Sismos

27
1. INTRODUCCIÓN Por su ubicación geográfica algunos países se encuentran más propensos que otros a la acción e impacto de fenómenos naturales que pueden derivar en una situación de desastre; entre las calamidades a las que mayormente están expuestos diversos países latinoamericanos, principalmente de Centro y Sudamérica, destacan los sismos, que tienen un lugar especial a lo largo de su historia, algunas veces por su frecuencia y otras más desafortunadas por los desastres a que han dado origen a grandes movimiento sísmicos. La presencia de fallas geológicas y la acción de las placas continentales son factores siempre presentes en la dinámica de nuestro planeta. En muchas ciudades a estos elementos se suman las características del subsuelo y la gran densidad poblacional, originando una situación de riesgo sísmico. Frente a este panorama la acción gubernamental se debe orientar a informar y capacitar a la ciudadanía para enfrentar con eficacia estos fenómenos telúricos. Con ello se contribuirá al crecimiento y consolidación de una Cultura de Protección Civil, sobre la que habrán de sustentarse las acciones en pro de la Prevención de desastres.

description

.

Transcript of Sismos

Page 1: Sismos

1. INTRODUCCIÓN

Por su ubicación geográfica algunos países se encuentran más propensos que otros a la

acción e impacto de fenómenos naturales que pueden derivar en una situación de

desastre; entre las calamidades a las que mayormente están expuestos diversos países

latinoamericanos, principalmente de Centro y Sudamérica, destacan los sismos, que

tienen un lugar especial a lo largo de su historia, algunas veces por su frecuencia y otras

más desafortunadas por los desastres a que han dado origen a grandes movimiento

sísmicos.

La presencia de fallas geológicas y la acción de las placas continentales son factores

siempre presentes en la dinámica de nuestro planeta. En muchas ciudades a estos

elementos se suman las características del subsuelo y la gran densidad poblacional,

originando una situación de riesgo sísmico. Frente a este panorama la acción

gubernamental se debe orientar a informar y capacitar a la ciudadanía para enfrentar con

eficacia estos fenómenos telúricos. Con ello se contribuirá al crecimiento y consolidación

de una Cultura de Protección Civil, sobre la que habrán de sustentarse las acciones en

pro de la Prevención de desastres.

2. CONSTITUCIÓN INTERNA DE LA TIERRA

El conocimiento que actualmente se tiene del interior de la Tierra es el resultado de un

gran número de estudios científicos, en su mayoría basados en la propagación de las

ondas sísmicas a través de los materiales terrestres. De esta forma ha sido posible

determinar su composición y dividirla en varias capas concéntricas; éstas son:

Page 2: Sismos

a) Corteza

Esta comienza en la superficie y llega hasta una profundidad promedio de 35 km.,

pudiendo ser mayor en algunas zonas continentales como las cadenas montañosas y

menor en los océanos donde llega a un espesor de 10 km. La corteza es completamente

sólida y facturable.

b) Manto

Comprende desde la parte inferior de la corteza hasta una profundidad de 2900 km.

Debido a las condiciones de la temperatura y presión a las cuales se encuentran los

materiales del manto, éstos se hallan en un estado entre sólido y plástico.

c) Núcleo externo

Tiene un espesor aproximado de 2300 km. y está comprendido entre 2900 y los 5200 km.

de profundidad. Con base en datos sismológicos se ha podido inferir que es líquido. Esto

puede deberse a condiciones de alta temperatura.

d) Núcleo interno

Este es el centro de la Tierra y tiene un diámetro de 2340 km. Según se ha calculado, se

encuentra en estado sólido.

Para los fines de la actividad sísmica es de particular importancia la cubierta rígida de

nuestro planeta, constituida por la corteza y la parte superior del manto. Esta recibe el

nombre de Litosfera y tiene un espesor promedio de 100 km.

Page 3: Sismos

3. DERIVA DE LOS CONTINENTES

Sir Francis Bacon, en 1620, reconoció que claramente existía correspondencia en la

forma de las líneas de la costa atlántica de América y las de Africa.

Tomando como base lo anterior, Alfred Wegener desarrolló, en 1912, la Teoría de la

Deriva Continental, que afirma que los actuales continentes se hallaban agrupados, hace

200 millones de años, formando un super continente llamado pangea. Dichos continentes

al moverse constantemente sobre un supuesto sustrato viscoso llegaron a ocupar su

posición actual.

