TEORIA PARA EL DISEÑO DE TECHOS METALICOS

10
FUNDAMENTOS DEL DISEÑO DE ESTRUCTURAS DE ACERO UNA MIRADA HISTÓRICA El uso de hierro en la construcción se remonta a los tiempos de la Antigua Grecia; se han encontrado algunos templos donde ya se utilizaban vigas de hierro forjado. En la Edad Media se empleaban elementos de hierro en las naves laterales de las catedrales. Pero, en verdad, comienza a usarse el hierro como elemento estructural en el siglo XVIII; en 1706 se fabrican en Inglaterra las columnas de fundición de hierro para la construcción de la Cámara de los Comunes en Londres. El hierro irrumpe en el siglo XIX dando nacimiento a una nueva arquitectura, se erige en protagonista a partir de la Revolución Industrial, llegando a su auge con la producción estandarizada de piezas. Aparece el perfil "doble T" en 1836, reemplazando a la madera y revoluciona la industria de la construcción creando las bases de la fabricación de piezas en serie. Existen tres obras significativas del siglo XIX exponentes de esa revolución : La primera es el Palacio de Cristal, de Joseph Paxton, construida en Londres en 1851 para la Exposición Universal; esta obra representa un hito al resolver estructuralmente y mediante procesos de prefabricación el armado y desarmado , y establece una relación novedosa entre los medios técnicos y los fines expresivos del edificio. En su concepción establece de manera premonitoria la utilización del vidrio como piel principal de sus fachadas. En esa Exposición de París de 1889, el ingeniero Ch. Duter presenta su diseño la Calerie des Machine, un edificio que descubre las ventajas plásticas del metal con una estructura ligera y mínima que permite alcanzar grandes luces con una transparencia nunca lograda antes.

description

una documento importante que nos servira para diseñar estructuras metálicas de techos para diferentes usos.

Transcript of TEORIA PARA EL DISEÑO DE TECHOS METALICOS

Page 1: TEORIA PARA EL DISEÑO DE TECHOS METALICOS

FUNDAMENTOS DEL DISEÑO DE ESTRUCTURAS DE ACERO

UNA MIRADA HISTÓRICA

El uso de hierro en la construcción se remonta a los tiempos de la Antigua Grecia; se han encontrado algunos templos donde ya se utilizaban vigas de hierro forjado.

En la Edad Media se empleaban elementos de hierro en las naves laterales de las catedrales.

Pero, en verdad, comienza a usarse el hierro como elemento estructural en el siglo XVIII; en 1706 se fabrican en Inglaterra las columnas de fundición de hierro para la construcción de la Cámara de los Comunes en Londres.

El hierro irrumpe en el siglo XIX dando nacimiento a una nueva arquitectura, se erige en protagonista a partir de la Revolución Industrial, llegando a su auge con la producción estandarizada de piezas. Aparece el perfil "doble T" en 1836, reemplazando a la madera y revoluciona la industria de la construcción creando las bases de la fabricación de piezas en serie.

Existen tres obras significativas del siglo XIX exponentes de esa revolución : La primera es el Palacio de Cristal, de Joseph Paxton, construida en Londres en 1851 para la Exposición Universal; esta obra representa un hito al resolver estructuralmente y mediante procesos de prefabricación el armado y desarmado , y establece una relación novedosa entre los medios técnicos y los fines expresivos del edificio. En su concepción establece de manera premonitoria la utilización del vidrio como piel principal de sus fachadas.

En esa Exposición de París de 1889, el ingeniero Ch. Duter presenta su diseño la Calerie des Machine, un edificio que descubre las ventajas plásticas del metal con una estructura ligera y mínima que permite alcanzar grandes luces con una transparencia nunca lograda antes.

Otra obra ejecutada con hierro, protagonista que renueva y modifica formalmente la arquitectura antes de despuntar el siglo XX es la famosa Torre Eiffel (París, Francia).

El metal en la construcción precede al hormigón; estas construcciones poseían autonomía propia complementándose con materiales pétreos, cerámicos, cales, etc. Con la aparición del concreto, nace esta asociación con el metal dando lugar al hormigón armado.

Todas las estructuras metálicas requieren de cimentaciones de hormigón, y usualmente se ejecutan losas, forjados, en este material.

Page 2: TEORIA PARA EL DISEÑO DE TECHOS METALICOS

Actualmente el uso del acero se asocia a edificios con características singulares ya sea por su diseño como por la magnitud de luces a cubrir, de altura o en construcciones deportivas (estadios) o plantas industriales.

TIPOS DE ESTRUCTURAS METALICAS

Partiendo de la base que las estructuras metálicas son artificiales ya que las ha inventado el ser humano podremos entonces destacar qué tipos de estructuras hay:

Estructuras Abovedadas: Estas estructuras son todas aquellas en las que se emplean bóvedas, cúpulas y arcos para repartir y equilibrar el peso de la estructura, como por ejemplo puede verse en las catedrales o iglesias.

