Redes Inalámbricas – Tema 6 . Seguridad

104
REDES INALÁMBRICAS Máster de Ingeniería de Computadores-DISCA Redes Inalámbricas – Tema 6. Seguridad La tecnología 802.11: WEP y el estándar 802.11i Seguridad en MANET

description

Redes Inalámbricas – Tema 6 . Seguridad. La tecnología 802.11: WEP y el estándar 802.11i Seguridad en MANET. WEP y IEEE802.11i. Wireless LAN Security Issues. Issue Wireless sniffer can view all WLAN data packets Anyone in AP coverage area can get on WLAN. 802.11 WEP Solution - PowerPoint PPT Presentation

Transcript of Redes Inalámbricas – Tema 6 . Seguridad

Page 1: Redes Inalámbricas – Tema  6 .  Seguridad

REDES INALÁMBRICAS Máster de Ingeniería de Computadores-DISCA

Redes Inalámbricas – Tema 6. Seguridad

La tecnología 802.11: WEP y el estándar 802.11i

Seguridad en MANET

Page 2: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10

Wireless LAN (WLAN)

Wireless LAN Security IssuesIssue Wireless sniffer can view all WLAN

data packets Anyone in AP coverage area can get

on WLAN

802.11 WEP Solution Encrypt all data transmitted

between client and AP Without encryption key, user

cannot transmit or receive data

Wired LAN

Goal: Make WLAN security equivalent to that of wired LANs (Wired Equivalent Privacy)

client access point (AP)

WEP y IEEE802.11i2

Page 3: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 WEP – Protection for 802.11b Wired Equivalent Privacy

No worse than what you get with wire-based systems. Criteria:

“Reasonably strong” Self-synchronizing – stations often go in and out of coverage Computationally efficient – in HW or SW since low MIPS CPUs might be

used Exportable – US export codes (relaxed in Jan 2000 / “Wassenaar

Arrangement”) Optional – not required to used it

Objectives: confidentiality integrity authentication

WEP y IEEE802.11i3

Page 4: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 WEP – How It Works Secret key (40 bits or 104 bits)

can use up to 4 different keys Initialization vector (24 bits, by IEEE std.)

total of 64 or 128 bits “of protection.” RC4-based pseudo random number generator (PRNG) Integrity Check Value (ICV): CRC 32

IV(4 bytes)

Data (PDU)( 1 byte)

Init Vector(3 bytes)

1 bytePad

6 bitsKey ID2 bits

Frame header

ICV(4 bytes) FCS

WEP y IEEE802.11i4

Page 5: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 WEP Encryption Process

1) Compute ICV using CRC-32 over plaintext msg.2) Concatenate ICV to plaintext message.3) Choose random IV and concat it to secret key and input it to

RC4 to produce pseudo random key sequence.4) Encrypt plaintext + ICV by doing bitwise XOR with key

sequence to produce ciphertext.5) Put IV in front of cipertext.

InitializationVector (IV)Secret Key

Plaintext

Integrity Algorithm

Seed WEP PRNG

Key Sequence

Integrity Check Value (ICV)

IV

Ciphertext Message

WEP y IEEE802.11i5

Page 6: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 WEP Decryption Process

1) IV of message used to generate key sequence, k.2) Ciphertext XOR k original plaintext + ICV.3) Verify by computing integrity check on plaintext (ICV’) and

comparing to recovered ICV.4) If ICV ICV’ then message is in error; send error to MAC

management and back to sending station.

IVCiphertext

Secret Key

Message

WEP PRNGSeed

Key Sequence

Integrity Algorithm

Plaintext

ICV’ICV

ICV’ - ICV

WEP y IEEE802.11i6

Page 7: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 WEP Station Authentication Wireless Station (WS) sends

Authentication Request to Access Point (AP).

AP sends (random) challenge text T. WS sends challenge response

(encrypted T). AP sends ACK/NACK.

WS APAuth. Req.

Challenge Text

Challenge Response

Ack

WEP y IEEE802.11i

Client

AP

Access Point

Authentication RequestChallenge

ENC SharedKey {Challenge}Success/Failure

Shared WEP Key

7

Page 8: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 WEP Weaknesses Forgery Attack

Packet headers are unprotected, can fake src and dest addresses. AP will then decrypt data to send to other destinations. Can fake CRC-32 by flipping bits.

Replay Can eavesdrop and record a session and play it back later.

Collision (24 bit IV; how/when does it change?) Sequential: roll-over in < ½ day on a busy net Random: After 5000 packets, > 50% of reuse.