Posteriormente, con base en la teoría elaborada por Wegener y numerosas

contribuciones de geólogos y geofísicos, se desarrolló la Teoría de Tectónica de Placas,

que establece que la litosfera se encuentra dividida, formando una especie de mosaico de

sectores rígidos, conocidos como placas, las cuales se mueven entre sí con

desplazamientos promedio de algunos centímetros por año.

Page 4: Sismos

Para entender el mecanismo que impulsa las placas observe la figura 3 donde se muestra

que la litosfera se desplaza sobre la parte viscosa del manto debido al arrastre provocado

por las corrientes de convección. Estas corrientes son las que transmiten el calor del

interior de la Tierra hacia las partes superiores de ésta, transportando materiales calientes

(profundos) a profundidades menores y materiales a menor temperatura hacia

profundidades mayores.

Los límites de las placas no coinciden con los límites de los continentes; una sola placa

puede contener porciones de continentes y porciones de océanos. Los límites o márgenes

entre las placas pueden ser de tres tipos:

a) Divergentes:

En donde las placas se están separando; un ejemplo son las cordilleras oceánicas.

b) Convergentes o de subducción:

Donde una de las placas se introduce debajo de otra. Como ejemplo se tiene el caso de la

penetración de la placa de Cocos bajo la placa de Norteamérica en la costa occidental de

nuestro país.

c) Transformación o transcurrentes:

Donde dos placas se mueven entre sí lateralmente, como por ejemplo la falla de San

Andrés, que afecta a nuestro país en la península y Golfo de Baja California.

4. RELACIÓN ENTRE LA TECTÓNICA DE PLACAS Y LA SISMICIDAD MUNDIAL

Page 5: Sismos

La litosfera está dividida, en varias placas cuyo desplazamiento alcanza velocidades del

orden de varios centímetros por año.

En los límites entre placas, esto es, donde hacen contacto unas con otras, se generan

fuerzas de fricción que mantienen atoradas dos placas adyacentes, produciendo grandes

esfuerzos en los materiales. Cuando dichos esfuerzos sobrepasan la resistencia de la

roca, o cuando se vencen las fuerzas de fricción se produce la ruptura violenta y la

liberación repentina de la energía acumulada. Esta es irradiada desde el foco (o

hipocentro) en forma de ondas que se propagan en todas direcciones a través del medio

sólido de la Tierra. Estas ondas son conocidas como ondas sísmicas.

Page 6: Sismos

5. ONDAS SÍSMICAS

Al ocurrir un sismo, tres tipos básicos de ondas producen la sacudida que se siente y

causa daños, de ellos, sólo dos se propagan en todas direcciones en el interior de la

Tierra por lo que son llamadas ondas internas. La más rápida de las ondas internas es la

onda primaria u onda "P".

La principal característica de esta onda es que comprime y expande la roca, en forma

alternada, en la misma dirección en que viaja. Estas ondas son capases de viajar a través

de las rocas sólidas así como de líquidos, por ejemplo los océanos o magma volcánico.

Además, las ondas "P" son capases de transmitirse a través de la atmósfera, por lo que

en ocasiones son percibidas por personas y animales como un sonido grave y profundo.

La segunda onda llamada secundaria u onda "S" viaja a menor velocidad que la "P" y

deforma los materiales, mientras se propaga, lateralmente respecto de su trayectoria. Por

esta razón este tipo de ondas no se transmite en líquidos ni en gases.

Cuando ocurre un terremoto la onda "P" se siente primero, con un efecto de retumbo que

hace vibrar paredes y ventanas.

Algunos segundos después llega la onda "S" con su movimiento de arriba hacia abajo y

de lado a lado, que sacude la superficie del suelo vertical y horizontalmente. Este es el

movimiento responsable del daño a las construcciones.

El tercer tipo de ondas sísmicas es el de las llamadas ondas superficiales, que tienen la

característica de propagarse por la parte más superficial de la corteza terrestre,

disminuyendo la amplitud de su movimiento a medida que la profundidad aumenta. Las

ondas superficiales generadas por el terremoto se pueden clasificar en dos grupos.

El primero es el de ondas Love, llamadas así en honor a su descubridor, el Físico A. E. H.

