SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen...

24
s SIMOREG DC Master Serie 6RA70 Aplicación Regulación para un grupo Ward-Leonard Equipos convertidores con microprocesador de 6kW a 2500kW para accionamientos de corriente continua de velocidad variable Edición 01

Transcript of SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen...

Page 1: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

s

SIMOREG DC Master Serie 6RA70

AplicaciónRegulación para un

grupo Ward-Leonard

Equipos convertidores con microprocesador de 6kW a 2500kW para accionamientos de corriente continua de velocidad variable

Edición 01

Page 2: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

Edición 01 04.05

© Siemens AG 2005 All rights reserved

NOTA Este documento de aplicación no pretende abarcar todos los detalles o variantes del equipo o todo empleo o aplicación imaginable. Si necesitase información adicional y surgiesen problemas específicos que no hayan sido abordados con suficiente detalle para su área de aplicación, por favor diríjase a la filial local de Siemens.

El contenido de este documento de aplicación no forma parte de ningún acuerdo, promesa o relación jurídica previa o todavía existente ni supone ninguna modificación de las mismas. El contrato de compra en cuestión representa todas las obligaciones de la subdivisión Accionamientos de velocidad variable A&D de SIEMENS AG. La garantía establecida en el contrato entre las partes constituye la única garantía asumida por la subdivisión Acionamientos de velocidad variable A&D. Las disposiciones contractuales de garantía no verán ampliadas ni modificadas por las manifestaciones de este documento de aplicación.

WARNUNG

Los dispositivos señalados contienen tensiones eléctricas peligrosas, componentes mecánicos rotativos peligrosas (ventiladores) y controlan piezas mecánicas rotativas (Accionamientos). Se producirá la muerte, graves lesiones físicas o importantes daños materiales si no se respetan las instrucciones contenidas en los manuales de instrucciones correspondientes.

Los trabajos en y con estos equipos deberán ser realizados exclusivamente por personal cualificado que se haya familiarizado previamente con todas las instrucciones de seguridad e indicaciones, consejo para montaje, empleo y mantenimiento contenidas en los manuales de instrucciones.

Para asegurar un perfecto y seguro funcionamiento de los equipos es preciso realizar un transporte adecuado, un almacenamiento, instalación y montaje profesionales así como un manejo y mantenimiento minuciosos.

Está prohibido reproducir, transmitir o usar este documento o su contenido a no ser que se disponga de la autorización escrita expresa. Los infractores quedan obligados a indemnizar los posibles daños o perjuicios causados. Se reservan todos los derechos, particularmente los derechos creados por registro de patente o modelo de utilidad o diseño.

Hemos verificado la conformidad del contenido del presente manual con el hardware y el software en él descritos. Como no es posible excluir divergencias no podemos garantizar su completa conformidad. Sin embargo, el contenido de este manual es revisado regularmente; cualquier corrección necesarias se incluirá en la próxima edición. Agradecemos cualquier sugerencia de mejora. SIMOREG ® es una marca registrada de Siemens

Page 3: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

04.05 Edición 01

Siemens AG 3 SIMOREG 6RA70 Aplicación Regulación para un grupo Ward-Leonard

Índice Página

1 Introducción......................................................................................................................... 4 2 Conexiones típicas .............................................................................................................. 5 3 Selección de los componentes............................................................................................ 6 4 Esquema de bloques de regulación, control y vigilancia de SIMOREG para campo de

generador ............................................................................................................................ 8 5 Función de arranque/parada y control del equipo............................................................. 10 6 Parametrización de SIMOREG para campo de motor ...................................................... 12 7 Parametrización SIMOREG para campo de generador .................................................... 13 8 Puesta en servicio .............................................................................................................20

Page 4: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

Edición 01 04.05

4 Siemens AG SIMOREG 6RA70 Aplicación Regulación para un grupo Ward-Leonard

1 Introducción

Hasta principios de 1960 se solían utilizar grupos motor-generador (grupos Ward-Leonard) para conseguir accionamientos de velocidad variable. Un motor síncrono accionaba un generador de corriente continua, el cual alimentaba un motor de corriente continua. La tensión en el rotor del generador se regulaba variando el campo, a fin de obtener una tensión variable para alimentar el motor. El generador actuaba como fuente de tensión variable de alta potencia para el motor. La tensión en el rotor (inducido) del generador se regulaba mediante una alimentación de pequeña potencia para la excitación, con lo cual se conseguía un accionamiento de velocidad variable en el motor. En algunos casos la instalación se ha modernizado suprimiendo el motor síncrono y el generador de corriente continua y alimentando el inducido del motor a través de tiristores. En otros casos, en los que el rendimiento del grupo motor-generador es suficiente y dicho grupo está en buen estado, muchas veces se desea una variante más económica que consiste en modernizar únicamente la regulación.

Para tales aplicaciones puede configurarse un SIMOREG 6RA70 de cuatro cuadrantes, utilizando las funciones estándar y bloques de software libres, para llevar a cabo la regulación completa de un grupo motor-generador. Se implementan las siguientes funciones de regulación:

• regulación de campo del generador • regulación de corriente de inducido • regulación de velocidad del motor • con un 6RA70 adicional, también regulación de campo del motor

La estructura de regulación completa está formada por 3 lazos de regulación. El lazo de regulación interior utiliza el regulador normal de corriente de inducido para regular el campo del generador. El segundo lazo de regulación usa el regulador tecnológico a fin de regular la corriente de inducido del generador. El tercer lazo de regulación se sirve del regulador normal de la velocidad para regular la velocidad del motor. Si adicionalmente se necesita una regulación por debilitamiento de campo, debe utilizarse otro 6RA70 de un cuadrante para regular el campo del motor.

En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del grupo motor-generador con los componentes de software gratuitos del 6RA70 SIMOREG DC Master. En él se ofrecen directrices generales que guíen al usuario en una regulación típica del grupo motor-generador, pero no se describen todos los casos de aplicación posibles. Los bloques funcionales no utilizados de la regulación pueden utilizarse para otras funciones. Para la regulación del campo del generador con un SIMOREG se requiere además el módulo opcional de ampliación de bornes (abreviatura K00) y el software tecnológico opcional en el equipo base (abreviatura S00).

Limitaciones 1. Los ciclos automáticos de optimización (excepto el regulador de la corriente de excitación y

para la regulación de la f.e.m. incluido el registro de características de campo) no se pueden utilizar para esta aplicación.

2. En caso de una avería en el 6RA70 debe utilizarse una vigilancia en el circuito motor-generador. Si se produce un fallo en el SIMOREG que regula el campo del generador, se anulará la corriente de excitación, y si al hacerlo el motor gira puede producirse una sobrecorriente en el inducido. En condiciones de fallo en el convertidor del campo del generador, el SIMOREG no puede regular esta corriente de inducido. En tal caso, cuando existe un mensaje de fallo en la regulación del generador también debe ponerse a cero la consigna de corriente en el SIMOREG del campo del motor.

3. El 6RA70 fue desarrollado para regular la corriente de inducido. No obstante, debido a la flexibilidad en el software también puede utilizarse para regular un grupo motor-generador. Ello requiere, sin embargo, unos ciertos conocimientos acerca de los requisitos del cliente. El circuito de inducido de los equipos SIMOREG se utiliza para regular el campo del generador y del motor.

La regulación descrita en esta documentación de aplicación para grupos motor-generador sólo debe ser utilizada y puesta en servicio por parte de personal cualificado.

