximo de tres rampas.

Marque la casilla Flow enable para habilitar el caudal.

Para activar el número de rampas de caudal requeridas, pulse el botón .

De forma inversa, para reducir el número de filas en pantalla, pulse el botón según sea preciso.

La fila inicial se muestra de forma predeterminada y no puede ocultarse.

Si desea inhabilitar las rampas de forma temporal, quite la marca de la casilla Flow enable. De este modo se desactiva la columna de caudal y el programa se ignora, como se muestra en el gráfico, que representa una línea horizontal de caudal cero. Los valores introducidos se conservan y para reactivarlos basta con volver a seleccionar la casilla de verificación.

Los parámetros de la tabla de tiempos son los siguientes:

• Rate: Introduzca un valor de velocidad de cambio de caudal entre 0,001 y 100 ml/min2. Este campo no está disponible como campo inicial del programa.

• Flow: Introduzca un valor en el campo de velocidad de caudal constante, entre 0,001 y 100 ml/min.

• Hold Time: Introduzca el periodo de tiempo en que debe mantenerse el caudal. El rango es de 0,00 a 999,99 min.

Page 129: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 95

Programmed Carrier Pressure

Utilice este campo para ajustar un programa de presión si seleccionó Programmed Pressure para el modo del gas portador. Vea la Figura 91.

Figura 91. Programmed Carrier Pressure

Este modo permite programar un campo de presión inicial constante seguido de un máximo de tres rampas.

Marque la casilla Pressure enable para habilitar la presión.

Para activar el número de rampas de presión requeridas, pulse el botón .

De forma inversa, para reducir el número de filas en pantalla, pulse el botón según sea preciso.

La fila inicial se muestra de forma predeterminada y no puede ocultarse. Si desea inhabilitar las rampas de presión de forma temporal, quite la marca de la casilla Pressure enable. De este modo se desactiva la columna de presión y el programa se ignora, como se muestra en el gráfico, que representa una línea horizontal de presión cero. Los valores introducidos se conservan y para reactivarlos basta con volver a seleccionar la casilla de verificación.

Los parámetros de la tabla de tiempos son los siguientes.

• Rate: Introduzca un valor de velocidad de cambio de presión entre 0,01 y 1000 kPa/min (0,001-145 psi; 0,0001-10 bares). Este campo no está disponible como campo inicial del programa.

• Rate: Introduzca un valor de velocidad de cambio de presión entre 5 y 1000 kPa/min. (0,725-145 psi; 0,05-10 bares).

• Hold Time: Introduzca el periodo de tiempo en que debe mantenerse la presión. El rango es de 0,00 a 999,99 min.

Page 130: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV

96 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Carrier Options

Este campo incluye los siguientes parámetros:

• Vacuum Compensation: Marque la casilla para activar la función de compensación de vacío. Utilice esta opción solo si TRACE 1300 está conectado a un detector de espectrómetro de masas. Si la casilla no está seleccionada, los cálculos se realizan para un detector GC normal, que suele estar a presión atmosférica.

• Gas Saver: Marque la casilla para activar la función de este campo. Las opciones de ahorro de gas reducen del consumo, en particular cuando se emplea un caudal de split considerable. Se ajusta para su activación en un momento determinado posterior a la inyección, con el fin de conservar gas.

Los parámetros se describen en la Tabla 21.

Injection Phases

Este campo solo se habilita para las opciones de modo PTV. Los campos se activan según las selecciones realizadas en el campo Options. Es posible que se apliquen otras restricciones, que se describirán según proceda.

Existen cuatro fases: inyección, evaporación, transferencia y limpieza, que se disponen en forma de tabla.

Consulte los detalles en las siguientes tablas.

Tabla 21. Parámetros de ahorro de gas

Parámetro Descripción

Gas Saver Flow Introduzca un valor de caudal de ahorro de gas entre 5 y 500 ml/min.

Gas Saver Time Se trata del tiempo (dentro del ciclo) en que se activa la función de ahorro de gas. Introduzca un valor entre 0,00 y 999,99 min.

Tabla 22. Fases de inyección PTV (1) (Hoja 1 de 2)

Fases Descripción

Injection Utilice esta opción para la rampa de presión de la inyección. Disponible solo en los modos PTV Splitless y PTV Large Volume.

Evaporation Se habilita cuando la casilla Evaporation phase está marcada.

Este grupo de opciones permite especificar los controles de evaporación de disolvente: presión (solo PTV Splitless), rampa, temperatura y tiempo en minutos. Ajuste la temperatura de evaporación del disolvente; ajuste la velocidad a la que se alcanza la temperatura de evaporación.

Page 131: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 97

Transfer Este grupo de opciones permite especificar los controles de transferencia de la muestra a la columna: presión (solo PTV Splitless), rampa, temperatura y tiempo en minutos. Especifique la presión si está disponuible. Ajuste la velocidad (en °C/s) a la que se alcanza la temperatura de transferencia de muestra. Ajuste la temperatura de transferencia de la muestra a la columna. Ajuste el tiempo (en minutos) que debe mantenerse la temperatura de transferencia.

Cleaning Se habilita cuando la casilla Cleaning phase está marcada.

Ajuste la velocidad a la que se alcanza la temperatura de limpieza. Ajuste la temperatura de limpieza del inyector. Ajuste el tiempo (en minutos) que debe mantenerse la temperatura de limpieza.

Evaporation Phase

Marque esta casilla para habilitar los parámetros de la fase de evaporación en el campo Injection phases.

Cleaning Phase Marque esta casilla para habilitar los parámetros de la fase de limpieza en el campo Injection phases.

Ramped Pressure

Marque esta casilla para habilitar los parámetros de presión en el campo Injection phases. Solo está disponible si el valor de modo es PTV Splitless.

Transfer temp. delay

Solo está habilitada si el modo elegido es PTV Large Volume. Retrasa el inicio de la rampa de temperatura tras la fase de evaporación. Introduzca un valor entre 0,00 y 999,99.

Post-cycle temperature

Elija entre Turn Off, Cool Down y Maintain según sea preciso.

Tabla 23. Fases de inyección PTV (2) (Hoja 1 de 2)

Columna Función

Pressure Esta columna solo se habilita cuando el valor de modo es PTV Splitless y la casilla Ramped Pressure está marcada. Introduzca un valor entre 5 y 1000 kPa (0,725-145 psi; 0,05-10 bares). Este parámetro no tiene validez en la fase de limpieza.

Rate Esta columna solo se habilita cuando la casilla Evaporation phase está marcada. Introduzca un valor entre 0,1 y 14,5 °C/min. Este parámetro no tiene validez en la fase de inyección.

Temp Se trata de la temperatura de cada fase. Introduzca un valor entre 0 y 450 °C (de -50 a 450 °C con dióxido de carbono y de -100 a 450 °C con nitrógeno líquido).

Tabla 22. Fases de inyección PTV (1) (Hoja 2 de 2)

Fases Descripción

Page 132: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV

98 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Show Chart

Para ver el cuadro de diálogo de fases de PTV, pulse el botón Show Chart.

Figura 92. Ejemplo de gráfico

Se trata de una representación gráfica de solo lectura con los cambios de temperatura, caudal y estado de válvulas en el tiempo. Puede utilizar los botones de flecha de la esquina inferior izquierda para ampliar la escala de tiempo y ver con más detalle las primeras fases. El botón izquierdo amplía la escala y el derecho la contrae. En el modo ampliado, el gráfico no puede desplazarse.

Time Se trata del tiempo que permenece constante la temperatura en cada fase. Introduzca un valor entre 0,00 y 999,99 min.

Flow Este parámetro solo tiene validez en las fases de inyección y limpieza. En la fase de inyección, el valor de modo debe ser PTV Large Volume. En la fase de limpieza, la casilla Cleaning phase debe estar seleccionada. Introduzca un valor entre 5 y 1250 ml/min.

Tabla 23. Fases de inyección PTV (2) (Hoja 2 de 2)

Columna Función

Page 133: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 99

Cryogenics

Esta opción se muestra si se habilitó Front/Back Inlet Cryogenics en la sección Instrument Configuration. Consulte “Ficha Configuration Auxiliary” en la página 70.

Los parámetros del sistema criogénico se describen en la Tabla 24.

Tabla 24. Parámetros del campo Cryogenics

Parámetro Descripción

Cryogenics enable Marque la casilla para habilitar el sistema criogénico.

Cool during Seleccione el momento de enfriamiento del instrumento. Elija entre Prep-Run y Post -Run.

Cryo threshold Especifique la temperatura a la que el sistema criogénico empieza a administrar refrigerante. Introduzca un valor entre 40 y 200 °C.

Cryo timeout Introduzca el tiempo de desactivación del sistema criogénico. Introduzca un valor entre 0 y 30 min.

Page 134: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV Backflush

100 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Página PTV BackflushEsta página es el editor de métodos del módulo inyector de evaporación a temperatura programable (PTV) delantero/trasero con Backflush. Vea la Figura 93.

Figura 93. Página PTV Backflush de TRACE 1300.

Esta página incluye los siguientes campos:

• PTV Mode

• Inlet

• Surge

• Septum Purge

• Carrier Mode

• Carrier Flow

• Carrier Pressure

• Programmed Carrier Flow

• Programmed Carrier Pressure

• Carrier Options

• Injection phases

• Backflush

• Cryogenics

Page 135: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV Backflush

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 101

PTV Mode

La opción Mode controla la disponibilidad de los parámetros de este panel. Seleccione la entrada adecuada a su inyector.

• Todos los modos de inyección PTV permiten llevar a cabo rampas de temperatura programables, en que se varía la temperatura en los tiempos e incrementos especificados. La selección de los modos de PTV activa diversas opciones del campo Injection Phases.

• Todos los modos de inyección CT son modos de temperatura constante (isotérmicos), en que se opera a valores de temperatura definidos e incrementos de tiempo establecidos. La selección de los modos de CT desactiva las opciones del campo Injection Phases.

Las opciones se indican en las siguientes tablas.

Tabla 25. Modos de PTV

Modo de PTV Descripción

PTV Split El caudal de portador se divide en el puerto de inyección y el grueso se expulsa por la salida de split del inyector. La salida de split permanece abierta en todo momento.

PTV Splitless Cierra la salida de split durante la inyección para enviar toda la muestra a la columna. En este modo, son habituales tiempos de splitless en torno a un minuto.

PTV Large Volume

Elimina el solvente antes de que la muestra pase a la columna.

CT Split Realiza una operación tradicional isotérmica en split. El caudal de portador se divide en el puerto de inyección y el grueso se expulsa por la salida de split del inyector. La salida de split permanece abierta en todo momento.

CT Splitless Realiza una operación tradicional isotérmica en splitless. La salida de split está cerrada durante la inyección para enviar toda la muestra a la columna. En este modo, son habituales tiempos en torno a un minuto.

CT Splitless w/surge

Funciona igual que la opción Splitless, pero también permite programar un pulso de presión durante la inyección. El pulso comienza en el intervalo de preparación del ciclo y continúa hasta que ha transcurrido el tiempo definido. El pulso de presión se define con más detalle en el siguiente grupo de opciones.

Page 136: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV Backflush

102 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Inlet

Los parámetros de inyector se definen en este campo y se describen en la Tabla 26.

Tabla 26. Parámetros de inyector PTV Backflush (Hoja 1 de 2)

Parámetro Descripción

Temperature Marque la casilla para habilitar el campo adyacente. Si dispone de opción criogénica, introduzca un valor de temperatura de entrada entre -50 y 450 °C (con dióxido de carbono) o entre -100 y 450 °C (con nitrógeno líquido). En caso contrario, el límite inferior es de 0 °C. En el uso no criogénico, esta temperatura suele fijarse en el entorno por encima del punto de ebullición del disolvente. La temperatura óptima de los distintos métodos analíticos varía según el método y los requisitos de la muestra. La entrada cuenta además con una casilla de verificación para habilitarla y deshabilitarla, de modo que el ajuste de temperatura puede desactivarse sin que ello afecte al punto de ajuste (por lo general, esto resulta útil en procedimientos de solución de anomalías).

Split Flow Marque la casilla para habilitar el campo adyacente. Introduzca un valor entre 5 y 1250 ml/min. El valor de Split Ratio se ajusta de modo automático. Además, este valor está controlado por el caudal de columna inicial introducido en el parámetro Carrier mode asociado.

• Si se modifica el caudal, el valor de Split Flow se ajusta para mantener la relación de split. No obstante, si a consecuencia de ello el valor de Split Flow rebasa sus límites, se genera un aviso y es preciso modificar la entrada con un valor válido.

Split Ratio Este campo se habilita cuando:

• El valor de modo es PTV Split o bien CT Split.

• La casilla Split Flow está seleccionada.

• En la opción Carrier mode asociada, el valor de Flow Mode es Constant Flow o bien Programmed Flow.

Esta es la relación entre el caudal dividido hacia la salida de split y el de columna.

Introduzca un valor entre 1 y 12500. La opción Split Flow se ajusta de modo automático.

Splitless Time

Este campo se habilita cuando el valor de S/SL Mode es Splitless o bien Splitless w/Surge. Especifique el tiempo que la válvula divisora permanece cerrada tras la inyección en modo Splitless. El tiempo empieza a contar al iniciarse el ciclo. Durante este periodo, la mayor parte de la muestra se transfiere del inyector a la columna. La salida de split vuelve a abrirse cuando finaliza el periodo de splitless definido, para eliminar el exceso de vapor de disolvente. Introduzca un valor entre 0,00 y 999,99 min.

SplitRatioSplitFlow

ColumnFlow----------------------------------=

Page 137: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV Backflush

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 103

Surge

Este campo se habilita cuando el valor de modo es CT Splitless w/Surge. Los parámetros se describen en la Tabla 27.

Septum Purge

Este campo permite controlar la purga del septum del inyector. Se emplea para barrer la parte inferior del septum y reducir la contaminación de los analitos de la muestra. De este modo se evita la contaminación cruzada entre ciclos. La purga del septum evita además la contaminación del inyector por sangrado del septum. Ajuste en este campo los valores de purga.

Los parámetros de purga se describen en la Tabla 28.

Splitless Time

Este campo se deshabilita cuando el valor de modo es PTV Split o bien CT Split. Se trata del tiempo de cierre de la válvula de split. Introduzca un valor entre 0,00 y 999,99 min.

Tabla 26. Parámetros de inyector PTV Backflush (Hoja 2 de 2)

Parámetro Descripción

Tabla 27. Parámetros de pulso de presión de PTV Backflush

Parámetro Descripción

Surge Pressure El modo CT Splitless w/Surge permite incrementar la presión de entrada que se aplica durante la inyección. Sirve para reducir el volumen de la nube de vapor creada al evaporar la muestra inyectada, lo que puede mejorar la resolución de los analitos separados.

Introduzca un valor entre 5 y 1000 kPa (0,725-145 psi; 0,05-10 bares).

Surge Duration Se trata del tiempo necesario para garantizar la transferencia de la muestra inyectada a la columna analítica, de modo que el caudal de la columna no se vea muy afectado. Introduzca un valor entre 0,00 y 999,99 min.

Tabla 28. Parámetros de purga de septum de PTV Backflush

Parámetro Descripción

Purge Flow Este campo indica el caudal continuo con el que se purga el septum.

Constant Septum Purge

Marque la casilla para purgar el septum de forma continua con un caudal de purga.

Stop Purge Time Este campo se habilita cuando la casilla Constant Septum Purge no está seleccionada. Puede introducir un intervalo de tiempo para el cese de la purga de septum. El rango es de 0,00 a 999,99 min.

Page 138: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV Backflush

104 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Carrier Mode

En este campo puede seleccionar el modo de caudal del gas portador.

La opción elegida aquí controla los parámetros disponibles en los campos Carrier Flow/ Carrier Pressure y Ramps.

• Constant Flow: Está disponible un único campo Flow, con una casilla de verificación para activarlo o desactivarlo. El gráfico muestra una línea horizontal en el caudal indicado. Vea la Carrier Flow.

• Constant Pressure: Está disponible un único campo Pressure, con una casilla de verificación para activarlo o desactivarlo. El gráfico muestra una línea horizontal en la presión indicada. Vea la Carrier Pressure.

• Programmed Pressure: Se muestran los campos de programación de la presión. El gráfico representa las rampas del programa. Vea la Programmed Carrier Flow.

• Programmed Flow: Se muestran los campos de programación del caudal. El gráfico representa las rampas del programa. Vea la Programmed Carrier Pressure.

Carrier Flow

Utilice este campo para ajustar el caudal si seleccionó Constant Flow para el modo del gas portador.

Marque la casilla Flow para habilitar el campo correspondiente. Introduzca un valor entre 0,1 y 100 ml/min. Si quita la marca de la casilla el campo se desactiva y el gráfico representa una línea horizontal de caudal cero.

Carrier Pressure

Utilice este campo para ajustar el caudal si seleccionó Constant Pressure para el modo del gas portador.

Marque la casilla Pressure para habilitar el campo correspondiente. Introduzca un valor entre 5 y 1000 kPa (0,725-145 psi; 0,05-10 bares). Si quita la marca de la casilla el campo se desactiva y el gráfico representa una línea horizontal de presión cero.

Page 139: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV Backflush

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 105

Programmed Carrier Flow

Utilice este campo para ajustar un programa de caudal si seleccionó Programmed Flow para el modo del gas portador. Vea la Figura 94.

Figura 94. Programmed Carrier Flow

Este modo permite programar un campo de caudal inicial constante seguido de un máximo de tres rampas.

Marque la casilla Flow enable para habilitar el caudal.

Para activar el número de rampas de caudal requeridas, pulse el botón .

De forma inversa, para reducir el número de filas en pantalla, pulse el botón según sea preciso.

La fila inicial se muestra de forma predeterminada y no puede ocultarse.

Si desea inhabilitar las rampas de forma temporal, quite la marca de la casilla Flow enable. De este modo se desactiva la columna de caudal y el programa se ignora, como se muestra en el gráfico, que representa una línea horizontal de caudal cero. Los valores introducidos se conservan y para reactivarlos basta con volver a seleccionar la casilla de verificación.

Los parámetros de la tabla de tiempos son los siguientes:

• Rate: Introduzca un valor de velocidad de cambio de caudal entre 0,001 y 100 ml/min2. Este campo no está disponible como campo inicial del programa.

• Flow: Introduzca un valor para el campo de caudal constante, entre 0,001 y 100 ml/min.

• Hold Time: Introduzca el periodo de tiempo en que debe mantenerse el caudal. El rango es de 0,00 a 999,99 min.

Page 140: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV Backflush

106 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Programmed Carrier Pressure

Utilice este campo para ajustar un programa de presión si seleccionó Programmed Pressure para el modo del gas portador. Vea la Figura 95.

Figura 95. Programmed Carrier Pressure

Este modo permite programar un campo de presión inicial constante seguido de un máximo de tres rampas.

Marque la casilla Pressure enable para habilitar la presión.

Para activar el número de rampas de presión requeridas, pulse el botón .

De forma inversa, para reducir el número de filas en pantalla, pulse el botón según sea preciso.

La fila inicial se muestra de forma predeterminada y no puede ocultarse. Si desea inhabilitar las rampas de presión de forma temporal, quite la marca de la casilla Pressure enable. De este modo se desactiva la columna de presión y el programa se ignora, como se muestra en el gráfico, que representa una línea horizontal de presión cero. Los valores introducidos se conservan y para reactivarlos basta con volver a seleccionar la casilla de verificación.

Los parámetros de la tabla de tiempos son los siguientes:

• Rate: Introduzca un valor de velocidad de cambio de presión entre 0,01 y 1000 kPa/min (0,001-145 psi; 0,0001-10 bares). Este campo no está disponible como campo inicial del programa.

• Pressure: Introduzca un valor para el campo de presión constante entre 5 y 1000 kPa/min. (0,725-145 psi; 0,05-10 bares).

• Hold Time: Introduzca el periodo de tiempo en que debe mantenerse la presión. El rango es de 0,00 a 999,99 min.

Page 141: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV Backflush

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 107

Carrier Options

Este campo incluye los siguientes parámetros.

• Vacuum Compensation: Marque la casilla para activar la función de compensación de vacío. Utilice esta opción solo si TRACE 1300 está conectado a un detector de espectrómetro de masas. Si la casilla no está seleccionada, los cálculos se realizan para un detector GC normal, que suele estar a presión atmosférica.

• Gas Saver: Marque la casilla para activar la función de este campo. Las opciones de ahorro de gas reducen del consumo, en particular cuando se emplea un caudal de split considerable. Se ajusta para su activación en un momento determinado posterior a la inyección, con el fin de conservar gas. Los parámetros se describen en la Tabla 29.

Injection phases

Este campo solo se habilita para las opciones de modo PTV. Los campos se activan según las selecciones realizadas en el campo Options. Es posible que se apliquen otras restricciones, que se describirán según proceda.

Existen cuatro fases: inyección, evaporación, transferencia y limpieza, que se disponen en forma de tabla.

Consulte los detalles en las siguientes tablas.

Tabla 29. Parámetros de ahorro de gas

Parámetro Descripción

Gas Saver Flow Introduzca un valor de caudal de ahorro de gas entre 5 y 500 ml/min.

Gas Saver Time Se trata del tiempo (dentro del ciclo) en que se activa la función de ahorro de gas. Introduzca un valor entre 0,00 y 999,99 min.

Tabla 30. Fases de inyección PTV Backflush (1) (Hoja 1 de 2)

Fases Descripción

Injection Utilice esta opción para la rampa de presión de la inyección. Disponible solo en los modos PTV Splitless y PTV Large Volume.

Evaporation Se habilita cuando la casilla Evaporation phase está marcada.

Este grupo de opciones permite especificar los controles de evaporación de disolvente: presión (solo PTV Splitless), rampa, temperatura y tiempo en minutos. Ajuste la temperatura de evaporación del disolvente; ajuste la velocidad a la que se alcanza la temperatura de evaporación.

Page 142: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV Backflush

108 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Transfer Este grupo de opciones permite especificar los controles de transferencia de la muestra a la columna: presión (solo PTV Splitless), rampa, temperatura y tiempo en minutos. Especifique la presión si está disponuible. Ajuste la velocidad (en °C/s) a la que se alcanza la temperatura de transferencia de muestra. Ajuste la temperatura de transferencia de la muestra a la columna. Ajuste el tiempo (en minutos) que debe mantenerse la temperatura de transferencia.

Cleaning Se habilita cuando la casilla Cleaning phase está marcada.

Ajuste la velocidad a la que se alcanza la temperatura de limpieza. Ajuste la temperatura de limpieza del inyector. Ajuste el tiempo (en minutos) que debe mantenerse la temperatura de limpieza.

Evaporation Phase

Marque esta casilla para habilitar los parámetros de la fase de evaporación en el campo Injection phases.

Cleaning Phase

Marque esta casilla para habilitar los parámetros de la fase de limpieza en el campo Injection phases.

Ramped Pressure

Marque esta casilla para habilitar los parámetros de presión en el campo Injection phases. Solo está disponible si el valor de modo es PTV Splitless.

Transfer temp. delay

Solo está habilitada si el modo elegido es PTV Large Volume. Retrasa el inicio de la rampa de temperatura tras la fase de evaporación. Introduzca un valor entre 0,00 y 999,99.

Post-cycle temperature

Elija entre Turn Off, Cool Down y Maintain.

Tabla 31. Fases de inyección PTV Backflush (2) (Hoja 1 de 2)

Columna Función

Pressure Esta columna solo se habilita cuando el valor de modo es PTV Splitless y la casilla Ramped Pressure está marcada. Introduzca un valor entre 5 y 1000 kPa (0,725-145 psi; 0,05-10 bares). Este parámetro no tiene validez en la fase de limpieza.

Rate Esta columna solo se habilita cuando la casilla Evaporation phase está marcada. Introduzca un valor entre 0,1 y 14,5 °C/min. Este parámetro no tiene validez en la fase de inyección.

Temp Se trata de la temperatura de cada fase. Introduzca un valor entre 0 y 450 °C (de -50 a 450 °C con dióxido de carbono y de -100 a 450 °C con nitrógeno líquido).

Time Se trata del tiempo durante el que se mantiene constante la temperatura en cada fase. Introduzca un valor entre 0,00 y 999,99 min.

Tabla 30. Fases de inyección PTV Backflush (1) (Hoja 2 de 2)

Fases Descripción

Page 143: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV Backflush

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 109

Show Chart

Para ver el cuadro de diálogo de fases de PTV, pulse el botón Show Chart.

Figura 96. Ejemplo de gráfico

Se trata de una representación gráfica de solo lectura con los cambios de temperatura, caudal y estado de válvulas en el tiempo. Puede utilizar los botones de flecha de la esquina inferior izquierda para ampliar la escala de tiempo y ver con más detalle las primeras fases. El botón izquierdo amplía la escala y el derecho la contrae. En el modo ampliado, el gráfico no puede desplazarse.

Flow Este parámetro solo tiene validez en las fases de inyección y limpieza. En la fase de inyección, el valor de modo debe ser PTV Large Volume. En la fase de limpieza, la casilla Cleaning phase debe estar seleccionada. Introduzca un valor entre 5 y 1250 ml/min.

Backflush Marque la casilla para habilitar el backflush durante las fases de inyección, evaporación (solo en modo Large Volume) y/o limpieza.

Tabla 31. Fases de inyección PTV Backflush (2) (Hoja 2 de 2)

Columna Función

Page 144: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV Backflush

110 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Backflush

Este campo se muestra cuando el modo seleccionado es CT Split, CT Splitless o CT Splitless w/Surge. En los modos de PTV, el backflush puede habilitarse durante las fases de inyección, evaporación y limpieza, según el modo elegido. Vea la Figura 97.

Figura 97. Campo PTV Backflush

Utilice este campo para ajustar los parámetros de Backflush. Se explican en la Tabla 32.

Tabla 32. Parámetros de PTV Backflush

Parámetro Descripción

Backflush Enable Marque la casilla para habilitar el campo de Backflush.

Backflush Start Ajuste aquí el tiempo de inicio del Backflush.

Backflush Duration Elija entre las opciones GC Run Time y Specific Time.

• GC Run Time: Seleccione esta opción si desea utilizar el tiempo calculado para el programa de horno como tiempo del ciclo.

• Specific Time: Seleccione esta opción si desea introducir un tiempo específico para el ciclo.

Duration Este parámetro está activado cuando se selecciona Specific Time. Ajuste aquí la duración del backflush entre 0,00 y 999,99 min.

Page 145: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina PTV Backflush

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 111

Cryogenics

Esta opción se muestra si se habilitó Front/Back Inlet Cryogenics en la sección Instrument Configuration. Vea la “Ficha Configuration Auxiliary” en la página 70.

Los parámetros del sistema criogénico se describen en la Tabla 33.

Tabla 33. Parámetros del campo Cryogenics

Parámetro Descripción

Cryogenics enable Marque la casilla para habilitar el sistema criogénico.

Cool during Seleccione el momento de enfriamiento del instrumento. Elija entre Prep-Run y Post -Run.

Cryo threshold Especifique la temperatura a la que el sistema criogénico empieza a administrar refrigerante. Introduzca un valor entre 40 y 200 °C.

Cryo timeout Introduzca el tiempo de desactivación del sistema criogénico. Introduzca un valor entre 0 y 30 min.

Page 146: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina FID

112 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Página FIDLa página FID es el editor de métodos del módulo detector de ionización de llama delantero/trasero. Vea la Figura 98.

Figura 98. Página de detector de ionización de llama (FID)

Esta página incluye los siguientes campos:

• Detector

• Flow

• Signal

Detector

Ajuste en este campo los parámetros del detector. Consulte más detalles en la Tabla 34.

Tabla 34. Parámetros de detector FID

Parámetro Descripción

Flame On Marque la casilla para encender la llama. Solo se enciende si la temperatura mínima de base es de 150 °C y si los caudales de aire e hidrógeno estás activados en el campo Flow. Si quita la marca de esta casilla, las casillas Air e Hydrogen se deshabilitan de forma automática.

Temperature Marque la casilla para habilitar el campo adyacente. Controla la temperatura del detector. Introduzca un valor de temperatura entre 0 y 450 °C.

Ignition Threshold Si la casilla Flameout Retry está activada, la llama vuelve a encenderse en caso de que la corriente de señal descienda por debajo de este valor.

Flameout Retry Marque la casilla para habilitar esta función.

Page 147: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina FID

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 113

Flow

Estas casillas solo permiten activar y desactivar los caudales. Consulte más detalles en la Tabla 35.

Signal

Elija entre las opciones Standard GC peaks (> 1 s) o Fast GC peaks (< 1 s) según sea preciso.

Tabla 35. Parámetros de caudal de FID

Parámetro Descripción

Air Seleccione la casilla para activar el caudal de aire y habilitar el campo adyacente para el valor de caudal. Introduzca un valor entre 5 y 500 ml/min.

Hydrogen Seleccione la casilla para activar el caudal de hidrógeno y habilitar el campo adyacente de valor de caudal. Introduzca un valor entre 1 y 100 ml/min.

Makeup gas Seleccione la casilla para activar el caudal de gas makeup y habilitar el campo adyacente de valor de caudal. Introduzca un valor entre 1 y 50 ml/min.

Page 148: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina ECD

114 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Página ECDLa página ECD es el editor de métodos del módulo detector de captura de electrones delantero/trasero. Vea la Figura 99.

Figura 99. Página de detector de captura de electrones (ECD)

Esta página incluye los siguientes campos:

• Detector

• Flow

• Signal

Detector

Ajuste en este campo los parámetros del detector. Consulte más detalles en la Tabla 36.

Tabla 36. Parámetros de detector ECD

Parámetro Descripción

Temperature Marque la casilla para habilitar el campo adyacente. Controla la temperatura del detector. Introduzca un valor entre 0 y 400 °C.

Use Default Pulse Setting

Marque la casilla para habilitar esta función. Los parámetros Reference current, Pulse amplitude y Pulse width se ajustan con los valores óptimos de trabajo. Cuando la casilla está marcada, los campos de estos parámetros no están habilitados.

Reference current Introduzca un valor de corriente de referencia de la celda entre 0,1 y 1,5 nA.

Pulse Amplitude Introduzca un valor de amplitud de pulso entre 5 y 50 V.

Pulse Width Seleccione un valor de ancho de pulso en la lista desplegable. El rango es de 0,1 a 2,0 μs.

Page 149: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina ECD

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 115

Flow

La casilla Makeup solo permite activar y desactivar el caudal. Los parámetros se describen en la Tabla 37.

Signal

Elija entre las opciones Standard GC peaks (> 1 s) o Fast GC peaks (< 1 s) según sea preciso.

Tabla 37. Parámetro de caudal de ECD

Parámetro Descripción

Makeup gas Marque la casilla para activar el caudal de gas makeup y habilitar el campo adyacente. El rango de valores de esta entrada depende del gas empleado. El rango del caudal de gas portador es de 5 a 500 ml/min para nitrógeno o argón/metano.

Page 150: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina NPD

116 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Página NPDLa página NPD es el editor de métodos del módulo detector de nitrógeno-fósforo delantero/trasero. Vea la Figura 100.

Figura 100. Página de detector de nitrógeno-fósforo (NPD)

Esta página incluye los siguientes campos:

• Detector

• Flow

• Signal

Detector

Ajuste en este campo los parámetros del detector. Consulte más detalles en la Tabla 38.

Tabla 38. Parámetros de detector NPD

Parámetro Descripción

Source Current Se trata de la corriente aplicada para calentar la fuente termoiónica Introduzca un valor entre 1000 y 5000 A.

Temperature Marque la casilla para habilitar el campo adyacente. Controla la temperatura del detector. Introduzca un valor entre 0 y 450 °C.

Use Default Polarization Voltage

Marque la casilla para habilitar esta función. Si está seleccionada, el campo Polarization voltage se deshabilita.

Polarization Voltage Introduzca un valor entre 1 y 100 V.

Page 151: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina NPD

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 117

Flow

Estas casillas solo permiten activar y desactivar los caudales de gas. Los parámetros se describen en la Tabla 39.

Signal

Elija entre las opciones Standard GC peaks (> 1 s) o Fast GC peaks (< 1 s) según sea preciso.

Tabla 39. Parámetros de caudal de NPD

Parámetro Descripción

Air Seleccione la casilla para activar el caudal de aire y habilitar el campo adyacente para el valor de caudal. Introduzca un valor entre 5 y 500 ml/min.

Hydrogen Seleccione la casilla para activar el caudal de hidrógeno y habilitar el campo adyacente de valor de caudal. Introduzca un valor entre 0,1 y 10 ml/min.

Makeup gas Seleccione la casilla para activar el caudal de gas makeup y habilitar el campo adyacente de valor de caudal. Introduzca un valor entre 1,0 y 50,0 ml/min.

Page 152: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina TCD

118 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Página TCDLa página TCD es el editor de métodos del módulo detector de conductividad térmica delantero/trasero. Vea la Figura 101.

Figura 101. Página de detector de conductividad térmica (TCD)

Esta página incluye los siguientes campos:

• Detector

• Flow

• Signal

Detector

Ajuste en este campo los parámetros del detector. Consulte más detalles en la Tabla 40.

Tabla 40. Parámetros de detector TCD (Hoja 1 de 2)

Parámetro Descripción

Temperature Marque la casilla para habilitar el campo adyacente. Controla la temperatura del detector. Introduzca un valor entre 0 y 400 °C.

La temperatura típica es de 200 °C, dependiendo de la aplicación habitual. Ajuste un valor de temperatura superior a la máxima temperatura que alcanza el horno de la columna de GC durante el análisis.

Filament Power On Marque la casilla de verificación para activar la alimentación de potencia al filamento.

Page 153: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina TCD

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 119

Flow

Los parámetros de caudal de TCD se describen en la Tabla 41.

Signal

Elija entre las opciones Standard GC peaks (> 1 s) o Fast GC peaks (< 1 s) según sea preciso.

Filament Temperature Introduzca un valor de temperatura de filamento constante entre 50 y 450 °C.

Los valores de temperatura de filamento deben mantenerse entre 50 y 100 °C por encima de la temperatura del bloque. Cuanto mayor sea la diferencia, mejor será la sensibilidad. No obstante, la diferencia útil entre la temperatura de bloque y la de filamento depende del gas portador empleado. La ΔT sugerida es:

• de 50 °C a 100 °C si el gas portador es helio.

• 100 °C si el gas portador es nitrógeno.