Weak Key If ciphertext and plaintext are known, attacker can determine key. Certain RC4 weak keys reveal too many bits. Can then determine RC4

base key. Well known attack described in Fluhrer/Mantin/Shamir paper

“Weaknesses in the Key Scheduling Algorithm of RC4”, Scott Fluhrer, Itsik Mantin, and Adi Shamir

using AirSnort: http://airsnort.shmoo.com/ Also: WEPCrack

http://wepcrack.sourceforge.net/

WEP y IEEE802.11i8

Page 9: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Ways to Improve Security with WEP Use WEP(!) Change wireless network name from

default any, 101, tsunami

Turn on closed group feature, if available in AP Turns off beacons, so you must

know name of the wireless network MAC access control table in AP

Use Media Access Control address of wireless LAN cards to control access

Use Radius support if available in AP Define user profiles based on user

name and password

War Driving in New Orleans (back in December 2001) Equipment

Laptop, wireless card, software GPS, booster antenna (optional)

Results 64 Wireless LAN’s Only 8 had WEP Enabled (12%) 62 AP’s & 2 Peer to Peer

Networks 25 Default (out of the box)

Settings (39%) 29 Used The Company Name

For ESSID (45%)

WEP y IEEE802.11i9

Page 10: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 War Driving

Locating wireless access points while in motion http://www.wardrive.net/

Adversarial Tools Laptop with wireless adapter External omni-directional antenna Net Stumbler or variants http://www.netstumbler.com/ GPS With GPS Support

Send constant probe requests

10

Page 11: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10

War Driving in New Orleans (back in December 2001)

WEP y IEEE802.11i11

Page 12: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Quick and dirty 802.11 Security Methods

SSID Closed mode MAC layer security

12

Page 13: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10Quick and dirty Security Methods:

Closed Mode of Operation

Hide SSID All devices in a WLAN have to have same SSID to communicate

SSID is not released Beacon messages are removed Client has to know exact SSID to connect

Make active scanning, send probe request

13

Page 14: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Attacking to 802.11 Closed Mode

Impersonate AP

Client Connection

Disassociate

Client sends Probe Request which includes SSID in clear

Capture Probe Request Packets for SSID information

Client AP

14

Page 15: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Man-in-the-middle Attack

Wired Network

Client

AP

Access Point

ApplicationServer

Impersonate AP to the client

Impersonate Client to the AP

15

Page 16: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Quick and dirty 802.11 Security Methods

SSID Closed mode MAC layer security

16

Page 17: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10Quick and dirty security Methods: MAC Layer

Security Based on MAC addresses MAC filters

Allow associate of a MAC Deny associate of a MAC

Wired Network

MAC: 00:05:30:BB:CC:EE

MAC: 00:05:30:AA:AA:AA

?

17

Page 18: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Bypass MAC Filters: MAC Spoofing

Wired Network

Legitimate Client

AP

Access Point Application Server

Association Request

802.11

Association ResponseAccess to Network

Disassociate

Set MAC address of Legitimate Client by using SMAC or variants 2

Association RequestAssociation Response

Access to Network

34

5

1

Monitor

Authentication RespondAuthentication Request

Probe RespondProbe Request

18

Page 19: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Rouge AP

Install fake AP and web server software Convince wireless client to:

Disassociate from legitimate AP Associate to fake AP

Bring similar web application to user to collect passwords Adversarial tools:

Any web server running on Unix or MS environments Fake AP (http://www.blackalchemy.to/project/fakeap/)

Run fake • AP software• Web Server

Wired NetworkAPApplication Server:i.e. Web Server

Reconnect to louder AP

19

Page 20: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 IEEE 802.11i: Introducción

Las redes inalámbricas 802.11 siguen teniendo la fama de inseguras

Desde el año 2004 se cuenta con el estándar 802.11i, que proporciona una alta seguridad a este tipo de redes no hay descrito ningún ataque efectivo sobre WPA2 en modo

infraestructura (correctamente configurado) WEP dejó de ser una opción a partir del año 2001

¡pero seguimos burlándonos de él! ya no forma parte del estándar 802.11 (su uso está desaprobado por el

añadido 802.11i La tecnología actual permite redes Wi-Fi seguras

20

Page 21: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Cronología de la seguridad en 802.11

1997 1999 2001 2003 2004802.11

802.11a

802.11b 802.11g 802.11i

Wi-Fi WPA WPA2

WEP

21

Page 22: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 ¿En qué falló WEP?

utiliza una única clave secreta para todo: autenticación, confidencialidad

y se usa en todos los dispositivos y durante todo el tiempo la gestión de las claves es manual la autenticación es sólo para el dispositivo cliente

no se autentica al usuario, ni se autentica la red el IV es demasiado pequeño y la forma de usarlo debilita el

protocolo la integridad no funciona (CRC no es un buen código)

y no incluye las direcciones fuente y destino

22

Page 23: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 ¿Qué podemos hacer?

