TOPOGRAFIA UTFSM Taller3[1].02

28
Indice Introducción Objetivos Descripción de instrumentos Descripción del terreno Descripción del método Procedimiento Cálculos y resultados Conclusiones 1

Transcript of TOPOGRAFIA UTFSM Taller3[1].02

Page 1: TOPOGRAFIA UTFSM Taller3[1].02

Indice

Introducción

Objetivos

Descripción de instrumentos

Descripción del terreno

Descripción del método

Procedimiento

Cálculos y resultados

Conclusiones

1

Page 2: TOPOGRAFIA UTFSM Taller3[1].02

Introducción

Este informe y taller realizados tienen como propósito el de dar a conocer

un método y su procedimiento a través del cual se puede llevar a cabo un

levantamiento topográfico planimétrico, en este caso, en uno de los patios de

nuestra Universidad.

El método es el de Levantamiento mediante Radiación con mira topográfica,

al cual le antecede el de Radiación con mira, llevado a cabo en el taller anterior y

tratado previamente en el Informe nr.2.

Cualquier método ocupado en un levantamiento topográfico tiene un

propósito similar, básicamente se trata de representar lo más fielmente posible un

terreno. En este informe, además de profundizar en el desarrollo del método antes

enunciado, se llevará a cabo una comparación entre el desempeño del método de

radiación con huincha y con mira, respectivamente.

Es necesario mencionar que este taller fue realizado tomando en cuenta

todo lo aprendido en la cátedra y usando el trabajo en grupo junto con la ayuda de

nuestro ayudante.

2

Page 3: TOPOGRAFIA UTFSM Taller3[1].02

Objetivos

En primera instancia, lo más importante en el taller es tener un

aprendizaje a nivel práctico de los procedimientos a seguir para

llevar a cabo una buena medición y posterior representación del

terreno aprendidos en cátedra a nivel teórico.

Tomar mediciones en un terreno especifico, para luego lograr

bosquejar un plano de éste y así representar su topografía de

acuerdo a los conocimientos que tenemos.

Experimentar y comprobar el funcionamiento de los instrumentos que

hacen posible este taller como lo son trípode, nivel, mira topográfica,

entre otros en terreno.

Tener en cuenta que el buen manejo de los instrumentos y un buen

trabajo logran reducir los inevitables errores que existen en los

trabajos en terreno.

Conocer las principales ventajas y desventajas que tiene el método a

usar.

Luego resulta importante comparar el desempeño de distintos

métodos (el de radiación con huincha y con mira topográfica,

respectivamente) usados para llevar a cabo un levantamiento

topográfico planimétrico en el mismo terreno (véase descripción de terreno)

Mejorar el trabajo en grupo para así obtener una mayor eficiencia

(tiempo y ejecución sin errores) en el taller.

3

Page 4: TOPOGRAFIA UTFSM Taller3[1].02

Descripción de los instrumentos

En este taller se ocuparon diversos instrumentos para hacer las mediciones, los

cuales se detallan a continuación:

Nivel topográfico utilizado WILD NK2 ( no automático):

El nivel es un anteojo formado por un sistema de lentes que permiten

obtener una vista cercana de lo que está enfocado. Es necesario acotar que el

nivel utilizado por nuestro grupo no corresponde exactamente a de la fotografía,

pero si resulta útil presentarla puesto que el nivel usado es de orden similar.

4

Ocular

Tornillo de tangencia

Burbuja de aire

Tornillos nivelantes

Limbo

Objetivo

Tornillo de enfoque

Page 5: TOPOGRAFIA UTFSM Taller3[1].02

El nivel se compone de los siguientes elementos

Trípode con sistema de nivelación y fijación.

Sistema de tornillos nivelantes.

Sistema de fijación y tangencia.

Anteojo topográfico.

Burbuja de Aire.

Sistema manual de nivelación angular.