Tabla 40. Parámetros de detector TCD (Hoja 2 de 2)

Parámetro Descripción

Tabla 41. Parámetros de caudal de TCD

Parámetro Descripción

Makeup gas Marque la casilla para activar el caudal de gas makeup y habilitar el campo adyacente. Introduzca un valor de caudal de gas makeup entre 0,5 y 5,0 ml/min.

Carrier Source Cuando haya dos inyectores instalados, este parámetro indicará al cromatógrafo qué entrada está conectada al TCD. Se utiliza para proteger los filamentos en los sistemas DGFC en los casos en que el suministro de gas portador se interrumpa de forma inadvertida; por ejemplo, tras sustituir el septum. Seleccione Front o Back en la lista desplegable.

Page 154: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina Auxiliary

120 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Página AuxiliaryLos parámetros de esta página dependen de las selecciones realizadas en la sección Instrument Configuration.

Las opciones de Heater 1 son Heater 1, Valve Oven y Transfer Line 1.

Las opciones de Heater 2 con Heater 2, Jet Separation, Open Split y Transfer Line 1 (°C).

Los parámetros auxiliares se describen a continuación.

• Heater 1: Introduzca un valor de temperatura de la zona auxiliar entre 0 y 400 °C.

• Heater 2: Introduzca un valor de temperatura de la zona auxiliar entre 0 y 400 °C.

• Valve Oven: Este parámetro controla la temperatura del horno de válvulas. Introduzca un valor entre 30 y 175 °C.

• Jet Separator: Este parámetro controla la temperatura del separador de chorro. Introduzca un valor entre 30 y 350 °C.

• Transfer Line 1: Este parámetro controla la temperatura de la línea de transferencia del sistema MS. Introduzca un valor entre 30 y 350 °C.

• Transfer Line 2: Este parámetro controla la temperatura de una segunda línea de transferencia del sistema MS. Introduzca un valor entre 30 y 350 °C.

Page 155: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina Auxiliary

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 121

• Open Split: Este parámetro controla la temperatura del divisor abierto. Introduzca un valor entre 30 y 350 °C.

• Auxiliary Pressure: Seleccione la casilla correspondiente para activar hasta seis valores de presión auxiliar y habilitar los campos adyacentes. Introduzca valores de presión entre 5 y 1000 kPa (0,725-145 psi; 0,05-10 bares).

Page 156: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina Run Table

122 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Página Run TablePuede utilizar esta página para programar cambios en el detector, las válvulas y los eventos externos que tendrán lugar en la preparación del ciclo o durante su transcurso. Los eventos que aparecen en la página Run Table proceden de las selecciones realizadas en la pantalla Run-Time Event. Se muestra la página de la Figura 102.

Figura 102. Página Run Table

Esta página incluye los siguientes campos:

• Initial Values

• Tabla de programación de eventos

• Adición de eventos

• Edición de eventos

• Eliminación de eventos

• Run-Time Event

Page 157: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSPágina Run Table

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 123

Initial Values

En este campo puede activar los dispositivos de control externo definidos en el campo Evento externo. Consulte también Run-Time Event si desea más detalles.

Seleccione el botón de opciones correspondiente para activar los campos asociados.

Tabla de programación de eventos

Los eventos se clasifican en orden temporal de forma automática. La tabla tiene tres columnas: Time, Item y Setting. Consulte más detalles en la Tabla 42.

Adición de eventos

Pulse el botón Add para abrir la ventana Run-Time Event. Los elementos de ciclo seleccionados en este cuadro de diálogo se agregan a la tabla de programación de eventos.

Edición de eventos

Pulse el botón Edit para modificar un elemento de ciclo seleccionado en la tabla de programación de eventos.

Eliminación de eventos

Seleccione un elemento de la tabla de programación de eventos. Pulse el botón Remove para eliminar el elemento de ciclo seleccionado en la tabla.

Tabla 42. Tabla de programación de eventos

Columna Descripción

Time Muestra el momento del ciclo en que se producirá el evento.

Item Esta columna muestra el tipo de evento e identifica el evento externo o el número de válvula.

Action Esta columna indica la acción asociada al evento; por ejemplo, encendido o apagado de una lámpara.

Page 158: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSRun-Time Event

124 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Run-Time EventLa ventana Run-Time Event aparece cuando se selecciona el botón Add.

Figura 103. Ventana Run-Time Event.

Existen tres tipos de eventos: de detector, de válvula y externo.

Event Time

Elija entre las opciones Prep Run y Run Time. Si selecciona el botón Prep Run, el campo de tiempo se desactiva.

Seleccione el botón Run Time para habilitar el campo adyacente. Introduzca el momento en que debe producise el evento, entre 0,00 y 999,99 min.

Event

Seleccione el tipo de evento: Detector o External.

Consulte:

• Evento de detector

• Evento externo

Page 159: Trace 1300 1310 Userguide Es

4 Configuración y preparación de parámetros de método desde CDSRun-Time Event

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 125

Evento de detector

Seleccione Detector para activar los campos asociados. En el campo Detector, elija el detector al que se aplicará el evento. Esta opción habilita la acción adecuada al tipo de detector. Las acciones se resumen en la Tabla 43.

Evento externo

Seleccione External para activar los campos asociados. En el campo External puede ajustar el estado predeterminado de un máximo de ocho dispositivos con control externo. Las opciones se resumen en la Tabla 44.

Con el cromatógrafo en modo de espera (Standby), los dispositivos regresan al estado predeterminado que se define aquí. La opción seleccionada se muestra y se habilita en el campo Initial Values.

Tabla 43. Opciones de evento de detector

Opción Detalles Ajustes

Autozero Se aplica a todos los tipos de detector. Seleccione esta opción para poner a cero la salida del detector en el momento indicado.

Neg. Polarity Se aplica solo al detector TCD. Esta opción invierte la polaridad en el momento indicado.

On u Off

Source Current Se aplica solo al detector NPD. Esta opción cambia la corriente de la fuente en el momento indicado.

On u Off

Tabla 44. Opciones de evento externo

Opción Detalles

Number Asigne un número al evento externo, del 1 al 8.

Setting Asigne al evento el valor On u Off.

Page 160: Trace 1300 1310 Userguide Es
Page 161: Trace 1300 1310 Userguide Es

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 127

5

Horno

Este capítulo contiene instrucciones para programar los parámetros del horno.

Las características del horno son las siguientes:

• Temperatura máxima de 450 °C

• La máxima velocidad de calentamiento es 125 °C/min.

• 32 rampas de temperatura lineal y 33 mesetas.

• Temperatura operativa mínima de unos pocos grados sobre ambiente, esto se consigue gracias a un par de deflectores de refrigeración modulados y controlados desde el sistema GC.

• El control de la temperatura mediante un calefactor consigue el ajuste fino del aire caliente expulsado y la entrada del aire a temperatura ambiente.

• Permite la separación de componentes de volatilidad moderada en columnas capilares de fase gruesa a temperatura casi ambiente y sin necesidad de sistemas criogénicos.

• Con opción criogénica instalada, la temperatura del horno puede alcanzar los –50 °C si se utiliza dióxido de carbono y –100 °C si se emplea nitrógeno líquido.

Índice

• Uso de los parámetros de horno

• Ajuste de un programa de temperatura de una sola rampa

• Ajuste de un programa de temperatura de varias rampas

Page 162: Trace 1300 1310 Userguide Es

5 HornoUso de los parámetros de horno

128 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Uso de los parámetros de hornoEn este apartado se detallan los parámetros de programación de la temperatura del horno, desde la inicial a la final; pueden utilizarse hasta 32 rampas de temperatura durante el ciclo analítico. Puede ajustar un programa único (isotérmico) o varios programas de rampas.

Temperature: Define la temperatura inicial. El rango es On/Off; 0–450 °C. Con un sistema criogénico, el rango es de –100 a 450 °C si se emplea nitrógeno líquido y de –50 a 450 °C con dióxido de carbono. Seleccione On para ver los valores reales y los de referencia.

Initial time: Define el tiempo de mantenimiento de la temperatura inicial del horno una vez que ha comenzado un ciclo programado. Introduzca un valor entre 0 y 999,99 min.

Ramp 1: Define la velocidad de la rampa de temperatura, en °C/min, hasta alcanzar la temperatura final. El rango es On/Off; 0,0–125 °C/min. Seleccione On para habilitar una rampa de temperatura.

Final temperature 1: Define la temperatura que alcanzará la columna del horno al término de la rampa de calentamiento o de enfriamiento. Este parámetro solo se muestra si el valor de Ramp 1 es On. Introduzca un valor de 0 a 450 °C. Con un sistema criogénico, el rango es de –100 a 450 °C si se emplea nitrógeno líquido y de –50 a 450 °C con dióxido de carbono.

Final time 1: Define cuanto tiempo (en minutos) el horno mantendrá la temperatura de la última rampa. Introduzca un valor entre 0,00 y 999,99 min.

Ramp 2 a Ramp 32: Tras la programación de la primera rampa, el menú agrega las líneas del parámetro Ramp 2. El rango es de 0,0 a 120 °C/min. Si no va a utilizar más rampas, asigne a este parámetro el valor Off. Para programar la rampa, seleccione On. Se agregarán los parámetros Final temp y Final time correspondientes a la rampa. Puede repetir este proceso para programar hasta 32 rampas de temperatura.

Final temperature 2 a Final temperature 33: Define la temperatura que alcanzará la columna del horno al término de la rampa correspondiente. Introduzca un valor de 0 a 450 °C. Con un sistema criogénico, el rango es de –100 a 450 °C si se emplea nitrógeno líquido y de –50 a 450 °C con dióxido de carbono.

Final time 2 a Final time 33: Define cuanto tiempo (en minutos) el horno mantendrá la temperatura de la última rampa. Introduzca un valor entre 0,00 y 999,99 min..

Post run temp: Define la temperatura que alcanzará el horno al término del ciclo analítico. El rango es On/Off; 0–450 °C. Con un sistema criogénico, el rango es de –100 a 450 °C si se emplea nitrógeno líquido y de –50 a 450 °C con dióxido de carbono. Seleccione Off si no desea ajustar la temperatura posterior al ciclo. Seleccione On para ver el valor de referencia y los parámetros Post run temp, Post run time y Post pressure.

Post run time: Define el tiempo de mantenimiento de la temperatura posterior al ciclo. Introduzca un valor entre 0,00 y 999,99 min.

Post pressure: Define la presión del gas portador frontal o trasero durante el tiempo posterior al ciclo cuando el sistema funciona en los modos Constant pressure o Programmed pressure. Introduzca un valor entre 2,5 y 1000 kPa.

Page 163: Trace 1300 1310 Userguide Es

5 HornoUso de los parámetros de horno

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 129

Ajuste de un programa de temperatura de una sola rampa

Este programa eleva la temperatura inicial del horno hasta un valor final establecido y a una velocidad especificada, y mantiene la temperatura final durante un tiempo determinado.

1. Seleccione Oven para abrir el menú del horno.

2. Introduzca la temperatura inicial.

3. Indique el tiempo inicial que el horno mantiene la temperatura inicial.

4. Seleccione Ramp 1 y ajuste el valor On. Introduzca la velocidad de la rampa, en °C/minuto, para que el horno alcanze la temperatura final de la rampa.

5. Introduzca el valor de Final temp 1 para la rampa.

6. Especifique en Final time 1 el tiempo que el horno debe mantener la temperatura final.

7. Para finalizar el programa de una rampa, asigne a Ramp 2 el valor Off.

Ajuste de un programa de temperatura de varias rampas

Este programa eleva la temperatura inicial del horno hasta un valor final establecido mediante un máximo de 32 rampas, cada una con sus propios valores especificados de velocidad, tiempo y temperatura.

1. Seleccione Oven para abrir el menú del horno.

2. Introduzca la temperatura inicial.

3. Indique el tiempo inicial de mantenimiento de esta temperatura en el horno.

4. Seleccione Ramp 1 y ajuste el valor On. Introduzca la velocidad de la rampa, en °C/minuto, hasta alcanzar la temperatura final de la rampa.

5. Introduzca el valor de Final temp 1 para la rampa.

6. Especifique en Final time 1 el tiempo que el horno debe mantener la temperatura final.

7. Seleccione Ramp 2 y ajuste el valor On. Introduzca la velocidad de la segunda rampa de temperatura.

8. Introduzca el valor de Final temp 2 para la segunda rampa.

9. Especifique en Final time 2 el tiempo que el horno debe mantener la temperatura final.

10. Para finalizar el programa de varias rampas, asigne a Ramp 3 el valor Off. Si desea agregar rampas adicionales, repita los pasos del 7 al 9.

Page 164: Trace 1300 1310 Userguide Es
Page 165: Trace 1300 1310 Userguide Es

Thermo Scientific Guía del usuario del TRACE 1300 y TRACE 1310 131

6

Módulo inyector Split/Splitless

En este capítulo se describe el módulo inyector Split/Splitless y se incluyen las instrucciones de programación de los parámetros del inyector.

Descripción general del móduloEl módulo inyector split/splitless incluye el cuerpo del inyector, el calefactor, las válvulas de split y purga, los filtros, el control digital de la neumática del gas portador y los conectores para la unión a la columna analítica.

Figura 104. Módulo inyector Split/Splitless.

Los componentes del módulo e inyector se muestran en la Figura 105 y en la Figura 106.

Índice

• Descripción general del módulo

• Técnica de inyección SSL

• Consumibles

• Uso de los parámetros de SSL

Asa de elevación

Tapa abatible del módulo

Tapa del módulo

Page 166: Trace 1300 1310 Userguide Es

6 Módulo inyector Split/SplitlessDescripción general del módulo

132 Guía del usuario del TRACE 1300 y TRACE 1310 Thermo Scientific

Figura 105. Los componentes del módulo inyector split-splitless.

Figura 106. Componentes del inyector Split-Splitless

Tapa del módulo

Tapa abatible del módulo

Salida de la línea de split al exterior

Filtro de la línea del gas portador

Filtro de la línea del gas de split

Anilla roscada

Salida de la línea de purga al exterior

Tapón del septum

Cuerpo del inyector

Soporte del septum/ tapón del liner

Tapa aislante

Conectores inferiores

Junta de la base

Tuerca de retención

Arandela

Junta tórica interna

Junta tórica externa

Tuerca

Liner

Junta del liner

Septum

Tapón del septum

Soporte del septum /tapón del liner

Conectores inferiores

Conector para columna capilar

Page 167: Trace 1300 1310 Userguide Es

6 Módulo inyector Split/SplitlessTécnica de inyección SSL

Thermo Scientific Guía del usuario del TRACE 1300 y TRACE 1310 133

Técnica de inyección SSLEl inyector SSL se utiliza para realizar inyecciones con división, sin división, o con un pulso de presión. La discriminación de los componentes pesados se minimiza gracias a la optimización de la transferencia de la muestra a la columna. Se pueden utulizar columnas capilares y semicapilares. Puede elegir el modo operativo en la lista de parámetros del inyector.

Modo Split

El modo de inyección split es útil para el análisis de muestras en concentraciones altas, análisis por “headspace” y análisis isotérmicos. La forma de los picos en el cromatograma suele ser muy aguda a causa de la rapidez de transferencia de la muestra a la columna. La muestra se inyecta en un liner de vidrio situado en el interior de la cámara de vaporización termostatizada. En esta cámara, la muestra se evapora con rapidez. La relativa intensidad del caudal de gas que atraviesa el inyector hace descender rápidamente la muestra evaporada hacia la cabeza de la columna.

Solo una parte de la muestra se transfiere a la columna. El resto se elimina a través de la línea de split. La relación de split relación de flujo de split determina la cantidad de muestra que entra a la columna cromatográfica.

El septum se purga de forma continua durante todo el análisis, lo que reduce la contaminación procedente de los analitos de la muestra.

Figura 107. Esquema del modo split

Carrier

Split

Purge

1

2

3

5

6

7

1 = Active Carbon Filter2 = Active Carbon Filter3 = Proportional Valve4 = Pressure Sensor5 = Restrictor6 = Restrictor7 = DCC Module

3

4

4

3 4

Page 168: Trace 1300 1310 Userguide Es

6 Módulo inyector Split/SplitlessTécnica de inyección SSL

134 Guía del usuario del TRACE 1300 y TRACE 1310 Thermo Scientific

Modo splitless

El modo de inyección splitless es aconsejable para el análisis de compuestos en concentraciones bajas.

La inyección splitless permite que la totalidad de la muestra entre a la columna. La línea de split se cierra durante la inyección de la muestra y su transferencia a la columna. Una vez realizada la transferencia, la línea de división vuelve a abrirse para limpiarla cámara de evaporación y eliminar cualquier resto de vapores de la muestra. El tiempo necesario para transferir la muestra evaporada del inyector a la columna es el tiempo splitless. Al término del periodo splitless, la válvula de split se abre de nuevo y el caudal del split elimina del inyector cualquier resto de vapores de la muestra. El caudal absoluto total de split no es relevante. Basta con que sea capaz de purgar el inyector.

Puede configurarse un caudal de purga que limpie el septum durante la totalidad del análisis para reducir el riesgo de contaminación procedente de los analitos de las muestras.

Figura 108. Diagrama del bloque del modo splitless.

Modo splitless con un pulso de presión

En este modo, se activa un pulso de intensidad en la presión del gas portador en la fase de inyección y durante un tiempo predefinido. La presión aplicada durante el tiempo del splitless genera un aumento repentino en el caudal al inyector y acelera el proceso de transferencia de la muestra del inyector a la columna. De este modo se evita que el pico de la muestra se ensanche y el riesgo de sobrecarga del inyector. Puede configurarse un caudal que fluya continuamente por el septum durante la totalidad del análisis para reducir el riesgo de contaminación procedente de los analitos de las muestras.

1 = Active Carbon Filter2 = Active Carbon Filter3 = Proportional Valve4 = Pressure Sensor5 = Restrictor�6 = Restrictor7 = DCC Module

Carrier

Split

Purge

1

2

3

5

6

7

3

4

4

3 4

Page 169: Trace 1300 1310 Userguide Es

6 Módulo inyector Split/SplitlessConsumibles

Thermo Scientific Guía del usuario del TRACE 1300 y TRACE 1310 135

ConsumiblesLos consumibles necesarios para este inyector son el septum, el glass liner y las juntas tóricas.

Septum

Utilice siempre septums de buena calidad, como el modelo BTO que se suministra con el TRACE 1300/TRACE 1310. Estos modelos son indeformables, duran más y tienen un nivel de sangrado más bajo, incluso a temperatura elevada.

El inyector SSL es compatible con la válvula de alta presión Merlin Microseal™ en lugar del septum estándar.

Liner

El modo de inyección de muestras empleado determina la opción del liner que se instalará en el cuerpo del inyector. Es preciso utilizar un liner adecuado que garantice la evaporación completa y que tenga capacidad para todo el volumen de muestra evaporada sin reaccionar con ella.

Los sistemas de datos cromatográficos Thermo Scientific incluyen una calculadora del volumen de vapor que calcula con rapidez y precisión el volumen de expansión según diversos factores (disolvente, volumen de líquido inyectado, temperatura y presión de entrada) para ayudarle a determinar la idoneidad de las dimensiones del liner según el método elegido.

Liners para split

Seleccione un liner adecuado de Tabla 45.

Tabla 45. Liners para split.

Nº Liner Descripción

1 Liner desactivado de 4 mm DI; Lana de vidrio; 900 μl volumen teórico.

2 Liner desactivado; 4 mm DI.

3 Liner desactivado Mini Lam; 4 mm DI.

Page 170: Trace 1300 1310 Userguide Es

6 Módulo inyector Split/SplitlessConsumibles

136 Guía del usuario del TRACE 1300 y TRACE 1310 Thermo Scientific

Liners para Splitless

Seleccione un liner adecuado de Tabla 46.

Liners HS/SPME

Seleccione un liner adecuado de Tabla 47.

Juntas tóricas

Las juntas tóricas interna (línea de portador) y externa (línea de purga) del cabezal del cuerpo deben sustituirse en caso de fuga. Para sustituir las juntas tóricas, consulte el manual TRACE 1300/TRACE 1310 Hardware Manual.

Tabla 46. liners para Splitless

Nº Liner Descripción

1 Lana de vidrio desactivada tapered; 900 μl volumen teórico.

2 Liner desactivado con estrechamiento.

Tabla 47. Liners HS/SPME

Nº Liner Descripción

1 Liner desactivado; 1,2 mm DI.

Page 171: Trace 1300 1310 Userguide Es

6 Módulo inyector Split/SplitlessUso de los parámetros de SSL

Thermo Scientific Guía del usuario del TRACE 1300 y TRACE 1310 137

Uso de los parámetros de SSLEn este apartado se incluyen los parámetros operativos del módulo split/splitless. Los parámetros que pueden modificarse varían según el modo de funcionamiento (split, splitless, con/sin división, pulso de presion splitless) y el modo de flujo (flujo constante, presión constante, flujo programado, presión programada)..

En los siguientes apartados se enumeran y describen los parámetros de control del inyector SSL frontal/trasero, que son:

Parámetros del gas portador

Ajuste los parámetros de control del gas portador. Los parámetros que se muestran varían según el ajuste de Flow Mode.

Pressure: Define los valores real y de referencia de presión del gas portador. El rango es On/Off; 5–1000 kPa (0,725-145 psi; 0,05-10 bares). Esta línea no puede modificarse si el modo seleccionado es Constant Flow o Programmed Flow.

Column Flow: Define el flujo de gas portador enviado a la columna. El rango es On/Off; 0,01-100 ml/min. Seleccione On para ver los valores reales y los de referencia. Seleccione Off o 0 para desactivar todos los caudales de entrada. Esta línea no puede modificarse si el modo seleccionado es Constant Pressure o Programmed Pressure.

Flow Mode: Define el modo de control del gas portador. Cada modo habilita o deshabilita los parámetros dedicados.

• Constant Flow: El fllujo de la columna se mantiene constante durante todo el análisis. La presión en cabeza de columna cambia con la temperatura de la columna para mantener un flujo consistente.

• Constant Pressure: La presión en cabeza de columna se mantiene durante todo el análisis. Durante los programas de temperatura, el caudal disminuye a causa del aumento de viscosidad del gas portador.

• Parámetros del gas portador

• Modo de inyección

• Parámetros de entrada

• Parámetros de purga

• Parámetros del pulso de presión

• Ajuste de los parámetros de los gases

• Ajuste de parámetros para modo split

• Ajuste de parámetros para modo splitless

• Ajuste de parámetros para el modo splitless con pulso de presión

Page 172: Trace 1300 1310 Userguide Es

6 Módulo inyector Split/SplitlessUso de los parámetros de SSL

138 Guía del usuario del TRACE 1300 y TRACE 1310 Thermo Scientific

• Programmed Flow: El caudal de la columna puede programarse para que cambie durante un ciclo analítico; pueden definirse hasta tres rampas de caudal.

Estos son los parámetros:

– Initial Flow: Define el flujo inicial.

– Initial Time: Define la duración del flujo inicial.

– Ramp 1: Velocidad de rampa en ml/min2 hasta alcanzar el flujo final. Seleccione On para habilitar la rampa y ver el valor de referencia.

– Final Flow: Flujo final del gas portador que se alcanza al término de la velocidad de la rampa definida.

– Final Time: Define la duración que el flujo final debe ser mantenido.

– Ramp 2-3: Para programar rampas adicionales, seleccione On e introduzca la velocidad de las rampas en ml/min2. Aparecen las opciones de menú Final Flow y Final Time de la rampa correspondiente. Los rangos y las funciones de estas opciones son idénticos a los de las opciones Final Flow y Final Time de la primera rampa.

• Programmed Pressure: La presión de entrada puede programarse para que cambie durante un ciclo analítico; pueden definirse hasta tres rampas de presión.

Estos son los parámetros:

– Initial Pressure: Define la presión inicial.

– Initial Time: Define la duración de la presión inicial.

– Ramp 1: Define la presión de la rampa en kPa/min hasta alcanzar la presión final. Seleccione On para habilitar la rampa y ver el valor de referencia.

– Final Pressure: Define la presión final de gas portador que se alcanza al término de la velocidad de rampa definida.

– Final Time: Define la duración de la presión final correspondiente.

– Ramp 2-3: Para programar rampas adicionales, seleccione On e introduzca la velocidad de las rampas en kPa/min. Aparecen las opciones de menú Final Pressure y Final Time de la rampa correspondiente. Los rangos y las funciones de estas opciones son idénticos a los de las opciones Final Pressure y Final Time de la primera rampa.

Linear Velocity: Velocidad calculada del gas portador cuando atraviesa la columna, expresada en cm/s. No se puede modificar.

Void Time: Tiempo de elución de pico no retenido, expresado en segundos. No se puede modificar.

Gas Saver: Esta función reduce el consumo de gas portador. El rango es On/Off; 5-500 ml/min. Seleccione On para activar el ahorro de caudal de gas y ver los valores de referencia. Seleccione Off para desactivar el ahorro de caudal de gas. El valor de caudal se guarda en la memoria.

Page 173: Trace 1300 1310 Userguide Es

6 Módulo inyector Split/SplitlessUso de los parámetros de SSL

Thermo Scientific Guía del usuario del TRACE 1300 y TRACE 1310 139

Gas Saver Time: Define el momento del ciclo en que comienza a funcionar la función de ahorro de gas. Por lo general se inicia tras la inyección, para conservar el gas. Ajuste un valor de 0,00 a 999,99 min. Esta línea no se muestra si el valor de Gas Saver es Off.

Vacuum Comp.: Solo debe utilizar este parámetro si TRACE 1300/TRACE 1310 están acoplados a un detector de masas, para compensar la salida de la columna de vacío. Las opciones son On y Off.

Modo de inyección

Elija el modo de inyección que utilizará con el inyector SSL. Cada modo habilita o deshabilita los parámetros dedicados.

Split: El caudal de portador se divide en el puerto de inyección y la mayor parte se elimina por la salida de split. La salida del split permanece abierta en todo momento.

Splitless: Cierra la salida del split durante la inyección para enviar toda la muestra a la columna. En este modo, son habituales tiempos en torno a un minuto.

Surged Splitless: Funciona igual que la opción Splitless, pero también permite programar un pulso de presión durante la inyección. El pulso de presión comienza en el intervalo de preparación del ciclo y continúa hasta que ha transcurrido el tiempo definido. El pulso de presión se define con más detalle en el siguiente grupo de opciones.

Parámetros de entrada

Los parámetros de inyección de SSL se describen a continuación.

Temperature: Define el valor de referencia de temperatura del inyector. Según el modo de inyección seleccionado, la temperatura que ajuste ha de ser suficiente para evaporar muestra y solvente. Introduzca un valor de temperatura de entrada entre 0 y 400 °C.

Split Flow: Introduzca un valor entre 5 y 1250 ml/min. El valor de Split Ratio se ajusta de modo automático. Además, este valor está controlado por el caudal de columna inicial introducido en la opción del gas portador asociado. Si se modifica el caudal, el valor de Split Flow se ajusta para mantener la relación de split. No obstante, si el valor de Split Flow rebasa sus límites, se genera un aviso.

Split Ratio: Está habilitado cuando el modo de inyección es Split. También se asocia con el ajuste de Flow Mode con el valor Constant Flow o Programmed Flow. Especifique la relación del flujo de split con el flujo de columna. Calcule la relación de split: Rel. split = (Caudal split) / (Caudal columna). Introduzca un valor entre 1 y 12500. La opción Split Flow se ajusta de modo automático.

Splitless Time: Está habilitado si el modo de inyección es Splitless o Surged Splitless. Especifique el tiempo que la válvula de split permanece cerrada tras la inyección splitless. Introduzca un valor de 0,00 a 999,99. El temporizador comienza al inicio del ciclo. La salida del split vuelve a abrirse cuando finaliza el periodo del splitless.

Page 174: Trace 1300 1310 Userguide Es

6 Módulo inyector Split/SplitlessUso de los parámetros de SSL

140 Guía del usuario del TRACE 1300 y TRACE 1310 Thermo Scientific

Parámetros de purga

Los parámetros de purga están habilitados si el modo de inyección es Splitless o Surged Splitless.

Constant Septum Purge: Este campo controla la purga del septum del inyector. Las opciones son On y Off. Seleccione On para activar la función y limpiar el septum de forma continua con un caudal de purga.

Stop Purge For: Está habilitado si el valor del parámetro Constant Septum Purge esta en On. Puede introducirse un intervalo de tiempo entre 0,00 y 999,99 min para el cese de la purga de septum.

Parámetros del pulso de presión

Los parámetros del pulso de presión están habilitados si el modo de inyección es Surged Splitless.

Surge Pressure: Define la presión aplicada durante el tiempo de splitless para generar un pulso de fljujo en el inyector que acelere la transferencia de la muestra. Introduzca un valor entre 5 y 1000 kPa (0,725-145 psi; 0,05-10 bares).

Surge Duration: Define el tiempo de mantenimiento del pulso de presión. Introduzca un valor de 0,00 a 999,99 min. Por lo general, se ajusta para que coincida con el valor de Splitless time.

Ajuste de los parámetros de los gases

Antes de comenzar, asegúrese de estar utilizando el tipo de gas adecuado para el análisis.

Para configurar los parámetros del gas:

1. Programe el caudal de gas portador.

a. Seleccione Flow Mode.

b. Elija el modo preferido entre Constant Flow, Constant Pressure, Programmed Flow o Programmed Pressure.

c. Introduzca los valores iniciales de Flow o Pressure.

i. Si selecciona el modo Constant Flow, introduzca el valor deseado de Column Flow. Se calcula y ajusta la presión necesaria para mantener el caudal constante.

ii. Si selecciona el modo Constant Pressure, introduzca el valor deseado de Pressure.

Nota El caudal de purga debe ajustarse entre 0,5 y 50 ml/min en la página Configuration del módulo del inyector.

Page 175: Trace 1300 1310 Userguide Es

6 Módulo inyector Split/SplitlessUso de los parámetros de SSL

Thermo Scientific Guía del usuario del TRACE 1300 y TRACE 1310 141

d. Introduzca un valor para Programmed Flow/Programmed Pressure.

i. Seleccione Progr Flow/Pressure, desplácese hasta Initial Flow/Press e introduzca el valor deseado. Pulse Enter.

ii. Desplácese hasta Initial Time e introduzca un valor. Este parámetro finaliza la parte inicial del programa.

e. Programe los valores de Ramps.

i. Desplácese hasta Ramp 1 e introduzca un valor.

ii. Desplácese hasta Final Flow 1/Pressure 1 e introduzca el valor final de la rampa.

iii. Desplácese hasta Final Time 1 e introduzca el valor final de Ramp 1. Con esta operación finaliza el ajuste de la primera rampa.

iv. Si no va a utilizar una segunda rampa, asigne a Ramp 2 el valor Off. Para configurar una segunda rampa, desplácese hasta Ramp 2 e introduzca un valor.

v. Desplácese hasta Final Flow 2/Pressure 2 e introduzca el valor final de la rampa.

vi. Desplácese hasta Final Time 2 e introduzca el valor final de Ramp 2. Con esta operación finaliza el ajuste de la segunda rampa.

vii. Si no va a utilizar una tercera rampa, asigne a Ramp 3 el valor Off. Para configurar una tercera rampa, desplácese hasta Ramp 3 e introduzca un valor.

viii. Desplácese hasta Final Flow 3/Pressure 3 e introduzca el valor final de la rampa.

ix. Desplácese hasta Final Time 3 e introduzca el valor final de Ramp 3. Con esta operación finaliza el ajuste de la tercera rampa.

2. Si está utilizando TRACE 1300/TRACE 1310 con un detector de masas, asigne a Vacuum Compensation el valor On para compensar la salida de la columna a vacío.

Ajuste de parámetros para modo split

Antes de comenzar, verifique si el liner adecuado está colocado en el cuerpo del inyector y el sistema no tiene fugas.

Para configurar una inyección en modo Split:

1. Programe el caudal de gas portador.

2. En la lista de modos, elija Split.

3. Ajuste el valor de Temperature del inyector.

Nota Si selecciona el modo Programmed Flow o Programmed Pressure, el menú del gas portador contiene los parámetros para programar hasta un máximo de tres rampas.

Page 176: Trace 1300 1310 Userguide Es

6 Módulo inyector Split/SplitlessUso de los parámetros de SSL

142 Guía del usuario del TRACE 1300 y TRACE 1310 Thermo Scientific

4. Si se seleccionó Flow Mode (programado o constante) para el gas portador, especifique Split Flow o Split Ratio.

a. Si desea un valor de Split Flow específico, introdúzcalo. El sistema calculará el valor de Split Ratio.

b. Si desea un valor de Split Ratio específico, introdúzcalo. El sistema calculará el valor de Split Flow.

5. Si lo desea, active la opción Gas Saver y ajuste un valor de Gas Saver Time tras el tiempo de inyección.

Ajuste de parámetros para modo splitless

Antes de comenzar, verifique la instalación del liner adecuado en el cuerpo del inyector y que el sistema no tiene fugas.

Para configurar una inyección en modo Splitless:

1. Programe el caudal de gas portador.

2. En la lista de modos, elija Splitless.

3. Ajuste el valor de Temperature del inyector.

4. Introduzca el valor de Splitless Time.

5. Si lo desea, active Constant Septum Purge e introduzca en Stop Purge For los minutos que deben transcurrir antes de reiniciar la purga.

6. Si lo desea, active la opción Gas Saver y ajuste un valor de Gas Saver Time tras el tiempo de inyección.

Ajuste de parámetros para el modo splitless con pulso de presión

Antes de comenzar, verifique la instalación del liner adecuado en el cuerpo del inyector y la ausencia de fugas en el sistema.

Para configurar una inyección en modo Surged Splitless:

1. Programe el caudal de gas portador.

2. En la lista de modos, elija Surged Splitless.

3. Ajuste el valor de Temperature del inyector.

4. Introduzca el valor de Splitless Time.

5. Si lo desea, active Constant Septum Purge e introduzca en Stop Purge For los minutos que deben transcurrir antes de reiniciar la purga.

6. Ajuste los valores de Surge Pressure y Surge Duration.

7. Si lo desea, active la opción Gas Saver y ajuste un valor de Gas Saver Time tras el tiempo de inyección.

Page 177: Trace 1300 1310 Userguide Es

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 143

7

Módulo inyector Split/Splitless con backflush (SSLBKF)

En este capítulo se describe el módulo inyector Split/Splitless para aplicaciones con backflush (SSLBKF) y se ofrecen instrucciones de programación de los parámetros del inyector.