No intentar resolverlo todo de una Buscar los protocolos adecuados para cada funcionalidad Permitir la gestión automática de las claves de cifrado Cambiar frecuentemente las claves, obteniéndolas

automáticamente Autenticar al usuario, no al dispositivo Autenticar a la red (también hay redes ‘malas’) Utilizar protocolos robustos de autenticación, integridad y

confidencialidad

23

Page 24: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Primera aproximación: 802.1X Control de acceso basado en el

puerto de red: una vez autenticada y asociada

una estación, no se le da acceso a la red hasta que no se autentique correctamente el usuario

Componentes: suplicante, autenticadory servidor de autenticación

Utiliza EAP como marco de autenticación EAP permite el uso de distintos

protocolosde autenticación: MD5, MS-CHAPv2, …

La utilización de un método criptográfico en la autenticación permite generar claves secretas también se pueden distribuir de

manera segura

24

Page 25: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Métodos EAP (1)

Los métodos EAP en redes Wi-Fi han de cumplir: protección de las credenciales de usuario autenticación mutua usuario red derivación de claves

Solución: emplear un túnel TLS el servidor se autentica con certificado digital las credenciales viajan protegidas TLS genera una clave maestra

¿Qué servidor autentica? RADIUS trabaja con distintas Bases de Datos de usuario permite la escalabilidad mediante una jerarquía de servidores (en árbol)

25

Page 26: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Métodos EAP (2)

Los más habituales en Wi-Fi: EAP-TLS

se utilizan certificados digitales en ambos extremos EAP-TTLS (Tunneled TLS)

en una primera fase se establece un túnel TLS a partir del certificado digital del servidoren la segunda fase se utiliza cualquier otro método de autenticación (protegido por el túnel). Ej.: PAP, MD5, …

EAP-PEAP (Protected EAP)equivalente a TTLS, pero sólo emplea métodos EAP para la segunda fase: TLS, MS-CHAP-V2, …

Si se emplean dos fases: identidad anónima en la autenticación externa (dominio) identidad real en la autenticación interna

26

Page 27: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 El servicio RADIUS

Permite autenticar a los usuarios que establecen conexiones remotas u 802.1X

Es capaz de trabajar con distintos repositorios de cuentas de usuario el Directorio Activo de Windows, LDAP, ficheros, …

Si el usuario no pertenece a su dominio lanza la petición a su ‘padre’ en la jerarquía RADIUS en los métodos que utilizan dos fases se emplea la identidad externa

para redirigir la petición Los canales cifrados (túneles TLS) se establecen entre el

suplicante y el RADIUS final que atiende la petición

27

Page 28: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Jerarquía RADIUS28

Page 29: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Primera solución: WPA

Mientras en el IEEE se trabaja en el nuevo estándar 802.11i, las debilidades de WEP exigen protocolos de cifrado en niveles superiores a la capa de enlace

La industria es reacia a adoptar las redes 802.11 El consorcio Wi-Fi Alliance decide sacar el estándar comercial

WPA (Wi-Fi Protected Access) Se basa en un borrador del estándar 802.11i y es un

subconjunto del mismo compatible hacia delante

Soluciona todos los problemas que plantea WEP con medidas válidas a medio plazo

29

Page 30: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 La confidencialidad en WPA: TKIP

TKIP (Temporal Key Integrity Protocol) es el protocolo de cifrado diseñado para sustituir a WEP reutilizando el hardware existente

Forma parte del estándar 802.11i aunque se considera un protocolo ‘a desaprobar’

Entre sus características: utiliza claves maestras de las que se derivan las claves el IV se incrementa considerablemente (de 24 a 48 bits) cada trama tiene su propia clave RC4 impide las retransmisiones de tramas antiguas comprueba la integridad con el algoritmo Michael

no ofrece la máxima seguridad, pero incorpora contramedidas ante los ataques (desconexión 60 s y generación de claves)

30

Page 31: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 ¿Cómo se configura WPA?