El sistema de nivelación del instrumento se compone de dos partes:

Por medio de tornillos ubicados en cada una de las patas del trípode.

Por medio de los tornillos nivelantes que se localizan en la base del

instrumento.

El sistema de fijación entre el nivel y el trípode se ubica en la base de este,

actuando por medio de un tornillo que se inserta al instrumento (macho) .

El sistema de tangencia funciona gracias al tornillo que se ubica en la parte

delantera del instrumento y tiene la función de hacer girar el instrumento alrededor

de su eje vertical de rotación (parte geométrica del nivel)

El sistema de montantes donde se encuentran las siguientes partes:

Objetivo: Es el lente por donde ingrese la imagen.

Ocular: Es el lente más pequeño que se ubica en el lado

opuesto del objetivo.

Retículo: Por medio de este retículo se pueden distinguir los hilos

horizontal y vertical y en forma equidistante del hilo horizontal se

encuentran la estadía superior y la estadía inferior a partir de las cuales

el observador obtiene las mediciones.

5

Page 6: TOPOGRAFIA UTFSM Taller3[1].02

Para poder lograr que al eje horizontal sea perpendicular al eje vertical de

rotación, la burbuja de aire ubicada en el instrumento debe permanecer centrada

para mantener el nivel nivelado.

El sistema de ajuste se refiere a todos los tornillos del instrumento que

tienen la función de mejorar la visión de la mira.

Trípode

Instrumento sobre el cual se instala el nivel. Se conforma de tres patas

telescópicas cada una con su tornillo respectivo de fijación. Su base es

completamente plana y posee un perno que permite la fijación del instrumento y

que también permite un movimiento angular. En cada extremo de las patas se

encuentran las puntas metálicas, llamadas regatones, cuya función es enterrarse

para darle mayor estabilidad y seguridad al instrumento que esta sobre la base.

Normalmente son de madera o aluminio, y tienen un peso (aproximado) de 750

gramos.

Mira topográfica

6

Base del trípode

Page 7: TOPOGRAFIA UTFSM Taller3[1].02

Esta es una regla de cuatro metros de largo, con ocho centímetros de

ancho, posee tres seguros de fijación, es articulada para poder plegarla y así

facilitar su traslado. La mira esta graduada en decímetros y a su vez cada

decímetro graduado en centímetros. Cada 5 centímetros se diferencian por una

especie de peineta de color negro o rojo y los siguientes 5 centímetros están

marcados por otra peineta pero en sentido inverso y de color distinto. La mira es

de madera por lo cual posee un peso adecuado para su manejo y transporte.

Descripción del terreno

7

Page 8: TOPOGRAFIA UTFSM Taller3[1].02

El patio estudiado esta ubicado entre la fachada noreste del edificio B, la pared noroeste del edificio A (donde se encuentran accesos al aula magna), la fachada sureste de la biblioteca, finalmente delimitado por la cara sureste del mismo edificio A. Todos estos imponentes edificios de entre, aproximadamente , 8 y 13 metros de altura, pertenecientes a la Casa Central de la Universidad Técnica Federico Santa María.

En general, se trata de un recinto constituido básicamente por pasillos y

jardineras ( 4 jardineras en total). Las jardineras son de pasto y con una pequeña arborización, excepto el jardín ubicado bajo la escalera de la aula magna, donde existe una especie de enredadera y una vegetación bastante mas abundante.

Una de las jardineras, la descrita como J1 en cartera, es la que predomina por su tamaño sobre las otras y formaría la gran plataforma para comprender la envergadura del sitio. Un poco levantada (20 cm en promedio) sobre el nivel de las baldosas de asfalto que la delimitan como pasillos peatonales, fue el lugar preciso donde en su centro se ubicó la estación uno, desde la cual se abarcó todo el terreno.

El terreno no presenta más desniveles que el previamente descrito y se caracteriza por no contener elementos que se alcen por sobre el nivel de los hombros, a excepción de los árboles ubicados en los planos confeccionados en oficina y la gran escalera que parte desde la jardinera 4 hacia el segundo piso del edificio B.