Estructuras Entramadas: Estas son las más comunes ya que son las que utilizan la mayoría de los edificios que podemos ver en cualquier ciudad. Emplean una gran cantidad de vigas, pilares, columnas y cimientos, es decir, una gran cantidad de elementos horizontales y verticales para repartir y equilibrar el peso de la estructura. Estas estructuras son más ligeras porque emplean menos elementos que las abovedadas por ejemplo y así pueden conseguirse edificios de gran altura.

Estructuras Trianguladas: Las trianguladas se caracterizan como su propio nombre indica por disponer sus elementos de forma triangular, suelen ser muy ligeras y económicas. Suelen utilizarse para la construcción de puentes y naves industriales. En estos casos hay dos formas que son las más utilizadas, la cercha y la celosía.

Page 3: TEORIA PARA EL DISEÑO DE TECHOS METALICOS

Estructuras Colgantes: Las estructuras colgantes o colgadas son aquellas que utilizan cables o barras (tirantes) que van unidos a soportes muy resistentes (cimientos y pilares). Los tirantes estabilizan la estructura, como puede verse por ejemplo en los puentes colgantes.

Estructuras Laminares: Todas aquellas formadas por láminas resistentes que están conectadas entre sí y que sin alguna de ellas la estructura se volvería inestable, como pueden ser las carrocerías y fuselajes de coches y aviones.

Estructuras Geodésicas: Son estructuras poco comunes que están formadas por hexágonos o pentágonos y suelen ser muy resistentes y ligeras. Son estructuras que normalmente tienen forma de esfera o cilindro.

GENERALIDADES

En el presente se mostrarán las características principales del acero como material de construcción, los diversos tipos de acero que se consiguen en Colombia, los perfiles que se producen y sus principales parámetros de diseño según aparecen en las tablas publicadas por los fabricantes y/o por el American Institute Steel Construction, organismo estadounidense líder en la reglamentación de este tipo de estructuras. Se definirán términos importantes que se emplean comúnmente en el mundo de las estructuras metálicas. Finalmente se presentarán los fundamentos del método de diseño con coeficientes de carga y resistencia (LRFD por sus siglas en inglés, Diseño en acero por factores de carga y resistencia).

VENTAJAS DE LAS ESTRUCTURAS METÁLICAS

Construcciones a realizar en tiempos reducidos de ejecución. Construcciones en zonas muy congestionadas como centros urbanos o

industriales en los que se prevean accesos y acopios dificultosos. Edificios con probabilidad de crecimiento y cambios de función o de

cargas. Edificios en terrenos deficientes donde son previsibles asientos

diferenciales apreciables; en estos casos se prefiere los entramados con nudos articulados.

Construcciones donde existen grandes espacios libres, por ejemplo: locales públicos, salones.

DONDE NO CONSTRUIR ESTRUCTURAS METÁLICAS

Page 4: TEORIA PARA EL DISEÑO DE TECHOS METALICOS

No está recomendado el uso de estructuras metálicas en los siguientes casos:

Edificaciones con grandes acciones dinámicas. Edificios ubicados en zonas de atmósfera agresiva, como marinas, o

centros industriales, donde no resulta favorable su construcción. Edificios donde existe gran preponderancia de la carga del fuego, por

ejemplo almacenes, laboratorios, etc.

EL ACERO COMO MATERIAL DE CONSTRUCCIÓN

Acero es el nombre que se le da al producto de la combinación de hierro y carbono, cuyo comportamiento depende en gran manera de la cantidad precisa en que se halle este último elemento (entre 0.1 y 2 %) y la eventual presencia de otros como manganeso, fósforo, azufre, silicio, vanadio y cromo. En la ciudad de Manizales, la empresa Acerías de Caldas, ACASA, produce desde 1992 aceros estructurales de los más importantes tipos, entre los que se destacan los siguientes: ASTM A-36, AISI 1045, AISI 1060, ASTM A-572 GRADO 50, ASTM A-242, GRADO 50. En tabla 1.1 se presentan algunas de las principales propiedades de los aceros más usados en estructuras civiles. El punto de fluencia y la resistencia a la tracción son dos propiedades que se usan frecuentemente en los procesos de cálculo. En la figura 1.1 se ilustra la curva esfuerzo-deformación típica de un acero Grado 60. Como se puede apreciar en ella, cuando se alcanza el punto de fluencia el material puede alcanzar grandes deformaciones y aún mantenerse tensando antes de entrar en la zona de endurecimiento por deformación y posteriormente llegar a la rotura. Esta característica tiene una gran importancia en el comportamiento estructural de los elementos de acero, en razón de que normalmente no todas las fibras de una sección serán sometidas simultáneamente al mismo esfuerzo; las fibras sometidas a mayores niveles de esfuerzo podrán llegar al punto de fluencia, deformarse y como resultado otras fibras se verán sometidas a un incremento en los esfuerzos sin que las primeras hayan llegado al punto de rotura.