Descripción general del móduloEl módulo SSL Backflush incluye el cuerpo del inyector, el calefactor, válvulas de salida de split y purga, filtros, sistemas neumáticos digitales para controlar el gas portador, control de backflush, línea de backflush y conectores para la unión a la columna analítica.

Figura 109. Módulo inyector Split/Splitless con backflush

Los componentes del módulo y el inyector se muestran en la Figura 110 y en la Figura 111.

Índice

• Descripción general del módulo

• Modo de backflush

• Consumibles

• Uso de los parámetros de SSLBKF

Asa de elevación

Tapa abatible del módulo

Tapa del módulo

Línea de backflushConector de línea

de backflush

Línea de backflush

Tapón de conector

Page 178: Trace 1300 1310 Userguide Es

7 Módulo inyector Split/Splitless con backflush (SSLBKF)Descripción general del módulo

144 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Figura 110. Componentes del módulo inyector Split/Splitless con backflush

Figura 111. Componentes de inyector Split/Splitless con backflush

Tapa del módulo

Tapa abatible del módulo

Salida de línea de split

Filtro de línea de gas portador

Filtro de gas de línea de split

Anilla roscada

Salida de línea de purga

Tapón del septum

Cuerpo del inyector

Soporte del septum/tapón del liner

Cubierta aislante

Conectores inferiores

Línea de backflush

Junta de la base

Tuerca de retención

Arandela

Conector terminal de columna capilar

Junta tórica interna del cabezal del inyector

Junta tórica externa del cabezal del inyector

Anilla roscada

Liner

Junta del liner

Septum

Tapón del septum

Soporte del septum/tapón del liner

Línea de backflushConector de línea de backflush

FérrulaTapón de conector

Page 179: Trace 1300 1310 Userguide Es

7 Módulo inyector Split/Splitless con backflush (SSLBKF)Modo de backflush

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 145

Modo de backflushEste modo de funcionamiento permite eliminar el disolvente antes de que la muestra pase a la columna, así como eliminar la parte pesada de la muestra, que no resulta relevante para el análisis.

Figura 112. Diagrama de bloques del modo SSL con backflush

Modo split

En este modo la muestra se inyecta en el liner en estado caliente; para ello, la temperatura de inyección se mantiene adaptada a la volatilidad de los compuestos.

Durante la inyección en modo split las válvulas de split y de purga permanecen abiertas durante todo el ciclo. Solo una parte de la muestra se transfiere a la columna. El resto se evacua a través de la línea de split. La relación de split (relación entre el caudal de split y el de columna) determina la cantidad de muestra que accede a la columna cromatográfica.

Carrier

Split

Purge

1

2

3

5

6

73

4

4

3 4

5

8

1 = Active Carbon Filter2 = Active Carbon Filter3 = Proportional Valve4 = Pressure Sensor5 = Restrictor

6 = Restrictor for Bypass7 = Restrictor8 = Three-way Backflush valve 9 =

Tee Connector

10 = DCC Board9

Backflush Line

Separation Column

10

Bypass

Guard Column

Page 180: Trace 1300 1310 Userguide Es

7 Módulo inyector Split/Splitless con backflush (SSLBKF)Consumibles

146 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Modo Splitless

En este modo la muestra se inyecta en el liner en estado caliente; para ello, la temperatura de inyección se mantiene adaptada a la volatilidad de los compuestos.

La inyección en modo splitless envía la totalidad de la muestra a la columna. La línea de split se cierra durante la inyección de la muestra y su transferencia a la columna. Una vez realizada la transferencia, la línea de split vuelve a abrirse para limpiear la cámara de evaporación y eliminar cualquier resto de vapores de la muestra. El tiempo necesario para transferir la muestra evaporada del inyector a la columna es el tiempo de splitless. Al término del periodo de splitless, la válvula de split se abre de nuevo y el caudal de split evacua del inyector cualquier resto de vapores de la muestra.

Modo Surged Splitless

En este modo la muestra se inyecta en el liner en estado caliente; para ello, la temperatura de inyección se mantiene adaptada a la volatilidad de los compuestos.

En la fase de inyección y durante un tiempo predefinido se activa un pulso de presión de gas portador. La presión aplicada durante el tiempo de splitless genera un aumento repentino del caudal dirigido al inyector y acelera el proceso de transferencia de sustancias de muestra del inyector a la columna. De este modo se evita el ensanchimiento de los picos de la muestra y el riesgo de sobrecarga del inyector.

Puede configurarse un caudal de purga constante del septum que limpie continuamente el septum durante la totalidad del análisis para reducir el riesgo de contaminación procedente de los analitos de las muestras.

ConsumiblesLos consumibles necesarios para este inyector son el septum, el liner de vidrio y las juntas tóricas.

Septum

Utilice siempre septums de buena calidad, como el modelo BTO que se suministra con TRACE 1300/TRACE 1310. Estos modelos son indeformables, duran más y tienen un nivel de sangrado más bajo, incluso a temperatura elevada.

El inyector SSL es compatible con la válvula de alta presión Merlin Microseal™ en sustitución del septum estándar.

Liner

El modo de inyección de muestras empleado determina la opción de liner que se instalará en el cuerpo del inyector. Es preciso utilizar un liner adecuado que garantice la evaporación completa y que tenga capacidad para todo el volumen de muestra evaporada sin reaccionar con ella.

Page 181: Trace 1300 1310 Userguide Es

7 Módulo inyector Split/Splitless con backflush (SSLBKF)Consumibles

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 147

Los sistemas de datos cromatográficos Thermo Scientific incluyen una calculadora de volumen de vapor que calcula con rapidez y precisión el volumen de expansión según diversos factores (disolvente, volumen de líquido inyectado, temperatura y presión de entrada) para ayudarle a determinar la idoneidad de las dimensiones del liner según el método elegido.

Liners de split

Seleccione un liner adecuado de la Tabla 48.

Fundas de splitless

Seleccione un liner adecuado de la Tabla 49.

Liners de HS/SPME

Seleccione un liner adecuado de la Tabla 50.

Juntas tóricas

Las juntas tóricas interna (línea de portador) y externa (línea de purga) del cabezal del cuerpo deben sustituirse en caso de fuga. Para sustituir las juntas tóricas, consulte el manual TRACE 1300/TRACE 1310 Hardware Manual.

Tabla 48. Liners de split

Nº Liner Descripción

1 Liner desactivado; 4 mm DI; Lana de vidrio; 900 μl volumen teórico.

2 Liner vacío desactivado; 4 mm DI.

3 Liner vacío desactivado Mini Lam; 4 mm DI.

Tabla 49. Liners de splitless

Nº Liner Descripción

1 Liner desactivado con estrechamiento y lana de vidrio; 900 μl volumen teórico.

2 Liner vacío desactivado con estrechamiento.

Tabla 50. Liners de HS/SPME

Nº Liner Descripción

1 Liner vacío desactivado; 1,2 mm DI.

Page 182: Trace 1300 1310 Userguide Es

7 Módulo inyector Split/Splitless con backflush (SSLBKF)Uso de los parámetros de SSLBKF

148 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Uso de los parámetros de SSLBKFEn este apartado se incluyen los parámetros operativos del módulo split/splitless para aplicaciones de backflush. Los parámetros que pueden modificarse varían según el modo de funcionamiento (split/splitless, splitless con pulso de presión) y el modo de caudal (caudal constante, presión constante, caudal programado, presión programada)..

En los siguientes apartados se enumeran y describen los parámetros de control del inyector SSL frontal/trasero, que son:

Parámetros de gas portador

Ajuste los parámetros de control del gas portador. Los parámetros que se muestran varían según el ajuste de Flow Mode.

Pressure: Define los valores reales y de ajuste de presión del gas portador. El rango es On/Off; 5–1000 kPa (0,725-145 psi; 0,05-10 bares). Esta línea no puede modificarse si el modo seleccionado es Constant Flow o Programmed Flow.

Column Flow: Define el caudal de gas portador enviado a la columna. El rango es On/Off; 0,01-100 ml/min. Seleccione On para ver los valores reales y de ajuste. Seleccione Off o 0 para desactivar todos los caudales de entrada. Esta línea no puede modificarse si el modo seleccionado es Constant Pressure o Programmed Pressure.

Flow Mode: Define el modo de control del gas portador. Cada modo habilita o deshabilita los parámetros dedicados.

• Constant Flow: El caudal de la columna se mantiene constante durante todo el análisis. La presión en cabeza de la columna cambia con la temperatura de la columna para mantener un caudal constante.

• Parámetros de gas portador

• Modo de inyección

• Parámetros del inyector

• Parámetros de purga

• Parámetros de pulso de presión

• Ajuste de parámetros de gas

• Ajuste de parámetros de backflush

• Ajuste de parámetros para modo split

• Ajuste de parámetros para modo splitless

• Ajuste de parámetros para modo surged splitless

Page 183: Trace 1300 1310 Userguide Es

7 Módulo inyector Split/Splitless con backflush (SSLBKF)Uso de los parámetros de SSLBKF

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 149

• Constant Pressure: La presión en cabeza de la columna se mantiene en todo el análisis. Durante los programas de temperatura, el caudal disminuye a causa del aumento de viscosidad del gas portador.

• Programmed Flow: El caudal de la columna puede programarse para que cambie durante un ciclo analítico; pueden definirse hasta tres rampas de caudal.

Estos son los parámetros:

– Initial Flow: Define el caudal inicial.

– Initial Time: Define la duración del caudal inicial.

– Ramp 1: Velocidad de rampa en ml/min2 hasta alcanzar el caudal final. Seleccione On para habilitar la rampa y ver el valor de ajuste.

– Final Flow: Caudal final de gas portador que se alcanza al término de la rampa definida.

– Final Time: Define la duración del caudal final correspondiente.

– Ramp 2-3: Para programar rampas adicionales, seleccione On e introduzca la velocidad de las rampas en ml/min2. Aparecen las opciones de menú Final Flow y Final Time de la rampa correspondiente. Los rangos y las funciones de estas opciones son idénticos a los de las opciones Final Flow y Final Time de la primera rampa.

• Programmed Pressure: La presión de entrada puede programarse para que cambie durante un ciclo analítico; pueden definirse hasta tres rampas de presión.

Estos son los parámetros:

– Initial Pressure: Define la presión inicial.

– Initial Time: Define la duración de la presión inicial.

– Ramp 1: Define la presión de la rampa en kPa/min hasta alcanzar la presión final. Seleccione On para habilitar la rampa y ver el valor de ajuste.

– Final Pressure: Define la presión final de gas portador que se alcanza al término de la rampa definida.

– Final Time: Define la duración de la presión final correspondiente.

– Ramp 2-3: Para programar rampas adicionales, seleccione On e introduzca la velocidad de las rampas en kPa/min. Aparecen las opciones de menú Final Pressure y Final Time de la rampa correspondiente. Los rangos y las funciones de estas opciones son idénticos a los de las opciones Final Pressure y Final Time de la primera rampa.

Linear Velocity: Velocidad calculada del gas portador cuando atraviesa la columna, expresada en cm/s. No se puede modificar.

Void Time: Tiempo de elución de pico no retenido, expresado en segundos. No se puede modificar.

Gas Saver: Esta función reduce el consumo de gas portador. El rango es On/Off; 5-500 ml/min. Seleccione On para activar el ahorro de caudal de gas y ver los valores de ajuste. Seleccione Off para desactivar el ahorro de caudal de gas. El valor de caudal se guarda en la memoria.

Page 184: Trace 1300 1310 Userguide Es

7 Módulo inyector Split/Splitless con backflush (SSLBKF)Uso de los parámetros de SSLBKF

150 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Gas Saver Time: Define el momento del ciclo en que comienza a funcionar la función de ahorro de gas. Por lo general se inicia tras la inyección, para conservar el gas. Ajuste un valor de 0,00 a 999,99 min. Esta línea no se muestra si el valor de Gas Saver es Off.

Vacuum Comp.: Solo debe utilizar este parámetro si TRACE 1300/TRACE 1310 está acoplado a un detector de masas, para compensar la salida de la columna a vacío. Las opciones son On y Off.

Modo de inyección

Elija el modo de inyección que utilizará con el inyector SSLBKF. Cada modo habilita o deshabilita los parámetros dedicados.

Split: El caudal de portador se divide en el puerto de inyección y el grueso se expulsa por la salida de split. La salida de split permanece abierta en todo momento.

Splitless: Cierra la salida de split durante la inyección para enviar toda la muestra a la columna. En este modo, son habituales tiempos en torno a un minuto.

Surged Splitless: Funciona igual que la opción Splitless, pero también permite programar un pulso de presión durante la inyección. El pulso comienza en el intervalo de preparación del ciclo y continúa hasta que ha transcurrido el tiempo definido. El pulso de presión se define con más detalle en el siguiente grupo de opciones.

Parámetros del inyector

Los parámetros de inyección de SSLBKF se describen a continuación.

Temperature: Define el valor de ajuste de temperatura del inyector. Según el modo de inyección seleccionado, la temperatura que ajuste ha de ser suficiente para evaporar muestra y disolvente. Introduzca un valor de temperatura de entrada entre 0 y 400 °C.

Split Flow: Introduzca un valor entre 5 y 1250 ml/min. El valor de Split Ratio se ajusta de modo automático. Además, este valor está controlado por el caudal de columna inicial introducido en la opción de gas portador asociada. Si se modifica el caudal, el valor de Split Flow se ajusta para mantener la relación de split. No obstante, si el valor de Split Flow rebasa sus límites, se genera un aviso.

Split Ratio: Está habilitado cuando el modo de inyección es Split. También se asocia con el ajuste de Flow Mode con el valor Constant Flow o Programmed Flow. Especifique la relación del caudal de split (Split Flow) con el caudal de columna. Calcule la relación de split: Relación de split = (Caudal de split) / (Caudal de columna). Introduzca un valor entre 1 y 12500. La opción Split Flow se ajusta de modo automático.

Splitless Time: Está habilitado si el modo de inyección es Splitless o Surged Splitless. Especifique el tiempo que la válvula de split permanece cerrada tras la inyección en modo splitless. Introduzca un valor de 0,00 a 999,99. El temporizador comienza al inicio del ciclo. La salida de split vuelve a abrirse cuando finaliza el periodo de splitless definido,

Page 185: Trace 1300 1310 Userguide Es

7 Módulo inyector Split/Splitless con backflush (SSLBKF)Uso de los parámetros de SSLBKF

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 151

Parámetros de purga

Los parámetros de purga están habilitados si el modo de inyección es Splitless o Surged Splitless.

Constant Septum Purge: Este campo controla la purga del septum del inyector. Las opciones son On y Off. Seleccione On para activar la función y limpiar el septum de forma continua con un caudal de purga.

Stop Purge For: Está habilitado si el valor del parámetro Constant Septum Purge es On. Puede introducir un intervalo de tiempo entre 0,00 y 999,99 min para el cese de la purga de septum.

Parámetros de pulso de presión

Los parámetros de pulso de presión están habilitados si el modo de inyección es Surged Splitless.

Surge Pressure: Presión aplicada durante el tiempo de splitless para generar un aumento del caudal en el inyector que acelere la transferencia de la muestra. Introduzca un valor entre 5 y 1000 kPa (0,725-145 psi; 0,05-10 bares).

Surge Duration: Define el tiempo de mantenimiento del pulso de presión. Introduzca un valor de 0,00 a 999,99 min. Por lo general, se ajusta para que coincida con el valor de Splitless time.

Ajuste de parámetros de gas

Antes de comenzar, asegúrese de estar utilizando el tipo de gas adecuado para el análisis.

Para configurar los parámetros de gas:

1. Programe el caudal de gas portador.

a. Seleccione Flow Mode.

b. Elija el modo preferido entre Constant Flow, Constant Pressure, Programmed Flow o Programmed Pressure.

c. Introduzca los valores iniciales de Flow o Pressure.

i. Si selecciona el modo Constant Flow, introduzca el valor deseado de Column Flow. Se calcula y ajusta la presión necesaria para mantener el caudal constante.

ii. Si selecciona el modo Constant Pressure, introduzca el valor deseado de Pressure.

Nota El caudal de purga debe ajustarse entre 0,5 y 50 ml/min en la página Configuration del módulo inyector.

Page 186: Trace 1300 1310 Userguide Es

7 Módulo inyector Split/Splitless con backflush (SSLBKF)Uso de los parámetros de SSLBKF

152 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

d. Introduzca un valor para Programmed Flow/Programmed Pressure.

i. Seleccione Progr Flow/Pressure, desplácese hasta Initial Flow/Press e introduzca el valor deseado. Pulse Enter.

ii. Desplácese hasta Initial Time e introduzca un valor. Este parámetro finaliza la parte inicial del programa.

e. Programe los valores de Ramps.

i. Desplácese hasta Ramp 1 e introduzca un valor.

ii. Desplácese hasta Final Flow 1/Pressure 1 e introduzca el valor final de la rampa.

iii. Desplácese hasta Final Time 1 e introduzca el valor final de tiempo de Ramp 1. Con esta operación finaliza el ajuste de la primera rampa.

iv. Si no va a utilizar una segunda rampa, asigne a Ramp 2 el valor Off. Para configurar una segunda rampa, desplácese hasta Ramp 2 e introduzca un valor.

v. Desplácese hasta Final Flow 2/Pressure 2 e introduzca el valor final de la rampa.

vi. Desplácese hasta Final Time 2 e introduzca el valor final de tiempo de Ramp 2. Con esta operación finaliza el ajuste de la segunda rampa.

vii. Si no va a utilizar una tercera rampa, asigne a Ramp 3 el valor Off. Para configurar una tercera rampa, desplácese hasta Ramp 3 e introduzca un valor.

viii. Desplácese hasta Final Flow 3/Pressure 3 e introduzca el valor final de la rampa.

ix. Desplácese hasta Final Time 3 e introduzca el valor final de tiempo de Ramp 3. Con esta operación finaliza el ajuste de la tercera rampa.

2. Si está utilizando TRACE 1300/TRACE 1310 con un detector de masas, asigne a Vacuum Compensation el valor On para compensar la salida de la columna a vacío.

Ajuste de parámetros de backflush

Siga este procedimiento para configurar una inyección en modo Backflush. En este modo, la parte más pesada de la muestra se deriva a la línea de split para proteger la columna analítica.

Antes de comenzar, verifique la instalación del liner adecuado en el cuerpo del inyector y la ausencia de fugas en el sistema.

1. Programe el caudal de gas portador.

2. En la lista de modos, elija Splitless.

3. Ajuste el valor de Temperature del inyector.

4. Introduzca el valor deseado de Split Flow.

Nota Si selecciona el modo Programmed Flow o Programmed Pressure, el menú de gas portador contiene parámetros para un máximo de tres rampas programadas.

Page 187: Trace 1300 1310 Userguide Es

7 Módulo inyector Split/Splitless con backflush (SSLBKF)Uso de los parámetros de SSLBKF

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 153

5. Introduzca el valor de Splitless Time.

6. Si lo desea, active Constant Septum Purge y ajuste el valor de Stop Purge For para indicar los minutos que deben transcurrir antes de reiniciar la purga.

7. Active el backflush.

8. Ajuste aquí el tiempo de activación de la válvula de backflush.

9. Ajuste la duración del backflush (tiempo específico o tiempo de ejecución del GC).

10. Si se definió un tiempo específico, ajuste la duración del backflush.

Ajuste de parámetros para modo split

Antes de comenzar, verifique la instalación del liner adecuado en el cuerpo del inyector y la ausencia de fugas en el sistema.

Para configurar una inyección en modo Split:

1. Programe el caudal de gas portador.

2. En la lista de modos, elija Split.

3. Ajuste el valor de Temperature del inyector.

4. Si se seleccionó Flow Mode (programado o constante) para el gas portador, especifique Split Flow o Split Ratio.

a. Si desea un valor de Split Flow específico, introdúzcalo. El sistema calculará el valor de Split Ratio.

b. Si desea un valor de Split Ratio específico, introdúzcalo. El sistema calculará el valor de Split Flow.

5. Si lo desea, active la opción Gas Saver y ajuste un valor de Gas Saver Time tras el tiempo de inyección.

Ajuste de parámetros para modo splitless

Antes de comenzar, verifique la instalación del liner adecuado en el cuerpo del inyector y la ausencia de fugas en el sistema.

Para configurar una inyección en modo Splitless:

1. Programe el caudal de gas portador.

2. En la lista de modos, elija Splitless.

3. Ajuste el valor de Temperature del inyector.

4. Introduzca el valor de Splitless Time.

Page 188: Trace 1300 1310 Userguide Es

7 Módulo inyector Split/Splitless con backflush (SSLBKF)Uso de los parámetros de SSLBKF

154 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

5. Si lo desea, active Constant Septum Purge y ajuste el valor de Stop Purge For para indicar los minutos que deben transcurrir antes de reiniciar la purga.

6. Si lo desea, active la opción Gas Saver y ajuste un valor de Gas Saver Time tras el tiempo de inyección.

Ajuste de parámetros para modo surged splitless

Antes de comenzar, verifique la instalación del liner adecuado en el cuerpo del inyector y la ausencia de fugas en el sistema.

Para configurar una inyección en modo Surged Splitless:

1. Programe el caudal de gas portador.

2. En la lista de modos, elija Surged Splitless.

3. Ajuste el valor de Temperature del inyector.

4. Introduzca el valor de Splitless Time.

5. Si lo desea, active Constant Septum Purge y ajuste el valor de Stop Purge For para indicar los minutos que deben transcurrir antes de reiniciar la purga.

6. Ajuste los valores de Surge Pressure y Surge Duration.

7. Si lo desea, active la opción Gas Saver y ajuste un valor de Gas Saver Time tras el tiempo de inyección.

Page 189: Trace 1300 1310 Userguide Es

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 155

8

Módulo inyector de evaporación de temperatura programable (PTV)

En este capítulo se describe el módulo inyector de evaporación de temperatura programable y se ofrecen instrucciones de programación de los parámetros del inyector.

Descripción general del móduloEl módulo inyector de evaporación de temperatura programable (PTV) incluye el cuerpo del inyector, calefactor, ventilador de refrigeración, válvulas de split y purga, filtros, sistema neumático digital para el control del gas portador y conector para la conexión a la columna analítica.

Figura 113. Módulo inyector de evaporación de temperatura programable

Los componentes del módulo y el inyector se muestran en la Figura 114 y en la Figura 115.

Índice

• Descripción general del módulo

• Técnicas de inyección

• Consumibles

• Uso de los parámetros de PTV

Asa de elevación

Tapa abatible del módulo

Tapa del módulo

Page 190: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Descripción general del módulo

156 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Figura 114. Componentes del módulo inyector de evaporación de temperatura programable

Figura 115. Componentes del inyector de evaporación de temperatura programable

Tapa abatible del módulo

Salida de línea de split

Salida de línea de purga

Filtro de carbón activado de línea de gas portador

Tapón del septum

Conjunto de cabezal del inyector

Cuerpo del inyector

Ventilador de refrigeración

Filtro de carbón activado de línea de gas portador

Conectores inferiores

Tapa del módulo

Cubierta aislante

FérulaTuerca de split

Conector terminal para columna capilar

Junta de plata

Liner

Junta del liner

Tapón del liner

Septum

Tapón del septum

Page 191: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Descripción general del módulo

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 157

El inyector funciona en modo de temperatura constante o programada, en el rango de temperatura ambiente hasta 450 °C. En el segundo modo, se ofrecen hasta tres rampas y mesetas de temperatura. La temperatura de inyección se restablece por medio de un ventilador de refrigeración presente en el módulo.

Se utiliza nitrógeno líquido o dióxido de carbono como refrigerante para el trabajo a temperatura inferior a la del ambiente (hasta –100 °C con nitrógeno líquido; hasta –50 °C con dióxido de carbono). El caudal de refrigerante se controla con un sistema criogénico opcional.

Los sistemas criogénicos de PTV con nitrógeno líquido y con dióxido de carbono se muestran en la Figura 116 y la Figura 117 respectivamente.

Figura 116. Sistema criogénico de PTV frontal y trasero con nitrógeno líquido

Figura 117. Sistema criogénico de PTV frontal y trasero con dióxido de carbono

Page 192: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Técnicas de inyección

158 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Técnicas de inyecciónSe ofrecen tres modos operativos de temperatura programada (PTV Split, PTV Splitless y PTV Large Volume), tres modos de temperatura constante (CT Split, CT Splitless y CT Surged Splitless), y un modo de operación para utilizar el inyector PTV como inyector on-column. Puede configurar y elegir el modo operativo en la lista de parámetros del inyector.

Modo PTV Split

En este modo la muestra se inyecta en el liner en estado frío; para ello, la temperatura inicial se mantiene por debajo del punto de ebullición del disolvente. La muestra se calienta a la temperatura de evaporación programada y se transfiere a la columna capilar. La temperatura final ha de ser apta para evaporar el componente cuyo punto de ebullición sea más alto. Durante la inyección en modo split, la válvula de split está abierta. Solo una parte de la muestra se transfiere a la columna. El resto se evacua a través de la línea de split. La relación de split entre el flujo de split y el de columna determina la cantidad de muestra que accede a la columna cromatográfica.

Figura 118. Diagrama de bloques del modo PTV Split

1 = Active Carbon Filter2 = Active Carbon Filter3 = Proportional Valve4 = Pressure Sensor5 = Restrictor6 = Restrictor7 = DCC Board

Carrier

Split

Purge

1

2

3

5

6

7

3

4

4

3 4

Page 193: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Técnicas de inyección

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 159

En la Figura 119 se muestra un ejemplo de perfil de temperatura y de sincronización de las válvulas en modo split.

Figura 119. Modo PTV Split Ejemplo de perfil de temperatura y sincronización

Modo PTV Splitless

En este modo la muestra se inyecta en el liner en estado frío; para ello, la temperatura inicial se mantiene por debajo del punto de ebullición del disolvente. La muestra se calienta a la temperatura de evaporación programada y se transfiere a la columna capilar. La temperatura final ha de ser apta para evaporar el componente cuyo punto de ebullición sea más alto.

La inyección en modo splitless envía la totalidad de la muestra a la columna. La línea de split se cierra durante la inyección de la muestra y su transferencia a la columna. Una vez realizada la transferencia, la línea de split vuelve a abrirse para evacuar la cámara de evaporación y eliminar cualquier resto de vapores de la muestra. El tiempo necesario para transferir la muestra evaporada del inyector a la columna es el tiempo de splitless. Al término del periodo de splitless, la válvula de split se abre de nuevo y el caudal de split elimina del inyector cualquier resto de vapores de la muestra.

End of OvenTemperature Program

Open (On)Close (Off)

Open (On)Close (Off)

T1 = Temperatura de inyección

T2 = Temperatura de evaporación

T3 = Temperatura de transferencia de muestra

T4 = Temperatura de limpieza

Page 194: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Técnicas de inyección

160 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Puede configurarse un caudal de purga de septum constante que limpie el septum durante la totalidad del análisis para reducir el riesgo de contaminación procedente de los analitos de las muestras.

Figura 120. Diagrama de bloques del modo PTV Splitless

En la Figura 121 se muestra un ejemplo de perfil de temperatura y de sincronización de las válvulas en el modo PTV Splitless.

Figura 121. Modo PTV Splitless: Ejemplo de perfil de temperatura y sincronización

1 = Active Carbon Filter2 = Active Carbon Filter3 = Proportional Valve4 = Pressure Sensor5 = Restrictor6 = Restrictor7 = DCC Board

Carrier

Split

Purge

1

2

3

5

6

7

3

4

4

3 4

End of OvenTemperature Program

Open (On)Close (Off)

Open (On)Close (Off)

T4

T3

T2

T1

PurgeValve

SplitValve

CleaningInjection and Transfer

Purge Closure Time

SL Time

T1 = Temperatura de inyección

T2 = Temperatura de evaporación

T3 = Temperatura de transferencia de muestra

T4 = Temperatura de limpieza

Page 195: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Técnicas de inyección

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 161

Modo PTV Large Volume

En este modo se elimina el disolvente antes de que la muestra pase a la columna. De esta forma pueden realizarse inyecciones de gran volumen que mejoran la sensibilidad del análisis, así como inyecciones de volumen normal si el disolvente o los reactivos de derivatización deben evacuarse del inyector.

La muestra se inyecta en el liner en estado frío. Si el ajuste de los parámetros de inyección es correcto, los analitos se mantienen en el liner mientras el disolvente se evapora y evacua fuera del inyector.

La inyección de gran volumen se realiza en los siguientes modos por medio de un inyector automático de muestras:

1. Inyección a velocidad controlada: Este modo suele utilizarse para una inyección única de grandes volúmenes de muestra (100-250 μl). No está pensado para el análisis de compuestos con punto de ebullición cercano al del disolvente.

La muestra se inyecta a una velocidad lenta y controlada según la temperatura, la presión y el caudal de split empleado, de modo que durante la inyección parte del disolvente se elimina a travs de la salida de split.

La velocidad de evaporación está condicionada por la temperatura y el caudal, así como por el tipo de relleno presente en el liner.

2. Varias inyecciones: Realice varias inyecciones para incrementar la cantidad de compuestos depositados en el liner. Se introduce varias veces un pequeño volumen de muestra, con un retardo entre inyecciones. El volumen de cada inyección es de 5 a 10 μl. Es preciso mantener las condiciones analíticas iniciales durante todo el proceso de inyección.

En la Figura 122 se muestra un ejemplo de perfil de temperatura y de sincronización de las válvulas en el modo PTV Large Volume.

Figura 122. Modo PTV Large Volume: Ejemplo de perfil de temperatura y sincronizaciónEnd of OvenTemperature Program

Open (On)Close (Off)

Open (On)Close (Off)

T4

T3

T2

T1

PurgeValve

SplitValve

CleaningSolvent Venting Transfer

Purge Closure Time

SL Time

T1 = Temperatura de inyección

T2 = Temperatura de evaporación

T3 = Temperatura de transferencia de muestra

T4 = Temperatura de limpieza

Page 196: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Técnicas de inyección

162 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Modo Split a temperatura constante

En este modo la muestra se inyecta en el liner en estado caliente; para ello, la temperatura de inyección se mantiene adaptada a la volatilidad de los compuestos.

Durante la inyección en split, las válvulas de split y de purga permanecen abiertas durante todo el ciclo. Solo una parte de la muestra se transfiere a la columna. El resto se evacua a través de la línea de split. La relación de split entre el caudal de split y el de columna determina la cantidad de muestra que accede a la columna cromatográfica.

La capacidad del inyector PTV es limitada debido el reducido volumen de los liners utilizados. En estado caliente, el volumen de inyección no debe superar el valor de 1 μl para evitar problemas analíticos provocados por un desbordamiento el inyector.

En la Figura 123 se muestra un ejemplo de perfil de temperatura y sincronización de válvulas.

Figura 123. Sincronización de válvulas en modo CT Split

Modo Splitless a temperatura constante

En este modo la muestra se inyecta en el liner en estado caliente; para ello, la temperatura de inyección se mantiene adaptada a la volatilidad de los compuestos.

La inyección en modo splitless envía la totalidad de la muestra a la columna. La línea de split se cierra durante la inyección de la muestra y su transferencia a la columna. Una vez realizada la transferencia, la línea de split vuelve a abrirse para evacuar la cámara de evaporación y eliminar cualquier resto de vapores de la muestra. El tiempo necesario para transferir la muestra evaporada del inyector a la columna es el tiempo de splitless. Al término del periodo de splitless, la válvula de split se abre de nuevo y el caudal de split evacua del inyector cualquier resto de vapores de la muestra.

Puede configurarse un caudal de purga de septum constante que limpie el septum durante la totalidad del análisis para reducir el riesgo de contaminación procedente de los analitos de las muestras.

En la Figura 124 se muestra un ejemplo de perfil de temperatura y sincronización de válvulas.

Figura 124. Sincronización de válvulas en modo CT Splitless

Open (On)

Open (On)

PurgeValve

SplitValve

T1

End Cycle T1 = Temperatura de inyección

Open (On)Close (Off)

Open (On)Close (Off)

PurgeValve

SplitValve

T1

Septum Purge Closure Time

SL Time

T1 = Temperatura de inyección

Page 197: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Consumibles

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 163

Modo Surged Splitless a temperatura constante

En este modo la muestra se inyecta en el liner en estado caliente; para ello, la temperatura de inyección se mantiene adaptada a la volatilidad de los compuestos.

En la fase de inyección y durante un tiempo predefinido se activa un pulso de presión del gas portador. La presión aplicada durante el tiempo de splitless genera un aumento repentino del caudal dirigido al inyector y acelera el proceso de transferencia de sustancias de muestra del inyector a la columna. De este modo se evita el ensanchamiento de banda y el riesgo de sobrecarga del inyector.

Puede configurarse un caudal de purga de septum constante que limpie el septum durante la totalidad del análisis para reducir el riesgo de contaminación procedente de los analitos de las muestras.

Modo PTV on-column

El inyector PTV puede utilizarse de forma parecida a un inyector on-column si cuenta con un liner especial que incorpora una restricción en su parte superior. Consulte “Liners tipo on-column” en la página 165. Esta restricción funciona como una guía de aguja de 0,47 mm de diámetro externo y permite la inyección directa de la muestra en una columna de calibre ancho o en una precolumna; para hacerlo, la temperatura del inyector se mantiene por debajo del punto de ebullición del disolvente.

El inyector se calienta con una rampa de temperatura automática que emula a la del horno. Cuando utilice esta técnica, ajuste la temperatura inicial del horno por debajo del punto de ebullición del disolvente.

ConsumiblesLos consumibles necesarios para este inyector son el septum y el liner de vidrio.

Septum

Utilice siempre septums de buena calidad, como el modelo BTO que se suministra con TRACE 1300/TRACE 1310. Estos modelos son indeformables, duran más y tienen un nivel de sangrado más bajo, incluso a temperatura elevada.

El inyector PTV es compatible con la válvula de alta presión Merlin Microseal™ en sustitución del septum.

Page 198: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Consumibles

164 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Liners

El modo de inyección de muestras empleado determina la opción de liner que se instalará en el cuerpo del inyector. Es preciso utilizar un liner adecuado que garantice la evaporación completa y que tenga capacidad para todo el volumen de muestra evaporada sin reaccionar con ella.

Los sistemas de datos cromatográficos Thermo Scientific incluyen una calculadora de volumen de vapor que calcula con rapidez y precisión el volumen de expansión según diversos factores (disolvente, volumen de líquido inyectado, temperatura y presión de entrada) para ayudarle a determinar la idoneidad de las dimensiones del liner para el método de trabajo.