8

Page 9: TOPOGRAFIA UTFSM Taller3[1].02

Los accesos del aula magna se encuentran techados y esta cubierta esta suspendida sobre una hilera de pilares simétricos que se lee como la continuación desfazada de la fachada noroeste del edificio A, previamente descrita como límite del terreno a medir.

Procedimiento

9

Page 10: TOPOGRAFIA UTFSM Taller3[1].02

Una vez que el grupo estaba en el lugar del levantamiento, se procedió a

distribuir las labores del día. Estas fueron:

Una persona a cargo de operar el nivel, quien debe leer y estimar las

mediciones que marca el hilo superior y el inferior sobre la mira.

Dos personas sosteniendo las miras. Estas personas deben estar en

contacto con el operador, ya que deben concordar que la mira este

paralela a la línea de plomada. Para esto se debe bascular la mira y

alinear el hilo vertical del retículo con la línea que forma la “peineta”

de la mira.

Una persona encargada de la cartera y el croquis

Un encargado de realizar los cálculos de generador y distancia que

trabaja en conjunto con la cartera para obtener inmediatamente los

datos y anotarlos en esta.

Una vez que se repartieron las labores, el grupo discutió sobre los puntos

característicos, y sobre el lugar en que debía ir el instrumento. Esto tiene gran

importancia, ya que se debe elegir un punto desde el cual se puedan ver todos los

puntos característicos, o, en su defecto la mayor cantidad de ellos. Con esto se

ahorra tiempo y trabajo, al no tener que cambiar el nivel a cada rato. Cuando estos

puntos fueron ubicados, se definió el norte. Dicha elección fue totalmente

aleatoria, pero tratando de dirigirlo aproximadamente al utilizado para el taller de

radiación con huincha. Luego de esto se puso en cero el limbo (se calo) y se

comenzó la medición. Durante el proceso se discutió sobre los resultados

obtenidos durante el taller anterior. Pero una dificultad en la comparación fue que

no pudimos ubicarnos en el punto exacto de la única estación utilizada

anteriormente. Una vez finalizado, se discutió el resultado.

10

Page 11: TOPOGRAFIA UTFSM Taller3[1].02

Todos las anotaciones se registran en el croquis y en las respectivas

cartera. El croquis es similar al que se encuentra en la descripción del terreno,

mientras que la cartera usada es la que se muestra en la siguiente página.

Radiación por Estadimetría

Estación: es el lugar donde esta ubicado el nivel. En un levantamiento

puede haber mas de una. Aquí se indica desde cual se está

haciendo la medición.

Punto: punto al cual se le esta buscando su distancia y ángulo

horizontal.

Acimut: ángulo horizontal que existe entre el norte y el punto en

cuestión, medido hacia la derecha.

Estadía superior: aquí se anota la medida que marca la estadía superior

del retículo en la regla.

Estadía inferior: aquí se anota la medida que marca la estadía inferior del

retículo en la regla.

11

Retículo

Estadía superior

Hilo horizontal

Estadía inferior

Page 12: TOPOGRAFIA UTFSM Taller3[1].02

Generador: (G) es la diferencia entre la estadía superior y la inferior.

Distancia horizontal: (D.H.) es l distancia que existe entre el nivel y un

punto. Se calcula con la formula DH=A+G*K, explicada en la

siguiente sección.

Observaciones: aquí se anotan las observaciones que el grupo

encuentra en el terreno. Debe ser aclaradoras de todas las

“rarezas” que pudiese tener este, para así no tener que volver.

También se anota que es el punto (árbol, poste, solera, etc.).

En este trabajo no fue necesario efectuar muchos cálculos. Los únicos que

se realizaron fueron calcular el generador y la distancia horizontal. Quizás el único

otro cálculo fue el de la escala en los planos.