Autenticación 802.11 abierta Autenticación 802.1X (en modo infraestructura) Métodos EAP con túnel TLS

identidad externa anónima, si es posible Restricción de los servidores RADIUS aceptados Cifrado: TKIP ¿Y si estamos en un entorno SOHO?

no hay servidores RADIUS no podemos autenticar al usuario como hasta ahora no podemos generar la clave maestra utilizamos una clave pre-compartida entre todos ¡!

31

Page 32: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 La solución definitiva: 802.11i = WPA2

El protocolo CCMP ofrece el cifrado (mediante AES) y la protección de integridad se considera el algoritmo de cifrado más seguro hoy en día (no se ha

ideado ningún ataque contra el mismo) necesita soporte hardware para no penalizar aunque se han incorporado mejoras en el diseño para hacerlo más

eficiente Se establece el concepto RSN: Robust Security Networks

aquellas en las que todas las asociaciones entre dos dispositivos son de tipo RSNA intercambio de claves con un 4-Way Handshake

32

Page 33: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Asociaciones de tipo RSNA

Una vez que el usuario se ha autenticado ante el RADIUS, ambos han generado una clave maestra

El RADIUS le proporciona esta clave al AP El punto de acceso y el cliente realizan un diálogo (con 4

mensajes) en el que: comprueban que el otro tiene en su poder la clave maestra sincronizan la instalación de claves temporales confirman la selección de los protocolos criptográficos

Las claves temporales son de dos tipos: para el tráfico unicast (estación AP) para el tráfico multicast y broadcast (AP estaciones)

33

Page 34: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 ¿Cómo se configura WPA2?

Autenticación 802.11 abierta Autenticación 802.1X (en modo infraestructura) Métodos EAP con túnel TLS

identidad externa anónima, si es posible Restricción de los servidores RADIUS aceptados Cifrado: AES ¿Y si estamos en un entorno SOHO?

utilizamos una clave pre-compartida entre todos esta clave sirve de autenticación esta es la clave maestra a partir de la que generar el resto

LA PALABRA DE PASO HA DE TENER MÁS DE 20 CARACTERES

34

Page 35: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 WPA y WPA2

WPA puede ejecutarse con todo el hardware que soportase WEP (sólo necesita una actualización de firmware)

WPA2 necesita hardware reciente (2004 ) WPA acabará siendo comprometido a medio plazo y sólo se

recomienda como transición a WPA2

Algunos AP permiten emplear un modo mixto que acepta tanto clientes WPA como clientes WPA2 en la misma celda hay una pequeña degradación en las claves de grupo(este modo nos ha dado problemas con algunas PDA)

35

Page 36: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Pre-autenticación 802.1X

El proceso de establecer la asociación y generar las claves es costoso y puede afectar a la movilidad

La pre-autenticación consiste en establecer el contexto de seguridad con un AP mientras se está asociado a otro

El tráfico entre la estación y el nuevo AP viaja por la red cableada

Cuando, finalmente, se produce el roaming, el cliente indica que ya está hecha la asociación inicial

Sólo disponible en WPA2 (excluido en WPA)

36

Page 37: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Soporte 802.11i en los S. Operativos

Windows Mobile ¡Cada PDA es un mundo! Incluye el suplicante 802.1X Soporta sólo WPA (cifrado TKIP) métodos EAP: EAP-TLS y EAP-PEAP/MS-CHAP-V2

Windows XP SP2 Incluye el suplicante 802.1X Soporta WPA (de fábrica). Se puede aplicar la actualización a WPA2 (si la

tarjeta lo soporta)esta actualización no se aplica a través de Windows Update

métodos EAP: EAP-TLS y EAP-PEAP/MS-CHAP-V2 permite restringir los servidores RADIUS aceptados almacena en caché las credenciales del usuario ¡siempre!

37

Page 38: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Soporte 802.11i en los S. Operativos

Windows Vista Incluye el suplicante 802.1X Soporta WPA y WPA2 métodos EAP: EAP-TLS y EAP-PEAP/MS-CHAP-V2 incorpora una API (EAPHost) que permite desarrollar nuevos suplicantes

y nuevos métodos EAP permite restringir los servidores RADIUS aceptados permite elegir si se almacenan o no, en caché, las credenciales del

usuario Permite definir perfiles de conexión para configurar las redes

inalámbricas sin la intervención del usuario incluso con opciones que no podrá modificar

Informa de la seguridad de las redes disponibles

38

Page 39: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Soporte 802.11i en los S. Operativos

Linux Dependiendo de la distribución puede incluir o no el suplicante 802.1X Se recomienda utilizar wpa-supplicant y Network Manager para la

configuración Soporta WPA y WPA2 admite la mayoría de métodos EAP: EAP-TLS, EAP-TTLS/PAP,