Liners de split

Seleccione un liner adecuado de la Tabla 51.

Liners de Splitless

Seleccione un liner adecuado de la Tabla 52.

Tabla 51. Liners de split

Nº Liner Descripción

1 Liner desactivado de Silcosteel. 2 mm DI; 2,75 mm DE; 120 mm longitud; 0,38 ml volumen teórico.

2 Liner no desactivado. 2 mm DI; 2,75 mm DE; 120 mm longitud; 0,38 ml volumen teórico.

3 Liner de vidrio desactivado. 2 mm DI; 2,75 mm DE; 120 mm longitud; 0,340 ml volumen teórico. La superficie de vidrio desactivada aporta la ventaja de un entorno químico inerte para la inyección de compuestos polares.

4 Liner desactivado con tapón de lana de vidrio. 2 mm DI; 2,75 mm DE; 120 mm longitud; con lana de vidrio. Idónea para operaciones PTV Split y Backflush.

Tabla 52. Liners de splitless (Hoja 1 de 2)

Nº Liner Descripción

1 Liner desactivado de Silcosteel. 2 mm DI; 2,75 mm DE; 120 mm longitud; 0,38 ml volumen teórico.

2 Liner no desactivado. 2 mm DI; 2,75 mm DE; 120 mm longitud; 0,38 ml volumen teórico.

3 Liner desactivado de Silcosteel. 1 mm DI; 2,75 mm DE; 120 mm longitud; 0,0095 ml volumen teórico. Empleada para inyección de muestras con compuestos de peso molecular elevado.

Page 199: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Consumibles

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 165

Liners para grandes volúmenes

Seleccione un liner adecuado de la Tabla 53.

Liners tipo on-column

Seleccione un liner adecuado de la Tabla 54.

4 Liner desactivado. 1 mm DI; 2,75 mm DE; 120 mm longitud; 0,0095 ml volumen teórico. Empleada para inyección de muestras con compuestos de peso molecular elevado.

5 Liner de vidrio desactivado. 2 mm DI; 2,75 mm DE; 120 mm longitud; 0,340 ml volumen teórico. La superficie de vidrio desactivada aporta la ventaja de un entorno químico inerte para la inyección de compuestos polares.

Tabla 52. Liners de splitless (Hoja 2 de 2)

Nº Liner Descripción

Tabla 53. Liners para grandes volúmenes

Nº Liner Descripción

1 Liner desactivado de Silcosteel con lana de vidrio desactivada. 2 mm DI; 2,75 mm DE; 120 mm longitud; 0,38 ml volumen teórico.

2 Liner desactivado de vidrio sinterizado con lana de cuarzo para inyección de compuestos polares y lábiles. 1,2 mm DI; 2,75 mm DE; 120 mm longitud; 0,35 ml volumen teórico. El revestimiento de superficie porosa sinterizada (0,25-0,5 mm) contiene el líquido durante la inyección de gran volumen a velocidad controlada y ofrece una superficie químicamente inerte.

3 Liner de vidrio desactivado con tres deflectores. 1,2 mm DI; 2,75 mm DE; 120 mm longitud; 0,180 ml volumen teórico. La superficie desactivada con deflectores permite aumentar los volúmenes inyectables con la funda de vidrio de 1 mm de DI. Los deflectores también puede utilizarse para contener un pequeño volumen de lana de vidrio.

4 Liner con deflectores para el análisis de pesticidas.

Tabla 54. Liner tipo on-column

Nº Liner Descripción

1 Liner desactivado de Silcosteel con restricción de 0,6 mm de DI. 1 mm DI; 2,75 mm DE; 120 mm longitud; volumen teórico no destacable. Se utiliza cuando el detector PTV funciona a modo de inyector on-column. Se requiere el empleo de una columna o una precolumna de calibre ancho.

Page 200: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Uso de los parámetros de PTV

166 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Uso de los parámetros de PTVEn el siguiente apartado se enumeran y describen los parámetros de control del inyector PTV.

Parámetros de gas portador

Ajuste los parámetros de control del gas portador, con independencia del gas empleado. Los parámetros que se muestran varían según el ajuste de Flow Mode.

Pressure: Define los valores real y de ajuste de presión del gas portador. El rango es On/Off; 5–1000 kPa (0,725-145 psi; 0,05-10 bares). Esta línea no puede modificarse si el modo seleccionado es Constant Flow o Programmed Flow.

Column Flow: Define el caudal de gas portador enviado a la columna. El rango es On/Off; 0,01-100 ml/min. Seleccione On para ver los valores reales y los de ajuste. Seleccione Off o 0 para desactivar todos los caudales de entrada. Esta línea no puede modificarse si el modo seleccionado es Constant Pressure o Programmed Pressure.

Flow Mode: Define el modo de control del gas portador. Cada modo habilita o deshabilita los parámetros dedicados.

• Parámetros de gas portador

• Modo de inyección

• Parámetros del inyector

• Parámetros de purga

• Parámetros de pulso de presión

• Parámetros de fases de inyección

• Ajuste de parámetros de gas

• Ajuste de parámetros de gas

• Ajuste de parámetros para modo PTV Split

• Ajuste de parámetros para modo PTV Splitless

• Ajuste de parámetros para modo PTV Large Volume

• Programación de parámetros de inyección

• Ajuste de parámetros para modo CT Split

• Ajuste de parámetros para modo CT Splitless

• Ajuste de parámetros para modo CT Surged Splitless

Page 201: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Uso de los parámetros de PTV

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 167

• Constant Flow: El caudal de la columna se mantiene constante durante todo el análisis. La presión en cabeza de columna cambia con la temperatura de la columna para mantener un caudal constante.

• Constant Pressure: La presión en cabeza de columna se mantiene en todo el análisis. Durante los programas de temperatura, el caudal disminuye a causa del aumento de viscosidad del gas portador.

• Programmed Flow: El caudal de la columna puede programarse para que cambie durante un ciclo analítico; pueden definirse hasta tres rampas de caudal.

Estos son los parámetros:

– Initial Flow: Define el caudal inicial.

– Initial Time: Define la duración del caudal inicial.

– Ramp 1: Velocidad de rampa en ml/min2 hasta alcanzar el caudal final. Seleccione On para habilitar la rampa y ver el valor de ajuste.

– Final Flow: Caudal final de gas portador que se alcanza al término de la rampa definida.

– Final Time: Define la duración del caudal final correspondiente.

– Ramp 2-3: Para programar rampas adicionales, seleccione On e introduzca la velocidad de las rampas en ml/min2. Aparecen las opciones de menú Final Flow y Final Time de la rampa correspondiente. Los rangos y las funciones de estas opciones son idénticos a los de las opciones Final Flow y Final Time de la primera rampa.

• Programmed Pressure: La presión de entrada puede programarse para que cambie durante un ciclo analítico; pueden definirse hasta tres rampas de presión.

Estos son los parámetros:

– Initial Pressure: Define la presión inicial.

– Initial Time: Define la duración de la presión inicial.

– Ramp 1: Define la presión de la rampa en kPa/min hasta alcanzar la presión final. Seleccione On para habilitar la rampa y ver el valor de ajuste.

– Final Pressure: Define la presión final de gas portador que se alcanza al término de la rampa definida.

– Final Time: Define la duración de la presión final correspondiente.

– Ramp 2-3: Para programar rampas adicionales, seleccione On e introduzca la velocidad de las rampas en kPa/min. Aparecen las opciones de menú Final Pressure y Final Time de la rampa correspondiente. Los rangos y las funciones de estas opciones son idénticos a los de las opciones Final Pressure y Final Time de la primera rampa.

Linear Velocity: Velocidad calculada del gas portador cuando atraviesa la columna, expresada en cm/s. No se puede modificar.

Page 202: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Uso de los parámetros de PTV

168 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Void Time: Tiempo de elución de pico no retenido, expresado en segundos. No se puede modificar.

Gas Saver: Esta función reduce el consumo de gas portador. El rango es On/Off; 5-500 ml/min. Seleccione On para activar el ahorro de caudal de gas y ver los valores de ajuste. Seleccione Off para desactivar el ahorro de caudal de gas. El valor de caudal se guarda en la memoria.

Gas Saver Time: Define el momento del ciclo en que se activa la función de ahorro de gas. Por lo general se inicia tras la inyección, para conservar el gas. Ajuste un valor de 0,00 a 999,99 min. Esta línea no se muestra si el valor de Gas Saver es Off.

Vacuum Comp.: Solo debe utilizar este parámetro si TRACE 1300/TRACE 1310 está acoplado a un detector de masas, para compensar la salida de la columna a vacío. Las opciones son On y Off.

Modo de inyección

Elija el modo de inyección que utilizará con el inyector PTV. Cada modo habilita o deshabilita los parámetros dedicados.

PTV Split: Divide el caudal de gas portador en el puerto de inyección y el grueso se expulsa por la salida de split. La salida de split permanece abierta en todo momento.

PTV Splitless: Cierra la salida de split durante la inyección para enviar toda la muestra a la columna. En este modo, son habituales tiempos en torno a un minuto.

PTV Large Volume: Elimina el disolvente antes de que la muestra pase a la columna.

CT Split: Realiza una operación tradicional isotérmica en modo split. El caudal de gas portador se divide en el puerto de inyección y el grueso se expulsa por la salida de split. La salida de split permanece abierta en todo momento.

CT Splitless: Realiza una operación tradicional isotérmica en modo splitless. La salida de split está cerrada durante la inyección para enviar toda la muestra a la columna. En este modo, son habituales tiempos en torno a un minuto.

CT Surged Splitless: Funciona igual que la opción Splitless, pero también permite programar un pulso de presión durante la inyección. El pulso de presión comienza en el intervalo de preparación del ciclo y continúa hasta que ha transcurrido el tiempo de duracion del pulso definido. El pulso de presión se define con más detalle en el siguiente grupo de opciones.

On-Column: Utiliza el inyector PTV como inyector on-column. El inyector se calienta con una rampa de temperatura automática que emula a la del horno. Cuando utilice esta técnica, ajuste la temperatura inicial del horno por debajo del punto de ebullición del disolvente.

Page 203: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Uso de los parámetros de PTV

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 169

Parámetros del inyector

Los parámetros de inyección de PTV se describen a continuación.

Temperature: Define el valor de ajuste de temperatura del inyector. Según el modo de inyección seleccionado, la temperatura que ajuste ha de ser suficiente para evaporar muestra y disolvente. Introduzca un valor de temperatura de inyector entre 0 y 450 °C.

Sin embargo, si seleccionó la opción Sub-ambient, puede introducir valores de temperatura criogénica (inferiores a 0 °C) en un rango de –50 °C a 450 °C si emplea dióxido de carbono y de –100 °C a 450 °C si utiliza nitrógeno líquido.

Split Flow: Introduzca un valor entre 5 y 1250 ml/min. El valor de Split Ratio se ajusta de modo automático. Además, este valor está controlado por el caudal de columna inicial introducido en la opción de gas portador asociada. Si se modifica el caudal, el valor de Split Flow se ajusta para mantener la relación de split. No obstante, si el valor de Split Flow rebasa sus límites, se genera un aviso.

Split Ratio: Está habilitado cuando el modo de inyección es Split o CT Split. También se asocia con Flow Mode y se ajusta con el valor Constant Flow o bien Programmed Flow. Especifique la relación entre el caudal de split y el caudal de columna. Calcule la relación de split: Relación de split = (Caudal split) / (Caudal columna). Introduzca un valor de 1 a 12500. La opción Split Flow se ajusta de modo automático.

Splitless Time: Está habilitado si el modo de inyección es Splitless, CT Splitless o CT Surged Splitless. Especifique el tiempo que la válvula de split permanece cerrada tras la inyección en modo splitless. Introduzca un valor de 0,00 a 999,99. El temporizador comienza al inicio del ciclo. La salida de split vuelve a abrirse cuando finaliza el periodo de splitless definido.

Parámetros de purga

Los parámetros de purga están disponibles cuando el modo de inyección es Splitless, Surged Splitless, CT Splitless o CT Surged Splitless.

Constant Septum Purge: Este campo controla la purga del septum del inyector. Las opciones son On y Off. Seleccione On para activar la función y limpiar el septum de forma continua con un caudal de purga.

Stop Purge For: Está habilitado si el valor del parámetro Constant Septum Purge es On. Puede introducir un intervalo de tiempo entre 0,00 y 999,99 min para el cese de la purga de septum.

Nota El caudal de purga debe ajustarse entre 0,5 y 50 ml/min en la página Configuration del módulo inyector.

Page 204: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Uso de los parámetros de PTV

170 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Parámetros de pulso de presión

Los parámetros de pulso de presión están habilitados si el modo de inyección es Surged Splitless o CT Surged Splitless.

Surge Pressure: Presión aplicada durante el tiempo de splitless para generar un aumento del caudal en el inyector que acelere la transferencia de la muestra. Introduzca un valor de 5 a 1000 kPa.

Surge Duration: Define el tiempo de duración del pulso de presión. Introduzca un valor de 0,0 a 999,99 min. Por lo general, se ajusta para que coincida con el valor de Splitless time.

Parámetros de fases de inyección

Existen cuatro fases: inyección, evaporación, transferencia y limpieza.

Injection: Especifica los parámetros del inyector durante la fase de inyección, cuando el modo de inyección es Splitless o Large Volume.

Estos son los parámetros:

• Inject Temperature: Define la temperatura del inyector durante la inyección. Introduzca un valor de 0 a 450 °C; con un sistema criogénico activado, el rango es de –50 a 450 °C si se emplea dióxido de carbono y de –100 a 450 °C con nitrógeno líquido.

• Inject Time: Define el tiempo de mantenimiento de la temperatura durante la inyección y después de ella. Introduzca un valor entre 0,00 y 999,99 min.

• Inject Pressure: Define el valor de presión durante la fase de inyección. El rango es On; Off; 5–1000 kPa (0,725-145 psi; 0,05-10 bares).

• Injection Flow: Define el caudal de split durante el tiempo de inyección. Evacua el disolvente y los compuestos no retenidos durante la inyección de gran volumen. El valor de ajuste del caudal debe ser compatible con el ajuste de presión disponible. Introduzca un valor entre 5 y 1250 ml/min.

Evaporation: Especifica los parámetros de evaporación del disolvente si se configuró la opción Evaporation.

Estos son los parámetros:

• Evaporation Ramp: Define la velocidad de rampa hasta alcanzar la temperatura programada de evaporación del disolvente. Introduzca un valor entre 0,1 y 14,5 °C/s, en incrementos de 0,1 °C/s.

• Evaporation Temp.: Define la temperatura de evaporación del disolvente. Introduzca un valor de 0 a 450 °C; con un sistema criogénico activado, el rango es de –50 a 450 °C si se emplea dióxido de carbono y de –100 a 450 °C con nitrógeno líquido.

• Evaporation Time: Define el tiempo de mantenimiento de la temperatura programada de evaporación del disolvente. Introduzca un valor entre 0,00 y 999,99 min.

Page 205: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Uso de los parámetros de PTV

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 171

• Evaporation Pressure: Define la presión empleada durante la fase de evaporación del disolvente. La presión se aplica al inicio de la rampa de temperatura de evaporación. El rango es On; Off; 5–1000 kPa (0,725-145 psi; 0,05-10 bares).

• Evaporation Flow: Solo está disponible en el modo PTV Large Volume. Define el caudal de split durante el tiempo de evaporación. Este valor puede ser distinto del valor de Split Flow. Introduzca un valor entre 5 y 1250 ml/min.

Transfer: Especifica los parámetros de transferencia de la muestra a la columna. Configure la opción Ramped Pressure para habilitar los parámetros Transfer y Pressure.

Estos son los parámetros:

• Transfer Ramp: Define la velocidad de la rampa de temperatura hasta alcanzar la temperatura de transferencia de la muestra. Introduzca un valor entre 0,1 y 14,5 °C/s, en incrementos de 0,1 °C/s.

• Transfer Temp: Especifica la temperatura de transferencia de la muestra a la columna. Introduzca un valor de 0 a 450 °C; con un sistema criogénico activado, el rango es de –50 a 450 °C si se emplea dióxido de carbono y de –100 a 450 °C con nitrógeno líquido.

• Transfer Time: Define el tiempo de mantenimiento de la temperatura programada de transferencia de muestra. Introduzca un valor entre 0,00 y 999,99 min.

• Transfer Delay Time: Se activa solo si está ajustado el modo Large Volume. Retrasa el inicio de la rampa de temperatura tras la fase de evaporación. Introduzca un valor entre 0,00 y 999,99 min.

• Transfer Pressure: Define la presión empleada durante la fase de transferencia de muestra. Esta presión se aplica al inicio de la rampa de temperatura de transferencia. El rango es On; Off; 5–1000 kPa (0,725-145 psi; 0,05-10 bares).

Cleaning: Especifica los parámetros de limpieza del inyector cuando se ha configurado la opción Cleaning Phase.

Estos son los parámetros:

• Clean Ramp: Define la velocidad de rampa hasta alcanzar la temperatura programada de limpieza del inyector. Introduzca un valor entre 0,1 y 14,5 °C/s, en incrementos de 0,1 °C/s.

• Clean Temp: Define la temperatura del inyector durante las fases de limpieza. Introduzca un valor de 0 a 450 °C; con un sistema criogénico activado, el rango es de –50 a 450 °C si se emplea dióxido de carbono y de –100 a 450 °C con nitrógeno líquido.

• Clean Time: Define el tiempo de mantenimiento de la temperatura programada de limpieza. Introduzca un valor entre 0,00 y 999,99 min.

• Clean Flow: Incrementa el caudal durante la fase de limpieza. El valor de ajuste del caudal de limpieza debe ser compatible con el ajuste de presión. Introduzca un valor entre 5 y 1250 ml/min.

Page 206: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Uso de los parámetros de PTV

172 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Ajuste de parámetros de gas

Antes de comenzar, asegúrese de estar utilizando el tipo de gas adecuado para el análisis.

Para configurar los parámetros de gas:

1. Programe el caudal de gas portador.

a. Seleccione Flow Mode.

b. Elija el modo preferido entre Constant Flow, Constant Pressure, Programmed Flow o Programmed Pressure.

c. Introduzca los valores iniciales de Flow o Pressure.

i. Si selecciona el modo Constant Flow, introduzca el valor deseado de Column Flow. Se calcula y ajusta la presión necesaria para mantener el caudal constante.

ii. Si selecciona el modo Constant Pressure, introduzca el valor deseado de Pressure.

d. Introduzca un valor para Programmed Flow/Programmed Pressure.

i. Seleccione Progr Flow/Pressure, desplácese hasta Initial Flow/Press e introduzca el valor deseado. Pulse Enter.

ii. Desplácese hasta Initial Time e introduzca un valor. Este parámetro finaliza la parte inicial del programa.

e. Programe los valores de Ramps.

i. Desplácese hasta Ramp 1 e introduzca un valor.

ii. Desplácese hasta Final Flow 1/Pressure 1 e introduzca el valor final de la rampa.

iii. Desplácese hasta Final Time 1 e introduzca el valor final de tiempo de Ramp 1. Con esta operación finaliza el ajuste de la primera rampa.

iv. Si no va a utilizar una segunda rampa, asigne a Ramp 2 el valor Off. Para configurar una segunda rampa, desplácese hasta Ramp 2 e introduzca un valor.

v. Desplácese hasta Final Flow 2/Pressure 2 e introduzca el valor final de la rampa.

vi. Desplácese hasta Final Time 2 e introduzca el valor final de tiempo de Ramp 2. Con esta operación finaliza el ajuste de la segunda rampa.

vii. Si no va a utilizar una tercera rampa, asigne a Ramp 3 el valor Off. Para configurar una tercera rampa, desplácese hasta Ramp 3 e introduzca un valor.

viii. Desplácese hasta Final Flow 3/Pressure 3 e introduzca el valor final de la rampa.

ix. Desplácese hasta Final Time 3 e introduzca el valor final de tiempo de Ramp 3. Con esta operación finaliza el ajuste de la tercera rampa.

2. Si está utilizando TRACE 1300/TRACE 1310 con un detector de masas, asigne a Vacuum Compensation el valor On para compensar la salida de la columna a vacío.

Nota Si selecciona el modo Programmed Flow o Programmed Pressure, el menú de gas portador contiene parámetros para un máximo de tres rampas programadas.

Page 207: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Uso de los parámetros de PTV

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 173

Ajuste de parámetros para modo PTV Split

Siga este procedimiento para configurar una inyección en modo PTV Split. En este modo, las válvulas de split y de purga permanecen abiertas durante todo el ciclo.

Antes de comenzar, verifique la instalación del liner adecuado en el cuerpo del inyector y la ausencia de fugas en el sistema.

Para configurar una inyección en modo PTV Split:

1. Programe el caudal de gas portador.

2. En la lista de modos, elija PTV Split.

3. Ajuste el valor de Temperature del inyector.

4. Si se seleccionó Flow Mode (programado o constante) para el gas portador, especifique Split Flow o Split Ratio.

a. Si desea un valor de Split Flow específico, introdúzcalo. El sistema calculará el valor de Split Ratio.

b. Si desea un valor de Split Ratio específico, introdúzcalo. El sistema calculará el valor de Split Flow.

5. Si lo desea, active la opción Gas Saver y ajuste un valor de Gas Saver Time tras el tiempo de inyección.

6. En la lista Injection Phase, seleccione las diferentes fases programadas según sean necesarias. Si desea programar rampas de temperatura, consulte los detalles en “Programación de parámetros de inyección” en la página 174.

Ajuste de parámetros para modo PTV Splitless

Siga este procedimiento para configurar una inyección en modo PTV Splitless. En el modo PTV Splitless, las válvulas de split y de purga se cierran durante la fase Prep Run y permanecen cerradas hasta el fin del tiempo de transferencia programado.

Antes de comenzar, verifique la instalación del liner adecuado en el cuerpo del inyector y la ausencia de fugas en el sistema.

Para configurar una inyección en modo PTV Splitless:

1. Programe el caudal de gas portador.

2. En la lista de modos, elija PTV Splitless.

3. Ajuste el valor de Temperature del inyector.

4. Introduzca el valor deseado de Split Flow.

5. Introduzca el valor de Splitless Time.

Page 208: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Uso de los parámetros de PTV

174 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

6. Si lo desea, active Constant Septum Purge y ajuste el valor de Stop Purge For para indicar los minutos que deben transcurrir antes de reiniciar la purga.

7. Si lo desea, active la opción Gas Saver y ajuste un valor de Gas Saver Time tras el tiempo de inyección.

8. En la lista Injection Phase, seleccione las diferentes fases programadas según sean necesarias. Si desea programar rampas de temperatura, consulte los detalles en “Programación de parámetros de inyección” en la página 174.

Ajuste de parámetros para modo PTV Large Volume

Siga este procedimiento para configurar una inyección en modo PTV Large Volume. En el modo PTV Large Volume, la válvula de purga debe estar normalmente cerrada durante la fase Prep Run y permanecer cerrada hasta el fin de la rampa de transferencia durante el tiempo programado. La válvula de split solo se cierra al término del tiempo de inyección y de evaporación, si se programaron. Permanece cerrada hasta el fin del tiempo de transferencia programado.

Antes de comenzar, verifique la instalación del liner adecuado en el cuerpo del inyector y la ausencia de fugas en el sistema.

Para configurar una inyección en modo PTV Large Volume:

1. Programe el caudal de gas portador.

2. En la lista de modos, elija PTV Large Volume.

3. Ajuste el valor de Temperature del inyector.

4. Introduzca el valor deseado de Split Flow.

5. Introduzca el valor de Splitless Time.

6. Si lo desea, active Constant Septum Purge y ajuste el valor de Stop Purge For para indicar los minutos que deben transcurrir antes de reiniciar la purga.

7. En la lista Injection Phase, seleccione las diferentes fases programadas según sean necesarias. Si desea programar rampas de temperatura, consulte los detalles en “Programación de parámetros de inyección” en la página 174.

Programación de parámetros de inyección

Siga esta secuencia para programar rampas de temperatura cuando trabaje en modo PTV Split, PTV Splitless o PTV Large Volume. Asegúrese de programar el resto de parámetros del modo operativo antes de programar las rampas de temperatura.

Page 209: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Uso de los parámetros de PTV

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 175

Ciclo de inyección de PTV

En la Figura 125 se muestra un programa de temperatura genérico del ciclo de inyección de PTV.

Figura 125. Perfil de temperatura genérico

1. Abra el menú Injection Phase.

2. Ajuste Ramped Pressure? Yes para programar rampas de presíón.

3. Introduzca el valor de Inject Pressure al comienzo de la rampa de temperatura.

4. Introduzca en Inject Time el tiempo que debe mantenerse la temperatura del inyector.

5. Ajuste el valor de Transfer pressure para la muestra.

6. Ajuste el valor de Transfer temperature para la muestra.

7. Ajuste la velocidad de Transfer ramp (en °C/s) a la que se alcanza la temperatura de transferencia de muestra.

8. Introduzca en Transfer time el tiempo que debe mantenerse la temperatura de transferencia.

9. Solo en modo PTV Large Volume: ajuste el valor de Injection flow para la fase de elimináción del disolvente.

Si se configuró evaporación de disolvente

1. Ajuste el valor de Evaporation pressure inicial para la rampa de temperatura de evaporación durante la fase de evaporación del disolvente.

2. Ajuste la velocidad de Evaporation ramp (en °C/s) a la que se alcanza la temperatura de evaporación del disolvente.

3. Ajuste el valor de Evaporation temperature del disolvente.

4. Ajuste en Evaporation time el tiempo que debe mantenerse la temperatura de evaporación.

5. Ajuste el valor de Evaporation flow para la eliminación del disolvente en el modo PTV Large Volume.

IMPORTANTE Se recomienda un tiempo parecido al del programa de temperatura del horno, a menos que utilice la fase de limpieza.

T 1

Stand-byConditioningSolvent

evaporationSampletransfer Cleaning

T 2

T 4

T 3

Injection cycle

End of OvenTemperature Program

T1 = Temperatura de inyección

T2 = Temperatura de evaporación

T3 = Temperatura de transferencia de muestra

T4 = Temperatura de limpieza

Page 210: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Uso de los parámetros de PTV

176 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Si se configuró limpieza de inyector

1. Ajuste el valor de Clean temp para el inyector.

2. Ajuste la velocidad de Clean ramp (en °C/s) a la que se alcanza la temperatura de limpieza.

3. Ajuste en Clean time el tiempo que debe mantenerse la temperatura de limpieza.

4. Ajuste el valor de Clean Flow para incrementar el caudal durante la fase de limpieza.

Opción Ramped Pressure del menú Inject Phase

Si se habilitan las rampas de presión durante las fases de inyección, tenga presentes las siguientes consideraciones:

• Con independencia del modo de caudal seleccionado, la presión de las fases de inyección, evaporación y transferencia se controla desde el menú de PTV. Al término del tiempo de transferencia de PTV, el control del gas portador vuelve a realizarse desde el menú Carrier Gas, lo que significa que presión y caudal regresan a los valores definidos en este menú para ese momento del análisis. Si se seleccionaron los modos de presión programada o caudal programado, el programa de presión/caudal comienza virtualmente al inicio del programa de temperatura del horno; a continuación, presión y caudal tomarán el valor definido en el programa de presión/caudal para ese momento del análisis.

• Si la temperatura del inyector ha de mantenerse constante durante todo el programa de temperatura del horno, es preferible utilizar la fase de limpieza en lugar de la de transferencia, ya que durante esta última fase el control de gas portador se realiza según el menú Carrier Gas, mientras que en la fase de transferencia es el menú de control de PTV el que lo controla.

Ajuste de parámetros para modo CT Split

Siga este procedimiento para configurar una inyección en modo CT Split. En este modo, las válvulas de split y de purga permanecen abiertas durante todo el ciclo.

Antes de comenzar, verifique la instalación del liner adecuado en el cuerpo del inyector y la ausencia de fugas en el sistema.

Para configurar una inyección en modo CT Split:

1. Programe el caudal de gas portador.

2. En la lista de modos, elija CT Split.

3. Ajuste el valor de Temperature del inyector.

Nota Los parámetros de presión de inyección, transferencia y evaporación no se muestran si el valor de Ramped pressure es No. Si el valor de Ramped pressure es Yes en el menú Inject Phase, lea las recomendaciones que se detallan en Opción Ramped Pressure del menú Inject Phase.

Page 211: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Uso de los parámetros de PTV

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 177

4. Si se seleccionó Flow Mode (programado o constante), especifique Split Flow o Split Ratio.

a. Si desea un valor de Split Flow específico, introdúzcalo. El sistema calculará el valor de Split Ratio.

b. Si desea un valor de Split Ratio específico, introdúzcalo. El sistema calculará el valor de Split Flow.

5. Si lo desea, active la opción Gas Saver y ajuste un valor de Gas Saver Time tras el tiempo de inyección.

Ajuste de parámetros para modo CT Splitless

Siga este procedimiento para configurar una inyección en modo CT Splitless. En este modo, las válvulas de split y de purga se cierran durante la fase Prep Run y permanecen cerradas una vez realizada la inyección y durante el tiempo programado.

Antes de comenzar, verifique la instalación del liner adecuado en el cuerpo del inyector y la ausencia de fugas en el sistema.

Para configurar una inyección en modo CT Splitless:

1. Programe el caudal de gas portador.

2. En la lista de modos, elija CT Splitless.

3. Ajuste el valor de Temperature del inyector.

4. Introduzca el valor de Splitless Time.

5. Si lo desea, active Constant Septum Purge y ajuste el valor de Stop Purge For para indicar los minutos que deben transcurrir antes de reiniciar la purga.

6. Si lo desea, active la opción Gas Saver y ajuste un valor de Gas Saver Time tras el tiempo de inyección.

Ajuste de parámetros para modo CT Surged Splitless

Siga este procedimiento para configurar una inyección en modo CT Surged Splitless. En este modo, se activa un pulso de presión de gas portador en la fase de inyección durante un tiempo programado. El pulso de presión acelera el proceso de transferencia de sustancias del inyector a la columna. El pulso de presión comienza en la fase Prep Run y se prolonga hasta alcanzar la duración de pulso programada. Las válvulas de split y de purga se cierran durante la fase Prep Run y permanecen cerradas una vez realizada la inyección y durante el tiempo programado.

Antes de comenzar, verifique la instalación del liner adecuado en el cuerpo del inyector y la ausencia de fugas en el sistema.

Page 212: Trace 1300 1310 Userguide Es

8 Módulo inyector de evaporación de temperatura programable (PTV)Uso de los parámetros de PTV

178 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Para configurar una inyección en modo CT Surged Splitless:

1. Programe el caudal de gas portador.

2. En la lista de modos, elija CT Surged Splitless.

3. Ajuste el valor de Temperature del inyector.

4. Introduzca el valor de Splitless Time.

5. Si lo desea, active Constant Septum Purge y ajuste el valor de Stop Purge For para indicar los minutos que deben transcurrir antes de reiniciar la purga.

6. Ajuste los valores de Surge Pressure y Surge Duration.

7. Si lo desea, active la opción Gas Saver y ajuste un valor de Gas Saver Time tras el tiempo de inyección.

Page 213: Trace 1300 1310 Userguide Es

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 179

9

Módulo inyector de evaporación de temperatura programable con backflush (PTVBKF)

En este capítulo se describe el módulo inyector de evaporación de temperatura programable para aplicaciones de backflush y se ofrecen instrucciones de programación de los parámetros del inyector.

Descripción general del móduloEl módulo PTV Backflush incluye el cuerpo del inyector, calefactor, ventilador de refrigeración, válvulas de salida de split y purga, filtros, sistemas neumáticos digitales para el control del gas portador, control de backflush, línea de backflush y conectores para la unión a la columna analítica.

Figura 126. Módulo PTV Backflush

Los componentes del módulo y el inyector se muestran en la Figura 127 y en la Figura 128.

Índice

• Descripción general del módulo

• Modo de backflush

• Consumibles

• Uso de los parámetros de PTVBFK

Asa de elevación

Tapa abatible del módulo

Tapa del módulo

Línea de backflushConector de línea de backflush

Tapón de conector

Línea de backflush

Page 214: Trace 1300 1310 Userguide Es

9 Módulo inyector de evaporación de temperatura programable con backflush (PTVBKF)Descripción general del módulo

180 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Figura 127. Componentes del módulo PTV Backflush

Figura 128. Componentes del inyector de PTV Backflush

Tapa abatible del móduloSalida de línea de split

Salida de línea de purga

Filtro de carbón activado de línea de gas portador

Tapón de septum

Conjunto de cabezal inyectorCuerpo del inyector

Ventilador de refrigeraciónFiltro de carbón activado de línea de gas portador

Conectores inferiores

Tapa del módulo

Cubierta aislante

Línea de backflush

FérulaTuerca de split

Conector terminal de columna capilarJunta de plata

Liner

Junta de liner

Tapón de liner

Septum

Tapón de septum

Línea de backflushConector de línea de backflush

Férula

Tapón de conector

Page 215: Trace 1300 1310 Userguide Es

9 Módulo inyector de evaporación de temperatura programable con backflush (PTVBKF)Descripción general del módulo

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 181

El inyector trabaja a temperatura constante o programada en el rango de temperatura ambiente hasta 450 °C. Están disponibles hasta tres rampas y mesetas de temperatura si se emplea el modo de temperatura programada. La temperatura de inyección se restablece por medio de un ventilador de refrigeración presente en el módulo.

Se utiliza nitrógeno líquido o dióxido de carbono como refrigerante para el trabajo a temperatura inferior a la del ambiente (hasta –100 °C con nitrógeno líquido; hasta –50 °C con dióxido de carbono). El caudal de refrigerante se controla con un sistema criogénico opcional.

Los sistemas criogénicos de PTVBKF con nitrógeno líquido y con dióxido de carbono se muestran en la Figura 129 y la Figura 130 respectivamente.

Figura 129. Sistema criogénico de PTV frontal y trasero con nitrógeno líquido

Figura 130. Sistema criogénico de PTV frontal y trasero con dióxido de carbono

Page 216: Trace 1300 1310 Userguide Es

9 Módulo inyector de evaporación de temperatura programable con backflush (PTVBKF)Modo de backflush

182 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Modo de backflushEste modo de funcionamiento permite eliminar el disolvente antes de que la muestra pase a la columna y, durante la fase de limpieza, permite eliminar la parte pesada de la muestra, que no resulta relevante para el análisis. Este modo es apto para la inyección de grandes volúmenes y para introducción de muestras en un sistema GC/espectrómetro de masas. La muestra se inyecta en el liner en estado frío. Si el ajuste de los parámetros de inyección es correcto, los analitos se mantienen en el liner mientras el disolvente se evapora y evacua.