Como ya se vio, la formula para calcular la distancia horizontal es

DH=A+G*K, donde “A” es la constante analítica, “G” es el generador y “k” es la

constante estadimétrica. Normalmente, en los instrumentos modernos, a=0 y

K=100 (en nuestro caso fue así) .

Entonces, la cartera queda de la siguiente forma:

12

Page 13: TOPOGRAFIA UTFSM Taller3[1].02

Cartera Radiación (cálculos incluidos)

Punto Acimut(grad)

Estadía superior (m)

Estadía Inferior (m)

Generador Distancia=G* 100

Observaciones

1 8,50 1,662 1,624 0,038 3,80 Basurero

2 31,00 1,714 1,661 0,053 5,30 Vértice jardinera

3 131,95 1,745 1,570 0,175 17,5 Esquina absoluta

4 128,09 1,740 1,555 0,185 18,5 Basurero,vértice acceso

5 124,51 1,750 1,572 0,178 17,8 Pilar, acceso

6 139,48 1,784 1,620 0,165 16,5 Banca, esquinas

7 161,33 1,880 1,688 0,192 19,2 Banca, esquinas

8 170,35 1,905 1,650 0,255 25,5

9 174,89 1,840 1,665 0,175 17,5

10 171,88 1,840 1,640 0,200 20,0

11 159,75 1,792 1,603 0,189 18,9

12 169,00 1,856 1,630 0,226 22,6

13 152,19 1,788 1,600 0,188 18,8 J3 vértice

14 165,62 1,860 1,626 0,234 23,4 J3 vértice

15 165,30 1,910 1,652 0,258 25,8 Pilar acceso 1

16 171,41 1,885 1,625 0,260 26,0 Pilar acceso 2

17 153,30 1,240 1,110 0,130 13,0 Centro j1

18 164,91 1,205 1,178 0,027 2,7 Centro j2

19 251,10 1,458 1,428 0,030 3,0 palmera

20 257,80 1,711 1,623 0,088 8,8 Pasillo techado

21 254,12 1,728 1,648 0,080 8,0 Esquina 1

13

Page 14: TOPOGRAFIA UTFSM Taller3[1].02

22 267,95 1,629 1,579 0,050 5,0 Vértice pilar 1

23 293,46 1,738 1,669 0,069 6,9 Vértice pilar 2

24 309,36 1,442 1,345 0,097 9,7 Vértice pilar 3

25 318,49 1,704 1,582 0,122 12,2 Vértice pilar 4

26 324,00 1,728 1,565 0,163 16,3 Vértice pilar 5

27 328,96 1,764 1,570 0,194 19,4

28 331,09 1,842 1,602 0,240 24,0 Desde esquina, no vértice

29 333,11 1,925 1,662 0,263 26,3 J4

30 338,95 1,470 1,321 0,149 14,9 90cm desde vértice j1 hasta banca

31 335,30 1,540 1,428 0,112 11,2 J4

32 352,26 1,523 1,400 0,123 12,3

33 366,70 1,689 1,589 0,100 10,0

34 363,49 1,690 1,560 0,130 13,0

35 356,80 1,750 1,518 0,232 23,2 basurero

36 355,35 1,770 1,520 0,250 25,0 escalera

37 352,42 1,760 1,505 0,255 25,5 basurero

38 346,38 1,479 1,307 0,172 17,2 Banca 2, ancho 30 cm

39 346,91 1,598 1,398 0,200 20,0 Banca 2, ancho 30 cm

40 335,26 1,550 1,351 0,199 19,9

41 334,71 1,575 1,368 0,207 20,7 árbol

14

Page 15: TOPOGRAFIA UTFSM Taller3[1].02

Conclusión

En el pasado taller se desarrolló el método para realizar un levantamiento planimétrico mediante el método de radiación, pero esta vez sin huincha, se utilizó la mira topográfica.