Love, las cuales deforman las rocas de la misma manera que las ondas "S". El segundo

es de ondas Rayleigh, en honor a Lord Rayleigh, que tienen un movimiento vertical similar

al de las olas del mar. Las ondas superficiales viajan más despacio que las ondas internas

y, de éstas, las ondas Love son las más rápidas.

Las ondas Rayleigh, debido a la componente vertical de su movimiento, pueden afectar

cuerpos de agua, por ejemplo lagos, mientras que las Love (que no se propagan a través

del agua) pueden afectar la superficie del agua debido al movimiento lateral de la roca

que circunda lagos y bahías.

Page 7: Sismos

6. TIPOS DE SISMOS

Los sismos se pueden clasificar, con base en su origen, en naturales y artificiales. Los

sismos de origen natural son los que en general liberan una mayor cantidad de energía y,

por tanto sus efectos en la superficie son mayores.

Los sismos de origen natural pueden ser de tres tipos:

a) Sismos Tectónicos

Son aquellos producidos por la interacción de placas tectónicas. Se han definido dos

clases de estos sismos: los interplaca, ocasionados por una fricción en las zonas de

contacto entre las placas, de la manera descrita anteriormente, y los intraplaca que se

presentan lejos de los límites de placas conocidos. Estos sismos, resultado de la

deformación continental por el choque entre placas, son mucho menos frecuentes que los

interplaca y, generalmente de menor magnitud.

Un tipo particular de sismos intraplaca son los llamados locales, que son producto de

deformaciones de los materiales terrestres debido a la concentración de fuerzas en una

región limitada.

b) Sismos Volcánicos

Page 8: Sismos

Estos acompañan a las erupciones volcánicas y son ocasionados principalmente por el

fractura miento de rocas debido al movimiento del magma. Este tipo de sismos

generalmente no llegan a ser tan grandes como los anteriores.

c) Sismos de Colapso

Son los producidos por derrumbamiento del techo de cavernas y minas. Generalmente,

estos sismos ocurren cerca de la superficie y se llegan a sentir en un área reducida.

Sismos Artificiales

Son los producidos por el hombre por medio de explosiones convencionales o nucleares,

con fines de exploración, investigación, o explotación de bancos materiales para la

industria (por ejemplo, extracción de minerales). Las explosiones nucleares en ocasiones

son los suficientemente grandes para ser detectadas por instrumentos en diversas partes

del planeta, pero llegan a sentirse sólo en sitios cercanos al lugar de pruebas.

Maremotos

Los maremotos, también conocidos como Tsunamis, son la consecuencia de un sismo

tectónico bajo el fondo del océano; éste llega a mover el agua como si fuera empujada por

un gran remo. Las olas provocadas se propagan a partir de los alrededores de la fuente

del terremoto a través del océano hasta que llegan a la costa.

Allí, su altura puede llegar a ser hasta de 30 metros, como sucedió en Japón a finales del

siglo pasado.

7. ESCALAS DE INTENSIDAD Y MAGNITUD

Generalmente, al describir un gran sismo, además de su epicentro se mencionan valores

de magnitud e intensidad; estos dos últimos términos representan fenómenos distintos.

La intensidad de un sismo está asociada a un lugar determinado y se asigna en función

de los efectos causados en el hombre, en sus construcciones y en general, en el terreno

en dicho sitio. Esta medida resulta un tanto subjetiva, debido a que la forma de medirse

depende de la sensibilidad de cada persona y de la apreciación que se tenga de los

efectos.

La primera escala de intensidad fue propuesta en 1883 por S. de Rossi y F. Forel, con

grados de 1 al 10. Más tarde, G. Mercalli propone, en 1902, otra escala con doce grados,

la que fue modificada por H. Hood y F. Newmann en 1931 para construcciones más

modernas. Esta es conocida como Escala de Mercalli Modificada, la que ahora es

ampliamente utilizada.

Page 9: Sismos

Por otro lado, con el objeto de comparar el tamaño de los terremotos en todo el mundo, es

necesaria una medida que no dependa, como la intensidad, de la densidad de población y

del tipo de construcción. La manera de medir al tamaño real de un sismo tiene que ver

con la cantidad de energía liberada y es independiente de la localización de los

instrumentos que lo registren.