EAP-PEAP/MS-CHAP-V2, … permite restringir los servidores RADIUS aceptados permite elegir si se almacenan o no, en caché, las credenciales del

usuario la configuración puede ser a través de ficheros o mediante la interfaz

gráfica

39

Page 40: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 eduroam

Es una iniciativa a nivel internacional que permite la movilidad de sus miembros de manera ‘transparente’ con la misma configuración de la red inalámbrica se puede conectar un

usuario en cualquier institución adherida a eduroam la autenticación del usuario la hace siempre la institución de origen (con

seguridad en el tránsito de credenciales) es sencillo detectar si tenemos soporte para eduroam: el SSID es

eduroam Más información:

http://www.eduroam.es, http://eduroam.upv.es

Atención: el cifrado puede ser distinto en cada red

40

Page 41: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 eduroam en Europa41

Page 42: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 La red inalámbrica en la UPV

http://wifi.upv.es

42

Page 43: Redes Inalámbricas – Tema  6 .  Seguridad

REDES INALÁMBRICAS Máster de Ingeniería de Computadores-DISCA

Redes Inalámbricas – Tema 6. Seguridad

La tecnología 802.11: WEP y el estándar 802.11i

Seguridad en MANET

Page 44: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Routing security vulnerabilities

Wireless medium is easy to snoop on Due to ad hoc connectivity and mobility, it is hard to

guarantee access to any particular node (for instance, to obtain a secret key)

Easier for trouble-makers to insert themselves into a mobile ad hoc network (as compared to a wired network)

Open medium Dynamic topology Distributed cooperation

(absence of central authorities) Constrained capability

(energy)

44

Page 45: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Securing Ad Hoc Networks

Definition of “Attack” RFC 2828 — Internet Security Glossary : “ An assault on system security that derives from an intelligent threat,

i.e., an intelligent act that is a deliberate attempt (especially in the sense of a method or technique) to evade security services and violate the security policy of the system.”

Goals Availability: ensure survivability of the network despite denial of service

attacks. The DoS can be targeted at any layer Confidentiality: ensures that certain information is not disclosed to

unauthorized entities. Eg Routing information information should not be leaked out because it can help to identify and locate the targets

Integrity: guarantee that a message being transferred is never corrupted.

Authentication: enables a node to ensure the identity of the nodes communicating.

Non-Repudiation: ensures that the origin of the message cannot deny having sent the message

45

Page 46: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Routing attacks

Classification: External attack vs. Internal attack

External: Intruder nodes can pose to be a part of the network injecting erroneous routes, replaying old information or introduce excessive traffic to partition the network

Internal: The nodes themselves could be compromised. Detection of such nodes is difficult since compromised nodes can generate valid signatures.

Passive attack vs. Active attack Passive attack: “Attempts to learn or make use of information from the

system but does not affect system resources” (RFC 2828) Active attack: “Attempts to alter system resources or affect their

operation” (RFC 2828)

46

Page 47: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Normal Flow

Information source

Information destination

47

Page 48: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Passive Attacks

Sniffer

Passive attacks

Interception (confidentiality)

Release of message contents Traffic analysis

48

Page 49: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Sniffers

All machines on a network can “hear” ongoing traffic A machine will respond only to data addressed specifically to

it Network interface: “promiscuous mode” – able to capture all

frames transmitted on the local area network segment Risks of Sniffers:

Serious security threat Capture confidential information

Authentication informationPrivate data

Capture network traffic information

49

Page 50: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10

Information source

Information destination

Unauthorized party gains access to the asset – ConfidentialityExample: wiretapping, unauthorized copying of files

Interception50

Page 51: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Passive attacks

Release of message contents Intruder is able to interpret and extract information being transmitted Highest risk: authentication information

Can be used to compromise additional system resources

Traffic analysis Intruder is not able to interpret and extract the transmitted

information Intruder is able to derive (infer) information from the traffic

characteristics

51

Page 52: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Protection against passive attacks Shield confidential data from sniffers: cryptography Disturb traffic pattern:

Traffic padding Onion routing

Modern switch technology: network traffic is directed to the destination interfaces

Detect and eliminate sniffers

52

Page 53: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Active attacks

Active attacks

Interruption Modification Fabrication(availability) (integrity) (integrity)

53

Page 54: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10

Information source

Information destination

Asset is destroyed or becomes unavailable - AvailabilityExample: destruction of hardware, cutting communicationline, disabling file management system, etc.