Esta mira es un instrumento topográfico que permite, entre otras cosas, mediciones indirectas de las distancias horizontales desde el instrumento (nivel) hasta el punto donde está ubicada. Estas distancias obtenidas pueden tener un grado de certeza mayor en comparación con la medición de las mismas mediante la huincha, ya que, como es sabido, una “huinchada” de 20 metros de longitud, no es recomendada, ya que se producen errores considerables, debido a la flecha que adquiere, y a la posible deformación por tensión que también podría sufrir, esta deformación es un alargamiento de la huincha lo cual nos entregaría mediciones erradas, mientras que, mediante el uso de la mira, se pueden obtener fácilmente mediaciones de hasta 40 metros (que es la distancia máxima que ésta puede medir) sin tener errores de esta categoría.

Sin embargo, para el uso correcto de la mira se necesita tener o adquirir cierto grado de práctica, ya que el mayor problema que ésta provoca es la aproximación del milímetro de la medida por parte de quien la está realizando, lo cual es una gran fuente de error, debido a que un milímetro de error en la medición en la mira, significa una distancia de 10 centímetros en el terreno, lo que lleva, como se dijo, a un gran error.

Por esta razón que el basculamiento de la mira, es muy importante durante este proceso, ya que nos lleva a la mejor aproximación de la vertical de ella. Esto es importante debido a que el ángulo existente entre el suelo y la mira produce una pendiente en ésta, generando así una lectura mayor a la real. En el siguiente gráfico se muestra lo anteriormente expuesto.

Mira en posición vertical Mira

Nivel y trípode d

15

Page 16: TOPOGRAFIA UTFSM Taller3[1].02

En el esquema se puede observar la mira cuando tiene un ángulo de implicación contrastado con una que no lo tiene, y se puede observar claramente la distancia d que es la diferencia de mediciones existente entre ambas, es decir, existe un generador mayor en la mira inclinada con respecto a la vertical, lo cual induce claramente un error en la lectura.

Como aspecto positivo se puede destacar que si existe algún desnivel entre el punto en el que se encuentra el instrumento y el punto a medir, no importa, mientras la mira sea “vista” por el nivel, ya que es la diferencia la cual importa y no su cota. Además que si existe la experiencia en cuanto a este tipo de mediciones, éstas se pueden realizar en un tiempo considerablemente menor que en los otros levantamientos con distintos métodos anteriormente realizados, y con una precisión aceptable.

Yuri Larenas Canelo

16

Page 17: TOPOGRAFIA UTFSM Taller3[1].02

Conclusión

Luego de haber llevado a cabo el taller de levantamiento topográfico tanto con el método de radiación con huincha, como con el método de radiación con mira topográfica en un mismo terreno (patio de biblioteca) me es posible establecer una comparación entre los dos procedimientos nombrados.

Como primer punto cabe señalar que el tiempo empleado en la medición de la misma cantidad de puntos característicos en el terreno fue considerablemente menor al ocupar la mira topográfica para determinar la distancia entre la estación (lugar donde colocamos el trípode con anteojo topográfico) y los puntos en terreno, tomando en cuenta incluso el cálculo correspondiente para determinar el generador y la distancia requerida (que nace de la relación Distancia (m)=A+K*G ).

Esto se debe a que es mucho más eficiente que una persona gire la mira y obtenga valores para la estadía superior e inferior y el acimut casi simultáneamente, que ir moviéndose hacia el punto con una huincha, esquivando pequeños arbustos y ocupando fuerza dos personas en mantenerla tensa para evitar una flecha muy grande y obtener un valor recién para la distancia, además de tener que medir el acimut aparte.

Es preciso indicar que las dos personas implicadas durante el primer método en la medición de un solo punto con huincha, pudieron distribuirse mucho más eficazmente cada una con una mira en dos puntos distintos del terreno para agilizar el proceso de lectura durante el segundo método.