Una escala estrictamente cuantitativa, aplicable a sismos ocurridos en regiones habitadas

o no, fue desarrollada por Charles Richter, utilizando las amplitudes de las ondas

registradas por un sismógrafo. Richter, en 1932, definió la escala de Magnitud, basado en

la medición de un gran número de sismos en la costa de California. Hoy el uso de la

magnitud ha sido más allá de estos modestos comienzos. La conveniencia de describir el

tamaño de un terremoto por un número (la magnitud), ha requerido que el método se

amplíe a otros tipos de sismógrafos por todo el mundo. Consecuentemente,

CONOCIMIENTOS BÁSICOS DE LOS SISMOS 9 se tiene una variedad de escalas de

magnitud. Estas no tienen límite superior ni inferior, aunque el tamaño de un terremoto

está, ciertamente, limitado en su extremo superior por la resistencia de las rocas de la

litosfera.

Page 10: Sismos

8. ZONAS SÍSMICAS EN EL MUNDO

A finales del siglo pasado y a principios del presente se establecieron estaciones

sismológicas en varios países alrededor del mundo, incluyendo a México.

Mediante sismógrafos de diferentes tipos se inició en esa época el registro instrumental

de las ondas sísmicas generadas por terremotos, tanto de origen local como lejano, lo que

permitió determinar en forma relativamente precisa la localización de los focos sísmicos y

su profundidad.

Con el tiempo se formó un mapa bien definido que mostró la distribución geográfica de los

sismos.

Desde el advenimiento de la sismología moderna, sorprendió a los investigadores que al

representar en un mapa los focos de los sismos registrados durante un periodo de tiempo

dado, estos se concentrarán siempre a lo largo de franjas relativamente angostas,

indicando en dichas zonas una alta sismicidad.

Estas franjas, a su vez, limitan o separan grandes regiones oceánicas y continentales con

actividad sísmica escasa o nula.

Page 11: Sismos

La distribución de los focos, como se observa en el mapa de la sismicidad mundial (figura

superior), nos sugiere la división de la superficie terrestre en una serie de placas, lo cual

apoya la teoría de tectónica de placas explicada anteriormente.

Podemos observar que la franja de sismicidad más importante se encuentra en la periferia

del Océano Pacífico. Esta abarca Patagonia y Chile en América del Sur, Centroamérica,

México, Estados Unidos y Canadá; se extiende más allá de Alaska a través de las Islas

Aleutianas, pasando por la Península de Kamtchatka, Japón, Filipinas y Nueva Zelanda

en el sur. Esta zona sísmica está caracterizada además, por actividad volcánica intensa.

Por esto es conocida como el Cinturón de Fuego del Pacifico o simplemente Cinturón

Circunpacífico.

Es claro que la sismicidad a escala mundial se concentra en zonas bien definidas. En

contraste, grandes regiones de la tierra están libres de actividad sísmica o casi nunca

ocurren sismos en ellas. Tal es el caso de Brasil, norte y centro de Canadá, Noruega,

Suecia, oeste de Africa y una gran porción de Australia; por lo tanto estas son

consideradas zonas "asísmicas".

9. RIESGO SÍSMICO EN PERU

El Perú está comprendido entre una de las regiones de más alta actividad sísmica que

existe en la tierra, por lo tanto está expuesto a este peligro, que trae consigo la pérdida

de vidas humanas y pérdidas materiales. Es necesario efectuar estudios que permitan

conocer el comportamiento más probable de este fenómeno para poder planificar y

mitigar los grandes efectos que trae consigo. Una forma de conocer el probable

comportamiento sísmico de un lugar es mediante la evaluación del peligro sísmico en

términos probabilísticos, es decir predecir las posibles aceleraciones que podrían ocurrir

en un lugar determinado.

En las normas de diseño se especifican las cargas sísmicas, por lo que no es necesario

realizar investigaciones detalladas de la actividad sísmica del área donde se construirán

estructuras comunes. El coeficiente de diseño sísmico a ser usado en el diseño sísmico

pseudo-estático se determina en base a la zona, condición del suelo e importancia de la

estructura. Si la estructura es flexible, la carga sísmica se modifica tomando en cuenta su

periodo fundamental. Sin embargo, cuando se planifican estructuras importantes, deben

Page 12: Sismos

evaluarse sus capacidades de resistir terremotos en base a estudios detallados de peligro

sísmico. Tales estructuras incluyen: grandes presas, puentes con luces grandes, túneles y

centrales nucleares. También se necesitan estudios detallados para la evaluación del

peligro sísmico en una zona grande por urbanizar.