PERFILES DE ACERO

La industria de la construcción ha estandarizado ciertos elementos de acero con formas y propiedades conocidas para facilitar a calculistas, productores y constructores hablar un lenguaje común. Algunos de los más empleados se aprecian en la figura

Page 5: TEORIA PARA EL DISEÑO DE TECHOS METALICOS

Los perfiles que aparecen con doble trazo pueden ser laminados en caliente o ensamblados. Los primeros se obtienen al calentar la materia prima, denominada palanquilla, y que consiste en grandes bloques de acero, hasta hacerla fluir para darle la forma correspondiente. Los segundos, es decir los perfiles ensamblados, se obtienen a partir de láminas que se sueldan entre sí. De esta última forma se han producido en el país los perfiles más pesados, dado que la producción de perfiles laminados en caliente se ha limitado principalmente a ángulos y a otros de bajo peso.

¿Qué diferencia existe en el comportamiento estructural entre los perfiles laminados en caliente y los ensamblados? La diferencia estriba en los esfuerzos residuales, resultantes del proceso de enfriamiento. En las zonas más internas de la sección el material tardará más en enfriarse. Cuando esto finalmente ocurra y por lo tanto tienda a contraerse, otras zonas de la sección previamente enfriadas y endurecidas se opondrán a esa contracción, generándo así esfuerzos internos, denominados esfuerzos residuales. Este fenómeno afecta más a los perfiles ensamblados, por lo que en la NSR-98, se estipula un valor mayor de esfuerzos residuales para los perfiles ensamblados con soldadura que para los perfiles laminados.

METODOS DE DISEÑO

El diseño estructural abarca la determinación de un sistema de resistencia idóneo que cuando se vea sometido a las diversas cargas que puedan actuar sobre la construcción civil, mantenga las características de seguridad y funcionalidad. Se puede afirmar que es seguro cuando se ha tenido en cuenta no sólo las cargas que cotidianamente actuarán sobre la edificación sino las que sean producto de sucesos con un período de recurrencia muy alto, como los sismos, vientos de muy alta velocidad, o cargas verticales muy superiores a las esperadas; para todas éstas, se han considerado cabalmente las

Page 6: TEORIA PARA EL DISEÑO DE TECHOS METALICOS

solicitaciones que resultarán en cada uno de los miembros y sus conexiones. No se trata solamente de evitar el colapso sino también de evitar que debido a las deformaciones producidas por un sismo de diseño, se deterioren los cerramientos exteriores e interiores y las instalaciones eléctricas, mecánicas, de comunicaciones, hidráulicas y sanitarias, cuyo costo de reposición puede representar hasta el 70% de toda la obra. Además, de nada valdría que los elementos principales no se cayeran si en un sismo los elementos no estructurales se desplomaran sobre los ocupantes. El concepto de seguridad incluye que aun cuando se presente la falla, esta sea de tal naturaleza que se advierta a tiempo para preservar la vida de las personas. El sistema estructural será funcional cuando, además de ser seguro, resulte cómodo para los usuarios; esto es, que bajo la acción de las cargas normales no presente vibraciones incómodas ni deflexiones muy grandes que deterioren los acabados arquitectónicos.

Se han desarrollado diversos métodos para lograr tales fines, dos de los cuales se explicarán brevemente a continuación: el método de esfuerzos admisibles (ASD Allowed Stress Design), y el método de coeficientes de carga y resistencia (LRFD por sus siglas en inglés)

Por mucho tiempo se emplea el método de esfuerzos admisibles, en el cual el calculista divide la resistencia nominal de un elemento por un factor de seguridad, y la compara con la resistencia requerida por la acción de las cargas de trabajo, es decir, las cargas máximas esperadas en la estructura sin aumentarlas. Todavía este procedimiento es válido y se contempla en el capítulo F4 de la NSR-98. En la página 2-5 de la referencia 2 se explica que este método puede representarse por la desigualdad

Page 7: TEORIA PARA EL DISEÑO DE TECHOS METALICOS

PROCEDIMIENTO DE DISEÑO

Las verificaciones para los diferentes estados límite anotados arriba se hacen para miembros de sección ya definidas, pero, ¿cómo llegar a establecer esa primera sección a verificar? No hay una regla fija. No obstante, como un punto de partida, se podría suponer c = 1.5 de la ecuación F.2.20, sabiendo de antemano el valor de la longitud efectiva KL, se podrá calcular un radio de giro mínimo requerido. Se buscará un miembro cuyo radio de giro mínimo sea mayor que ese si se trata de una estructura para altas cargas, o menor en caso contrario. Para el caso de las muy comunes columnas ensambladas a partir de cuatro perfiles angulares que conforman una sección rectangular, se hace una estimación inicial del radio de giro multiplicando su dimensión exterior más corta por 0,4, con este valor aproximado de radio de giro se halla una relación de esbeltez aproximada y su correspondiente resistencia de diseño; con ella se determinan tanto el área requerida como los ángulos que pueden suplirlo y finalmente se repite el procedimiento pero ahora con el valor exacto del radio de giro de la columna calculado a partir del radio de giro de los ángulos escogidos.