Page 5: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

04.05 Edición 01

Siemens AG 5 SIMOREG 6RA70 Aplicación Regulación para un grupo Ward-Leonard

2 Conexiones típicas

X17256 Tx+57 Tx- Peer to Peer G-SST258 Rx+59 Rx-

X17257 Tx-56 Tx+ Peer to Peer G-SST259 Rx-58 Rx+

1C1

1D1

X1648

9

X1746

7

X16410

11

SIOV 1kOhm

G

M

1C1

1D1SIOV 1kOhm

M

X17326-33

Shunt

X1742 P10

4 n-Cons

5

3 N10

1 M

X17134 P24

37 CON / DES1

38 liberación del regulador

X16340 RUN

41 Confirmación de fallos

42 Mx de interruptor automático M-Con

SIMOREG 6RA70 Campo del generador

SIMOREG 6RA70 Campo del motor

5U1 5W1 5N1Alimentación de la

electrónica

1U1 1V1 1W1Parte de potencia

X17134 P24

37 CON / DES1

38 liberación del regulador

emisor deimpulsos

5U1 5W1 5N1Alimentación de la

electrónica

1U1 1V1 1W1Parte de potencia

Amplificadorde aislamiento

Page 6: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

Edición 01 04.05

6 Siemens AG SIMOREG 6RA70 Aplicación Regulación para un grupo Ward-Leonard

3 Selección de los componentes

3.1 SIMOREG para campo de generador El SIMOREG para la excitación del generador debe ser de cuatro cuadrantes. Son necesarios los cuatro cuadrantes para obtener las dos polaridades de la tensión del generador. De este modo es posible hacer funcionar el motor en los dos sentidos de giro. Los equipos SIMOREG también están diseñados para impulsos largos. Con impulsos largos se logra un funcionamiento seguro con altas inductancias. Para impulsos largos debe definirse el parámetro P079 en 1. La intensidad asignada del SIMOREG debe dimensionarse con la máxima corriente de excitación del generador. Para asegurar que la corriente de excitación se reduce a cero antes de un cambio de sentido de par, son necesarios otros impulsos alfa W: Ajuste P179 = 3 a 7 (en función de la inductancia del devanado de excitación). Esto garantiza que la corriente del sentido de par activo se anula antes del cambio de sentido de par, con lo cual se consigue que no haya corriente circulante. SIMOREG debe pedirse con la opción de ampliación de bornes y software tecnológico gratuito. La versión mínima de software para SIMOREG debe ser la 2.13. Referencia de SIMOREG: 6RA70..-6.V62-0-Z; Z = K00+S00

3.2 SIMOREG para campo de motor Si se necesita un SIMOREG separado para el campo de motor, se utiliza un 6RA70 de un cuadrante. Dado que el sentido de giro del motor se determina mediante una tensión bipolar de inducido, el alimentador de excitación del campo del motor puede ser un convertidor de un cuadrante. Referencia de SIMOREG: 6RA70..-6.S22-0

3.3 Amplificadores de aislamiento Los amplificadores de aislamiento son necesarios para adaptar al SIMOREG las señales de corriente y tensión en el inducido del grupo motor-generador. Los amplificadores de aislamiento deben proporcionar una señal de +/-10 V para las magnitudes nominales del grupo de accionamiento.

Amplificadores de aislamiento para la corriente de inducido Para la corriente de inducidor debe utilizarse un amplificador rápido de aislamiento que no atenúe las altas frecuencias para una regulación dinámica de la corriente de inducido. Este amplificador de aislamiento se utiliza junto con un shunt en el circuito de inducido. El aislamiento debe dimensionarse con la tensión máxima de inducido del grupo. El escalado del amplificador de aislamiento debe ser de +/-8 V CC a la corriente límite del motor. De este modo se dispone de una cierta reserva en caso de sobreoscilaciones transitorias.

Amplificadores de aislamiento para tensión del motor y del generador Estos amplificadores de aislamiento se dimensionan con la tensión máxima en el rotor del grupo. La normalización debe ser de +/-8 V a la tensión nominal del motor y del generador. De este modo se dispone de una cierta reserva para sobretensiones transitorias.

3.4 Resistencia paralela al devanado de excitación Si la corriente de mantenimiento es insuficiente, los tiristores se bloquean. Para que entonces no tenga que responder la protección contra sobretensiones, se recomienda poner en paralelo con el devanado de excitación una resistencia <= 1 kOhm. La potencia de la resistencia se calcula a partir de la tensión nominal del campo del generador o del motor. (Pv = U*U/R).

Page 7: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

04.05 Edición 01

Siemens AG 7 SIMOREG 6RA70 Aplicación Regulación para un grupo Ward-Leonard

3.5 Circuito de protección paralelo al circuito de estátor En la salida de los equipos SIMOREG para la alimentación de campo debe preverse un circuito de protección contra sobretensiones. Dicho circuito actuará especialmente en caso de corte de tensión en el lado de la red. El dimensionado se realizará a partir de la energía almacenada en el campo (L*I*I/2).

Para una tensión de red de 230/400 V se aconsejan las siguientes protecciones contra sobretensiones en función de la energía almacenada en el devanado de excitación:

Hasta 400 Ws: Varistor SIOV-B32K460 (fabricante Epcos: http://www.epcos.com ) Hasta 2.000 Ws: Varistor SIOV-B80K460 > 2.000 Ws: E89110-F2439-L1 (protección contra sobretensiones para convertidores de cuatro cuadrantes con tiristores, de Siemens)

Para 460/500 V de tensión de red se recomienda la siguiente protección contra sobretensiones:

Hasta 400 Ws: Varistor SIOV-B32K550 Hasta 2.000 Ws: Varistor SIOV-B80K550 > 2.000 Ws: E89110-B2350-L1 (protección contra sobretensiones para convertidores de un cuadrante con tiristores, de Siemens; para cuatro cuadrantes se utilizan dos de ellos en antiparalelo)

3.6 Fusibles para semiconductores y bobinas de conmutación Los tipos de fusible para semiconductores y bobinas de conmutación pueden consultarse en el catálogo DA21.1.

Page 8: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

Edición 01 04.05

8 Siemens AG SIMOREG 6RA70 Aplicación Regulación para un grupo Ward-Leonard

4 Esquema de bloques de regulación, control y vigilancia de SIMOREG para campo de generador

1 0

10

A/D

A/D

A/D

FB90

U24

0.01

= 1

7:

U24

0.02

=

r004

K001

7

X16

4 .8 .9

X17

4 .4 .5

X17

4 .6 .7

r003

K001

5

A/D

X16

4.1

0

.11

r005

K001

9

U50

8

U51

0

P17

1

P17

2P0

79 =

1P1

79 =

5P1

55 =

Kp

P156

= T

nP1

53 =

3

U48

8 =

KpU

494

= Tn

P601

.03

= 92

54

FB11

4U

484.

01 =

134

U48

0.01

= 1

5

P18

0

P181

P83

= 4

P60

9 =

9210

P20

0P

225

= K

pP

226

= Tn

10

P10

2

P10

3

10P6

16 =

916

1

P61

5 =

402

100%

P275

= K

pP2

76 =

Tn

U16

3 =

9120

U12

0.01

= 1

9

U12

0.02

= 0

U12

0.03

= 9

150

FB20

FB61

U16

4 =

1U

150.

01 =

15

U15

0.02

= 4

01

FB50

K915

0

P257

P081

P081

= 1

K026

8

Run

1P6

64.0

1 =

9355

Con

mut

ació

n a

velo

cida

d re

alU

241

= 93

80

4

0: e

mis

or d

e im

puls

os

13:

taco

ana

lógi

co91

20: v

alor

real

de

la f.

e.m

.