Figura 131. Diagrama de bloques del modo PTV con backflush

En la Figura 132 se muestra un ejemplo de perfil de temperatura y de sincronización de las válvulas en el modo de backflush.

Carrier

Split

Purge

1

2

3

5

6

7

3

4

4

3 4

5

8

1 = Active Carbon Filter2 = Active Carbon Filter3 = Proportional Valve4 = Pressure Sensor5 = BKF Line Restrictor�6 = Restrictor7 = three-way Backflush valve8 = Tee Connection9 = DCC Board

9

Backflush Line

Separation ColumnGuard Column

Page 217: Trace 1300 1310 Userguide Es

9 Módulo inyector de evaporación de temperatura programable con backflush (PTVBKF)Consumibles

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 183

Figura 132. Perfil de temperatura y sincronización en modo de backflush

ConsumiblesLos consumibles necesarios para este inyector son el septum y el liner de vidrio.

Septum

Utilice siempre septums de buena calidad, como el modelo BTO que se suministra con TRACE 1300/TRACE 1310. Estos modelos son indeformables, duran más y tienen un nivel de sangrado más bajo, incluso a temperatura elevada.

El inyector PTV es compatible con la válvula de alta presión Merlin Microseal™ en sustitución del septum.

Liners

El modo de inyección de muestras empleado determina la opción de liner que se instalará en el cuerpo del inyector. Es preciso utilizar un liner adecuado que garantice la evaporación completa y que tenga capacidad para todo el volumen de muestra evaporada sin reaccionar con ella.

Los sistemas de datos cromatográficos Thermo Scientific incluyen una calculadora de volumen de vapor que calcula con rapidez y precisión el volumen de expansión según diversos factores (disolvente, volumen de líquido inyectado, temperatura y presión del inyector) para ayudarle a determinar la idoneidad de las dimensiones del liner según el método elegido.

Nota El módulo PTV con backflush puede utilizarse en los modos PTV Split, PTV Splitless, PTV Large Volume, CT Split, CT Splitless y CT Surged Splitless una vez realizada la modificación adecuada de la línea de backflush. Consulte el Capítulo 8, “Módulo inyector de evaporación de temperatura programable (PTV)”.

(Out of split line)

Prep Run

Tm1 P1

Tm2 P2

Tm4

R1

Tm3P3

R2

R3

End of OvenTemperature Program

Open (On)Close (Off)

Open (On)Close (Off)

ActiveInactive

High

Low

Solvent split phase

BKF Solvent vent

T4

T3

T2

T1

PurgeValve

SplitValve

Backflush

BKF Duration

Solvent Venting Transfer Cleaning

SL Time

Purge Closure time

FlowSetpoint

Vent Flow (Setpoint 1)

Flow = 0Splitless Period

CleanFlow(Setpoint 2)

SplitFlow

T1. Temperatura de inyecciónT2. Temperatura de evaporaciónT3. Temperatura de transferencia

de muestraT4. Temperatura de limpieza

Tm1. Tiempo de inyecciónTm2. Tiempo de evaporación del

disolventeTm3. Tiempo de transferenciaTm4. Tiempo de limpieza

P1. Presión de inyecciónP2. Presión de evaporaciónP3. Presión de transferencia

R1. Rampa de transferenciaR2. Rampa de transferenciaR3. Rampa de limpieza

Page 218: Trace 1300 1310 Userguide Es

9 Módulo inyector de evaporación de temperatura programable con backflush (PTVBKF)Consumibles

184 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Liners de Splitless

Seleccione un liner adecuado de la Tabla 55.

Liners para grandes volúmenes

Seleccione un liner adecuado de la Tabla 56.

Tabla 55. Liners de splitless

Nº Liner Descripción

1 Liner no desactivado de Silcosteel. 2 mm DI; 2,75 mm DE; 120 mm longitud; 0,38 ml volumen teórico.

2 Liner no desactivado. 2 mm DI; 2,75 mm DE; 120 mm longitud; 0,38 ml volumen teórico.

3 Liner no desactivado de Silcosteel. 1 mm DI; 2,75 mm DE; 120 mm longitud; 0,0095 ml volumen teórico. Empleado para la inyección de muestras con compuestos de peso molecular elevado.

4 Liner desactivado. 1 mm DI; 2,75 mm DE; 120 mm longitud; 0,0095 ml volumen teórico. Empleado para la inyección de muestras con compuestos de peso molecular elevado.

5 Liner de vidrio desactivado. 2 mm DI; 2,75 mm DE; 120 mm longitud; 0,340 ml volumen teórico. La superficie de vidrio desactivada aporta la ventaja de un entorno químico inerte para la inyección de compuestos polares.

Tabla 56. Liners de gran volumen

Nº Liner Descripción

1 Liner desactivado de Silcosteel con lana de vidrio desactivada. 2 mm DI; 2,75 mm DE; 120 mm longitud; 0,38 ml volumen teórico.

2 Liner de vidrio sinterizado desactivado con lana de cuarzo para inyección de compuestos polares y lábiles. 1,2 mm DI; 2,75 mm DE; 120 mm longitud; 0,35 ml volumen teórico. Utilícese en lugar del liner nº ref. 45322056. El revestimiento de superficie porosa sinterizada (0,25-0,5 mm) contiene el líquido durante la inyección de gran volumen a velocidad controlada y ofrece una superficie químicamente inerte.

3 Liner de vidrio desactivado con tres deflectores. 1,2 mm DI; 2,75 mm DE; 120 mm longitud; 0,180 ml volumen teórico. La superficie desactivada con deflectores permite aumentar los volúmenes inyectables con el liner de vidrio de 1 mm de DI. Los deflectores también puede utilizarse para contener un pequeño volumen de lana de vidrio.

4 Liner con deflectores para el análisis de pesticidas.

Page 219: Trace 1300 1310 Userguide Es

9 Módulo inyector de evaporación de temperatura programable con backflush (PTVBKF)Uso de los parámetros de PTVBFK

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 185

Uso de los parámetros de PTVBFKEn el siguiente apartado se enumeran y describen los parámetros de control del inyector PTVBKF.

Parámetros de gas portador

Ajuste los parámetros de control del gas portador, con independencia del gas empleado. Los parámetros que se muestran varían según el ajuste de Flow Mode.

Pressure: Define los valores real y de ajuste de presión del gas portador. El rango es On/Off; 5–1000 kPa (0,725-145 psi; 0,05-10 bares). Esta línea no puede modificarse si el modo seleccionado es Constant Flow o Programmed Flow.

Column Flow: Define el caudal de gas portador enviado a la columna. El rango es On/Off; 0,01-100 ml/min. Seleccione On para ver los valores reales y los de ajuste. Seleccione Off o 0 para desactivar todos los caudales de entrada. Esta línea no puede modificarse si el modo seleccionado es Constant Pressure o Programmed Pressure.

Flow Mode: Define el modo de control del gas portador. Cada modo habilita o deshabilita los parámetros dedicados.

• Constant Flow: El caudal de la columna se mantiene constante durante todo el análisis. La presión en cabeza de columna cambia con la temperatura de la columna para mantener un caudal constante.

• Constant Pressure: La presión en cabeza de columna se mantiene durante todo el análisis. Durante los programas de temperatura, el caudal disminuye a causa del aumento de viscosidad del gas portador.

• Programmed Flow: El caudal de la columna puede programarse para que cambie durante un ciclo analítico; pueden definirse hasta tres rampas de caudal.

• Parámetros de gas portador

• Modo de inyección

• Parámetros del inyector

• Parámetros de purga

• Parámetros de pulso de presión

• Ajuste de parámetros de gas

• Ajuste de parámetros de gas

• Ajuste de parámetros de backflush

• Programación de parámetros de inyección

Page 220: Trace 1300 1310 Userguide Es

9 Módulo inyector de evaporación de temperatura programable con backflush (PTVBKF)Uso de los parámetros de PTVBFK

186 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Estos son los parámetros:

– Initial Flow: Define el caudal inicial.

– Initial Time: Define la duración del caudal inicial.

– Ramp 1: Velocidad de rampa en ml/min2 hasta alcanzar el caudal final. Seleccione On para habilitar la rampa y ver el valor de ajuste.

– Final Flow: Caudal final de gas portador que se alcanza al término de la rampa definida.

– Final Time: Define la duración del caudal final correspondiente.

– Ramp 2-3: Para programar rampas adicionales, seleccione On e introduzca la velocidad de las rampas en ml/min2. Aparecen las opciones de menú Final Flow y Final Time de la rampa correspondiente. Los rangos y las funciones de estas opciones son idénticos a los de las opciones Final Flow y Final Time de la primera rampa.

• Programmed Pressure: La presión de entrada puede programarse para que cambie durante un ciclo analítico; pueden definirse hasta tres rampas de presión.

Estos son los parámetros:

– Initial Pressure: Define la presión inicial.

– Initial Time: Define la duración de la presión inicial.

– Ramp 1: Define la presión de la rampa en kPa/min hasta alcanzar la presión final. Seleccione On para habilitar la rampa y ver el valor de ajuste.

– Final Pressure: Define la presión final de gas portador que se alcanza al término de la rampa definida.

– Final Time: Define la duración de la presión final correspondiente.

– Ramp 2-3: Para programar rampas adicionales, seleccione On e introduzca la velocidad de las rampas en kPa/min. Aparecen las opciones de menú Final Pressure y Final Time de la rampa correspondiente. Los rangos y las funciones de estas opciones son idénticos a los de las opciones Final Pressure y Final Time de la primera rampa.

Linear Velocity: Velocidad calculada del gas portador cuando atraviesa la columna, expresada en cm/s. No se puede modificar.

Void Time: Tiempo de elución de pico no retenido, expresado en segundos. No se puede modificar.

Gas Saver: Esta función reduce el consumo de gas portador. El rango es On/Off; 5-500 ml/min. Seleccione On para activar el ahorro de caudal de gas y ver los valores de ajuste. Seleccione Off para desactivar el ahorro de caudal de gas. El valor de caudal se guarda en la memoria.

Gas Saver Time: Define el momento del ciclo en que comienza a funcionar la función de ahorro de gas. Por lo general se inicia tras la inyección, para conservar el gas. Ajuste un valor de 0,00 a 999,99 min. Esta línea no se muestra si el valor de Gas Saver es Off.

Page 221: Trace 1300 1310 Userguide Es

9 Módulo inyector de evaporación de temperatura programable con backflush (PTVBKF)Uso de los parámetros de PTVBFK

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 187

Vacuum Comp.: Solo debe utilizar este parámetro si TRACE 1300/TRACE 1310 está acoplado a un detector de masas, para compensar la salida de la columna a vacío. Las opciones son On y Off.

Modo de inyección

Elija el modo de inyección que utilizará con el inyector PTVBKF. Cada modo habilita o deshabilita los parámetros dedicados.

PTV Split: Divide el caudal de portador en el puerto de inyección y el grueso se expulsa por la salida de split. La salida de split permanece abierta en todo momento.

PTV Splitless: Cierra la salida de split durante la inyección para enviar toda la muestra a la columna. En este modo, son habituales tiempos en torno a un minuto.

PTV Large Volume: Elimina el disolvente antes de que la muestra pase a la columna.

CT Split: Realiza una operación tradicional isotérmica en modo split. El caudal de gas portador se divide en el puerto de inyección y el grueso se expulsa por la salida de split. La salida de split permanece abierta en todo momento.

CT Splitless: Realiza una operación tradicional isotérmica en modo splitless. La salida de split está cerrada durante la inyección para enviar toda la muestra a la columna. En este modo, son habituales tiempos en torno a un minuto.

CT Surged Splitless: Funciona igual que la opción Splitless, pero también permite programar un pulso de presión durante la inyección. El pulso comienza en el intervalo de preparación del ciclo y continúa hasta que ha transcurrido el tiempo de pulso definido. El pulso de presión se define con más detalle en el siguiente grupo de opciones.

Parámetros del inyector

Los parámetros de inyección de PTVBKF se describen a continuación.

Temperature: Define el valor de referencia de temperatura del inyector. Según el modo de inyección seleccionado, la temperatura que ajuste ha de ser suficiente para evaporar muestra y disolvente. Introduzca un valor de temperatura de entrada entre 0 y 450 °C.

Sin embargo, si seleccionó la opción Sub-ambient, puede introducir valores de temperatura criogénica (inferiores a 0 °C) en un rango de –50 °C a 450 °C si emplea dióxido de carbono y de –100 °C a 450 °C si utiliza nitrógeno líquido.

Split Flow: Introduzca un valor entre 5 y 1250 ml/min. El valor de Split Ratio se ajusta de modo automático. Además, este valor está controlado por el caudal de columna inicial introducido en la opción de gas portador asociada. Si se modifica el caudal, el valor de Split Flow se ajusta para mantener la relación de split. No obstante, si el valor de Split Flow rebasa sus límites, se genera un aviso.

Page 222: Trace 1300 1310 Userguide Es

9 Módulo inyector de evaporación de temperatura programable con backflush (PTVBKF)Uso de los parámetros de PTVBFK

188 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Split Ratio: Está habilitado cuando el modo de inyección es Split o CT Split. También se asocia con el ajuste de Flow Mode tanto en modod Constant Flow como Programmed Flow. Especifique la relación entre el caudal de split y el caudal de columna. Calcule la relación de split: Relación de split = (Caudal de split) / (Caudal de columna). Introduzca un valor de 1 a 12500 La opción Split Flow se ajusta de modo automático.

Splitless Time: Está habilitado si el modo de inyección es Splitless, CT Splitless o CT Surged Splitless. Especifique el tiempo que la válvula de split permanece cerrada tras la inyección en modo splitless. Introduzca un valor de 0,00 a 999,99. El temporizador comienza al inicio del ciclo. La salida de split vuelve a abrirse cuando finaliza el periodo de splitless definido.

Parámetros de purga

Los parámetros de purga están disponibles cuando el modo de inyección es Splitless, Surged Splitless, CT Splitless o CT Surged Splitless.

Constant Septum Purge: Este campo controla la purga del septum del inyector. Las opciones son On y Off. Seleccione On para activar la función y limpiar el septum de forma continua con un caudal de purga.

Stop Purge For: Está habilitado si el valor del parámetro Constant Septum Purge es On. Puede introducir un intervalo de tiempo entre 0,00 y 999,99 min para el cese de la purga de septum.

Parámetros de pulso de presión

Los parámetros de pulso de presión están habilitados si el modo de inyección es Surged Splitless o CT Surged Splitless.

Surge Pressure: Presión aplicada durante el tiempo de splitless para generar un aumento de caudal en el inyector que acelere la transferencia de la muestra. Introduzca un valor entre 5 y 1000 kPa (0,725-145 psi; 0,05-10 bares).

Surge Duration: Define el tiempo de mantenimiento del pulso de presión. Introduzca un valor de 0,0 a 999,99 min. Por lo general, se ajusta para que coincida con el valor de Splitless time.

Nota El caudal de purga debe ajustarse entre 0,5 y 50 ml/min en la página Configuration del módulo inyector.

Page 223: Trace 1300 1310 Userguide Es

9 Módulo inyector de evaporación de temperatura programable con backflush (PTVBKF)Uso de los parámetros de PTVBFK

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 189

Parámetros de fases de inyección

Existen cuatro fases: inyección, evaporación, transferencia y limpieza.

Injection: Especifica los parámetros del inyector durante la fase de inyección, cuando el modo de inyección es Splitless o Large Volume.

Estos son los parámetros:

• Inject Temperature: Define la temperatura del inyector durante la inyección. Introduzca un valor de 0 a 450 °C; con un sistema criogénico activado, el rango es de –50 a 450 °C si se emplea dióxido de carbono y de –100 a 450 °C con nitrógeno líquido.

• Inject Time: Define el tiempo de mantenimiento de la temperatura durante la inyección y después de ella. Introduzca un valor entre 0,00 y 999,99 min.

• Inject Pressure: Define el valor de presión durante la fase de inyección. El rango es On; Off; 5–1000 kPa (0,725-145 psi; 0,05-10 bares).

• Injection Flow: Define el caudal de split durante la fase de inyección. Evacua el disolvente y los compuestos no retenidos durante la inyección de gran volumen. El valor de ajuste del caudal debe ser compatible con el ajuste de presión disponible. Introduzca un valor entre 5 y 1250 ml/min.

Evaporation: Especifica los parámetros de evaporación del disolvente si se configuró la opción Evaporation.

Estos son los parámetros:

• Evaporation Ramp: Define la velocidad de rampa hasta alcanzar la temperatura programada de evaporación del disolvente. Introduzca un valor entre 0,1 y 14,5 °C/s, en incrementos de 0,1 °C/s.

• Evaporation Temp.: Define la temperatura de evaporación del disolvente. Introduzca un valor de 0 a 450 °C; con un sistema criogénico activado, el rango es de –50 a 450 °C si se emplea dióxido de carbono y de –100 a 450 °C con nitrógeno líquido.

• Evaporation Time: Define el tiempo de mantenimiento de la temperatura programada de evaporación del disolvente. Introduzca un valor entre 0,00 y 999,99 min.

• Evaporation Pressure: Define la presión empleada durante la fase de evaporación del disolvente. La presión se aplica al inicio de la rampa de temperatura de evaporación. El rango es On; Off; 5–1000 kPa (0,725-145 psi; 0,05-10 bares).

• Evaporation Flow: Define el caudal de split durante el tiempo de evaporación. Este valor puede ser distinto del valor de Split Flow. Introduzca un valor entre 5 y 1250 ml/min.

Transfer: Especifica los parámetros de transferencia de la muestra a la columna, solo cuando el modo de inyección es Large Volume. Configure la opción Ramped Pressure para habilitar los parámetros Transfer y Pressure.

Page 224: Trace 1300 1310 Userguide Es

9 Módulo inyector de evaporación de temperatura programable con backflush (PTVBKF)Uso de los parámetros de PTVBFK

190 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Estos son los parámetros:

• Transfer Ramp: Define la velocidad de la rampa de temperatura hasta alcanzar la temperatura de transferencia de la muestra. Introduzca un valor entre 0,1 y 14,5 °C/s, en incrementos de 0,1 °C/s.

• Transfer Temp: Especifica la temperatura de transferencia de la muestra a la columna. Introduzca un valor de 0 a 450 °C; con un sistema criogénico activado, el rango es de –50 a 450 °C si se emplea dióxido de carbono y de –100 a 450 °C con nitrógeno líquido.

• Transfer Time: Define el tiempo de mantenimiento de la temperatura programada de transferencia de muestra. Introduzca un valor entre 0,00 y 999,99 min.

• Transfer Delay Time: Se activa solo si está ajustado el modo Large Volume. Retrasa el inicio de la rampa de temperatura tras la fase de evaporación. Introduzca un valor entre 0,00 y 999,99 min.

• Transfer Pressure: Define la presión empleada durante la fase de transferencia de muestra. Esta presión se aplica al inicio de la rampa de temperatura de transferencia. El rango es On; Off; 5–1000 kPa (0,725-145 psi; 0,05-10 bares).

Cleaning: Especifica los parámetros de limpieza del inyector cuando se ha configurado la opción Cleaning Phase.

Estos son los parámetros:

• Clean Ramp: Define la velocidad de rampa hasta alcanzar la temperatura programada de limpieza del inyector. Introduzca un valor entre 0,1 y 14,5 °C/s, en incrementos de 0,1 °C/s.

• Clean Temp: Define la temperatura del inyector durante las fases de limpieza. Introduzca un valor de 0 a 450 °C; con un sistema criogénico activado, el rango es de –50 a 450 °C si se emplea dióxido de carbono y de –100 a 450 °C con nitrógeno líquido.

• Clean Time: Define el tiempo de mantenimiento de la temperatura programada de limpieza. Introduzca un valor entre 0,00 y 999,99 min.

Clean Flow: Incrementa el caudal durante la fase de limpieza. El valor de ajuste del caudal de limpieza debe ser compatible con el ajuste de presión disponible. Introduzca un valor entre 5 y 1250 ml/min.

Page 225: Trace 1300 1310 Userguide Es

9 Módulo inyector de evaporación de temperatura programable con backflush (PTVBKF)Uso de los parámetros de PTVBFK

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 191

Ajuste de parámetros de gas

Antes de comenzar, asegúrese de estar utilizando el tipo de gas adecuado para el análisis.

Para configurar los parámetros de gas:

1. Programe el caudal de gas portador.

a. Seleccione Flow Mode.

b. Elija el modo preferido entre Constant Flow, Constant Pressure, Programmed Flow o Programmed Pressure.

c. Introduzca los valores iniciales de Flow o Pressure.

i. Si selecciona el modo Constant Flow, introduzca el valor deseado de Column Flow. Se calcula y ajusta la presión necesaria para mantener el caudal constante.

ii. Si selecciona el modo Constant Pressure, introduzca el valor deseado de Pressure.

d. Introduzca un valor para Programmed Flow/Programmed Pressure.

i. Seleccione Progr Flow/Pressure, desplácese hasta Initial Flow/Press e introduzca el valor deseado. Pulse Enter.

ii. Desplácese hasta Initial Time e introduzca un valor. Este parámetro finaliza la parte inicial del programa.

e. Programe los valores de Ramps.

i. Desplácese hasta Ramp 1 e introduzca un valor.

ii. Desplácese hasta Final Flow 1/Pressure 1 e introduzca el valor final de la rampa.

iii. Desplácese hasta Final Time 1 e introduzca el valor final de tiempo de Ramp 1. Con esta operación finaliza el ajuste de la primera rampa.

iv. Si no va a utilizar una segunda rampa, asigne a Ramp 2 el valor Off. Para configurar una segunda rampa, desplácese hasta Ramp 2 e introduzca un valor.

v. Desplácese hasta Final Flow 2/Pressure 2 e introduzca el valor final de la rampa.

vi. Desplácese hasta Final Time 2 e introduzca el valor final de tiempo de Ramp 2. Con esta operación finaliza el ajuste de la segunda rampa.

vii. Si no va a utilizar una tercera rampa, asigne a Ramp 3 el valor Off. Para configurar una tercera rampa, desplácese hasta Ramp 3 e introduzca un valor.

viii. Desplácese hasta Final Flow 3/Pressure 3 e introduzca el valor final de la rampa.

ix. Desplácese hasta Final Time 3 e introduzca el valor final de tiempo de Ramp 3. Con esta operación finaliza el ajuste de la tercera rampa.

2. Si está utilizando TRACE 1300/TRACE 1310 con un detector de masas, asigne a Vacuum Compensation el valor On para compensar la salida de la columna a vacío.

Nota Si selecciona el modo Programmed Flow o Programmed Pressure, el menú de gas portador contiene parámetros para un máximo de tres rampas programadas.

Page 226: Trace 1300 1310 Userguide Es

9 Módulo inyector de evaporación de temperatura programable con backflush (PTVBKF)Uso de los parámetros de PTVBFK

192 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Ajuste de parámetros de backflush

Siga este procedimiento para configurar una inyección en modo Backflush. El backflush puede activarse con el módulo PTV en los modos split y splitless solo si se habilita la fase de limpieza. Para activar el backflush en modo de temperatura constante (CT), consulte el apartado “Ajuste de parámetros de backflush” en la página 152 del Capítulo 7, “Módulo inyector Split/Splitless con backflush (SSLBKF)”.

En modo Large volume, el backflush puede activarse en las fases de inyección/evaporación o en la fase de limpieza, si está habilitada. En este modo, la válvula de purga debe estar normalmente cerrada durante la fase Prep Run y permanecer cerrada hasta el fin de la rampa de transferencia durante el tiempo programado. La válvula de split solo se cierra al término del tiempo de inyección y de evaporación, si se programaron. Permanece cerrada hasta el fin del tiempo de transferencia programado.

Antes de comenzar, verifique la instalación del liner adecuado en el cuerpo del inyector y la ausencia de fugas en el sistema.

1. Programe el caudal de gas portador.

2. En la lista de modos, elija PTV Large Volume.

3. Ajuste el valor de Temperature del inyector.

4. Introduzca el valor deseado de Split Flow.

5. Introduzca el valor de Splitless Time.

6. Si lo desea, active Constant Septum Purge y ajuste el valor de Stop Purge For para indicar los minutos que deben transcurrir antes de reiniciar la purga.

7. En la lista Injection Phase, seleccione las diferentes fases programadas según sean necesarias. Si desea programar rampas de temperatura, consulte los detalles en “Programación de parámetros de inyección” en la página 192.

Programación de parámetros de inyección

Siga esta secuencia para programar rampas de temperatura cuando trabaje en modo PTV Split, PTV Splitless o PTV Large Volume. Asegúrese de programar el resto de parámetros del modo operativo antes de programar las rampas de temperatura.

Page 227: Trace 1300 1310 Userguide Es

9 Módulo inyector de evaporación de temperatura programable con backflush (PTVBKF)Uso de los parámetros de PTVBFK

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 193

Ciclo de inyección de PTV

En la Figura 133 se muestra un programa de temperatura genérico del ciclo de inyección de PTV.

Figura 133. Perfil de temperatura genérico

1. Abra el menú Injection Phase.

2. Ajuste Ramped Pressure? Yes para programar rampas de presión.

3. Introduzca el valor de Inject Pressure al comienzo de la rampa de temperatura.

4. Introduzca en Inject Time el tiempo que debe mantenerse la temperatura del inyector.

5. Ajuste el valor de Transfer pressure para la muestra.

6. Ajuste el valor de Transfer temperature para la muestra.

7. Ajuste la velocidad de Transfer ramp (en °C/s) a la que se alcanza la temperatura de transferencia de muestra.

8. Introduzca en Transfer time el tiempo que debe mantenerse la temperatura de transferencia.

9. Solo en modo PTV Large Volume: ajuste el valor de Injection flow para la fase de eliminación del disolvente.

Si se configuró evaporación de disolvente

1. Ajuste el valor de Evaporation pressure inicial para la rampa de temperatura de evaporación durante la fase de evaporación del disolvente.

2. Ajuste la velocidad de Evaporation ramp (en °C/s) a la que se alcanza la temperatura de evaporación del disolvente.

3. Ajuste el valor de Evaporation temperature del disolvente.

4. Ajuste en Evaporation time el tiempo que debe mantenerse la temperatura de evaporación.

Ajuste el valor de Evaporation flow para la eliminación de disolvente en el modo PTV Large Volume.

IMPORTANTE Se recomienda un tiempo parecido al del programa de temperatura del horno, a menos que utilice la fase de limpieza.

T 1

Stand-byConditioningSolvent

evaporationSampletransfer Cleaning

T 2

T 4

T 3

Injection cycle

End of OvenTemperature Program

T1 = Temperatura de inyección

T2 = Temperatura de evaporación

T3 = Temperatura de transferencia de muestra

T4 = Temperatura de limpieza

Page 228: Trace 1300 1310 Userguide Es

9 Módulo inyector de evaporación de temperatura programable con backflush (PTVBKF)Uso de los parámetros de PTVBFK

194 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Si se configuró limpieza de inyector

1. Ajuste el valor de Cleaning temp para el inyector.

2. Ajuste la velocidad de Cleaning ramp (en °C/s) a la que se alcanza la temperatura de limpieza.

3. Ajuste en Cleaning time el tiempo que debe mantenerse la temperatura de limpieza.

4. Ajuste el valor de Clean Flow para incrementar el caudal durante la fase de limpieza.

Opción Ramped Pressure del menú Inject Phase

Si se habilitan las rampas de presión durante las fases de inyección, tenga presentes las siguientes consideraciones:

• Con independencia del modo de caudal seleccionado, la presión de las fases de inyección, evaporación y transferencia se controla desde el menú de PTV. Al término del tiempo de transferencia de PTV, el control del gas portador vuelve a realizarse desde el menú Carrier Gas, lo que significa que presión y caudal regresan a los valores definidos en este menú para ese momento del análisis. Si se seleccionaron los modos de presión programada o caudal programado, el programa de presión/caudal comienza virtualmente al inicio del programa de temperatura del horno; a continuación, presión y caudal tomarán el valor definido en el programa de presión/caudal para ese momento del análisis.

• Si la temperatura del inyector ha de mantenerse constante durante todo el programa de temperatura del horno, es preferible utilizar la fase de limpieza en lugar de la de transferencia, ya que durante esta última fase el control de gas portador se realiza según el menú Carrier Gas, mientras que en la fase de transferencia es el menú de control de PTV el que lo controla.

Nota Los parámetros de presión de inyección, transferencia y evaporación no se muestran si el valor de Ramped pressure es No. Si el valor de Ramped pressure es Yes en el menú Inject Phase, lea las recomendaciones que se detallan en Opción Ramped Pressure del menú Inject Phase.

Page 229: Trace 1300 1310 Userguide Es

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 195

10

Módulo detector de ionización de llama (FID)

En este capítulo se describe el detector de ionización de llama (FID) y se ofrecen instrucciones para programar los parámetros del detector y para realizar la comprobación con distintos inyectores.

Descripción general del móduloEl módulo detector de ionización de llama incluye la célula de ionización, un electrómetro amplificador, el cuerpo del calentador, un sistema neumático digital para controlar los gases del detector y conectores de unión a la columna analítica.

Figura 134. Módulo detector de ionización de llama

Los componentes de módulo y detector se muestran en la Figura 135 y en la Figura 136.

Índice

• Descripción general del módulo

• Principio de funcionamiento

• Suministro de gas

• Uso de los parámetros de FID

• Comprobación de FID

Asa de extracción

Cubierta abatible de módulo

Cubierta de módulo

Page 230: Trace 1300 1310 Userguide Es

10 Módulo detector de ionización de llama (FID)Descripción general del módulo

196 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Figura 135. Componentes de módulo FID

Figura 136. Componentes de conjunto de celda de FID

Salida de ventilación

Elemento de encendido

Conjunto de célula de detección

Cubierta aislante

Conectores inferiores

Cable de señal

Cable de elemento de encendido

Cuerpo del detector

Electrodo de polarización

Cable de polarización

Cubierta abatible de módulo

Tapón de detector

Cubierta superior de celda

Anillo de aislamiento

Electrodo colector

Aislante de colector

Cable de señal

Electrodo de polarización

Cable de polarización

Cable de elemento de encendido

Cuerpo del detector (vea la Figura 137)

Page 231: Trace 1300 1310 Userguide Es

10 Módulo detector de ionización de llama (FID)Principio de funcionamiento

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 197

Figura 137. Boquilla cerámica y electrodo de polarización

Principio de funcionamientoEl efluente de la columna se mezcla con nitrógeno y arde en un chorro de aire a medida que emerge de la boquilla. La boquilla ejerce de electrodo de polarización, mientras que un cilindro que rodea la llama forma el Electrodo Colector. El proceso de combustión de compuestos orgánicos crea iones que se ven atraídos a un colector cercano a la llama por medio de una tensión de polarización aplicada entre los electrodos. La corriente de ionización obtenida se detecta con un electrómetro amplificador y se convierte en una señal de salida válida.

Suministro de gasLos caudales de gas deben ajustarse de forma correcta para garantizar el buen funcionamiento del detector FID.

El detector FID utiliza tres gases: hidrógeno y aire para alimentar la llama, y nitrógeno o helio como gas de Make Up para mejorar la sensibilidad. La calidad de los caudales de gas en el detector FID influye en gran medida en su estabilidad y rendimiento analítico.

Electrodo de polarización

Boquilla cerámica

Cable de polarización

PRECAUCIÓN Es responsabilidad del usuario garantizar el cumplimiento de la normativa de seguridad local referente a los suministros de gas.

ADVERTENCIA El gas hidrógeno entraña riesgos. En contacto con el aire, puede formar una mezcla explosiva. El usuario debe extremar las precauciones durante el trabajo con hidrógeno, dada su potencial peligrosidad.

Page 232: Trace 1300 1310 Userguide Es

10 Módulo detector de ionización de llama (FID)Uso de los parámetros de FID

198 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Uso de los parámetros de FIDEn el siguiente apartado se enumeran y describen los parámetros de control del detector FID frontal/trasero.

• Temperature: Define la temperatura del detector. Introduzca un valor de temperatura entre 0 y 450 °C. Introduzca valores entre 250 y 350 °C para evitar la condensación de vapor de agua formado a consecuencia de la combustión de hidrógeno en la llama. Utilice el detector a una temperatura superior a la del programa del horno.

• Hydrogen Flow: Define el caudal de hidrógeno enviado al detector. Los valores aceptables son On/Off y de 1 a 100 ml/min. Cuando H2 está activado, introduzca el caudal de hidrógeno para optimizar la llama. El caudal habitual es de 35 ml/min.

• Air Flow: Define el caudal de aire enviado al detector. Los valores aceptables son On/Off y de 5 a 500 ml/min. Cuando el aire está activado, introduzca el caudal de aire para optimizar la llama. El caudal habitual es de 350 ml/min.

• Makeup Flow: Define el caudal de gas de Make-Up enviado al detector. Se recomienda utilizar nitrógeno como gas de reposición para mejorar la sensibilidad del detector FID. Los valores aceptables son On/Off y de 1 a 50 ml/min. El caudal habitual es de 40 ml/min.

• Flame: Enciende la llama. Las opciones son On y Off. La llama solo se enciende si la temperatura mínima de base es de 150 °C y si los caudales de aire e hidrógeno están activados.

• Flameout Retry: Cuando se enciende la llama, la señal aumenta por encima del umbral de ignición y el proceso de encendido se detiene. Si la señal no supera el valor del umbral de ignición, la función de llama trata de encender el detector FID dos veces más y en caso contrario, se detiene. A continuación, esta función indica que la llama está apagada. Suele utilizarse un valor de referencia de 0,2 a 1,0 pA.

Tabla 57. Gases de FID

Gas Usado como: Rango Estado típico

Hidrógeno Gas de combustión para llama de FID 1-100 ml/min 35 ml/min

Aire1 Gas de combustión para llama de FID 5-500 ml/min 350 ml/min

Nitrógeno Gas de Make-Up (recomendado) 1-50 ml/min 40 ml/min

Helio Gas de Make-Up 1-50 ml/min 40 ml/min1. Por lo general, el caudal de aire es unas diez veces superior al de hidrógeno para mantener la llama encendida. Un exceso de aire desestabiliza la llama, genera ruido y puede apagarla.