El análisis de peligro sísmico se realiza aplicando la metodología desarrollada por Cornell

(1968) en términos probabilísticos, metodología que fue modificada e implementada en el

programa de cómputo RISK por McGuire (1976). Esta metodología integra información

sismotectónica, parámetros sismológicos y leyes de atenuación regionales para los

diferentes mecanismos de ruptura. El resultado es una curva de peligro sísmico, donde

se relaciona la aceleración y su probabilidad anual de excedencia.

10. ISMOTECTÓNICA

La actividad sísmica en el país es el resultado de la interacción de las placas tectónicas

de Nazca y Sudamericana y de los reajustes que se producen en la corteza terrestre

como consecuencia de la interacción y la morfología alcanzada por el Aparato Andino.

10.1 Principales Rasgos Tectónicos

Los principales rasgos tectónicos de la región occidental de Sudamérica, como son la

Cordillera de los Andes y la Fosa Oceánica Perú-Chile, están relacionados con la alta

actividad sísmica y otros fenómenos telúricos de la región, como una consecuencia de la

interacción de dos placas convergentes cuya resultante más saltante precisamente es el

proceso orogénico contemporáneo constituido por los Andes. La teoría que postula esta

relación es la Tectónica de Placas o Tectónica Global (Isacks et al, 1968). La idea básica

de esta teoría es que la envoltura más superficial de la tierra sólida, llamada Litósfera

(100 Km), está dividida en varias placas rígidas que crecen a lo largo de estrechas

cadenas meso-oceánicas casi lineales; dichas placas son transportadas en otra envoltura

menos rígida, la Astenósfera, y son comprimidas o destruidas en los límites

compresionales de interacción, donde la corteza terrestre es comprimida en cadenas

montañosas o donde existen fosas marinas (Berrocal et al, 1975). Los rasgos tectónicos

superficiales más importantes en el área de estudio son :

Page 13: Sismos

- La Fosa Oceánica Perú-Chile.

- La Dorsal de Nazca.

- La porción hundida de la costa norte de la Península de Paracas, asociada con un

zócalo continental más ancho.

- La Cadena de los Andes.

- Las unidades de deformación y sus intrusiones magmáticas asociadas.

- Sistemas regionales de fallas normales e inversas y de sobreescurrimientos.

10.2 Sismicidad Histórica

Silgado (1978) realizó la más importante descripción ordenada de la historia sísmica del

Perú.

Desde el siglo XVI hasta el siglo XIX solo se reportan los sismos sentidos en las ciudades

principales, indicando que dicha actividad sísmica no es totalmente representativa, ya que

pueden haber ocurrido sismos importantes en regiones remotas, que no fueron

reportados. Dorbath et al (1990) analizaron los grandes sismos históricos y obtuvieron

cantidades estimadas de longitudes de ruptura en un diagrama espacio-tiempo de los

grandes sismos históricos del Perú. Se muestra la existencia de tres zonas diferentes

correspondientes a la segmentación de la placa de Nazca subducida en la placa

Sudamericana. La actividad sísmica en el Norte y Centro del país es compleja debido a la

irregularidad de las longitudes de ruptura, la zona Sur tiene un modelo sísmico simple y

regular, ya que ha experimentado cuatro grandes sismos cuyo tiempo de recurrencia es

del orden de un siglo; ésta es una zona de alto riesgo sísmico.

10.3 Sismicidad Instrumental

La información sismológica instrumental del Perú se encuentra recopilada en el Catálogo

Sísmico del Proyecto SISRA (Sismicidad de la Región Andina, 1985), que tiene eventos

desde el año de 1900. Este catálogo fue actualizado hasta 1990-I con los datos

verificados por el ISC (International Seismological Centre). Para la elaboración de este

catálogo se consideraron los registros cuya magnitud mb es mayor ó igual a 4.0, ya que a

partir de este valor los sismos adquieren importancia ingenieril. La información

Page 14: Sismos

sismológica de 1990-II a 1991-II tiene carácter preliminar y ha sido recopilada del NEIC

(National Earthquake Information Center) y del IGP (Instituto Geofísico del Perú).

Dentro de la metodología para el cálculo del peligro sísmico se considera que los eventos

sísmicos presentan una distribución de Poisson, que se caracteriza por suponer

independencia entre los tiempos de ocurrencia, ya que cada uno de los sismos se

considera como un evento aislado e independiente. Por ello es necesario depurar del

catálogo todas las réplicas y premonitores, quedando los sismos como eventos

principales.