F.e.

m. m

otor

K912

0|F

.e.m

. mot

or|

K91

61

R M

otor

P40

1P6

92.B

OR

In

terr

upto

r cer

rado

cons

igna

de

velo

cida

d

liber

ació

n co

nsig

naG

ener

ador

de

ram

pas

liber

ació

n (d

e M

x1)

P662

.01

= 93

50

Reg

ulad

or d

e ve

loci

dad

P402

con

sign

a de

la f.

e.m

.

|val

or re

al d

e ve

loci

dad|

K016

6

Reg

ulad

or d

e la

corri

ente

de

indu

cido

liber

ació

n: U

500

= 10

4

regu

lado

r de

f.e.m

.

Man

do a

ntic

ipat

ivo

dere

gula

dor d

e f.e

.m.

etap

a de

man

do

conm

utac

ión

aex

cita

ción

en

repo

so

Exci

taci

ón e

n re

poso

debi

litam

ient

ode

cam

po

Del

am

plifi

cado

rde

ais

lam

ient

o,te

nsió

n de

l gen

erad

or

Del

am

plifi

cado

rde

ais

lam

ient

o,co

rrien

te d

e in

duci

dor

Del

am

plifi

cado

rde

ais

lam

ient

o,te

nsió

n de

l mot

or

Rea

limen

taci

ón d

e te

nsió

n de

l gen

erad

or

Cor

rient

ede

l mot

or

Lim

itaci

ón c

orrie

nte

de in

duci

doG

ener

ador

: lim

itaci

ón d

eco

rrien

te d

e ex

cita

ción

Gen

erad

or:

regu

lado

r de

corr

ient

ede

exc

itaci

ón

Cor

rient

e no

min

alde

l cam

po d

el m

otor

Cor

rient

e m

ínim

ade

l cam

pode

l mot

or

Con

sign

a pa

rael

cam

po d

e m

otor

haci

a la

pal

abra

1 d

ela

inte

rfase

Pee

r-to-

Pee

r

Page 9: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

04.05 Edición 01

Siemens AG 9 SIMOREG 6RA70 Aplicación Regulación para un grupo Ward-Leonard

X171.37

U121.01 = 166

U121.02 = 0

U121.03 = 9151

FB21

U193.02 = 9185

FB51U151.01 = 9161

U151.02 = 403 K9151

A

BU194

FB72

|A| < B

U381 = 9166-1

FB181

n = 0B9166

n > 0B9451

U185.02 = 9160U160 = 15

FB60

U161 = 1

A

B

U185.01 = 9181U186

FB70

A < B

U100.01 = 9161F023

FB2

P403

U189.02 = 9183

A

B

U189.01 = 9121

U190

FB71

A < B

U323.01 = 9164

U191

&U323.02 = 9380

U323.03 = 1AS B9380

U101.01= 9353

F024

FB3

U324.01 = 3100

U324.02 = 12

U324.03 = 1

FB123

&

FB124B3100

B9354

U325.01 = 3106

U325.02 = 18

U325.03 = 1

&

FB125B3106

B9355

U351.01 = 3107

U351.02 = 20

U351.03 = 0

OR

FB151B3107

B9381

U320.01 = 22

U320.02 = 1

U320.03 = 1

&

FB120

U322.01 = 9350

U322.02 = 9355

U322.03 = 1

&

FB122

U321.01 = 9350

U321.02 = 9451

U321.03 = 1

&

FB121

U350.01 = 9352

U350.02 = 9351

U350.03 = 0

OR

FB150

B9380

B0012

X163.40

.41

.42

U326.01 = 104

&U326.02 = 9380

U326.03 = 1

P773 = 9356

FB126

P771 = 104

P772 = 107

B0018

B0020

B0022 U380 = 9350

-1

FB180

Mx1B9350

/Mx1FDS2B9450

M

M

M

X163.50

.51

X171.46

.47

.48

.54

Mx1

Mx1

n > 0

AS

U193.01 = 40: emisor de impulsos = 13: taco analógico = 9120: f.e.m.

Control

U196: Histéresis

|f.e.m.|

de Profibus PZD 1 Bit 0

On/Off1-A

de Profibus PZD 1 Bit 6

Run 1

de Profibus PZD 1 Bit 7

Acknowledge 1

AS

CON/DES1

RUN

H = Servicio

L = Fallo

Run1

Servicio

corriente deinducido K0015

K0166Valor real de velocidad(valor absoluto)

Inducido del generador: fallo de sobrecorriente

Señalización velocidad cero

Vigilancia de fallos del tacogenerador

Conmutaciónal captador develocidad real

H = abrir freno de servicioConfirmación

de fallos

Mx de interruptorautomático M-Con

Page 10: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

Edición 01 04.05

10 Siemens AG SIMOREG 6RA70 Aplicación Regulación para un grupo Ward-Leonard

5 Función de arranque/parada y control del equipo

5.1 Secuencia de arranque propuesta Acción Comentario

1 Cerrar el contacto “Con/Des1" Se conectan los reguladores de campo para el motor y el generador. Con ello arranca el regulador, el cual pone a cero voltios la tensión del generador. Con el ajuste indicado, el valor real para el regulador de velocidad es la tensión en el rotor del generador y la consigna principal para la velocidad es cero.

2 Cerrar el interruptor automático "M" del circuito de inducido

Con ello se cierra el lazo de regulación de tensión de inducido mientras la tensión del generador continúa regulada a cero, de modo que no circula corriente.

3 Cerrar el contacto "RUN" Esto libera la consigna de velocidad antes del generador de rampa y elige el valor real del regulador de velocidad. El motor debe empezar a girar por efecto del generador de rampa elegido.

4 Cambiar la consigna de velocidad por el valor deseado.

El motor seguirá la consigna de velocidad.

5.2 Función de parada propuesta Acción Comentario

1 Poner a cero la consigna externa de velocidad o abrir el contacto "RUN".

Si se abre el contacto "RUN", la consigna de velocidad antes del generador de rampa pasa a cero y el accionamiento decelera hasta cero siguiendo la rampa elegida. Cuando la velocidad llega a cero, se selecciona la regulación de tensión.

2 Cada vez que se abre el interruptor del circuito de inducido, la regulación del generador se conmuta a regulación de cero voltios; eso es necesario para la seguridad del generador.

Se selecciona la realimentación de tensión cuando está abierto el contacto "Mx" que indica que el interruptor del circuito de inducido está abierto. Entonces el sistema regulará a cero la tensión del generador.

3 Abrir el contacto "Con/Des1" Con ello se desconecta el regulador y se bloquean los impulsos de disparo (campo del generador cero). El campo del motor también se desconecta a través de la interfase Peer-to-Peer.

4 Abrir el interruptor principal del circuito de inducido

Con ello se abre el circuito de inducido y se impide que haya un flujo de corriente causado por el campo remanente.

Page 11: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

04.05 Edición 01

Siemens AG 11 SIMOREG 6RA70 Aplicación Regulación para un grupo Ward-Leonard

5.3 Funciones de control y vigilancia Función Comentario

1 “Con/Des1" Puede proceder del borne 37 o Profibus En caso de Profibus: borne 37 & bit de Profibus Se transmite a SIMOREG a través de la interfase Peer-to-Peer para el motor para "CON/DES1" simultáneo. "Ein" da al mismo tiempo la liberación del regulador; en esta aplicación no debe utilizarse una liberación del regulador separada. Borne 38 en alto. Aus1 provoca la reducción inmediata de la corriente de SIMOREG a cero y el bloqueo del regulador.

2 “Des2” En esta aplicación, "Des1" tiene el mismo efecto que "Des2". No utilizar "Des2".

3 ”Des3” "Des3" parada rápida no se puede utilizar en esta aplicación. Remedio: Eliminar "Run" y cambiar de generador de rampa a la rampa de deceleración deseada para la parada rápida.

4 "Run" Puede proceder del borne 40 o de Profibus, y corresponde al desbloqueo de la consigna antes del generador de rampa.