Sugerencia Para conseguir un rendimiento óptimo del detector FID, mantenga constantes los caudales de gas portador y de aire y experimente con el caudal de hidrógeno hasta obtener la máxima intensidad de señal con los componentes de interés.

Page 233: Trace 1300 1310 Userguide Es

10 Módulo detector de ionización de llama (FID)Uso de los parámetros de FID

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 199

• Ignition Threshold: Introduzca un valor de 0,0 pA a 10 pA. Si la señal desciende por debajo del umbral de ignición, se activa el elemento de encendido y se intenta encender el detector FID. La rutina Flameout Retry se repite hasta tres veces y compara el valor de umbral de ignición con el valor de pA de la señal.

• Signal: Este parámetro muestra la corriente del colector en pA (nivel de corriente mantenida). El valor mostrado también se utiliza para indicar el estado de la llama. Si el valor es muy bajo (por ejemplo, 0,3 pA), la llama está apagada. Si el valor mostrado es superior al del umbral de ignición, la llama está encendida.

Ajuste de los parámetros de FID

Antes de comenzar, verifique la conexión de los gases al detector, la correcta instalación de la columna y la ausencia de fugas en el sistema. Compruebe la temperatura del horno y el inyector, así como el caudal de gas portador.

1. Habilite el parámetro FID Temperature y ajuste su valor a 250 °C.

2. Habilite y ajuste los caudales de gas del detector: aire a 350 ml/min, H2 a 35 ml/min, gas de reposición a 40 ml/min.

3. Habilite el parámetro Flame On.

Page 234: Trace 1300 1310 Userguide Es

10 Módulo detector de ionización de llama (FID)Comprobación de FID

200 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Comprobación de FIDEsta prueba permite comprobar el rendimiento analítico del instrumento una vez terminada la instalación. Utilice este procedimiento como pauta para asegurarse de que TRACE 1300/ TRACE 1310 sigue funcionando de acuerdo con las especificaciones de la comprobación original realizada en fábrica.

Para llevar a cabo la comprobación:

1. Antes de dar comienzo a la comprobación, debe llevar a cabo estas operaciones:

a. El liner actual instalado en el inyector debe retirarse con cuidado y sustituirse por:

• Inyector SSL/SSLBKF: Liner de 4 mm de ID para inyección splitless con ferula de liner adecuada.

• Inyector PTV/PTVBKF: Liner Silcosteel de 2 mm de ID con ferula de liner adecuada.

IMPORTANTE Cálculo de la relación señal a ruido

Diferentes sistemas de datos cromatográficos, en general, tienen maneras diferentes de calcular la relación señal-ruido.

Se describe una rutina genérica que funciona para cada uno de los sistemas de datos cromatográficos.

• Elegir una parte de la línea de base, sin picos o señales interferentes, para calcular el ruido en un espacio de tiempo de 0,1 min de adquisición. Tomar nota del valor del ruido.

• Medir la altura del pico de interés.

• Calcular la relación señal/ruido dividiendo la altura del pico y el ruido medido anteriormente.

• Repetir este procedimiento para cada uno de los picos de interés.

• Para calcular la relación señal/ruido mediante el uso del procedimiento específico del sistema datos cromatograficos, consulte el manual de usuario del software.

Nota no es posible encontrar una parte adecuada de la línea de base para medir el ruido en el cromatograma a causa de ruido químico, adquiera un tramo de línea base con el GC en stand-by a la temperatura inicial y proceda a medir el ruido en esta línea de base.

Nota En caso de contar con módulo de Backflush, el tubo metálico de Backflush debe cerrarse con el tapon adecuado; la columna estará conectada directamente al inyector.

Page 235: Trace 1300 1310 Userguide Es

10 Módulo detector de ionización de llama (FID)Comprobación de FID

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 201

b. Es preciso que el inyector cuente con un septum nuevo y correctamente instalado.

c. Verifique la correcta conexión de los suministros de gas necesarios al instrumento.

d. La columna actualmente instalada debe retirarse con cuidado y sustituirse por la columna capilar de pruebas de sílice fundido TR-5 (longitud 7 m; DI 0,32 mm; grosor de película 0,25 mm).

e. Lleve a cabo la evaluación de la columna y una prueba de fugas.

f. Verifique la correcta conexión del sistema de tratamiento de datos al sistema GC.

g. Utilice un muestreador automático de líquidos. Como alternativa, puede utilizar una jeringa manual de 10 μl adecuada.

2. Ajuste los caudales de gas:

a. Utilice helio como gas portador y ajuste la presión a 30 kPa en modo de presión constante.

b. Utilice nitrógeno como gas de Make-Up.

c. Habilite y ajuste los caudales de gas del detector: aire a 350 ml/min, H2 a 35 ml/min, gas de reposición a 40 ml/min.

3. Ajuste los parámetros del horno.

a. Ajuste Initial Temperature a 50 °C.

b. Ajuste Initial Time a 1 minuto.

c. Ajuste Ramp 1 a 20 °C/min.

d. Ajuste Final Temperature a 200 °C.

e. Ajuste Final Time a 1 minuto.

4. Ajuste los parámetros del inyector:

a. Inyector SSL/SSLBKF

• Ajuste Temperature a 230 °C.

• Elija el modo de funcionamiento Splitless.

• Ajuste Splitless Time a 0,8 minutos.

• Ajuste Split Flow a 60 ml/min.

• Active la opción Constant Septum Purge.

Page 236: Trace 1300 1310 Userguide Es

10 Módulo detector de ionización de llama (FID)Comprobación de FID

202 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

b. Inyector PTV/PTVBKF

• Elija el modo de funcionamiento PTV Splitless.

• Ajuste Splitless Time a 0,8 minutos.

• Ajuste Split Flow a 60 ml/min.

• Active la opción Constant Septum Purge.

• Ajuste Inject temperature a 50 °C.

• Ajuste Inject Time a 0,1 minutos.

• Ajuste Transfer Ramp a 10 °C/s.

• Ajuste Transfer Temperature a 260 °C.

• Ajuste Transfer Time a un minuto.

5. Ajuste los parámetros del detector FID.

a. Ajuste Temperature a 250 °C.

b. Ajuste Flame con el valor On.

6. Realice la comprobación.

a. Active el sistema de datos cromatográficos y ajuste los parámetros necesarios para la comprobación.

b. Realice un análisis en blanco con una inyección de hexano puro.

c. Con el sistema GC en modo Stand-by/Prep Run, active el sistema de datos durante 10 minutos para evaluar la línea base en estado isotérmico.

d. Una vez terminada la evaluación de la línea base, configure el sistema de datos para adquirir un ciclo.

e. Inyecte 1 μl de mezcla de prueba (nº ref. 33819020).

La mezcla de prueba consta de tres componentes en n-hexano:

– Dodecano; 20 μg/ml

– Tetradecano; 20 μg/ml

– Hexadecano; 20 μg/ml

f. Pulse Start en el sistema GC para iniciar el ciclo de comprobación.

Page 237: Trace 1300 1310 Userguide Es

10 Módulo detector de ionización de llama (FID)Comprobación de FID

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 203

7. El cromatograma resultante debe parecerse al que se muestra en la Figura 138.

Figura 138. Resultado de cromatograma de comprobación de FID

Los valores aceptables de la Tabla 58 indican una ejecución satisfactoria de la comprobación de FID-SSL/SSLBKF y FID-PTV/PTVBKF. Si no se cumplen estos criterios, repita la prueba.

Tabla 58. Valores de aceptación de comprobación de FID

Parámetros de línea base

Ruido (fA) < 50

Deriva (fA/h) < 150

Resultados analíticos

Relación señal/ruido de dodecano > 4000

Relación señal/ruido de tetradecano > 4000

Relación señal/ruido de hexadecano > 4000

Page 238: Trace 1300 1310 Userguide Es
Page 239: Trace 1300 1310 Userguide Es

Thermo Scientific Guía del usuario del TRACE 1300 y TRACE 1310 205

11

Módulo detector de nitrógeno-fósforo (NPD)

En este capítulo se describe el módulo del detector de nitrógeno-fósforo (NPD) y se ofrecen instrucciones para programar los parámetros del detector y para realizar la comprobación con distintos inyectores.

Descripción general del móduloEl módulo detector incluye la celda de detección, el cuerpo del calentador, un sistema neumático digital para controlar los gases del detector y conectores de unión a la columna analítica. La fuente termoiónica recibe la alimentación de un módulo independiente ubicado en un habitáculo de la parte trasera del sistema GC o colocado junto a él, en la posición más práctica para que el usuario tenga buen acceso a las conexiones eléctricas.

Figura 139. Módulo detector de nitrógeno-fósforo

Índice

• Descripción general del módulo

• Principio de funcionamiento

• Ahorrador de la Fuente

• Suministro de gas

• Uso de los parámetros de NPD

• Comprobación de NPD

Asa de extraccion

Cubierta abatible de módulo

Cubierta de módulo

Page 240: Trace 1300 1310 Userguide Es

11 Módulo detector de nitrógeno-fósforo (NPD)Descripción general del módulo

206 Guía del usuario del TRACE 1300 y TRACE 1310 Thermo Scientific

Los componentes de módulo y detector se muestran en la Figura 140 y en la Figura 141.

Figura 140. Componentes de módulo NPD

Cubierta abatible de módulo

Conectores inferiores

Salida de ventilación

Conjunto de fuente termoiónica

Cable de electrodo colector

Cable de conjunto de fuente termoiónica

Cable de señal

Conjunto de fuente termoiónica

Módulo de fuente de alimentación

Page 241: Trace 1300 1310 Userguide Es

11 Módulo detector de nitrógeno-fósforo (NPD)Descripción general del módulo

Thermo Scientific Guía del usuario del TRACE 1300 y TRACE 1310 207

Figura 141. Componentes de conjunto de celda de NPD

Figura 142. Jet quemador y pin de Electrodo colector

Aislante

Electrodo Colector

Conjunto de fuente termoiónica

Electrodo Colector de recogida

Cuerpo del detector Vea la Figura 142.

Cable de conjunto de fuente termoiónica

Cable de señal

Conector de clavija recta de electrodo colector

Jet

Pin de Electrodo colector

Page 242: Trace 1300 1310 Userguide Es

11 Módulo detector de nitrógeno-fósforo (NPD)Principio de funcionamiento

208 Guía del usuario del TRACE 1300 y TRACE 1310 Thermo Scientific

Principio de funcionamientoEl equipo NPD permite la detección selectiva de compuestos orgánicos que contienen nitrógeno o fósforo. Se somete una fuente termoiónica a calentamiento eléctrico en un entorno de hidrógeno/aire diluido, para crear una capa de gas caliente con reactividad química en torno a la fuente. Cuando los compuestos con átomos de nitrógeno o fósforo impactan contra esta fuente caliente, se forma productos de descomposición electronegativos que se ionizan mediante la extracción de electrones de la fuente termoiónica.

A continuación, los iones negativos se recogen y detectan en el electrómetro amplificador.

Se ofrecen fuentes termoiónicas con distintos revestimientos de superficie.

La duración de la fuente termoiónica puede variar según la fuente individual, la temperatura de funcionamiento y las condiciones analíticas. La corriente de calentamiento de la fuente debe ser lo bastante elevada para generar una capa activa alrededor de la propia fuente. Si se precisa un reajuste de la corriente de calentamiento de la fuente, la magnitud de la corriente mantenida del detector o la respuesta a una muestra estándar pueden servir de guía para el ajuste correcto.

Para prolongar la duración de la fuente, se recomienda apagar la corriente de calentamiento y el caudal de hidrógeno si el detector no se utiliza durante periodos prolongados (por ejemplo, durante la noche o los fines de semana), o bien si se interrumpe el suministro de gas portador. El sangrado procedente de fases estacionarias con base de silicona o de reactivos silanizantes residuales (de procesos de derivatización) puede contaminar la superficie de la fuente con dióxido de silicona o reducir la vida operativa del instrumento. Además, el empleo de solventes halogenados puede tener un efecto negativo en la duración de la fuente, a causa de la formación de subproductos de reacción en el revestimiento de la fuente.

Ahorrador de la FuenteEl módulo NPD pone en práctica una funcionalidad querida para evitar el consumo de la fuente. Cuando el GC es ocioso antes de más de 30 minutos, para salvar la vida de la fuente NPD, el valor actual de la corriente aplicada a la cuenta de la fuente es reducido por una cantidad del 10 % de setpoint de la corriente de la fuente. Este realmente apagará el plasma y para el consumo de la fuente sí mismo. En la la condición que salva la fuente, tan pronto como el GC se prepara para la siguiente inyección, la corriente de la fuente es devuelta a su original setpoint. La fuente encenderá atrás y estará lista para el siguiente análisis.

Suministro de gasLos caudales de gas deben ajustarse de forma correcta para garantizar el buen funcionamiento del detector NPD.

Page 243: Trace 1300 1310 Userguide Es

11 Módulo detector de nitrógeno-fósforo (NPD)Uso de los parámetros de NPD

Thermo Scientific Guía del usuario del TRACE 1300 y TRACE 1310 209

Los gases que suelen utilizarse con el detector NPD y la columna capilar se enumeran en la Tabla 59.

El nitrógeno es preferible al helio porque su conductividad térmica, mucho más baja, exige una corriente de calentamiento menor de la fuente termoiónica.

Uso de los parámetros de NPDEn el siguiente apartado se enumeran y describen los parámetros de control del detector NPD frontal/trasero.

• Source Current: Define la corriente aplicada para calentar la fuente termoiónica. Introduzca un valor entre 1000 y 5000 A.

• Temperature: Define la temperatura del detector. Introduzca un valor entre temperatura ambiente y 450 °C.

• Polarization Voltage: Define la tensión aplicada al electrodo de recogida. Introduzca un valor entre 1 y 100 V.

• Air Flow: Define el caudal de aire enviado al detector. Los valores admisibles son On/Off o entre 5 y 500 ml/min. El caudal habitual es de 50 a 60 ml/min.

• H2: Define el caudal de hidrógeno enviado al detector. Los valores admisibles son On/Off o entre 0,1 y 10 ml/min. El caudal habitual es de 2 a 3 ml/min.

• Makeup: Define el caudal de gas de Make-Up enviado al detector. Se recomienda utilizar nitrógeno como gas de Make-Up para mejorar la sensibilidad del detector NPD. Los valores aceptables son On/Off y de 1 a 50 ml/min. El caudal habitual es de 15 ml/min.

PRECAUCIÓN Es responsabilidad del usuario garantizar el cumplimiento de la normativa de seguridad local referente a los suministros de gas.

ADVERTENCIA El gas hidrógeno entraña riesgos. En contacto con el aire puede formar una mezcla explosiva. El usuario debe extremar las precauciones durante el trabajo con hidrógeno, dada su potencial peligrosidad.

Tabla 59. Gases de NPD

Gas Usado como: Rango Estado típico

Hidrógeno Gas de combustión para plasma de NPD 0,1-10 ml/min 2-4 ml/min

Aire Gas de combustión para plasma de NPD 5-500 ml/min 40-80 ml/min

Nitrógeno Gas de Make-Up 1-50 ml/min 10-20 ml/min

Helio Gas de Make-Up 1-50 ml/min 10-20 ml/min

Page 244: Trace 1300 1310 Userguide Es

11 Módulo detector de nitrógeno-fósforo (NPD)Uso de los parámetros de NPD

210 Guía del usuario del TRACE 1300 y TRACE 1310 Thermo Scientific

Ajuste de los parámetros de NPD

Antes de comenzar, verifique la conexión de los gases al detector, la correcta instalación de la columna y la ausencia de fugas en el sistema. Compruebe la temperatura del horno y el inyector, así como el caudal de gas portador.

1. Ajuste el caudal de los gases.

a. Ajuste Air a 60 ml/min.

b. Ajuste H2 a 2,3 ml/min.

c. Ajuste Makeup a 15 ml/min.

2. Ajuste los parámetros del detector.

a. Ajuste Source Current a 2.500 e incremente la corriente paso a paso hasta el nivel de ignición.

b. Ajuste Temperature a 300 °C.

c. Ajuste Polarization Voltage a 4 V.

3. Ajuste los parámetros de señal.

a. Active el parámetro Digital Filter si desea reducir la respuesta a ruidos y señales de frecuencia alta.

4. Asegúrese de que la señal de reducción se sitúa entre 0 y 0,5 pA.

5. Encienda la fuente con una corriente inicial de 2,50 A. La señal de linea base puede aumentar ligeramente pero debe mantenerse entre 0 y 1,5 pA.

a. Monitorice la señal a través de la pantalla táctil o del sistema de datos e incremente el valor de corriente en pasos de 0,002 A hasta observar un incremento repentino y considerable de la señal.

b. Espere cinco minutos hasta que la fuente se estabilice.

6. Compruebe el correcto encendido de la fuente.

a. Reduzca el caudal de hidrógeno a 0,5 ml/min hasta que la señal descienda a cero; a continuación, auméntelo de nuevo a su valor original.

i. Si la señal sigue estando en torno a cero, la fuente no está encendida y es preciso incrementar aún más la corriente, según el procedimiento que se acaba de describir.

ii. Si la señal vuelve a ascender a su valor original, la fuente está bien encendida.

b. Aumente el valor de 2% de la corriente de ignición real. Deje que la señal se estabilice hasta que su nivel caiga por debajo de los 20 pA.

PRECAUCIÓN Los cambios en los caudales de gas y la temperatura del detector afectan al valor requerido para la corriente de la fuente.

Page 245: Trace 1300 1310 Userguide Es

11 Módulo detector de nitrógeno-fósforo (NPD)Comprobación de NPD

Thermo Scientific Guía del usuario del TRACE 1300 y TRACE 1310 211

Comprobación de NPDEsta prueba permite comprobar el rendimiento analítico del instrumento una vez terminada la instalación. Utilice este procedimiento como pauta para asegurarse de que TRACE 1300/ TRACE 1310 sigue funcionando de acuerdo con las especificaciones de la comprobación original realizada en fábrica.

Para llevar a cabo la comprobación:

1. Antes de dar comienzo a la comprobación, debe llevar a cabo estas operaciones:

a. El liner actual instalado en el inyector debe retirarse con cuidado y sustituirse por:

• Inyector SSL/SSLBKF: Liner de 4 mm de ID para inyección splitless con ferula de liner adecuada.

• Inyector PTV/PTVBKF: Liner Silcosteel de 2 mm de ID con ferula de liner adecuada.

b. Es preciso que el inyector cuente con un septum nuevo y correctamente instalado.

c. Verifique la correcta conexión de los suministros de gas necesarios al instrumento.

IMPORTANTE Cálculo de la relación señal a ruido

Diferentes sistemas de datos cromatográficos, en general, tienen maneras diferentes de calcular la relación señal-ruido.

Se describe una rutina genérica que funciona para cada uno de los sistemas de datos cromatográficos.

• Elegir una parte de la línea de base, sin picos o señales interferentes, para calcular el ruido en un espacio de tiempo de 0,1 min de adquisición. Tomar nota del valor del ruido.

• Medir la altura del pico de interés.

• Calcular la relación señal/ruido dividiendo la altura del pico y el ruido medido anteriormente.

• Repetir este procedimiento para cada uno de los picos de interés.

• Para calcular la relación señal/ruido mediante el uso del procedimiento específico del sistema datos cromatograficos, consulte el manual de usuario del software.

Nota no es posible encontrar una parte adecuada de la línea de base para medir el ruido en el cromatograma a causa de ruido químico, adquiera un tramo de línea base con el GC en stand-by a la temperatura inicial y proceda a medir el ruido en esta línea de base.

Nota En caso de contar con módulo de Backflush, el tubo metálico de Backflush debe cerrarse con el tapon adecuado; la columna estará conectada directamente al inyector.

Page 246: Trace 1300 1310 Userguide Es

11 Módulo detector de nitrógeno-fósforo (NPD)Comprobación de NPD

212 Guía del usuario del TRACE 1300 y TRACE 1310 Thermo Scientific

d. La columna instalada actualmente debe retirarse con cuidado y sustituirse por la columna capilar de pruebas de sílice fundido TR-5 (longitud 7 m; DI 0,32 mm; grosor de película 0,25 mm).

e. Lleve a cabo la evaluación de la columna y una prueba de fugas.

f. Verifique la correcta conexión del sistema de tratamiento de datos al sistema GC.

g. Utilice un muestrador automático de líquidos. Como alternativa, puede utilizar una jeringa manual de 10 μl adecuada.

2. Ajustes los caudales de gas:

a. Utilice helio como gas portador y ajuste la presión a 30 kPa en modo de presión constante.

b. Utilice nitrógeno como gas de Make-up.

c. Habilite y ajuste los caudales de gas del detector: aire a 60 ml/min, H2 a 2,3 ml/min, gas de reposición a 15 ml/min.

3. Ajuste los parámetros del horno.

a. Ajuste Initial Temperature a 70 °C.

b. Ajuste Initial Time a 1 minuto.

c. Ajuste Ramp 1 a 20 °C/min.

d. Ajuste Final Temperature a 230 °C.

e. Ajuste Final Time a 1 minuto.

4. Ajuste los parámetros del inyector:

a. Inyector SSL/SSLBKF

• Ajuste Temperature a 230 °C.

• Elija el modo de funcionamiento Splitless.

• Ajuste Splitless Time a 0,8 minutos.

• Ajuste Split Flow a 60 ml/min.

• Active la opción Constant Septum Purge.

b. Inyector PTV/PTVBKF

• Elija el modo de funcionamiento PTV Splitless.

• Ajuste Splitless Time a 0,8 minutos.

• Ajuste Split Flow a 60 ml/min.

• Active la opción Constant Septum Purge.

• Ajuste Inject temperature a 50 °C.

• Ajuste Inject Time a 0,1 minutos.

• Ajuste Transfer Ramp a 10 °C/s.

Page 247: Trace 1300 1310 Userguide Es

11 Módulo detector de nitrógeno-fósforo (NPD)Comprobación de NPD

Thermo Scientific Guía del usuario del TRACE 1300 y TRACE 1310 213

• Ajuste Transfer Temperature a 260 °C.

• Ajuste Transfer Time a 1 minuto.

5. Ajuste los parámetros del detector NPD.

a. Ajuste Temperature a 300 °C.

b. Ajuste Polarizer Voltage a 4 V.

6. Encienda la fuente termoiónica.

a. Encienda la fuente con una corriente inicial de 2,50 A. La señal de linea base puede aumentar ligeramente pero debe mantenerse entre 0 y 1,5 pA.

b. Monitorice la señal a través del teclado numérico o del sistema de datos e incremente el valor de corriente en pasos de 0,002 A hasta observar un incremento repentino y considerable de la señal.

c. Espere cinco minutos hasta que la fuente se estabilice.

d. Para verificar el correcto encendido de la fuente, reduzca el caudal de hidrógeno a 0,5 ml/min hasta que la señal descienda a cero y vuelva a subirlo hasta el valor original.

e. Si la señal sigue estando en torno a cero, la fuente no está encendida y es preciso incrementar más la corriente, según el procedimiento que se acaba de describir.

f. Si la señal vuelve a ascender a su valor original, la fuente está bien encendida.

g. Aumente el valor de 2% de la corriente de ignición real. Deje que la señal se estabilice hasta que su nivel caiga por debajo de los 20 pA.

7. Realice la comprobación.

a. Active el sistema de datos cromatográficos y ajuste los parámetros necesarios para la comprobación.

b. Realice un análisis en blanco con una inyección de isooctano puro.

c. Con el sistema GC en modo Stand-by/Prep Run, active el sistema de datos durante 10 minutos para evaluar la línea base en estado isotérmico.

d. Una vez terminada la evaluación de la línea base, configure el sistema de datos para adquirir un ciclo.

e. Inyecte 1 μl de mezcla de prueba (nº ref. 33819006).

La mezcla de prueba consta de tres componentes en isooctano:

– Azobenceno; 1 μg/ml

– Octadecano; 1000 μg/ml

– Metil paratión; 1 μg/ml

f. Pulse Start en el sistema GC para iniciar el ciclo de comprobación.

8. El cromatograma resultante debe parecerse al que se muestra en la Figura 143.

Page 248: Trace 1300 1310 Userguide Es

11 Módulo detector de nitrógeno-fósforo (NPD)Comprobación de NPD

214 Guía del usuario del TRACE 1300 y TRACE 1310 Thermo Scientific

Figura 143. Valores de aceptación de comprobación de NPD

Los valores aceptables de la Tabla 60 indican una ejecución satisfactoria de la comprobación de NPD-SSL/SSLBKF y NPD-PTV/PTVBKF. Si no se cumplen estos criterios, repita la prueba.

Tabla 60. Valores de aceptación de comprobación de NPD

Parámetros de línea base

Ruido (fA) < 50

Deriva (fA/h) < 200

Resultados analíticos

Relación señal/ruido de azobenceno > 550

Relación señal/ruido de metil paratión > 1500

Page 249: Trace 1300 1310 Userguide Es

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 215

12

Módulo detector de conductividad térmica (TCD)

En este capítulo se describe el módulo detector de conductividad térmica (TCD) y se ofrecen instrucciones para programar los parámetros del detector y para realizar la comprobación con distintos inyectores.

Descripción general del móduloEl módulo detector incluye la celda de detección, el cuerpo del calentador, un sistema neumático digital para controlar los gases del detector y conectores de unión a la columna analítica. La celda de TCD consta de un bloque de acero inoxidable que contiene dos filamentos con la misma resistencia eléctrica, elementos calentadores y un sensor de temperatura.

Figura 144. Módulo detector de conductividad térmica

Índice

• Descripción general del módulo

• Principio de funcionamiento

• Selección de gas

• Uso de los parámetros de TCD

• Comprobación de TCD

Asa de extracción

Cubierta abatible de módulo

Cubierta de módulo

Page 250: Trace 1300 1310 Userguide Es

12 Módulo detector de conductividad térmica (TCD)Descripción general del módulo

216 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Los componentes del módulo y el detector se muestran en la Figura 145.

Figura 145. Componentes de módulo TCD

Cubierta abatible de módulo

Conectores inferiores

Cubierta aislante superior de célula

Cubierta aislante inferior de célula

Salida de ventilación

Disipador térmico

Salida de ventilación

Page 251: Trace 1300 1310 Userguide Es

12 Módulo detector de conductividad térmica (TCD)Principio de funcionamiento

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 217

Principio de funcionamientoEl detector TCD es sensible a cualquier compuesto con una conductividad térmica distinta a la del gas portador utilizado. La respuesta del detector depende del cambio relativo en la conductividad térmica del gas portador puro que atraviesa los filamentos del detector a medida que los componentes se eluyen y salen de la columna.

El control constante de temperatura de los filamentos ofrece un rango dinámico lineal que permite la medición de una amplia variedad de concentraciones sin necesidad de utilizar múltiples estándares ni diluciones de muestras.

La medición de la cantidad de corriente necesaria para mantener una temperatura constante, a medida que gases de diversa conductividad térmica atraviesan el filamento, genera una señal cromatográfica. Se trata de un proceso no destructivo que depende de la concentración.

Los cambios de conductividad se miden por el cambio en la corriente requerida para mantener un filamento a temperatura constante.

Figura 146. Filamentos de TCD y caudales de gas

Dos caudales del mismo gas, portador y de Referencia, entran en la celda de TCD. El gas de Referencia entra en la celda, atraviesa el filamento del canal de referencia y se mezcla con el caudal de gas portador procedente del inyector. El caudal resultante atraviesa el filamento del canal de medición y se expulsa a la atmósfera.

Canal de medición

Canal de referencia

Gas portador

Gas de referencia

Columna analítica

Salida de ventilación

Page 252: Trace 1300 1310 Userguide Es

12 Módulo detector de conductividad térmica (TCD)Selección de gas

218 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Selección de gasLa respuesta del detector a un componente se basa en la diferencia entre la conductividad normal del componente y la del gas portador. Cuanto mayor sea la diferencia, mayor será la respuesta.

En la tabla siguiente se ofrece información sobre la conductividad térmica de una serie de gases.

El detector TCD requiere el mismo gas para el canal de medición (gas portador) y el de referencia (gas de referencia).

• Se recomienda el empleo de helio como gas portador, dada su elevada conductividad térmica y su inercia química.

• Los gases de conductividad baja, como argón y nitrógeno, se utilizan en caso de requisitos analíticos especiales.

• Con precaución, también puede utilizar hidrógeno como gas portador y detector.

Tabla 61. Conductividad térmica de algunos gases

Gas Conductividad térmica (x107) a 0 °C, donde =Cal./cm x s x °C

Hidrógeno 4130

Helio 3363

Metano 720

Oxígeno 583

Nitrógeno 580

Óxido de carbono 540

Argón 406

Dióxido de carbono 343

PRECAUCIÓN Es responsabilidad del usuario garantizar el cumplimiento de la normativa de seguridad local referente a los suministros de gas.

ADVERTENCIA El gas hidrógeno entraña riesgos. En contacto con el aire, puede formar una mezcla explosiva. El usuario debe extremar las precauciones durante el trabajo con hidrógeno, dada su potencial peligrosidad.

PRECAUCIÓN Si utiliza hidrógeno o helio, la diferencia mínima de temperatura entre el filamento y la célula es de 50 °C.Si utiliza nitrógeno, la diferencia mínima de temperatura entre el filamento y la célula es de 100 °C.

Page 253: Trace 1300 1310 Userguide Es

12 Módulo detector de conductividad térmica (TCD)Uso de los parámetros de TCD

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 219

Uso de los parámetros de TCDEn el siguiente apartado se enumeran y describen los parámetros de control del detector TCD frontal/trasero.

• TCD Temperature: Define la temperatura del detector. Introduzca un valor de 0 a 400 °C. Se suele emplear un valor de 200 °C, según la aplicación. Ajuste un valor de temperatura superior a la máxima temperatura que alcanza el horno durante el análisis.

• Filament Power: Activa la alimentación eléctrica del filamento.

• Filament Temperature: Introduzca un valor de temperatura constante del filamento, de 50 a 450 °C. La temperatura del filamento debe mantenerse entre 50 y 100 °C por encima de la temperatura del bloque. Cuanto mayor sea la diferencia, mejor será la sensibilidad. No obstante, la diferencia útil entre la temperatura de bloque y la de filamento depende del gas portador empleado. La T sugerida es:

– de 50 °C a 100 °C si el gas portador es helio.

– 100 °C si el gas portador es nitrógeno.

• Filament Max Temperature: Define el límite máximo de temperatura del filamento. Introduzca un valor entre 50 y 450 °C.

• Reference Flow : Define el caudal de gas de referencia enviado al detector. El tipo de gas de referencia debe ser el mismo que el portador. Los valores aceptables son On/Off y de 0,5 a 5,0 ml/min. El caudal habitual es de 1 ml/min.

• Carrier Source: Protege los filamentos en los casos en que el suministro de gas portador se interrumpe de forma inadvertida; por ejemplo, tras sustituir el septum del inyector. Cuando haya dos inyectores instalados, este parámetro indicará al cromatógrafo qué entrada está conectada al TCD.

• Autozero: Fuerza la puesta a cero de la señal de puenteo.

• Negative Polarity: Invierte la polaridad de la señal.

Selección de parámetros operativos de TCD

Programe la temperatura del detector y la temperatura y tensión de los filamentos según el gas portador utilizado. La sensibilidad del detector depende de la diferencia entre los valores de temperatura definidos para detector y filamentos: cuanto mayor sea la diferencia, mejor será la sensibilidad. Como norma general, la temperatura del detector debe ser superior a la temperatura máxima que alcanza el horno durante el análisis.

Page 254: Trace 1300 1310 Userguide Es

12 Módulo detector de conductividad térmica (TCD)Comprobación de TCD

220 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Gases de conductividad térmica elevada

Cuando utilice helio o hidrógeno aplique estos valores:

• Ajuste la temperatura del detector con un valor superior a la temperatura máxima del horno de la columna durante el análisis.

• Ajuste la temperatura de los filamentos entre ??? 50 °C por encima de la temperatura del detector.

Esta diferencia de temperatura mejora la sensibilidad requerida para el análisis de trazas. Además, prolonga la duración de los filamentos.

Gases de conductividad térmica baja

Cuando utilice nitrógeno o argón aplique estos valores:

• Ajuste la temperatura del detector con un valor superior a la temperatura máxima que alcanza el horno de la columna durante el análisis, pero sin rebasar los 280–300 °C.

• Ajuste la temperatura de los filamentos entre ??? 100 °C por encima de la temperatura del detector.

Ajuste de los parámetros de TCD

Siga estos pasos generales cuando utilice helio como gas portador para el análisis de muestras.

1. Ajuste los parámetros del detector.

a. Seleccione TCD Temperature e introduzca el valor 200 °C.

b. Asigne el valor 250 °C al parámetro Filament Temperature.

2. Ajuste los parámetros de caudal.

a. Seleccione Reference Flow.

3. Seleccione Negative Polarity para invertir la polaridad de la señal.

Comprobación de TCDEsta prueba permite comprobar el rendimiento analítico del instrumento una vez terminada la instalación. Utilice este procedimiento como pauta para asegurarse de que TRACE 1300/TRACE 1310 sigue funcionando de acuerdo con las especificaciones de la comprobación original realizada en fábrica.

Page 255: Trace 1300 1310 Userguide Es

12 Módulo detector de conductividad térmica (TCD)Comprobación de TCD

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 221

Para llevar a cabo la comprobación:

1. Antes de dar comienzo a la comprobación, debe llevar a cabo estas operaciones:

a. El liner instalado actualmente en el inyector debe retirarse con cuidado y sustituirse por:

• Inyector SSL/SSLBKF: Liner de 4 mm de ID para inyección splitless con ferula de liner adecuada.

• Inyector PTV/PTVBKF: Liner Silcosteel de 2 mm de ID con ferula de liner adecuada.

b. Es preciso que el inyector cuente con un septum nuevo y corectamente instalado.

c. Verifique la correcta conexión de los suministros de gas necesarios al instrumento.

d. La columna instalada actualmente debe retirarse con cuidado y sustituirse por la columna capilar de pruebas de sílice fundido TR-5 (longitud 7 m; DI 0,32 mm; grosor de película 0,25 mm).

e. Lleve a cabo la evaluación de la columna y una prueba de fugas.

f. Verifique la correcta conexión del sistema de tratamiento de datos al sistema GC.

IMPORTANTE Cálculo de la relación señal a ruido

Diferentes sistemas de datos cromatográficos, en general, tienen maneras diferentes de calcular la relación señal-ruido.