En el catálogo sísmico (1900,1990-I) depurado se cuenta con 4276 sismos. La estadística

sísmica no es homogénea o íntegra; la mayor parte de los eventos ocurridos antes de

1960 no tienen reportada su magnitud. Sólo a partir de 1963 los datos instrumentales son

más precisos, año en el cual la red de sismógrafos WWSSN (World Wide Standard

Seismograph Network) estaba finalmente instalada. La base de datos que se utilizó en el

presente trabajo está conformada por los sismos comprendidos entre 1963 y 1990, los

mismos que corresponden a 3892 eventos principales e independientes.

El análisis de peligro sísmico se realiza en función de la magnitud. Las escalas de

magnitud utilizadas son mb y Ms , calculadas a partir de las ondas de cuerpo y de

superficie respectivamente. Se calculó la siguiente relación entre estas dos magnitudes,

de manera que se pueda utilizar cualquiera de ellas para homogenizar la muestra de

datos.

mb = 3.30 + 0.40 Ms

La distribución espacial de la actividad sísmica no es uniforme. Está principalmente

concentrada en los bordes de los grandes bloques tectónicos, denominados placas

tectónicas. La actividad sísmica en el Perú y áreas vecinas es el resultado de la

interacción de las placas tectónicas de Nazca y Sudamericana, y el proceso de reajuste

tectónico del Aparato Andino (Ocola, 1989).

En la Figura 1 se presentan todos los hipocentros del Catálogo Sísmico SISRA (1963-

1990) y los rasgos neotectónicos indicados por Macharé et al (1991). Se observa que la

Page 15: Sismos

actividad sísmica en la zona Norte y Centro del país está distribuida en dos fajas sísmicas

longitudinales a los Andes; una occidental a los Andes y exclusivamente producto de la

subducción con hipocentros mayormente superficiales y algunos intermedios; y la otra,

oriental a los Andes que involucra tanto a procesos de subducción (para hipocentros de

profundidades intermedias, hasta 300 Km), como también a procesos secundarios, tal

como la acción compresiva del escudo brasilero contra el cinturón andino. Estas dos fajas

sísmicas se unen en la zona de transición sismotectónica (13o-14o Sur), para constituir

una sola amplia faja sísmica en la región sismotectónica del Perú (Deza, 1990).

Existe una actividad sísmica superficial causada por el proceso de reajuste tectónico del

Aparato Andino. En la Figura 1 se observa agrupamientos importantes de eventos en

algunas estructuras neotectónicas, tales como las fallas de Huaytapallana, fallas ubicadas

en la sierra central y en Moyobamba, en donde la actividad sísmica se encuentra en los

primeros 40 Km de profundidad. Los sismos recientes e históricos de Ayacucho, Cusco,

Urcos y norte del lago

Titicaca, son manifestaciones de esta zona sísmica, muy superficial y destructiva (Ocola,

1989).

En el Ecuador se observa concentración de la actividad sísmica superficial en la zona de

Pisayambo y en los alrededores de Quito, que está relacionada con la actividad generada

por el volcán Guagua Pichincha (Bonilla y Ruiz, 1992). En la zona norte de Chile la

actividad sísmica está asociada al proceso de subducción.

Page 16: Sismos

11. REGIONALIZACIÓN SÍSMICA EN EL PERU

Page 17: Sismos

12. INSTRUMENTACIÓN SÍSMICA

Page 18: Sismos

12.2 Sismómetros

Un sismómetro o sismógrafo, es un instrumento que mide el movimiento de la corteza

terrestre. Funciona con un mecanismo suspendido de un resorte. El mecanismo tiene una

pluma que marca el movimiento hacia arriba y hacia abajo sobre un cilindro rotatorio. La

altura de las marcas indica la fuerza del movimiento de la corteza y por tanto la fuerza del

terremoto. Algunos sismómetros son tan sensibles que pueden detectar movimientos tan

pequeños como de 1/10,000,000 de centímetro, casi tan pequeños como el espacio entre

átomos.