5 "Confirmación de fallo”

Puede proceder del borne 41 o Profibus Se transmite a SIMOREG a través de la interfase Peer-to-Peer para el motor para la confirmación conjunta; tras confirmar, preajustar Des1 para pasar al estado de listo para conexión.

6 "Mx" Respuesta del interruptor automático del circuito de inducido a través del borne 42. Mx = señal alta: interruptor automático cerrado Mx = bajo: conmuta a regulación de tensión del generador, bloquea el generador de rampa (salida del generador de rampa a cero) para regulación de tensión del generador de cero voltios. Elige juego de datos de funciones 2 para el regulador de corriente de inducido para el generador.

7 Conmutación a velocidad real“

Se produce si: Mx = alta y hay señal Run, o si Mx = alta y n > cero, (señal "LA"). En caso de conmutación a velocidad real las señalizaciones de fallo del tacogenerador son más precisos.

8 "n = cero" La señalización "n<nmin" no puede utilizarse a causa de la función "Aus1" especial para esta aplicación (incrementar el umbral para nmin). Para "n=cero" se utiliza un detector propio.

9 Señalización de fallo En caso de señalizacionesde fallo en SIMOREG para el generador, la corriente de SIMOREG se pone a cero y ya no es posible su regulación. Esto puede conllevar una corriente del generador inadmisible. Por ello, en este estado se predefine una consiga de cero para el SIMOREG que alimente el campo del motor.

10 Señalización “Servicio”

Con "Servicio" se emite la señal alta a través del borne 46.

11 Señalización "Fallo" Con mensaje de fallo en SIMOREG se emite la señal baja a través del borne 48. En caso de señalización de fallo en el SIMOREG del campo del motor, el mensaje de consigna de corriente a la regulación del generador pasa a ser cero, y ésta se desconecta con F005.

12 Señalización del freno

El mando del freno integrado en el software SIMOREG no se puede utilizar para esta aplicación. Remedio: cerrar el freno de servicio con: estado NO "Servicio", interruptor automático "M" abierto, anulación de "Run" con “n=cero”, abrir el freno de servicio: borne 50 = alto

13 Profibus La 1ª palabra PZD del Profibus siempre debe ser la palabra de mando 1. Para ello debe estar definido el bit 10 de la palabra de mando a fin de que los datos de proceso se evalúen en SIMOREG. Para el control no se utiliza la palabra de mando completa, sino que se seleccionan y preparan pertinentemente sólo los bits relevantes para esta aplicación. Consigna a través de Profibus palabra 2 PZD.

Page 12: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

Edición 01 04.05

12 Siemens AG SIMOREG 6RA70 Aplicación Regulación para un grupo Ward-Leonard

6 Parametrización de SIMOREG para campo de motor

A pesar de que los equipos SIMOREG se suministran con un ajuste de fábrica, primero debe ejecutarse la función "Establecer ajuste de fábrica". De este modo se asegura que todos los parámetros SIMOREG se encuentren según el ajuste estándar correcto. "Establecer ajuste de fábrica": P051 = 21. Después de "Ajuste parámetros generales" debe realizarse el ciclo de optimización del regulador de corriente P051 = 25, y sólo entonces realizar "Ajuste del resto de parámetros". Para el ciclo de optimización del regulador de corriente: Debe utilizarse el borne 37 para "CON/DES1".

Ajuste de parámetros generales Parámetro Significado P051 = 40 Ajuste de los parámetros clave a 40, permite la modificación de parámetros P076.01 = Adaptación de la corriente nominal del equipo del inducido (corriente de excitación del

motor) P078.01 = Tensión nominal de la red de alimentación para 1U1/1V1/1W1 P079 = 1 Impulsos largos seleccionados P082 = 0 Campo interno no utilizado, el circuito de inducido sirve para la alimentación de campo P083 = 4 Velocidad real libremente cableable P086 = 0 Sin rearranque automático P100= Corriente nominal del campo P110 = Resistencia del campo del motor, se ajusta mediante el ciclo de optimización del

regulador de corriente P111 = Inductancia del campo del motor, se ajusta mediante el ciclo de optimización del

regulador de corriente P153 = 3 Mando anticipativo de la f.e.m. con alimentación de campo P155 = Kp regulador de corriente: se ajusta mediante el ciclo de optimización del regulador de

corriente P156 = Tn regulador de corriente: se ajusta mediante el ciclo de optimización del regulador de

corriente P179 = Impulsos alpha W adicionales: de 3 a 7 en función de la inductancia del campo del motor P609 = 0 Fuente de velocidad real P820.07 = 42 Inhibir fallo en el tacogenerador Ajuste del resto de parámetros Parámetro Significado P084 = 2 Funcionamiento con regulación de corriente P601.03 = 6001 Consigna de corriente de la 1ª palabra de recepción a través de la interfase Peer-to-Peer P790 = 5 Selección Peer-to-Peer P791 = 2 2 palabras a través de la interfase Peer-to-Peer P793 = 13 Velocidad de transmisión recomendada 187,5 kBd P794.01 = 116 Valor absoluto de intensidad real como 1ª palabra de emisión a través de la interfase

Peer-to-Peer P794.02 = 32 Palabra de estado como 1ª o 2.ª palabra de emisión a través de la interfase Peer-to-Peer P795.01 = 1 Conectar final de bus P797 = 0,3 Tiempo de avería de telegrama Peer-to-Peer 0,3 s P654.01 = P654.01 = 6200: "CON/DES1" (de generador "On/Off1-A") a través de la interfase Peer-

to-Peer Palabra de recepción 2 bit 0 y borne 37: ajuste recomendado P654.01 = 1: CON/DES1 sólo a través del borne 37

P665.01 = 6201 Confirmación de fallos a través de la palabra de recepción 2 bit 1 de la interfase Peer-to-Peer (de generador Acknowledge1)

P666.01 = 10 Confirmación de fallos a través del borne 36 sólo necesaria si no hay confirmación a través de la interfase Peer-to-Peer

Page 13: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

04.05 Edición 01

Siemens AG 13 SIMOREG 6RA70 Aplicación Regulación para un grupo Ward-Leonard

7 Parametrización SIMOREG para campo de generador

A pesar de que los equipos SIMOREG se suministran con un ajuste de fábrica, primero debe ejecutarse la función "Establecer ajuste de fábrica". De este modo se asegura que todos los parámetros SIMOREG se encuentren según el ajuste estándar correcto. "Establecer ajuste de fábrica": P051 = 21

Tras ajustar los parámetros generales y los parámetros para el generador del regulador de campo, debe realizarse un ciclo de optimización del regulador de corriente con P051 = 25 antes de introducir el resto de parámetros.

El ciclo de optimización del regulador de corriente sólo es posible partiendo del ajuste de fábrica para el cableado de la estructura del regulador. El cambio de cableado en la estructura del regulador necesario para esta aplicación no debe realizarse hasta haber terminado el ciclo de optimización del regulador de corriente.

En primer lugar deben ajustarse todos los parámetros del juego de datos de funciones 1. Después de ajustar los parámetros para SIMOREG y de llevar a cabo las optimizaciones, debe copiarse el juego de datos de funciones 1 en el 2, y a continuación ajustar los parámetros para el juego de datos de funciones 2. Selección de copiar mediante P055. P055 = 112: copiar el juego de datos 1 en el juego de datos 2.