Se describe una rutina genérica que funciona para cada uno de los sistemas de datos cromatográficos.

• Elegir una parte de la línea de base, sin picos o señales interferentes, para calcular el ruido en un espacio de tiempo de 0,1 min de adquisición. Tomar nota del valor del ruido.

• Medir la altura del pico de interés.

• Calcular la relación señal/ruido dividiendo la altura del pico y el ruido medido anteriormente.

• Repetir este procedimiento para cada uno de los picos de interés.

• Para calcular la relación señal/ruido mediante el uso del procedimiento específico del sistema datos cromatograficos, consulte el manual de usuario del software.

Nota no es posible encontrar una parte adecuada de la línea de base para medir el ruido en el cromatograma a causa de ruido químico, adquiera un tramo de línea base con el GC en stand-by a la temperatura inicial y proceda a medir el ruido en esta línea de base.

Nota En caso de contar con módulo de Backflush, el tubo metálico de BackFlush debe cerrarse con el tapon adecuado; la columna estará conectada directamente al inyector.

Page 256: Trace 1300 1310 Userguide Es

12 Módulo detector de conductividad térmica (TCD)Comprobación de TCD

222 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

g. Utilice un muestrador automático de muestras líquidas. Como alternativa, puede utilizar una jeringa manual de 10 l adecuada.

2. Ajuste los caudales de gas:

a. Utilice helio como gas portador y ajuste la presión a 30 kPa en modo de presión constante.

b. Utilice helio como gas de referencia.

c. Habilite el caudal de gas de referencia y ajústelo a 1 ml/min.

3. Ajuste los parámetros del horno.

a. Ajuste Initial Temperature a 50 °C.

b. Ajuste Initial Time a 1 minuto.

c. Ajuste Ramp 1 a 20 °C/min.

d. Ajuste Final Temperature a 200 °C.

e. Ajuste Final Time a 1 minuto.

4. Ajuste los parámetros del inyector:

a. Inyector SSL/SSLBKF

• Ajuste Temperature a 230 °C.

• Elija el modo de funcionamiento Splitless.

• Ajuste Splitless Time a 0,8 minutos.

• Ajuste Split Flow a 60 ml/min.

• Active la opción Constant Septum Purge.

b. Inyector PTV/PTVBKF

• Elija el modo de funcionamiento PTV Splitless.

• Ajuste Splitless Time a 0,8 minutos.

• Ajuste Split Flow a 60 ml/min.

• Active la opción Constant Septum Purge.

• Ajuste Inject temperature a 50 °C.

• Ajuste Inject Time a 0,1 minutos.

• Ajuste Transfer Ramp a 10 °C/s.

• Ajuste Transfer Temperature a 260 °C.

• Ajuste Transfer Time a 1 minuto.

5. Ajuste los parámetros del detector TCD.

Page 257: Trace 1300 1310 Userguide Es

12 Módulo detector de conductividad térmica (TCD)Comprobación de TCD

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 223

a. Ajuste TCD Temperature a 200 °C.

b. Ajuste Filament Temperature a 250 °C.

c. Asigne a Negative Polarity el valor Off.

d. Asigne a Filament Power el valor On.

6. Realice la comprobación.

a. Active el sistema de datos cromatográficos y ajuste los parámetros necesarios para la comprobación.

b. Realice un análisis en blanco con una inyección de hexano puro.

c. Con el sistema GC en modo Stand-by/Prep Run, active el sistema de datos durante 10 minutos para evaluar la línea base en estado isotérmico.

d. Una vez terminada la evaluación de la línea base, configure el sistema de datos para adquirir un ciclo.

e. Inyecte 1 l de mezcla de prueba (nº ref. 33810016).

La mezcla de prueba consta de tres componentes en n-hexano:

– Dodecano; 200 g/ml

– Tetradecano; 200 g/ml

– Hexadecano; 200 g/ml

f. Pulse Start en el sistema GC para iniciar el ciclo de comprobación.

7. El cromatograma resultante debe parecerse al que se muestra en la Figura 147.

Figura 147. Resultado de cromatograma de comprobación de TCD

Los valores aceptables de la Tabla 62 indican una ejecución satisfactoria de la comprobación de TCD-SSL/SSLBKF y TCD-PTV/PTVBKF. Si no se cumplen estos criterios, repita la prueba.

Page 258: Trace 1300 1310 Userguide Es

12 Módulo detector de conductividad térmica (TCD)Comprobación de TCD

224 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Tabla 62. Valores de aceptación de comprobación de TCD

Parámetros de línea base

Ruido (V) < 12

Deriva (V/h) < 200

Resultados analíticos

Relación señal/ruido de dodecano > 450

Relación señal/ruido de tetradecano > 450

Relación señal/ruido de hexadecano > 450

Page 259: Trace 1300 1310 Userguide Es

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 225

13

Módulo detector de captura de electrones (ECD)

En este capítulo se describe el módulo detector de captura de electrones (ECD) y se ofrecen instrucciones para programar los parámetros del detector y para realizar la comprobación con distintos inyectores.

Descripción general del móduloEl módulo detector incluye la célula de detección, el cuerpo del calentador, un sistema neumático digital para controlar los gases del detector y conectores de unión a la columna analítica.

Figura 148. Módulo detector de captura de electrones

Índice

• Descripción general del módulo

• Principio de funcionamiento

• Wipe Test

• Suministro de gas

• Uso de los parámetros de ECD

• Comprobación de ECD

Cubierta de módulo

Cubierta abatible de módulo

Asa de extracción

Page 260: Trace 1300 1310 Userguide Es

13 Módulo detector de captura de electrones (ECD)Descripción general del módulo

226 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Los componentes del módulo y el detector se muestran en la Figura 149.

Figura 149. Componentes de módulo ECD

Figura 150. Componentes de celda de detección de ECD

Cubierta abatible de módulo

Cable de señal

Cable de excitación

Electrodo Colector Tornillo de cierre

Chimenea

Celda de detección

Cubierta aislante

Tornillo de cierre de Electrodo Colector

Electrodo Colector (ánodo)

Junta

Page 261: Trace 1300 1310 Userguide Es

13 Módulo detector de captura de electrones (ECD)Principio de funcionamiento

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 227

La temperatura operativa máxima del detector ECD es de 400 °C.

Principio de funcionamientoEl detector consta de una celda con una fuente radiactiva que actúa como cátodo y un electrodo de recogida o Colector que funciona como ánodo. La celda del detector es inaccesible desde el exterior.

El detector ECD funciona según el principio de absorción en fase gaseosa de los electrones libres mediante moléculas de captura de electrones.

Los electrones primarios que emite la fuente radiactiva (emisión beta) colisionan con las moléculas de un gas portador o de reposición, como el nitrógeno, y desencadenan un proceso de ionización en que se forman electrones secundarios e iones positivos.

La sensibilidad y selectividad de la respuesta del detector ECD están determinadas por la afinidad electrónica de las sustancias que entran en la célula de detección, así como por los parámetros operativos y las condiciones analíticas.

En el caso de compuestos orgánicos, la afinidad electrónica depende sobre todo de la presencia de electróforos en la estructura molecular, como halógenos, grupos nitro, organometales o dicetonas.

En el caso de los halógenos, la respuesta de ECD desciende en este orden: I > Br > Cl > F.

El factor de respuesta (y por tanto la selectividad) puede variar entre 1 y 106 en función del grado de afinidad electrónica de las moléculas. En estos valores también influye la temperatura, que mejora la respuesta del detector con aquellos compuestos de captura disociativa de electrones.

Los caudales de gas portador y de reposición afectan asimismo a la sensibilidad del detector, ya que su respuesta está relacionada con la concentración de soluto en la mezcla de gas.

PRECAUCIÓN El detector de captura de electrones contiene una fuente radiactiva de emisión beta de Ni 63 a 370 MBq (10 mCi). El usuario no debe abrir ni manipular el detector en modo alguno. Todas las operaciones de mantenimiento y servicio que impliquen el desmontaje del detector, aun parcial, deben dejarse EXCLUSIVAMENTE en manos de personal cualificado y llevarse a cabo en un laboratorio que cuente con autorización expresa de Thermo Scientific y que disponga de licencia específica para el manejo de material radiactivo.

IMPORTANTE Los clientes sujetos a la jurisdicción de la Comisión de Reglamentación Nuclear de EEUU (NRC) hallarán un listado de acuerdos estatales, así como información de contacto actualizada de los organismos reguladores encargados de los aparatos con licencia general y específica como los detectores ECD, en http://nrc-stp.ornl.gov/rulemaking.html. El mantenimiento de esta información corresponde a la NRC estadounidense.

Page 262: Trace 1300 1310 Userguide Es

13 Módulo detector de captura de electrones (ECD)Wipe Test

228 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Wipe TestAntes de abandonar la fábrica, el detector ECD se somete a una prueba de contaminación superficial con el método de la prueba de barrido (prueba de fugas). Todos los detectores se suministran con un certificado informativo de la secuencia aplicada y los valores detectados.

Suministro de gasLos caudales de gas deben ajustarse de forma correcta para garantizar el buen funcionamiento del detector ECD.

En la celda del detector ECD, la fuente 63Ni libera partículas β que colisionan con las moléculas de un gas portador o de reposición fácilmente ionizable que fluye a través del detector para generar electrones de energía baja. Los gases de empleo más común son el nitrógeno y el argón/5% metano. Se recomienda la mezcla argón/metano si se quiere obtener un rango lineal más elevado, o bien si la presencia de contaminantes en el gas portador hace necesaria una movilidad elevada de los electrones para restablecer los valores operativos adecuados. La pureza de ambos gases ha de ser alta y no deben contener más de 1 a 2 ppm de oxígeno o vapor de agua, ya que su presencia reduciría la concentración de electrones libres y, en consecuencia, la probabilidad de capturarlos.

Los gases que suelen utilizarse con el detector ECD se enumeran en la Tabla 63.

Uso de los parámetros de ECDA continuación se enumeran y describen los parámetros de control del detector ECD frontal/trasero.

• ECD Temperature: Define la temperatura del detector ECD. Introduzca un valor entre 0 y 400 °C. Esta temperatura suele ajustarse entre 250 y 350 °C.

• Reference Current: Define la corriente de referencia del detector. Introduzca un valor entre 0,1 y 1,5 nA. Suele aplicarse un valor de corriente de 0,5 nA.

PRECAUCIÓN Es responsabilidad del usuario garantizar el cumplimiento de la normativa de seguridad local referente a los suministros de gas.

ADVERTENCIA El gas hidrógeno entraña riesgos. En contacto con el aire, puede formar una mezcla explosiva. El usuario debe extremar las precauciones durante el trabajo con hidrógeno, dada su potencial peligrosidad.

Tabla 63. Gases de ECD

Gas Usado como: Estado típico

Nitrógeno Gas de Make-up (recomendado) 15 ml/min

Argón/metano Gas de Make-up 15 ml/min

Page 263: Trace 1300 1310 Userguide Es

13 Módulo detector de captura de electrones (ECD)Uso de los parámetros de ECD

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 229

• Pulse Amplitude: Define la tensión aplicada al detector. Introduzca un valor de 5 V a 50 V. Por lo general, la amplitud de impulsos se ajusta a 50 V.

Sistemas muy limpios pueden alcanzar frecuencias de base de la celda inferior a 1 kHz. En este caso, se recomienda reducir la anchura de pulso con el fin de elevar la frecuencia de base de la celda en torno a el valor óptimo de 1 kHz.

• Pulse Width: Define un valor de anchura de impulso. El rango es de 0,1 μs a 2,0 μs en incrementos de 0,1 μs.

El valor seleccionado depende del tipo de gas de Make-up que utiliza el detector ECD.

– Si es nitrógeno, se necesita un valor de anchura de impulso a 1,0 μs.

– Si es argón/metano, se necesita un impulso de 0,1 μs para obtener el máximo rango lineal.

• Makeup Flow: Especifica la cantidad de gas de Make-up que se envía al detector. Se recomienda el empleo de nitrógeno o argón/metano como gas de Make-up del detector ECD. El rango de valores de esta entrada depende del gas empleado.

El rango del caudal de gas portador es de 1,0 a 500 ml/min para nitrógeno o argón/metano.

Para reducir el tiempo de descombustión, utilice caudales más elevados (en torno a los 60 ml/min) la primera vez que encienda el detector. Reduzca el caudal de gas de reposición a 15 ml/min para obtener resultados óptimos.

Ajuste de los parámetros de ECD

Antes de comenzar, verifique la conexión de los gases al detector, la correcta instalación de la columna y la ausencia de fugas en el sistema. Compruebe la temperatura del horno y el inyector, así como el caudal de gas portador.

1. Ajuste el valor de ECD Temperature a 300 °C.

2. Ajuste el valor de Reference Current a 0,5 nA.

3. Ajuste el valor de Pulse Amplitude a 50 V.

4. Ajuste el valor de Pulse Width a 1,0 μs.

5. En el cuadro de grupo Flow, ajuste el valor de Makeup Gas a 15 ml/min.

6. Deje transcurrir unas horas hasta que el sistema se alinee. La frecuencia del detector debe estabilizarse por debajo de 5 kHz.

Page 264: Trace 1300 1310 Userguide Es

13 Módulo detector de captura de electrones (ECD)Comprobación de ECD

230 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Comprobación de ECDEsta prueba permite comprobar el rendimiento analítico del instrumento una vez terminada la instalación. Utilice este procedimiento como pauta para asegurarse de que TRACE 1300/ TRACE 1310 sigue funcionando de acuerdo con las especificaciones de la comprobación original realizada en fábrica.

Para llevar a cabo la comprobación:

1. Antes de dar comienzo a la comprobación, debe llevar a cabo estas operaciones:

a. El liner instalado en el inyector debe retirarse con cuidado y sustituirse por:

• Inyector SSL/SSLBKF: Liner de 4 mm de DI para inyección splitless con ferula de liner adecuada.

• Inyector PTV/PTVBKF: Liner Silcosteel de 2 mm de ID con ferula de liner adecuada.

b. Es preciso que el inyector cuente con un septum nuevo y correctamente instalado.

c. Verifique la correcta conexión de los suministros de gas necesarios al instrumento.

IMPORTANTE Cálculo de la relación señal a ruido

Diferentes sistemas de datos cromatográficos, en general, tienen maneras diferentes de calcular la relación señal-ruido.

Se describe una rutina genérica que funciona para cada uno de los sistemas de datos cromatográficos.

• Elegir una parte de la línea de base, sin picos o señales interferentes, para calcular el ruido en un espacio de tiempo de 0,1 min de adquisición. Tomar nota del valor del ruido.

• Medir la altura del pico de interés.

• Calcular la relación señal/ruido dividiendo la altura del pico y el ruido medido anteriormente.

• Repetir este procedimiento para cada uno de los picos de interés.

• Para calcular la relación señal/ruido mediante el uso del procedimiento específico del sistema datos cromatograficos, consulte el manual de usuario del software.

Nota no es posible encontrar una parte adecuada de la línea de base para medir el ruido en el cromatograma a causa de ruido químico, adquiera un tramo de línea base con el GC en stand-by a la temperatura inicial y proceda a medir el ruido en esta línea de base.

Nota En caso de contar con módulo de Backflush, el tubo metálico de backflush debe cerrarse con el tapon adecuado; la columna estará conectada directamente al inyector.

Page 265: Trace 1300 1310 Userguide Es

13 Módulo detector de captura de electrones (ECD)Comprobación de ECD

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 231

d. La actual columna instalada debe retirarse con cuidado y sustituirse por la columna capilar de pruebas de sílice fundido TR-5 (longitud 7 m; ID 0,32 mm; grosor de película 0,25 mm).

e. Lleve a cabo la evaluación de la columna y una prueba de fugas.

f. Verifique la correcta conexión del sistema de tratamiento de datos al sistema GC.

g. Utilice un muestreador automático de líquidos. Como alternativa, puede utilizar una jeringa manual de 10 μl adecuada.

2. Ajustes los caudales de gas:

a. Utilice helio como gas portador y ajuste la presión a 30 kPa en modo de presión constante.

b. Utilice nitrógeno como gas de Make-Up con un caudal de 15 ml/min.

3. Ajuste los parámetros del horno.

a. Ajuste Initial Temperature a 70 °C.

b. Ajuste Initial Time a 1 minuto.

c. Ajuste Ramp 1 a 20 °C/min.

d. Ajuste Final Temperature a 220 °C.

e. Ajuste Final Time a 1 minuto.

4. Ajuste los parámetros del inyector:

a. Inyector SSL/SSLBKF

• Ajuste Temperature a 230 °C.

• Elija el modo de funcionamiento Splitless.

• Ajuste Splitless Time a 0,8 minutos.

• Ajuste Split Flow a 60 ml/min.

• Active la opción Constant Septum Purge.

b. Inyector PTV/PTVBKF

• Elija el modo de funcionamiento PTV Splitless.

• Ajuste Splitless Time a 0,8 minutos.

• Ajuste Split Flow a 60 ml/min.

• Active la opción Constant Septum Purge.

• Ajuste Inject temperature a 50 °C.

• Ajuste Inject Time a 0,1 minutos.

• Ajuste Transfer Ramp a 10 °C/s.

Page 266: Trace 1300 1310 Userguide Es

13 Módulo detector de captura de electrones (ECD)Comprobación de ECD

232 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

• Ajuste Transfer Temperature a 260 °C.

• Ajuste Transfer Time a un minuto.

5. Ajuste los parámetros del detector ECD.

a. Ajuste ECD Temperature a 300 °C.

b. Ajuste Reference Current a 0,5 nA.

c. Ajuste Pulse Amplitude a 50 V.

d. Ajuste Pulse Width a 1,0 μs.

6. Realice la comprobación.

a. Active el sistema de datos cromatográficos y ajuste los parámetros necesarios para la comprobación.

b. Realice un análisis en blanco con una inyección de isooctano puro.

c. Con el sistema GC en modo Stand-by/Prep Run, active el sistema de datos durante 10 minutos para evaluar la línea base en estado isotérmico.

d. Una vez terminada la evaluación de la línea base, configure el sistema de datos para adquirir un ciclo.

e. Inyecte 1 μl de mezcla de test (nº ref. 33819011).

La mezcla de test consta de dos componentes en isooctano:

– Lindano; 0,030 μg/ml

– Aldrín; 0,030 μg/ml

f. Pulse Start en el sistema GC para iniciar el ciclo de comprobación.

7. El cromatograma resultante debe parecerse al que se muestra en la Figura 151.

Page 267: Trace 1300 1310 Userguide Es

13 Módulo detector de captura de electrones (ECD)Comprobación de ECD

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 233

Figura 151. Valores de aceptación de comprobación de ECD

Los valores aceptables de la Tabla 64 indican una ejecución satisfactoria de la comprobación de ECD-SSL/SSLBKF y ECD-PTV/PTVBKF. Si no se cumplen estos criterios, repita la prueba.

Tabla 64. Valores de aceptación de comprobación de ECD

Parámetros de línea base

Ruido (Hz) < 10

Deriva (Hz/h) < 100

Resultados analíticos

Relación señal/ruido de lindano > 3000

Relación señal/ruido de aldrín > 3000

Nota 1 Hz = 10 μV (Chrom-Card, ChromQuest)

Page 268: Trace 1300 1310 Userguide Es
Page 269: Trace 1300 1310 Userguide Es

Thermo Scientific Guía del usuario del TRACE 1300 y TRACE 1310 235

14

Inicio del análisis

Este capítulo ofrece instrucciones para ejecutar análisis.

Con todos los componentes instalados y configurados, ya está listo para ejecutar el primer ciclo. Es preciso que el sistema de datos esté conectado y encendido para ver el cromatograma. Guarde el primer cromatograma, que le servirá para futuras comparaciones de rendimiento y le ayudará a solucionar problemas de servicio.

Índice

• Confirmación del funcionamiento del sistema GC

• Ajuste de los parámetros del método

• Realización de una inyección manual

• Realización de una inyección automática

Page 270: Trace 1300 1310 Userguide Es

14 Inicio del análisisConfirmación del funcionamiento del sistema GC

236 Guía del usuario del TRACE 1300 y TRACE 1310 Thermo Scientific

Confirmación del funcionamiento del sistema GCTras la instalación de una columna nueva debe verificar que el sistema GC recibe alimentación eléctrica, que el caudal del gas portador es correcto, que la presión del depósito de gas es suficiente y que el sistema ha alcanzado la temperatura adecuada y no presenta fugas.

Comprobación de la alimentación del TRACE 1310

Para confirmar el encendido del TRACE 1310 tras la rutina de arranque, asegúrese de que la pantalla táctil delantera muestra el menú principal. Vea la Figura 152.

Figura 152. Pantalla táctil del TRACE 1310

Para encender el sistema GC, coloque el interruptor de alimentación de la parte trasera en la posición de encendido (arriba), que tiene la marca I. Si el instrumento no se enciende, revise las conexiones eléctricas y la toma de la pared.

Page 271: Trace 1300 1310 Userguide Es

14 Inicio del análisisConfirmación del funcionamiento del sistema GC

Thermo Scientific Guía del usuario del TRACE 1300 y TRACE 1310 237

Comprobación de la alimentación del TRACE 1300

Para confirmar el encendido del TRACE 1300, compruebe que el piloto Power está encendido. Cuando el sistema GC se enciende, los pilotos LED del panel de estado se iluminan de forma simultánea; a continuación, el piloto Power permanece encendido en color verde y el resto de indicadores se apagan. El sistema GC está ahora en estado de espera. Vea la Figura 153.

Figura 153. -Panel de estado del TRACE 1300 al encender el sistema GC.

Para encender el sistema GC, coloque el interruptor de alimentación de la parte trasera en la posición de encendido (arriba), que tiene la marca I. Si el instrumento no se enciende, revise las conexiones eléctricas y la toma de la pared.

Verificación del caudal del gas portador

Una vez confirmado el encendido del sistema, debe verificar que el caudal del gas portador es el previsto.

Para verificar el caudal del gas portador:

1. Acceda al menú del gas portador. En TRACE 1310, elija Instrument Control y Front/Back Inlet.

2. Observe el caudal de la columna.

3. Si las cantidades real y de referencia de Column Flow son idénticas, el caudal de gas portador es correcto. Si difieren, consulte el apartado Solución de problemas analíticos.

Estado de encendido

Estado de espera

Page 272: Trace 1300 1310 Userguide Es

14 Inicio del análisisAjuste de los parámetros del método

238 Guía del usuario del TRACE 1300 y TRACE 1310 Thermo Scientific

Verificación de la presión del tanque del gas portador

Asegúrese de tener la presión suficiente en el manómetro del gas portador para el número de muestras que va a procesar. Si la presión es demasiado baja podría quedarse sin gas en mitad de un ciclo, lo que pondría en peligro los datos resultantes.

1. Localice el depósito del gas portador. Según la disposición del laboratorio, puede que esté en otra sala.

2. Observe el indicador de presión del depósito.

3. Asegúrese de contar con una presión superior a 100 psi en la etapa de regulación inicial. Si es inferior y va a procesar una gran cantidad de muestras, se recomienda sustituir el depósito.

Verificación de la temperatura

Para verificar la temperatura:

1. Acceda al menú del gas portador. En TRACE 1310, elija Instrument Control y Front/Back Inlet.

2. Muestre la temperatura.

3. Si las cantidades real y de referencia de Temperature son idénticas, la temperatura es correcta. Si difieren, consulte el apartado Solución de problemas.

Ajuste de los parámetros del métodoLos métodos analíticos definen el tratamiento que recibe una muestra durante el análisis. Tu puedes ajustar los parámetros de:

• Temperaturas, incluidos los cambios programados (rampas)

• Presión

• Caudal

• Tipos de entrada

• Tipos de detector y parámetros

• Cambios de señal

• Parámetros del muestreador automático

• Eventos de tiempo, antes, durante y después del ciclo

Programe los parámetros del método a través de la pantalla táctil o desde el sistema de datos.

Page 273: Trace 1300 1310 Userguide Es

14 Inicio del análisisRealización de una inyección manual

Thermo Scientific Guía del usuario del TRACE 1300 y TRACE 1310 239

Realización de una inyección manualPara realizar una inyección manual:

1. Verifique que se ha instalado una columna correcta, que el inyector contiene el liner adecuado y que el sistema no presenta fugas.

2. Compruebe la temperatura del horno y la del detector.

3. Programe el caudal de gas portador.

4. Asegúrese de disponer de la jeringa adecuada para la técnica elegida.

5. Monitorice el estado del TRACE 1300/TRACE 1310 y de cada etapa del ciclo a través de la pantalla táctil o del panel del estado.

• Si aparece el estado Not Ready, significa que el TRACE 1300/TRACE 1310 están calentado el horno hasta la temperatura especificada en el menú Oven.

• Cuando el horno haya alcanzado la temperatura inicial programada, se muestra el estado Standby.

6. Cuando el TRACE 1300/TRACE 1310 está en Standby, pulse el botón Start para dar comienzo al ciclo Preparation Run, en que el sistema GC prepara las condiciones necesarias para un ciclo.

Según el modo programado, el TRACE 1300/TRACE 1310 realizarán las siguientes operaciones:

a. Si programó la función de ahorro de gas, Prep Run termina el modo de ahorro de gas y reinicia el caudal dividido al caudal usado en la inyección.

b. En modo splitless, Prep Run cierra la válvula divisora y cerrará la válvula de purga de septum según se haya programado.

c. En modo splitless con pulso de presión, Prep Run inicia el pulso de presión.

7. Cuando se muestre el estado Ready to Inject, inyecte la muestra:

a. Inserte la aguja de la jeringa en el inyector.

b. Inyecte la muestra con rapidez y, de forma igualmente rápida, retire la jeringa del inyector.

8. Pulse el botón Start. TRACE 1300/TRACE 1310 inicia los pasos del ciclo y termina el análisis según está programado.

9. Al término del ciclo, se muestra el estado Cooling. En este estado, TRACE 1300/TRACE 1310 regresa a las condiciones iniciales de temperatura y presión.

10. Una vez alcanzado el estado Standby, TRACE 1300/TRACE 1310 está listo para dar comienzo al siguiente ciclo analítico.

Page 274: Trace 1300 1310 Userguide Es

14 Inicio del análisisRealización de una inyección automática

240 Guía del usuario del TRACE 1300 y TRACE 1310 Thermo Scientific

Realización de una inyección automáticaPara llevar a cabo una inyección con un muestreador automático de muestras:

1. Verifique que se ha instalado la columna correcta, que el inyector contiene el liner adecuado y que el sistema no presenta fugas.

2. Compruebe la temperatura del horno y la del detector.

3. Programe el caudal de gas portador.

4. Asegúrese de disponer de la jeringa adecuada para la técnica elegida.

5. Programe el método del muestreador automático, así como la secuencia de muestras deseada.

6. Monitorice el estado de TRACE 1300/TRACE 1310 y de cada etapa del ciclo a través de la pantalla táctil o del panel de estado.

• Si aparece el estado Not Ready, significa que TRACE 1300/TRACE 1310 está calentado el horno hasta la temperatura especificada en el menú Oven.

• Cuando el horno alcanza la temperatura inicial programada, se muestra el estado Standby.

7. Con TRACE 1300/TRACE 1310 en estado Standby, pulse el botón Start para dar comienzo al ciclo Preparation Run, en que el sistema GC prepara las condiciones necesarias para un ciclo.

Según el modo programado, TRACE 1300/TRACE 1310 realizará las siguientes operaciones:

a. Si programó la función de ahorro de gas, Prep Run termina el modo de ahorro de gas y reinicia el caudal dividido con el valor de caudal usado en la inyección.

b. En modo splitless, Prep Run cierra la válvula de split y la válvula de purga del septum según se haya programado.

c. En modo splitless con pulso de presión, Prep Run inicia el pulso de presión.

8. Cuando se muestre el estado Ready to Inject, inyecte la muestra: ???

a. Inicie la secuencia de la muestra y pulse Start. El muestreador automático inyectará las muestras de acuerdo con el método y la secuencia programados.

9. Al término del ciclo se muestra el estado Cooling, en que TRACE 1300/TRACE 1310 regresa a las condiciones iniciales de temperatura y presión.

10. Una vez alcanzado el estado Standby, TRACE 1300/TRACE 1310 está listo para dar comienzo al siguiente ciclo analítico.

Page 275: Trace 1300 1310 Userguide Es

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 241

15

Solución de problemas analíticos

En este capítulo se describen las indicaciones más comunes de los problemas con líneas base, picos o resultados, y se ofrece información analítica de solución de problemas para inyectores y detectores. Utilice esta información para identificar y solucionar problemas.

Con el fin de obtener los mejores resultados, siga un método sistemático como el siguiente para resolver problemas con los resultados o el instrumento.

• Conexiones eléctricas

– Asegúrese de que la línea eléctrica está conectada a tierra y verifique la estabilidad de la tensión eléctrica.

– Compruebe que las conexiones eléctricas entre el sistema GC y otras posibles unidades son correctas.

• Gases

– Verifique que la línea de gas portador está encendida.

– Verifique que el caudal ajustado para los gases del detector es el correcto.

– Asegúrese de que el sistema no presenta fugas.

Índice

• Investigación de problemas de línea base

• Investigación de problemas de picos

• Investigación de problemas de resultados

• Solución de problemas analíticos de SSL

• Solución de problemas analíticos de PTV y PTVBKF

• Solución de problemas analíticos de FID

• Solución de problemas analíticos de NPD

• Solución de problemas analíticos de TCD

• Solución de problemas analíticos de ECD

Page 276: Trace 1300 1310 Userguide Es

15 Solución de problemas analíticos

242 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

• Inyección

– Utilice jeringas de volumen adecuado para cromatografía de gases.

– La muestra debe estar bien preparada y diluida.

– Inyecte siempre el mismo volumen de muestra.

– La relación de split debe permanecer constante.

– Si tiene instalado un inyector automático de muestras, verifique el correcto funcionamiento. Si se utiliza inyector automático de muestras, los viales de muestra deben estar correctamente encapsulados.

• Columna cromatográfica

– La columna debe ser la adecuada para el análisis previsto, debe estar bien instalada y debe acondicionarse antes del uso.

– Compruebe que la férula que une columna e inyector no presenta fugas.

– Verifique la ausencia de fugas de gas.

– Revise con frecuencia la eficiencia de la columna.

• Detector

– Compruebe que los parámetros del detector están bien ajustados.

– Inspeccione el detector en busca de posibles indicios de contaminación.

• Sistema de datos

– Compruebe que el sistema de datos utilizado está bien conectado.

Page 277: Trace 1300 1310 Userguide Es

15 Solución de problemas analíticosInvestigación de problemas de línea base

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 243

Investigación de problemas de línea baseTabla 65. Solución de problemas de línea base en los datos (Hoja 1 de 2)

Comportamiento Característica Causa Solución

Deriva

General

Acumulación de fase estacionaria en la columna.

Sustituya la columna o corte el extremo.

Presión de cilindro de gas portador insuficiente para permitir el control.

Sustituya el cilindro de gas portador o aumente la presión.

Caudal errático de gas portador o gas de combustión.

Revise los controladores de gas.

Acumulación de impurezas en la columna.

Compruebe los niveles de impurezas del gas. Utilice gas de pureza adecuada y filtros.

Descendente

Fuga de gas portador en el sistema.

Realice una comprobación de fugas y asegure la estanqueidad de las conexiones de la línea de gas portador.

La columna está en proceso de limpieza o acondicionamiento.

Deje transcurrir un tiempo hasta que se estabilice.

Ascendente

Acumulación de impurezas en la columna.

Compruebe los niveles de impurezas del gas. Utilice gas de pureza correcta.

Detector contaminado. Revise el detector y límpielo.

Ascendente durante el programa de temperatura

Columna contaminada. Reacondicione la columna.

Corriente elevada

General

Caudal de gas portador excesivo. Reduzca el caudal de gas portador.

Columna contaminada. Reacondicione la columna o sustitúyala.

Gases contaminados. Sustituya los cilindros o los filtros de gas.

Sangrado excesivo de fase estacionaria de columna.

Compruebe la temperatura del horno y asegúrese de que no rebasa el límite superior de la columna. Reacondicione la columna. Sustituya la columna.

Conexiones mal apretadas. Compruebe que todas las interconexiones y las conexiones de rosca son firmes.

Page 278: Trace 1300 1310 Userguide Es

15 Solución de problemas analíticosInvestigación de problemas de línea base

244 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Forma irregular

Caída tras pico de disolvente

Detector contaminado. Realice acondicionamiento a elevada temperatura o limpie el detector.

Forma sinusoidal

Sangrado de columna excesivo durante programación de temperatura de columna.

Reduzca la temperatura superior de la columna. Realice descombustión de la columna. Instale una columna de alta temperatura.

Descomposición de fase estacionaria por contaminación de oxígeno.

Instale filtros de oxígeno en línea de gas portador. Compruebe ausencia de fugas en el sistema neumático y el inyector. Utilice gas de pureza correcta con bajo contenido de oxígeno.

Ondas cuadradasGrandes fluctuaciones en CA, equipos de alto consumo en la misma línea.

Utilice una línea de CA limpia y dedicada con amperaje suficiente.

Ruido

General

Detector contaminado. Aísle el detector de otros sistemas electrónicos. Si el ruido desaparece, limpie el electrodo colector.

Caudal de gas de combustión insuficiente o excesivo.

Revise los caudales de gas y ajústelos con los valores correctos.

Columna contaminada. Acondicione la columna.

Suministro de gas de detector contaminado.

Compruebe la pureza del gas e instale los filtros adecuados.

Electrómetro defectuoso. Sustituya el electrómetro.

Ruido de alta frecuencia

Temperatura de detector superior a temperatura máxima de columna.

Reduzca la temperatura del detector hasta el límite superior de temperatura de columna.

Frecuencia de adquisición excesiva.

Reduzca la frecuencia de adquisición.

Interferencia eléctrica externa. Conecte un monitor de línea de CA y verifique la pureza de la alimentación de CA.

Conexiones de columna mal apretadas.

Apriete las conexiones.

Conexiones eléctricas de detector flojas.

Asegúrese de que los cables están bien conectados.

Picos transitorios

General

Electrómetro o amplificador defectuosos.

Sustituya el electrómetro o el amplificador.

Detector sucio. Aísle el detector de otros sistemas electrónicos. Si el ruido desaparece, limpie el detector.

Interferencia eléctrica externa. Conecte un monitor de línea de CA y verifique la pureza de la alimentación de CA.