Interruption54

Page 55: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Denial of service attack

Adversary floods irrelevant data Consume network bandwidth Consume resource of a particular node E-mail bombing attack: floods victim’s mail with large bogus

messages Popular Free tools available

Smurf attack: Attacker multicast or broadcast an Internet Control Message Protocol

(ICMP) with spoofed IP address of the victim system Each receiving system sends a respond to the victim Victim’s system is flooded

55

Page 56: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 TCP SYN flooding

Server: limited number of allowed half-open connections Backlog queue:

Existing half-open connections Full: no new connections can be established Time-out, reset

Attack: Attacker: send SYN requests to server with IP source that unable to

response to SYN-ACK Server’s backlog queue filled No new connections can be established Keep sending SYN requests

Does not affect Existing or open incoming connections Outgoing connections

56

Page 57: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Protection against DoS, DDoS

Hard to provide full protection Some of the attacks can be prevented

Filter out incoming traffic with local IP address as source Avoid established state until confirmation of client’s identity

Internet trace back: determine the source of an attack

57

Page 58: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10

Information source

Information destination

Unauthorized party tampers with the asset – IntegrityExample: changing values of data, altering programs, modify content of a message, etc.

Modification58

Page 59: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Attacks using modification

Attacks using modification Idea:

Malicious node announces better routes than the other nodes in order to be inserted in the ad-hoc network

How ? Redirection by changing the route sequence number Redirection with modified hop count Denial Of Service (DOS) attacks Modify the protocol fields of control messages Compromise the integrity of routing computation Cause network traffic to be dropped, redirected to a different destination

or take a longer route

59

Page 60: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Attacks using modification

Node A Node B Node D

Node C

Intruder

Metric 1 and 3 hops

Metric 1 and 1 hop

Redirection with modified hop count: - The node C announces to B a path with a metric value of one - The intruder announces to B a path with a metric value of one too - B decides which path is the best by looking into the hop count value of each route

60

Page 61: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Attacks using modification

Denial Of Service (DOS) attacks with modified source routes: A malicious node is inserted in the network The malicious node changes packet headers it receives The packets will not reach the destination: The transmission is aborted

Node A Node B Node DNode CIntruder I

Intruder I decapsulates packets, change the header:

A-B-I-C-E

Node A sends packets with header: (route cache to reach node E)

A-B-I-C-D-E

Node C has no direct route with E, also the packets are dropped

Node E

61

Page 62: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10

Information source

Information destination

Unauthorized party insets counterfeit object into the system – AuthenticityExample: insertion of offending messages, addition of records to a file, etc.

Fabrication62

Page 63: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Attacks using fabrication

Attacks using fabrication Idea:

Generates traffic to disturb the good operation of an ad-hoc network How ?

Falsifying route error messages

Corrupting routing state Routing table overflow attack Replay attack Black hole attack

63

Page 64: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Attacks using fabrication

Falsifying route error messages: When a node moves, the closest node sends “error” message to the

others A malicious node can usurp the identity of another node (e.g. By using

spoofing) and sends error messages to the others The other nodes update their routing tables with these bad information The “victim” node is isolated

64

Page 65: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Attacks using fabrication

Corrupting routing state: In DSR, routes can be learned from promiscuously received packets A node should add the routing information contained in each packet’s

header it overhears A hacker can easily broadcast a message with a spoofed IP address

such as the other nodes add this new route to reach a special node S It’s the malicious node which will receive the packets intended to S.

65

Page 66: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Attacks using fabrication

Routing table overflow attack: Available in “pro-active” protocols. These protocols try to find routing information before they are needed A hacker can send in the network a lot of route to non-existent nodes

until overwhelm the protocol

66

Page 67: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Attacks using fabrication

Replay attack: A hacker sends old advertisements to a node The node updates its routing table with stale routes

Black hole attack: A hacker advertises a zero metric route for all destinations All the nodes around it will route packets towards it

67

Page 68: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Attacks using impersonation

Attacks using impersonation Idea :

Usurpates the identity of another node to perform changes How ?