Ajuste de parámetros generales Parámetro Significado P051 = 40 Ajuste de los parámetros clave a 40, permite la modificación de parámetros P076.01 = Adaptación de la corriente nominal del equipo del inducido (corriente de excitación del

generador) P078.01 = Tensión nominal de la red de alimentación para 1U1/1V1/1W1 P079 = 1 Impulsos largos seleccionados P086 = 0 Sin rearranque automático P082 = 21 Alimentador de excitación externo para alimentar el campo del motor;

emisión de valor de consigna al campo del motor tras comando Ein. P097 = 0 (Conservar el ajuste de fábrica). En caso de señalización de fallo debe prescribirse la

consigna de corriente 0 en el campo del motor. A partir de la versión de software 2.13 P100 = Corriente nominal del campo del generador P102= Corriente nominal del campo del motor U838 = Aquí debe ajustarse el valor de r072.02 del SIMOREG del campo del motor P179 = P179 = 3 a 7 en función de la inductancia del campo del generador Regulador de campo del generador Parámetro Significado P110 = Resistencia del campo del generador, se ajusta durante el ciclo de optimización del

regulador de corriente. P111 = Inductancia del campo del generador, se ajusta durante el ciclo de optimización del

regulador de corriente. P155 = Kp del regulador de corriente, se ajusta mediante el ciclo de optimización del regulador

de corriente. P156 = Tn del regulador de corriente, se ajusta mediante el ciclo de optimización del regulador

de corriente. P153 = 3 Mando anticipativo de la f.e.m. con alimentación de campo P179 = Impulsos alpha W adicionales 3 a 7

en función de la inductancia del campo del generador P601.03 = 9254 Salida del regulador tecnológico como consigna de corriente para el campo del

generador del regulador (regulador de corriente de inducido SIMOREG); sólo después de terminar el ciclo de optimización para el regulador de campo ajustar el generador con P051 = 25.

Page 14: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

Edición 01 04.05

14 Siemens AG SIMOREG 6RA70 Aplicación Regulación para un grupo Ward-Leonard

Regulador de corriente de inducido para el generador mediante regulador tecnológico FB114 Parámetro Significado U488.01 = 0,1 Ganancia proporcional para el regulador de corriente de inducido. Debe optimizarse

manualmente. U494.01 = 0,5 Tiempo de acción integral para el regulador de corriente de inducido. Debe optimizarse

manualmente. U508 = Límite positivo de corriente de campo del generador. Escala 100% = r072.02 corriente

U508.F = P100/r072.02 * 100% U510 = Límite negativo de corriente de campo del generador. Escala 100% = r072.02 corriente

U510.F = P100/r072.02 * 100% (indicar valor positivo) U480.01 = 15 Seleccionado como valor real de corriente de inducido, señal a través del borne 6/7 para

entrada FB114 U484.01 = 134 Se ha elegido la salida del regulador de la velocidad como consigna de corriente de

inducido del generador. U500 = 104 Desbloqueo del regulador tecnológico con el estado „Servicio“. Regulador de corriente de inducido para el generador, juego de datos de funciones 2 Parámetro Significado U488.02 = 1 Kp regulador de corriente de inducido, juego de datos de funciones 2, con regulación de

tensión estando abierto el interruptor automático del circuito de inducido. U504.02 = 0 Puesta a cero del componente integral con juego de datos de funciones 2, con regulación

de tensión estando abierto el interruptor automático del circuito de inducido. Consigna de velocidad y generador de rampa Parámetro Significado P433 = P433 = 11 Consigna de velocidad a través de los bornes 4 y 5 (ajuste de fábrica).

P433 = 3002 Consigna de velocidad a través de la palabra PZD 2 de Profibus; bit 14 (4000Hex) corresponde al 100%, bit n.º 15 (MSB) definido significa consigna negativa.

P639.01 = 0 En transición al estado „Servicio“ (flanco Ein) se pone a cero la salida del generador de rampa.

P662.01 = 9350 Con "Mx1" = High de B9350 se desbloquea el generador de rampa. P664.01 = 9355 Desbloqueo de la consigna antes del generador de rampa mediante "Run1". P303 = 20 Tiempo de aceleración del generador de rampa, ajuste en función de las condiciones de

la instalación. P304 = 10 Tiempo de deceleración del generador de rampa, ajuste en función de las condiciones de

la instalación. P305 = 2 Redondeo inicial del generador de rampa, ajuste en función de las condiciones de la

instalación. P306 = 2 Redondeo final del generador de rampa, ajuste en función de las condiciones de la

instalación. Regulador de la velocidad Parámetro Significado P083 = 4 Elige la velocidad real de un valor libremente cableado a través de P609. P169 = 0 P180/P181 actúa como límite de intensidad. P180 = Límite positivo de corriente de inducido, 100% es el valor real nominal positivo del shunt. P181 = Límite negativo de corriente de inducido, -100% es el valor real nominal negativo del

shunt. P200 = 20 Tiempo de filtro para la velocidad real 20 ms, ajuste según las necesidades de la

instalación. P225 = 10 Ganancia proporcional para el regulador de la velocidad; optimización manual. P226 = 0.5 Tiempo de acción integral para el regulador de la velocidad, optimización manual. P609 = 9210 Selección de la velocidad real del conmutador libre FB90. U240.01 = 17 Valor real de tensión del generador de los bornes 8 y 9 en la entrada 0

del conmutador FB90. Corrección de valor real mediante adaptación de los amplificadores de aislamiento en los bornes 8 y 9 y P721.

Page 15: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

04.05 Edición 01

Siemens AG 15 SIMOREG 6RA70 Aplicación Regulación para un grupo Ward-Leonard

U240.02 = Velocidad real en la entrada 1 de FB90.

U240.02 = 40: Velocidad real del emisor de impulsos, ajuste P140 a P148. U240.02 = 13: Velocidad real de los bornes del tacogenerador analógico 103 y 104. Debe realizarse la corrección de velocidad real mediante P741. U240.02 = 9120 Servicio sin captador de velocidad real; para ello se utiliza la tensión de motor de los bornes 10 y 11 menos I*R (valor real de f.e.m., K9120). El valor real de f.e.m. proporciona mayor exactitud en la velocidad que la mera tensión en el rotor, ya que considera la caída de tensión en la resistencia. Corrección de valor real mediante adaptación de los amplificadores de aislamiento en los bornes 10 y 11 y P731. En este modo de operación no es posible que se debilite el campo en función de la f.e.m.

Cálculo de la f.e.m. para debilitamiento de campo, vigilancia de fallos del tacogenerador o servicio sin tacogenerador Parámetro Significado U120.01 = 19 Tensión en el rotor del motor en la entrada+ 1 del sumador FB20. U120.02 = 0 No se suma ningún valor en la entrada+ 2. U120.03 = 9150 Caída de tensión en la resistencia calculada mediante multiplicador FB50 en entrada– de

sumador FB20. U150.01 = 15 Corriente de inducido del generador en el 1.er factor del multiplicador FB50. U150.02 = 401 Valor fijo K401: ajuste a través de P401 de la resistencia R en el 2.º factor FB50. P401 = 4 Valor típico 4%, factor de resistencia del inducido en % de la caída de tensión

en la resistencia, ajuste en función de las condiciones de la instalación. U163 = 9120 Salida K9120 de FB20 corresponde al valor real de la f.e.m. Bipolar y se alimenta a la

entrada de la función valor absoluto FB61. U164 = 1 Se genera el valor absoluto positivo, salida de FB61, K9161 es

valor real de f.e.m. absoluto. Regulación por debilitamiento de campo del motor Parámetro Significado P081 = P081 = 0 sin debilitamiento de campo dependiente de la f.e.m., parámetros siguientes

para debilitamiento de campo y característica de debilitamiento de campo irrelevantes. P081 = 1 ajuste según entrada automática de características de campo con P051 = 27, si se desea debilitamiento de campo en función de la f.e.m.

P275 = 0.6 Ganancia proporcional del motor del regulador de f.e.m.; se optimiza automáticamente con P051 = 27.