Así, a primera vista, me pareció mucho más eficaz el segundo método. Sin embargo, a la hora de convertir los datos de la cartera en el dibujo del plano (bosquejo), caí en cuenta de que el método no fue tan eficiente como pensaba, arrojando una representación del terreno bastante distante de la real en algunos tramos (lo cual fue corregido para la posterior confección del plano en diamante con los puntos A1;A2,A3,A4).

En general, el error no databa de los acimut obtenidos, sino más bien de las distancias horizontales. Supongo que no se le dio la suficiente importancia al hecho de nivelar debidamente el anteojo topográfico antes de cada lectura, ni tampoco a la basculación de la mira para obtener una lectura estando esta realmente vertical con respecto al terreno (o plano horizontal).

Esta imprecisión al operar fue grave, puesto que por cada mm mal leído en la lectura de estadía superior o inferior, se obtuvo un error de 10 cm en terreno, lo cual aun habiendo trabajado el plano a escala 1:100 se notó considerablemente, es decir, las lecturas fueron muy imprecisas, mostrando errores de metros de distancia.

El ahorro de tiempo en el método entonces fue en realidad un tiempo que debió haberse empleado para el buen manejo de los instrumentos.

De este modo me es posible concluir que ambos métodos pueden ser eficientes, pero esto depende claramente del terreno (con muchos accidentes impide hacer buenas “huinchadas”, mientras que con muchos obstáculos en el plano vertical impide tener una lectura de las estadías) y de un buen manejo de los instrumentos (huincha estirada, mira en posición vertical).

17

Page 18: TOPOGRAFIA UTFSM Taller3[1].02

Es importante entonces tener un buen reconocimiento del terreno antes de proceder a hacer cualquier medición y decidir con buen criterio que método me resulta más eficaz en determinado lugar.

Pilar Jordán Puelma

18

Page 19: TOPOGRAFIA UTFSM Taller3[1].02

Conclusión

En el primer paso de la medición se deben ubicar las estaciones a utilizar, las

que deben ser la menor cantidad posible, Al igual que en el método utilizado en el

taller anterior. Esto es lo que hace necesario analizar previamente el terreno, para

ubicar estacione de las cuales sean visible el mayor número de puntos

significativos. Estos puntos también deberían estar relativamente cercanos, para

evitar, aparte de todos los problemas que trae consigo medir longitudes muy

extensas con una huincha, el significativo error que se genera, en el momento de

dibujar el plano, al realizar una mínima variación angular, cuando el radio es muy

grande, especialmente si la escala es muy pequeña y los instrumentos no son

demasiado precisos.

La idea de ocupar pocas estaciones, es simplemente para ahorrarse todo el tiempo que se ocupa en trasladar y nivelar el instrumento en el plano horizontal.Este método es a simple vista más impreciso que el utilizado anteriormente, debido a que la distancia de la estación a cada punto se mide de forma indirecta y con instrumentos que no son de la precisión deseada. Me refiero a que el cálculo de la diferencia entre la estadía superior y la inferior en la mira topográfica es demasiado subjetiva en la medición milimétrica, lo que más tarde pasa a ser un error decimétrico en las distancias buscadas. Todas estas imprecisiones se ven claramente en el dibujo del plano.La ventaja de este método es que no importa la inclinación del lugar para medir distancias horizontales, lo que sí es relevante en la radiación anterior. Por lo tanto, una medición sensata seria mezclar los dos métodos, utilizando el método anterior en todos lo puntos posibles y la medida indirecta cuando la pendiente del terreno lo indique. Sin mover la estación.

Felipe Aravena

19

Page 20: TOPOGRAFIA UTFSM Taller3[1].02

InformeTaller de Topografía nr. 4Altimetría_Nivelación

Ayudante : Juan López

Integrantes: Marco Pino Yuri Larenas Isabel Olivares Felipe Aravena

Pilar Jordán

20

Page 21: TOPOGRAFIA UTFSM Taller3[1].02

21