Spoofing MAC address of other nodes

68

Page 69: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Attacks using impersonation

Forming loops by spoofing MAC address: A malicious node M can listen all the nodes when the others nodes can

only listen their closest neighbors Node M first changes its MAC address to the MAC address of the node A Node M moves closer to node B than node A is, and stays out of range of

node A Node M announces node B a shorter path to reach X than the node D

gives

A

B

C

D E X

M

69

Page 70: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Attacks using impersonation

Forming loops by spoofing MAC address: Node B changes its path to reach X Packets will be sent first to node A Node M moves closer to node D than node B is, and stays out of range

of node B Node M announces node D a shorter path to reach X than the node E

gives

A

B

C

D E XM

70

Page 71: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Attacks using impersonation

Forming loops by spoofing MAC address: Node D changes its path to reach X Packets will be sent first to node B X is now unreachable because of the loop formed

A

B

C

D E XM

71

Page 72: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Other Routing attacks Attacks for routing:

Wormhole attack (tunneling) Invisible node attack The Sybil attack Rushing attack Non-cooperation

72

Page 73: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Wormhole attack

Colluding attackers uses “tunnels” between them to forward packets

Place the attacker in a very powerful position The attackers take control of the route by claiming a shorter

path

A

M

B

C

N

D

S

tunnel

……..….

73

Page 74: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10

Invisible node attack

Attack on DSR Malicious does not append its IP address M becomes “invisible” on the path

CMBS D

74

Page 75: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 The Sybil attack

Represents multiple identities Disrupt geographic and multi-path routing

M1

B

M4

M5M2

M3

75

Page 76: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Rushing attack

Directed against on-demand routing protocols The attacker hurries route request packet to the next node to

increase the probability of being included in a route

76

Page 77: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Non-cooperation Node lack of cooperation, not participate in routing or packet

forwarding Node selfishness, save energy for itself

77

Page 78: Redes Inalámbricas – Tema  6 .  Seguridad

REDES INALÁMBRICAS Máster de Ingeniería de Computadores-DISCA

Redes Inalámbricas – Tema 6. Seguridad

La tecnología 802.11: WEP y el estándar 802.11i

Seguridad en MANET Algunas soluciones

Page 79: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 TESLA Overview

Broadcast authentication protocol used here for authenticating routing messages Efficient and adds only a single message authentication code (MAC) to a

message Requires asymmetric primitive to prevent others from forging MAC

TESLA achieves asymmetry through clock synchronization and delayed key disclosure

79

Page 80: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 TESLA Overview (cont.)1. Each sender splits the time into intervals2. It then chooses random initial key (KN)3. Generates one-way key chain through repeated use of a one-way

hash function (generating one key per time interval)KN-1=H[KN], KN-2=H[KN-1]…

These keys are used in reverse order of generation4. The sender discloses the keys based on the time intervals

80

Page 81: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 TESLA Overview (cont.)

Sender attaches MAC to each packet Computed over the packet’s contents Sender determines time interval and uses corresponding value from

one-way key chain With the packet, the sender also sends the most recent disclosable one-

way chain value Receiver knows the key disclosing schedule

Checks that the key used to compute the MAC is still secret by determining that the sender could not have disclosed it yet

As long as the key is still secret, the receiver buffers the packet When the key is disclosed, receiver checks its correctness

(through self-authentication) and authenticates the buffered packets

81

Page 82: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Assumptions Of the network

Network links are bidirectional The network may drop, corrupt, reorder or duplicate packets Each node must be able to estimate the end-to-end transmission time to

any other node in the network Disregard physical attacks and Medium Access Control attacks

Of the nodes Resources of nodes may vary greatly, so Ariadne assumes constrained

nodes All nodes have loosely synchronized clocks

82

Page 83: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Security Assumptions

Three authentication mechanism possibilities: Pairwise secret keys (requires n(n+1)/2 keys) TESLA (shared keys between all source-destination pairs) Digital signatures (requires powerful nodes)

83

Page 84: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Key Setup Shared secret keys

Key distribution center Bootstrapping from a Public Key Infrastructure Pre-loading at initialization

Initial TESLA keys Embed at initialization Assume PKI and embed Certifications Authority’s public key at each node

84

Page 85: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Ariadne Overview Authenticate routing messages using one of:

Shared secrets between each pair of nodesAvoids need for synchronization

Shared secrets between communicating nodes combined with broadcast authentication

Requires loose time synchronizationAllows additional protocol optimizations

Digital signatures

85

Page 86: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Ariadne Notation

A and B are principals (e.g., communicating nodes) KAB and KBA are secret MAC keys shared between A and B MACKAB(M) is computation of MAC of message M using key KAB

86

Page 87: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Route Discovery

Assume sender and receiver share secret (non-TESLA) keys for message authentication

Target authenticates ROUTE REQUESTS Initiator includes a MAC computed with end-to-end key Target verifies authenticity and freshness of request using shared key

Data authentication using TESLA keys Each hop authenticates new information in the REQUEST Target buffers REPLY until intermediate nodes release TESLA keys

TESLA security condition is verified at the targetTarget includes a MAC in the REPLY to certify the condition was met

Attacker can remove a node from node list in a REQUEST One-way hash functions verify that no hop was omitted (per-

hop hashing)

87

Page 88: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Route Discovery (cont.) Assume all nodes know an authentic key of the TESLA one-way key

chain of every other node Securing ROUTE REQUEST

Target can authenticate the sender (using their additional shared key) Initiator can authenticate each path entry using intermediate TESLA keys No intermediate node can remove any other node in the REQUEST or REPLY

88

Page 89: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Route Discovery (cont.)