P276 = 0.2 Tiempo de acción integral del motor del regulador de f.e.m.; se optimiza automáticamente con P051 = 27.

P616 = 9161 Valor absoluto de valor real de f.e.m. de FB61 salida K9161 como valor real para el regulador de f.e.m.

P615 = 402 Valor fijo K402 ajuste a través de P402, como consigna para el regulador de f.e.m. P402 = 96 Debe definirse la consigna de f.e.m. en la tensión nominal del motor menos I*R,

típicamente el 96%, el 100% corresponde a la tensión nominal del motor. Ajuste en función de las condiciones de la instalación.

Característica de debilitamiento de campo Parámetro Significado P117 = Palabra de mando "Feldkennlinie aufgenommen", se ajusta automáticamente según

P051 = 27; en caso de entrada manual de característica según el ajuste debe definirse la característica P117 en 1.

P118 = F.e.m. nominal del motor con P051 = 27 ajustada automáticamente; el valor no es correcto para esta aplicación, ya que se deriva de P078.01 SIMOREG.

P119 = Velocidad nominal en % de nmax, con P051 = 27 ajustado automáticamente. P120 bis P139 Puntos de la característica de campo, con P051 = 27 ajustado automáticamente.

Page 16: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

Edición 01 04.05

16 Siemens AG SIMOREG 6RA70 Aplicación Regulación para un grupo Ward-Leonard

Inducido del generador: evaluación de fallos de sobrecorriente: mensaje de fallo F023 Parámetro Significado U160 = 15 Valor real de corriente de inducido K0015 en función valor absoluto FB60. U161 = 1 Selección de valor absoluto positivo. U185.01 = 9181 Umbral para mensaje de sobrecorriente en la entrada A del detector FB70. U185.02 = 9160 Salida valor absoluto de intensidad real de FB60 en la entrada B de FB70. U186 = 115 Debe definirse el umbral para mensaje de sobrecorriente en el 115%, máximo posible

125%, ajuste en función de las condiciones de la instalación.

U100.01 = 9161 La salida de FB70 se conecta al indicador de fallo libre FB2, en caso de sobrecorriente se dispara F023

Vigilancia de fallos del tacogenerador: mensaje de fallo F024 Parámetro Significado U121.01 = 166 Valor absoluto de la velocidad real en la entrada+ 1 de sumador FB21. U121.02 = 0 Entrada+ 2 de FB21 no utilizada. U121.03 = 9151 Salida del multiplicador FB51 en la entrada– 3 de FB21. U151.01 = 9161 |f.e.m.| en el multiplicador de la entrada 1 de FB51. U151.02 = 403 K0403 (ajuste contenido a través de P403) en la entrada 2 de FB51. P403 = Introducción del margen de debilitamiento de campo para vigilancia

(1/tasa de debilitamiento de campo * 100%); ajuste sin debilitamiento de campo 100%, p. ej. ajuste con margen de debilitamiento de campo 3:1 = 1/3 * 100 = 33%.

U189.01 = 9121 Salida de FB21 en la entrada A del detector FB71. En modo normal la señal es cero o positiva. Una señal negativa inferior a U190 provoca fallo del tacogenerador. Salida A < B de FB71 es High.

U189.02 = 9183 Valor de comparación K9183 (ajuste contenido a través de U190) en la entrada B de FB71.

U190 = -5 Selecciona -5% como umbral para la vigilancia del tacogenerador. Ajuste del valor en función de las condiciones de la instalación p. ej. -10% es menos sensible que –5%.

U191 = 10 Tiempo de filtro reducido 10 ms para la vigilancia del tacogenerador. U323.01 = 9164 Salida FB71 A < B a la entrada 1 de la "Y" lógica FB123 U323.02 = 9380 Señal "LA": B9380 a FB123 entrada 2,

en caso de conmutación a velocidad real la vigilancia es más precisa. U323.03 = 1 Señal alta a FB123 entrada 3 U101.01 = 9353 Salida FB1234: B9353 = alta dispara fallo del tacogenerador F024 Supresión de fallos Parámetro Significado P820.07 = 42 Suprime el fallo interno del tacogenerador, ya que la evaluación no funciona

correctamente con alimentación de campo. U100.01 = 0 Suprime el fallo de la corriente de inducido del generator F023 si se desea. U101.01 = 0 Suprime el fallo del tacogenerador F024 si se desea;

con regulación de velocidad sin captador de velocidad real se suprime F024. Mensaje de velocidad cero Parámetro Significado U193.01 = Velocidad real a detector FB72 entrada A

U193.01 = 40 con modo de captador U193.01 = 13 con tacogenerador analógico U193.01 = 9120 con servicio sin tacogenerador (sólo válido si el campo del motor está en servicio)

U193.02 = 9185 K9185 (contenido de U194) como umbral de vigilancia en entrada B de FB72 U194 = Debe ajustarse el umbral para mensaje de velocidad cero en aprox. 0,5 – 3%: en caso de

servicio sin tacogenerador, deben ajustarse valores mayores. U196 = 0,5 Histéresis para mensaje de velocidad cero 0,5%. U381 = 9166 Salida de FB72: |A| < B: B9166 (alta con n = cero) a convertidor FB181

B9451 salida de FB181 (alta con n > cero)

Page 17: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

04.05 Edición 01

Siemens AG 17 SIMOREG 6RA70 Aplicación Regulación para un grupo Ward-Leonard

Escala de las entradas analógicas Parámetro Significado P711 = 125% Escala para entrada analógica 1 para 100% a r003 si hay 8 V en los

bornes 6 y 7 P717 = 14 Resolución de 14 bits con 3,5 ms de tiempo de medición en entrada analógica 1 P721 = 125% Escala para entrada analógica 2 para 100% a r004 si hay 8 V en los

bornes 8 y 9 P731 = 125% Escala entrada analógica 3 al 100% a r005 si hay 8 V en los bornes 10 y 11 Control: CON/DES1 Parámetro Significado U324.01 = U324.01 = 3100: "CON/DES1" mediante palabra PZD 1 bit 0 de Profibus a

la entrada 1 de la "Y" lógica FB124 "CON/DES1" mediante palabra de mando 1 de Profibus y borne 37 U324.01 = 1: Señal Ein sólo mediante el borne 37

U324.02 = 12 Señal Ein borne 37 en entrada 2 FB124 U324.03 = 1 Debe definirse entrada 3 de FB124 en alta. P654.01 = 9354 "Ein" con salida FB124 (On/Off1-A) B9354 señal alta P370 = 199,99 Debe incrementarse el mensaje n < nmin. Esto es necesario para que funcione

correctamente "Aus1" para esta aplicación. Control: Run (desbloqueo de consigna antes del generador de rampa) Parámetro Significado U325.01 / .02 = U325.01 = 3106 y U325.02 = 18: "Run" mediante

Profibus palabra PZD 1 bit 6 y borne 40 U325.01 = 1 y U325.02 = 18: "Run" sólo mediante el borne 40 U325.01 = 3106 y U325.02 = 1: "Run" sólo mediante Profibus

U325.03 = 1 Señal alta a FB125 entrada 3 Control: Confirmación de fallos Parámetro Significado U351.01 = 3107 Selección Profibus palabra PZD 1 bit 7 a la entrada 1 de la "O" lógica FB151 U351.02 = 20 Selección borne 41 en entrada 2 FB151 U351.03 = 0 Señal baja en entrada 3 FB151 P665.01 = 9381 Salida FB151 B9381 (Acknowledge 1) a SIMOREG palabra de control 1 bit 7