12.3 Medidores de tensión

Los medidores de tensión miden la tensión en áreas particulares de la corteza terrestre,

usualmente una falla. Los medidores de presión funcionan al medir el movimiento entre

dos puntos distantes. Por ejemplo, si la distancia entre dos puntos situados a un kilómetro

de distancia cambia por un milímetro, la tensión resultante es considerada como de una

micra de tensión. Los medidores de tensión suelen medir los cambios entre posiciones en

los pozos de la superficie de la tierra.

12.4 Medidores de inclinación

Los medidores de inclinación miden los cambios en la inclinación de partes específicas de

la superficie de la tierra. Se suelen usar para medir cambios en las regiones volcánicas

donde la presión bajo tierra provoca que las partes del volcán cambien su angulación

antes de una erupción.

12.5 Magnetómetros

Un magnetómetro mide el magnetismo. El más básico de estos instrumentos es la brújula.

En ésta una aguja magnetizada se alinea con el campo magnético de la tierra e indica la

dirección del norte magnético real. Los magnetómetros se usan en sismología para

detectar cambios en el campo magnético de la tierra provocados por el movimiento de

magma pesado y cargado de hierro bajo la superficie de la tierra.

Page 19: Sismos

12.6 La Red Sísmica Nacional

Los terremotos ocurridos en Perú en los años 2001 y 2007, permitieron al Servicio

Sismológico Nacional (SSN) del  Instituto Geofísico del Perú (IGP) experimentar el

colapso y saturación de las líneas telefónicas e internet, lo cual no permitió disponer de la

información necesaria para el procesamiento de la data sísmica y emisión de los reportes

en el menor tiempo posible. Ante este problema, el IGP decide modernizar la Red Sísmica

Nacional (RSN) y con el apoyo del Gobierno Peruano ejecuta el proyecto Red Sísmica

Satelital para la Alerta Temprana de Tsunamis (REDSSAT), el cual permitió poner en

operatividad en Julio del 2011, un sistema integrado compuesto por 7 estaciones sísmica

de banda ancha con transmisión por satélite y algoritmos adecuados para la recepción de

la señal, su análisis y procesamiento automático, previos a la emisión del reporte. A Julio

del 2012 se cuenta con 15 estaciones sísmica de banda ancha con transmisión por

satélite. La infraestructura que alberga a las estaciones de la REDSSAT fue construida en

los departamento de Moquegua (Toquepala), Arequipa (Yauca, Camana), Cusco (Cusco),

Madre de Dios (Puerto Maldonado), Ica (Guadalupe), Junín (Huancayo), Ucayali

(Pucallpa), Ancash (Huaylas), Loreto (Yurimaguas, Iquitos), Lambayeque (Portachuelo) y

Piura (Chocan).

En la actualidad el IGP cuenta con una RSN compuesta por 51 estaciones sísmicas. De

estas estaciones, 29 son de banda ancha: 15 con trasmisión por satélite, 6 por Internet y 8

con almacenamiento in situ. Asimismo, 22 estaciones son de periodo corto con

transmisión por Internet y telemetría, 7 de estas integran la red local para el monitoreo de

la sismicidad presente en el área del Proyecto Mantaro-Tablachaca (Convenio

Electroperú), y 10 para el monitoreo de los volcanes Misiti y Ubinas. Además, las

estaciones de Ñaña (NNA) y Atahualpa (ATH) pertenecen a la red sismica mundial,

administrada por el consorcio IRIS (Incorporated Reserch Institutions for Seismology) y

por el CTBTO (Comprehensive Nuclear Test Ban Treaty Organization).

12.1 Historia

En el Perú, la primera estación sísmica fue instalada en la ciudad de Lima en el año 1907

aunque funcionó por corto tiempo. Luego la USGS de EEUU en el año 1931 instala en la

ciudad de Huancayo una estación equipada con 6 sensores Wenner-Benioff y registró en

Page 20: Sismos

papel fotográfico. En el año 1962, se instala otra estación en la localidad de Ñaña en Lima

y en el distrito de Characato en Arequipa. Estas estaciones fueron integradas a la Red

Sísmica Mundial de aquellos años (WWSSN). La RSN a cargo del IGP tuvo sus inicios en

los años 80, estando integrado por estaciones de periodo corto instaladas cerca de las

costas de las regiones centro y norte del Perú. Después del sismo de Nazca de 1996, se

inicia la instalación de la primera estación sísmica de banda ancha con registro en formato

digital en la ciudad del Cusco, llegando a la fecha contarse con 51 de estas estaciones

distribuidas en todo el territorio peruano.