Upon receiving ROUTE REQUEST, a node: Processes the request only if it is new Processes the request only if the time interval is valid (not too far in the

future, but not for an already disclosed TESLA key) Modifies the request and rebroadcasts it

Appends its address to the node list, replaces the hash chain with H[A, hash chain], appends MAC of entire REQUEST to MAC list using KAi where i is the index for the time interval specified in the REQUEST

89

Page 90: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Route Discovery (cont.)

When the target receives the route request: Checks the validity of the REQUEST (determining that the keys from the

time interval have not been disclosed yet and that hash chain is correct) Returns ROUTE REPLY containing eight fields

ROUTE REPLY, target, initiator, time interval, node list, MAC listtarget MAC: MAC computed over above fields with key shared

between target and initiatorkey list: disclosable MAC keys of nodes along the path

90

Page 91: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Route Discovery (cont.)

Node forwarding ROUTE REPLY Waits until it can disclose TESLA key from specified interval

Appends that key to the key listThis waiting does delay the return of the ROUTE REPLY but does not

consume extra computational power

91

Page 92: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Route Discovery (cont.)

When initiator receives ROUTE REPLY Verifies each key in the key list is valid Verifies that the target MAC is valid Verifies that each MAC in the MAC list is valid using the TESLA keys

92

Page 93: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Route Maintenance

Based on DSR Node forwarding a packet to the next hop returns a ROUTE ERROR to the

original sender Prevent unauthorized nodes from sending errors, we require

errors to be authenticated by the sender

93

Page 94: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Route Maintenance Errors are propagated just as regular data packets

Intermediate nodes remove routes that use the bad link Sending node continues to send data packets along the route

until error is validated Generates additional errors, which are all cleaned up when the error is

finally validated

94

Page 95: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Anonymous Communication

Sometimes security requirement may include anonymity

Availability of an authentic key is not enough to prevent traffic analysis

We may want to hide the source or the destination of a packet, or simply the amount of traffic between a given pair of nodes

95

Page 96: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Traffic Analysis

Traditional approaches for anonymous communication, for instance, based on MIX nodes or dummy traffic insertion, can be used in wireless ad hoc networks as well

However, it is possible to develop new approaches considering the broadcast nature of the wireless channel

96

Page 97: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Mix Nodes

Mix nodes can reorder packets from different flows, insert dummy packets, or delay packets, to reduce correlation between packets in and packets out

M1 B M2 E

A

M3C

DG

F

97

Page 98: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Mix Nodes

Node A wants to send message M to node G. Node A chooses 2 Mix nodes (in general n mix nodes), say, M1 and M2

M1 B M2 E

A

M3C

DG

F

98

Page 99: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Mix Nodes

Node A transmits to M1message K1(R1, K2(R2, M)) where Ki() denotes encryption using public key Ki of Mix i, and Ri is a random number

M1 B M2 E

A

M3C

DG

F

99

Page 100: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Mix Nodes

M1 recovers K2(R2,M) and send to M2

M1 B M2 E

A

M3C

DG

F

100

Page 101: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Mix Nodes

M2 recovers M and sends to G

M1 B M2 E

A

M3C

DG

F

101

Page 102: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Mix Nodes

If M is encrypted by a secret key, no one other than G or A can know M

Since M1 and M2 “mix” traffic, observers cannot determine the source-destination pair without compromising M1 and M2 both

102

Page 103: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10

Alternative Mix Nodes

Suppose A uses M2 and M3 (not M1 and M2) Need to take fewer hops

Choice of mix nodes affects overhead

M1 B M2 E

A

M3C

DG

F

103

Page 104: Redes Inalámbricas – Tema  6 .  Seguridad

RED

ES IN

ALÁ

MB

RIC

AS

MIC

200

9/20

10 Mix Node Selection

Intelligent selection of mix nodes can reduce overhead

With mobility, the choice of mix nodes may have to be modified to reduce cost

However, change of mix selection has the potential for divulging more information

104