Confirmación de fallos mediante Profibus o borne 41 Control: conmutación al captador de velocidad real y juego de datos de funciones 2 Parámetro Significado U320.01 = 22 Señal del borne 42 ("Mx") en la entrada 1 de la "Y" lógica FB120 U320.02 = 1 Señal alta en entrada 2 FB120 U320.03 = 1 Señal alta en entrada 3 FB120 U380 = 9350 Salida FB120 B9350 en entrada convertidor FB180 P676.01 = 9450 Salida de FB180: "/Mx1", B9450 a palabra de mando 2 bit 16 (selección juego de datos

de funciones bit 0), "/Mx1" = H selección FDS 2 U321.01 = 9350 Salida de FB120 "Mx1" en entrada 1 de la "Y" lógica FB121 U321.02 = 9451 Salida FB181 "n>Null" en entrada 2 FB121 U321.03 = 1 Señal alta en entrada 3 FB121 U322.01 = 9350 Salida de FB120 "Mx1" en entrada 1 de la "Y" lógica FB122 U322.01 = 9355 Salida de FB125 "Run1" en entrada 2 FB122 U322.03 = 1 Señal alta en entrada 3 FB122 U350.01 = 9352 Salida FB122 en entrada 1 de la "O" lógica FB150 U350.02 = 9351 Salida FB121 en entrada 2 FB150 U350.03 = 0 Señal baja en entrada 3 FB150 U241 = 9380 "AS" B9380 = alta para conmutación a captador de velocidad real mediante FB90 de

lógica de mando FB150

Page 18: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

Edición 01 04.05

18 Siemens AG SIMOREG 6RA70 Aplicación Regulación para un grupo Ward-Leonard

Parámetros para enlace Peer-to-Peer mediante G-SST2 Parámetro Significado P790 = 5 Selección Peer-to-Peer para G-SST2. P791 = 2 Dos palabras a través de la interfase Peer-to-Peer. P793 = 13 Velocidad de transmisión recomendada 187,5 kBd. P795.01 = 1 Conectar final de bus. P797 = 0,3 Tiempo de avería de telegramas Peer-to-Peer. P794.01 = 268 Selecciona consigna de corriente de campo del motor como 1ª palabra de emisión a

través de la interfase Peer-to-Peer. P612.01 = 6001 Selecciona consigna de corriente de campo del motor de 1ª palabra de recepción a

través de la interfase Peer-to-Peer. Esto es válido para el registro de características de campo, así como para la vigilancia del campo del motor. Si falla la corriente del rotor para el motor se emite F005.

U117.01 = 9354 Ein de "On/Off1-A": B9354 a convertidor binector/conector bit 0 U117.02 = 9381 B9381 confirmación de fallo (Acknowledge1) a convertidor binector/conector bit1 P794.02 = 6020 K6020 de convertidor binector/conector como 2.ª palabra de emisión a través de la

interfase Peer-to-Peer. Parámetros para las salidas binarias Parámetro Significado P771 = 104 Señalización “Servicio“ mediante borne 46, en estado “Servicio“ (SIMOREG genera

corriente) se emite la señal alta. P772 = 107 Señalización “Fallo“ mediante el borne 48; si existe un mensaje de fallo se emite la señal

baja. U326.01 = 104 Mensaje de servicio a la "Y" lógica FB126 entrada 1 U326.02 = 9380 Señal "AS" a FB126 entrada 2 U326.03 = 1 Señal alta a FB126 entrada 3 P773 = 9356 Salida de FB126 a salida binaria borne 50

Señal alta a borne 50: abrir "Betriebsbremse" Parámetros para los bloques libres FBxxx Parámetro Significado U950 – U952 Debe ajustarse el segmento de tiempo T0 para el cálculo de los bloques libres utilizados

(definición del contenido del parámetro = 1). Se utilizan los siguientes FB: FB2, FB3, FB20, FB21, FB50, FB51, FB60, FB61, FB70, FB71, FB72, FB90, FB114, FB120, FB121, FB122, FB123, FB124, FB125, FB126, FB150, FB151, FB180, FB181

U969 = 2 Ajuste automático del orden óptimo de ejecución. U969 = 4 Activación/desactivación automática Parámetros para Profibus Parámetro Significado P918 = Ajuste de la dirección Profibus P927 = 7 La parametrización puede realizarse mediante PMU, G-SST1 o Profibus. U722.01 = 500 En caso de fallo del bus > 500 ms se produce el mensaje de fallo F082. Si U722.01 = 0

no se produce desconexión por fallo en SIMOREG, los datos de proceso se congelan en caso de fallo del bus y la instalación sólo puede desconectarse a través del borne 37. Se recomienda ajustar un tiempo de vigilancia suficiente.

U734.01 = 32 La 1ª palabra de emisión a Profibus es la palabra de estado de SIMOREG para el generador.

U734.02 = 167 La 2ª palabra de emisión a Profibus es la velocidad real. U734.03 = 6002 La 3ª palabra de emisión a Profibus es la palabra de estado de SIMOREG para el motor,

transferida a través de la palabra 2 de la interfase Peer-to-Peer.

Page 19: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

04.05 Edición 01

Siemens AG 19 SIMOREG 6RA70 Aplicación Regulación para un grupo Ward-Leonard

Parámetros de visualización Parámetro Significado r003 Corriente de inducido del generador. r004 Tensión del generador del inducido. r005 Tensión del motor. r029 Consigna de velocidad antes del desbloqueo de consigna. r028 Consigna de velocidad después del desbloqueo de consigna en la entrada del generador

de rampa. r027 Consigna de velocidad en la entrada del regulador de la velocidad. r025 Velocidad real antes del filtro P200. r021 Consigna de corriente de inducido del generador tras la limitación P180. n017 Regulador de corriente de inducido del generador FB114 consigna. n016 Regulador de corriente de inducido del generador FB114 valor real. n019 Consigna de corriente de excitación del generador después de la limitación de consigna

U508. r020 Consigna de corriente de excitación del campo del generador tras la limitación P171. r018 Ángulo de control inducido SIMOREG. r019 Valor real de la corriente de excitación del generador (valor real de corriente de inducido

SIMOREG). r036 Consigna de corriente de excitación para campo del motor.

Page 20: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

Edición 01 04.05

20 Siemens AG SIMOREG 6RA70 Aplicación Regulación para un grupo Ward-Leonard

8 Puesta en servicio

8.1 Revise el sistema ya existente Deje funcionar el sistema antiguo y anote las polaridades y los valores nominales: a) Polaridad y corriente nominal del campo del generador y del motor b) Tensión de inducido c) Corriente de inducido d) Velocidad real e) Consigna de velocidad

8.2 Conexiones Desconecte el grupo Ward-Leonard. Desmonte el cableado existente y cablee el nuevo SIMOREG 6RA70 según se describe en el capítulo 2 "Conexiones típicas".

8.3 Corrección del offset de los amplificadores de aislamiento Antes de su utilización es necesario eliminar el offset de los amplificadores de aislamiento y comprobar su polaridad. Para ello deben emplearse tensiones de prueba adecuadas a fin de simular los valores reales.

Amplificador de aislamiento de la corriente de inducido

En lugar del shunt debe generarse una señal en mV (tensión de prueba) según el valor máximo de la corriente. Debe comprobarse la polaridad y la corrección del amplificador. El valor inicial del amplificador de aislamiento debe ser positivo para el giro en sentido positivo.

Corrija el amplificador de aislamiento de modo que haya 8 V CC si los mV de la señal de prueba coinciden con el límite de intensidad (máxima corriente deseada en el generador). La tensión en el borne 6 debe ser superior a la del borne 7.

r003 debe indicar +100%. Corrija el valor con P711 para que quede exactamente a 100%.

Al invertir la señal de prueba, r003 debe indicar -100%.

Retirar la tensión de prueba y conectar el shunt.