Temperatura muy baja. Aumente la temperatura.

Tabla 65. Solución de problemas de línea base en los datos (Hoja 2 de 2)

Comportamiento Característica Causa Solución

Page 279: Trace 1300 1310 Userguide Es

15 Solución de problemas analíticosInvestigación de problemas de picos

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 245

Investigación de problemas de picosTabla 66. Solución de problemas de picos en los datos (Hoja 1 de 3)

Comportamiento Característica Causa Solución

Ensanchamiento General

Caudal de columna excesivo. Reduzca el caudal; ajústelo ligeramente por encima del nivel óptimo.

Caudal de columna insuficiente. Aumente el caudal; ajústelo ligeramente por encima del nivel óptimo.

Caudal de split insuficiente en inyección en modo split.

Aumente el caudal a 40-50 ml/min.

Degradación de rendimiento de la columna.

Pruebe la columna con caudal óptimo.

Inyector sucio. Limpie el liner o sustitúyalo.

Acumulación de fase estacionaria en la salida.

Retire las dos últimas vueltas de la columna.

Temperatura de detector muy baja. Aumente la temperatura a 5 °C por debajo del máximo de columna.

Picos dobles General

Velocidad de inyección muy baja. Realice inyección más rápida con movimiento suave.

Velocidad o modo erróneo de inyección con inyector automático.

Utilice una velocidad más alta.

Distorsión frontal General

Sobrecarga de columna o detector. Reduzca el volumen inyectado o las concentraciones de analito. Aumente la relación de split.

Temperatura de columna insuficiente. Aumente la temperatura.

Fase estacionaria muy delgada. Utilice una columna de película más gruesa.

Picos fantasma

General

Gas portador contaminado. Sustituya el cilindro o el filtro.

Contaminación procedente de instrumental de laboratorio.

Compruebe que el material está limpio y descontaminado.

Descomposición de muestra inyectada.

Reduzca la temperatura del inyector.

Utilice la técnica de inyección on-column.

Solución de inyección sucia. Realice purificación adecuada de muestra antes de la inyección.

Picos fantasma anchos

Inyector o sistema neumático contaminado.

Extraiga la columna y realice acondicionamiento a temperatura del inyector. Utilice un septum de buena calidad. Sustituya filtro de salida de split. Instale filtro en línea entre sistema neumático y el inyector.

Elución incompleta de muestra anterior.

Aumente temperatura final de programa de horno o tiempo total de ciclo. Aumente caudal de columna.

Page 280: Trace 1300 1310 Userguide Es

15 Solución de problemas analíticosInvestigación de problemas de picos

246 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Forma irregular Forma de silla Inundación de disolvente en columna. Aumente temperatura inicial de horno.

Picos negativosTodos Cables de integrador invertidos. Compruebe las conexiones.

Algunos El síntoma puede ser normal.

Sin picos

Tras pico de solvente

Caudal de gas portador excesivo. Reduzca el caudal de gas portador.

Caudal de gas de combustión incorrecto.

Revise el caudal de gas de combustión.

Detector contaminado. Realice acondicionamiento a elevada temperatura o limpie el detector.

Llama de FID apagada por pico de disolvente.

Compruebe temperatura de detector.

Inyección de muestra excesiva. Inyecte menos muestra.

Posición de columna en inyector SSL incorrecta (demasiado alta).

Compruebe posición de columna.

En ningún caso

Aguja de jeringa obturada. Repare o sustituya la jeringa.

Columna rota o desconectada. Compruebe la columna y sus conexiones.

Electrómetro o amplificador defectuosos.

Sustituya el electrómetro o el amplificador.

Aparato registrador defectuoso. Sustituya el aparato registrador.

Llama de FID apagada. Encienda la llama.

Conexión eléctrica defectuosa o inexistente.

Revise las conexiones de cables.

Posición de columna en inyector SSL incorrecta (demasiado alta).

Compruebe posición de columna.

Distorsión en cola

Picos de muestra

Actividad causada por degradación de columna.

Inyecte mezcla de prueba y evalúe la columna.

Temperatura de columna/horno insuficiente.

Aumente temperatura de columna/horno. No supere la temperatura máxima recomendada para la fase estacionaria.

Liner sucio. Limpie el liner o sustitúyalo.

Picos de muestra

Actividad causada por lana de vidrio o liner.

Sustituya por lana nueva silanizada y liner limpio.

Temperatura de inyector insuficiente. Aumente la temperatura de inyector.

Conexiones de columna en mal estado u obturadas.

Reajuste conexión de inyector con columna.

Fase estacionaria errónea. Sustituya la columna según la documentación del fabricante.

Tabla 66. Solución de problemas de picos en los datos (Hoja 2 de 3)

Comportamiento Característica Causa Solución

Page 281: Trace 1300 1310 Userguide Es

15 Solución de problemas analíticosInvestigación de problemas de picos

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 247

Distorsión en cola Pico de disolvente

Posición de columna incorrecta en inyector.

Vuelva a instalar la columna.

Temperatura inicial de horno excesiva (On Column).

Reduzca temperatura inicial de horno.

Caudal de purga de septum insuficiente y/o caudal de split insuficiente.

Revise y ajuste caudales de purga de septum y split.

Picos sin resolver General

Caudal de gas portador excesivo. Reduzca caudal de gas portador.

Columna deteriorada. Sustituya la columna.

Temperatura de columna excesiva. Reduzca temperatura de columna/horno.

Columna muy corta. Utilice una columna más larga.

Elección de columna incorrecta. Instale una columna adecuada.

Técnica de inyección inadecuada. Elija una técnica de inyección correcta.

Tabla 66. Solución de problemas de picos en los datos (Hoja 3 de 3)

Comportamiento Característica Causa Solución

Page 282: Trace 1300 1310 Userguide Es

15 Solución de problemas analíticosInvestigación de problemas de resultados

248 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Investigación de problemas de resultadosTabla 67. Solución de problemas de resultados en los datos (Hoja 1 de 2)

Comportamiento Característica Causa Solución

Reproducibilidad baja de área de picos

General

Concentración incompatible con rango dinámico de sistema de detección.

Compruebe que la concentración de muestra es apta para el sistema de detección.

Técnica de inyección inadecuada. Elija otra técnica de inyección.

Parámetros de inyección inadecuados. Compruebe la temperatura de inyección y los caudales.

Técnica de inyección de muestra no reproducible.

Evalúe las secuencias de preparación de muestra. Compare los resultados con una serie de inyecciones de patrón.

Fuga en jeringa o septum. Revise y sustituya la jeringa y el septum a intervalos periódicos.

Fugas en inyección. Compruebe la columna y sus conexiones. Realice una comprobación de fugas.

Técnica de inyección defectuosa. Mida con cuidado la cantidad inyectada. Utilice una jeringa limpia y de buena calidad.

Control de caudal o relación de split defectuosa.

Monitorice el caudal. Sustituya el filtro en línea.

Baja sensibilidad

Con mayor tiempo de retención

Caudal de gas portador insuficiente. Aumente el caudal de gas portador. Localice y elimine posibles obstrucciones de la línea de gas portador. Revise férulas de inyector/columna.

Con tiempo de retención normal

Fugas en línea de gas portador de GC. Realice comprobación de fugas y solucione posibles fugas.

Fugas en jeringa durante la inyección. Sustituya juntas de jeringa y émbolo, si es preciso.

Temperatura de inyección en split insuficiente.

Aumente temperatura de inyector.

Page 283: Trace 1300 1310 Userguide Es

15 Solución de problemas analíticosSolución de problemas analíticos de SSL

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 249

Solución de problemas analíticos de SSL• Los problemas de baja sensibilidad suelen deberse a condiciones de funcionamiento

incorrectas. Su origen también puede estar en un liner sucio o de dimensiones incorrectas para el volumen de muestra inyectado.

La falta de sensibilidad con los compuestos seleccionados puede estar relacionada con fenómenos de discriminación inducidos por unas condiciones de inyección inadecuadas.

• La posible discriminación de la fracción pesada o volátil de la muestra puede deberse a un ajuste incorrecto de las condiciones operativas con respecto al modo de inyección elegido. La discriminación también puede deberse a:

– degradación de los compuestos de mayor labilidad térmica por el efecto catalítico de la lana de cuarzo mal desactivada en el liner.

– subproductos originados en inyecciones previas que no se eliminaron por completo del liner durante la fase de limpieza o la secuencia operativa de limpieza.

A continuación se ofrece una lista de posibles síntomas, causas más probables y soluciones propuestas durante el empleo de inyectores SSL.

Tiempos de retención

Disminución

Fase estacionaria deteriorada por presencia de oxígeno y/o agua.

Utilice gas portador libre de oxígeno y agua.

Pérdida de fase estacionaria por sangrado de columna.

Reduzca la temperatura de la columna.

Incremento

Fuga de gas portador en aumento. Compruebe conexiones de septum y columna.

Suministro de gas portador a punto de agotarse.

Sustituya la botella.

Baja reproducibilidad

Controlador neumático errático o inestable.

Monitorice la presión o el caudal de la columna.

Revise y sustituya el controlador si es preciso.

Técnica de inyección defectuosa. Inicie el ciclo en un tiempo consistente tras la inyección.

Tamaño de muestra excesivo. Reduzca la cantidad o el volumen inyectado.

Temperatura de columna inestable. Compruebe puerta delantera y deflector de refrigeración.

Monitorice la temperatura de la columna.

Tabla 67. Solución de problemas de resultados en los datos (Hoja 2 de 2)

Comportamiento Característica Causa Solución

Page 284: Trace 1300 1310 Userguide Es

15 Solución de problemas analíticosSolución de problemas analíticos de PTV y PTVBKF

250 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Discriminación de compuestos pesados en modo splitless.

Discriminación de compuestos volátiles en modo splitless.

Discriminación en modo split.

Solución de problemas analíticos de PTV y PTVBKF• Los problemas de baja sensibilidad suelen deberse a condiciones de funcionamiento

incorrectas. Su origen también puede estar en un liner sucio o de dimensiones incorrectas para el volumen de muestra inyectado. La falta de sensibilidad con los compuestos seleccionados puede estar relacionada con fenómenos de discriminación inducidos por unas condiciones de inyección inadecuadas.

• La posible discriminación de la fracción pesada o volátil de la muestra puede deberse a un ajuste incorrecto de las condiciones operativas con respecto al modo de inyección elegido. La discriminación también puede deberse a:

– degradación de los compuestos de mayor labilidad térmica por el efecto catalítico de la lana de cuarzo mal desactivada en el liner.

Causa posible Solución posible

Tiempo de splitless demasiado corto. Ajuste el tiempo de splitless a un valor más alto.

Temperatura inicial excesiva con respecto al punto de ebullición del solvente.

Ajuste la temperatura del inyector con un valor más cercano al punto de ebullición del solvente.

Inundación del liner por exceso de volumen inyectado. Reduzca la cantidad de muestra inyectada. Sustituya el liner por otro de diámetro adecuado.

Inundación del liner por tamaño insuficiente. Sustituya el liner por otro de mayor diámetro.

Liner sucio. Limpie el liner o sustitúyalo.

Liner no adecuado para el tipo de muestra. Sustituya el liner por otro adecuado. La reducción del diámetro del liner puede mejorar la transferencia de muestra.

Causa posible Solución posible

Temperatura inicial excesiva. Ajuste la temperatura del inyector con un valor más bajo.

Diámetro de liner insuficiente. Sustituya el liner por otro de mayor diámetro.

Los compuestos volátiles se eliminan a través de la línea de purga. Ajuste el tiempo de purga con un valor que se corresponda con el tiempo de splitless.

Causa posible Solución posible

Temperatura inicial insuficiente. Ajuste la temperatura del inyector con un valor más alto.

Diámetro de liner excesivo. Sustituya el liner por otro de menor diámetro.

Page 285: Trace 1300 1310 Userguide Es

15 Solución de problemas analíticosSolución de problemas analíticos de PTV y PTVBKF

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 251

– subproductos originados en inyecciones previas que no se eliminaron por completo del liner durante la fase de limpieza o la secuencia operativa de limpieza.

A continuación se ofrece una lista de posibles síntomas, causas más probables y soluciones propuestas durante el empleo de inyectores PTV.

Discriminación de compuestos pesados en modo splitless.

Discriminación de compuestos volátiles.

Causa posible Solución posible

Tiempo de splitless demasiado corto. Ajuste el tiempo de splitless con un valor más alto.

Temperatura inicial excesiva con respecto al punto de ebullición del solvente.

Ajuste la temperatura del inyector con un valor más cercano al punto de ebullición del solvente.

Temperatura de transferencia insuficiente. Ajuste la temperatura con un valor más alto.

Tiempo de transferencia insuficiente. Ajuste el tiempo de transferencia o el de limpieza con un valor más cercano al tiempo total de ciclo de GC.

Inundación del liner por exceso de volumen inyectado. Reduzca la cantidad de muestra inyectada. Sustituya el liner por otro de diámetro adecuado.

Inundación del liner por tamaño insuficiente. Sustituya el liner por otro de mayor diámetro.

Liner sucio. Limpie el liner o sustitúyalo.

Liner no adecuado para el tipo de muestra. Sustituya el liner por otro adecuado. La reducción del diámetro del liner puede mejorar la transferencia de muestra.

La lana de cuarzo provoca una retención excesiva de compuestos de peso molecular alto.

Sustituya el liner empaquetado por uno nuevo relleno de lana de cuarzo. Sustituya el liner empaquetado por uno sin empaquetamiento.

Causa posible Solución posible

Velocidad de inyección insuficiente. Ajuste la velocidad de inyección con un valor más alto.

Temperatura inicial excesiva. Ajuste la temperatura de inyección con un valor más bajo.

Caudal de split excesivo. Reduzca el caudal de split.

Falta de relleno adecuado de lana de cuarzo en el interior del liner. Fije el relleno de lana de cuarzo en el interior del liner. Sustituya el liner por otro relleno con lana de cuarzo.

Page 286: Trace 1300 1310 Userguide Es

15 Solución de problemas analíticosSolución de problemas analíticos de PTV y PTVBKF

252 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Discriminación de compuestos volátiles en modo splitless.

Discriminación de compuestos volátiles en modo de grandes volúmenes.

Discriminación en modo split.

Ensanchamiento excesivo del pico de solvente.

Pérdida de compuestos volátiles.

Causa posible Solución posible

Temperatura inicial excesiva. Ajuste la temperatura del inyector con un valor más bajo.

Diámetro de liner insuficiente. Sustituya el liner por otro de mayor diámetro.

Los compuestos volátiles se eliminan a través de la línea de purga. Ajuste el tiempo de purga con un valor que se corresponda con el tiempo de splitless.

Causa posible Solución posible

Temperatura inicial excesiva. Ajuste la temperatura del inyector con un valor más bajo.

El tiempo de inyección y el de evaporación ajustados superan el tiempo requerido para la eliminación de solvente.

Ajuste el tiempo de inyección y el de evaporación con los valores adecuados.

Caudal de split excesivo. Ajuste el caudal de split con un valor más bajo.

Falta de relleno adecuado de lana de cuarzo en el interior del liner. Inserte lana de cuarzo en el liner.

Causa posible Solución posible

Temperatura de transferencia insuficiente. Ajuste la temperatura con un valor más alto.

Tiempo de transferencia insuficiente. Ajuste el tiempo de transferencia o el de limpieza con un valor más cercano al tiempo total de ciclo de GC.

Temperatura inicial insuficiente. Ajuste la temperatura del inyector con un valor más alto.

Volumen inyectado excesivo. Reduzca la cantidad de muestra inyectada. Sustituya el liner por la versión de 2 mm de DI.

Causa posible Solución posible

Presión de inyección excesiva. Ajuste la presión de inyección con un valor más bajo.

Causa posible Solución posible

Presión de inyección excesiva. Ajuste la presión de inyección con un valor más bajo.

Page 287: Trace 1300 1310 Userguide Es

15 Solución de problemas analíticosSolución de problemas analíticos de PTV y PTVBKF

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 253

Falta de sensibilidad.

Degradación de muestra.

Mala reproducibilidad de resultados.

Solución de problemas analíticos con backflush.

Causa posible Solución posible

Presión de inyección excesiva. Ajuste la presión de inyección con un valor más bajo.

Causa posible Solución posible

Liner sucio. Limpie el liner o sustitúyalo.

Temperatura de transferencia excesiva. Ajuste la temperatura con un valor adecuado a la naturaleza de los compuestos de la muestra.

Diámetro de liner excesivo. Sustituya el liner por otro de menor diámetro para mejorar la eficiencia de la transferencia.

Degradación catalítica y térmica de compuestos sensibles a causa de la lana de cuarzo del interior del liner.

Utilice un liner empaquetado nuevo. Si el síntoma no desaparece, utilice un liner vacío.

Causa posible Solución posible

Temperatura de transferencia insuficiente. Ajuste la temperatura con un valor más alto.

Tiempo de transferencia insuficiente. Ajuste el tiempo de transferencia o el de limpieza con un valor más cercano al tiempo total de ciclo de GC.

Velocidad de inyección excesiva. Reduzca la velocidad de inyección.

Volumen inyectado excesivo. Reduzca la cantidad de muestra inyectada.

Temperatura inicial insuficiente. Ajuste la temperatura de inyección con un valor más alto.

Presión de inyección excesiva. Ajuste la presión de inyección con un valor más bajo.

Falta de relleno adecuado de lana de cuarzo en el interior del liner. Fije el relleno de lana de cuarzo en el interior del liner. Sustituya el liner por otro relleno con lana de cuarzo.

Diagnóstico Causa posible Solución posible

Picos con colas.

Precolumna contaminada. Verifique la precolumna. Sustituya la precolumna.

Fugas en conexiones de precolumna. Localice y rectifique posibles fugas.

Page 288: Trace 1300 1310 Userguide Es

15 Solución de problemas analíticosSolución de problemas analíticos de FID

254 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Solución de problemas analíticos de FID• Cambio de sensibilidad: La sensibilidad del detector de ionización de llama depende del

caudal del gas portador y los gases del detector, así como de la temperatura del detector.

Si se aprecia un aumento de ruido o una pérdida de sensibilidad en el detector FID, compruebe que la pureza de los gases es correcta y revise trampas y filtros de las líneas de suministro de gas. Limpie el electrodo colector y/o el jet que pueda estar sucio. Sustitúyalos si es preciso.

• Gases: El caudal de gas portador depende del tipo de gas empleado y del tipo y diámetro de la columna capilar instalada.

El caudal de hidrógeno se ha optimizado de forma experimental para alcanzar un rendimiento analítico óptimo del detector FID. Los caudales inadecuados de hidrógeno y gas makeup reducen la sensibilidad del FID. El caudal de aire es menos crítico que el de hidrógeno. Un exceso de aire desestabiliza la llama y generará ruido y un posible apagado. Un caudal de aire insuficiente reduce la sensibilidad del detector.

• Contaminación: En aplicaciones de sensibilidad elevada, es fundamental eliminar toda traza de contaminación orgánica del sistema cromatográfico y de las líneas de gas del detector. Dicha contaminación puede causar picos fantasma en el cromatograma o, con más frecuencia, inestabilidad de la línea base.

No eliminación de compuestos pesados.

Inicio de backflush demasiado tardío a causa de un tiempo de transferencia excesivo.

Reduzca la duración del tiempo de transferencia.

Temperatura de horno de columna excesiva. Reduzca la temperatura del horno de columna.

Caudal de limpieza o tiempo de limpieza insuficiente.

Aumente el caudal, el tiempo o la temperatura de limpieza.

Presencia de picos fantasma en el ciclo siguiente.

Temperatura final de horno de columna insuficiente.

Aumente temperatura final de horno de columna.

Exceso de solvente en dicolumna durante ciclo PTV de grandes volúmenes.

Backflush no activado, tiempo de transferencia o tiempo de evaporación incorrectos.

Active el backflush. Ajuste un tiempo suficiente.

Caudal de salida de ventilación insuficiente para el disolvente empleado.

Optimice la temperatura del inyector y el caudal de salida de ventilación.

Transferencia incompleta de muestra a la columna.

Tiempo de splitless insuficiente. Aumente la duración del tiempo de splitless.

Diagnóstico Causa posible Solución posible

Nota Por lo general, el caudal de aire debe ser 10 veces superior al de hidrógeno para mantener la llama encendida.

Page 289: Trace 1300 1310 Userguide Es

15 Solución de problemas analíticosSolución de problemas analíticos de NPD

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 255

• Condensación: Es el resultado de la formación de vapor de agua en el proceso de combustión de la llama. La temperatura del detector debe coincidir, por lo general, con el límite superior de la columna empleada. Para evitar la contaminación y la posible oxidación, no trabaje con valores de temperatura inferiores a 150 °C.

• Ignición de llama: Puede encender la llama tan pronto como el detector alcance los 150 °C. Una vez que la llama parezca haberse encendido, debería leerse una señal > 1,5 pA.

A continuación se indican las posibles causas de problemas con la ignición de la llama, así como las soluciones oportunas.

Problemas de ignición de llama.

Solución de problemas analíticos de NPDLas causas principales de cambios en la sensibilidad tienen relación con la fuente termoiónica. Su agotamiento gradual causa una pérdida de sensibilidad que puede compensarse con el incremento de la corriente de la fuente. Tenga presente que el incremento de la corriente acortará la vida de la fuente. La pérdida de sensibilidad también se relaciona con la contaminación de la fuente, debida a la presencia de compuestos con punto de ebullición elevado que no se eliminan por completo.

Sugerencia Si tiene dudas sobre la ignición de la llama, compruebe la posible presencia de vapor de agua condensado en un espejo o en el extremo pulido de alguna herramienta, colocados directamente sobre la salida del detector FID. Debe apreciarse condensación de vapor en la superficie fría. De lo contrario, la llama no está encendida.

PRECAUCIÓN No se incline sobre el detector para tratar de observar la llama, puesto que es invisible.

Causa posible Solución posible

Caudales de gas incorrectos. Asegúrese de que los caudales son correctos; mida los caudales de hidrógeno, aire y gas make-up.

Ignitor defectuoso. Revise el elemento de encendido.

Jet de llama roto o agrietado. Sustituya el jet.

Punta de jet bloqueada. Para verificar el posible bloqueo del jet, mida el caudal de hidrógeno con un caudalímetro. Si es preciso, desmonte el jet y límpielo.

Electrónica defectuosa. Póngase en contacto con el servicio de asistencia al cliente de Thermo Fisher Scientific.

Contaminación. Limpie el detector. Si el problema persiste tras la limpieza, póngase en contacto con la organización de asistencia al cliente de Thermo Fisher Scientific.

Page 290: Trace 1300 1310 Userguide Es

15 Solución de problemas analíticosSolución de problemas analíticos de NPD

256 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

Los cambios de temperatura del detector también pueden reducir la sensibilidad. A continuación se ofrece una lista de posibles síntomas, causas más probables y soluciones propuestas durante el empleo de detectores NPD.

Sin respuesta de NPD.

Respuesta de NPD inferior a la prevista.

Nivel de fondo alto.

Respuesta de tipo FID para disolvente y otros compuestos con base de carbono.

Causa posible Solución posible

Corriente de calentamiento de fuente insuficiente. Aumente la corriente de calentamiento.

Sin caudal de hidrógeno. Active el caudal de hidrógeno y ajuste un valor adecuado.

Sin caudal de aire. Active el caudal de aire y ajuste un valor adecuado.

Fuente apagada. Encienda la fuente.

Fuente defectuosa. Sustituya la fuente.

Causa posible Solución posible

Temperatura de fuente baja. Compruebe la temperatura de la fuente y la corriente de calentamiento.

Contaminación de aire en línea de hidrógeno. Apague la fuente. Incremente la presión de hidrógeno durante 10-20 minutos para purgar la línea. Verifique la estanqueidad de la línea.

Causa posible Solución posible

Corriente de calentamiento excesiva. Ajuste el parámetro operativo con un valor correcto.

Caudal de hidrógeno excesivo. Ajuste el parámetro operativo con un valor correcto.

Caudal de aire o gas make-up insuficiente. Ajuste el parámetro operativo con un valor correcto.

Sangrado de columna excesivo. Realice acondicionamiento de la columna.

Causa posible Solución posible

Caudal de hidrógeno excesivo. Ajuste el caudal de hidrógeno con un valor más bajo.

Page 291: Trace 1300 1310 Userguide Es

15 Solución de problemas analíticosSolución de problemas analíticos de TCD

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 257

Efecto de apagado por disolvente.

Línea base inestable.

Bajo nivel de rechazo de carbono.

Solución de problemas analíticos de TCD• La sensibilidad está relacionada con la temperatura del detector (a mayor temperatura,

menor sensibilidad) y con el caudal de los gases portador, de referencia y make-up. Para obtener mayor sensibilidad, se puede aumentar la distancia entre la temperatura del cuerpo del detector TCD y la de los filamentos. La sensibilidad tiene una estrecha relación con el estado de los filamentos y sus condiciones operativas. Una reducción significativa de la sensibilidad del detector puede deberse a la contaminación de los filamentos, por la degradación de compuestos de alto peso molecular en la celda o por la contaminación de los gases. Los niveles de temperatura bajos del bloque detector pueden hacer que los compuestos con punto de ebullición alto se condensen en los filamentos, con la consiguiente reducción de la sensibilidad.

• Durante los programas de temperatura suele producirse una pequeña deriva de la línea base, que es normal y no supone ningún problema. Se debe a la reducción del caudal de gas portador a medida que aumenta la temperatura. Si la línea base supera su rango de forma repentina y se aprecia un incremento rápido de la señal, es posible que los filamentos estén rotos y deban sustituirse.

• Los picos negativos suelen ser consecuencia de la presencia en la muestra de componentes con una conductividad térmica superior a la del gas portador. Por ejemplo, si se utiliza nitrógeno o argón como gas portador, se obtienen picos negativos con helio, hidrógeno o metano.

A continuación se ofrece una lista de posibles síntomas, causas más probables y soluciones propuestas durante el empleo de detectores TCD.

Alteración de línea base a elevados valores negativos con la elución del disolvente, sin retorno a línea base original.

Causa posible Solución posible

Corriente de calentamiento insuficiente. Aumente ligeramente la corriente de calentamiento de la fuente.

Causa posible Solución posible

Nivel de corriente de fondo excesivo. Reduzca el valor de corriente de calentamiento de la fuente.

Fluctuación de caudal de hidrógeno. Revise reguladores de presión de línea de hidrógeno.

Causa posible Solución posible

Caudal de hidrógeno excesivo. Reduzca el caudal de hidrógeno a las condiciones operativas adecuadas.

Page 292: Trace 1300 1310 Userguide Es

15 Solución de problemas analíticosSolución de problemas analíticos de TCD

258 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

TCD no funciona.

Fluctuación de línea base.

Deriva de línea base.

Sensibilidad baja.

Causa posible Solución posible

Filamento apagado. Ausencia de gas portador o make-up, o bien presión insuficiente. Verifique la alimentación de gas portador, make-up y de referencia.

Filamento roto. Póngase en contacto con el servicio de atención al cliente.

Causa posible Solución posible

Regulación inestable de caudal de gases. Compruebe el correcto funcionamiento de los controladores de gas portador y make-up.

Fugas en líneas de gas. Compruebe que las conexiones de gas portador y make-up están bien apretadas.

Presión de entrada de gases insuficiente. Ajuste la presión del gas portador y make-up con un valor adecuado.

Mala regulación de temperatura. Póngase en contacto con el servicio de atención al cliente.

Causa posible Solución posible

Regulación inestable de caudal de gases. Compruebe el correcto funcionamiento de los controladores de gas portador, de referencia y make-up.

Fugas en líneas de gas. Compruebe que las conexiones de gas portador, de referencia y make-up están bien apretadas.

Acondicionamiento de columna no realizado correctamente. Vuelva a acondicionar la columna según las instrucciones del fabricante.

Sangrado de septum del inyector. Compruebe que la temperatura operativa del septum es la adecuada. Sustituya el septum, si es necesario.

Control de temperatura incorrecto. Póngase en contacto con el servicio de atención al cliente.

Causa posible Solución posible

Fugas en líneas de gas. Compruebe que las conexiones de gas portador, de referencia y make-up están bien apretadas.

Fuga a causa del desgaste del septum. Sustituya el septum.

Condiciones operativas del detector mal ajustadas. Optimice los parámetros de funcionamiento del detector de acuerdo con el modo operativo adecuado (tensión constante, temperatura constante).

Conductividad térmica del gas portador demasiado cercana a la de uno de los compuestos analizados.

Utilice otro tipo de gas portador.

Page 293: Trace 1300 1310 Userguide Es

15 Solución de problemas analíticosSolución de problemas analíticos de ECD

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 259

Solución de problemas analíticos de ECDA continuación se ofrece una lista de posibles síntomas, causas más probables y soluciones propuestas durante el empleo de detectores ECD.

Frecuencia alta de línea base.

Caídas negativas tras los picos.

Deriva de línea base con cambio de tensión de pulso.

Filamentos contaminados. Para eliminar la contaminación, realice un acondicionamiento a temperatura de los filamentos durante una hora a una temperatura superior a la del punto de ebullición del compuesto menos volátil. Repita el acondicionamiento a temperatura, si es necesario. Si el síntoma no desaparece, Póngase en contacto con el servicio de atención al cliente.

Filamentos oxidados. Póngase en contacto con el servicio de atención al cliente.

Causa posible Solución posible

Causa posible Solución posible

Impurezas en suministro de gas. Utilice gases de alta pureza, así como filtros para retener humedad y oxígeno.

Caudal de gas make-up inexistente o insuficiente. Aumente el caudal de gas make-up.

Sangrado de columna excesivo. Se requiere acondicionamiento de columna.

Fugas en líneas de gas portador o make-up. Realice una comprobación de fugas.

Contaminación química en electrodo colector. Limpie el electrodo colector.

Contaminación química en fuente radiactiva. Póngase en contacto con el servicio de atención al cliente.

Anchura de pulso mal ajustada. Ajuste la anchura de pulso a 1,0 μs para nitrógeno y 0,1 μs para Ar/CH4.

Causa posible Solución posible

Contaminación química en electrodo colector. Limpie el electrodo colector.

Contaminación química en fuente radiactiva. Póngase en contacto con el servicio de atención al cliente.

Causa posible Solución posible

Contaminación química en electrodo colector. Limpie el electrodo colector.

Page 294: Trace 1300 1310 Userguide Es
Page 295: Trace 1300 1310 Userguide Es

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 261

A

Abreviaturas

En este apartado se enumeran y explican algunos términos empleados en la guía. También incluye siglas, prefijos métricos, símbolos y abreviaturas.

A

A amperio

ADC convertidor analógico-digital

B

b bit

B byte (8 b)

C

C carbono

°C grado centígrado (Celsius)

CA corriente alterna

CC corriente continua

CDS sistema de datos cromatográficos

CIP porte y seguro pagado hasta

cm centímetro

corriente de fuente corriente eléctrica necesaria para encender una fuente, como la lámpara de un detector.

CPU unidad central de procesamiento (de un ordenador)

<Ctrl> tecla Control del teclado

curva de caída consulte pico de intensidad.

D

d profundidad

DAC convertidor digital-analógico

distorsión armónica perturbación de alta frecuencia que aparece como distorsión de la onda sinusoidal fundamental.

DS sistema de datos

E

ECD detector de captura de electrones

EMC (o CEM) compatibilidad electromagnética

E/S entrada/salida

ESD descarga electrostática

F

f femto

°F grado Fahrenheit

FID detector de ionización de llama

FOB franco a bordo

FSE ingeniero de servicio

ft pie

A B C D E F G H I J K L M N O P Q R S T V V W X Y Z

Page 296: Trace 1300 1310 Userguide Es

Glosario g

262 Guía del usuario de TRACE 1300 y TRACE 1310 Thermo Scientific

G

g gramo

GC cromatografía de gases; cromatógrafo de gases

GND masa eléctrica (tierra)

H

h altura

h hora

H hidrógeno

He helio

HV alto voltaje

Hz hercio (ciclos por segundo)

I

ID diámetro interno

IEC International Electrotechnical Commission (Comisión Electrotécnica Internacional)

impulso consulte transitorio.

<Intro> tecla <Intro> o (<Retorno>) del teclado

K

k kilo (103 o 1024)

K grado Kelvin

kg kilogramo

kPa kilopascal

L

l longitud

l litro

LAN red de área local

lb. libra

LED diodo emisor de luz

M

m metro (o mili [10-3])

M mega (106)

μ micro (10-6)

MBq megabecquerel

Ci milicurio

min minuto

ml mililitro

mm milímetro

MS espectrometría de masas; espectrómetro de masas

N

n nano (10-9)

N nitrógeno

nº ref. número de referencia, número de pieza

nm nanómetro

NPD detector de nitrógeno-fósforo

Page 297: Trace 1300 1310 Userguide Es

Glosario OD

Thermo Scientific Guía del usuario de TRACE 1300 y TRACE 1310 263

O

OD diámetro externo

Ω ohmio

P

p pico (10-12)

Pa pascal

PCB placa de circuito impreso

pico de intensidad cambio repentino en la tensión eficaz (RMS) media, con duraciones habituales entre 50 μs y 2 s.

polaridad negativa inversión de la polaridad de la señal de un detector.

promedio lento cambio gradual a largo plazo en la tensión eficaz (RMS) media, con duraciones habituales superiores a 2 s.

psi libras por pulgada cuadrada

PTV inyector de evaporación de temperatura programable

PTVBKF inyector de evaporación de temperatura programable con backflush

pulg. pulgada

R

RAM memoria de acceso aleatorio

RF radiofrecuencia

ROM memoria de sólo lectura

RS-232 norma industrial de comunicación serie

S

s segundo

SOP procedimiento normalizado de trabajo

S/SL inyector Split/Splitless

T

TCD detector de conductividad térmica

transitorio (electricidad) breve pico de tensión, que puede alcanzar varios miles de voltios, con una duración inferior a 50 μs.

V

V voltio

VCA voltios de corriente alterna

VCC voltios de corriente continua

velocidad en baudios velocidad de transmisión de datos en eventos por segundo

VGA siglas de Video Graphics Array, formato de vídeo

W

w anchura

W vatio

Si una unidad de medida tiene un cociente (por ejemplo, grados centígrados por minuto o gramos por litro), los vatios pueden escribirse como exponente negativo en lugar de denominador.

Por ejemplo:°C min-1 en lugar de °C/min g l-1 en lugar de g/l

Page 298: Trace 1300 1310 Userguide Es