Amplificador de aislamiento de la tensión del generador

Desconecte el cable del amplificador de aislamiento conectado a la tensión en el rotor y genere una tensión de prueba igual a la tensión nominal del generador. La polaridad de la tensión de prueba debe coincidir con la de la tensión del generador para que haya giro en sentido positivo. Corrija el amplificador de aislamiento en +8 V CC en la salida. La tensión del borne 8 debe ser superior a la del borne 9.

El parámetro r004 debe indicar ahora +100%. Realice la corrección con P721 en el +100% para r003. Al invertir la polaridad de la señal de prueba, r003 debe indicar -100%.

Retire la tensión de prueba y restablezca el cableado de la tensión en el rotor.

Amplificador de aislamiento de la tensión del motor

Retire el cableado entre el inducido del motor y el amplificador de aislamiento y genere una tensión de prueba igual a la tensión nominal del inducido del motor. La polaridad de la tensión de prueba debe coincidir con la tensión del inducido de motor para que haya giro en sentido positivo. Corrija el amplificador de aislamiento en +8 V CC salida. La tensión del borne 10 debe ser superior a la del borne 11.

r005 debe indicar +100%. Corrija P731 para que r005 indique +100%. Invierta la polaridad de la señal de prueba; r005 debe indicar -100%.

Restablezca el cableado del amplificador de aislamiento con el inducido del motor.

Page 21: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

04.05 Edición 01

Siemens AG 21 SIMOREG 6RA70 Aplicación Regulación para un grupo Ward-Leonard

8.4 Entrada de parámetros Tras realizar el cableado necesario deben introducirse los parámetros. Primero deben introducirse sólo los parámetros generales y los parámetros para el regulador de campo del generador; después deben optimizarse los reguladores de corriente para los campos del motor y del generador. Para optimizar el regulador de corriente de inducido del generador y el regulador de la velocidad deben introducirse primero el resto de parámetros. Las indicaciones siguientes sirven de orientación para una puesta en servicio adecuada.

8.5 Optimización de los campos del motor y del generador Para ello es necesario detener el generador y abrir el interruptor automático "M".

Ciclo de autooptimización

Los reguladores de corriente de excitación para el generador y el motor deben optimizarse. Esto puede efectuarse con el generador y el motor parados (para ello tiene que estar abierto el interruptor automático de la tensión en el rotor) con ayuda del ciclo de optimización del regulador de corriente con P051 = 25. Durante el ciclo de optimización del regulador de corriente puede aparecer el mensaje de fallo F050. Si se presenta F050, confirme el mensaje de fallo y lea el parámetro de diagnóstico r047.01. Si el contenido es igual a 29, 30 o 31, no es necesaria ninguna otra medida: a pesar de todo, el regulador de corriente se ha optimizado correctamente para unos requisitos dinámicos medios. Tras el ciclo de optimización debe comprobarse el tiempo de subida de la corriente de excitación, y en caso límite optimizarse manualmente. Para la dinámica del conjunto de la instalación es necesario que el lazo de regulación interior de los reguladores de corriente de excitación muestre un buen comportamiento de transición.

Corrección manual Ajuste P601.03 provisionalmente en la entrada de consigna deseada a fin de obtener un valor de corriente de excitación básico del 25% del campo nominal; adicionalmente, aplique saltos de corriente del 2%. A continuación, corrija P155 y P156 para lograr un tiempo de subida de aprox. 20 ms. Los valores típicos son P155 = 10 y P156 = 0,1 s.

El montaje de prueba siguiente para la parametrización puede utilizarse para la señal en escalón. P601.03 = 208 del generador rectangular (véase el capítulo 8, hoja G128 de las instrucciones de servicio) para la consigna de prueba. Compruebe la respuesta a un escalón de la corriente en los bornes 12 y 13.

Si ha terminado la optimización del regulador de corriente de excitación, compruebe en el circuito del generador si al invertir la consigna de corriente de excitación funciona como es debido la inversión de corriente en el campo del generador. (Realice los ajustes de P179 de modo que no haya corriente en el circuito.)

Verifique la polaridad de la corriente de inducido para funcionar hacia delante. Detenga 6RA70 y para el paso siguiente: prepare la regulación de la corriente de inducido.

8.6 Optimización del regulador de corriente de inducido El regulador de corriente de inducido debe optimizarse de forma manual. Esta operación puede realizarse mediante el generador de prueba descrito en la regulación de la corriente de excitación. Para compensar el regulador de corriente de inducido es preciso que funcione el grupo motor-generador y que esté cerrado el interruptor del circuito de inducido. El regulador de la corriente de excitación para el motor debe estar desconectado mediante P082 = 0 en el alimentador de excitación para el generador; de este modo sólo se aplica un par muy pequeño. El rotor del motor debe bloquearse para que no gire a causa del campo remanente.

¡Proceda con mucho cuidado! Debe prescribirse una consigna de corriente pequeña del 0 al 1%. Verifique que la corriente no asciende a un valor mayor. Los errores de polaridad en el amplificador de aislamiento pueden provocar una corriente elevada en el generador. Corrija la ganancia a través de U488 y del tiempo de acción integral a través de U494. El tiempo de subida debe ser de aprox. 50 ms. Los valores empíricos son U488 = 0,1 y U494 = 0,5 s.

Una vez efectuada la optimización, defina P082 con el valor correcto en el alimentador de excitación para el generador y conecte el SIMOREG del campo del motor.

Page 22: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

Edición 01 04.05

22 Siemens AG SIMOREG 6RA70 Aplicación Regulación para un grupo Ward-Leonard

8.7 Optimización del regulador de la velocidad La optimización del regulador de la velocidad debe realizarse de forma manual. Esta operación puede realizarse mediante el generador de prueba descrito en la optimización de la corriente de excitación. Para optimizar el lazo de regulación de la velocidad es preciso que esté cerrado el interruptor de tensión en el rotor y que esté en servicio el grupo motor-generador; además, deben estar presentes los campos del motor y del generador.

Aplique una consigna pequeña y verifique que la velocidad no presenta un error por integración. Corrija la consigna de velocidad y la velocidad real.

Corrija la ganancia P225 y el tiempo de acción integral P226. El tiempo de subida para el lazo de regulación de la velocidad debe ser de aprox. 250 ms. Valores empíricos: P225 = 10 y P226 = 0,5s.

Debe verificarse la función de la regulación con cero voltios de tensión en el rotor con el interruptor del circuito de inducido cerrado.

8.8 Regulador de f. e m. para motor (regulación por debilitamiento de campo) La característica de campo se puede registrar automáticamente a través de P051 = 27. Eso requiere aprox. 1 min y el motor mientras tanto gira hasta el 80% de la velocidad máxima. En caso de debilitamiento de campo siempre se necesita un tacogenerador o captador.

8.9 Regulación a cero voltios de tensión en el rotor estando abierto el interruptor automático "M" del circuito de inducido Una vez realizadas las parametrizaciones anteriores, debe copiarse el juego de datos de funciones 1 en el 2 mediante P055. Acto seguido debe ajustarse U488.02 = 1 y U504.02 = 0 y verificarse el correcto funcionamiento de la regulación de cero voltios estando abierto el interruptor automático del circuito de inducido.

Page 23: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del
Page 24: SIMOREG DC Master - support.industry.siemens.com · En este documento de aplicación se describen los ajustes necesarios de parámetros a fin de llevar a cabo una regulación del

Edición 01 04.05

SIMEA Siemens Industrial Manufacturing, Engineering and Applications

Postfach 83, A-1211 Wien

© Siemens AG, 2005 Sujeto a cambios sin previo aviso SIMOREG 6RA70 Aplicación Regulación para un grupo Ward-Leonard Printed in EU (Austria)